US20020087220A1 - System and method to provide maintenance for an electrical power generation, transmission and distribution system - Google Patents

System and method to provide maintenance for an electrical power generation, transmission and distribution system Download PDF

Info

Publication number
US20020087220A1
US20020087220A1 US09/751,970 US75197000A US2002087220A1 US 20020087220 A1 US20020087220 A1 US 20020087220A1 US 75197000 A US75197000 A US 75197000A US 2002087220 A1 US2002087220 A1 US 2002087220A1
Authority
US
United States
Prior art keywords
maintenance
information
repair
power
help desk
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US09/751,970
Inventor
Tor Tveit
Roald Kleivi
Ragnar Moen
Ole-Morten Midtgard
Lars Gundersen
Arne Nysveen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Energy Switzerland AG
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US09/751,970 priority Critical patent/US20020087220A1/en
Assigned to ABB DISTRIBUTION AS reassignment ABB DISTRIBUTION AS ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KLEIVI, ROALD, MOEN, RAGNAR, TVEIT, TOR ANDREAS, GUNDERSEN, LARS S., MIDTGARD, OLE-MORTEN, NYSVEEN, ARNE
Priority to PCT/IB2001/002769 priority patent/WO2002054164A1/en
Publication of US20020087220A1 publication Critical patent/US20020087220A1/en
Priority to US11/653,668 priority patent/US8126752B2/en
Assigned to ABB POWER GRIDS SWITZERLAND AG reassignment ABB POWER GRIDS SWITZERLAND AG ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ABB SCHWEIZ AG
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0259Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterized by the response to fault detection
    • G05B23/0283Predictive maintenance, e.g. involving the monitoring of a system and, based on the monitoring results, taking decisions on the maintenance schedule of the monitored system; Estimating remaining useful life [RUL]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0631Resource planning, allocation, distributing or scheduling for enterprises or organisations
    • G06Q10/06311Scheduling, planning or task assignment for a person or group
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Systems or methods specially adapted for specific business sectors, e.g. utilities or tourism
    • G06Q50/06Electricity, gas or water supply
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications

Definitions

  • the present invention relates to providing maintenance for an electrical power transmission and distribution network, as well as for power generation installations.
  • the present invention is a device and a system, and a method to provide maintenance for all parts of an electrical power system.
  • a database means, an inspection means, a Help Desk means, and a web site are also provided.
  • Generating equipment includes the devices for generating the electrical power, most often an electrical machine such as for example a synchronous generator. Generating equipment also includes fuel cells, batteries such as used in an Uninterruptible Power Supply (UPS), solar cells etc. It also includes the devices necessary for actually bringing the power to the transmission or distribution networks, such as power transformers, instrument transformers, circuit breakers of various kinds, surge arresters etc., as well as secondary devices such as transducers, sensors and other devices needed for controlling the system.
  • UPS Uninterruptible Power Supply
  • a transmission network can include high voltage lines or cables, both AC and DC, and a diversity of equipment meant to ensure the secure and reliable transmission of power, for example reactors, capacitors, Synchronous Condensers, Static Var Compensators, FACTS components, etc., and secondary devices as referred to above.
  • transmission refers to the highest level in the hierarchy of systems that eventually deliver electrical power to end consumers
  • distribution networks are systems that are closer to end users, including both high voltage, medium voltage, and low voltage systems, medium voltage being defined as the lower levels of high voltage.
  • a distribution network on high or medium voltage level will be similar to a transmission network. On the lowest levels of distribution, the voltage is typically transformed from medium voltage to low voltage, which is the level that ordinary consumers see.
  • Such systems typically include medium voltage, low voltage and feeder sections with a diversity of switching equipment, substations, transformers, breakers, fuses, measuring and other electrical equipment situated in a diversity of locations, buildings and yards. This includes distribution equipment to more or less specialised equipment for industrial and commercial consumers, factories etc., as well as ordinary household consumers.
  • the background of this invention is in electrical power transmission and distribution networks, and in electrical power generation.
  • the invention specifically also relates to generation and distribution functions of plants including smaller and less traditional generation means such as micro turbines, wind farms, Combined Heat and Power plants (CHP) and other often privately owned generators that supply power to the network in a distributed fashion.
  • smaller and less traditional generation means such as micro turbines, wind farms, Combined Heat and Power plants (CHP) and other often privately owned generators that supply power to the network in a distributed fashion.
  • CHP Combined Heat and Power plants
  • Operations and operational service criteria may be classified not only by type of consumer, large or small for example. Factors of location such as rural, urban or city; criticality of supply, that is, supply for a hospital versus supply for a warehouse contribute to a diverse range of requirements for delivery of electrical power. The operation of such transmission and distribution networks demands a broad diversity of know how, organisation, maintenance, financing, development or expansion, spare parts, access to new equipment and technically skilled labour.
  • a utility company By tradition, and under conditions of a regulated market with state or community owned monopolies, a utility company is a company that operates and usually owns generating and/or transmission/distribution equipment. The utility company carries out a range of functions including maintenance of a network in accord with both present and future requirements. This is typically based on the utilities own business plan and carried out using primarily in-house engineering staff and other specialist professionals, supplemented as needed by outside sub-contractors and/or consultants to perform specific maintenance or more often installation tasks. As a result of a specific plan for maintenance for the network, maintenance work is carried out to ensure a planned level of service availability for the network and it's several power generation, distribution and power supply parts. In practice assets are owned and maintenance staff employed or allocated as or when needed to execute a maintenance plan designed to meet a present or forecast demand for electrical power.
  • a document available from enervista.com (Trade Mark) describes an approach to substation management for municipal utilities and rural co-operatives that includes the use of Internet-technology.
  • a system is described with modules with names such as eSCADA and eEXPERT.
  • eSCADA modules with names such as eSCADA and eEXPERT.
  • GE General Electric
  • GE General Electric
  • GE General Electric
  • GE General Electric
  • an error in the system occurs, an alarm and error message appears in a Web-browser included in eSCADA, and certain information on the fault is available.
  • the eEXPERT module is a knowledge base with public documents and internet links to websites of standards, application papers, notes and diagnosis guides, as well as proprietary procedures and documents.
  • One advantage is stated to be a significant speed-up of outage restoration by less-experienced staff. It is also mentioned that if a fault or early warning is detected by a regional operator, an engineer could be contacted to access settings, events at time of trip etc to assist in recommending suitable corrective actions. It also is described that a repair crew, prior to heading out, can get exact details of what equipment has failed, where it is, and the nature of the problem. It is also mentioned that the crew can call up and print stored documents such as network configuration, wiring diagrams and maintenance procedures.
  • the principal advantage of the invention is that maintenance service for a transmission and distribution network and power plants may be carried out to assure quality and continuity of supply in a more effective and cost effective way.
  • the invention reduces the need for the Utility to employ, train and maintain a large staff of own Maintenance and Engineering experts.
  • these experts may instead be provided by a third party company according to aspects of the invention, which company may have several customers, making the utilization of such personnel much better, both in terms of building up and maintaining their competence, and in terms of utilizing their time more efficiently.
  • Another advantage of the invention is that updated component and system documentation is available 24/7 by means of an embodiment of the invention, to any Internet-enabled device operated by an registered user.
  • Said documentation during use of the method and system according to an embodiment of the invention also comprises up to date reports on the maintenance status of the power network, reports of repairs carried out and/or reports of maintenance planned to rectify, amongst others, reported faults.
  • a further object is to provide, according to other aspects of the invention, a web site and computer software or computer program means for carrying out the methods of the invention.
  • FIG. 1 shows a schematic diagram of an Information System for a power generation, distribution and transmission system according to an embodiment of the invention
  • FIG. 2 shows a schematic diagram to provide maintenance services to a power generation, distribution and transmission system, according to an embodiment of the invention.
  • FIG. 3 shows a flowchart for a method to provide planned maintenance according to an embodiment of the invention.
  • FIG. 4 shows a flowchart for a method to provide maintenance for a reported fault according to a second embodiment of the invention.
  • FIG. 1 shows a Utility 1 , a Service Provider company 2 , a Power Transmission & Distribution (T&D) System Information System 3 , a Help Desk 4 provided by the Service Provider company 2 , an inspector 5 from the Utility, with an Online Inspection Kit 6 .
  • a component 10 with a fault is shown schematically.
  • FIG. 2 shows the Power System Information System 3 , and the Help Desk 4 , the Inspector 5 , a skilled Help Desk engineer 8 , a Service Provider (SP) company spare parts warehouse 12 , a vehicle 14 and a building 13 . Connections between all of these people and/or functions to the Internet 11 are indicated by means of arrows, such as the double ended arrow signifying two-way communication between Inspector 5 and Help Desk engineer 8 .
  • SP Service Provider
  • the Service Provider Company 2 operates and maintains the Power System Information System 3 and provides maintenance services for a Utility 1 .
  • the Utility may be a traditional utility company or any other operator or owner of a whole or part of an electrical power generation, transmission and distribution network.
  • the Utility has access to all information about it's power network in the Information System via Web-technology, and may also have the possiblity to update that information, depending on an agreement with the Service Provider Company.
  • the system according to the invention includes:
  • the Help Desk 4 provided by the Service Provider Company, always available and manned by highly skilled technical expertise, such as a skilled Help Desk engineer 8 .
  • OIK Online Inspection Kit
  • the OIK 6 preferably includes a web camera and an operator computer terminal, each effectively equipped with a communication link to the Power T & D System Information System 3 .
  • the Help Desk has access to all information retrieved by the OIK. This is enabled using Web-technology.
  • the Power System Information System 3 contains information about the power distribution network and equipment, stored in such forms as:
  • Many of the stored files contain active links, such as embedded HTML, cHTML or XML links to other parts of the same documentation or to other documents containing information associateed with a subject matter. This facilitates finding related or more detailed information about a component, network or part thereof.
  • an Inspector 5 is sent out to the site where the fault has been located.
  • the inspector, or inspector/repairman uses the OIK to make an inspection and communicates with the Help Desk.
  • the Help Desk With the help of one or more pictures provided by the OIK, the Help Desk is provided with an effort to examine the same indications, symptoms or conditions as the inspector. Both have access to the Power System Information System, according to another aspect of the invention, where detailed information about the component and related parts of the Power T&D network the component is a part of are stored.
  • the Help Desk comes up with a solution to the problem, and takes proper action.
  • the Help Desk guides the inspector on site in the repair and/or re-connection or re-booting of the component. If not, the Help Desk identifies spare parts needed, repairs or other actions that must be taken.
  • the Help Desk may be connected directly to the Service Provider Company's Spare Part System Database 12 and Engineering Staff (also by the use of Web-technology), and use these resources to specify a schedule for re-engineering of the component, with a guaranteed response time, included in the warranty, to the utility.
  • Purchases and Work Orders are generated to carry out the planned repair, preferably generated and transmitted using web technology. Depending on the complexity of the situation, the actual planning may take place off-line, but when it is done, the steps to be taken, the work orders, purchase orders and associated warranty etc. are documented in the Information System.
  • FIG. 3 shows the steps of a method according to an embodiment of the invention. It comprises a log-in step 100 a , a visit to a site 102 a , a status check on site 103 , a status decision step 104 . A Yes decision following 104 leads to an electronic inspection report step 109 . Decision step 110 , all stations checked, may follow step 109 , and log-out step 112 may follow a Yes decision to decision step 110 .
  • a No decision following status decision step 104 leads to an inspection step 105 in which the inspection result including picture information is communicated with the Help Desk. This leads to a decision step 106 a , is immediate repair possible. A Yes decision to step 106 a leads to a repair step 108 a , carried out by the Inspector with help from Help Desk. A No decision following decision step 106 a results in step 107 a in which the Inspector and the Help Desk make a plan for repair. A planned repair logged in the information system will almost always include a guaranty dependent on the terms of the service agreement.
  • FIG. 3 shows an example for an exemplary example of standard planned maintenance, periodic maintenance.
  • the utility has a maintenance and inspection plan for distribution substations stored in the Power T&D System Information System. This plan may have been developed by Service Provider company 2 , or Utility itself 1 , it depends on the Utility's level of outsourcing.
  • Maintenance personell such as the inspector 5 , either employed by Utility or the Service Provider company, drives out to the distribution substation, and checks status on various substation components according to the plan, step 103 of FIG. 3. For example, the inspector may check for:
  • the form is electronic and is automatically registered in Information System, at step 109 of FIG. 3. It is also automatically registered that the inspection has taken place when the document is checked in. Included in the documentation may be one or more digital photos of the station and components taken by a web camera in the OIK.
  • the inspector discovers there is something wrong, for example there may be loud noise from the transformer indicating a possible failure in a winding, or a dead animal is lying on a busbar, causing a risk of a short-circuit.
  • the inspector contacts the Help Desk while he is on-site. He uses the OIK, including a web-camera 6 , a mobile video camera with a connection to the Internet 11 , optionally together with audio equipment, to show aspects or symptoms of the error to the Help Desk.
  • the Help Desk and the inspector make an assessment of
  • helpdesk will first find out if any of the customers connected to this transformer are critical before making a disconnection decision. In any case, the Help Desk will make an assessment of the situation, and find a solution which may include a plan for repair or ordering of spare parts.
  • condition based maintenance Another example of a planned maintenance service that may be carried out is known as condition based maintenance.
  • condition based maintenance According to agreed specifications, the inspector/repairman makes observations and measurements during an inspection. If the inspector/repairman observes that, for example, water level in a transformer oil is above a certain limit, or according to meter readings etc an accumulated fault current for a feeder is above certain limit, etc, then the inspector repairman includes that in a report.
  • maintenance is scheduled for the condition observed either for a planned future maintenace visit or for a specific visit to rectify a specific condition.
  • FIG. 4 shows an example for an exemplary example of a maintenance schedule for a reported fault.
  • An instrument transformer in a substation has exploded due, for example, to an internal earth fault. As a consequence, a cubicle has been destroyed, and a feeder has lost its current. The system control centre has received a fault indication: feeder n has lost its current.
  • FIG. 4 shows the steps of an error message received 99 at a utility control centre, transmitting the error 100 b to the Help Desk, a log-in in 102 b by an inspector, a site visit 103 b by inspector, and an inspection 105 b with the OIK.
  • a decision step 106 b concerning a possible immediate or temporary repair is followed either by a Yes leading to step 108 b followed by documentation of the temporary repair in the Power T&D System Information System database or, if No following step 106 b , followed by Help Desk and the Inspector making a plan 107 b for a repair.
  • a planned repair will normally include a warranty and the plan is documented at step 107 c in the Power T&D System Information System.
  • the repair is subsequently carried out and documented in the Power T&D System Information System, and adequate information is routed to the Customer Information System to keep customers properly informed.
  • Purchase orders for the spare parts or equipment may be prepared, and sent using web technology purchase orders to a predetermined supplier such as Service Provider company Spare Parts warehouse 12 .
  • Work orders for the work may be prepared and sent to a department of the predetermined service provider, normally the Service Provider company, using web technology.
  • the repair is subsequently carried out and documented in the Power T&D System Information System.
  • the specification sent to the Service Provider company Spare Parts warehouse 12 , or routed alternatively direct to another seller and or manufacturer to obtain a replacement apparatus or part as a result of a manual or automatic action to purchase is preferably in the form of a purchase order.
  • the most preferred type of order is a purchase order as an open standard document, using for example a type of XML file.
  • the purchase order also conforms to one or more current standards for electronic documents such as EDIFACT or ASC X12and/or to similar standards eg SWIFT; or other protocols such as Document Object Model (DOM), Microsoft's (Trade Mark) MSXML and a standard called XHTML 1.0 provided by World Wide Web Committee (W3C).
  • the purchase order is in the form of an electronic document that otherwise corresponds to a traditional EDI type 850 electronic purchase order document.
  • the file transmitted containing the purchase order comprises necessary details such as any of:
  • the same error message 99 is also sent to the Help Desk in an embodiment of the present invention.
  • An inspector is sent out to the substation with full inspection kit OIK, including a portable or wearable computer, web-camera, audio equipment.
  • the damage is assessed by the inspector and the Help Desk in co-operation using reports collected with the inspection kit and communicated to the Help Desk. In this example they find out that a serious damage has occurred, and repair is needed.
  • OIK full inspection kit
  • OIK full inspection kit
  • the damage is assessed by the inspector and the Help Desk in co-operation using reports collected with the inspection kit and communicated to the Help Desk. In this example they find out that a serious damage has occurred, and repair is needed.
  • the Help Desk makes a plan for repair, step 107 b , with a warranty to the Utility, orders components etc., in step 107 c , and stores that plan in the Information System.
  • the service agreement (named above in the description of FIG. 2) between the Utility and the Service Provider company comprises a contract for the provision of maintenance by the Service Provider company to the Utility.
  • the service agreement will typically comprise 24 hr. access to:
  • the Information System may further comprise items such as:
  • the Service Agreement may include one or more measures and limits for power quality supply and reliability related to identified aspects of maintenance quality.
  • the measures for maintenance quality will include any of the following parameters:
  • Planned maintenance work will normally include a guaranty of a type described in the service agreement for a stipulated period of time according to the conditions laid down in the service agreement following the planned repair.
  • standards regarding expected service life or average service life for equipment may be included in the agreement to guide decisions about relative cost of maintenance or a maintenance measure versus expected shortening of equipment life if the maintenance measure is not carried out.
  • the Help Desk is implemented as a mobile unit. For example in certain regions, it may be more practical to implement the Help Desk in a more flexible way than as for example in a permanent building with a fixed number of staff.
  • the Help Desk is then not necessarily associated with a fixed location with permanent set-up, but may for example also be implemented as one or more an engineers on duty with mobile communication means and Internet access.
  • a substantial part of the Help Desk operations may be carried out by computer software.
  • an Inspector contacting the Help Desk may, depending on the urgency and importance of the inquiry, interact with an automated guide computer program or expert system type of software and gather and/or exchange information without making direct contact with a Help Desk engineer, at least not at first.
  • the Information System comprises one or more computer programs for modeling and/or simulating the power system under various load conditions. Ready-made changeable models of relevant parts of the power system are available, and the Inspector and Help Desk can simulate the power system to check the effect of various actions before actually performing them. Typically, they could check the effect of
  • a substation or other location may be equipped with a built-in video camera connected as a web-cam with an Internet connection. This may be used for scheduled periodic checks, and/or in combination with a site visit by an Inspector to provide added graphic information.
  • the web-cam may be equipped with a signal processor for handling the visual and/or infra red elements visible spectrum of the camera signal which signal processor:
  • [0100] determines if a change in visual light spectrum light intensity represents predetermined event such as an arc, flashover or explosion,
  • [0102] determines if a change in light intensity represents the entry of a person or an animal into the location scanned
  • [0103] sends a signal to the Help Desk upon detection of any of an arc, flashover, explosion, temperature rise, entry of person, animal, or other predetermined event, which signal is examined and then automatically logged for recording and further analysis purposes.
  • an analysis of a fixed camera signal may optionally be selected, for example by the Help Desk, to monitor for:
  • any of the methods described may be carried out by one or more computer programs, or computer program products, or by computer software containing a computer program code element or computer code means or software code portions for enabling a computer or a processor to implement one or more of a series of instructions in order to carry out any of the methods described in this description.
  • Such computer program products are correspondingly comprised in an information system and/or a web site according to the invention.

Abstract

A method for providing maintenance to an electrical power generation, transmission and distribution system, and an information system and one or more computer program software means for carrying out same. A method to provide maintenance to an electrical power generation facility and/or an electrical power transmission and distribution network system operated by a Utility. Maintenance personnel visit a site to inspect a condition of said apparatus, and examine information from an Information System operated in co-ordination with a Help Desk. The method comprises further steps such as preparing a report of the apparatus with a mobile web camera, making a report comprising a graphic image of the condition of said apparatus, receiving at said Help Desk and Information System the report and graphic image from the inspector/repairman, finding stored information about said apparatus and/or said system in said Information System, comparing said stored information with the report and/or graphic image, the inspector/repairman making in consultation with the Help Desk an assessment of the condition of said apparatus and providing a recommendation such as a repair, a temporary repair or making a plan for a repair at a later time.

Description

    TECHNICAL AREA
  • The present invention relates to providing maintenance for an electrical power transmission and distribution network, as well as for power generation installations. In particular the present invention is a device and a system, and a method to provide maintenance for all parts of an electrical power system. According to other aspects of the invention a database means, an inspection means, a Help Desk means, and a web site are also provided. [0001]
  • BACKGROUND ART
  • Electrical power generation, transmission and distribution relies on a number of transmission and distribution networks to transfer electrical power to a series of end users, as well as the generating equipment itself. Generating equipment includes the devices for generating the electrical power, most often an electrical machine such as for example a synchronous generator. Generating equipment also includes fuel cells, batteries such as used in an Uninterruptible Power Supply (UPS), solar cells etc. It also includes the devices necessary for actually bringing the power to the transmission or distribution networks, such as power transformers, instrument transformers, circuit breakers of various kinds, surge arresters etc., as well as secondary devices such as transducers, sensors and other devices needed for controlling the system. A transmission network can include high voltage lines or cables, both AC and DC, and a diversity of equipment meant to ensure the secure and reliable transmission of power, for example reactors, capacitors, Synchronous Condensers, Static Var Compensators, FACTS components, etc., and secondary devices as referred to above. Whereas transmission refers to the highest level in the hierarchy of systems that eventually deliver electrical power to end consumers, distribution networks are systems that are closer to end users, including both high voltage, medium voltage, and low voltage systems, medium voltage being defined as the lower levels of high voltage. A distribution network on high or medium voltage level will be similar to a transmission network. On the lowest levels of distribution, the voltage is typically transformed from medium voltage to low voltage, which is the level that ordinary consumers see. Such systems typically include medium voltage, low voltage and feeder sections with a diversity of switching equipment, substations, transformers, breakers, fuses, measuring and other electrical equipment situated in a diversity of locations, buildings and yards. This includes distribution equipment to more or less specialised equipment for industrial and commercial consumers, factories etc., as well as ordinary household consumers. [0002]
  • The background of this invention is in electrical power transmission and distribution networks, and in electrical power generation. The invention specifically also relates to generation and distribution functions of plants including smaller and less traditional generation means such as micro turbines, wind farms, Combined Heat and Power plants (CHP) and other often privately owned generators that supply power to the network in a distributed fashion. [0003]
  • Operations and operational service criteria may be classified not only by type of consumer, large or small for example. Factors of location such as rural, urban or city; criticality of supply, that is, supply for a hospital versus supply for a warehouse contribute to a diverse range of requirements for delivery of electrical power. The operation of such transmission and distribution networks demands a broad diversity of know how, organisation, maintenance, financing, development or expansion, spare parts, access to new equipment and technically skilled labour. [0004]
  • By tradition, and under conditions of a regulated market with state or community owned monopolies, a utility company is a company that operates and usually owns generating and/or transmission/distribution equipment. The utility company carries out a range of functions including maintenance of a network in accord with both present and future requirements. This is typically based on the utilities own business plan and carried out using primarily in-house engineering staff and other specialist professionals, supplemented as needed by outside sub-contractors and/or consultants to perform specific maintenance or more often installation tasks. As a result of a specific plan for maintenance for the network, maintenance work is carried out to ensure a planned level of service availability for the network and it's several power generation, distribution and power supply parts. In practice assets are owned and maintenance staff employed or allocated as or when needed to execute a maintenance plan designed to meet a present or forecast demand for electrical power. [0005]
  • However under de-regulation market conditions have led to a refocussing of priorities as regards the requirement for maintenance of a transmission and distribution network to better meet present requirements and future requirements. First, maintenance is expected to be carried out under a more cost effective and predictable cost regime. Second, emphasis on meeting stringent power levels, power availability and power quality requirements set by regulatory authorities, together with a generally reduced investment in installed plant throughout the industry, demands maintenance that shall provide solutions that comply with both stringent technical and financial demands. One such approach is called RCM—Reliability Centred Maintenance. [0006]
  • Third, the increased focus on distributed, environmentally friendly generation, is leading to growing numbers of smaller and unconventional power plants such as micro turbines, Combined Heat and Power (CHP) plants, wind farms, tidal water or ocean wave plants, solar cell plants, and Fuel Cell plants, being connected to power grids. At the same time, components such as power lines and transformers are increasingly being operated closer to their physical, often thermal, limits. This makes the power system itself, and its operation and maintenance, more complex. For example, operating power lines closer to their thermal limits at the same time as new asynchronous wind parks are connected to the grid destabilises the power system, and increases the risk of error. Another example is that the connection of a large number of small, often single phase, generators makes it more difficult to carry out network control functions such as balancing loads in parts of the network, thereby also increasing the risk of error. [0007]
  • Fourthly under de-regulated market conditions the owner or operator of a power distribution network may not be a traditional utility company with experience of running and maintaining such networks. For such a new owner/operator the provision of maintenance in an effective and economic way without the benefit of access to internal know-how may be difficult. [0008]
  • Thus, utilities and operators are faced with the challenge of delivering high quality, reliable electric power at competitive rates to their customers using limited manpower and resources. This calls for devices, systems and methods that can provide maintenance of a power system in a cost-effective and reliable way. [0009]
  • A document available from enervista.com (Trade Mark) describes an approach to substation management for municipal utilities and rural co-operatives that includes the use of Internet-technology. A system is described with modules with names such as eSCADA and eEXPERT. With an eSCADA module, substations are equipped with a Universal Relay provided by General Electric (GE), and monitored via a Web-interface. When an error in the system occurs, an alarm and error message appears in a Web-browser included in eSCADA, and certain information on the fault is available. Associated with the fault information is the eEXPERT module, which is a knowledge base with public documents and internet links to websites of standards, application papers, notes and diagnosis guides, as well as proprietary procedures and documents. One advantage is stated to be a significant speed-up of outage restoration by less-experienced staff. It is also mentioned that if a fault or early warning is detected by a regional operator, an engineer could be contacted to access settings, events at time of trip etc to assist in recommending suitable corrective actions. It also is described that a repair crew, prior to heading out, can get exact details of what equipment has failed, where it is, and the nature of the problem. It is also mentioned that the crew can call up and print stored documents such as network configuration, wiring diagrams and maintenance procedures. [0010]
  • The advantage of the system described seems to be limited to that the Utility itself has a presumably cheaper software system for substation management, cheaper because of the utilisation of the ubiquitous Internet-technology instead of expensive proprietary SCADA software and custom programming. However in a context of providing cost-effective maintenance to ensure a reliable supply of high quality electrical power the description is limited in that it only addresses response to power outages of the sort caused by weather damage to equipment. For example, the description does not describe how less-experienced staff may be enabled to carry out repair or maintenance tasks. [0011]
  • SUMMARY OF THE INVENTION
  • It is an object of the invention to provide a system and method for a third party to provide maintenance service for an electrical power generation, transmission and distribution system to a Utility or other operator of a power system. [0012]
  • This and other objects are fulfilled by the present invention according to a method described in [0013] claim 1 and a system described in claim 19. Advantageous embodiments are described in sub-claims to the above independent claims. In addition, further and advantageous aspects of the invention are described as a computer program product in claim 32 and a computer data signal in claims 40 and 41.
  • The principal advantage of the invention is that maintenance service for a transmission and distribution network and power plants may be carried out to assure quality and continuity of supply in a more effective and cost effective way. In addition, the invention reduces the need for the Utility to employ, train and maintain a large staff of own Maintenance and Engineering experts. [0014]
  • Further, these experts may instead be provided by a third party company according to aspects of the invention, which company may have several customers, making the utilization of such personnel much better, both in terms of building up and maintaining their competence, and in terms of utilizing their time more efficiently. [0015]
  • Another advantage of the invention is that updated component and system documentation is available 24/7 by means of an embodiment of the invention, to any Internet-enabled device operated by an registered user. Said documentation during use of the method and system according to an embodiment of the invention also comprises up to date reports on the maintenance status of the power network, reports of repairs carried out and/or reports of maintenance planned to rectify, amongst others, reported faults. [0016]
  • A further object is to provide, according to other aspects of the invention, a web site and computer software or computer program means for carrying out the methods of the invention.[0017]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • A more complete understanding of the system and apparatus of the present invention may be had by reference to the following detailed description when taken in conjunction with the accompanying drawings wherein: [0018]
  • FIG. 1 shows a schematic diagram of an Information System for a power generation, distribution and transmission system according to an embodiment of the invention [0019]
  • FIG. 2 shows a schematic diagram to provide maintenance services to a power generation, distribution and transmission system, according to an embodiment of the invention. [0020]
  • FIG. 3 shows a flowchart for a method to provide planned maintenance according to an embodiment of the invention. [0021]
  • FIG. 4 shows a flowchart for a method to provide maintenance for a reported fault according to a second embodiment of the invention.[0022]
  • DETAILED DESCRIPTION OF THE EMBODIMENTS
  • FIG. 1 shows a [0023] Utility 1, a Service Provider company 2, a Power Transmission & Distribution (T&D) System Information System 3, a Help Desk 4 provided by the Service Provider company 2, an inspector 5 from the Utility, with an Online Inspection Kit 6. A component 10 with a fault is shown schematically.
  • FIG. 2 shows the Power [0024] System Information System 3, and the Help Desk 4, the Inspector 5, a skilled Help Desk engineer 8, a Service Provider (SP) company spare parts warehouse 12, a vehicle 14 and a building 13. Connections between all of these people and/or functions to the Internet 11 are indicated by means of arrows, such as the double ended arrow signifying two-way communication between Inspector 5 and Help Desk engineer 8.
  • The [0025] Service Provider Company 2 operates and maintains the Power System Information System 3 and provides maintenance services for a Utility 1. The Utility may be a traditional utility company or any other operator or owner of a whole or part of an electrical power generation, transmission and distribution network. The Utility has access to all information about it's power network in the Information System via Web-technology, and may also have the possiblity to update that information, depending on an agreement with the Service Provider Company. The system according to the invention includes:
  • The [0026] Help Desk 4 provided by the Service Provider Company, always available and manned by highly skilled technical expertise, such as a skilled Help Desk engineer 8.
  • An Online Inspection Kit (OIK) [0027] 6 provided to the utility by the Service Provider Company as part of a service agreement.
  • The [0028] OIK 6 preferably includes a web camera and an operator computer terminal, each effectively equipped with a communication link to the Power T & D System Information System 3. At the same time, the Help Desk has access to all information retrieved by the OIK. This is enabled using Web-technology.
  • The Power [0029] System Information System 3, contains information about the power distribution network and equipment, stored in such forms as:
  • Computer aided design (CAD) documents, [0030]
  • Schematic electrical drawings, other schematics, [0031]
  • scanned paper documents, [0032]
  • scanned drawings, [0033]
  • text documents, [0034]
  • multimedia documents or files containing information stored as any one or combination of text, video clips, pictures and sounds. Many of the stored files contain active links, such as embedded HTML, cHTML or XML links to other parts of the same documentation or to other documents containing information asociated with a subject matter. This facilitates finding related or more detailed information about a component, network or part thereof. [0035]
  • In general when the utility discovers there is something wrong with a component, such as [0036] component 10, an Inspector 5 is sent out to the site where the fault has been located. The inspector, or inspector/repairman, uses the OIK to make an inspection and communicates with the Help Desk. With the help of one or more pictures provided by the OIK, the Help Desk is provided with an oportunity to examine the same indications, symptoms or conditions as the inspector. Both have access to the Power System Information System, according to another aspect of the invention, where detailed information about the component and related parts of the Power T&D network the component is a part of are stored. In this interaction between Inspector and Help Desk, the Help Desk comes up with a solution to the problem, and takes proper action. If the problem can be solved immediately, the Help Desk guides the inspector on site in the repair and/or re-connection or re-booting of the component. If not, the Help Desk identifies spare parts needed, repairs or other actions that must be taken. The Help Desk may be connected directly to the Service Provider Company's Spare Part System Database 12 and Engineering Staff (also by the use of Web-technology), and use these resources to specify a schedule for re-engineering of the component, with a guaranteed response time, included in the warranty, to the utility. Purchases and Work Orders are generated to carry out the planned repair, preferably generated and transmitted using web technology. Depending on the complexity of the situation, the actual planning may take place off-line, but when it is done, the steps to be taken, the work orders, purchase orders and associated warranty etc. are documented in the Information System.
  • FIG. 3 shows the steps of a method according to an embodiment of the invention. It comprises a log-in [0037] step 100 a, a visit to a site 102 a, a status check on site 103, a status decision step 104. A Yes decision following 104 leads to an electronic inspection report step 109. Decision step 110, all stations checked, may follow step 109, and log-out step 112 may follow a Yes decision to decision step 110.
  • A No decision following [0038] status decision step 104 leads to an inspection step 105 in which the inspection result including picture information is communicated with the Help Desk. This leads to a decision step 106 a, is immediate repair possible. A Yes decision to step 106 a leads to a repair step 108 a, carried out by the Inspector with help from Help Desk. A No decision following decision step 106 a results in step 107 a in which the Inspector and the Help Desk make a plan for repair. A planned repair logged in the information system will almost always include a guaranty dependent on the terms of the service agreement.
  • FIG. 3 shows an example for an exemplary example of standard planned maintenance, periodic maintenance. This could be periodic maintenance of a (primary or secondary) distribution substation, including pad mounted transformers, and/or pole mounted transformers (eg in USA). The utility has a maintenance and inspection plan for distribution substations stored in the Power T&D System Information System. This plan may have been developed by [0039] Service Provider company 2, or Utility itself 1, it depends on the Utility's level of outsourcing.
  • Maintenance personell, such as the [0040] inspector 5, either employed by Utility or the Service Provider company, drives out to the distribution substation, and checks status on various substation components according to the plan, step 103 of FIG. 3. For example, the inspector may check for:
  • oil-leaks from a transformer, [0041]
  • oil-level in a transformer, [0042]
  • are insulators on the transformer dirty?[0043]
  • is the substation in general tidy and clean?[0044]
  • are there any unusual sounds?[0045]
  • are all meters working properly, do they show sensible values?[0046]
  • If no serious error is found, he then fills in a form so as to report the substation status. Traditionally this form would be a piece of paper, that has to be returned to the Utility, and at return the document would have to be checked in, and any minor anomalies reported to a responsible engineer. According to an aspect of the invention the form is electronic and is automatically registered in Information System, at [0047] step 109 of FIG. 3. It is also automatically registered that the inspection has taken place when the document is checked in. Included in the documentation may be one or more digital photos of the station and components taken by a web camera in the OIK.
  • The inspector then travels to the next station he is supposed to visit within the periodic maintenance schedule, or else back to his office or home, if he is finished. [0048]
  • If an error is found during a planned inspection. [0049]
  • The inspector discovers there is something wrong, for example there may be loud noise from the transformer indicating a possible failure in a winding, or a dead animal is lying on a busbar, causing a risk of a short-circuit. According to an another aspect of the invention, the inspector contacts the Help Desk while he is on-site. He uses the OIK, including a web-[0050] camera 6, a mobile video camera with a connection to the Internet 11, optionally together with audio equipment, to show aspects or symptoms of the error to the Help Desk. The Help Desk and the inspector make an assessment of
  • how serious the error is, [0051]
  • should the error immediately be considered serious and steps for serious errors be taken, [0052]
  • should an attempt at a permanent local fix be made, [0053]
  • should an attempt at a temporary local fix be made, [0054]
  • If they consider the error to be serious, they may decide to disconnect the transformer to avoid an even more serious error condition to arise. The helpdesk will first find out if any of the customers connected to this transformer are critical before making a disconnection decision. In any case, the Help Desk will make an assessment of the situation, and find a solution which may include a plan for repair or ordering of spare parts. [0055]
  • Another example of a planned maintenance service that may be carried out is known as condition based maintenance. According to agreed specifications, the inspector/repairman makes observations and measurements during an inspection. If the inspector/repairman observes that, for example, water level in a transformer oil is above a certain limit, or according to meter readings etc an accumulated fault current for a feeder is above certain limit, etc, then the inspector repairman includes that in a report. Dependent on the nature of the condition, maintenance is scheduled for the condition observed either for a planned future maintenace visit or for a specific visit to rectify a specific condition. [0056]
  • FIG. 4 shows an example for an exemplary example of a maintenance schedule for a reported fault. [0057]
  • EXAMPLE 2
  • An instrument transformer in a substation has exploded due, for example, to an internal earth fault. As a consequence, a cubicle has been destroyed, and a feeder has lost its current. The system control centre has received a fault indication: feeder n has lost its current. [0058]
  • FIG. 4 shows the steps of an error message received [0059] 99 at a utility control centre, transmitting the error 100 b to the Help Desk, a log-in in 102 b by an inspector, a site visit 103 b by inspector, and an inspection 105 b with the OIK. A decision step 106 b concerning a possible immediate or temporary repair is followed either by a Yes leading to step 108 b followed by documentation of the temporary repair in the Power T&D System Information System database or, if No following step 106 b, followed by Help Desk and the Inspector making a plan 107 b for a repair. A planned repair will normally include a warranty and the plan is documented at step 107 c in the Power T&D System Information System. At 108 c the repair is subsequently carried out and documented in the Power T&D System Information System, and adequate information is routed to the Customer Information System to keep customers properly informed.
  • Purchase orders for the spare parts or equipment may be prepared, and sent using web technology purchase orders to a predetermined supplier such as Service Provider company [0060] Spare Parts warehouse 12. Work orders for the work may be prepared and sent to a department of the predetermined service provider, normally the Service Provider company, using web technology. At 108 b the repair is subsequently carried out and documented in the Power T&D System Information System.
  • The specification sent to the Service Provider company [0061] Spare Parts warehouse 12, or routed alternatively direct to another seller and or manufacturer to obtain a replacement apparatus or part as a result of a manual or automatic action to purchase is preferably in the form of a purchase order. The most preferred type of order is a purchase order as an open standard document, using for example a type of XML file. Preferably the purchase order also conforms to one or more current standards for electronic documents such as EDIFACT or ASC X12and/or to similar standards eg SWIFT; or other protocols such as Document Object Model (DOM), Microsoft's (Trade Mark) MSXML and a standard called XHTML 1.0 provided by World Wide Web Committee (W3C). The purchase order is in the form of an electronic document that otherwise corresponds to a traditional EDI type 850 electronic purchase order document. As such, the file transmitted containing the purchase order comprises necessary details such as any of:
  • identification of document type [0062]
  • authorization details, [0063]
  • security details, [0064]
  • contact details, [0065]
  • acknowledgement request details, [0066]
  • cancellation details [0067]
  • contract references for seller, manufacturer, [0068]
  • ordered item identification, [0069]
  • UPC reference, [0070]
  • delivery details, carrier and options. [0071]
  • The [0072] same error message 99 is also sent to the Help Desk in an embodiment of the present invention. An inspector is sent out to the substation with full inspection kit OIK, including a portable or wearable computer, web-camera, audio equipment. The damage is assessed by the inspector and the Help Desk in co-operation using reports collected with the inspection kit and communicated to the Help Desk. In this example they find out that a serious damage has occurred, and repair is needed. By using the on-line documentation they find out
  • how/if re-coupling can be made to restore current to the feeder that has been damaged, or [0073]
  • are there any other temporary measures such as disconnection of one phase that can be made there and then. [0074]
  • In any case, the Help Desk makes a plan for repair, step [0075] 107 b, with a warranty to the Utility, orders components etc., in step 107 c, and stores that plan in the Information System.
  • EXAMPLE 3
  • The same error indication as Example 3 above (loss of current on feeder n). However in this example, the inspector and the Help Desk find that this was due to an error in a secondary measuring device (a transducer), and that the main (power) circuit is intact. The Help Desk finds the documentation about the transducer in the Information System, and examines the documentation online together with the inspector at the site. They may decide to try a repair of the transducer there and then, and the Help Desk guides the inspector in the process with reference to information contained in the transducer documentation in the Power System Information System. [0076]
  • The service agreement (named above in the description of FIG. 2) between the Utility and the Service Provider company comprises a contract for the provision of maintenance by the Service Provider company to the Utility. The service agreement will typically comprise 24 hr. access to: [0077]
  • the Help Desk [0078]
  • the Information System and may further comprise items such as: [0079]
  • standard spare parts per type of location/equipment, [0080]
  • technicians certified to a specified grade, [0081]
  • computer programs to simulate or model certain error conditions, [0082]
  • computer programs to simulate or model conditions for electrical loads on certain equipment or parts of a power network. [0083]
  • The Service Agreement may include one or more measures and limits for power quality supply and reliability related to identified aspects of maintenance quality. The measures for maintenance quality will include any of the following parameters: [0084]
  • delivery time for standard maintenance operations, [0085]
  • availability (uptime) of a network equipment or a service, [0086]
  • maintaining expected service life standards for equipment, [0087]
  • maintenance cost reduction. [0088]
  • Planned maintenance work will normally include a guaranty of a type described in the service agreement for a stipulated period of time according to the conditions laid down in the service agreement following the planned repair. For example, standards regarding expected service life or average service life for equipment may be included in the agreement to guide decisions about relative cost of maintenance or a maintenance measure versus expected shortening of equipment life if the maintenance measure is not carried out. [0089]
  • In another embodiment of the invention, the Help Desk is implemented as a mobile unit. For example in certain regions, it may be more practical to implement the Help Desk in a more flexible way than as for example in a permanent building with a fixed number of staff. The Help Desk is then not necessarily associated with a fixed location with permanent set-up, but may for example also be implemented as one or more an engineers on duty with mobile communication means and Internet access. In another embodiment of the invention a substantial part of the Help Desk operations may be carried out by computer software. Thus an Inspector contacting the Help Desk may, depending on the urgency and importance of the inquiry, interact with an automated guide computer program or expert system type of software and gather and/or exchange information without making direct contact with a Help Desk engineer, at least not at first. [0090]
  • In another embodiment of the invention, the Information System comprises one or more computer programs for modeling and/or simulating the power system under various load conditions. Ready-made changeable models of relevant parts of the power system are available, and the Inspector and Help Desk can simulate the power system to check the effect of various actions before actually performing them. Typically, they could check the effect of [0091]
  • disconnecting lines, [0092]
  • disconnection (complete or partial) of loads, [0093]
  • reconfiguring the power network by for example disconnecting one switch and connecting another, [0094]
  • operation of an equipment such as a transformer at reduced load [0095]
  • operation of an equipment such as a transformer at increased load, and evaluate aspects such as the consequences for consumers and reduction of life-time (service life or average service life) for components. [0096]
  • In another embodiment of the invention a substation or other location may be equipped with a built-in video camera connected as a web-cam with an Internet connection. This may be used for scheduled periodic checks, and/or in combination with a site visit by an Inspector to provide added graphic information. For specific locations the web-cam may be equipped with a signal processor for handling the visual and/or infra red elements visible spectrum of the camera signal which signal processor: [0097]
  • samples the picture signal produced by the web-cam, [0098]
  • analyses the signal using a trained artificial neural network system, [0099]
  • determines if a change in visual light spectrum light intensity represents predetermined event such as an arc, flashover or explosion, [0100]
  • determines if a change in light intensity in the infra-red or other part of the light spectrum represents unexpected temperature change such as overheating or a fire, [0101]
  • determines if a change in light intensity represents the entry of a person or an animal into the location scanned, [0102]
  • sends a signal to the Help Desk upon detection of any of an arc, flashover, explosion, temperature rise, entry of person, animal, or other predetermined event, which signal is examined and then automatically logged for recording and further analysis purposes. [0103]
  • During a maintenance period, an analysis of a fixed camera signal may optionally be selected, for example by the Help Desk, to monitor for: [0104]
  • presence of a person in a prohibited area while maintenance is being carried out. [0105]
  • It is to be understood that any of the methods described may be carried out by one or more computer programs, or computer program products, or by computer software containing a computer program code element or computer code means or software code portions for enabling a computer or a processor to implement one or more of a series of instructions in order to carry out any of the methods described in this description. Such computer program products are correspondingly comprised in an information system and/or a web site according to the invention. [0106]
  • It is also noted that while the above describes exemplifying embodiments of the invention, there are several variations and modifications which may be made to the disclosed solution without departing from the scope of the present invention as defined in the appended claims. [0107]

Claims (45)

1. A method to provide maintenance to an electrical power generation facility and/or an electrical power transmission and distribution network system and apparatus connected to said system, operated by a Utility, whereby maintenance personnel visit a site where a said apparatus is located to inspect a condition of said apparatus, and examine information from an information system, wherein said method comprises the further steps of:
having the inspector/repairman examine said apparatus with an inspection means and prepare a report comprising at least one graphic image of the condition of said apparatus,
receiving at said help desk and Information System the report and graphic image from the inspector/repairman,
finding stored information about said apparatus and/or said system in said Information System,
comparing said stored information with the report and/or graphic image,
making an assessment of the condition of said apparatus and providing a recommendation for a maintenance measure such as a repair.
2. A method according to claim 1, comprising a step of making a decision for the inspector/repairman to carry out a repair in consultation with the Help Desk.
3. A method according to claim 1, comprising a step of that the inspector/repairman carries out a temporary repair in consultation with the Help Desk.
4. A method according to claim 1, comprising a step of that the repair carried out is documented by inspector/repairman in consultation with the Help Desk and a report of that repair is stored in the Information System.
5. A method according to claim 1, comprising a step of that the inspector/repairman in consultation with the Help Desk makes a plan to repair a fault at a later time.
6. A method according to claim 1, comprising a step of that the inspector/repairman in consultation with the Help Desk documents the plan to repair a fault at a later time in full.
7. A method according to claim 1, comprising a step of that the plan to repair a fault at a later time comprises a guaranty.
8. A method according to claim 1, comprising a step of taking action to place purchase and/or procurement orders for spare parts and or new equipment.
9. A method according to claim 1, comprising a stop of taking action to place one or more work orders to procure and schedule work according to a plan for repair to an equipment or to a part of the power network.
10. A method according to claim 1, comprising that information about a condition of an equipment or part of the power network is transmitted at least in part over the Internet.
11. A method according to claim 1, comprising that the Help Desk is implemented as one or more engineers with mobile communications, mobile computers, and mobile access to data communication networks including the Internet.
12. A method according to claim 1, is that the Help Desk is implemented further comprising one or more computer programs of an expert system type configured so as to enable an inspector/repairman to input information concerning an equipment and retrieve further technical information about maintenance of the equipment.
13. A method according to claim 1, comprising the further steps of
selecting a possible action for a repair of temporary measure such as switching in or out a load,
inputting technical details such as an electrical load and/or an electrical configuration to one or more computer programs for modelling and/or simulating individual equipment and/or a part of a power network according to the possible repair or temporary measure,
examining the modelling result and appraising the merits of the possible repair or temporary measure.
14. A method according to claim 13, comprising the further steps of modelling an effect of any of; disconnecting lines, disconnection of a complete or partial of load, reconfiguring the power network by for example disconnecting one switch and connecting another, operation of an equipment such as a transformer at reduced load, operation of an equipment such as a transformer at increased load.
15. A method according to claim 13, comprising the further step of evaluating a possible result of a maintenance action such as:
a consequence for electrical power consumers, and
a reduction of life-time (service life or average service life) of a component.
16. A method according to claim 1, comprising the step of receiving from the Utility notice of a condition of an equipment or part of the power network.
17. A method according to claim 1, comprising the step of receiving from the power network information reporting a condition of an equipment or part of the power network.
18. A method according to claim 17, comprising the step of receiving from the power network information reporting a condition of an equipment or part of the power network dependent on an analysis of a signal from a camera at a site or other location of the power network.
19. A power system information system to provide maintenance for an electrical power generation, transmission and distribution system and apparatus connected to said power system, said Information System comprising one or more databases, and communication links to maintenance personnel located elsewhere, wherein said information system comprises:
an engineering/service Help Desk,
mobile inspection means to make a graphic image for an inspection report,
communication means at the Help Desk to receive a inspection report comprising a graphic image,
display means at the Help desk to examine the report and/or the graphic image,
mobile terminal, computer and display mans to retrieve information from the one or more databases,
computer and display means to compare the graphic image and/or inspection report with retrieved information.
20. A power system information system according to claim 19, in which the inspection means comprises a web camera arranged to send pictures in a format such as TCP/IP suitable for transmission over a network such as the Internet.
21. A power system information system according to claim 19, which comprises a communication means enabling two-way voice communication between an inspector at a site and the Help Desk.
22. A power system information system according to claim 19, which comprises storage means to document details of a decision to provide maintenance service.
23. A power system information system according to claim 19, which comprises reporting and storage means to document details of a plan to provide maintenance service at a later time.
24. A power system information system according to claim 23, which comprises ordering and scheduling means to issue purchase orders and work orders in respect of the plan to provide maintenance service at a later time.
25. A power system information system according to claim 19, which comprises computer program and/or software means to match a identified apparatus to details of the apparatus stored as files in a database of the system, the files comprising any of text, graphic, interactive multimedia, a sound recording.
26. A power system information system according to claim 19, which comprises software means to log-on a registered or identified representative of the Utility to examine operations of the power system information database.
27. A power system information system according to claim 19, which comprises software means to log-on a registered or identified representative of the Utility to examine operations of the engineering Help Desk in real time.
28. A power system information system according to claim 19, which comprises computer program and/or software means to model and or simulate an effect on the power system of any of the following: a disconnection; a partial disconnection; a reconfiguring or switching in of one part and switching out of another part; an increased load on an equipment; a reduced load on an equipment.
29. Use of a system according to claims 19-28 to provide a condition monitoring system to monitor the condition of a location for an equipment of a power generation, transmission and distribution system.
30. Use of a system according to claims 19-28 to provide a maintenance service to a power generation, transmission and distribution system.
31. Use of a system according to claims 19-28 to provide maintenance service for a power generation, transmission and distribution system associated with an type of industrial plant as diverse as plants such as an airport, a hospital, a paper mill, a petroleum refinery or a vehicle assembly plant.
32. A computer program product comprising computer code means or software code portions to make a computer or a processor operate in Information System comprising one or more databases and a Help Desk to provide maintenance for an electrical power generation, transmission and distribution system and apparatus connected to said power system, wherein said computer or processor is made to carry out actions to provide maintenance for said power system including to:
receive a data input representing at least one maintenance report,
match the data input to an apparatus connected to a Power System network with information stored in a database,
receive a second input documenting a maintenance repair action,
link the second documented repair action to the apparatus and network,
store the documented repair action.
33. A computer program product according to claim 32, which comprises software means for carrying out a further action to:
update status reports for the apparatus and network.
34. A computer program product according to claim 32, which comprises software means for carrying out a further action to:
send a signal in the form of a purchase order comprising details for replacement apparatus of spare parts to a parts supplier.
35. A computer program product according to claim 32, which comprises software means for carrying out a further action to:
send a signal comprising details for work orders dependent on the documented repair action to a maintenance Service Provider company (3).
36. The computer program code element of claim 32, which comprises computer code means or software code portions including executable parts formed written as one or more object oriented programs and accessible and implementable over a network such as the Internet.
37. A computer program contained in a computer readable medium, comprising computer program code means to make a computer or processor carry out the steps according to any of claims 1-18 or claims 32-36.
38. A web site comprising means for providing access to a database of a Power System Information System, which database includes information about an electrical power generation, transmission and distribution system and apparatus connected to said power system, which web site comprises computer program means interoperable with means such as HTML, cHTML, XHMTL or XML compatible code wherein in said web site includes computer program means for executing actions to carry out any of the methods of claims 1-18.
39. A web site according to claim 38, further comprising software means for executing actions to issue or receive electronic document orders for apparatus such as spare parts which documents conform to one or more standards for electronic document interchange EDI such as EDIFACT, ASC X12, or other standards such as XHTML 1.0, DOM level 3, SWIFT EDI.
40. A first computer data signal embodied for communication in a computerised system, the communication being associated with maintenance of an apparatus of a system for electrical power generation, transmission and distribution, wherein that the first data signal:
is transmitted from a location of said electrical power generation, transmission and distribution system to an information system for said electrical power generation, transmission and distribution system and the first data signal comprises a graphic image representing a condition of said apparatus for maintenance purposes.
41. A second computer data signal embodied for communication in a computerized system, the communication being associated with maintenance of an apparatus of a system for electrical power generation, transmission and distribution, wherein that the second data signal:
is transmitted from an information system for said electrical power generation, transmission and distribution system to a maintenance provider company and comprises information associated with a maintenance specification of said apparatus in the information system regarding a plan to provide maintenance for said apparatus.
42. A computer data signal as claimed in claim 41, wherein that it is sent to a maintenance provider company and comprises information associated with a maintenance specification of said apparatus a request to purchase spare parts and/or replacement equipment for said apparatus.
43. A computer data signal as claimed in claim 41, wherein that the information in said data signal comprises at least one part identifying said apparatus and one part identifying sender of the purchase request.
44. A computer data signal as claimed in claim 41, wherein that the computer data signal is generated by an automatic maintenance providing procedure of the information system.
45. A computer data signal as claimed in claim 41, wherein that the computerized system is adapted to create and send a purchase order to purchase, based on the computer data signal, spare parts and/or replacement equipment.
US09/751,970 2000-12-29 2000-12-29 System and method to provide maintenance for an electrical power generation, transmission and distribution system Abandoned US20020087220A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US09/751,970 US20020087220A1 (en) 2000-12-29 2000-12-29 System and method to provide maintenance for an electrical power generation, transmission and distribution system
PCT/IB2001/002769 WO2002054164A1 (en) 2000-12-29 2001-12-21 System and method to provide maintenance for an electrical power generation, transmission and distribution system
US11/653,668 US8126752B2 (en) 2000-12-29 2007-01-12 System and method to provide maintenance for an electrical power generation, transmission and distribution system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US09/751,970 US20020087220A1 (en) 2000-12-29 2000-12-29 System and method to provide maintenance for an electrical power generation, transmission and distribution system

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/653,668 Continuation US8126752B2 (en) 2000-12-29 2007-01-12 System and method to provide maintenance for an electrical power generation, transmission and distribution system

Publications (1)

Publication Number Publication Date
US20020087220A1 true US20020087220A1 (en) 2002-07-04

Family

ID=25024287

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/751,970 Abandoned US20020087220A1 (en) 2000-12-29 2000-12-29 System and method to provide maintenance for an electrical power generation, transmission and distribution system
US11/653,668 Expired - Fee Related US8126752B2 (en) 2000-12-29 2007-01-12 System and method to provide maintenance for an electrical power generation, transmission and distribution system

Family Applications After (1)

Application Number Title Priority Date Filing Date
US11/653,668 Expired - Fee Related US8126752B2 (en) 2000-12-29 2007-01-12 System and method to provide maintenance for an electrical power generation, transmission and distribution system

Country Status (2)

Country Link
US (2) US20020087220A1 (en)
WO (1) WO2002054164A1 (en)

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020159441A1 (en) * 2001-04-30 2002-10-31 Travaly Andrew Joseph Digitization of work processes through the use of a wireless network with user wearable end devices
US20030125844A1 (en) * 2000-03-20 2003-07-03 Christiane Foertsch Computer-assisted configuring tool
US20030130820A1 (en) * 2002-01-07 2003-07-10 Lane George H. Work order system
WO2003058481A1 (en) * 2001-12-26 2003-07-17 Abb, Inc. System and method for local power distribution device monitoring and control
US6691065B2 (en) * 2001-02-27 2004-02-10 Hitachi, Ltd. System foraiding the preparation of operation and maintenance plans for a power generation installation
US20040044513A1 (en) * 2002-09-02 2004-03-04 Noriaki Kitahara Distributed simulation system
WO2004053609A1 (en) * 2002-12-12 2004-06-24 Abb Research Ltd A control system controlling a plurality of real world objects, and a method for hanling messages from a mobile user connected to the control system
US6772051B2 (en) * 2000-06-22 2004-08-03 Hitachi, Ltd. Power plant operation control system and a power plant maintaining and managing method
US20040236620A1 (en) * 2003-05-19 2004-11-25 Chauhan S. K. Automated utility supply management system integrating data sources including geographic information systems (GIS) data
US20050005093A1 (en) * 2003-07-01 2005-01-06 Andrew Bartels Methods, systems and devices for securing supervisory control and data acquisition (SCADA) communications
US6850820B2 (en) * 2001-04-25 2005-02-01 Sanyo Electric Co., Ltd. Distributed power generation system, and maintenance system and maintenance method utilizing the same
US20050100766A1 (en) * 2003-11-06 2005-05-12 Snap-On Technologies, Inc. Fuel cell service method and apparatus
US20050187721A1 (en) * 2004-02-24 2005-08-25 Christian Baust Maintenance plan workbench and method
US20070162957A1 (en) * 2003-07-01 2007-07-12 Andrew Bartels Methods, systems and devices for securing supervisory control and data acquisition (SCADA) communications
US20080040191A1 (en) * 2006-08-10 2008-02-14 Novell, Inc. Event-driven customizable automated workflows for incident remediation
US20080114873A1 (en) * 2006-11-10 2008-05-15 Novell, Inc. Event source management using a metadata-driven framework
US20080221952A1 (en) * 2007-03-07 2008-09-11 Mohri Takanori Workflow management system, workflow management server, progress management method, and storage medium
US20080275971A1 (en) * 2004-11-14 2008-11-06 Abb Research Ltd. Method for Displaying Data in an Industrial Control System
US20090112672A1 (en) * 2005-06-30 2009-04-30 Flaemig Hartmut Method and Arrangement for Optimized Maintenance of Components
US20090265207A1 (en) * 2008-04-22 2009-10-22 Gtj Consulting Llc Property Management System and Method for Operating the Same
US20090265288A1 (en) * 2008-04-17 2009-10-22 Novell, Inc. System and method for correlating events in a pluggable correlation architecture
US7613627B2 (en) 2004-02-02 2009-11-03 Ford Motor Company Computer-implemented method and system for collecting and communicating inspection information for a mechanism
US20090287530A1 (en) * 2008-05-16 2009-11-19 Hitachi, Ltd Plan execution control apparatus, plan execution control method, and plan execution control program
US20090299720A1 (en) * 2008-05-29 2009-12-03 Siemens Energy & Automation, Inc. Circuit protection and control device simulator
US20100198636A1 (en) * 2009-01-30 2010-08-05 Novell, Inc. System and method for auditing governance, risk, and compliance using a pluggable correlation architecture
US7926099B1 (en) 2005-07-15 2011-04-12 Novell, Inc. Computer-implemented method and system for security event transport using a message bus
CN103034755A (en) * 2012-11-29 2013-04-10 北京科东电力控制系统有限责任公司 Visual inspection method based on virtual reality technology for transformer substation
US20130159200A1 (en) * 2011-12-16 2013-06-20 Accenture Global Services Limited Method, system, and apparatus for servicing equipment in the field
US20130282509A1 (en) * 2012-04-24 2013-10-24 Young Electric Sign Company Sales lead generation system for a company in a service industry and related methods
US8612276B1 (en) 2009-02-11 2013-12-17 Certusview Technologies, Llc Methods, apparatus, and systems for dispatching service technicians
US20140040325A1 (en) * 2011-02-18 2014-02-06 Dewind Europe Gmbh Apparatus for local maintenance data storage in energy conversion installations
US20140347478A1 (en) * 2013-05-27 2014-11-27 Center For Integrated Smart Sensors Foundation Network camera using hierarchical event detection and data determination
US9188453B2 (en) 2013-03-07 2015-11-17 Sas Institute Inc. Constrained service restoration with heuristics
CN105303459A (en) * 2015-10-29 2016-02-03 西安交通大学 Internet-based power equipment fault diagnosis and evaluation method
EP2455897A3 (en) * 2010-11-18 2016-07-13 General Electric Company Methods and systems involving power system grid management
CN106815182A (en) * 2015-11-27 2017-06-09 国家电网公司 One kind is based on being directed to power network financial statement statistical system under excel
US20170186145A1 (en) * 2014-12-01 2017-06-29 Tokyo Electric Power Company Holdings, Incorporated Method for determining reusability, apparatus for displaying boundary sample, and method for displaying boundary sample
JP2017130166A (en) * 2016-01-22 2017-07-27 株式会社日立ビルシステム Recovery managing system for elevator apparatus and recovery managing method for elevator apparatus
US20170350370A1 (en) * 2016-06-02 2017-12-07 Doosan Heavy Industries & Construction Co., Ltd. Wind farm supervision monitoring method
CN108629492A (en) * 2018-04-15 2018-10-09 广东电网有限责任公司 It is a kind of scene reply in pressure industry expand power supply plan method
CN109359920A (en) * 2018-11-02 2019-02-19 国网四川省电力公司广安供电公司 A kind of automatic warehouse management system for preparing material of electric power first-aid work
TWI665571B (en) * 2017-02-20 2019-07-11 日商東芝股份有限公司 Power generation plan developing apparatus and power generation plan developing method

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7457763B1 (en) 2001-09-04 2008-11-25 Accenture Global Services Gmbh Predictive maintenance system
US7440906B1 (en) 2001-09-04 2008-10-21 Accenture Global Services Gmbh Identification, categorization, and integration of unplanned maintenance, repair and overhaul work on mechanical equipment
US8655698B2 (en) * 2000-10-17 2014-02-18 Accenture Global Services Limited Performance-based logistics for aerospace and defense programs
US7124059B2 (en) 2000-10-17 2006-10-17 Accenture Global Services Gmbh Managing maintenance for an item of equipment
US7461008B2 (en) 2001-09-04 2008-12-02 Accenture Global Services Gmbh Planning and scheduling modification of a configuration
US6980959B1 (en) * 2000-10-17 2005-12-27 Accenture Llp Configuring mechanical equipment
US7457762B2 (en) * 2001-09-04 2008-11-25 Accenture Global Services Gmbh Optimization of management of maintenance, repair and overhaul of equipment in a specified time window
US8266066B1 (en) 2001-09-04 2012-09-11 Accenture Global Services Limited Maintenance, repair and overhaul management
US7860702B1 (en) 2002-09-18 2010-12-28 Peter B. Evans Assessing distributed energy resources for the energynet
US7143009B2 (en) 2004-12-16 2006-11-28 General Electric Company Unified data acquisition system and method
US20090210277A1 (en) * 2008-02-14 2009-08-20 Hardin H Wesley System and method for managing a geographically-expansive construction project
US9311615B2 (en) * 2010-11-24 2016-04-12 International Business Machines Corporation Infrastructure asset management
CN104216399B (en) * 2014-09-02 2017-02-15 科大智能电气技术有限公司 Remote debugging method of image transmission based remote distribution transformer terminal debugging system
CN106933156B (en) * 2017-04-14 2019-04-23 南方电网科学研究院有限责任公司 A kind of the O&M quality control method and device of substation
CN107886174B (en) * 2017-11-14 2021-12-21 贵州电网有限责任公司电力调度控制中心 Generator set maintenance arrangement method and device
CN108197907A (en) * 2018-02-12 2018-06-22 国网浙江省电力公司杭州供电公司 Ensure the multi-level collaborative regulation and administration method of power supply
CN111340257B (en) * 2020-03-13 2022-09-13 贵州电网有限责任公司 Optimization method and system for maintenance plan of power transmission equipment based on risk analysis

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5305244A (en) * 1992-04-06 1994-04-19 Computer Products & Services, Inc. Hands-free, user-supported portable computer
US5311562A (en) * 1992-12-01 1994-05-10 Westinghouse Electric Corp. Plant maintenance with predictive diagnostics
US5321629A (en) * 1990-01-11 1994-06-14 Kabushiki Kaisha Toshiba Facility inspection support apparatus
US5657245A (en) * 1994-11-09 1997-08-12 Westinghouse Electric Corporation Component maintenance system
US5817958A (en) * 1994-05-20 1998-10-06 Hitachi, Ltd. Plant monitoring and diagnosing method and system, as well as plant equipped with the system
US5975737A (en) * 1996-05-30 1999-11-02 Control Technology Corporation Distributed interface architecture for programmable industrial control systems
US5995911A (en) * 1997-02-12 1999-11-30 Power Measurement Ltd. Digital sensor apparatus and system for protection, control, and management of electricity distribution systems
US6018449A (en) * 1996-12-04 2000-01-25 Energyline Systems, L.P. Method for automated reconfiguration of a distribution system using distributed control logic and communications
US6347027B1 (en) * 1997-11-26 2002-02-12 Energyline Systems, Inc. Method and apparatus for automated reconfiguration of an electric power distribution system with enhanced protection
US6529839B1 (en) * 1998-05-28 2003-03-04 Retx.Com, Inc. Energy coordination system
US6545482B1 (en) * 2000-09-22 2003-04-08 Nxtphase Technology Srl Monitoring wide area dynamic swing recordings on an electrical power system
US6574672B1 (en) * 1999-03-29 2003-06-03 Siemens Dematic Postal Automation, L.P. System, apparatus and method for providing a portable customizable maintenance support computer communications system
US6611773B2 (en) * 2000-11-28 2003-08-26 Power Measurement Ltd. Apparatus and method for measuring and reporting the reliability of a power distribution system with improved accuracy
US6668629B1 (en) * 1999-11-26 2003-12-30 General Electric Company Methods and apparatus for web-enabled engine-generator systems
US6671654B1 (en) * 2000-11-28 2003-12-30 Power Measurement Ltd. Apparatus and method for measuring and reporting the reliability of a power distribution system
US6697951B1 (en) * 2000-04-26 2004-02-24 General Electric Company Distributed electrical power management system for selecting remote or local power generators

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5132920A (en) * 1988-02-16 1992-07-21 Westinghouse Electric Corp. Automated system to prioritize repair of plant equipment
EP0369188B1 (en) * 1988-10-27 1995-12-27 Texas Instruments Incorporated Communications, information, maintenance diagnostic and training system
EP0650125A1 (en) * 1993-10-20 1995-04-26 Nippon Lsi Card Co., Ltd. Handy computer with built-in digital camera and spot state recording method using the same
US6785592B1 (en) * 1999-07-16 2004-08-31 Perot Systems Corporation System and method for energy management
US6959235B1 (en) * 1999-10-28 2005-10-25 General Electric Company Diagnosis and repair system and method

Patent Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5321629A (en) * 1990-01-11 1994-06-14 Kabushiki Kaisha Toshiba Facility inspection support apparatus
US5305244A (en) * 1992-04-06 1994-04-19 Computer Products & Services, Inc. Hands-free, user-supported portable computer
US5305244B1 (en) * 1992-04-06 1996-07-02 Computer Products & Services I Hands-free, user-supported portable computer
US5305244B2 (en) * 1992-04-06 1997-09-23 Computer Products & Services I Hands-free user-supported portable computer
US5311562A (en) * 1992-12-01 1994-05-10 Westinghouse Electric Corp. Plant maintenance with predictive diagnostics
US5817958A (en) * 1994-05-20 1998-10-06 Hitachi, Ltd. Plant monitoring and diagnosing method and system, as well as plant equipped with the system
US5657245A (en) * 1994-11-09 1997-08-12 Westinghouse Electric Corporation Component maintenance system
US5975737A (en) * 1996-05-30 1999-11-02 Control Technology Corporation Distributed interface architecture for programmable industrial control systems
US6111735A (en) * 1996-12-04 2000-08-29 Energyline Systems, L.P. Method for automated reconfiguration of a distribution system using distributed control logic and communications
US6018449A (en) * 1996-12-04 2000-01-25 Energyline Systems, L.P. Method for automated reconfiguration of a distribution system using distributed control logic and communications
US6243244B1 (en) * 1996-12-04 2001-06-05 Energyline Systems, Inc. Method for automated reconfiguration of a distribution system using distributed control logic and communications
US5995911A (en) * 1997-02-12 1999-11-30 Power Measurement Ltd. Digital sensor apparatus and system for protection, control, and management of electricity distribution systems
US6236949B1 (en) * 1997-02-12 2001-05-22 Power Measurement Ltd. Digital sensor apparatus and system for protection, control and management of electricity distribution systems
US6347027B1 (en) * 1997-11-26 2002-02-12 Energyline Systems, Inc. Method and apparatus for automated reconfiguration of an electric power distribution system with enhanced protection
US6529839B1 (en) * 1998-05-28 2003-03-04 Retx.Com, Inc. Energy coordination system
US6574672B1 (en) * 1999-03-29 2003-06-03 Siemens Dematic Postal Automation, L.P. System, apparatus and method for providing a portable customizable maintenance support computer communications system
US6668629B1 (en) * 1999-11-26 2003-12-30 General Electric Company Methods and apparatus for web-enabled engine-generator systems
US6697951B1 (en) * 2000-04-26 2004-02-24 General Electric Company Distributed electrical power management system for selecting remote or local power generators
US6545482B1 (en) * 2000-09-22 2003-04-08 Nxtphase Technology Srl Monitoring wide area dynamic swing recordings on an electrical power system
US6611773B2 (en) * 2000-11-28 2003-08-26 Power Measurement Ltd. Apparatus and method for measuring and reporting the reliability of a power distribution system with improved accuracy
US6671654B1 (en) * 2000-11-28 2003-12-30 Power Measurement Ltd. Apparatus and method for measuring and reporting the reliability of a power distribution system

Cited By (74)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030125844A1 (en) * 2000-03-20 2003-07-03 Christiane Foertsch Computer-assisted configuring tool
US6845299B2 (en) * 2000-03-20 2005-01-18 Siemens Aktiengesellschaft Computer-assisted configuring tool
US6772051B2 (en) * 2000-06-22 2004-08-03 Hitachi, Ltd. Power plant operation control system and a power plant maintaining and managing method
US6980891B2 (en) 2000-06-22 2005-12-27 Hitachi, Ltd. Power plant operation control system and a power plant maintaining and managing method
US20040254684A1 (en) * 2000-06-22 2004-12-16 Hitachi, Ltd. Power plant operation control system and a power plant maintaining and managing method
US6907381B2 (en) * 2001-02-27 2005-06-14 Hitachi, Ltd. System for aiding the preparation of operation and maintenance plans for a power-generation installation
US6691065B2 (en) * 2001-02-27 2004-02-10 Hitachi, Ltd. System foraiding the preparation of operation and maintenance plans for a power generation installation
US7152005B2 (en) * 2001-02-27 2006-12-19 Hitachi, Ltd. System for aiding the preparation of operation and maintenance plans for a power generation installation
US7065472B2 (en) * 2001-02-27 2006-06-20 Hitachi, Ltd. System for aiding the preparation of operation and maintenance plans for a power generation installation
US20040148132A1 (en) * 2001-02-27 2004-07-29 Hitachi, Ltd. System for aiding the preparation of operation and maintenance plans for a power generation installation
US20050246068A1 (en) * 2001-02-27 2005-11-03 Hitachi, Ltd. System for aiding the preparation of operation and maintenance plans for a power generation installation
US6853930B2 (en) * 2001-02-27 2005-02-08 Hitachi, Ltd. System for aiding the preparation of operation and maintenance plans for a power generation installation
US6850820B2 (en) * 2001-04-25 2005-02-01 Sanyo Electric Co., Ltd. Distributed power generation system, and maintenance system and maintenance method utilizing the same
US7266429B2 (en) * 2001-04-30 2007-09-04 General Electric Company Digitization of field engineering work processes at a gas turbine power plant through the use of portable computing devices operable in an on-site wireless local area network
US20020159441A1 (en) * 2001-04-30 2002-10-31 Travaly Andrew Joseph Digitization of work processes through the use of a wireless network with user wearable end devices
WO2003058481A1 (en) * 2001-12-26 2003-07-17 Abb, Inc. System and method for local power distribution device monitoring and control
US20030130820A1 (en) * 2002-01-07 2003-07-10 Lane George H. Work order system
US20040117154A1 (en) * 2002-01-07 2004-06-17 Tek-Link Software Systems, Llc Work Order System
US20040117155A1 (en) * 2002-01-07 2004-06-17 Tek-Link Software Systems, Llc Work Order System
US20040044513A1 (en) * 2002-09-02 2004-03-04 Noriaki Kitahara Distributed simulation system
US20060205389A1 (en) * 2002-12-12 2006-09-14 Oeberg Pierre Control system controlling a plurality of real world objects, and a method for handling messages from a mobile user connected to the control system
CN100409189C (en) * 2002-12-12 2008-08-06 Abb研究有限公司 A control system controlling a plurality of real world objects, and a method for handling messages from a mobile user connected to the control system
US7873371B2 (en) * 2002-12-12 2011-01-18 Abb Research Ltd. Control system controlling a plurality of real world objects, and a method for handling messages from a mobile user connected to the control system
WO2004053609A1 (en) * 2002-12-12 2004-06-24 Abb Research Ltd A control system controlling a plurality of real world objects, and a method for hanling messages from a mobile user connected to the control system
US20040236620A1 (en) * 2003-05-19 2004-11-25 Chauhan S. K. Automated utility supply management system integrating data sources including geographic information systems (GIS) data
US7739138B2 (en) 2003-05-19 2010-06-15 Trimble Navigation Limited Automated utility supply management system integrating data sources including geographic information systems (GIS) data
US20050005093A1 (en) * 2003-07-01 2005-01-06 Andrew Bartels Methods, systems and devices for securing supervisory control and data acquisition (SCADA) communications
US20070162957A1 (en) * 2003-07-01 2007-07-12 Andrew Bartels Methods, systems and devices for securing supervisory control and data acquisition (SCADA) communications
US20050100766A1 (en) * 2003-11-06 2005-05-12 Snap-On Technologies, Inc. Fuel cell service method and apparatus
US20050181243A2 (en) * 2003-11-06 2005-08-18 Snap-On Technologies, Inc. Fuell Cell Service Method and Apparatus
US7684880B2 (en) * 2003-11-06 2010-03-23 Snap-On Technologies, Inc. Fuel cells service method and apparatus
US20100030615A1 (en) * 2004-02-02 2010-02-04 Ford Motor Company Computer-implemented method and system for collecting and communicating inspection information for a mechanism
US7613627B2 (en) 2004-02-02 2009-11-03 Ford Motor Company Computer-implemented method and system for collecting and communicating inspection information for a mechanism
US7082383B2 (en) * 2004-02-24 2006-07-25 Sap Ag Maintenance plan workbench and method
US20050187721A1 (en) * 2004-02-24 2005-08-25 Christian Baust Maintenance plan workbench and method
US8126964B2 (en) 2004-11-14 2012-02-28 Abb Research Ltd. Method for displaying data in an industrial control system
US20080275971A1 (en) * 2004-11-14 2008-11-06 Abb Research Ltd. Method for Displaying Data in an Industrial Control System
US20090112672A1 (en) * 2005-06-30 2009-04-30 Flaemig Hartmut Method and Arrangement for Optimized Maintenance of Components
US20110173359A1 (en) * 2005-07-15 2011-07-14 Novell, Inc. Computer-implemented method and system for security event transport using a message bus
US7926099B1 (en) 2005-07-15 2011-04-12 Novell, Inc. Computer-implemented method and system for security event transport using a message bus
US10380548B2 (en) 2006-08-10 2019-08-13 Oracle International Corporation Event-driven customizable automated workflows for incident remediation
US9715675B2 (en) * 2006-08-10 2017-07-25 Oracle International Corporation Event-driven customizable automated workflows for incident remediation
US20080040191A1 (en) * 2006-08-10 2008-02-14 Novell, Inc. Event-driven customizable automated workflows for incident remediation
US9047145B2 (en) 2006-11-10 2015-06-02 Novell Intellectual Property Holdings, Inc. Event source management using a metadata-driven framework
US7984452B2 (en) 2006-11-10 2011-07-19 Cptn Holdings Llc Event source management using a metadata-driven framework
US20080114873A1 (en) * 2006-11-10 2008-05-15 Novell, Inc. Event source management using a metadata-driven framework
US20080221952A1 (en) * 2007-03-07 2008-09-11 Mohri Takanori Workflow management system, workflow management server, progress management method, and storage medium
US20090265288A1 (en) * 2008-04-17 2009-10-22 Novell, Inc. System and method for correlating events in a pluggable correlation architecture
US8185488B2 (en) 2008-04-17 2012-05-22 Emc Corporation System and method for correlating events in a pluggable correlation architecture
US20090265207A1 (en) * 2008-04-22 2009-10-22 Gtj Consulting Llc Property Management System and Method for Operating the Same
US8650060B2 (en) * 2008-05-16 2014-02-11 Hitachi, Ltd. Plan execution control apparatus, plan execution control method, and plan execution control program
US20090287530A1 (en) * 2008-05-16 2009-11-19 Hitachi, Ltd Plan execution control apparatus, plan execution control method, and plan execution control program
US8255200B2 (en) * 2008-05-29 2012-08-28 Siemens Aktiengesellschaft Circuit protection and control device simulator
US20090299720A1 (en) * 2008-05-29 2009-12-03 Siemens Energy & Automation, Inc. Circuit protection and control device simulator
US20100198636A1 (en) * 2009-01-30 2010-08-05 Novell, Inc. System and method for auditing governance, risk, and compliance using a pluggable correlation architecture
US10057285B2 (en) 2009-01-30 2018-08-21 Oracle International Corporation System and method for auditing governance, risk, and compliance using a pluggable correlation architecture
US8612276B1 (en) 2009-02-11 2013-12-17 Certusview Technologies, Llc Methods, apparatus, and systems for dispatching service technicians
EP2455897A3 (en) * 2010-11-18 2016-07-13 General Electric Company Methods and systems involving power system grid management
US20140040325A1 (en) * 2011-02-18 2014-02-06 Dewind Europe Gmbh Apparatus for local maintenance data storage in energy conversion installations
US20130159200A1 (en) * 2011-12-16 2013-06-20 Accenture Global Services Limited Method, system, and apparatus for servicing equipment in the field
US20130282509A1 (en) * 2012-04-24 2013-10-24 Young Electric Sign Company Sales lead generation system for a company in a service industry and related methods
CN103034755A (en) * 2012-11-29 2013-04-10 北京科东电力控制系统有限责任公司 Visual inspection method based on virtual reality technology for transformer substation
US9188453B2 (en) 2013-03-07 2015-11-17 Sas Institute Inc. Constrained service restoration with heuristics
US9743047B2 (en) * 2013-05-27 2017-08-22 Center For Integrated Smart Sensors Foundation Network camera using hierarchical event detection and data determination
US20140347478A1 (en) * 2013-05-27 2014-11-27 Center For Integrated Smart Sensors Foundation Network camera using hierarchical event detection and data determination
US20170186145A1 (en) * 2014-12-01 2017-06-29 Tokyo Electric Power Company Holdings, Incorporated Method for determining reusability, apparatus for displaying boundary sample, and method for displaying boundary sample
CN105303459A (en) * 2015-10-29 2016-02-03 西安交通大学 Internet-based power equipment fault diagnosis and evaluation method
CN106815182A (en) * 2015-11-27 2017-06-09 国家电网公司 One kind is based on being directed to power network financial statement statistical system under excel
JP2017130166A (en) * 2016-01-22 2017-07-27 株式会社日立ビルシステム Recovery managing system for elevator apparatus and recovery managing method for elevator apparatus
US20170350370A1 (en) * 2016-06-02 2017-12-07 Doosan Heavy Industries & Construction Co., Ltd. Wind farm supervision monitoring method
US11015577B2 (en) * 2016-06-02 2021-05-25 DOOSAN Heavy Industries Construction Co., LTD Wind farm supervision monitoring method, operation and maintenance plan controlled from a mobile terminal of a worker at a remote location and using work tickets
TWI665571B (en) * 2017-02-20 2019-07-11 日商東芝股份有限公司 Power generation plan developing apparatus and power generation plan developing method
CN108629492A (en) * 2018-04-15 2018-10-09 广东电网有限责任公司 It is a kind of scene reply in pressure industry expand power supply plan method
CN109359920A (en) * 2018-11-02 2019-02-19 国网四川省电力公司广安供电公司 A kind of automatic warehouse management system for preparing material of electric power first-aid work

Also Published As

Publication number Publication date
US8126752B2 (en) 2012-02-28
WO2002054164A1 (en) 2002-07-11
US20070203779A1 (en) 2007-08-30

Similar Documents

Publication Publication Date Title
US8126752B2 (en) System and method to provide maintenance for an electrical power generation, transmission and distribution system
JP5616330B2 (en) Method and system for managing a power grid
JP5452613B2 (en) Power grid supply interruption and failure status management
JP6604076B2 (en) Supervisory control system
CN107167704B (en) Power distribution network fault diagnosis system and method based on CIM model
US20020035497A1 (en) System and method for utility enterprise management
JP2017034752A (en) Monitoring control system
Boardman The role of integrated distribution management systems in smart grid implementations
Hentea Building an Effective Security Program for Distributed Energy Resources and Systems
JP2006204041A (en) Power system supervisory control system, method and program, and management server
CN110489729B (en) Automatic conversion method and system for D5000-matpower grid multi-disaster coupling cascading failure model
CN111798050A (en) Wisdom energy management system
Draber et al. How operation data helps manage life-cycle costs
Lamminmäki Information flows in the Network Control Center of Distribution System Operator from the aspect of outage reporting
Arriola et al. A Holistic Approach at Electrical Equipment Monitoring and Diagnostics at Different Levels in a Chemical Plant
Farrokhzad et al. A data collection scheme for reliability evaluation and assessment-a practical case in Iran
Singh Scada For Energy Management System and Distribution Management System
Einfalt et al. Realisation of grid-friendly charging considering usability by knowledge graph enabled explainability
Sener et al. Top three technical problems-a survey report [of power system planning]
Rosewater et al. Electrical Energy Storage Data Submission Guidelines, Version 2
Balzer et al. Tasks of the Asset Management
MOSTAK et al. IOT BASED POWER MONITORING AND MANAGEMENT SYSTEM OF A DISTRIBUTION SUBSTATION
Okeke et al. THE RELIABILITY ASSESSMENT OF POWER TRANSFORMERS
Drewiske et al. What Do You Do When the Lights Go Out?: Constructing a Procedure for Unplanned Power Failure
JP2022168958A (en) Blackout statistic basic data generating apparatus, and blackout statistic basic data generating program

Legal Events

Date Code Title Description
AS Assignment

Owner name: ABB DISTRIBUTION AS, NORWAY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:TVEIT, TOR ANDREAS;KLEIVI, ROALD;MOEN, RAGNAR;AND OTHERS;REEL/FRAME:011880/0749;SIGNING DATES FROM 20010216 TO 20010315

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: ABB POWER GRIDS SWITZERLAND AG, SWITZERLAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ABB SCHWEIZ AG;REEL/FRAME:052916/0001

Effective date: 20191025