US20020195177A1 - Conductive shape memory metal deployment latch hinge deployment method - Google Patents

Conductive shape memory metal deployment latch hinge deployment method Download PDF

Info

Publication number
US20020195177A1
US20020195177A1 US09/886,417 US88641701A US2002195177A1 US 20020195177 A1 US20020195177 A1 US 20020195177A1 US 88641701 A US88641701 A US 88641701A US 2002195177 A1 US2002195177 A1 US 2002195177A1
Authority
US
United States
Prior art keywords
hinge
panels
hinges
shape memory
memory alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US09/886,417
Inventor
David Hinkley
Edward Simburger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aerospace Corp
Original Assignee
Aerospace Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aerospace Corp filed Critical Aerospace Corp
Priority to US09/886,417 priority Critical patent/US20020195177A1/en
Assigned to AEROSPACE CORPORATION, THE reassignment AEROSPACE CORPORATION, THE ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HINKLY, DAVID A., SIMBURGER, EDWARD J.
Publication of US20020195177A1 publication Critical patent/US20020195177A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/06Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like
    • F03G7/065Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like using a shape memory element
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/006Resulting in heat recoverable alloys with a memory effect
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05DHINGES OR SUSPENSION DEVICES FOR DOORS, WINDOWS OR WINGS
    • E05D1/00Pinless hinges; Substitutes for hinges
    • E05D1/02Pinless hinges; Substitutes for hinges made of one piece
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05FDEVICES FOR MOVING WINGS INTO OPEN OR CLOSED POSITION; CHECKS FOR WINGS; WING FITTINGS NOT OTHERWISE PROVIDED FOR, CONCERNED WITH THE FUNCTIONING OF THE WING
    • E05F15/00Power-operated mechanisms for wings
    • E05F15/60Power-operated mechanisms for wings using electrical actuators
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2201/00Treatment for obtaining particular effects
    • C21D2201/01Shape memory effect
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05YINDEXING SCHEME RELATING TO HINGES OR OTHER SUSPENSION DEVICES FOR DOORS, WINDOWS OR WINGS AND DEVICES FOR MOVING WINGS INTO OPEN OR CLOSED POSITION, CHECKS FOR WINGS AND WING FITTINGS NOT OTHERWISE PROVIDED FOR, CONCERNED WITH THE FUNCTIONING OF THE WING
    • E05Y2201/00Constructional elements; Accessories therefore
    • E05Y2201/40Motors; Magnets; Springs; Weights; Accessories therefore
    • E05Y2201/43Motors
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05YINDEXING SCHEME RELATING TO HINGES OR OTHER SUSPENSION DEVICES FOR DOORS, WINDOWS OR WINGS AND DEVICES FOR MOVING WINGS INTO OPEN OR CLOSED POSITION, CHECKS FOR WINGS AND WING FITTINGS NOT OTHERWISE PROVIDED FOR, CONCERNED WITH THE FUNCTIONING OF THE WING
    • E05Y2800/00Details, accessories and auxiliary operations not otherwise provided for
    • E05Y2800/67Materials; Strength alteration thereof

Definitions

  • the invention relates to the field of metallurgy and metal alloy mechanical hinges. More particularly, the present invention relates to shape memory alloys trained as hinges for compressed stowing and recoiled deploying of three-dimensional enclosure of panels.
  • microsatellites and nanosatellites low earth orbits require the collection of sufficient power for onboard instruments with low weight in a low volume spacecraft. Power generation methods for very small satellites of less that ten kilograms are desirable for these small satellites. Thin film solar arrays are useful power sources for small satellites.
  • One problem faced by these low weight and low volume spacecraft is the collection of sufficient power for onboard instruments and propulsion. Body-mounted solar cells may be incapable of providing enough power when the overall surface area of a microsatellite or nanosatellite is small. Deployment of traditional planar rigid large solar arrays necessitates larger satellite volumes and weights and also requires extra apparatus needed for attitude pointing.
  • the powersphere deployment scheme requires a deployment hinge that would move the individual hexagon and pentagon flat panels of the powersphere from a stacked configuration to an unfolded configuration where the individual panels would form a spherical structure resembling a soccer ball upon completion of the deployment sequence.
  • the powersphere requires deployment hinges that serve to move the individual hexagon and pentagon flat panels of the powersphere from a stacked configuration to an unfolded configuration where the individual panels would form a spherical structure upon completion of the deployment sequence.
  • Each of the panels has at least one hinge to adjacent panels.
  • the panels should be locked into place and maintained at a precise angle relative to each connected panel to form the spherical shape.
  • the flat hexagon and pentagon panels approximate an omnidirectional sphere.
  • a combination of hexagon and pentagon shaped panels are used to form a soccer ball panel configuration when fully deployed.
  • the interconnecting deployment hinges serve to position the individual flat panels of the powersphere from a stacked configuration to the deployed position forming the sphere of solar panels.
  • the panels are hinged to one another and deploy to a precise angular position into the final shape that is preferably spherical rather than oblong or some other undesirable shape.
  • this deployment mechanism would be fabricated from a thin film material that would have the properties to effect the mechanical positioning deployment and serve as structural elements for holding and locking each of the panels in respective positions about the powersphere.
  • microsatellite having an power enclosure uses a powerbox that is a three-dimensional solar array shape having rectangular shaped flat panels that would also deploy from a stowed flat configuration into a box shape configuration.
  • the powerbox consists ideally of similarly shaped panels interconnected with hinges fabricated from a thin material that would have the properties to perfect the mechanical deployment and also be a structural element for locking each of the panels into respective positions.
  • the powerbox would also require hinges that serve to move and lock the flat solar panels into position during deployment.
  • a hinge mechanism is needed for deployment of the flat solar panels to cause the transition from the stowed configuration to the desired final array shape.
  • the interconnecting hinges present a power conduction problem of routing collected converted power from the flat solar array panels to the payload of the spacecraft. Electrical conductivity of the hinge could be used to route signals and power about the power enclosure without the use of separate power lines for communicating power from the solar cell panels to the spacecraft payload.
  • the hinges should be made of conventional materials.
  • the hinge material could be a polymer as a flexure type hinge. But polymers are unstable and relax by cold flowing when stressed for any length of time. Polymer materials can also have undesirable outgassing properties and are generally not good electrical conductors. Polymer materials also have very low Young's moduli that reduces the deployment energy that can be stored in the hinge while stowed and later used to deploy and position the panels. Spring metals such as hardened stainless steel, beryllium copper or phosphorous bronze are commonly used as flexure type spring hinges.
  • spring metals have large Young's moduli, low outgassing characteristics, good electrical conductivity and will not cold flow, but spring metals have very small maximum elastic strains of 1% or less, and hence are unsuitable as deployment hinges because the steel spring hinges with interconnected panels will not stow compactly.
  • An object of the invention is to provide a deployment hinge for interconnecting and deploying panels from a stowed configuration into a deployment configuration.
  • Another object of the invention is to provide a deployment conductive hinge for mechanically and electrically interconnecting and deploying solar cell panels from a stowed configuration into a deployment configuration.
  • Yet another object of the invention is to provide an integral deployment latch for locking deployed panels into a deployment configuration.
  • Still another object of the invention is to provide a conductive deployment latching hinge for mechanically moving and locking and electrically interconnecting panels into a deployment configuration forming a power enclosure of a satellite.
  • Yet another object of the invention is to provide a compact hinge for interconnecting thin film solar panels, for enabling the panels to be stowed compactly, and for unfolding the panels into a large area three-dimensional array of a predetermined shape.
  • a further object of the invention is to store the energy necessary within an interconnecting hinge for unfolding and deploying the thin film solar array panels into a three-dimensional shape.
  • Still a further object of the invention is to use the hinges as the conductors for daisy chaining thin film solar cell panels together for conducting electrical power from the panels to a satellite power system.
  • Yet a further object of the invention is to provide an integral latch hinge for locking deployed panels in place for stiffening and strengthening a panel structure.
  • the invention is directed to a conductive hinge and latch for mechanically and electrically interconnecting and deploying panels into a deployed configuration.
  • the conductive hinge is made of a shape memory alloy with superelastic material properties enabling a small radius bend during stowage and flexible recoil return to a trained rigid hinge deployment position.
  • the hinge is further adapted into a latch for holding the hinge in a locked position after release and recoiling to rigidly locked panels into the deployment configuration.
  • the hinge is an electrical conductor enabling the hinge to function as a power bus for routing current through multiple interconnected panels to a power system the satellite payload. The hinge is sufficiently conductive enabling the use of the hinge as a solar array power bus.
  • the multiple panels may be thin film flexible solar cell panels forming a hinged solar cell array that is deployed when the hinges are released from the bent stowed position into the latched rigid deployed position.
  • Thin film solar cell arrays use extremely thin film amorphous silicon active materials.
  • the hinge is also made equally thin as a thin film material.
  • the hinge is made of an extremely flexible superelastic shape memory alloy. To minimize the stowing volume, the hinges should be made as small as possible and the hinge will allow the panels to lie flat on top of each other.
  • the shape memory metal deployment hinge is preferably used for the square and rectangular solar panels forming a powerbox solar cell array, but can be used for other interconnected solar cell panel arrays such as the powersphere comprising hexagon and pentagon flat solar cell panels.
  • the flat panels that make up a thin film deployable solar array enclosure are preferably stowed in the stack during the launch phase of a space satellite. Once on orbit, the stack of flat panels is deployed using the stored energy in the hinges so that the panels take a predetermined shape such as a rectangular powerbox or spherical powersphere.
  • the hinge is capable of supplying the mechanical energy required to cause the stowed stack of flat panels to move and unfurl, that is recoil, to the deployed position.
  • the shape memory deployment metal hinge is preferably a thin sheet nitinol (NiTi) alloy used as a deployment spring, a structural support and a locking latch. Thin sheets of the nitinol alloy can be used as a spring and can be bent around extremely small radius without breakage or permanent deformation.
  • the shape memory alloy hinge is disposed between adjacent thin film solar cell panels and can be bent to a small radius enabling the panels to stack one on top of the other with minimal spacing and therefore with maximum stowage efficiency. When stowed, the panels preferably rest on each other with no space in between the panels in order to be less susceptible to launch vibration damage and for stowage volume efficiency.
  • the shape memory metal alloy returns when released to a trained precise angle required for the connection of the panels into the predetermined three-dimensional shape without sliding parts.
  • the hinge is a thin sheet of metal that maintains the correct angle and distance between adjacent solar cell panels when the array of panels is deployed. When the array is stowed, the metal is bent, that is flexed, within elastic limits. This stowage flexing stores energy that is later used to unfold the array after launch when the array is released.
  • the hinge is a flexure type device that passively stores the energy required for deployment. After release, the hinges guide the panels during deployment and then maintains the desired deployment configuration once deployed. Thin sheets nitinol can bend around an extremely small radius without permanent deformation. When nitinol is raised in temperature to above the shape memory alloy transition training temperature, the nitinol will return to the trained configuration.
  • the sheet springs back to the original shape.
  • the on-orbit satellite releases the compressed stack of thin film panels that then unfold driven by the energy stored in the hinges located on the edges of each panel.
  • the hinge is adapted to include an integral locking latch to hold the panel in the deployment configuration.
  • the shape memory metal alloy is formed as a thin film hinge structure that is simple in shape and easy to manufacture.
  • the thin sheets of the nitinol alloy can be forged to provide the required precise final angle required to place each of the flat panels of the powersphere or powerbox into the deployment position.
  • the superelastic shape memory alloy hinge is extended to include the function of a latch that locks the deployed structure in place for improved strength, and further functions as an electrical bus that conducts current from the solar cell panels to the payload of the satellite. Incorporating the stowage, deploying, latching and conductive functions in a single hinge element, the complexity and cost of the array is reduced, and the assembly process is simplified with improved reliability.
  • FIG. 1A is a front view of a picosatellite having a deployed solar cell array.
  • FIG. 1B is a side view of the picosatellite.
  • FIG. 2 depicts a memory alloy hinge having a small bend radius during stowage.
  • FIG. 3A depicts a flat nitinol hinge.
  • FIG. 3B depicts a scalloped nitinol hinge.
  • FIG. 4 depicts a solar cell array in a stowed configuration.
  • FIG. 5A depicts a deployed hinge.
  • FIG. 5B depicts a stowed hinge.
  • FIG. 6 is a graph of a nitinol superelastic stress-strain curve.
  • FIG. 7A depicts a closed latch.
  • FIG. 7B depicts an open latch.
  • FIG. 7C depicts a locked latch.
  • a picosatellite 10 has a powerbox 12 including a top 14 and bottom 16 .
  • the powerbox 12 is formed by a plurality of rectangular panels including right side panels 18 a , 18 b , 18 c , 18 d , 18 e , and 18 f , collectively referred to as panels 18 and including left side panels 20 a , 20 b , 20 c , 20 d and 20 f , collectively referred to as panels 20 .
  • the powerbox 12 may further include identical front and back sides of panels, not shown.
  • the right side panels 18 are interconnected together and to the top 14 and the bottom 16 by hinge pairs 22 , 24 , 26 , 28 , 30 , 32 and 34 , also respectively shown as hinges 22 a and 22 b , 24 a and 24 b , 26 a and 26 b , 28 a and 28 b , 30 a and 30 b , 32 a and 32 b , and 34 a and 34 b .
  • the panels 18 a and 20 a are respectively connected to the top 14 by hinge pairs 22 and 36
  • panels 18 f and 20 f are respectively connected to the bottom 16 by hinge pairs 34 and 48 .
  • the powerbox 12 is almost completely unfolded from a compact accordion-like stowed configuration into a final deployment shape during accordion expansion and unfurling of the panels 18 and 20 during deployment of the powerbox 12 from the picosatellite 10 .
  • the thin film solar panels 18 and 20 do not bend, but remain flat, during stowage and deployment.
  • Each of the adjacent thin film solar panels 18 and 20 are interconnected by two strip hinges, for example, panels 18 b and 18 c are interconnected by hinges 26 a and 26 b , that is, hinge pair 26 .
  • the hinge can be plated at its ends with a metal of high conductivity such as silver. The silver plating is not applied to the shape memory alloy hinge in the bend area.
  • One hinge is attached to the positive contact and another attached to the negative contact located on respective sides of the thin film solar panels. The hinges alternate between the active side, i.e.
  • conductive jumpers are used to electrically connect the active side hinge with the inactive side hinge.
  • jumper 21 a provides continuity between hinges 24 a and 26 a . All hinge and jumper connections are done by electrically conductive solder.
  • the hinges are interconnected by conductive jumpers, a pair of which is jumper pair 21 , one of which is jumper 21 a electrically interconnecting hinge 26 a and the other of which is jumper 21 b electrically interconnecting hinge 26 b .
  • the hinges are interconnected to the jumpers that may be metal clips for electrically connecting together one hinge on one active side of a panel to another hinge on the other inactive side of the panel.
  • the panels 18 and 20 are secured to each other by conductive solder joints, one of which is shown as joint 49 , and secured to the top 14 and bottom 16 by respective solder joints 51 and 52 , respectively. When released, the panels 18 and 20 unfurl and accordion expand from a compressed stacked configuration to form a rigid box shape of the powerbox 12 .
  • shape memory alloys are large.
  • shape memory alloys is the inherent damping that occurs within the material as it flexes. This will remove unwanted array motion following deployment or due to environment disturbance forces.
  • shape memory alloy is electrically conductive allowing the power generated in the solar panels connected by the hinges to be passed down through them ultimately to the satellite power management system.
  • all of the hinges 58 are folded to a small radius d that is preferably only slightly larger than the total thickness of the panels 54 and 56 and hinges 58 , in addition to the solder joints 66 and 68 , so that the panels 54 and 58 can be accordion stacked in a compressed state that minimizes stowage volume when in the stowed stacked configuration.
  • the hinge 58 can be trained to assume several deployed shapes such as the shapes of a flat hinge 60 or a scalloped hinge 62 .
  • the scalloped hinge 62 offers increased rigid strength when released from the stowed position and fully returned to the final deployed position. That angle is arbitrary and is determined by the desired final shape of the deployed array once all the hinges are open.
  • the trained angle is 180° because it is desired that the powerbox walls be straight. It is conceivable that the powerbox walls could be designed to bow outwards in which case the trained angle would be greater than 180°.
  • the 32 panels that comprise the array have hinges between them trained to an angle of 142° in order to realize a spherical shape when all of the panels are deployed.
  • the stowed angle of a hinge is always 0°.
  • the hinge by being soldered to the panels, holds the distance between cells fixed. This also effects the shape of the final deployed array.
  • the shape memory metal deployment hinge 58 can be fabricated out of 0.7 mm thick foil of nitinol (NiTi) alloy.
  • a strip of the shape memory alloy foil may be one quarter inch wide.
  • the strip is disposed in a mold, not shown, that is then heated to approximately 500° C. and forged over the mold to train the foil to the relative angle between the two panels 54 and 56 .
  • the NiTi alloy foil in the fixture would together then be quenched in order to cause the NiTi alloy to permanently have the relative angle as shown for example in FIG. 5A.
  • the two panels 54 and 56 are bonded or soldered to the NiTi alloy foil strip completing the hinge assembly.
  • the hinge 58 can then be folded back on itself to form a zero degree fold of the hinge so that the panel 54 and 56 are parallel to each other for compressed stacking during stowage.
  • a hinge 58 is a flexure hinge that is made as a very thin planar sheet.
  • the hinge 58 should have a large maximum elastic strain limit, for example of up to 8%, a bending axis for zero-power deployment utilizing the energy stored in the elastic strain when stowed.
  • the hinge 58 also offers damping of oscillations of the hinge due to the hysteresis in the stress-strain cycle.
  • the hinge 58 is electrically conductive for routing power from the interconnected panels 54 and 56 .
  • the formed angle of any hinge 58 can be independently determined from hinge to hinge to form an arbitrary enclosed volume or surface of panels that are preferably flat panels 54 and 56 .
  • nitinol has a maximum elastic strain limit that may be as high as 8%.
  • the maximum elastic strain determines the smallest bend diameter of the stowed flexure hinge 58 .
  • a nitinol hinge will stow thin film solar cells with improved packaging efficiency.
  • the nitinol flexure hinge allows for a slow deployment of a structure. The rate of deployment can be further controlled by ohmically heating the hinge when conducting power through the hinge. Deliberate heating for subsequent actuation is not needed when the hinge is used above the shape memory alloy transition temperature or used as a power bus conducting power that will slowly warm the hinge to control the deployment rate.
  • the nitinol hinge can be used as a hinge between the panels as well as an electrical bus to conduct the power. As that current passes through the nitinol hinge, the resistive losses cause the hinge to heat to deploy the panel at a predetermined rate.
  • the flexure hinge of very thin nitinol material allows the most efficient packaging of thin film solar cells for a deployable array.
  • the hinge can be configured for intricate arrays because no elaborate pulley mechanisms are required. That is, each panel unfolds under power of the stored energy in the flexing hinge.
  • superelastic shape memory alloys have an elastic strain region that is elongated as shown. Initially, the stress is proportional to the strain. However, at a point where the elastic strain limit of a nonsuperelastic metal is reached, the shape memory alloy performs a reversible crystal structure phase change. As a result, the elastic strain limit ⁇ m is shifted substantially along the deformation strain axis, for example, to almost 8% for NiTi in tension. Practically, the 8% is only valid for one superelastic tension cycle of the metal. When more cycles are required, the maximum operating strain should be reduced, for example, for one hundred cycles, a maximum tensile strain of 6% may be used.
  • a second aspect of the invention is the latch hinge.
  • the scallop hinge 62 and the coil hinge 70 function as both a hinge and a latch.
  • the scallop hinge 62 has a first hinge axis defining a stowage bend, and a second latch axis defining the scallop bend, and as such, the scallop hinge 62 is a form of the latch hinge 70 , unfolding about two different axes.
  • the coil hinge 70 also has a first hinge axis defining the stowage bend and a second latch axis defining a coil bend.
  • the coil latch 70 functions by rolling up and forming a coil whose axis is orthogonal to the hinge stowage axis and thereby prevents any further hinge angular motion once the latch fully coils.
  • the latch 70 is integral to the hinge because a latch portion is formed by cutting the shape memory alloy sheet used for the hinge so that the hinge foil has a tab 70 that can coil. That tab is trained to roll up to a coil when the hinge is deployed. In the stowed position the coil is unrolled and folded to the same radius as the hinge, thereby preventing latching during stowage.
  • the hinge function is characterized as having a traverse bend with the hinge axis of bending orthogonal to the aligned interconnected panels 54 and 56 .
  • the latch function is characterized as having a longitudinal bend with the latch axis of uncoiling parallel with the aligned interconnected panels 54 and 56 .
  • the hinge and latch axes of bending need only be at a different orientation from each other to add strength to the hinge to lock the panels in place.
  • the hinge bending axis is orthogonal to the latch coil axis.
  • the latch hinges 62 and 70 firstly unbend along the traverse hinge axis to angularly position the panels 54 and 56 relative to each other.
  • the latch hinges 62 and 70 then unbend along the longitudinal latch axis to lock the panels in place at that relative angular position.
  • the scallop hinge 62 is characterized by having a longitudinal scallop bend and the coil hinge is characterized by having a longitudinal coil bend.
  • a suitable sized hinge is placed in a fixture, not shown, and raised to a training temperature 80 through the crystal transition phase.
  • the fixture can be a mold that holds the hinge when deformed 82 into the desired shape with the desired bend angle when the shape memory alloy material is in the austeutit phase.
  • the material is then quenched and cooled down 84 to below the training temperature so as to complete the training of the material.
  • Many shape memory alloy hinges are needed so that steps 80 through 84 are repeated a number of times to train several hinges.
  • the hinges are secured to the panels by bonding and or soldering or both. Then, the hinges are forcibly folded and elastically strained as the panels are folded into the stowed configuration, and, held in the stowed configuration so as to store potential energy for subsequent return to the trained configuration after release. The hinges will return to the trained configuration when released dissipating the potential energy during hinge unfolding motion.
  • the hinges may be further interconnected together, using electrical jumpers for example in the case of conducting collected solar power.
  • the hinged panels are then secured in the stowed position for subsequent release.
  • the securing means may be a fuse wire that is opened when desired.
  • the hinged panels are then released with the hinges returning to the trained configuration as the panel move to and are latched into the deployed position.
  • the construction of an interconnected thin film solar cell panels can be made in any two-dimensional shape.
  • Thin film cells are very flexible when constructed around a thin polyimide core.
  • monolithic interconnects cells can be partitioned and connected in series thereby raising the voltage seen at the contacts.
  • the back side of the cells is electrically isolated with both electrical contacts located on the same side as an active region.
  • the next step in constructing the rectilinear array is to build the array in z-folds. First, the rectangular thin film solar cells are laid out in a row.
  • the silver plated superelastic NiTi alloy strips are soldered to the contacts on the front side of each end of the solar cells.
  • the unplated bent hinge regions of the strips are aligned with the gap between adjacent cells.
  • the jumpers are installation interconnecting the strips.
  • Adjacent hinges are on opposite sides of the solar cell panel.
  • the alternating opposite side displacement of the hinges prevents any hinge from being located on the inside of a bending fold.
  • the hinges are located on the outside of each bend. While this preserves the integrity of the mechanical hinge, it fragments the electrical bus of interconnecting hinges.
  • very thin jumpers of copper or silver foil are installed to electrically connect the hinges together for continuity as a power bus.
  • the final step is the connection of top and bottom z-folded panels to the top and bottom of the picosatellite stowing the array.
  • a fuse wire not shown, can be used to hold the panels in the stowed configuration and subsequently fired for releasing the hinges.
  • the present invention is directed towards memory shape alloy latch hinges for interconnecting, power distributing, deploying, and latching solar cell panels forming a power source, but can generally be applied to any set of panels desired to be interconnected for forming a contiguous surface.

Abstract

A conductive hinge is made of a superelastic shape memory alloy such as nitinol (NiTi) having a large elastic strain limit for enabling the hinge to bend to a small radius during stowage for flexible return to a trained rigid hinge position by training the shape memory alloy to assume a predetermined deployed configuration when released from a stowage configuration. The hinge is trained by forging at a temperature above a training temperature. The hinge is released to deploy solar cell panels as the hinges unfold to the forged trained deployed configuration.

Description

    REFERENCE TO RELATED APPLICATION
  • The present application is related to applicant's copending application entitled “Power Sphere”, Ser. No. ______, filed ______. [0001]
  • The present application is related to applicant's copending application entitled “Conductive Shape Memory Metal Deployment Latch Hinge”, Ser. No. ______, filed ______.[0002]
  • FIELD OF THE INVENTION
  • The invention relates to the field of metallurgy and metal alloy mechanical hinges. More particularly, the present invention relates to shape memory alloys trained as hinges for compressed stowing and recoiled deploying of three-dimensional enclosure of panels. [0003]
  • BACKGROUND OF THE INVENTION
  • The development of microsatellites and nanosatellites low earth orbits requires the collection of sufficient power for onboard instruments with low weight in a low volume spacecraft. Power generation methods for very small satellites of less that ten kilograms are desirable for these small satellites. Thin film solar arrays are useful power sources for small satellites. One problem faced by these low weight and low volume spacecraft is the collection of sufficient power for onboard instruments and propulsion. Body-mounted solar cells may be incapable of providing enough power when the overall surface area of a microsatellite or nanosatellite is small. Deployment of traditional planar rigid large solar arrays necessitates larger satellite volumes and weights and also requires extra apparatus needed for attitude pointing. One way to provide power to a small spacecraft is the use of roughly spherical deployable power system such as a solar powersphere that offers a relatively high collection area with low weight and low stowage volume without the need for a solar array pointing mechanism. The powersphere deployment scheme requires a deployment hinge that would move the individual hexagon and pentagon flat panels of the powersphere from a stacked configuration to an unfolded configuration where the individual panels would form a spherical structure resembling a soccer ball upon completion of the deployment sequence. The powersphere requires deployment hinges that serve to move the individual hexagon and pentagon flat panels of the powersphere from a stacked configuration to an unfolded configuration where the individual panels would form a spherical structure upon completion of the deployment sequence. Each of the panels has at least one hinge to adjacent panels. The panels should be locked into place and maintained at a precise angle relative to each connected panel to form the spherical shape. The flat hexagon and pentagon panels approximate an omnidirectional sphere. A combination of hexagon and pentagon shaped panels are used to form a soccer ball panel configuration when fully deployed. The interconnecting deployment hinges serve to position the individual flat panels of the powersphere from a stacked configuration to the deployed position forming the sphere of solar panels. The panels are hinged to one another and deploy to a precise angular position into the final shape that is preferably spherical rather than oblong or some other undesirable shape. Ideally this deployment mechanism would be fabricated from a thin film material that would have the properties to effect the mechanical positioning deployment and serve as structural elements for holding and locking each of the panels in respective positions about the powersphere. [0004]
  • Another type of microsatellite having an power enclosure uses a powerbox that is a three-dimensional solar array shape having rectangular shaped flat panels that would also deploy from a stowed flat configuration into a box shape configuration. The powerbox consists ideally of similarly shaped panels interconnected with hinges fabricated from a thin material that would have the properties to perfect the mechanical deployment and also be a structural element for locking each of the panels into respective positions. Hence, the powerbox would also require hinges that serve to move and lock the flat solar panels into position during deployment. Regardless of the final exterior shape of the three-dimensional power enclosure of a nanosatellite or microsatellite, a hinge mechanism is needed for deployment of the flat solar panels to cause the transition from the stowed configuration to the desired final array shape. Hence, there exists a need for positioning hinges between the flat panels forming a power collecting enclosure formed from the deployed solar array flat panels to realize any number of complex three dimensional solar array exterior surfaces used for solar power collection. However, the interconnecting hinges present a power conduction problem of routing collected converted power from the flat solar array panels to the payload of the spacecraft. Electrical conductivity of the hinge could be used to route signals and power about the power enclosure without the use of separate power lines for communicating power from the solar cell panels to the spacecraft payload. The hinges should be made of conventional materials. The hinge material could be a polymer as a flexure type hinge. But polymers are unstable and relax by cold flowing when stressed for any length of time. Polymer materials can also have undesirable outgassing properties and are generally not good electrical conductors. Polymer materials also have very low Young's moduli that reduces the deployment energy that can be stored in the hinge while stowed and later used to deploy and position the panels. Spring metals such as hardened stainless steel, beryllium copper or phosphorous bronze are commonly used as flexure type spring hinges. These spring metals have large Young's moduli, low outgassing characteristics, good electrical conductivity and will not cold flow, but spring metals have very small maximum elastic strains of 1% or less, and hence are unsuitable as deployment hinges because the steel spring hinges with interconnected panels will not stow compactly. These and other disadvantages are solved or reduced using the invention. [0005]
  • SUMMARY OF THE INVENTION
  • An object of the invention is to provide a deployment hinge for interconnecting and deploying panels from a stowed configuration into a deployment configuration. [0006]
  • Another object of the invention is to provide a deployment conductive hinge for mechanically and electrically interconnecting and deploying solar cell panels from a stowed configuration into a deployment configuration. [0007]
  • Yet another object of the invention is to provide an integral deployment latch for locking deployed panels into a deployment configuration. [0008]
  • Still another object of the invention is to provide a conductive deployment latching hinge for mechanically moving and locking and electrically interconnecting panels into a deployment configuration forming a power enclosure of a satellite. [0009]
  • Yet another object of the invention is to provide a compact hinge for interconnecting thin film solar panels, for enabling the panels to be stowed compactly, and for unfolding the panels into a large area three-dimensional array of a predetermined shape. [0010]
  • A further object of the invention is to store the energy necessary within an interconnecting hinge for unfolding and deploying the thin film solar array panels into a three-dimensional shape. [0011]
  • Still a further object of the invention is to use the hinges as the conductors for daisy chaining thin film solar cell panels together for conducting electrical power from the panels to a satellite power system. [0012]
  • Yet a further object of the invention is to provide an integral latch hinge for locking deployed panels in place for stiffening and strengthening a panel structure. [0013]
  • The invention is directed to a conductive hinge and latch for mechanically and electrically interconnecting and deploying panels into a deployed configuration. In a first aspect, the conductive hinge is made of a shape memory alloy with superelastic material properties enabling a small radius bend during stowage and flexible recoil return to a trained rigid hinge deployment position. In a second aspect of the invention, the hinge is further adapted into a latch for holding the hinge in a locked position after release and recoiling to rigidly locked panels into the deployment configuration. In a third aspect, the hinge is an electrical conductor enabling the hinge to function as a power bus for routing current through multiple interconnected panels to a power system the satellite payload. The hinge is sufficiently conductive enabling the use of the hinge as a solar array power bus. [0014]
  • The multiple panels may be thin film flexible solar cell panels forming a hinged solar cell array that is deployed when the hinges are released from the bent stowed position into the latched rigid deployed position. Thin film solar cell arrays use extremely thin film amorphous silicon active materials. Hence, the hinge is also made equally thin as a thin film material. In order to stow thin film solar cell arrays in the most compact manner, the hinge is made of an extremely flexible superelastic shape memory alloy. To minimize the stowing volume, the hinges should be made as small as possible and the hinge will allow the panels to lie flat on top of each other. [0015]
  • The shape memory metal deployment hinge is preferably used for the square and rectangular solar panels forming a powerbox solar cell array, but can be used for other interconnected solar cell panel arrays such as the powersphere comprising hexagon and pentagon flat solar cell panels. The flat panels that make up a thin film deployable solar array enclosure are preferably stowed in the stack during the launch phase of a space satellite. Once on orbit, the stack of flat panels is deployed using the stored energy in the hinges so that the panels take a predetermined shape such as a rectangular powerbox or spherical powersphere. The hinge is capable of supplying the mechanical energy required to cause the stowed stack of flat panels to move and unfurl, that is recoil, to the deployed position. [0016]
  • The shape memory deployment metal hinge is preferably a thin sheet nitinol (NiTi) alloy used as a deployment spring, a structural support and a locking latch. Thin sheets of the nitinol alloy can be used as a spring and can be bent around extremely small radius without breakage or permanent deformation. The shape memory alloy hinge is disposed between adjacent thin film solar cell panels and can be bent to a small radius enabling the panels to stack one on top of the other with minimal spacing and therefore with maximum stowage efficiency. When stowed, the panels preferably rest on each other with no space in between the panels in order to be less susceptible to launch vibration damage and for stowage volume efficiency. The shape memory metal alloy returns when released to a trained precise angle required for the connection of the panels into the predetermined three-dimensional shape without sliding parts. [0017]
  • The hinge is a thin sheet of metal that maintains the correct angle and distance between adjacent solar cell panels when the array of panels is deployed. When the array is stowed, the metal is bent, that is flexed, within elastic limits. This stowage flexing stores energy that is later used to unfold the array after launch when the array is released. The hinge is a flexure type device that passively stores the energy required for deployment. After release, the hinges guide the panels during deployment and then maintains the desired deployment configuration once deployed. Thin sheets nitinol can bend around an extremely small radius without permanent deformation. When nitinol is raised in temperature to above the shape memory alloy transition training temperature, the nitinol will return to the trained configuration. When the trained sheet is released, the sheet springs back to the original shape. The on-orbit satellite releases the compressed stack of thin film panels that then unfold driven by the energy stored in the hinges located on the edges of each panel. To aid in rigidly holding the panels in place after deployment, the hinge is adapted to include an integral locking latch to hold the panel in the deployment configuration. [0018]
  • The shape memory metal alloy is formed as a thin film hinge structure that is simple in shape and easy to manufacture. The thin sheets of the nitinol alloy can be forged to provide the required precise final angle required to place each of the flat panels of the powersphere or powerbox into the deployment position. The superelastic shape memory alloy hinge is extended to include the function of a latch that locks the deployed structure in place for improved strength, and further functions as an electrical bus that conducts current from the solar cell panels to the payload of the satellite. Incorporating the stowage, deploying, latching and conductive functions in a single hinge element, the complexity and cost of the array is reduced, and the assembly process is simplified with improved reliability. These and other advantages will become more apparent from the following detailed description of the preferred embodiment. [0019]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1A is a front view of a picosatellite having a deployed solar cell array. [0020]
  • FIG. 1B is a side view of the picosatellite. [0021]
  • FIG. 2 depicts a memory alloy hinge having a small bend radius during stowage. [0022]
  • FIG. 3A depicts a flat nitinol hinge. [0023]
  • FIG. 3B depicts a scalloped nitinol hinge. [0024]
  • FIG. 4 depicts a solar cell array in a stowed configuration. [0025]
  • FIG. 5A depicts a deployed hinge. [0026]
  • FIG. 5B depicts a stowed hinge. [0027]
  • FIG. 6 is a graph of a nitinol superelastic stress-strain curve. [0028]
  • FIG. 7A depicts a closed latch. [0029]
  • FIG. 7B depicts an open latch. [0030]
  • FIG. 7C depicts a locked latch. [0031]
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
  • An embodiment of the invention is described with reference to the figures using reference designations as shown in the figures. Referring to FIGS. 1A, 1B and [0032] 2, a picosatellite 10 has a powerbox 12 including a top 14 and bottom 16. The powerbox 12 is formed by a plurality of rectangular panels including right side panels 18 a, 18 b, 18 c, 18 d, 18 e, and 18 f, collectively referred to as panels 18 and including left side panels 20 a, 20 b, 20 c, 20 d and 20 f, collectively referred to as panels 20. For convenience, only the right and left sides of the powerbox 12 are shown, but it is understood that the powerbox 12 may further include identical front and back sides of panels, not shown. The right side panels 18 are interconnected together and to the top 14 and the bottom 16 by hinge pairs 22, 24, 26, 28, 30, 32 and 34, also respectively shown as hinges 22 a and 22 b, 24 a and 24 b, 26 a and 26 b, 28 a and 28 b, 30 a and 30 b, 32 a and 32 b, and 34 a and 34 b. The panels 18 a and 20 a are respectively connected to the top 14 by hinge pairs 22 and 36, and panels 18 f and 20 f are respectively connected to the bottom 16 by hinge pairs 34 and 48. As shown, the powerbox 12 is almost completely unfolded from a compact accordion-like stowed configuration into a final deployment shape during accordion expansion and unfurling of the panels 18 and 20 during deployment of the powerbox 12 from the picosatellite 10. The thin film solar panels 18 and 20 do not bend, but remain flat, during stowage and deployment.
  • Each of the adjacent thin film solar panels [0033] 18 and 20 are interconnected by two strip hinges, for example, panels 18 b and 18 c are interconnected by hinges 26 a and 26 b, that is, hinge pair 26. To improve the electrical conductivity, the hinge can be plated at its ends with a metal of high conductivity such as silver. The silver plating is not applied to the shape memory alloy hinge in the bend area. One hinge is attached to the positive contact and another attached to the negative contact located on respective sides of the thin film solar panels. The hinges alternate between the active side, i.e. outward facing from the box, such as hinges 22, 26, 30, and 34 and the inactive side, inward facing from the box, such as hinges 24, 28, and 32 of the thin film solar panels. This is necessary for mechanical success of accordion folding. To maintain electrical conductivity between the hinges in order to form a power bus down to the satellite power management system, conductive jumpers are used to electrically connect the active side hinge with the inactive side hinge. For example, jumper 21 a provides continuity between hinges 24 a and 26 a. All hinge and jumper connections are done by electrically conductive solder. The hinges are interconnected by conductive jumpers, a pair of which is jumper pair 21, one of which is jumper 21 a electrically interconnecting hinge 26 a and the other of which is jumper 21 b electrically interconnecting hinge 26 b. The hinges are interconnected to the jumpers that may be metal clips for electrically connecting together one hinge on one active side of a panel to another hinge on the other inactive side of the panel. The panels 18 and 20 are secured to each other by conductive solder joints, one of which is shown as joint 49, and secured to the top 14 and bottom 16 by respective solder joints 51 and 52, respectively. When released, the panels 18 and 20 unfurl and accordion expand from a compressed stacked configuration to form a rigid box shape of the powerbox 12.
  • Referring to FIGS. 1 through 5B, and two [0034] panels 54 and 56 when in the deployed position return to a trained relative angle, for example, of 180° as in FIG. 3, or 142° as shown in FIG. 5A. To minimize the hinge stowed diameter d, the elastic strain limit of shape memory alloys is large. A further benefit of shape memory alloys is the inherent damping that occurs within the material as it flexes. This will remove unwanted array motion following deployment or due to environment disturbance forces. Another benefit of shape memory alloy is that it is electrically conductive allowing the power generated in the solar panels connected by the hinges to be passed down through them ultimately to the satellite power management system. When in the stacked stowed configuration, all of the hinges 58 are folded to a small radius d that is preferably only slightly larger than the total thickness of the panels 54 and 56 and hinges 58, in addition to the solder joints 66 and 68, so that the panels 54 and 58 can be accordion stacked in a compressed state that minimizes stowage volume when in the stowed stacked configuration. The hinge 58 can be trained to assume several deployed shapes such as the shapes of a flat hinge 60 or a scalloped hinge 62. The scalloped hinge 62 offers increased rigid strength when released from the stowed position and fully returned to the final deployed position. That angle is arbitrary and is determined by the desired final shape of the deployed array once all the hinges are open. For the powerbox example, the trained angle is 180° because it is desired that the powerbox walls be straight. It is conceivable that the powerbox walls could be designed to bow outwards in which case the trained angle would be greater than 180°. In the case of the powersphere thin film solar array shape, the 32 panels that comprise the array have hinges between them trained to an angle of 142° in order to realize a spherical shape when all of the panels are deployed. For both the powersphere and powerbox array shapes, the stowed angle of a hinge is always 0°. Furthermore the hinge, by being soldered to the panels, holds the distance between cells fixed. This also effects the shape of the final deployed array.
  • The shape memory [0035] metal deployment hinge 58 can be fabricated out of 0.7 mm thick foil of nitinol (NiTi) alloy. A strip of the shape memory alloy foil may be one quarter inch wide. The strip is disposed in a mold, not shown, that is then heated to approximately 500° C. and forged over the mold to train the foil to the relative angle between the two panels 54 and 56. The NiTi alloy foil in the fixture would together then be quenched in order to cause the NiTi alloy to permanently have the relative angle as shown for example in FIG. 5A. The two panels 54 and 56 are bonded or soldered to the NiTi alloy foil strip completing the hinge assembly. The hinge 58 can then be folded back on itself to form a zero degree fold of the hinge so that the panel 54 and 56 are parallel to each other for compressed stacking during stowage.
  • A [0036] hinge 58 is a flexure hinge that is made as a very thin planar sheet. The hinge 58 should have a large maximum elastic strain limit, for example of up to 8%, a bending axis for zero-power deployment utilizing the energy stored in the elastic strain when stowed. The hinge 58 also offers damping of oscillations of the hinge due to the hysteresis in the stress-strain cycle. The hinge 58 is electrically conductive for routing power from the interconnected panels 54 and 56. Also, the formed angle of any hinge 58 can be independently determined from hinge to hinge to form an arbitrary enclosed volume or surface of panels that are preferably flat panels 54 and 56.
  • Referring to FIGS. 1A through 6, nitinol has a maximum elastic strain limit that may be as high as 8%. The maximum elastic strain determines the smallest bend diameter of the stowed [0037] flexure hinge 58. A nitinol hinge will stow thin film solar cells with improved packaging efficiency. The nitinol flexure hinge allows for a slow deployment of a structure. The rate of deployment can be further controlled by ohmically heating the hinge when conducting power through the hinge. Deliberate heating for subsequent actuation is not needed when the hinge is used above the shape memory alloy transition temperature or used as a power bus conducting power that will slowly warm the hinge to control the deployment rate. Hence, the nitinol hinge can be used as a hinge between the panels as well as an electrical bus to conduct the power. As that current passes through the nitinol hinge, the resistive losses cause the hinge to heat to deploy the panel at a predetermined rate. The flexure hinge of very thin nitinol material allows the most efficient packaging of thin film solar cells for a deployable array. The hinge can be configured for intricate arrays because no elaborate pulley mechanisms are required. That is, each panel unfolds under power of the stored energy in the flexing hinge.
  • Referring particularly to FIG. 6, superelastic shape memory alloys have an elastic strain region that is elongated as shown. Initially, the stress is proportional to the strain. However, at a point where the elastic strain limit of a nonsuperelastic metal is reached, the shape memory alloy performs a reversible crystal structure phase change. As a result, the elastic strain limit ε[0038] m is shifted substantially along the deformation strain axis, for example, to almost 8% for NiTi in tension. Practically, the 8% is only valid for one superelastic tension cycle of the metal. When more cycles are required, the maximum operating strain should be reduced, for example, for one hundred cycles, a maximum tensile strain of 6% may be used. The nitinol NiTi alloy ratio used is 55.8% Ni and has a transformation temperature Af=0° C. As long as the temperature of the alloy is above Af, then the material will exhibit stress-strain behavior bounded by the stress-strain curve. In the open position, the hinge moves precisely to the desired final angle. The inside bend diameter d is related to the deformation strain of the material and the thickness of the material. That is, d=t(1−ε)/ε where ε is the deformation strain of the material and t is the thickness. A diameter of d=0.016 inches is sufficient to package a double-sided thin film solar cell array in accordion stowage, where each cell is 0.010 inches thick. However, it is not small enough for the single-sided thin film solar cell array where each cell is 0.006 inches thick. For this, a NiTi sheet even thinner than t=0.001 inches will be needed in order that the array will efficiency stow with the panels in abutting each other in planar contact.
  • Referring to all of the figures and more particularly FIGS. 4B, 7A, [0039] 7B and 7C, a second aspect of the invention is the latch hinge. The scallop hinge 62 and the coil hinge 70 function as both a hinge and a latch. The scallop hinge 62 has a first hinge axis defining a stowage bend, and a second latch axis defining the scallop bend, and as such, the scallop hinge 62 is a form of the latch hinge 70, unfolding about two different axes. The coil hinge 70 also has a first hinge axis defining the stowage bend and a second latch axis defining a coil bend. The coil latch 70 functions by rolling up and forming a coil whose axis is orthogonal to the hinge stowage axis and thereby prevents any further hinge angular motion once the latch fully coils. The latch 70 is integral to the hinge because a latch portion is formed by cutting the shape memory alloy sheet used for the hinge so that the hinge foil has a tab 70 that can coil. That tab is trained to roll up to a coil when the hinge is deployed. In the stowed position the coil is unrolled and folded to the same radius as the hinge, thereby preventing latching during stowage. The hinge function is characterized as having a traverse bend with the hinge axis of bending orthogonal to the aligned interconnected panels 54 and 56. The latch function is characterized as having a longitudinal bend with the latch axis of uncoiling parallel with the aligned interconnected panels 54 and 56. The hinge and latch axes of bending need only be at a different orientation from each other to add strength to the hinge to lock the panels in place. In the preferred form, the hinge bending axis is orthogonal to the latch coil axis. The latch hinges 62 and 70 firstly unbend along the traverse hinge axis to angularly position the panels 54 and 56 relative to each other. The latch hinges 62 and 70 then unbend along the longitudinal latch axis to lock the panels in place at that relative angular position. The scallop hinge 62 is characterized by having a longitudinal scallop bend and the coil hinge is characterized by having a longitudinal coil bend.
  • Referring to FIG. 8, in forming the hinges, a suitable sized hinge is placed in a fixture, not shown, and raised to a [0040] training temperature 80 through the crystal transition phase. When the material is placed in fixture and strained, stress forces are created in the material. The stress forces are relieved when the material is heated to the training temperature. The fixture can be a mold that holds the hinge when deformed 82 into the desired shape with the desired bend angle when the shape memory alloy material is in the austeutit phase. The material is then quenched and cooled down 84 to below the training temperature so as to complete the training of the material. Many shape memory alloy hinges are needed so that steps 80 through 84 are repeated a number of times to train several hinges. The hinges are secured to the panels by bonding and or soldering or both. Then, the hinges are forcibly folded and elastically strained as the panels are folded into the stowed configuration, and, held in the stowed configuration so as to store potential energy for subsequent return to the trained configuration after release. The hinges will return to the trained configuration when released dissipating the potential energy during hinge unfolding motion. The hinges may be further interconnected together, using electrical jumpers for example in the case of conducting collected solar power. The hinged panels are then secured in the stowed position for subsequent release. The securing means may be a fuse wire that is opened when desired. The hinged panels are then released with the hinges returning to the trained configuration as the panel move to and are latched into the deployed position.
  • The construction of an interconnected thin film solar cell panels can be made in any two-dimensional shape. Thin film cells are very flexible when constructed around a thin polyimide core. Using monolithic interconnects, cells can be partitioned and connected in series thereby raising the voltage seen at the contacts. The back side of the cells is electrically isolated with both electrical contacts located on the same side as an active region. The next step in constructing the rectilinear array is to build the array in z-folds. First, the rectangular thin film solar cells are laid out in a row. The silver plated superelastic NiTi alloy strips are soldered to the contacts on the front side of each end of the solar cells. The unplated bent hinge regions of the strips are aligned with the gap between adjacent cells. Next, the jumpers are installation interconnecting the strips. Adjacent hinges are on opposite sides of the solar cell panel. The alternating opposite side displacement of the hinges prevents any hinge from being located on the inside of a bending fold. The hinges are located on the outside of each bend. While this preserves the integrity of the mechanical hinge, it fragments the electrical bus of interconnecting hinges. Thus, very thin jumpers of copper or silver foil are installed to electrically connect the hinges together for continuity as a power bus. The final step is the connection of top and bottom z-folded panels to the top and bottom of the picosatellite stowing the array. A fuse wire, not shown, can be used to hold the panels in the stowed configuration and subsequently fired for releasing the hinges. [0041]
  • The present invention is directed towards memory shape alloy latch hinges for interconnecting, power distributing, deploying, and latching solar cell panels forming a power source, but can generally be applied to any set of panels desired to be interconnected for forming a contiguous surface. Those skilled in the art can make enhancements, improvements, and modifications to the invention, and these enhancements, improvements, and modifications may nonetheless fall within the spirit and scope of the following claims. [0042]

Claims (16)

What is claimed is:
1. A method of forming a hinge for moving panels from a stowed position to a deploy position for forming a hinged surface of panels, the method comprising the steps of,
heating a shape memory alloy to above a crystal transition temperature,
deforming the shape memory alloy as the hinge when above the training temperature to train the shape memory alloy to the deployed position, the hinge being trained to return to the deployed position when release from the stowed position, and
cooling the shape memory alloy to below the crystal transition temperature.
2. The method of claim 1 wherein,
the deforming trains the hinge to return to the deployed position by unbending about a hinge axis, the hinge for bending about the hinge axis when placing the hinge in the stowed position, the hinge returning to the deployed position when release from the stowed position.
3. The method of claim 1 further comprising the steps of,
securing a proximal end of hinge to a first panel of the panels,
securing a distal end of the hinge to a second panel of the panels, and
bending the hinge to position the hinge and the first and second panels in the stowed position.
4. The method of claim 1 further comprising the steps of,
securing a proximal end of hinge to a first panel of the panels,
securing a distal end of the hinge to a second panel of the panels,
bending the hinge to position the hinge and the first and second panels in the stowed position, and
releasing the hinge to return the hinge to the deployed position for moving the panels to the deployed position for forming the hinged surface.
5. The method of claim 4 further comprising the step of,
deforming the shape memory alloy to above the training temperature to train the shape memory alloy to lock in the deployed position, the hinge being trained to unbend about a latch axis to lock the hinge into the deployed position for locking the panels in the deployed position.
6. The method of claim 4 further comprising the step of,
deforming the shape memory alloy to above the training temperature to train the shape memory alloy to lock in the deployed position, the hinge being trained to unbend about a latch axis to lock the hinge into the deployed position for locking the panels in the deployed position, the latch axis being orthogonal to the hinge axis.
7. The method of claim 4 wherein,
the panels are solar panels, and
the shape memory alloy is nitinol.
8. The method of claim 4 further comprising the step of,
plating the shape memory alloy to increase the conductivity of the shape memory alloy.
9. A method of forming a hinged surface of panels, the method comprising the steps of,
forming hinges from a shape memory alloy, each of the hinges having a proximal end for securing to a first panel of the panels and a distal end for securing to a second panel of the panels,
heating each of the hinges to above a training temperature of the shape memory alloy,
deforming the hinges when above the training temperature to train the hinges to a deployed position, the hinges being trained to return to the deployed position when released from a stowed position, and
cooling the hinges to below the training temperature, and
securing the hinges to the panels, the panels forming the hinged surface when interconnected together by the hinges when in the deployed position.
10. The method of claim 9 wherein,
the shape memory alloy is conductive, and
the panels are solar panels,
the method further comprising the steps of,
interconnecting together the hinges for forming a power bus for conducting current from the solar panels.
11. The method of claim 9 further comprising the step of,
deforming the hinges when above the training temperature to train the hinges to unbend about a latch axis for locking the hinges into the deployed position for locking the panels into the deployed position.
12. The method of claim 9 further comprising the step of,
bending the hinges about a hinge axis for bending the hinges into a stowed position.
13. The method of claim 9 further comprising the step of,
bending the hinges about a hinge axis for bending the hinges into a stowed position, and
releasing the hinges for unbending about the hinge axis to return the hinges to the deployed position for deploying the panels to the deployed position for forming the hinged surface.
14. The method of claim 9 wherein,
the shape memory alloy is nitinol,
the panels are solar panels, and
the hinged surface is a solar cell array.
15. The method of claim 9 wherein,
the shape memory alloy is nitinol,
the panels are solar panels, and
the hinged surface is a powerbox.
16. The method of claim 9 wherein,
the shape memory alloy is nitinol,
the panels are solar panels, and
the hinged surface is a powersphere.
US09/886,417 2001-06-21 2001-06-21 Conductive shape memory metal deployment latch hinge deployment method Abandoned US20020195177A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US09/886,417 US20020195177A1 (en) 2001-06-21 2001-06-21 Conductive shape memory metal deployment latch hinge deployment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US09/886,417 US20020195177A1 (en) 2001-06-21 2001-06-21 Conductive shape memory metal deployment latch hinge deployment method

Publications (1)

Publication Number Publication Date
US20020195177A1 true US20020195177A1 (en) 2002-12-26

Family

ID=25389014

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/886,417 Abandoned US20020195177A1 (en) 2001-06-21 2001-06-21 Conductive shape memory metal deployment latch hinge deployment method

Country Status (1)

Country Link
US (1) US20020195177A1 (en)

Cited By (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1568527A1 (en) * 2004-02-27 2005-08-31 Faurecia Interieur Industrie Improved sun visor for motor vehicle and vehicle door with such sun visor.
US7275285B1 (en) * 2004-11-15 2007-10-02 Lockheed Martin Corporation Deployment hinge
US20090072094A1 (en) * 2007-02-02 2009-03-19 Sanderson Terry M Methods and apparatus for adjustable surfaces
US20090283936A1 (en) * 2008-05-14 2009-11-19 Sanderson Terry M Structure with reconfigurable polymer material
US20090286101A1 (en) * 2008-05-14 2009-11-19 Sar David R Shape-changing structure with superelastic foam material
US20090283643A1 (en) * 2008-05-14 2009-11-19 Sar David R Shape-changing structure member with embedded spring
US20100000991A1 (en) * 2008-07-02 2010-01-07 Henry Christopher P Thermally activated variable stiffness composites for aircraft seals
US20100116937A1 (en) * 2008-11-13 2010-05-13 Sanderson Terry M Collapsible wing beams and method
US20100127130A1 (en) * 2008-11-25 2010-05-27 Rudy A Eisentraut Reconfigurable wing and method of use
US20100148011A1 (en) * 2008-11-12 2010-06-17 Sanderson Terry M Telescoping structure and method
US20100243808A1 (en) * 2009-03-27 2010-09-30 Sanderson Terry M Shape-change material and method
EP2461065A1 (en) * 2010-12-06 2012-06-06 Centre National d'Etudes Spatiales ( C.N.E.S.) Hinge device with a strand bundle in a shape memory material
US20130043354A1 (en) * 2011-08-16 2013-02-21 Moushumi Shome Variable camber fluid-dynamic body utilizing optimized smart materials
US8387536B2 (en) 2008-12-04 2013-03-05 Raytheon Company Interceptor vehicle with extendible arms
US20130229759A1 (en) * 2012-03-02 2013-09-05 David Otto Whitt, III Input Device Assembly
US8864065B2 (en) 2011-11-04 2014-10-21 Raytheon Company Chord-expanding air vehicle wings
EP2770200A3 (en) * 2013-02-26 2014-11-26 The Boeing Company Methods and systems for shape memory alloy structures
US9073123B2 (en) 2012-06-13 2015-07-07 Microsoft Technology Licensing, Llc Housing vents
US9075566B2 (en) 2012-03-02 2015-07-07 Microsoft Technoogy Licensing, LLC Flexible hinge spine
US9111703B2 (en) 2012-03-02 2015-08-18 Microsoft Technology Licensing, Llc Sensor stack venting
US20150271957A1 (en) * 2014-03-20 2015-09-24 Hamilton Sundstrand Corporation Cooling flow optimization
US9298236B2 (en) 2012-03-02 2016-03-29 Microsoft Technology Licensing, Llc Multi-stage power adapter configured to provide a first power level upon initial connection of the power adapter to the host device and a second power level thereafter upon notification from the host device to the power adapter
US9304549B2 (en) 2013-03-28 2016-04-05 Microsoft Technology Licensing, Llc Hinge mechanism for rotatable component attachment
US20160102689A1 (en) * 2014-10-10 2016-04-14 The Boeing Company Marman Clamp With A Shape Memory Alloy Actuator
US9348605B2 (en) 2012-05-14 2016-05-24 Microsoft Technology Licensing, Llc System and method for accessory device architecture that passes human interface device (HID) data via intermediate processor
US20160208539A1 (en) * 2013-10-31 2016-07-21 Electrolux Appliances Aktiebolag Actuation system and oven comprising said actuation system
US9432070B2 (en) 2012-10-16 2016-08-30 Microsoft Technology Licensing, Llc Antenna placement
US20170121068A1 (en) * 2015-10-22 2017-05-04 Autosplice, Inc. Compact selective access apparatus and methods
US9661770B2 (en) 2012-10-17 2017-05-23 Microsoft Technology Licensing, Llc Graphic formation via material ablation
US9870066B2 (en) 2012-03-02 2018-01-16 Microsoft Technology Licensing, Llc Method of manufacturing an input device
US20180092253A1 (en) * 2016-09-29 2018-03-29 Bo Qiu Flexible heat spreader
US10031556B2 (en) 2012-06-08 2018-07-24 Microsoft Technology Licensing, Llc User experience adaptation
US10240374B2 (en) * 2017-03-29 2019-03-26 Hewlett Packard Enterprise Development Lp Flexible living hinge for an identification pull tab
US10372199B2 (en) 2014-10-08 2019-08-06 Apple Inc. Apparatus for managing power and running and booting an inter-processor communication link between independently operable processors
US10372637B2 (en) 2014-09-16 2019-08-06 Apple Inc. Methods and apparatus for aggregating packet transfer over a virtual bus interface
US10552352B2 (en) 2015-06-12 2020-02-04 Apple Inc. Methods and apparatus for synchronizing uplink and downlink transactions on an inter-device communication link
US10558580B2 (en) 2016-02-29 2020-02-11 Apple Inc. Methods and apparatus for loading firmware on demand
US10585699B2 (en) 2018-07-30 2020-03-10 Apple Inc. Methods and apparatus for verifying completion of groups of data transactions between processors
US10591976B2 (en) 2016-11-10 2020-03-17 Apple Inc. Methods and apparatus for providing peripheral sub-system stability
US10719376B2 (en) 2018-08-24 2020-07-21 Apple Inc. Methods and apparatus for multiplexing data flows via a single data structure
US10841880B2 (en) 2016-01-27 2020-11-17 Apple Inc. Apparatus and methods for wake-limiting with an inter-device communication link
US10846224B2 (en) 2018-08-24 2020-11-24 Apple Inc. Methods and apparatus for control of a jointly shared memory-mapped region
US10853272B2 (en) 2016-03-31 2020-12-01 Apple Inc. Memory access protection apparatus and methods for memory mapped access between independently operable processors
US11558348B2 (en) 2019-09-26 2023-01-17 Apple Inc. Methods and apparatus for emerging use case support in user space networking
US11606302B2 (en) 2020-06-12 2023-03-14 Apple Inc. Methods and apparatus for flow-based batching and processing
US11775359B2 (en) 2020-09-11 2023-10-03 Apple Inc. Methods and apparatuses for cross-layer processing
US11792307B2 (en) 2018-03-28 2023-10-17 Apple Inc. Methods and apparatus for single entity buffer pool management
US11799986B2 (en) 2020-09-22 2023-10-24 Apple Inc. Methods and apparatus for thread level execution in non-kernel space
US11829303B2 (en) 2019-09-26 2023-11-28 Apple Inc. Methods and apparatus for device driver operation in non-kernel space
US11876719B2 (en) 2021-07-26 2024-01-16 Apple Inc. Systems and methods for managing transmission control protocol (TCP) acknowledgements
US11882051B2 (en) 2021-07-26 2024-01-23 Apple Inc. Systems and methods for managing transmission control protocol (TCP) acknowledgements
US11954540B2 (en) 2020-09-14 2024-04-09 Apple Inc. Methods and apparatus for thread-level execution in non-kernel space

Cited By (114)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050189784A1 (en) * 2004-02-27 2005-09-01 Faurecia Interieur Industrie Sunshade for a motor vehicle, and a vehicle door equipped with such a sunshade
FR2866834A1 (en) * 2004-02-27 2005-09-02 Faurecia Interieur Ind IMPROVED SUN VISOR FOR A MOTOR VEHICLE, AND VEHICLE DOOR EQUIPPED WITH SUCH A SUN VISOR
EP1568527A1 (en) * 2004-02-27 2005-08-31 Faurecia Interieur Industrie Improved sun visor for motor vehicle and vehicle door with such sun visor.
US7275285B1 (en) * 2004-11-15 2007-10-02 Lockheed Martin Corporation Deployment hinge
US7728267B2 (en) 2007-02-02 2010-06-01 Raytheon Company Methods and apparatus for adjustable surfaces
US20090072094A1 (en) * 2007-02-02 2009-03-19 Sanderson Terry M Methods and apparatus for adjustable surfaces
US20090206192A1 (en) * 2007-02-02 2009-08-20 Raytheon Company Methods and apparatus for adjustable surfaces
US7777165B2 (en) 2007-02-02 2010-08-17 Raytheon Company Methods and apparatus for adjustable surfaces
US20090283643A1 (en) * 2008-05-14 2009-11-19 Sar David R Shape-changing structure member with embedded spring
US8342457B2 (en) * 2008-05-14 2013-01-01 Raytheon Company Shape-changing structure member with embedded spring
WO2009140021A1 (en) * 2008-05-14 2009-11-19 Raytheon Company Shape-changing structure member with embedded spring
US20090283936A1 (en) * 2008-05-14 2009-11-19 Sanderson Terry M Structure with reconfigurable polymer material
WO2009140019A1 (en) * 2008-05-14 2009-11-19 Raytheon Company Shape-changing structure with superelastic foam material
US20090286101A1 (en) * 2008-05-14 2009-11-19 Sar David R Shape-changing structure with superelastic foam material
US8382042B2 (en) 2008-05-14 2013-02-26 Raytheon Company Structure with reconfigurable polymer material
US7939178B2 (en) 2008-05-14 2011-05-10 Raytheon Company Shape-changing structure with superelastic foam material
US20110212342A1 (en) * 2008-05-14 2011-09-01 Sar David R Shape-changing structure member with embedded spring
US8016249B2 (en) 2008-05-14 2011-09-13 Raytheon Company Shape-changing structure member with embedded spring
US20100000991A1 (en) * 2008-07-02 2010-01-07 Henry Christopher P Thermally activated variable stiffness composites for aircraft seals
US9321521B2 (en) 2008-07-02 2016-04-26 The Boeing Company Thermally activated variable stiffness composites for aircraft seals
US8476564B2 (en) * 2008-07-02 2013-07-02 The Boeing Company Thermally activated variable stiffness composites for aircraft seals
US20100148011A1 (en) * 2008-11-12 2010-06-17 Sanderson Terry M Telescoping structure and method
US8262032B2 (en) 2008-11-13 2012-09-11 Raytheon Company Collapsible wing beams and method
US20100116937A1 (en) * 2008-11-13 2010-05-13 Sanderson Terry M Collapsible wing beams and method
US8056853B2 (en) 2008-11-25 2011-11-15 Raytheon Company Reconfigurable wing and method of use
US20100127130A1 (en) * 2008-11-25 2010-05-27 Rudy A Eisentraut Reconfigurable wing and method of use
US8387536B2 (en) 2008-12-04 2013-03-05 Raytheon Company Interceptor vehicle with extendible arms
US20100243808A1 (en) * 2009-03-27 2010-09-30 Sanderson Terry M Shape-change material and method
US8573535B2 (en) 2009-03-27 2013-11-05 Raytheon Company Shape-change material and method
EP2461065A1 (en) * 2010-12-06 2012-06-06 Centre National d'Etudes Spatiales ( C.N.E.S.) Hinge device with a strand bundle in a shape memory material
FR2968372A1 (en) * 2010-12-06 2012-06-08 Centre Nat Etd Spatiales BRAKE BEAM HAMMER DEVICE IN SHAPE MEMORY MATERIAL.
US20130043354A1 (en) * 2011-08-16 2013-02-21 Moushumi Shome Variable camber fluid-dynamic body utilizing optimized smart materials
US9120554B2 (en) * 2011-08-16 2015-09-01 The Boeing Company Variable camber fluid-dynamic body utilizing optimized smart materials
RU2597624C2 (en) * 2011-08-16 2016-09-10 Зе Боинг Компани System of streamlined body with variable profile curvature and control method of its configuration (versions)
US8864065B2 (en) 2011-11-04 2014-10-21 Raytheon Company Chord-expanding air vehicle wings
US9075566B2 (en) 2012-03-02 2015-07-07 Microsoft Technoogy Licensing, LLC Flexible hinge spine
US9098117B2 (en) 2012-03-02 2015-08-04 Microsoft Technology Licensing, Llc Classifying the intent of user input
US9111703B2 (en) 2012-03-02 2015-08-18 Microsoft Technology Licensing, Llc Sensor stack venting
US9116550B2 (en) 2012-03-02 2015-08-25 Microsoft Technology Licensing, Llc Device kickstand
US10013030B2 (en) 2012-03-02 2018-07-03 Microsoft Technology Licensing, Llc Multiple position input device cover
US9134807B2 (en) 2012-03-02 2015-09-15 Microsoft Technology Licensing, Llc Pressure sensitive key normalization
US9134808B2 (en) 2012-03-02 2015-09-15 Microsoft Technology Licensing, Llc Device kickstand
US9946307B2 (en) 2012-03-02 2018-04-17 Microsoft Technology Licensing, Llc Classifying the intent of user input
US9146620B2 (en) * 2012-03-02 2015-09-29 Microsoft Technology Licensing, Llc Input device assembly
US9158384B2 (en) 2012-03-02 2015-10-13 Microsoft Technology Licensing, Llc Flexible hinge protrusion attachment
US9158383B2 (en) 2012-03-02 2015-10-13 Microsoft Technology Licensing, Llc Force concentrator
US9176901B2 (en) 2012-03-02 2015-11-03 Microsoft Technology Licensing, Llc Flux fountain
US9176900B2 (en) 2012-03-02 2015-11-03 Microsoft Technology Licensing, Llc Flexible hinge and removable attachment
US9268373B2 (en) 2012-03-02 2016-02-23 Microsoft Technology Licensing, Llc Flexible hinge spine
US9275809B2 (en) 2012-03-02 2016-03-01 Microsoft Technology Licensing, Llc Device camera angle
US9298236B2 (en) 2012-03-02 2016-03-29 Microsoft Technology Licensing, Llc Multi-stage power adapter configured to provide a first power level upon initial connection of the power adapter to the host device and a second power level thereafter upon notification from the host device to the power adapter
US9904327B2 (en) 2012-03-02 2018-02-27 Microsoft Technology Licensing, Llc Flexible hinge and removable attachment
US9304949B2 (en) 2012-03-02 2016-04-05 Microsoft Technology Licensing, Llc Sensing user input at display area edge
US9304948B2 (en) 2012-03-02 2016-04-05 Microsoft Technology Licensing, Llc Sensing user input at display area edge
US9870066B2 (en) 2012-03-02 2018-01-16 Microsoft Technology Licensing, Llc Method of manufacturing an input device
US10963087B2 (en) 2012-03-02 2021-03-30 Microsoft Technology Licensing, Llc Pressure sensitive keys
US9678542B2 (en) 2012-03-02 2017-06-13 Microsoft Technology Licensing, Llc Multiple position input device cover
US9852855B2 (en) 2012-03-02 2017-12-26 Microsoft Technology Licensing, Llc Pressure sensitive key normalization
US9411751B2 (en) 2012-03-02 2016-08-09 Microsoft Technology Licensing, Llc Key formation
US9793073B2 (en) 2012-03-02 2017-10-17 Microsoft Technology Licensing, Llc Backlighting a fabric enclosure of a flexible cover
US20130229759A1 (en) * 2012-03-02 2013-09-05 David Otto Whitt, III Input Device Assembly
US9460029B2 (en) 2012-03-02 2016-10-04 Microsoft Technology Licensing, Llc Pressure sensitive keys
US9465412B2 (en) 2012-03-02 2016-10-11 Microsoft Technology Licensing, Llc Input device layers and nesting
US9619071B2 (en) 2012-03-02 2017-04-11 Microsoft Technology Licensing, Llc Computing device and an apparatus having sensors configured for measuring spatial information indicative of a position of the computing devices
US9618977B2 (en) 2012-03-02 2017-04-11 Microsoft Technology Licensing, Llc Input device securing techniques
US9766663B2 (en) 2012-03-02 2017-09-19 Microsoft Technology Licensing, Llc Hinge for component attachment
US9710093B2 (en) 2012-03-02 2017-07-18 Microsoft Technology Licensing, Llc Pressure sensitive key normalization
US9348605B2 (en) 2012-05-14 2016-05-24 Microsoft Technology Licensing, Llc System and method for accessory device architecture that passes human interface device (HID) data via intermediate processor
US9959241B2 (en) 2012-05-14 2018-05-01 Microsoft Technology Licensing, Llc System and method for accessory device architecture that passes via intermediate processor a descriptor when processing in a low power state
US10031556B2 (en) 2012-06-08 2018-07-24 Microsoft Technology Licensing, Llc User experience adaptation
US9073123B2 (en) 2012-06-13 2015-07-07 Microsoft Technology Licensing, Llc Housing vents
US9432070B2 (en) 2012-10-16 2016-08-30 Microsoft Technology Licensing, Llc Antenna placement
US9661770B2 (en) 2012-10-17 2017-05-23 Microsoft Technology Licensing, Llc Graphic formation via material ablation
US10543897B2 (en) 2013-02-26 2020-01-28 The Boeing Company Systems for shape memory alloy structures
US9631268B2 (en) 2013-02-26 2017-04-25 The Boeing Company Methods and systems for shape memory alloy structures
EP2770200A3 (en) * 2013-02-26 2014-11-26 The Boeing Company Methods and systems for shape memory alloy structures
US9304549B2 (en) 2013-03-28 2016-04-05 Microsoft Technology Licensing, Llc Hinge mechanism for rotatable component attachment
US10301861B2 (en) * 2013-10-31 2019-05-28 Electrolux Appliances Aktibolag Actuation system and oven comprising said actuation system
US20160208539A1 (en) * 2013-10-31 2016-07-21 Electrolux Appliances Aktiebolag Actuation system and oven comprising said actuation system
US20150271957A1 (en) * 2014-03-20 2015-09-24 Hamilton Sundstrand Corporation Cooling flow optimization
US10372637B2 (en) 2014-09-16 2019-08-06 Apple Inc. Methods and apparatus for aggregating packet transfer over a virtual bus interface
US10551906B2 (en) 2014-10-08 2020-02-04 Apple Inc. Methods and apparatus for running and booting inter-processor communication link between independently operable processors
US10372199B2 (en) 2014-10-08 2019-08-06 Apple Inc. Apparatus for managing power and running and booting an inter-processor communication link between independently operable processors
US10684670B2 (en) 2014-10-08 2020-06-16 Apple Inc. Methods and apparatus for managing power with an inter-processor communication link between independently operable processors
US20160102689A1 (en) * 2014-10-10 2016-04-14 The Boeing Company Marman Clamp With A Shape Memory Alloy Actuator
US9732776B2 (en) * 2014-10-10 2017-08-15 The Boeing Company Marman clamp with a shape memory alloy actuator
US10552352B2 (en) 2015-06-12 2020-02-04 Apple Inc. Methods and apparatus for synchronizing uplink and downlink transactions on an inter-device communication link
US20170121068A1 (en) * 2015-10-22 2017-05-04 Autosplice, Inc. Compact selective access apparatus and methods
US10112745B2 (en) * 2015-10-22 2018-10-30 Autosplice, Inc. Selectively accessible container apparatus, hinge assembly with a shape memory alloy filament, and methods
US10841880B2 (en) 2016-01-27 2020-11-17 Apple Inc. Apparatus and methods for wake-limiting with an inter-device communication link
US10558580B2 (en) 2016-02-29 2020-02-11 Apple Inc. Methods and apparatus for loading firmware on demand
US10572390B2 (en) 2016-02-29 2020-02-25 Apple Inc. Methods and apparatus for loading firmware on demand
US10846237B2 (en) 2016-02-29 2020-11-24 Apple Inc. Methods and apparatus for locking at least a portion of a shared memory resource
US10853272B2 (en) 2016-03-31 2020-12-01 Apple Inc. Memory access protection apparatus and methods for memory mapped access between independently operable processors
US9980412B2 (en) * 2016-09-29 2018-05-22 Intel Corporation Flexible heat spreader
US20180092253A1 (en) * 2016-09-29 2018-03-29 Bo Qiu Flexible heat spreader
US10591976B2 (en) 2016-11-10 2020-03-17 Apple Inc. Methods and apparatus for providing peripheral sub-system stability
US11809258B2 (en) 2016-11-10 2023-11-07 Apple Inc. Methods and apparatus for providing peripheral sub-system stability
US10240374B2 (en) * 2017-03-29 2019-03-26 Hewlett Packard Enterprise Development Lp Flexible living hinge for an identification pull tab
US11824962B2 (en) 2018-03-28 2023-11-21 Apple Inc. Methods and apparatus for sharing and arbitration of host stack information with user space communication stacks
US11843683B2 (en) 2018-03-28 2023-12-12 Apple Inc. Methods and apparatus for active queue management in user space networking
US11792307B2 (en) 2018-03-28 2023-10-17 Apple Inc. Methods and apparatus for single entity buffer pool management
US10585699B2 (en) 2018-07-30 2020-03-10 Apple Inc. Methods and apparatus for verifying completion of groups of data transactions between processors
US11347567B2 (en) 2018-08-24 2022-05-31 Apple Inc. Methods and apparatus for multiplexing data flows via a single data structure
US10719376B2 (en) 2018-08-24 2020-07-21 Apple Inc. Methods and apparatus for multiplexing data flows via a single data structure
US10846224B2 (en) 2018-08-24 2020-11-24 Apple Inc. Methods and apparatus for control of a jointly shared memory-mapped region
US11829303B2 (en) 2019-09-26 2023-11-28 Apple Inc. Methods and apparatus for device driver operation in non-kernel space
US11558348B2 (en) 2019-09-26 2023-01-17 Apple Inc. Methods and apparatus for emerging use case support in user space networking
US11606302B2 (en) 2020-06-12 2023-03-14 Apple Inc. Methods and apparatus for flow-based batching and processing
US11775359B2 (en) 2020-09-11 2023-10-03 Apple Inc. Methods and apparatuses for cross-layer processing
US11954540B2 (en) 2020-09-14 2024-04-09 Apple Inc. Methods and apparatus for thread-level execution in non-kernel space
US11799986B2 (en) 2020-09-22 2023-10-24 Apple Inc. Methods and apparatus for thread level execution in non-kernel space
US11876719B2 (en) 2021-07-26 2024-01-16 Apple Inc. Systems and methods for managing transmission control protocol (TCP) acknowledgements
US11882051B2 (en) 2021-07-26 2024-01-23 Apple Inc. Systems and methods for managing transmission control protocol (TCP) acknowledgements

Similar Documents

Publication Publication Date Title
US6889411B2 (en) Shape memory metal latch hinge deployment method
US20020195177A1 (en) Conductive shape memory metal deployment latch hinge deployment method
US10734941B2 (en) Compact, self-deploying structures and methods for deploying foldable, structural origami arrays using a compression column
US8387921B2 (en) Self deploying solar array
US8061660B2 (en) Large-scale deployable solar array
US11873120B2 (en) Low earth orbit mechanical deployable structure
US8109472B1 (en) Collapsible structures with adjustable forms
US6343442B1 (en) Flattenable foldable boom hinge
CN104890900B (en) Method and apparatus for one group of panel to be unfolded
US5977932A (en) Self-deploying helical structure
US7354033B1 (en) Tape-spring deployable hinge
US6439297B1 (en) Deployable radiators for spacecraft
JP2006517487A (en) Solar panel hinged assembly and spacecraft
US4384163A (en) Ultra lightweight folding panel structure
US20160159500A1 (en) Deployable solar panel array for spacecraft
WO2016051141A1 (en) Deployable structure
JP2019161220A (en) Rollable solar power module with high packing density
EP2743187B1 (en) Spacecraft with at least one deployable panel structure and deployable panel structure
Hinkley et al. A multifunctional flexure hinge for deploying omnidirectional solar arrays
Rakow et al. Development of high specific power solar arrays with shape memory polymer hinge lines
EP3184438B1 (en) Space structure with a hinge assembly
JP5172453B2 (en) Solar cell blanket and solar cell paddle using the same
Hinkley et al. A mechanical deployment structure for the PowerSphere concept
Simburger et al. Multifunctional structures for the PowerSphere concept
Bartsch et al. Mechanical analysis of a Solar Array hinge based on a 180∘ folded flexible printed circuit board

Legal Events

Date Code Title Description
AS Assignment

Owner name: AEROSPACE CORPORATION, THE, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HINKLY, DAVID A.;SIMBURGER, EDWARD J.;REEL/FRAME:011983/0739

Effective date: 20010615

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION