US20020012829A1 - Non-aqueous electrolyte secondary cell - Google Patents

Non-aqueous electrolyte secondary cell Download PDF

Info

Publication number
US20020012829A1
US20020012829A1 US09/196,319 US19631998A US2002012829A1 US 20020012829 A1 US20020012829 A1 US 20020012829A1 US 19631998 A US19631998 A US 19631998A US 2002012829 A1 US2002012829 A1 US 2002012829A1
Authority
US
United States
Prior art keywords
aqueous electrolyte
electrolyte secondary
secondary cell
opening
metal foil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US09/196,319
Other versions
US6355372B2 (en
Inventor
Takayuki Yamahira
Ayaki Watanabe
Toshizou Kameishi
Koji Kihara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Assigned to SONY CORPORATION reassignment SONY CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KIHARA, KOJI, WATANABE, AYAKI, KAMEISHI, TOSHIZOU, YAMAHIRA, TAKAYUKI
Assigned to WAKO ELECTRONICS CO. LTD., SONY CORPORATION reassignment WAKO ELECTRONICS CO. LTD. ASSIGNMENT OF ASSIGNOR'S INTEREST. RE-RECORD TO CORRECT THE NUMBER OF MICROFILM PAGES FROM 3 TO 4 ON A DOCUMENT RECORDED ON REEL 9836 FRAME 0049 AND TO ADD AN ASSIGNEE. Assignors: KAMEISHI, TOSHIZOU, KIHARA, KOJI, WATANABE, AYAKI, YAMAHIRA, TAKAYUKI
Assigned to SONY CORPORATION reassignment SONY CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: WAKO ELECTRONICS CO., LTD.
Publication of US20020012829A1 publication Critical patent/US20020012829A1/en
Application granted granted Critical
Publication of US6355372B2 publication Critical patent/US6355372B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/342Non-re-sealable arrangements
    • H01M50/3425Non-re-sealable arrangements in the form of rupturable membranes or weakened parts, e.g. pierced with the aid of a sharp member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/533Electrode connections inside a battery casing characterised by the shape of the leads or tabs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/04Cells with aqueous electrolyte
    • H01M6/06Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid
    • H01M6/10Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid with wound or folded electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • This invention relates to a non-aqueous electrolyte secondary cell. More particularly, it relates to a non-aqueous electrolyte secondary cell having a cleavage valve which, in case of an increased internal pressure, releases the pressure by exploiting this increased internal pressure.
  • the majority of currently used secondary cells are nickel-cadmium cells employing an alkali electrolyte liquid.
  • this aqueous solution type cell has a discharging potential as low as approximately 1.2 V and a large cell weight and volume such that it cannot satisfactorily meet the demand for a cell having a high energy density.
  • the aqueous solution type cell also has a drawback that it has a self discharge rate as high as approximately 20% per month at ambient temperature.
  • a non-aqueous electrolyte secondary cell employing a non-aqueous solvent as the electrolyte solution and also employing light metals, such as lithium as the negative electrode, is under investigations.
  • This non-aqueous electrolyte secondary cell has a voltage as high as 3 V or higher, a high energy density and a low self-discharge rate.
  • this sort of the secondary cell also can hardly be put to practical use because of a drawback that metal lithium used for the negative electrode undergoes dendritic crystal growth to contact with the positive electrode, due to repetition of charging/discharging, as a result of which shorting tends to be produced in the cell to lower the service life of the cell.
  • the alloy is turned into comminuted particles, due to repetition of charging/discharging, thus again lowering the service life of the cell.
  • non-aqueous electrolyte secondary cell employing a carbonaceous material, such as coke, as an active material for the negative electrode.
  • This secondary cell is free of the above-mentioned drawbacks in the negative electrode and hence is superior in cyclic service life characteristics. If a lithium transition metal complex oxide is used as an active material for the positive electrode, the service life of the cell is prolonged to enable realization of the non-aqueous electrolyte secondary cell having the desired high energy density.
  • this pressure relieving mechanism comes into operation to release the gas when the internal pressure in the cell reaches a predetermined pressure, there can be provided an extremely safe cell free from explosions or the like.
  • a non-aqueous electrolyte secondary cell free from explosions or the like can be provided by providing a cleavage valve that is cleft in case of rise in the internal pressure of the cell and by optimizing the diameter of the opening of the valve in association with the internal capacity of the cell to optimize the operating pressure to carry out satisfactory gas release at the time of abnormal pressure increase or on combustion.
  • the present invention completed on the basis of this information, resides in a non-aqueous electrolyte secondary cell having a cleavage valve which is realized by bonding a metal foil to an opening in the valve.
  • the metal foil is cleft due to rise in the internal pressure in the cell to release the pressure.
  • a value K corresponding to the internal cell volume in cm 3 divided by the area of the opening in cm 2 is such that 40 ⁇ K ⁇ 100 ⁇ m.
  • the cleavage valve is in operation promptly when the internal pressure reaches a predetermined pressure in order to release the pressure. Thus, there is no risk of dilation or explosion of the cell to assure high operational safety.
  • the present invention provides an extremely safe cell free from explosions since gas release may be promptly realized on the occasion of rise in the internal pressure in the cell.
  • FIG. 1 is a schematic plan view showing an illustrative structure of a cleavage valve.
  • FIG. 2 is a schematic cross-sectional view showing essential portions of a metal foil formed by an electroforming method.
  • FIG. 3 is a schematic cross-sectional view showing the method for forming the cleavage valve by the electro-forming method, step-by-step.
  • FIG. 4 is a schematic cross-sectional view showing a typical cleavage valve produced by a stamping method.
  • FIG. 5 is a schematic cross-sectional view showing essential portions of a groove formed by pressing.
  • FIG. 6 is a schematic plan view showing essential portions of a supply device continuously supplying cleavage valves produced by the stamping method.
  • FIG. 7 is a schematic plan view showing another illustrative structure of the cleavage valve.
  • FIG. 8 is a schematic cross-sectional view showing a typical metal foil formed of a clad material.
  • FIG. 9 is a schematic plan view showing a typical lid plate.
  • FIG. 10 is a schematic cross-sectional view showing the lid plate of FIG. 9.
  • FIG. 11 is a schematic plan view showing another typical lid plate.
  • FIG. 12 is a schematic cross-sectional view showing the lid plate of FIG. 11.
  • FIG. 13 is a schematic cross-sectional view showing a typical cell structure.
  • FIG. 14 is a schematic cross-sectional view showing the state in which a positive terminal lead is folded in a direction towards the cleavage valve side.
  • FIG. 15 is a schematic cross-sectional view showing the state in which a positive terminal lead is folded in a direction opposite to the cleavage valve side.
  • a non-aqueous electrolyte secondary cell of the present invention includes a cleavage valve obtained on bonding a metal foil to an opening provided in a cell can or a lid plate used for hermetically sealing the can.
  • the cleavage valve is cleft on the occasion of rise in the internal pressure to cleave the metal foil to relieve the pressure.
  • FIG. 1 shows an example of a lid plate provided with such cleavage valve.
  • a circular opening 2 is provided in the lid plate 1 shaped to conform to the opening shape of the cell can, and a metal foil 3 is welded, such as by laser welding, to close the opening 2 .
  • the shape of the opening 2 which is circular in the present embodiment, may be of any suitable shape, such as elliptical shape.
  • the circular shape is preferred in view of operational stability and ease in manufacture.
  • the metal foil 3 which is square-shaped in the present embodiment, may be of any desired shape, provided that it can stop the opening 2 .
  • the metal foil 3 may, for example, be circular for matching to the shape of the opening 2 .
  • the metal foil 3 is formed with a circular thin-walled portion 3 a , in its area facing the inside of the opening 2 , and is adapted to be cleft beginning from this portion on the occasion of rise in the internal pressure.
  • the thin-walled portion 3 a may be formed by any optional technique, such as by etching, electro-forming or stamping.
  • the electro-forming method is preferred in view of fluctuations in the cleavage pressure.
  • the electroforming which is so-called electro-casting, is such a technique in which a pattern is formed by a photoresist, an insulating film is prepared, a substrate is supplied with current, and preset metal is allowed to undergo crystal growth to form an electrically conductive portion to produce a pattern of lands and valleys under a principle similar to that used for plating.
  • This electro-forming is an optimum technique for controlling the cleavage pressure to a narrow tolerance since the crystal growth can be controlled electrically in contradistinction to the similar photoetching method and hence a film can be prepared with a high processing accuracy.
  • FIG. 3 The technique for fabricating the cleavage valve by the above electro-forming is shown in FIG. 3.
  • a first resist pattern 12 which determines the outer shape of the cleavage valve is formed on the substrate 11 by a photolithographic process employing a photoresist. Using this resist pattern as a mask, Ni is plated on the substrate.
  • a circular second resist pattern 14 is formed to the shape of a cleavage and again Ni is plated thereon as shown in FIG. 3D to form a second Ni plating film 15 .
  • the combined film thickness of the second Ni plating film 15 and the previously formed first Ni plating film 13 may, for example, be 40 ⁇ m or more.
  • the first Ni plating film 13 and the second Ni plating film 15 are formed and the resist patterns 12 , 14 are fused and removed to produce a cleavage valve having the thin-walled portion formed therein to he shape of the second resist pattern 14 , as shown in FIG. 3E.
  • a circular groove 22 is formed by pressing in a circular metal plate 21 to form a thin-walled portion.
  • punching is done consecutively, traces of connecting portions to a hoop material are left as four projections 23 .
  • an outer peripheral surface 22 a of the groove 22 runs somewhat obliquely, for example, at an inclination of the order of 20°, as shown in FIG. 5.
  • an inner peripheral surface 22 b extends substantially vertically. This eliminates the risk of creasing in a cleavage valve (a circular area inwardly of the groove 22 ).
  • FIG. 6 shows the technique of continuously forming the cleavage valve.
  • a hoop material 24 having positioning holes 25 is punched at a preset interval to determine the outer shape of the metal plate 21 , and grooves 22 then are formed by stamping.
  • the metal plate 21 is then handled in this state and ultimately a connecting plate 26 is severed. This enables continuous supply of cleavage valves in a manner convenient for line automation.
  • a clad material obtained on bonding a thick metal foil and a thin metal foil together, may be used.
  • Figs. 7 and 8 show a cleavage valve employing a clad material.
  • the metal foil 3 is made up of a thick metal foil 31 and a thin metal foil 32 .
  • the thick metal foil 31 is removed in an area facing the inside of the opening 2 to a diameter smaller than the opening 2 to delimit a circular thin-walled portion 3 b.
  • the metal foil 3 is preferably of a thickness of 40 to 100 ⁇ m. If the thickness is less than 40 ⁇ m, sufficient strength can hardly be developed on, for example, laser welding. Conversely, the thickness exceeding 100 ⁇ m is not desirable in view of productivity and also because of non-smooth cleavage.
  • a fluorine-based water-proofing agent After bonding the metal foil 3 to the opening 2 . If the metal foil 3 is formed by the electro-forming method to form the groove-shaped thin-walled portion 3 a , and water droplets are deposited thereon, rusting tends to be produced because of difficulties in evaporation of water. If a fluorine-based water-proofing agent is coated, it is possible to prevent rusting to improve operational reliability.
  • an area of the opening 2 needs to be set to an optimum value depending on the inner cell volume.
  • the inner cell volume (in cm 3 ) divided by the area of the above opening (in cm 2 ) is set so that 40 ⁇ K ⁇ 350 to optimize the cleavage pressure at all times.
  • the area of the opening 2 as large as possible is preferred, its upper limit is approximately one-half the area of the lid plate in view of the shape of the lid plate 1 . If the physical limitation of the lid plate 1 is taken into account, the lower limit of the above K value is 40. If the opening 2 is of a true circular shape, the K value has a lower limit value of approximately 50. Conversely, if the K value is too large, that is if the area of the opening 2 is too small, the cleavage pressure will be excessive, thus producing cleavage of the weld and dilation of the cell can.
  • the K value is preferably in a range from 80 to 320 and more preferably in a range from 85 to 240.
  • an electrode terminal for example, is provided on a lid plate of the cell can.
  • FIGS. 9 and 10 show an example of a lid plate 41 of a cell can having some width. At a mid portion of the lid plate 41 is caulked a terminal pin 42 via a gasket 43 . This terminal pin 42 is electrically connected via a lead to, for example, a positive terminal, in a manner not shown.
  • a cleavage valve 44 On both sides of the terminal pin 42 are arranged a cleavage valve 44 and a solution injection port 45 for injecting the electrolytic solution.
  • the cleavage valve 44 since the lid plate 41 is of some width, the cleavage valve 44 has a substantially circular shape.
  • FIGS. 11 and 12 show an example of the lid plate 41 . Since the lid plate 41 of the present example is of narrow width, the cleavage valve 44 is of an oblong shape. The rim portion of the solution injection port 45 is formed with a step to improve mechanical strength. The provision of the step is aimed at assuring sufficient resistance against the force applied at the time of welding the solution injection port 45 using a micro-sized globule.
  • the non-aqueous electrolyte secondary cell according to the present invention has the above-described cleavage valve as its main feature. Otherwise, the cell may be constructed similarly to the conventional non-aqueous electrolyte secondary cell.
  • an active material for the negative electrode of the non-aqueous electrolyte secondary cell a variety of materials may be used depending on the type of the cell desired to be fabricated.
  • the active material for the negative electrode there is a carbonaceous material capable of doping and undoping metal ions, above all, lithium ions, that contribute to the cell reaction.
  • this carbonaceous material such carbonaceous material of low crystallinity produced on firing at a lower temperature not higher than 2000° C. or a carbonaceous material of low crystallinity obtained on processing a crystallizable starting material at an elevated temperature in the vicinity of 3000° C.
  • carbonaceous materials petroleum pitch, a binder pitch, a high-molecular resin or green coke, are most preferred.
  • a low crystallinity carbonaceous material having a plane-to-plane spacing of the (002) planes not less than 3.70 ⁇ and a true density less than 1.70 g/cc and having no heat emission peak at a temperature not lower than 700° C. on differential thermal analysis in an air stream or a high crystallinity carbonaceous material having a high negative electrode mixture charging ratio and a true specific gravity not lower than 2.10 g/cc, may be used.
  • the negative electrode may be formed of metal lithium, a lithium alloy or a polymer doped with lithium.
  • metal oxides, metal sulfides or specified polymers may be used depending on the type of the cell desired to be produced.
  • a lithium ion secondary cell is to be fabricated, a lithium complex oxide containing Li x MO 2 , where M is at least one transition metal, preferably one of Co, Ni or Fe, with 0.05 ⁇ X ⁇ 1.10.
  • the lithium complex oxide may be exemplified by LiCoO 2 , LiNiO 2 and LiNi y Co (1-y) O 2 , with 0.05 ⁇ X ⁇ 1.10 and 0 ⁇ y ⁇ 1.
  • LiMnO 4 may also be used.
  • the above-mentioned lithium complex oxide may be obtained on mixing carbonates of, for example, lithium, cobalt or nickel, depending on the compositions, and firing the resulting mixture in an oxygen-containing atmosphere at a temperature from 400° to 1000° C.
  • the starting material is not limited to carbonates and the lithium complex oxide may be fabricated from hydroxides or oxides.
  • metal lithium or lithium alloys are used as the negative electrode, it is possible to use compounds that cannot undope lithium on initial charging, for example, a variety of oxides, such as manganese dioxide or titanium oxide, sulfides, such as titanium oxide or polymers, such as polyaniline, may be used as positive electrodes.
  • oxides such as manganese dioxide or titanium oxide
  • sulfides such as titanium oxide
  • polymers such as polyaniline
  • non-aqueous electrolyte used in the non-aqueous electrolyte secondary cell it is possible to use a well-known non-aqueous electrolytic solution obtained on dissolving an electrolyte in an organic solvent.
  • esters such as propylene carbonate, ethylene carbonate or ⁇ -butyrolactone, diethyl ether, tetrahydrofuran, substituted tetrahydrofuran, dioxolane, pyran or derivatives thereof, ethers, such as dimethoxyethane or diethoxyethane, 3-substituted-2-oxazolidinines, such as 3-methyl-2-oxazolidinone, sulforane, methyl sulforane, acetonitrile or propionitrile, may be used. These may be used alone or in combination.
  • Examples of the electrolytes that may be used include lithium perchlorates, lithium boron fluorides, lithium phosphor fluorides, lithium chloride aliminates, lithium halogenides and trifluoromethane lithium sulfonates.
  • the non-aqueous electrolyte may also be a solid, in which case conventional well-known solid electrolytes may be used.
  • the electrode structure may be comprised of winding of a strip-shaped electrode fabricated on coating an active material on a current collector.
  • the electrode may be comprised of layered plate-shaped electrodes on which an active material is held by coating or firing an active material on a current collector.
  • the cell may be of an angular, cylindrical or any other suitable configuration.
  • FIG. 13 shows a typical cell comprised of a positive electrode 51 , a negative electrode 52 and a separator 53 layered together and wound in a coil which is then housed in a cell can 54 .
  • the cell element (wound pair) has its outermost rim secured by a winding end tape 55 and secured in the cell can 54 by a spring plate 56 .
  • the cell element has its upper and lower ends sandwiched between insulating layers 57 , 58 so as to be stably housed in the cell can 54 .
  • the above-mentioned lid plate 41 is secured to the cell can 54 to seal the opening.
  • a positive electrode lead 57 derived from the positive electrode 51 .
  • the cell can 54 and the terminal pin 52 operate as negative and positive electrodes, respectively.
  • the positive electrode lead 57 is usually designed to a longer length and its extracted end is folded and connected to the terminal pin 42 .
  • the extracted portion of the positive electrode lead 57 may be folded on itself on the side of the cleavage valve 44 as shown in FIG. 14 or on the opposite side, that is on the side of the solution injection port 45 , as shown in FIG. 15.
  • the present inventors have found that the later method is preferred. In the usual use state, it does not matter on which side the extracted portion of the positive electrode lead 57 is folded on itself. It has however been found that if, in a descent test, the extracted portion of the positive electrode lead 57 is folded on itself on the side of the cleavage valve 44 , there is the possibility of inadvertent actuation of the cleavage valve 44 .
  • a negative electrode was first prepared in the following manner.
  • the slurry of the negative electrode mixture was coated on both surfaces of a strip-shaped copper foil 10 ⁇ m thick and dried.
  • the resulting dried mass was compression molded in a roll press to produce a band-shaped negative electrode 1.
  • This band-shaped negative electrode was designed so that the thickness of the mixture was 80 ⁇ m thick on both sides, with its width and length being 41.5 mm and 505 mm, respectively.
  • a positive electrode was produced in the following manner.
  • LiCoO 2 An active material for the positive electrode (LiCoO 2 ) was synthesized as follows: Lithium carbonate and cobalt carbonate were mixed together so that its Li/Co molar ratio is equal to 1 and the resulting mixture was fired in air at 900° C. for five hours. The results of X-ray diffractiometry testified to good coincidence with LiCoO 2 of the JCPDS card. The fired product was pulverized in a mortar to LiCoO 2 .
  • the band-shaped positive and negative electrodes and a separator formed by a micro-porous polypropylene film were layered together and wound a number of times on a diamond-shaped take-up core.
  • the trailing end of the layered mass was secured using an adhesive tape 40 ⁇ mm wide and deformed under pressure to fabricate an oblong-shaped wound electrode member.
  • This oblong-shaped wound electrode member was housed in a nickel-plated square-shaped cell can of iron along with a spring plate and an insulating plate was arranged on each of the upper and lower surfaces of the electrode member.
  • an end of the nickel lead of the negative electrode was press-attached to the electrode, whilst the end of the nickel lead was welded to the positive electrode.
  • an end of the aluminum lead of the positive electrode was attached to the positive electrode, with the other end of the lead being welded by laser to a cell lid. In the present Example, no cleavage valve was fitted on the cell lid.
  • An electrolytic solution obtained on dissolving 1 mol of LiPF 6 in a mixed solvent composed of 50 vol % of propylene carbonate and 50 vol % of diethyl carbonate, was injected via the electrolytic solution injection port. This port was then sealed by electrically welding a steel globule.
  • Sample cells were prepared in the same way as in comparative sample 1 except using a cell lid provided with a cleavage valve.
  • the cleavage valve was fabricated by providing an opening in the cell lid, punching a metal foil, formed with a circular pattern (thin-walled portion) by the electro-forming method, to a predetermined size, and by laser-welding the punched metal foil in the opening in the cell lid.
  • the entire thickness of the metal foil was 50 ⁇ m and the circular pattern was varied in a range from 5 to 15 ⁇ m so that the valve would be cleft at a preset pressure.
  • the gas could be relieved in a state of only little deformation in the cell can.
  • the diameter of the opening is not less than 2.8 mm, the gas could be relieved in a state of only little deformation in the cell.
  • a resistance-to-environment test was conducted using a cell of sample 3.
  • the metal foil constituting the cleavage valve is prepared by an electro-forming method, a cladding method, a stamping method, an etching method and a method directly using the foil. For each of these foils, variations in the cleavage pressure was checked using air. The results are shown in Table 5.

Abstract

An extremely safe non-aqueous electrolyte secondary cell free of explosions and which can promptly release the internal pressure in case of rise in the internal pressure. The non-aqueous electrolyte secondary cell has in its opening a cleavage valve obtained on bonding a metal foil to the opening. In case of rise in the internal pressure, the cleavage valve is cleft to release the pressure. In this cell, a value K corresponding to the internal volume in the cell in cm3 divided by the area of the opening in cm2 is set so that 40≦K≦350. By selecting the value K to a suitable value, the cleavage valve is in operation when the internal pressure reaches a predetermined value to release the pressure. The metal foil is produced by, for example, a electro-forming method or a cladding method. Preferably, a fluorine-based water-proofing agent is coated on the foil surface.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention [0001]
  • This invention relates to a non-aqueous electrolyte secondary cell. More particularly, it relates to a non-aqueous electrolyte secondary cell having a cleavage valve which, in case of an increased internal pressure, releases the pressure by exploiting this increased internal pressure. [0002]
  • 2. Description of the Related Art [0003]
  • Recently, with coming into widespread use of portable equipments, such as video cameras or cassette recorders, there is raised an increasing demand for secondary cells that can be repeatedly used in place of the disposable primary cells. [0004]
  • The majority of currently used secondary cells are nickel-cadmium cells employing an alkali electrolyte liquid. However, this aqueous solution type cell has a discharging potential as low as approximately 1.2 V and a large cell weight and volume such that it cannot satisfactorily meet the demand for a cell having a high energy density. The aqueous solution type cell also has a drawback that it has a self discharge rate as high as approximately 20% per month at ambient temperature. [0005]
  • Thus, a non-aqueous electrolyte secondary cell employing a non-aqueous solvent as the electrolyte solution and also employing light metals, such as lithium as the negative electrode, is under investigations. This non-aqueous electrolyte secondary cell has a voltage as high as 3 V or higher, a high energy density and a low self-discharge rate. [0006]
  • However, this sort of the secondary cell also can hardly be put to practical use because of a drawback that metal lithium used for the negative electrode undergoes dendritic crystal growth to contact with the positive electrode, due to repetition of charging/discharging, as a result of which shorting tends to be produced in the cell to lower the service life of the cell. [0007]
  • In order to overcome this drawback, a non-aqueous electrolyte secondary cell employing, as a negative electrode, an alloy obtained on alloying lithium with other metals, is also under investigations. [0008]
  • In this case, however, the alloy is turned into comminuted particles, due to repetition of charging/discharging, thus again lowering the service life of the cell. [0009]
  • Under this situation, there is proposed a non-aqueous electrolyte secondary cell employing a carbonaceous material, such as coke, as an active material for the negative electrode. [0010]
  • This secondary cell is free of the above-mentioned drawbacks in the negative electrode and hence is superior in cyclic service life characteristics. If a lithium transition metal complex oxide is used as an active material for the positive electrode, the service life of the cell is prolonged to enable realization of the non-aqueous electrolyte secondary cell having the desired high energy density. [0011]
  • Meanwhile, in a non-aqueous electrolyte secondary cell employing the carbonaceous material as a negative electrode, there is required a pressure relieving mechanism for promptly releasing the pressure when the cell is subjected to an abnormal temperature rise or combustion. [0012]
  • If this pressure relieving mechanism comes into operation to release the gas when the internal pressure in the cell reaches a predetermined pressure, there can be provided an extremely safe cell free from explosions or the like. [0013]
  • SUMMARY OF THE INVENTION
  • It is therefore an object of the present invention to provide an extremely safe non-aqueous electrolyte secondary cell capable of promptly releasing an increasing internal pressure and which is free from explosion or the like. [0014]
  • As a result of repeated investigations towards achieving the above object, the present inventors have arrived at the information that a non-aqueous electrolyte secondary cell free from explosions or the like can be provided by providing a cleavage valve that is cleft in case of rise in the internal pressure of the cell and by optimizing the diameter of the opening of the valve in association with the internal capacity of the cell to optimize the operating pressure to carry out satisfactory gas release at the time of abnormal pressure increase or on combustion. [0015]
  • The present invention, completed on the basis of this information, resides in a non-aqueous electrolyte secondary cell having a cleavage valve which is realized by bonding a metal foil to an opening in the valve. The metal foil is cleft due to rise in the internal pressure in the cell to release the pressure. A value K corresponding to the internal cell volume in cm[0016] 3 divided by the area of the opening in cm2 is such that 40≦K≦100 μm.
  • By selecting the K value to be a suitable value, the cleavage valve is in operation promptly when the internal pressure reaches a predetermined pressure in order to release the pressure. Thus, there is no risk of dilation or explosion of the cell to assure high operational safety. [0017]
  • Thus, the present invention provides an extremely safe cell free from explosions since gas release may be promptly realized on the occasion of rise in the internal pressure in the cell.[0018]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a schematic plan view showing an illustrative structure of a cleavage valve. [0019]
  • FIG. 2 is a schematic cross-sectional view showing essential portions of a metal foil formed by an electroforming method. [0020]
  • FIG. 3 is a schematic cross-sectional view showing the method for forming the cleavage valve by the electro-forming method, step-by-step. [0021]
  • FIG. 4 is a schematic cross-sectional view showing a typical cleavage valve produced by a stamping method. [0022]
  • FIG. 5 is a schematic cross-sectional view showing essential portions of a groove formed by pressing. [0023]
  • FIG. 6 is a schematic plan view showing essential portions of a supply device continuously supplying cleavage valves produced by the stamping method. [0024]
  • FIG. 7 is a schematic plan view showing another illustrative structure of the cleavage valve. [0025]
  • FIG. 8 is a schematic cross-sectional view showing a typical metal foil formed of a clad material. [0026]
  • FIG. 9 is a schematic plan view showing a typical lid plate. [0027]
  • FIG. 10 is a schematic cross-sectional view showing the lid plate of FIG. 9. [0028]
  • FIG. 11 is a schematic plan view showing another typical lid plate. [0029]
  • FIG. 12 is a schematic cross-sectional view showing the lid plate of FIG. 11. [0030]
  • FIG. 13 is a schematic cross-sectional view showing a typical cell structure. [0031]
  • FIG. 14 is a schematic cross-sectional view showing the state in which a positive terminal lead is folded in a direction towards the cleavage valve side. [0032]
  • FIG. 15 is a schematic cross-sectional view showing the state in which a positive terminal lead is folded in a direction opposite to the cleavage valve side.[0033]
  • DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • A non-aqueous electrolyte secondary cell of the present invention includes a cleavage valve obtained on bonding a metal foil to an opening provided in a cell can or a lid plate used for hermetically sealing the can. The cleavage valve is cleft on the occasion of rise in the internal pressure to cleave the metal foil to relieve the pressure. [0034]
  • FIG. 1 shows an example of a lid plate provided with such cleavage valve. A [0035] circular opening 2 is provided in the lid plate 1 shaped to conform to the opening shape of the cell can, and a metal foil 3 is welded, such as by laser welding, to close the opening 2.
  • The shape of the [0036] opening 2, which is circular in the present embodiment, may be of any suitable shape, such as elliptical shape. The circular shape, however, is preferred in view of operational stability and ease in manufacture.
  • The [0037] metal foil 3, which is square-shaped in the present embodiment, may be of any desired shape, provided that it can stop the opening 2. The metal foil 3 may, for example, be circular for matching to the shape of the opening 2.
  • The [0038] metal foil 3 is formed with a circular thin-walled portion 3 a, in its area facing the inside of the opening 2, and is adapted to be cleft beginning from this portion on the occasion of rise in the internal pressure.
  • For this [0039] metal foil 3, the thin-walled portion 3 a may be formed by any optional technique, such as by etching, electro-forming or stamping. The electro-forming method is preferred in view of fluctuations in the cleavage pressure.
  • The electroforming, which is so-called electro-casting, is such a technique in which a pattern is formed by a photoresist, an insulating film is prepared, a substrate is supplied with current, and preset metal is allowed to undergo crystal growth to form an electrically conductive portion to produce a pattern of lands and valleys under a principle similar to that used for plating. [0040]
  • This electro-forming is an optimum technique for controlling the cleavage pressure to a narrow tolerance since the crystal growth can be controlled electrically in contradistinction to the similar photoetching method and hence a film can be prepared with a high processing accuracy. [0041]
  • The technique for fabricating the cleavage valve by the above electro-forming is shown in FIG. 3. For fabricating the cleavage valve, a [0042] first resist pattern 12 which determines the outer shape of the cleavage valve is formed on the substrate 11 by a photolithographic process employing a photoresist. Using this resist pattern as a mask, Ni is plated on the substrate.
  • This forms a first Ni plating [0043] film 13, as shown in FIG. 3B. It is the thickness of this first Ni plating film 13 that determines the thickness of the thin-walled portion 3 a. Therefore, the first Ni plating film 13 is set to a thickness of the order of 10 to 12 μm in order to permit smooth cleavage of the cleavage valve at the pressure rise time.
  • Then, as shown in FIG. 3C, a circular second resist [0044] pattern 14 is formed to the shape of a cleavage and again Ni is plated thereon as shown in FIG. 3D to form a second Ni plating film 15. The combined film thickness of the second Ni plating film 15 and the previously formed first Ni plating film 13 may, for example, be 40 μm or more.
  • The first [0045] Ni plating film 13 and the second Ni plating film 15 are formed and the resist patterns 12, 14 are fused and removed to produce a cleavage valve having the thin-walled portion formed therein to he shape of the second resist pattern 14, as shown in FIG. 3E.
  • With a cleavage valve by stamping, a [0046] circular groove 22 is formed by pressing in a circular metal plate 21 to form a thin-walled portion. In the present instance, since punching is done consecutively, traces of connecting portions to a hoop material are left as four projections 23.
  • If the [0047] groove 22 is formed by this stamping, it is preferred that an outer peripheral surface 22 a of the groove 22 runs somewhat obliquely, for example, at an inclination of the order of 20°, as shown in FIG. 5. On the other hand, an inner peripheral surface 22 b extends substantially vertically. This eliminates the risk of creasing in a cleavage valve (a circular area inwardly of the groove 22).
  • FIG. 6 shows the technique of continuously forming the cleavage valve. A [0048] hoop material 24 having positioning holes 25 is punched at a preset interval to determine the outer shape of the metal plate 21, and grooves 22 then are formed by stamping. The metal plate 21 is then handled in this state and ultimately a connecting plate 26 is severed. This enables continuous supply of cleavage valves in a manner convenient for line automation.
  • Alternatively, a clad material, obtained on bonding a thick metal foil and a thin metal foil together, may be used. Figs.[0049] 7 and 8 show a cleavage valve employing a clad material. The metal foil 3 is made up of a thick metal foil 31 and a thin metal foil 32. The thick metal foil 31 is removed in an area facing the inside of the opening 2 to a diameter smaller than the opening 2 to delimit a circular thin-walled portion 3 b.
  • In any case, the [0050] metal foil 3 is preferably of a thickness of 40 to 100 μm. If the thickness is less than 40 μm, sufficient strength can hardly be developed on, for example, laser welding. Conversely, the thickness exceeding 100 μm is not desirable in view of productivity and also because of non-smooth cleavage.
  • On the [0051] metal foil 3 is preferably coated a fluorine-based water-proofing agent after bonding the metal foil 3 to the opening 2. If the metal foil 3 is formed by the electro-forming method to form the groove-shaped thin-walled portion 3 a, and water droplets are deposited thereon, rusting tends to be produced because of difficulties in evaporation of water. If a fluorine-based water-proofing agent is coated, it is possible to prevent rusting to improve operational reliability.
  • In the above-described cleavage valve, as described above, an area of the [0052] opening 2 needs to be set to an optimum value depending on the inner cell volume.
  • In the present invention, the inner cell volume (in cm[0053] 3) divided by the area of the above opening (in cm2) is set so that 40≦K≦350 to optimize the cleavage pressure at all times.
  • Although the area of the [0054] opening 2 as large as possible is preferred, its upper limit is approximately one-half the area of the lid plate in view of the shape of the lid plate 1. If the physical limitation of the lid plate 1 is taken into account, the lower limit of the above K value is 40. If the opening 2 is of a true circular shape, the K value has a lower limit value of approximately 50. Conversely, if the K value is too large, that is if the area of the opening 2 is too small, the cleavage pressure will be excessive, thus producing cleavage of the weld and dilation of the cell can.
  • Thus, for practical application, the K value is preferably in a range from 80 to 320 and more preferably in a range from 85 to 240. [0055]
  • In addition to the cleavage valve, an electrode terminal, for example, is provided on a lid plate of the cell can. [0056]
  • FIGS. 9 and 10 show an example of a [0057] lid plate 41 of a cell can having some width. At a mid portion of the lid plate 41 is caulked a terminal pin 42 via a gasket 43. This terminal pin 42 is electrically connected via a lead to, for example, a positive terminal, in a manner not shown.
  • On both sides of the [0058] terminal pin 42 are arranged a cleavage valve 44 and a solution injection port 45 for injecting the electrolytic solution. In the present embodiment, since the lid plate 41 is of some width, the cleavage valve 44 has a substantially circular shape.
  • FIGS. 11 and 12 show an example of the [0059] lid plate 41. Since the lid plate 41 of the present example is of narrow width, the cleavage valve 44 is of an oblong shape. The rim portion of the solution injection port 45 is formed with a step to improve mechanical strength. The provision of the step is aimed at assuring sufficient resistance against the force applied at the time of welding the solution injection port 45 using a micro-sized globule.
  • The non-aqueous electrolyte secondary cell according to the present invention has the above-described cleavage valve as its main feature. Otherwise, the cell may be constructed similarly to the conventional non-aqueous electrolyte secondary cell. [0060]
  • As an active material for the negative electrode of the non-aqueous electrolyte secondary cell, a variety of materials may be used depending on the type of the cell desired to be fabricated. Among the active material for the negative electrode, there is a carbonaceous material capable of doping and undoping metal ions, above all, lithium ions, that contribute to the cell reaction. [0061]
  • As this carbonaceous material, such carbonaceous material of low crystallinity produced on firing at a lower temperature not higher than 2000° C. or a carbonaceous material of low crystallinity obtained on processing a crystallizable starting material at an elevated temperature in the vicinity of 3000° C., may be used. Among the carbonaceous materials, petroleum pitch, a binder pitch, a high-molecular resin or green coke, are most preferred. In addition, completely carbonized pyrocarbon, cokes (pitch coke or petroleum coke), artificial graphites, natural graphites, carbon black (acetylene black or the like), vitreous carbon, fired organic high-molecular materials (natural high-molecular materials fired in an inert gas stream or in vacuum at a suitable temperature hot lower than 500° C.) or a mixture of carbon fibers with resin-containing pitches or resins showing high sinterability, such as furan resins, divinyl benzene, polyvinylidene fluoride or polyvinylidene chloride, may be used. In particular, a low crystallinity carbonaceous material having a plane-to-plane spacing of the (002) planes not less than 3.70 Å and a true density less than 1.70 g/cc and having no heat emission peak at a temperature not lower than 700° C. on differential thermal analysis in an air stream, or a high crystallinity carbonaceous material having a high negative electrode mixture charging ratio and a true specific gravity not lower than 2.10 g/cc, may be used. [0062]
  • The negative electrode may be formed of metal lithium, a lithium alloy or a polymer doped with lithium. [0063]
  • As an active material for the positive electrode of the non-aqueous electrolyte secondary cell, metal oxides, metal sulfides or specified polymers may be used depending on the type of the cell desired to be produced. If a lithium ion secondary cell is to be fabricated, a lithium complex oxide containing Li[0064] xMO2, where M is at least one transition metal, preferably one of Co, Ni or Fe, with 0.05≦X≦1.10. The lithium complex oxide may be exemplified by LiCoO2, LiNiO2 and LiNiyCo(1-y)O2, with 0.05≦X≦1.10 and 0<y<1. LiMnO4 may also be used.
  • The above-mentioned lithium complex oxide may be obtained on mixing carbonates of, for example, lithium, cobalt or nickel, depending on the compositions, and firing the resulting mixture in an oxygen-containing atmosphere at a temperature from 400° to 1000° C. The starting material is not limited to carbonates and the lithium complex oxide may be fabricated from hydroxides or oxides. [0065]
  • If metal lithium or lithium alloys are used as the negative electrode, it is possible to use compounds that cannot undope lithium on initial charging, for example, a variety of oxides, such as manganese dioxide or titanium oxide, sulfides, such as titanium oxide or polymers, such as polyaniline, may be used as positive electrodes. [0066]
  • As a non-aqueous electrolyte used in the non-aqueous electrolyte secondary cell, it is possible to use a well-known non-aqueous electrolytic solution obtained on dissolving an electrolyte in an organic solvent. [0067]
  • As the organic solvents, esters, such as propylene carbonate, ethylene carbonate or γ-butyrolactone, diethyl ether, tetrahydrofuran, substituted tetrahydrofuran, dioxolane, pyran or derivatives thereof, ethers, such as dimethoxyethane or diethoxyethane, 3-substituted-2-oxazolidinines, such as 3-methyl-2-oxazolidinone, sulforane, methyl sulforane, acetonitrile or propionitrile, may be used. These may be used alone or in combination. [0068]
  • Examples of the electrolytes that may be used include lithium perchlorates, lithium boron fluorides, lithium phosphor fluorides, lithium chloride aliminates, lithium halogenides and trifluoromethane lithium sulfonates. [0069]
  • The non-aqueous electrolyte may also be a solid, in which case conventional well-known solid electrolytes may be used. [0070]
  • The electrode structure may be comprised of winding of a strip-shaped electrode fabricated on coating an active material on a current collector. Alternatively, the electrode may be comprised of layered plate-shaped electrodes on which an active material is held by coating or firing an active material on a current collector. [0071]
  • The cell may be of an angular, cylindrical or any other suitable configuration. [0072]
  • FIG. 13 shows a typical cell comprised of a [0073] positive electrode 51, a negative electrode 52 and a separator 53 layered together and wound in a coil which is then housed in a cell can 54. The cell element (wound pair) has its outermost rim secured by a winding end tape 55 and secured in the cell can 54 by a spring plate 56. Moreover, the cell element has its upper and lower ends sandwiched between insulating layers 57, 58 so as to be stably housed in the cell can 54.
  • The above-mentioned [0074] lid plate 41 is secured to the cell can 54 to seal the opening. To the terminal pin 42 is connected a positive electrode lead 57 derived from the positive electrode 51. Thus, with the present cell, the cell can 54 and the terminal pin 52 operate as negative and positive electrodes, respectively.
  • For avoiding inadvertent breakage and for assuring a facilitated connecting operation, the [0075] positive electrode lead 57 is usually designed to a longer length and its extracted end is folded and connected to the terminal pin 42.
  • The extracted portion of the [0076] positive electrode lead 57 may be folded on itself on the side of the cleavage valve 44 as shown in FIG. 14 or on the opposite side, that is on the side of the solution injection port 45, as shown in FIG. 15. The present inventors have found that the later method is preferred. In the usual use state, it does not matter on which side the extracted portion of the positive electrode lead 57 is folded on itself. It has however been found that if, in a descent test, the extracted portion of the positive electrode lead 57 is folded on itself on the side of the cleavage valve 44, there is the possibility of inadvertent actuation of the cleavage valve 44.
  • EXAMPLES
  • Specified examples of the present invention will be explained further with reference being had to experimental results. [0077]
  • Comparative Sample 1
  • A negative electrode was first prepared in the following manner. [0078]
  • As a starting material of an active material for a negative electrode, 10 to 20 wt % of functional groups containing oxygen are introduced into it for oxygen cross-linking. The resulting mass was fired in an inert gas stream at a temperature of 1000° C. to produce a carbonaceous material having properties close to those of vitreous carbon. The results of X-ray diffractiometry revealed that the plane-to lane separation between (002) planes amounted to 3.76 Å. Similarly, measurements by a pycnometer revealed that the true specific gravity was 1.58 g/cm[0079] 3. This carbonaceous material was crushed to powders of the carbonaceous material having an average particle size of 10 μm.
  • 90 parts by weight of the powders of the carbonaceous material thus produced were mixed with 10 parts by weight of polyvinylidene fluoride (PVDF) as a binder to prepare a negative electrode mixture. This negative electrode mixture was then dispersed in N-methyl pyrrolidone to a paste-like slurry of a negative electrode mixture. [0080]
  • The slurry of the negative electrode mixture was coated on both surfaces of a strip-shaped copper foil 10 μm thick and dried. The resulting dried mass was compression molded in a roll press to produce a band-shaped [0081] negative electrode 1. This band-shaped negative electrode was designed so that the thickness of the mixture was 80 μm thick on both sides, with its width and length being 41.5 mm and 505 mm, respectively.
  • A positive electrode was produced in the following manner. [0082]
  • An active material for the positive electrode (LiCoO[0083] 2) was synthesized as follows: Lithium carbonate and cobalt carbonate were mixed together so that its Li/Co molar ratio is equal to 1 and the resulting mixture was fired in air at 900° C. for five hours. The results of X-ray diffractiometry testified to good coincidence with LiCoO2 of the JCPDS card. The fired product was pulverized in a mortar to LiCoO2. 91 wt % of this LiCoO2, thus obtained, 6 wt % of graphite as an electrically conductive material and 3 wt % of polyvinylidene fluoride as a binder were mixed to prepare a positive electrode mixture which then was dispersed in N-methyl-2-pyrrolidone to give a slurry of the positive electrode mixture. This slurry of the positive electrode mixture was coated on both surfaces of a band-shaped aluminum foil, 20 μm in thickness, as a positive electrode current collector, and dried. The resulting product was then molded under compression by a roll press to fabricate a positive electrode. Meanwhile, the thickness of the mixture of the band-shaped aluminum foil was set to 80 μm on each surface, with its width and length being set to 39.5 mm and 490 mm, respectively.
  • The band-shaped positive and negative electrodes and a separator formed by a micro-porous polypropylene film were layered together and wound a number of times on a diamond-shaped take-up core. The trailing end of the layered mass was secured using an adhesive tape 40 μmm wide and deformed under pressure to fabricate an oblong-shaped wound electrode member. [0084]
  • This oblong-shaped wound electrode member was housed in a nickel-plated square-shaped cell can of iron along with a spring plate and an insulating plate was arranged on each of the upper and lower surfaces of the electrode member. For collecting the current of the negative electrode, an end of the nickel lead of the negative electrode was press-attached to the electrode, whilst the end of the nickel lead was welded to the positive electrode. Also, for collecting the current of the positive electrode, an end of the aluminum lead of the positive electrode was attached to the positive electrode, with the other end of the lead being welded by laser to a cell lid. In the present Example, no cleavage valve was fitted on the cell lid. [0085]
  • An electrolytic solution, obtained on dissolving 1 mol of LiPF[0086] 6 in a mixed solvent composed of 50 vol % of propylene carbonate and 50 vol % of diethyl carbonate, was injected via the electrolytic solution injection port. This port was then sealed by electrically welding a steel globule.
  • By the above process, a square-shaped secondary cell, having a thickness, a height and a width of 9 mm, 48 mm and 34 mm, was prepared. [0087]
  • Samples 1 to 4
  • Sample cells were prepared in the same way as in [0088] comparative sample 1 except using a cell lid provided with a cleavage valve.
  • The cleavage valve was fabricated by providing an opening in the cell lid, punching a metal foil, formed with a circular pattern (thin-walled portion) by the electro-forming method, to a predetermined size, and by laser-welding the punched metal foil in the opening in the cell lid. [0089]
  • It was found impossible to prepare the [0090] opening 2 mm or less in diameter.
  • The entire thickness of the metal foil was 50 μm and the circular pattern was varied in a range from 5 to 15 μm so that the valve would be cleft at a preset pressure. [0091]
  • The conditions of the cleavage valve was varied as shown in Table 1 to prepare [0092] samples 1 to 4.
  • These cells were charged to 4.2 V and a combustion test was conducted using a gas burner. The results are shown in Table 1. [0093]
    TABLE 1
    diameter diameter of cleavage results of dilation of cell (pre-combustion
    of opening operating pressure in combustion thickness less post-combustion
    in mm portion in mm kg/cm2 test thickness)
    sample 1 2 1.7 20 cleavage valve   6 mm
    in operation;
    there is rupture
    in laser weld
    sample
    2 2.8 2.5 20 cleavage valve   1 mm
    in operation;
    gas ejected
    sample 3 3.8 3.5 20 cleavage valve 0.5 mm
    in operation;
    gas ejected
    sample 4 4.8 4.5 20 cleavage valve 0.5 mm
    in operation;
    gas ejected
    comparative none none none laser weld non-
    sample 1 ruptured and measurable
    explosion
    occurred
  • If the diameter of the opening was not less than 2.8 mm, the gas could be relieved in a state of only little deformation in the cell can. [0094]
  • Samples 5 to 9
  • A set of square-shaped secondary cells with the thickness, width and height of 14 mm, 34 mm and 48 mm, respectively, were prepared with the conditions of the cleavage valves changed, with the other conditions remaining unchanged from those of [0095] samples 1 to 4.
  • These cells were charged to 4.2 V and subjected to a combustion test using a gas burner. The results are shown in Table 2. [0096]
    TABLE 2
    diameter diameter of cleavage results of dilation of cell (pre-combustion
    of opening operating pressure in combustion thickness less post-combustion
    in mm part in mm kg/cm2 test thickness)
    sample 5 2 1.7 20 cleavage valve in operation; there  10 mm
    is rupture in laser weld
    sample 6 2.8 2.5 20 cleavage valve in operation; there   2 mm
    is rupture in laser weld
    sample 7 3.8 3.5 20 cleavage valve in operation; gas 0.5 mm
    ejected
    sample 8 4.8 4.5 20 cleavage valve in operation; gas 0.5 mm
    ejected
    sample 9 7.5 4.5 20 cleavage valve in operation; gas 0.5 mm
    ejected
  • If the diameter of the opening is not less than 2.8 mm, the gas could be relieved in a state of only little deformation in the cell. [0097]
  • Samples 10 to 12
  • A set of square-shaped secondary cells with the thickness, width and height of 6 mm, 30 mm and 48 mm, respectively, were prepared under conditions of the cleavage vales changed, with the other conditions remaining unchanged from those of [0098] samples 1 to 4.
  • These cells were charged to 4.2 V and subjected to a combustion test using a gas burner. The results are shown in Table 3 [0099]
    TABLE 3
    diameter diameter of cleavage results of dilation of cell (pre-combustion
    of opening operating pressure in combustion thickness less post-expansion
    in mm portion in mm kg/cm2 test thickness)
    sample 10 2 1.7 20 cleavage valve in operation;   1 mm
    gas is ejected
    sample 11 3.8 2.5 20 cleavage valve in operation; 0.5 mm
    gas is ejected
    sample 12 3.8 3.5 20 cleavage valve in operation; 0.5 mm
    gas is ejected
  • It was found that, if the diameter of the opening was 2 mm or more, the gas could be released with only little deformation of the cell can. [0100]
  • The results of the [0101] above samples 1 to 12, put into order in terms of the K-value (cell volume/cleavage area), are shown in table 4.
    TABLE 4
    diameter of area of 6 × 30 × 48 K-value 9 × 34 × 48 K-value 14 × 34 × 48 K-value
    opening opening volume cell volume/ volume cell volume/ volume cell volume/
    in mm in cm2 8.64 cm3 cleavage area 14.69 cm3 cleavage area 22.85 cm3 cleavage area
    2 0.0314 good 275 ruptured 468 ruptured 728
    2.8 0.0615 good 140 good 239 ruptured 372
    3.8 0.113 good 76.5 good 130 good 202
    4.8 0.181 not mountable good 81.2 good 126
    7.5 0.181 not mountable not mountable good 51.7
  • As may seen from Table 4, it is effective to have optimum values for K. [0102]
  • Resistance to Environment Test
  • A resistance-to-environment test was conducted using a cell of [0103] sample 3.
  • In the fully charged state of 4.2 V, a 90% humidification test was conducted under 60° and 90% RH to check the appearance of the cleavage valve. Tests conducted on 20 cells indicated that minute rust was generated in cleft portion of ten cells. [0104]
  • Thus, after welding the metal foil on the opening, a fluorine-based water-proofing agent (trade name: NOX guard) was dripped and dried. Similar tests conducted on the dried products indicated that no rusting occurred. [0105]
  • Therefore, it may be said that coating of the metal foil constituting the cleavage valve is indispensable for improving reliability in practical application. [0106]
  • Researches into the Method of Forming Metal Foil
  • The metal foil constituting the cleavage valve is prepared by an electro-forming method, a cladding method, a stamping method, an etching method and a method directly using the foil. For each of these foils, variations in the cleavage pressure was checked using air. The results are shown in Table 5. [0107]
    TABLE 5
    average value standard
    of operating deviation of
    methods of forming pressure fluctuations
    cleavage valves in kg/cm2 in kg/cm2 notes
    electro-forming method 20 1.1
    cladding method (bonding a 20 1.5
    40 μm foil and a 10 μm
    foil together
    stamping method for foil 20 1.2
    (pressing a mark
    on a 50 μm nickel foil)
    etching method 19 3.9
    only foil (10 μm thick) not laser
    weldable
  • The electro-forming and mark stamping methods gave good results because of only little fluctuations. Second to these methods was the cladding method employing a thick foil and a thin foil in combination. For practical application, these three sorts are thought to be preferred. If the etching method is used, difficulties are estimated to be met in management because of significant fluctuations. [0108]
  • Researches into the Folding Direction of the Positive Terminal Lead
  • A sample having an electrode structure similar to that of [0109] sample 3 and having the folding direction of the positive terminal lead towards the cleavage valve (below the cleavage valve) and another sample having the folding direction of the positive terminal lead in the opposite direction, that is in a direction away from the cleavage valve.
  • These indicated no significant difference in the above test. [0110]
  • However, the two samples showed difference in the descent test. The results of the descent test, in which the cells were dropped from a height of 1.5 m, are shown in Table 6. [0111]
    TABLE 6
    lead position combustion test descent test
    below the cleavage valve in operation; cleavage valve in
    cleavage gas ejected; no inconvenience operation; liquid leakage
    occurred 6/20
    away from cleavage valve in operation; cleavage valve not in
    the cleavage gas ejected; no inconvenience operation; liquid leakage
    occurred 0/20
  • The results indicated significant difference depending on the lead position, that is that it is more preferred to bend the lead in the direction away from the cleavage area. By fabricating the valve in this manner, it becomes possible to produce a cell having high safety. [0112]

Claims (12)

What is claimed is:
1. A non-aqueous electrolyte secondary cell having a cleavage valve which is realized by bonding a metal foil to an opening in the cell, said metal foil being cleft due to rise in the internal pressure in the cell to release the pressure, wherein the improvement resides in that
a value K corresponding to the internal cell volume in cm3 divided by the area of the opening in cm2 is such that 40≦K≦100 μm.
2. The non-aqueous electrolyte secondary cell according to claim 1 wherein the metal foil has a thickness of 40 to 100 μm.
3. The non-aqueous electrolyte secondary cell according to claim 1 wherein a fluorine-based water-proofing agent is coated on the surface of said metal foil.
4. The non-aqueous electrolyte secondary cell according to claim 1 wherein the opening is circular or oblong in shape.
5. The non-aqueous electrolyte secondary cell according to claim 1 wherein the metal foil is formed by an electro-forming method and wherein a thin-walled portion is formed facing said opening.
6. The non-aqueous electrolyte secondary cell according to claim 1 wherein a groove is formed by stamping the metal foil for facing the opening.
7. The non-aqueous electrolyte secondary cell according to claim 1 wherein the metal foil is a cladding material obtained on bonding plural metal foils and wherein these metal foils are partially removed at a portion facing the opening to present a thin-walling portion.
8. The non-aqueous electrolyte secondary cell according to claim 1 wherein a cell element is housed in a cell can and an opening of the cell can is sealed by a lid plate, said cleavage valve being formed on said lid plate.
9. The non-aqueous electrolyte secondary cell according to claim 8 wherein a terminal pin is mounted on said lid plate and connected to a lead extended from the cell element.
10. The non-aqueous electrolyte secondary cell according to claim 9 wherein said lead is folded in a direction opposite to the mounting site of the cleavage valve on the lid plate.
11. The non-aqueous electrolyte secondary cell according to claim 9 wherein said lid plate is formed with an injection opening for the electrolytic solution.
12. The non-aqueous electrolyte secondary cell according to claim 1 wherein the negative electrode is formed of a carbonaceous material and the negative electrode is formed of a lithium complex oxide.
US09/196,319 1997-11-21 1998-11-20 Non-aqueous electrolyte secondary cell Expired - Lifetime US6355372B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP9-321734 1997-11-21
JPP09-321734 1997-11-21
JP32173497 1997-11-21

Publications (2)

Publication Number Publication Date
US20020012829A1 true US20020012829A1 (en) 2002-01-31
US6355372B2 US6355372B2 (en) 2002-03-12

Family

ID=18135859

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/196,319 Expired - Lifetime US6355372B2 (en) 1997-11-21 1998-11-20 Non-aqueous electrolyte secondary cell

Country Status (7)

Country Link
US (1) US6355372B2 (en)
EP (1) EP0918359B1 (en)
KR (1) KR100563163B1 (en)
CN (1) CN1218303A (en)
CA (1) CA2254175C (en)
DE (1) DE69835993T2 (en)
TW (1) TW385561B (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030115748A1 (en) * 2002-09-27 2003-06-26 Hitachi, Ltd. Semiconductor device and a method of manufacturing the same
US20040234846A1 (en) * 2003-05-21 2004-11-25 Su-Jin Han Secondary battery
US20050271937A1 (en) * 2004-06-02 2005-12-08 Youker Nick A Battery design for implantable medical devices
US7402598B2 (en) 2002-07-25 2008-07-22 Glaxo Group Limited Arylethanolamine β2-adrenoreceptor agonist compounds
US20130149568A1 (en) * 2011-12-12 2013-06-13 Ningde Amperex Technology Limited Power battery and anti-explosion device thereof
US20130316201A1 (en) * 2011-02-16 2013-11-28 Shin-Kobe Electric Machinery Co., Ltd. Secondary Battery
US8668998B2 (en) * 2011-01-31 2014-03-11 Samsung Sdi Co., Ltd. Secondary battery

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3683181B2 (en) * 2000-03-30 2005-08-17 日本碍子株式会社 Lithium secondary battery
US6586131B2 (en) * 2001-02-16 2003-07-01 Wilson Greatbatch Ltd. Apparatus for releasing gases from rechargeable lithium electrochemical cells during the formation stage of manufacturing
JP4155734B2 (en) * 2001-12-20 2008-09-24 三洋電機株式会社 Battery safety valve
KR100560494B1 (en) * 2003-11-29 2006-03-13 삼성에스디아이 주식회사 cap assembly and secondary battery utilizing the same
JP4605823B1 (en) * 2010-03-29 2011-01-05 章 池田 Sealed battery safety valve and sealed battery using the same
EP3297062B1 (en) * 2016-09-19 2018-11-07 VARTA Microbattery GmbH Electrochemical cell for generating hydrogen or oxygen
CN106753517B (en) * 2017-02-08 2018-10-19 浙江理工大学 A kind of method of fuel oil oxidation sweetening
WO2018183804A1 (en) 2017-03-30 2018-10-04 Donaldson Company, Inc. Vent with relief valve
CN108847500B (en) * 2018-05-11 2021-08-06 南阳市龙润装备制造有限公司 Preparation method of battery explosion-proof sheet
US20220190434A1 (en) * 2020-12-11 2022-06-16 GM Global Technology Operations LLC Composite battery cover

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59224049A (en) 1983-04-11 1984-12-15 ジ−テイ−イ−・コミユニケイシヨンズ・プロダクツ・コ−ポレイシヨン Electrochemical battery
JPS60165040A (en) * 1984-02-07 1985-08-28 Hitachi Maxell Ltd Sealed type battery
JPH01112653A (en) * 1987-10-27 1989-05-01 Matsushita Electric Ind Co Ltd Organic electrolyte battery
US4939050A (en) * 1987-11-12 1990-07-03 Bridgestone Corporation Electric cells
JP3233679B2 (en) 1992-05-14 2001-11-26 旭化成株式会社 Manufacturing method of battery safety valve device
JP3257700B2 (en) * 1992-08-14 2002-02-18 東芝電池株式会社 Lithium ion secondary battery
JP3254261B2 (en) * 1992-10-01 2002-02-04 旭化成株式会社 Method of manufacturing battery rupture
US5595835A (en) 1993-07-22 1997-01-21 Japan Storage Battery Co., Ltd. Sealed type battery
JPH07169452A (en) * 1993-12-16 1995-07-04 A T Battery:Kk Explosionproof container
JPH08212987A (en) * 1994-11-29 1996-08-20 Toshiba Corp Secondary battery container and manufacture thereof
JP3738466B2 (en) * 1995-07-24 2006-01-25 ソニー株式会社 Sealed battery
JP3634908B2 (en) 1995-11-13 2005-03-30 株式会社今野工業所 Cleavage-type safety valve for sealed battery containers
JP3108360B2 (en) 1996-02-15 2000-11-13 福田金属箔粉工業株式会社 Battery safety valve element and battery case lid with safety valve
JPH10144277A (en) * 1996-11-06 1998-05-29 Konno Kogyosho:Kk Cleavage type safety valve and battery using this safety valve
JP3070005B2 (en) * 1996-12-09 2000-07-24 株式会社オプトニクス精密 Method of manufacturing explosion-proof safety piece for batteries

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7402598B2 (en) 2002-07-25 2008-07-22 Glaxo Group Limited Arylethanolamine β2-adrenoreceptor agonist compounds
US20030115748A1 (en) * 2002-09-27 2003-06-26 Hitachi, Ltd. Semiconductor device and a method of manufacturing the same
US6875631B2 (en) * 2002-09-27 2005-04-05 Renesas Technology Corp. Semiconductor device and a method of manufacturing the same
US20040234846A1 (en) * 2003-05-21 2004-11-25 Su-Jin Han Secondary battery
US7662511B2 (en) * 2003-05-21 2010-02-16 Samsung Sdi Co., Ltd. Secondary battery having an enlarged electrolytic solution inlet
US20050271937A1 (en) * 2004-06-02 2005-12-08 Youker Nick A Battery design for implantable medical devices
US7344800B2 (en) * 2004-06-02 2008-03-18 Cardiac Pacemakers, Inc. Battery design for implantable medical devices
US20080154321A1 (en) * 2004-06-02 2008-06-26 Cardiac Pacemakers, Inc. Battery design for implantable medical devices
US7794866B2 (en) 2004-06-02 2010-09-14 Cardiac Pacemakers, Inc. Battery design for implantable medical devices
US8668998B2 (en) * 2011-01-31 2014-03-11 Samsung Sdi Co., Ltd. Secondary battery
US20130316201A1 (en) * 2011-02-16 2013-11-28 Shin-Kobe Electric Machinery Co., Ltd. Secondary Battery
US20130149568A1 (en) * 2011-12-12 2013-06-13 Ningde Amperex Technology Limited Power battery and anti-explosion device thereof

Also Published As

Publication number Publication date
EP0918359B1 (en) 2006-09-27
US6355372B2 (en) 2002-03-12
EP0918359A1 (en) 1999-05-26
KR19990045488A (en) 1999-06-25
KR100563163B1 (en) 2006-05-25
CA2254175C (en) 2007-07-10
DE69835993T2 (en) 2007-04-26
CN1218303A (en) 1999-06-02
TW385561B (en) 2000-03-21
CA2254175A1 (en) 1999-05-21
DE69835993D1 (en) 2006-11-09

Similar Documents

Publication Publication Date Title
US6355372B2 (en) Non-aqueous electrolyte secondary cell
JP5415413B2 (en) CID holder for LI ion battery
EP1119060B1 (en) Nonaqueous electrolyte solution secondary battery
US20110111280A1 (en) Lithium-ion secondary battery
KR20000069844A (en) Square­Shape Closed Battery
JP2007299580A (en) Non-aqueous electrolyte square secondary battery
JP4097443B2 (en) Lithium secondary battery
JPH04249073A (en) Non-aqueous electrolyte secondary battery
TWI470851B (en) Electrochemical device ensuring a good safety
JP2001210384A (en) Nonaqueous electrolytic solution secondary battery
US5731098A (en) Secondary cell with terminal cap of safety structure
JP3049727B2 (en) Non-aqueous electrolyte secondary battery
JPH11204094A (en) Non-aqueous electrolytic battery
JP2000036324A (en) Nonaqueous secondary battery
JPH11219692A (en) Nonaqueous electrolyte secondary battery
JPH01294373A (en) Nonaqueous electrolyte-secondary battery
JPH10261391A (en) Non-aqueous electrolyte secondary battery
JP3469836B2 (en) Non-aqueous electrolyte secondary battery
JP3713361B2 (en) Square non-aqueous electrolyte battery and method for manufacturing the same
JP2003031266A (en) Flat nonaqueous secondary battery
JP3259995B2 (en) Manufacturing method of non-aqueous electrolyte battery
JP4608719B2 (en) Non-aqueous electrolyte secondary battery
JP2001015157A (en) Electrolytic solution and secondary battery using same
JPH09245759A (en) Non-aqueous electrolyte secondary battery
JP2001052672A (en) Sealed battery

Legal Events

Date Code Title Description
AS Assignment

Owner name: SONY CORPORATION, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:YAMAHIRA, TAKAYUKI;WATANABE, AYAKI;KAMEISHI, TOSHIZOU;AND OTHERS;REEL/FRAME:009836/0049;SIGNING DATES FROM 19990223 TO 19990302

AS Assignment

Owner name: SONY CORPORATION, JAPAN

Free format text: ASSIGNMENT OF ASSIGNOR'S INTEREST. RE-RECORD TO CORRECT THE NUMBER OF MICROFILM PAGES FROM 3 TO 4 ON A DOCUMENT RECORDED ON REEL 9836 FRAME 0049 AND TO ADD AN ASSIGNEE.;ASSIGNORS:YAMAHIRA, TAKAYUKI;WATANABE, AYAKI;KAMEISHI, TOSHIZOU;AND OTHERS;REEL/FRAME:009954/0372;SIGNING DATES FROM 19990223 TO 19990302

Owner name: WAKO ELECTRONICS CO. LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNOR'S INTEREST. RE-RECORD TO CORRECT THE NUMBER OF MICROFILM PAGES FROM 3 TO 4 ON A DOCUMENT RECORDED ON REEL 9836 FRAME 0049 AND TO ADD AN ASSIGNEE.;ASSIGNORS:YAMAHIRA, TAKAYUKI;WATANABE, AYAKI;KAMEISHI, TOSHIZOU;AND OTHERS;REEL/FRAME:009954/0372;SIGNING DATES FROM 19990223 TO 19990302

AS Assignment

Owner name: SONY CORPORATION, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:WAKO ELECTRONICS CO., LTD.;REEL/FRAME:012127/0765

Effective date: 20010822

STCF Information on status: patent grant

Free format text: PATENTED CASE

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

FEPP Fee payment procedure

Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12