US20020023733A1 - High-pressure high-temperature polycrystalline diamond heat spreader - Google Patents

High-pressure high-temperature polycrystalline diamond heat spreader Download PDF

Info

Publication number
US20020023733A1
US20020023733A1 US09/981,952 US98195201A US2002023733A1 US 20020023733 A1 US20020023733 A1 US 20020023733A1 US 98195201 A US98195201 A US 98195201A US 2002023733 A1 US2002023733 A1 US 2002023733A1
Authority
US
United States
Prior art keywords
heat spreader
diamond
bondable
matrix
bondable material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US09/981,952
Inventor
David Hall
Joe Fox
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Novatek IP LLC
Original Assignee
Hall David R.
Fox Joe R.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hall David R., Fox Joe R. filed Critical Hall David R.
Priority to US09/981,952 priority Critical patent/US20020023733A1/en
Publication of US20020023733A1 publication Critical patent/US20020023733A1/en
Assigned to NOVATEK IP, LLC reassignment NOVATEK IP, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HALL, DAVID R.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/473Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3732Diamonds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F2013/005Thermal joints
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2255/00Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes
    • F28F2255/18Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3011Impedance

Definitions

  • This invention relates to a high-pressure high-temperature polycrystalline diamond material having high thermal conductivity useful in electronic devices for spreading the thermal energy produced by a high-density thermal source, such as an IC die, into a convective means for dissipating heat, such as a heat sink. More particularly, this invention relates to a polycrystalline diamond heat spreader that has a low-impedance layer of bondable material on at least one of its major surfaces that is economically formed in situ during the high pressure and high temperature process. The bondable layer on the heat spreader provides a means for intimately coupling with the IC die and or the heat sink.
  • high-pressure high-temperature polycrystalline diamond is the most economical form of man-made diamond, costing less than ⁇ fraction (1/20) ⁇ th the cost of any other form of diamond material.
  • a known catalyst material of up to approximately 30% by volume is provided by either mixing it with the diamond or by infiltration from the metal binder used in the carbide substrate. The catalyst may also be provided by a combination of mixing and infiltration. This assembly is sealed inside a refractory metal can and loaded inside a reaction vessel well known in the art.
  • the reaction vessel is inserted into a high-pressure high-temperature press apparatus also known in the art and taken to pressure and temperature regions where diamond is thermodynamically stable. Under these conditions the catalyst melts and infiltrates, or sweeps through, the diamond mass, resulting in diamond-to-diamond bonding, or intergrowth.
  • the result is a matrix of polycrystalline diamond material that possesses the combined properties of its catalyst material and its natural or synthetic diamond constituents: strong, rigid, high in thermal conductivity, low in thermal capacity, black in color, and it has a coefficient of thermal expansion compatible with that of silicon.
  • high-pressure high-temperature polycrystalline diamond may be manufactured into a variety of configurations by either performing the substrate or by using standard machine shop art. For example, by varying the interfacial surface of the metal carbide substrate onto which the discrete diamond crystals are mounted, the shape and surface topography of the diamond matrix may take on planar and non-planar shapes. These shapes may be further modified to achieve multiple configurations and surfaces having low surface roughness, which adds to the versatility of this form of polycrystalline diamond. Furthermore, polycrystalline diamond may be made electrically resistive by either chemically or mechanically removing its residual catalytic content.
  • the objective of a thermal management system is to take the heat away from the thermal source as quickly as possible and deliver it to a convective means for dissipation into the atmosphere.
  • An obstacle common in any thermal management system is the thermal resistance of the materials being used and the contact surface, or junction, thermal resistance arising where such materials are joined.
  • High-pressure high-temperature polycrystalline diamond has the lowest thermal resistance, or highest thermal conductivity, of any material, except in some cases diamond itself.
  • thermal resistance at the junctions may be higher than the thermal resistance of all the other elements in the thermal chain.
  • contact surface resistance must be reduced in order to take full advantage diamond's high thermal conductivity in a thermal management system.
  • the reduction of contact surface resistance may be achieved by intimately coupling the polycrystalline diamond heat spreader to the thermal source and or to the heat sink.
  • intimately coupling with diamond has been an expensive and difficult obstacle since standard bonding materials are reluctant to wet diamond due to its chemical inertness.
  • This obstacle is overcome by this invention by providing a polycrystalline diamond material that has a bondable contact surface of low thermal impedance, economically formed in situ at high pressure and high temperature on at least one surface of the polycrystalline diamond heat spreader.
  • This invention presents a polycrystalline diamond heat spreader for use in electronic devices having low thermal impedance and bondable contact surfaces that are formed in situ during the high-pressure high-temperature process.
  • Polycrystalline diamond of this invention is produced by the high-pressure high-temperature sintering method from discrete natural or synthetic diamond crystals ranging in sizes from between 10 ⁇ to 3000 ⁇ that are intergrown into a unified matrix. Because polycrystalline diamond is produced from discrete crystals that are mounted on a substrate, by varying the shape of the substrate's interfacial surface, the polycrystalline diamond matrix may be pre-configured having a variety of planar and non-planar surface topographies.
  • the polycrystalline diamond of this invention is black in color, strong and rigid, and may be made having high electrical resistance, low surface roughness, high thermal conductivity, low thermal capacity, and a coefficient of thermal expansion compatible with silicon. Therefore, it is well suited to be bonded adjacent to the silicon IC as well as to the heat sink. Moreover, the inter-crystalline intergrowth of polycrystalline diamond provides an uninterrupted, low-impedance thermal path for transmitting heat between the heat source and the sink.
  • FIG. 1 is a perspective diagram of a heat spreader of the present invention having a bondable layer on at least one major surface.
  • FIG. 2 is a sectioned representation of a non-planar heat spreader having a convex profile.
  • FIG. 3 is a sectioned representation of a non-planar heat spreader having an interrupted surface profile.
  • FIG. 4 is a diagram of polycrystalline diamond intergrown by the high-pressure high-temperature sintering method depicting thermal paths through the matrix.
  • FIG. 5 is a cross-section diagram of the polycrystalline diamond heat spreader positioned between an electronic heat source and the means for dissipating thermal energy.
  • This invention presents a high-pressure high-temperature polycrystalline diamond heat spreader for use in electronic devices having high thermal conductivity and comprising a bondable contact surface opposite the substrate having low thermal impedance that is economically formed in situ during the high-pressure high-temperature sintering process.
  • the bondable contact surface permits bonding of the heat spreader to a thermal source or to a heat sink.
  • the contact surface may also be made to be planar or non-planar, to have low surface roughness, and to have high electrical resistance.
  • Thermal energy is transmitted in diamond faster than in any other material at ambient temperatures. Heat is transmitted through a metal by electron transport and through a crystal, such as diamond, by phonon, or acoustic, transport. In either case there is some thermal resistance. Also, where materials are joined in a thermal chain, intimate coupling of materials is necessary in order to reduce junction thermal resistance and maximize thermal energy transmission. Studies have shown that thermal resistance is highest at the contact surfaces, or junctions, where materials are joined together, making contact surface resistance as significant a consideration in the thermal chain as the actual thermal conductivity of the materials themselves. This phenomenon is equally applicable among the discrete diamond crystals within the matrix of polycrystalline diamond.
  • polycrystalline diamond is produced from discrete natural or synthetic diamond crystals, each crystal boundary is potentially a thermal barrier. However, when the diamond crystals are intergrown at high pressure and high temperature their boundaries are intimately merged creating an uninterrupted thermal path through the material. Therefore, the more thorough the diamond-to-diamond bonding, or intergrowth, the more efficiently polycrystalline diamond is capable of conducting thermal energy.
  • the matrix may be made thicker, which also contributes to the spreading capacity of the heat spreader.
  • a heat spreader having at least a cross section of 19 mm ⁇ at least 4 mm may be achieved. This is especially important as heat densities continue to increase.
  • high-pressure high-temperature polycrystalline diamond is chemically inert and, therefore, difficult to bond to other materials.
  • This invention overcomes this obstacle by providing an economical bondable surface integral to the matrix that is formed in situ during the high-pressure high-temperature sintering process.
  • the key ingredient is the formation of a layer of bondable material on the surface of the heat spreader.
  • the formation of that surface is the distinguishing feature of the invention. Contrary to prior art products where the aim is to consume all of the catalyst in the process, the present invention seeks to pool the excess catalyst, or other bondable material on the surface opposite the substrate, and to use that layer as a bondable surface.
  • PCD Polycrystalline diamond
  • the object of this invention is to produce a PCD product that has an intimate layer of bondable material on at least one major surface.
  • Such a bondable surface may be composed of the catalyst material, itself, or the material may be inert to the process.
  • a product according to the present invention may be produced by obtaining a known quantity of a mixture of diamond fine powders, on the order of from about 10 ⁇ to about 3000 ⁇ in size, a known catalyst, such as cobalt, a cemented metal carbide substrate, such as tungsten carbide, and a bondable material, such as copper.
  • a known catalyst such as cobalt
  • a cemented metal carbide substrate such as tungsten carbide
  • a bondable material such as copper.
  • Other materials that may be considered as the bondable are: Fe, Co, Ni, Pd, Pt, Cr, Mo, W, Nb, Ta, Hf, Zr, Ti, V, Al, Si, Ga, In, Au, Cd, Ag, An, Mg, Sn, Ge or compounds, carbides, or alloys thereof.
  • the cobalt catalyst may be supplied by infiltration from the tungsten carbide substrate, although a slight amount of cobalt may be mixed into the diamond power to complement the infiltrating catalyst. If the catalyst is supplied by intermixing with the diamond powder, it usually does not exceed 50 weight-percent of the diamond powder and in most cases is less than 30 weight-percent,
  • the copper, or other bonding material may be in foil or powder form in an amount not to exceed the weight of the diamond matrix.
  • the bondable material may be less than 20 weight-percent of the diamond mixture, as long as it is sufficient to produce the bondable surface.
  • the specific weight percent of bonding material used in the process will depend upon the specific application: the grain size of the diamond powders, the thickness of the diamond matrix desired, the type of bonding material and type of surface to which it will be bonded, and the processing conditions of time, temperature, pressure are determinative of the amount material that must be used.
  • a foil When a foil is used, it should be between about 0.002′′ to 0.050′′ inches thick.
  • the foil is laid in the bottom of a refractory metal container and the diamond mixture is then placed on top of the foil.
  • a powder is used, it, too, is spread in the bottom of the container.
  • the powder may also be intermixed with the diamond mixture.
  • a tungsten carbide disk, or substrate, is then placed on top of the diamond mixture.
  • the metal container is then placed inside a reaction vessel known in the art, and the assembly is inserted into an ultra high-pressure high-temperature press apparatus.
  • the press is activated and the diamond mixture, substrate, and bondable material are taken to conditions where diamond is thermodynamically stable.
  • the specific parameters of the process are apparatus dependent. That is to say, that there are several styles of HPHT presses in use today and each style is distinguishable by its design, method of operation, and its mechanical and hydraulic systems. Generally, however, the process will take approximately 2 to 45 minutes.
  • the reaction vessel appropriate for the style of press being used which includes a resistance heating mechanism, is exposed to conditions of pressure and temperature of approximately 50 to 70 Kilobars and between about 1200°-1500° C., respectively.
  • the catalyst in the substrate melts and a portion of it infiltrates the diamond mixture causing the diamond crystals to chemically bond to one another in a process known as intergrowth.
  • the copper foil also melts and back infiltrates a thin layer of the mixture providing a intimate bond with the diamond matrix.
  • the copper is not a catalyst for diamond intergrowth, it does not completely block the infiltrating cobalt and does not completely prohibit intergrowth.
  • a powder layer acts much the same way as the copper foil.
  • the advantage of the copper foil is found in its ease of handling. When the copper powder is intermixed with the diamond mixture, the melted copper is swept from the diamond matrix by the infiltrating cobalt and allowed pool on the opposing surface. Some of the copper is allowed to remain in the matrix in order to strengthen the bond between the diamond and the copper layer.
  • the objective is to provide a layer of bondable material on the major surface. The reaction vessel is then cooled and returned to atmospheric conditions and removed from the press.
  • the diamonds at the interface between the bonding material are not unaffected by the presence of the non-catalytic material may exhibit a less competent pattern of intergrowth. Notwithstanding the presence of the non-catalytic material, the copper layer is intimately bonded to the diamond and creates a surface to which a thermal source or heat sink may be attached.
  • An examination of the finished product reveals that the diamond has intimately bonded to the substrate and the copper is bonded to the diamond, forming a surface to which the thermal components may be bonded. It is desirable that the layer of bondable material be approximately between 0.002′′ to 0.020′′ thick. The examination also reveals that the catalyst metal has collected at interstitial sites throughout the matrix. These pools of catalyst are less thermally conductive than the path formed by the intergrown diamond, and, therefore, it is preferred to control the amount of residual catalyst in the final product. Although, copper is used in this example, other bondable materials as described herein may be beneficially used.
  • the infiltrating cobalt may also form a bondable layer. This may be achieved by altering the grain size of the diamond powder, the amount of cobalt in the mixture, and the processing parameters. Generally, the finer the diamond powder the more difficult it is to infiltrate and the larger volume of catalyst required. However, finer crystal sizes produce a more thermally conductive part since the diamond matrix may be made denser. Therefore, a balance must be achieved between particle size and volume of catalyst used in the process. Also by accelerating the process so that the melting temperature of the catalyst is reached in a shorter period of time encourages swifter infiltration and promotes pooling of the catalyst on the opposing surface.
  • the heat spreader of the present invention may be made to have high electrical resistance.
  • Diamond is not electrically conductive; it is the residual metal catalyst in the PCD that produces electrical conductivity. Therefore, in order to make the heat spreader electrically resistive, it is necessary to remove the residual metal from the diamond matrix. This is usually accomplished by acid leaching in boiling aqua regia.
  • the surface not infiltrated with bondable material may be made more resistive by masking off the bondable layer to protect it from acid, or by partial immersion of the unbound layer into the acid. As the metal is dissolved in the acid, the remaining diamond matrix becomes electrically resistive. It is not necessary to remove all the metal as long as there is a contiguous layer free of metal in the diamond matrix. Even with the catalyst metal substantially removed, the diamond matrix remains intact because the diamond crystals are bonded, intergrown, together.
  • Another, method of producing a bondable layer on the heat spreader matrix of the present invention is by intermixing with the diamond crystals a bondable material selected from the periodic table of elements consisting of Fe, Co, Ni, Pd, Pt, Cr, Mo, W, Nb, Ta, Hf, Zr, Ti, V, Al, Si, Ga, In, Au, Cd, Ag, An, Mg, Sn, Ge or compounds, carbides, or alloys thereof prior to high-pressure high-temperature processing.
  • the intermixing may be accomplished either by mixing, milling, or coating the discrete crystals by such standard art processes as sputter coating, ion implantation, or physical or chemical vapor deposition.
  • the bondable material is also swept through the matrix by the infiltrating catalyst and accumulates, or pools, in a layer near or on the opposite surface of the heat spreader.
  • the thickness of this bondable layer need only be sufficient to form an acceptable bond and may vary depending on the volume of bondable material in the matrix and is desirably about 1 mm, preferably 0.25 mm, or more preferably 0.025 mm.
  • the bondable material may be machined to a desired configuration and thickness, and to remove surface asperities.
  • a thin bondable layer is preferred over a thick bondable layer because thermal impedance is proportional to the width of the junction between the heat spreader and the IC die or the heat sink.
  • Another method of producing the bondable layer on the heat spreader of this invention is by positioning the bondable material, either as a powder or as a solid foil or sheet, adjacent to the diamond crystals prior to high-pressure high-temperature processing. Then as the temperature increases, the bondable material melts and infiltrates the diamond mass, combining with the sweeping catalyst material and becoming integral to the heat spreader.
  • the metal carbide substrate on which the diamond crystals are mounted may be used in some cases as the bondable layer.
  • the metal carbide substrate In the high-pressure high-temperature sintering process the metal carbide substrate also becomes intimately bonded to the diamond mass. After processing the metal carbide substrate may be ground or lapped thin—also producing a bondable surface on one side of the heat spreader.
  • the heat spreader In applications where the heat spreader is mounted adjacent the IC die, it may be desirable to make the heat spreader electrically resistive.
  • Diamond is electrically non-conductive. But, the residual catalyst material in the matrix of polycrystalline diamond causes it to be electrically conductive. Electrical resistance may be achieved, however, by either chemically or mechanically removing at least a portion of the residual catalyst material from at least a portion of the surface adjacent the heat source, creating an insulating layer of diamond. Using this method a substantial portion of the catalyst also may be removed from the entire matrix if so required. The applicants have found that where there is thorough diamond intergrowth the removal of the residual catalyst material from the matrix does not significantly compromise the structural integrity of the heat spreader.
  • FIG. 1 is a perspective illustration of a heat spreader of the present invention. It depicts a matrix ( 15 ) of high-pressure high-temperature polycrystalline diamond that is naturally black in color. The black color is an added intrinsic benefit for the heat spreader application; the back color enhances the thermal absorption.
  • the heat spreader has bondable material layers ( 11 and 1 ) on each of its major contact surfaces that permit intimate attachment of the heat spreader to a thermal source as well as to a heat sink. According to the present invention, these bondable contact surfaces are economically produced in situ during the high-pressure high-temperature process and are integral to the polycrystalline diamond matrix. Each contact surface may be composed of different materials.
  • the junction layer ( 11 ) may be produced by lapping or grinding the metal carbide substrate to a thin layer, while the junction layer ( 1 ) may be produced by providing the bondable material in the form of a powder of sheet positioned adjacent the diamond matrix.
  • Another method may be to sandwich the diamond crystals between two metal carbide substrates, and after processing, by then lapping or grinding both sides of the heat spreader to produce the bondable surface.
  • These contact surfaces may be further modified by standard machine shop art of lapping and grinding in order to remove asperities and achieve low surface roughness and high flatness.
  • the configuration shown is a right cylinder, different prismatic configurations not shown are also producible and intended within the scope of the present invention.
  • FIG. 2 is a section illustration of a heat spreader of the present invention depicting the metal carbide substrate ( 17 ) intimately bonded to the polycrystalline diamond matrix ( 23 ). Bondable material is shown in high concentration layers along the major contact surfaces ( 21 and 25 ) of the heat spreader.
  • the metal carbide substrate ( 17 ) may be reduced to a thin contact surface ( 19 ) by employing standard machine shop art, or it may be removed altogether exposing the junction surface ( 21 ) for bonding either to the thermal source or the heat sink.
  • the bondable material depicted in high concentrations along the junction surfaces ( 21 and 25 ) may be provided by intermixing, by coating the diamond crystals, or by positioning a powder or sheet of the bondable material adjacent the diamond prior to high-pressure high-temperature processing.
  • the major contact surfaces at 19 and 21 are depicted having a non-planar, convex profile. Though not shown, other non-planar profiles are intended within the scope of this invention, such as concave, conical, truncated conical, and hemispherical.
  • FIG. 3 is another section illustration of the present invention depicting an application where the metal carbide substrate ( 27 ) is attached to the diamond matrix ( 31 ) at an interrupted interfacial surface ( 29 ) having a layer of bondable material ( 30 ) along the interface.
  • This sample is also provided with a bondable layer ( 33 ) on the opposite major contact surface of the heat spreader.
  • the interrupted profile of the interface ( 29 ) may be the result of grooves in either a parallel or radial pattern along the surface of the diamond matrix. Or it may be the result of discrete protrusions, such as nodes, projecting above the spreader's major contact surface. Additionally, these configurations may be combined with the non-planar profile of FIG. 2 to present a complex non-planar profile that greatly increases the versatility of this invention. The added surface created by the non-planar configurations enhances the means of attachment and the spreading capacity of the polycrystalline diamond.
  • FIG. 4 is a magnified section illustration of the high-pressure high-temperature polycrystalline diamond matrix of the present invention.
  • High-pressure high-temperature polycrystalline diamond is composed of discrete diamond crystals that are chemically intergrown at high pressure and high temperature in the presence of a metal catalyst.
  • intergrown diamond crystals ( 37 ) are vaguely bordered at interstitial sites ( 41 ) by residual metal catalyst.
  • the intergrown structure of the matrix creates an uninterrupted thermal path ( 39 ) for transmitting heat from the thermal source to the heat sink. Since diamond has low thermal capacity, heat accumulation in the matrix is slight and quickly transmitted into the heat sink.
  • the residual metal catalyst which is electrically conductive, may be removed from the contact surfaces of the matrix, or from the matrix itself, by chemical or mechanical means in order to produce an insulating medium. The removal of the residual metal catalyst does not significantly affect the structural integrity of the matrix.
  • the matrix of the present invention is strong, rigid, and thermally compatible with both the silicon of the IC die and the ceramic or metal composition of the heat sink, reducing the likelihood that the thermal cycling of the IC will result failure of the heat spreader or the die.
  • FIG. 5 is a section illustration of a heat spreader of the present invention incorporated into a thermal management system.
  • the heat spreader ( 53 ) is mounted onto a circuit board ( 49 ) positioned between the IC die ( 47 ) and the heat sink ( 43 ).
  • the heat spreader of the present invention is intimately bonded to the heat sink and the IC die along its major contact surfaces using the bondable material layers ( 45 ) of the present invention.
  • Low thermal impedance is achieved at the junctions by maintaining the bonding layer sufficiently thin so as to reduce contact surface thermal resistance.
  • As the computer IC is cycled hot spots ( 51 ) develop on the surface of the die. The thermal energy radiating from the die is quickly spread across the surface of the die and transmitted into the heat spreader.
  • heat spreader Since the heat spreader has low thermal capacity, heat does not accumulate in the spreader itself, but is quickly conducted into the high thermal capacity heat sink and convectively transmitted into the atmosphere or other high capacity medium. Adaptations of this design are obvious to those skilled in the art and are included within the scope of this invention although not depicted.
  • a free flowing or jetted fluid or cryogenic thermal management system may be substituted for the heat sink shown.
  • heat pipes or cooling fluid conduits may be added to the heat spreader or the heat sink in order to increase the thermal differential, adding to the efficiency of the system.
  • the heat spreader may be positioned on both sides of the IC die to further enhance dissipation of thermal energy.

Abstract

This invention presents a polycrystalline diamond heat spreader useful in electronic devices for transmitting thermal energy from a high-energy thermal source, such as an IC die, into a means for dissipating thermal energy, such as a heat sink. The heat spreader comprises a bondable material that forms in situ at high pressure and high temperature a low-impedance contact surface layer on at least one its major surfaces. The contact surface layer provides a means for chemically or metallurgically bonding the heat spreader to the IC die and or to the heat sink.

Description

    RELATED APPLICATIONS
  • Continuation in Part of U.S. application Ser. No. 09/460,105[0001]
  • Background of the Invention
  • This invention relates to a high-pressure high-temperature polycrystalline diamond material having high thermal conductivity useful in electronic devices for spreading the thermal energy produced by a high-density thermal source, such as an IC die, into a convective means for dissipating heat, such as a heat sink. More particularly, this invention relates to a polycrystalline diamond heat spreader that has a low-impedance layer of bondable material on at least one of its major surfaces that is economically formed in situ during the high pressure and high temperature process. The bondable layer on the heat spreader provides a means for intimately coupling with the IC die and or the heat sink. [0002]
  • The continued development of high-speed electronic devices, such as IC dies, produces increasing heat densities in such devices that are destructive to the device, itself. Currently these densities exceed 200,000 w/m[0003] 2, or roughly the equivalent of the heat density on the sun's surface. Thermal management, or the dissipation of the thermal energy in such devices, has become a major technological hurdle for manufacturers; in fact, the efficient dissipation of thermal energy is more and more becoming a major impediment to the further development of such devices.
  • The non-abrasive and thermal properties of a high-pressure high-temperature polycrystalline diamond make it an ideal material for use in a thermal management system for dissipating thermal energy. [0004]
  • First of all, high-pressure high-temperature polycrystalline diamond is the most economical form of man-made diamond, costing less than {fraction (1/20)}[0005] th the cost of any other form of diamond material. Second, it is a mature product whose production has been known in the art for nearly 50 years. It is produced from natural or synthetic discrete diamond crystals that may vary in size and are typically mounted onto metal carbide subtrate. A known catalyst material of up to approximately 30% by volume is provided by either mixing it with the diamond or by infiltration from the metal binder used in the carbide substrate. The catalyst may also be provided by a combination of mixing and infiltration. This assembly is sealed inside a refractory metal can and loaded inside a reaction vessel well known in the art. The reaction vessel is inserted into a high-pressure high-temperature press apparatus also known in the art and taken to pressure and temperature regions where diamond is thermodynamically stable. Under these conditions the catalyst melts and infiltrates, or sweeps through, the diamond mass, resulting in diamond-to-diamond bonding, or intergrowth. The result is a matrix of polycrystalline diamond material that possesses the combined properties of its catalyst material and its natural or synthetic diamond constituents: strong, rigid, high in thermal conductivity, low in thermal capacity, black in color, and it has a coefficient of thermal expansion compatible with that of silicon.
  • Next, high-pressure high-temperature polycrystalline diamond may be manufactured into a variety of configurations by either performing the substrate or by using standard machine shop art. For example, by varying the interfacial surface of the metal carbide substrate onto which the discrete diamond crystals are mounted, the shape and surface topography of the diamond matrix may take on planar and non-planar shapes. These shapes may be further modified to achieve multiple configurations and surfaces having low surface roughness, which adds to the versatility of this form of polycrystalline diamond. Furthermore, polycrystalline diamond may be made electrically resistive by either chemically or mechanically removing its residual catalytic content. [0006]
  • The objective of a thermal management system is to take the heat away from the thermal source as quickly as possible and deliver it to a convective means for dissipation into the atmosphere. An obstacle common in any thermal management system is the thermal resistance of the materials being used and the contact surface, or junction, thermal resistance arising where such materials are joined. High-pressure high-temperature polycrystalline diamond has the lowest thermal resistance, or highest thermal conductivity, of any material, except in some cases diamond itself. However, in the chain of materials used to transmit heat from the thermal source and ultimately into the atmosphere, even where polycrystalline diamond is used, it has been found that thermal resistance at the junctions may be higher than the thermal resistance of all the other elements in the thermal chain. Thus contact surface resistance must be reduced in order to take full advantage diamond's high thermal conductivity in a thermal management system. [0007]
  • The reduction of contact surface resistance may be achieved by intimately coupling the polycrystalline diamond heat spreader to the thermal source and or to the heat sink. However, in the past, intimately coupling with diamond has been an expensive and difficult obstacle since standard bonding materials are reluctant to wet diamond due to its chemical inertness. This obstacle is overcome by this invention by providing a polycrystalline diamond material that has a bondable contact surface of low thermal impedance, economically formed in situ at high pressure and high temperature on at least one surface of the polycrystalline diamond heat spreader. [0008]
  • SUMMARY OF THE INVENTION
  • This invention presents a polycrystalline diamond heat spreader for use in electronic devices having low thermal impedance and bondable contact surfaces that are formed in situ during the high-pressure high-temperature process. Polycrystalline diamond of this invention is produced by the high-pressure high-temperature sintering method from discrete natural or synthetic diamond crystals ranging in sizes from between 10μ to 3000μ that are intergrown into a unified matrix. Because polycrystalline diamond is produced from discrete crystals that are mounted on a substrate, by varying the shape of the substrate's interfacial surface, the polycrystalline diamond matrix may be pre-configured having a variety of planar and non-planar surface topographies. Furthermore, the polycrystalline diamond of this invention is black in color, strong and rigid, and may be made having high electrical resistance, low surface roughness, high thermal conductivity, low thermal capacity, and a coefficient of thermal expansion compatible with silicon. Therefore, it is well suited to be bonded adjacent to the silicon IC as well as to the heat sink. Moreover, the inter-crystalline intergrowth of polycrystalline diamond provides an uninterrupted, low-impedance thermal path for transmitting heat between the heat source and the sink.[0009]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a perspective diagram of a heat spreader of the present invention having a bondable layer on at least one major surface. [0010]
  • FIG. 2 is a sectioned representation of a non-planar heat spreader having a convex profile. [0011]
  • FIG. 3 is a sectioned representation of a non-planar heat spreader having an interrupted surface profile. [0012]
  • FIG. 4 is a diagram of polycrystalline diamond intergrown by the high-pressure high-temperature sintering method depicting thermal paths through the matrix. [0013]
  • FIG. 5 is a cross-section diagram of the polycrystalline diamond heat spreader positioned between an electronic heat source and the means for dissipating thermal energy.[0014]
  • DETAILED DESCRIPTION OF THE INVENTION
  • This invention presents a high-pressure high-temperature polycrystalline diamond heat spreader for use in electronic devices having high thermal conductivity and comprising a bondable contact surface opposite the substrate having low thermal impedance that is economically formed in situ during the high-pressure high-temperature sintering process. The bondable contact surface permits bonding of the heat spreader to a thermal source or to a heat sink. The contact surface may also be made to be planar or non-planar, to have low surface roughness, and to have high electrical resistance. [0015]
  • Thermal energy is transmitted in diamond faster than in any other material at ambient temperatures. Heat is transmitted through a metal by electron transport and through a crystal, such as diamond, by phonon, or acoustic, transport. In either case there is some thermal resistance. Also, where materials are joined in a thermal chain, intimate coupling of materials is necessary in order to reduce junction thermal resistance and maximize thermal energy transmission. Studies have shown that thermal resistance is highest at the contact surfaces, or junctions, where materials are joined together, making contact surface resistance as significant a consideration in the thermal chain as the actual thermal conductivity of the materials themselves. This phenomenon is equally applicable among the discrete diamond crystals within the matrix of polycrystalline diamond. [0016]
  • Since polycrystalline diamond is produced from discrete natural or synthetic diamond crystals, each crystal boundary is potentially a thermal barrier. However, when the diamond crystals are intergrown at high pressure and high temperature their boundaries are intimately merged creating an uninterrupted thermal path through the material. Therefore, the more thorough the diamond-to-diamond bonding, or intergrowth, the more efficiently polycrystalline diamond is capable of conducting thermal energy. [0017]
  • Another aspect of high thermal conductivity that the applicants have discovered is that the lower the concentration of nitrogen in the diamond and the larger the crystal size, the more conductive the thoroughly intergrown polycrystalline diamond seems to be. The applicants believe that this may be due to fewer defects in the crystal lattice that affect phonon transport and to the actual reduction of crystalline surface area, and thus the boundaries, within the polycrystalline diamond matrix. Natural or synthetic diamond is suitable for this invention, but synthetic diamond having controlled growth characteristics and low nitrogen content is preferred. The applicants have found that by mixing large crystals, say up to 3000μ, having low nitrogen content into a matrix of smaller crystals, say greater than 10μ, higher thermal conductivity has been achieved. Another benefit from using larger crystals is that the matrix may be made thicker, which also contributes to the spreading capacity of the heat spreader. By using large diamond crystals in the matrix, a heat spreader having at least a cross section of 19 mm×at least 4 mm may be achieved. This is especially important as heat densities continue to increase. [0018]
  • Like other forms of diamond, high-pressure high-temperature polycrystalline diamond is chemically inert and, therefore, difficult to bond to other materials. This invention overcomes this obstacle by providing an economical bondable surface integral to the matrix that is formed in situ during the high-pressure high-temperature sintering process. [0019]
  • The key ingredient is the formation of a layer of bondable material on the surface of the heat spreader. The formation of that surface is the distinguishing feature of the invention. Contrary to prior art products where the aim is to consume all of the catalyst in the process, the present invention seeks to pool the excess catalyst, or other bondable material on the surface opposite the substrate, and to use that layer as a bondable surface. [0020]
  • Since diamond is chemically inert, it resists chemical adhesion to another material, making it difficult to obtain the intimate contact required for efficient thermal transfer. Polycrystalline diamond (PCD) is a product that exhibits diamond crystals bonded together using a metal catalyst, and the finished product contains some metal at interstitial sites on the surface, but it is desirable that the presence of metal in the product be kept to a minimum. Therefore, normally the interstitial material is insufficient for a competent bond. The object of this invention, then, is to produce a PCD product that has an intimate layer of bondable material on at least one major surface. Such a bondable surface may be composed of the catalyst material, itself, or the material may be inert to the process. [0021]
  • A product according to the present invention may be produced by obtaining a known quantity of a mixture of diamond fine powders, on the order of from about 10μ to about 3000μ in size, a known catalyst, such as cobalt, a cemented metal carbide substrate, such as tungsten carbide, and a bondable material, such as copper. Other materials that may be considered as the bondable are: Fe, Co, Ni, Pd, Pt, Cr, Mo, W, Nb, Ta, Hf, Zr, Ti, V, Al, Si, Ga, In, Au, Cd, Ag, An, Mg, Sn, Ge or compounds, carbides, or alloys thereof. The cobalt catalyst may be supplied by infiltration from the tungsten carbide substrate, although a slight amount of cobalt may be mixed into the diamond power to complement the infiltrating catalyst. If the catalyst is supplied by intermixing with the diamond powder, it usually does not exceed 50 weight-percent of the diamond powder and in most cases is less than 30 weight-percent, The copper, or other bonding material, may be in foil or powder form in an amount not to exceed the weight of the diamond matrix. The bondable material may be less than 20 weight-percent of the diamond mixture, as long as it is sufficient to produce the bondable surface. The specific weight percent of bonding material used in the process will depend upon the specific application: the grain size of the diamond powders, the thickness of the diamond matrix desired, the type of bonding material and type of surface to which it will be bonded, and the processing conditions of time, temperature, pressure are determinative of the amount material that must be used. When a foil is used, it should be between about 0.002″ to 0.050″ inches thick. The foil is laid in the bottom of a refractory metal container and the diamond mixture is then placed on top of the foil. When a powder is used, it, too, is spread in the bottom of the container. The powder may also be intermixed with the diamond mixture. A tungsten carbide disk, or substrate, is then placed on top of the diamond mixture. These components are then compacted together inside the container and hermetically sealed from contamination. The metal container is then placed inside a reaction vessel known in the art, and the assembly is inserted into an ultra high-pressure high-temperature press apparatus. The press is activated and the diamond mixture, substrate, and bondable material are taken to conditions where diamond is thermodynamically stable. The specific parameters of the process are apparatus dependent. That is to say, that there are several styles of HPHT presses in use today and each style is distinguishable by its design, method of operation, and its mechanical and hydraulic systems. Generally, however, the process will take approximately 2 to 45 minutes. In every style of press, the reaction vessel appropriate for the style of press being used, which includes a resistance heating mechanism, is exposed to conditions of pressure and temperature of approximately 50 to 70 Kilobars and between about 1200°-1500° C., respectively. Under such conditions, the catalyst in the substrate melts and a portion of it infiltrates the diamond mixture causing the diamond crystals to chemically bond to one another in a process known as intergrowth. The copper foil also melts and back infiltrates a thin layer of the mixture providing a intimate bond with the diamond matrix. [0022]
  • Although the copper is not a catalyst for diamond intergrowth, it does not completely block the infiltrating cobalt and does not completely prohibit intergrowth. A powder layer acts much the same way as the copper foil. The advantage of the copper foil is found in its ease of handling. When the copper powder is intermixed with the diamond mixture, the melted copper is swept from the diamond matrix by the infiltrating cobalt and allowed pool on the opposing surface. Some of the copper is allowed to remain in the matrix in order to strengthen the bond between the diamond and the copper layer. In these three examples, the objective is to provide a layer of bondable material on the major surface. The reaction vessel is then cooled and returned to atmospheric conditions and removed from the press. [0023]
  • Depending upon the type of bonding material used, the diamonds at the interface between the bonding material are not unaffected by the presence of the non-catalytic material may exhibit a less competent pattern of intergrowth. Notwithstanding the presence of the non-catalytic material, the copper layer is intimately bonded to the diamond and creates a surface to which a thermal source or heat sink may be attached. [0024]
  • An examination of the finished product reveals that the diamond has intimately bonded to the substrate and the copper is bonded to the diamond, forming a surface to which the thermal components may be bonded. It is desirable that the layer of bondable material be approximately between 0.002″ to 0.020″ thick. The examination also reveals that the catalyst metal has collected at interstitial sites throughout the matrix. These pools of catalyst are less thermally conductive than the path formed by the intergrown diamond, and, therefore, it is preferred to control the amount of residual catalyst in the final product. Although, copper is used in this example, other bondable materials as described herein may be beneficially used. [0025]
  • The infiltrating cobalt may also form a bondable layer. This may be achieved by altering the grain size of the diamond powder, the amount of cobalt in the mixture, and the processing parameters. Generally, the finer the diamond powder the more difficult it is to infiltrate and the larger volume of catalyst required. However, finer crystal sizes produce a more thermally conductive part since the diamond matrix may be made denser. Therefore, a balance must be achieved between particle size and volume of catalyst used in the process. Also by accelerating the process so that the melting temperature of the catalyst is reached in a shorter period of time encourages swifter infiltration and promotes pooling of the catalyst on the opposing surface. [0026]
  • The heat spreader of the present invention may be made to have high electrical resistance. Diamond is not electrically conductive; it is the residual metal catalyst in the PCD that produces electrical conductivity. Therefore, in order to make the heat spreader electrically resistive, it is necessary to remove the residual metal from the diamond matrix. This is usually accomplished by acid leaching in boiling aqua regia. The surface not infiltrated with bondable material may be made more resistive by masking off the bondable layer to protect it from acid, or by partial immersion of the unbound layer into the acid. As the metal is dissolved in the acid, the remaining diamond matrix becomes electrically resistive. It is not necessary to remove all the metal as long as there is a contiguous layer free of metal in the diamond matrix. Even with the catalyst metal substantially removed, the diamond matrix remains intact because the diamond crystals are bonded, intergrown, together. [0027]
  • Another, method of producing a bondable layer on the heat spreader matrix of the present invention is by intermixing with the diamond crystals a bondable material selected from the periodic table of elements consisting of Fe, Co, Ni, Pd, Pt, Cr, Mo, W, Nb, Ta, Hf, Zr, Ti, V, Al, Si, Ga, In, Au, Cd, Ag, An, Mg, Sn, Ge or compounds, carbides, or alloys thereof prior to high-pressure high-temperature processing. The intermixing may be accomplished either by mixing, milling, or coating the discrete crystals by such standard art processes as sputter coating, ion implantation, or physical or chemical vapor deposition. During the high-pressure high-temperature sintering process, the bondable material is also swept through the matrix by the infiltrating catalyst and accumulates, or pools, in a layer near or on the opposite surface of the heat spreader. The thickness of this bondable layer need only be sufficient to form an acceptable bond and may vary depending on the volume of bondable material in the matrix and is desirably about 1 mm, preferably 0.25 mm, or more preferably 0.025 mm. After processing, the bondable material may be machined to a desired configuration and thickness, and to remove surface asperities. A thin bondable layer is preferred over a thick bondable layer because thermal impedance is proportional to the width of the junction between the heat spreader and the IC die or the heat sink. [0028]
  • Another method of producing the bondable layer on the heat spreader of this invention is by positioning the bondable material, either as a powder or as a solid foil or sheet, adjacent to the diamond crystals prior to high-pressure high-temperature processing. Then as the temperature increases, the bondable material melts and infiltrates the diamond mass, combining with the sweeping catalyst material and becoming integral to the heat spreader. [0029]
  • Additionally, even the metal carbide substrate on which the diamond crystals are mounted may be used in some cases as the bondable layer. In the high-pressure high-temperature sintering process the metal carbide substrate also becomes intimately bonded to the diamond mass. After processing the metal carbide substrate may be ground or lapped thin—also producing a bondable surface on one side of the heat spreader. [0030]
  • In applications where the heat spreader is mounted adjacent the IC die, it may be desirable to make the heat spreader electrically resistive. Diamond is electrically non-conductive. But, the residual catalyst material in the matrix of polycrystalline diamond causes it to be electrically conductive. Electrical resistance may be achieved, however, by either chemically or mechanically removing at least a portion of the residual catalyst material from at least a portion of the surface adjacent the heat source, creating an insulating layer of diamond. Using this method a substantial portion of the catalyst also may be removed from the entire matrix if so required. The applicants have found that where there is thorough diamond intergrowth the removal of the residual catalyst material from the matrix does not significantly compromise the structural integrity of the heat spreader. [0031]
  • FIG. 1 is a perspective illustration of a heat spreader of the present invention. It depicts a matrix ([0032] 15) of high-pressure high-temperature polycrystalline diamond that is naturally black in color. The black color is an added intrinsic benefit for the heat spreader application; the back color enhances the thermal absorption. The heat spreader has bondable material layers (11 and 1) on each of its major contact surfaces that permit intimate attachment of the heat spreader to a thermal source as well as to a heat sink. According to the present invention, these bondable contact surfaces are economically produced in situ during the high-pressure high-temperature process and are integral to the polycrystalline diamond matrix. Each contact surface may be composed of different materials. For example, the junction layer (11) may be produced by lapping or grinding the metal carbide substrate to a thin layer, while the junction layer (1) may be produced by providing the bondable material in the form of a powder of sheet positioned adjacent the diamond matrix. Another method may be to sandwich the diamond crystals between two metal carbide substrates, and after processing, by then lapping or grinding both sides of the heat spreader to produce the bondable surface. These contact surfaces may be further modified by standard machine shop art of lapping and grinding in order to remove asperities and achieve low surface roughness and high flatness. Although the configuration shown is a right cylinder, different prismatic configurations not shown are also producible and intended within the scope of the present invention.
  • FIG. 2 is a section illustration of a heat spreader of the present invention depicting the metal carbide substrate ([0033] 17) intimately bonded to the polycrystalline diamond matrix (23). Bondable material is shown in high concentration layers along the major contact surfaces (21 and 25) of the heat spreader. The metal carbide substrate (17) may be reduced to a thin contact surface (19) by employing standard machine shop art, or it may be removed altogether exposing the junction surface (21) for bonding either to the thermal source or the heat sink. As described earlier in this application, the bondable material depicted in high concentrations along the junction surfaces (21 and 25) may be provided by intermixing, by coating the diamond crystals, or by positioning a powder or sheet of the bondable material adjacent the diamond prior to high-pressure high-temperature processing. The major contact surfaces at 19 and 21 are depicted having a non-planar, convex profile. Though not shown, other non-planar profiles are intended within the scope of this invention, such as concave, conical, truncated conical, and hemispherical.
  • FIG. 3 is another section illustration of the present invention depicting an application where the metal carbide substrate ([0034] 27) is attached to the diamond matrix (31) at an interrupted interfacial surface (29) having a layer of bondable material (30) along the interface. This sample is also provided with a bondable layer (33) on the opposite major contact surface of the heat spreader. The interrupted profile of the interface (29) may be the result of grooves in either a parallel or radial pattern along the surface of the diamond matrix. Or it may be the result of discrete protrusions, such as nodes, projecting above the spreader's major contact surface. Additionally, these configurations may be combined with the non-planar profile of FIG. 2 to present a complex non-planar profile that greatly increases the versatility of this invention. The added surface created by the non-planar configurations enhances the means of attachment and the spreading capacity of the polycrystalline diamond.
  • FIG. 4 is a magnified section illustration of the high-pressure high-temperature polycrystalline diamond matrix of the present invention. High-pressure high-temperature polycrystalline diamond is composed of discrete diamond crystals that are chemically intergrown at high pressure and high temperature in the presence of a metal catalyst. In this illustration, intergrown diamond crystals ([0035] 37) are vaguely bordered at interstitial sites (41) by residual metal catalyst. The intergrown structure of the matrix creates an uninterrupted thermal path (39) for transmitting heat from the thermal source to the heat sink. Since diamond has low thermal capacity, heat accumulation in the matrix is slight and quickly transmitted into the heat sink. The accumulation of bondable material (35) along the major contact surfaces of the heat spreader, according to the present invention, provides a low-impedance junction to both the heat source and the heat sink. The residual metal catalyst, which is electrically conductive, may be removed from the contact surfaces of the matrix, or from the matrix itself, by chemical or mechanical means in order to produce an insulating medium. The removal of the residual metal catalyst does not significantly affect the structural integrity of the matrix. The matrix of the present invention is strong, rigid, and thermally compatible with both the silicon of the IC die and the ceramic or metal composition of the heat sink, reducing the likelihood that the thermal cycling of the IC will result failure of the heat spreader or the die.
  • FIG. 5 is a section illustration of a heat spreader of the present invention incorporated into a thermal management system. The heat spreader ([0036] 53) is mounted onto a circuit board (49) positioned between the IC die (47) and the heat sink (43). The heat spreader of the present invention is intimately bonded to the heat sink and the IC die along its major contact surfaces using the bondable material layers (45) of the present invention. Low thermal impedance is achieved at the junctions by maintaining the bonding layer sufficiently thin so as to reduce contact surface thermal resistance. As the computer IC is cycled hot spots (51) develop on the surface of the die. The thermal energy radiating from the die is quickly spread across the surface of the die and transmitted into the heat spreader. Since the heat spreader has low thermal capacity, heat does not accumulate in the spreader itself, but is quickly conducted into the high thermal capacity heat sink and convectively transmitted into the atmosphere or other high capacity medium. Adaptations of this design are obvious to those skilled in the art and are included within the scope of this invention although not depicted. For example, a free flowing or jetted fluid or cryogenic thermal management system may be substituted for the heat sink shown. Also, heat pipes or cooling fluid conduits (55 and 57) may be added to the heat spreader or the heat sink in order to increase the thermal differential, adding to the efficiency of the system. Or, the heat spreader may be positioned on both sides of the IC die to further enhance dissipation of thermal energy.

Claims (18)

What is claimed:
1. A high-pressure high-temperature polycrystalline diamond heat spreader useful in electronic devices, comprising:
a. Discrete diamond crystals ranging in sizes from between 10μ and 3000μ intergrown into a unified matrix and bonded to a substrate by means of a high-pressure high-temperature sintering process;
b. The unified matrix having a major surface opposite the substrate;
c. The unified matrix further comprising at least one bondable material selected from the periodic table of elements consisting of Fe, Co, Ni, Pd, Pt, Cr, Mo, W, Nb, Ta, Hf, Zr, Ti, V, Al, Si, Ga, Au, Cd, Ag, An, Mg, Sn, and Ge, and compounds, carbides, and alloys thereof; and
d. The bondable material forming in situ, during the sintering process, a low-impedance, bondable contact-surface layer on at least a portion of the major surface opposite the substrate, said bondable surface being suitable for bonding said matrix to at least a portion of a high-energy thermal source.
2. The heat spreader of claim 1, wherein the bondable material does not exceed the weight of the diamond matrix.
3. The heat spreader of claim 1, wherein the bondable material does not exceed 20 weight-percent of the diamond matrix.
4. The heat spreader of claim 1, wherein the bondable material is in the form of a foil positioned adjacent the diamond crystals prior to being subjected to the high-pressure high-temperature sintering process.
5. The heat spreader of claim 1, wherein the bondable material is in the form of a powder positioned adjacent the diamond crystals prior to being subjected to the high-pressure high-temperature sintering process.
6. The heat spreader of claim 15, wherein the bondable material is intermixed with the discrete diamond crystals prior to being intergrown by the high-pressure high-temperature sintering process.
7. The heat spreader of claim 1, wherein the diamond crystals are coated with the bondable material prior to being subjected to the high-pressure high-temperature sintering process.
8. The heat spreader of claim 1, wherein the diamond crystals are sputter coated with the bondable material prior to being subject to the high-pressure high-temperature sintering process.
9. The heat spreader of claim 1, wherein the diamond crystals are coated with the bondable material using an ion implantation process prior to the sintering process.
10. The heat spreader of claim 1, wherein the diamond crystals are coated with the bondable material using a milling process.
11. The heat spreader of claim 1, wherein the substrate is adapted for bonding to a heat sink.
12. The heat spreader of claim 1, wherein the substrate is adapted for bonding to a thermal source.
13. The heat spreader of claim 1, wherein at least a portion of at least one major contact surface has low surface roughness.
14. The heat spreader of claim 1, wherein at least a portion of at least one major contact surface has a non-planar topography.
15. The heat spreader of claim 1, wherein at least a portion of the bondable surface has a non-planar topography.
16. The heat spreader of claim 1, wherein the bondable surface layer has a cross section of 1.5 mm, but preferably less than 0.25 mm, and more preferably less than 0.025 mm.
17. The heat spreader of claim 1, wherein at least a portion of one of the major contact surfaces are made to have high electrical resistance.
18. The heat spreader of claim 1, wherein the diamond matrix has a cross section greater than 1 mm.
US09/981,952 1999-12-13 2001-10-18 High-pressure high-temperature polycrystalline diamond heat spreader Abandoned US20020023733A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US09/981,952 US20020023733A1 (en) 1999-12-13 2001-10-18 High-pressure high-temperature polycrystalline diamond heat spreader

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US46010599A 1999-12-13 1999-12-13
US09/981,952 US20020023733A1 (en) 1999-12-13 2001-10-18 High-pressure high-temperature polycrystalline diamond heat spreader

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US46010599A Continuation-In-Part 1999-12-13 1999-12-13

Publications (1)

Publication Number Publication Date
US20020023733A1 true US20020023733A1 (en) 2002-02-28

Family

ID=23827402

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/981,952 Abandoned US20020023733A1 (en) 1999-12-13 2001-10-18 High-pressure high-temperature polycrystalline diamond heat spreader

Country Status (1)

Country Link
US (1) US20020023733A1 (en)

Cited By (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040070070A1 (en) * 2002-10-11 2004-04-15 Chien-Min Sung Carbonaceous composite heat spreader and associated methods
WO2004034466A2 (en) * 2002-10-08 2004-04-22 Element Six Limited Heat spreader
US20040159935A1 (en) * 2003-02-14 2004-08-19 Prosenjit Ghosh Thermally optimized conductive block
US20040175875A1 (en) * 2002-10-11 2004-09-09 Chien-Min Sung Diamond composite heat spreader having thermal conductivity gradients and associated methods
US6854993B1 (en) * 2004-01-05 2005-02-15 Hon Hai Precision Ind. Co., Ltd IC socket assembly with improved heat sink
US6898084B2 (en) 2003-07-17 2005-05-24 The Bergquist Company Thermal diffusion apparatus
GB2408735A (en) * 2003-12-05 2005-06-08 Smith International Polycrystalline diamond
US20050179126A1 (en) * 2003-06-30 2005-08-18 Intel Corporation Diamond-silicon hybrid integrated heat spreader
US20050189647A1 (en) * 2002-10-11 2005-09-01 Chien-Min Sung Carbonaceous composite heat spreader and associated methods
US20060113546A1 (en) * 2002-10-11 2006-06-01 Chien-Min Sung Diamond composite heat spreaders having low thermal mismatch stress and associated methods
US20060127672A1 (en) * 2002-02-14 2006-06-15 Chrysler Gregory M Method of providing a heat spreader
US20060205118A1 (en) * 2005-02-18 2006-09-14 Ming-Hang Hwang Chip heat dissipation structure and manufacturing method
US20060255451A1 (en) * 2005-03-21 2006-11-16 Ming-Hang Hwang Heat Conduction Interface Method and Manufacturing Method Thereof
US20060257664A1 (en) * 2005-03-03 2006-11-16 Ming-Hang Hwang Printed Circuit Board Structure and Manufacturing Method Thereof
US20060256528A1 (en) * 2005-03-02 2006-11-16 Ming-Hang Hwang Air Blown Chip Dissipation Device and Manufacturing Method Thereof
US20070079994A1 (en) * 2005-10-12 2007-04-12 Smith International, Inc. Diamond-bonded bodies and compacts with improved thermal stability and mechanical strength
US20070195501A1 (en) * 2006-02-21 2007-08-23 International Business Machines Corporation Method of obtaining enhanced localized thermal interface regions by particle stacking
US20070201203A1 (en) * 2006-02-24 2007-08-30 Ming-Hang Hwang Adhesion Material Structure and Process Method Thereof
US20070199678A1 (en) * 2006-02-24 2007-08-30 Ming-Hang Hwang Surface Coating Film Structure on Heat Dissipation Metal and Manufacturing Method Thereof
US20070199681A1 (en) * 2006-02-24 2007-08-30 Ming-Hang Hwang Dissipation Heat Pipe Structure and Manufacturing Method Thereof
US20070199677A1 (en) * 2006-02-24 2007-08-30 Ming-Hang Hwang Heat Sink Fin Structure and Manufacturing Method Thereof
US20070199682A1 (en) * 2006-02-24 2007-08-30 Ming-Hang Hwang Dissipation Heat Pipe Structure and Manufacturing Method Thereof
US20070201207A1 (en) * 2006-02-24 2007-08-30 Ming-Hang Hwang Chip Heat Dissipation System and Structure of Heat Exchange Device and Manufacturing Method Thereof
US20070199679A1 (en) * 2006-02-24 2007-08-30 Ming-Hang Hwang Chip Heat Dissipation System and Manufacturing Method and Structure of Heat Dissipation Device Thereof
US20070284152A1 (en) * 2004-09-21 2007-12-13 Smith International, Inc. Thermally stable diamond polycrystalline diamond constructions
US20070295496A1 (en) * 2006-06-23 2007-12-27 Hall David R Diamond Composite Heat Spreader
US20080001284A1 (en) * 2006-05-26 2008-01-03 The Hong Kong University Of Science And Technolgoy Heat Dissipation Structure With Aligned Carbon Nanotube Arrays and Methods for Manufacturing And Use
US20080148570A1 (en) * 2005-11-07 2008-06-26 3M Innovative Properties Company Structured thermal transfer article
EP1949777A1 (en) * 2005-11-07 2008-07-30 3M Innovative Properties Company Thermal transfer coating
US20080298021A1 (en) * 2007-05-31 2008-12-04 Ali Ihab A Notebook computer with hybrid diamond heat spreader
US20090090563A1 (en) * 2007-10-04 2009-04-09 Smith International, Inc. Diamond-bonded constrcutions with improved thermal and mechanical properties
US20090140417A1 (en) * 2007-11-30 2009-06-04 Gamal Refai-Ahmed Holistic Thermal Management System for a Semiconductor Chip
US20090168354A1 (en) * 2007-12-26 2009-07-02 Radesh Jewram Thermally and electrically conductive interconnect structures
US7647993B2 (en) 2004-05-06 2010-01-19 Smith International, Inc. Thermally stable diamond bonded materials and compacts
US20100084197A1 (en) * 2008-10-03 2010-04-08 Smith International, Inc. Diamond bonded construction with thermally stable region
US20100102442A1 (en) * 2007-06-18 2010-04-29 Chien-Min Sung Heat spreader having single layer of diamond particles and associated methods
US20100139888A1 (en) * 2008-12-08 2010-06-10 Fu Zhun Precision Industry (Shen Zhen) Co., Ltd. Heat spreader and heat dissipation device using same
US20100139885A1 (en) * 2008-12-09 2010-06-10 Renewable Thermodynamics, Llc Sintered diamond heat exchanger apparatus
US20100199573A1 (en) * 2007-08-31 2010-08-12 Charles Stephan Montross Ultrahard diamond composites
US20100246138A1 (en) * 2006-06-12 2010-09-30 Wei Shi Method, apparatus, and system for thin die thin thermal interface material in integrated circuit packages
US20100314093A1 (en) * 2009-06-12 2010-12-16 Gamal Refai-Ahmed Variable heat exchanger
US7861768B1 (en) * 2003-06-11 2011-01-04 Apple Inc. Heat sink
CN102347438A (en) * 2011-10-29 2012-02-08 华南师范大学 Light-emitting diode illumination device using diamond powder-copper powder composite material to radiate heat
US20120276403A1 (en) * 2010-02-04 2012-11-01 Kazushi Nakagawa Heat sink material
US20120280253A1 (en) * 2010-09-21 2012-11-08 Ritedia Corporation Stress Regulated Semiconductor Devices and Associated Methods
CN102893419A (en) * 2010-10-29 2013-01-23 铼钻科技股份有限公司 Stress regulated semiconductor and associated methods
US20130126146A1 (en) * 2008-06-03 2013-05-23 Kuo-Ching Chiang Planar thermal dissipation patch m and the method of the same
US8499861B2 (en) 2007-09-18 2013-08-06 Smith International, Inc. Ultra-hard composite constructions comprising high-density diamond surface
US8531026B2 (en) 2010-09-21 2013-09-10 Ritedia Corporation Diamond particle mololayer heat spreaders and associated methods
US20140182215A1 (en) * 2004-09-21 2014-07-03 Smith International, Inc. Thermally stable diamond polycrystalline diamond constructions
CN104404209A (en) * 2014-12-11 2015-03-11 山东大学 Diamond type solid quenching medium and preparation method and application thereof
US9006086B2 (en) 2010-09-21 2015-04-14 Chien-Min Sung Stress regulated semiconductor devices and associated methods
US9394747B2 (en) 2012-06-13 2016-07-19 Varel International Ind., L.P. PCD cutters with improved strength and thermal stability
WO2016145249A1 (en) * 2015-03-11 2016-09-15 Lockheed Martin Corporation Heat spreaders fabricated from metal nanoparticles
CN106558561A (en) * 2015-09-29 2017-04-05 比亚迪股份有限公司 Power model and the vehicle with which
GB2549499A (en) * 2016-04-19 2017-10-25 Rolls Royce Plc Method of forming a heat exchanger
RU174676U1 (en) * 2017-02-20 2017-10-25 Федеральное государственное бюджетное учреждение науки Институт физики твердого тела Российской академии наук (ИФТТ РАН) Thermally conductive pad for cooling electronics
US10105820B1 (en) * 2009-04-27 2018-10-23 Us Synthetic Corporation Superabrasive elements including coatings and methods for removing interstitial materials from superabrasive elements
CN109588007A (en) * 2017-09-28 2019-04-05 英特尔公司 The radiator complied with
US11075499B2 (en) * 2016-12-20 2021-07-27 Element Six Technologies Limited Heat sink comprising synthetic diamond material

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4333986A (en) * 1979-06-11 1982-06-08 Sumitomo Electric Industries, Ltd. Diamond sintered compact wherein crystal particles are uniformly orientated in a particular direction and a method for producing the same
US4525178A (en) * 1984-04-16 1985-06-25 Megadiamond Industries, Inc. Composite polycrystalline diamond
US5151107A (en) * 1988-07-29 1992-09-29 Norton Company Cemented and cemented/sintered superabrasive polycrystalline bodies and methods of manufacture thereof
US5351772A (en) * 1993-02-10 1994-10-04 Baker Hughes, Incorporated Polycrystalline diamond cutting element
US5564511A (en) * 1995-05-15 1996-10-15 Frushour; Robert H. Composite polycrystalline compact with improved fracture and delamination resistance
US5645617A (en) * 1995-09-06 1997-07-08 Frushour; Robert H. Composite polycrystalline diamond compact with improved impact and thermal stability

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4333986A (en) * 1979-06-11 1982-06-08 Sumitomo Electric Industries, Ltd. Diamond sintered compact wherein crystal particles are uniformly orientated in a particular direction and a method for producing the same
US4525178A (en) * 1984-04-16 1985-06-25 Megadiamond Industries, Inc. Composite polycrystalline diamond
US4525178B1 (en) * 1984-04-16 1990-03-27 Megadiamond Ind Inc
US5151107A (en) * 1988-07-29 1992-09-29 Norton Company Cemented and cemented/sintered superabrasive polycrystalline bodies and methods of manufacture thereof
US5351772A (en) * 1993-02-10 1994-10-04 Baker Hughes, Incorporated Polycrystalline diamond cutting element
US5564511A (en) * 1995-05-15 1996-10-15 Frushour; Robert H. Composite polycrystalline compact with improved fracture and delamination resistance
US5645617A (en) * 1995-09-06 1997-07-08 Frushour; Robert H. Composite polycrystalline diamond compact with improved impact and thermal stability

Cited By (104)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060127672A1 (en) * 2002-02-14 2006-06-15 Chrysler Gregory M Method of providing a heat spreader
WO2004034466A2 (en) * 2002-10-08 2004-04-22 Element Six Limited Heat spreader
WO2004034466A3 (en) * 2002-10-08 2004-07-01 Element Six Ltd Heat spreader
US6984888B2 (en) * 2002-10-11 2006-01-10 Chien-Min Sung Carbonaceous composite heat spreader and associated methods
US20050189647A1 (en) * 2002-10-11 2005-09-01 Chien-Min Sung Carbonaceous composite heat spreader and associated methods
US20040253766A1 (en) * 2002-10-11 2004-12-16 Chien-Min Sung Diamond composite heat spreader and associated methods
US7384821B2 (en) 2002-10-11 2008-06-10 Chien-Min Sung Diamond composite heat spreader having thermal conductivity gradients and associated methods
WO2005038912A1 (en) * 2002-10-11 2005-04-28 Chien-Min Sung Carbonaceous heat spreader and associated methods
US20040070070A1 (en) * 2002-10-11 2004-04-15 Chien-Min Sung Carbonaceous composite heat spreader and associated methods
US7173334B2 (en) 2002-10-11 2007-02-06 Chien-Min Sung Diamond composite heat spreader and associated methods
US20040175875A1 (en) * 2002-10-11 2004-09-09 Chien-Min Sung Diamond composite heat spreader having thermal conductivity gradients and associated methods
EP1565938A1 (en) * 2002-10-11 2005-08-24 Chien-Min Sung Carbonaceous heat spreader and associated methods
US20060113546A1 (en) * 2002-10-11 2006-06-01 Chien-Min Sung Diamond composite heat spreaders having low thermal mismatch stress and associated methods
US20050250250A1 (en) * 2002-10-11 2005-11-10 Chien-Min Sung Diamond composite heat spreader having thermal conductivity gradients and associated methods
US7268011B2 (en) * 2002-10-11 2007-09-11 Chien-Min Sung Diamond composite heat spreader and associated methods
US6987318B2 (en) * 2002-10-11 2006-01-17 Chien-Min Sung Diamond composite heat spreader having thermal conductivity gradients and associated methods
EP1565938A4 (en) * 2002-10-11 2006-03-22 Chien-Min Sung Carbonaceous heat spreader and associated methods
US20060091532A1 (en) * 2002-10-11 2006-05-04 Chien-Min Sung Carbonaceous composite heat spreader and associated methods
US20040159935A1 (en) * 2003-02-14 2004-08-19 Prosenjit Ghosh Thermally optimized conductive block
US7861768B1 (en) * 2003-06-11 2011-01-04 Apple Inc. Heat sink
US20050179126A1 (en) * 2003-06-30 2005-08-18 Intel Corporation Diamond-silicon hybrid integrated heat spreader
US7492041B2 (en) 2003-06-30 2009-02-17 Intel Corporation Diamond-silicon hybrid integrated heat spreader
US6898084B2 (en) 2003-07-17 2005-05-24 The Bergquist Company Thermal diffusion apparatus
US8881851B2 (en) 2003-12-05 2014-11-11 Smith International, Inc. Thermally-stable polycrystalline diamond materials and compacts
GB2408735A (en) * 2003-12-05 2005-06-08 Smith International Polycrystalline diamond
US20090114454A1 (en) * 2003-12-05 2009-05-07 Smith International, Inc. Thermally-Stable Polycrystalline Diamond Materials and Compacts
GB2408735B (en) * 2003-12-05 2009-01-28 Smith International Thermally-stable polycrystalline diamond materials and compacts
US6854993B1 (en) * 2004-01-05 2005-02-15 Hon Hai Precision Ind. Co., Ltd IC socket assembly with improved heat sink
US8852304B2 (en) 2004-05-06 2014-10-07 Smith International, Inc. Thermally stable diamond bonded materials and compacts
US20100115855A1 (en) * 2004-05-06 2010-05-13 Smith International, Inc. Thermally Stable Diamond Bonded Materials and Compacts
US7647993B2 (en) 2004-05-06 2010-01-19 Smith International, Inc. Thermally stable diamond bonded materials and compacts
US9931732B2 (en) 2004-09-21 2018-04-03 Smith International, Inc. Thermally stable diamond polycrystalline diamond constructions
US8147572B2 (en) * 2004-09-21 2012-04-03 Smith International, Inc. Thermally stable diamond polycrystalline diamond constructions
US20140182215A1 (en) * 2004-09-21 2014-07-03 Smith International, Inc. Thermally stable diamond polycrystalline diamond constructions
US10350731B2 (en) * 2004-09-21 2019-07-16 Smith International, Inc. Thermally stable diamond polycrystalline diamond constructions
US20070284152A1 (en) * 2004-09-21 2007-12-13 Smith International, Inc. Thermally stable diamond polycrystalline diamond constructions
US7427807B2 (en) 2005-02-18 2008-09-23 Mitac Technology Corp. Chip heat dissipation structure and manufacturing method
US20060205118A1 (en) * 2005-02-18 2006-09-14 Ming-Hang Hwang Chip heat dissipation structure and manufacturing method
US20060256528A1 (en) * 2005-03-02 2006-11-16 Ming-Hang Hwang Air Blown Chip Dissipation Device and Manufacturing Method Thereof
US20060257664A1 (en) * 2005-03-03 2006-11-16 Ming-Hang Hwang Printed Circuit Board Structure and Manufacturing Method Thereof
US7504148B2 (en) 2005-03-03 2009-03-17 Mitac Technology Corp Printed circuit board structure and manufacturing method thereof
US20060255451A1 (en) * 2005-03-21 2006-11-16 Ming-Hang Hwang Heat Conduction Interface Method and Manufacturing Method Thereof
US8932376B2 (en) 2005-10-12 2015-01-13 Smith International, Inc. Diamond-bonded bodies and compacts with improved thermal stability and mechanical strength
US7726421B2 (en) 2005-10-12 2010-06-01 Smith International, Inc. Diamond-bonded bodies and compacts with improved thermal stability and mechanical strength
US20070079994A1 (en) * 2005-10-12 2007-04-12 Smith International, Inc. Diamond-bonded bodies and compacts with improved thermal stability and mechanical strength
EP1949777A1 (en) * 2005-11-07 2008-07-30 3M Innovative Properties Company Thermal transfer coating
EP1946032A1 (en) * 2005-11-07 2008-07-23 3M Innovative Properties Company Structured thermal transfer article
EP1949777A4 (en) * 2005-11-07 2010-10-13 3M Innovative Properties Co Thermal transfer coating
EP1946032A4 (en) * 2005-11-07 2010-10-06 3M Innovative Properties Co Structured thermal transfer article
US20080148570A1 (en) * 2005-11-07 2008-06-26 3M Innovative Properties Company Structured thermal transfer article
US7876565B2 (en) 2006-02-21 2011-01-25 International Business Machines Corporation Method of obtaining enhanced localized thermal interface regions by particle stacking
US20090016028A1 (en) * 2006-02-21 2009-01-15 International Business Machines Corporation Method of obtaining enhanced localized thermal interface regions by particle stacking
US20070195501A1 (en) * 2006-02-21 2007-08-23 International Business Machines Corporation Method of obtaining enhanced localized thermal interface regions by particle stacking
US7394657B2 (en) * 2006-02-21 2008-07-01 International Business Machines Corporation Method of obtaining enhanced localized thermal interface regions by particle stacking
US20070199677A1 (en) * 2006-02-24 2007-08-30 Ming-Hang Hwang Heat Sink Fin Structure and Manufacturing Method Thereof
US20070201203A1 (en) * 2006-02-24 2007-08-30 Ming-Hang Hwang Adhesion Material Structure and Process Method Thereof
US20070201207A1 (en) * 2006-02-24 2007-08-30 Ming-Hang Hwang Chip Heat Dissipation System and Structure of Heat Exchange Device and Manufacturing Method Thereof
US20070199679A1 (en) * 2006-02-24 2007-08-30 Ming-Hang Hwang Chip Heat Dissipation System and Manufacturing Method and Structure of Heat Dissipation Device Thereof
US20070199681A1 (en) * 2006-02-24 2007-08-30 Ming-Hang Hwang Dissipation Heat Pipe Structure and Manufacturing Method Thereof
US20070199678A1 (en) * 2006-02-24 2007-08-30 Ming-Hang Hwang Surface Coating Film Structure on Heat Dissipation Metal and Manufacturing Method Thereof
US20070199682A1 (en) * 2006-02-24 2007-08-30 Ming-Hang Hwang Dissipation Heat Pipe Structure and Manufacturing Method Thereof
US8890312B2 (en) * 2006-05-26 2014-11-18 The Hong Kong University Of Science And Technology Heat dissipation structure with aligned carbon nanotube arrays and methods for manufacturing and use
US20080001284A1 (en) * 2006-05-26 2008-01-03 The Hong Kong University Of Science And Technolgoy Heat Dissipation Structure With Aligned Carbon Nanotube Arrays and Methods for Manufacturing And Use
US20100246138A1 (en) * 2006-06-12 2010-09-30 Wei Shi Method, apparatus, and system for thin die thin thermal interface material in integrated circuit packages
US20070295496A1 (en) * 2006-06-23 2007-12-27 Hall David R Diamond Composite Heat Spreader
US20080298021A1 (en) * 2007-05-31 2008-12-04 Ali Ihab A Notebook computer with hybrid diamond heat spreader
US7791188B2 (en) 2007-06-18 2010-09-07 Chien-Min Sung Heat spreader having single layer of diamond particles and associated methods
US20100102442A1 (en) * 2007-06-18 2010-04-29 Chien-Min Sung Heat spreader having single layer of diamond particles and associated methods
US8222732B2 (en) 2007-06-18 2012-07-17 Ritedia Corporation Heat spreader having single layer of diamond particles and associated methods
US20100199573A1 (en) * 2007-08-31 2010-08-12 Charles Stephan Montross Ultrahard diamond composites
US8499861B2 (en) 2007-09-18 2013-08-06 Smith International, Inc. Ultra-hard composite constructions comprising high-density diamond surface
US20090090563A1 (en) * 2007-10-04 2009-04-09 Smith International, Inc. Diamond-bonded constrcutions with improved thermal and mechanical properties
US7980334B2 (en) 2007-10-04 2011-07-19 Smith International, Inc. Diamond-bonded constructions with improved thermal and mechanical properties
US20090140417A1 (en) * 2007-11-30 2009-06-04 Gamal Refai-Ahmed Holistic Thermal Management System for a Semiconductor Chip
US8058724B2 (en) * 2007-11-30 2011-11-15 Ati Technologies Ulc Holistic thermal management system for a semiconductor chip
US7760507B2 (en) 2007-12-26 2010-07-20 The Bergquist Company Thermally and electrically conductive interconnect structures
US20090168354A1 (en) * 2007-12-26 2009-07-02 Radesh Jewram Thermally and electrically conductive interconnect structures
US20130126146A1 (en) * 2008-06-03 2013-05-23 Kuo-Ching Chiang Planar thermal dissipation patch m and the method of the same
US8847081B2 (en) * 2008-06-03 2014-09-30 Kuo-Ching Chiang Planar thermal dissipation patch
US8622154B2 (en) 2008-10-03 2014-01-07 Smith International, Inc. Diamond bonded construction with thermally stable region
US8083012B2 (en) 2008-10-03 2011-12-27 Smith International, Inc. Diamond bonded construction with thermally stable region
US20100084197A1 (en) * 2008-10-03 2010-04-08 Smith International, Inc. Diamond bonded construction with thermally stable region
US9404309B2 (en) 2008-10-03 2016-08-02 Smith International, Inc. Diamond bonded construction with thermally stable region
US8365844B2 (en) 2008-10-03 2013-02-05 Smith International, Inc. Diamond bonded construction with thermally stable region
US20100139888A1 (en) * 2008-12-08 2010-06-10 Fu Zhun Precision Industry (Shen Zhen) Co., Ltd. Heat spreader and heat dissipation device using same
US20100139885A1 (en) * 2008-12-09 2010-06-10 Renewable Thermodynamics, Llc Sintered diamond heat exchanger apparatus
US10105820B1 (en) * 2009-04-27 2018-10-23 Us Synthetic Corporation Superabrasive elements including coatings and methods for removing interstitial materials from superabrasive elements
US20100314093A1 (en) * 2009-06-12 2010-12-16 Gamal Refai-Ahmed Variable heat exchanger
US20120276403A1 (en) * 2010-02-04 2012-11-01 Kazushi Nakagawa Heat sink material
US8531026B2 (en) 2010-09-21 2013-09-10 Ritedia Corporation Diamond particle mololayer heat spreaders and associated methods
US20120280253A1 (en) * 2010-09-21 2012-11-08 Ritedia Corporation Stress Regulated Semiconductor Devices and Associated Methods
US9006086B2 (en) 2010-09-21 2015-04-14 Chien-Min Sung Stress regulated semiconductor devices and associated methods
US8778784B2 (en) * 2010-09-21 2014-07-15 Ritedia Corporation Stress regulated semiconductor devices and associated methods
CN103299418A (en) * 2010-09-21 2013-09-11 铼钻科技股份有限公司 Diamond particle mololayer heat spreaders and associated methods
CN102893419A (en) * 2010-10-29 2013-01-23 铼钻科技股份有限公司 Stress regulated semiconductor and associated methods
CN102347438A (en) * 2011-10-29 2012-02-08 华南师范大学 Light-emitting diode illumination device using diamond powder-copper powder composite material to radiate heat
US9394747B2 (en) 2012-06-13 2016-07-19 Varel International Ind., L.P. PCD cutters with improved strength and thermal stability
CN104404209A (en) * 2014-12-11 2015-03-11 山东大学 Diamond type solid quenching medium and preparation method and application thereof
WO2016145249A1 (en) * 2015-03-11 2016-09-15 Lockheed Martin Corporation Heat spreaders fabricated from metal nanoparticles
CN106558561A (en) * 2015-09-29 2017-04-05 比亚迪股份有限公司 Power model and the vehicle with which
GB2549499A (en) * 2016-04-19 2017-10-25 Rolls Royce Plc Method of forming a heat exchanger
US11075499B2 (en) * 2016-12-20 2021-07-27 Element Six Technologies Limited Heat sink comprising synthetic diamond material
RU174676U1 (en) * 2017-02-20 2017-10-25 Федеральное государственное бюджетное учреждение науки Институт физики твердого тела Российской академии наук (ИФТТ РАН) Thermally conductive pad for cooling electronics
CN109588007A (en) * 2017-09-28 2019-04-05 英特尔公司 The radiator complied with

Similar Documents

Publication Publication Date Title
US20020023733A1 (en) High-pressure high-temperature polycrystalline diamond heat spreader
EP2587536B1 (en) Semiconductor substrate having copper/diamond composite material and method of making same
US9839989B2 (en) Methods of fabricating cutting elements including adhesion materials for earth-boring tools
US7585366B2 (en) High pressure superabrasive particle synthesis
EP0918134B1 (en) Polycrystalline diamond compact cutter with reduced failure during brazing
US7368013B2 (en) Superabrasive particle synthesis with controlled placement of crystalline seeds
US7404857B2 (en) Superabrasive particle synthesis with controlled placement of crystalline seeds
US9663994B2 (en) Polycrystalline diamond compact
EP0354043B1 (en) Thermally stable diamond abrasive compact body
US7635035B1 (en) Polycrystalline diamond compact (PDC) cutting element having multiple catalytic elements
EP0264674B1 (en) Low pressure bonding of PCD bodies and method
TWI522447B (en) Extended life abrasive article and method
EP2032243B1 (en) Superabrasive materials and methods of manufacture
EP1337497B1 (en) A heat conductive material
US9731404B2 (en) Method of manufacturing an impregnated structure for abrading
JPH04210379A (en) Composite polishing compact
IE20080214A1 (en) Polycrystalline diamond constructions having improved thermal stability
KR20050084845A (en) Carbonaceous heat spreader and associated methods
KR20080032018A (en) Heat transfer composite, associated device and method
CN102189389A (en) Composite cutter substrate to mitigate residual stress
CN101160658A (en) Refractory metal substrate with improved thermal conductivity
EP0253603B1 (en) Composite diamond abrasive compact
WO2009013714A1 (en) Air brazeable material
US10322495B2 (en) Cemented tungsten carbide bodies having a cobalt-boron alloy matrix
CN100375275C (en) Diamond composite material radiating fin with heat transfer gradient and its producing method

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: NOVATEK IP, LLC, UTAH

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HALL, DAVID R.;REEL/FRAME:036109/0109

Effective date: 20150715