US20030021718A1 - Lead-free solder alloy - Google Patents

Lead-free solder alloy Download PDF

Info

Publication number
US20030021718A1
US20030021718A1 US10/175,149 US17514902A US2003021718A1 US 20030021718 A1 US20030021718 A1 US 20030021718A1 US 17514902 A US17514902 A US 17514902A US 2003021718 A1 US2003021718 A1 US 2003021718A1
Authority
US
United States
Prior art keywords
solder
lead
solder alloy
soldering
free solder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/175,149
Inventor
Osamu Munekata
Yoshitaka Toyoda
Tsukasa Ohnishi
Minoru Ueshima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Senju Metal Industry Co Ltd
Original Assignee
Senju Metal Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=19033808&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20030021718(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Senju Metal Industry Co Ltd filed Critical Senju Metal Industry Co Ltd
Assigned to SENJU METAL INDUSTRY CO., LTD. reassignment SENJU METAL INDUSTRY CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MUNEKATA, OSAMU, OHNISHI, TSUKASA, TOYODA, YOSHITAKA, UESHIMA, MINORU
Publication of US20030021718A1 publication Critical patent/US20030021718A1/en
Priority to US10/666,129 priority Critical patent/US7338567B2/en
Priority to US11/889,356 priority patent/US7682468B2/en
Priority to US12/659,815 priority patent/US8216395B2/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C13/00Alloys based on tin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/0008Soldering, e.g. brazing, or unsoldering specially adapted for particular articles or work
    • B23K1/0016Brazing of electronic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/08Soldering by means of dipping in molten solder
    • B23K1/085Wave soldering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/20Preliminary treatment of work or areas to be soldered, e.g. in respect of a galvanic coating
    • B23K1/203Fluxing, i.e. applying flux onto surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/26Selection of soldering or welding materials proper with the principal constituent melting at less than 400 degrees C
    • B23K35/262Sn as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/42Printed circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/3457Solder materials or compositions; Methods of application thereof
    • H05K3/3463Solder compositions in relation to features of the printed circuit board or the mounting process

Definitions

  • Sn—Pb solders have long been used for soldering electronic components to printed wiring boards due to their low soldering temperatures, good solderability or solder wettability, and low cost.
  • a 63% Sn—Pb solder which is called a Sn—Pb eutectic solder or simply a eutectic solder due to its alloy composition near the eutectic composition for Sn—Pb alloys (61.9% Sn—Pb)
  • Sn—Pb solder 63% Sn—Pb solder, which is called a Sn—Pb eutectic solder or simply a eutectic solder due to its alloy composition near the eutectic composition for Sn—Pb alloys (61.9% Sn—Pb)
  • the percent of an element in an alloy composition refers to mass percent or “wt %”.
  • a Sn—based, lead-free solder alloy according to the present invention comprises 0.1%-3% of Cu, 0.001%-0.1% of P, and optionally 0.001%-0.1% of Ge.

Abstract

A lead-free solder alloy suitable for use in flow soldering of electronic components to printed wiring boards comprises 0.1-3 wt % of Cu, 0.001-0.1 wt % of P, optionally 0.001-0.1 wt % of Ge, and a balance of Sn. The solder alloy may further contain at least one element of Ag and Sb in a total amount of at most 4 wt %, and/or at least one element of Ni, Co, Fe, Mn, Cr, and Mo in a total amount of at most 0.5 wt % in order to strengthen the alloy, and/or at least one element of Bi, In, and Zn in a total amount of at most 5 wt % in order to lower the melting point of the alloy.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention [0001]
  • This invention relates to a lead-free solder alloy, and particularly to a lead-free solder alloy having excellent solderability when used for soldering electronic components to printed wiring boards by flow soldering. [0002]
  • 2. Description of the Related Art [0003]
  • Printed circuit boards are used in a wide range of electrical and electronic equipment including home electrical appliances such as televisions, videos, refrigerators, and air conditioners, as well as office or home electronic equipment such as personal computers, printers, and copying machines. Typically a printed circuit board includes a number of electronic components such as LSI's, IC's, transistors, registers, and capacitors secured to a printed wiring board by soldering. [0004]
  • The solder to be employed for this purpose is selected taking into consideration the various properties and cost of the solder. Solder wettability or solderability on the surfaces of electronic components and printed wiring boards is one of the most important properties of a solder. If soldering is performed with solder having poor wettability, the resulting soldered joints may include soldering defects such as non-wetting, bridges, and voids. [0005]
  • Sn—Pb solders have long been used for soldering electronic components to printed wiring boards due to their low soldering temperatures, good solderability or solder wettability, and low cost. In particular, a 63% Sn—Pb solder, which is called a Sn—Pb eutectic solder or simply a eutectic solder due to its alloy composition near the eutectic composition for Sn—Pb alloys (61.9% Sn—Pb), is used in a wide variety of soldering applications, since it has a narrow solidification temperature range (which is the difference between the liquidus and solidus temperatures of the alloy) and can form reliable soldered joints. (In this specification, unless otherwise specified, the percent of an element in an alloy composition refers to mass percent or “wt %”.) [0006]
  • When electrical or electronic equipment is discarded, it is usually disassembled to recover plastic parts such as housings and metallic parts such as chassis for recycling. However, printed circuit boards in the discarded equipment are not suitable for recycling, since they contain both metallic portions and plastic portions combined in a complicated manner. Therefore, in many cases, printed circuit boards removed from disassembled equipment are shredded and buried underground as industrial waste of a stabilized type. [0007]
  • In recent years, however, underground burial of lead-containing wastes including printed circuit boards has become an environmental problem. When the buried lead-containing wastes come into contact with acid rain (rain having a high acidity due to dissolving oxides of sulfur and nitrogen present in the atmosphere), the acid rain can dissolve lead from the wastes, and the dissolved lead can contaminate underground water. There is the concern that such contaminated water may cause lead poisoning if it is drunk by humans for long periods. To eliminate such environmental concerns, there is now a demand in the electronics industries for lead-free solders. [0008]
  • Lead-free solders which have been developed to date are based on Sn and contain one or more additional elements such as Cu, Ag, Bi, and Zn. Typical alloy compositions of lead-free solders are binary alloys such as Sn-0.7% Cu, Sn-3.5% Ag, Sn-58% Bi, and Sn-9% Zn, each having a composition which is the same as or close to the eutectic composition for the binary alloy system. Depending upon the use, additional alloying elements may be added to obtain a ternary or higher alloy. [0009]
  • Each of the above-mentioned lead-free solders has its own problems. For example, a Sn—Zn solder such as a Sn-9% Zn solder has the problem that Zn is highly susceptible to oxidation, resulting in the formation of a thick oxide film on the solder. As a result, wettability becomes poor if soldering is carried out in the air. In addition, when used in flow soldering, a Sn—Zn solder causes the formation of a large amount of dross, which causes difficult problems with respect to practical application of the solder. [0010]
  • With a Sn—Bi solder such as a Sn-58% Bi solder, the formation of dross during flow soldering is not a large problem, but due to the presence of a large proportion of Bi, which has poor ductility, the solder is brittle and has poor mechanical strength. Therefore, soldered joints formed from this solder may not be sufficiently reliable. There is a tendency for the mechanical strength of a Sn—Bi solder to decrease as the proportion of Bi increases. [0011]
  • At present, the lead-free solders which are considered most practical are Sn—Cu solders such as Sn-0.7% Cu, Sn—Ag solders such as Sn-3.5% Ag, and Sn—Ag—Cu solders (e.g., Sn-3.5% Sn-0.6% Cu) in which a small amount of Cu is added to a Sn—Ag solder. [0012]
  • Sn—Cu solders such as Sn-0.7% Cu are inexpensive and their unit cost is comparable to that of conventional Sn—Pb solders. However, they have poor solder wettability. [0013]
  • On the other hand, Sn—Ag solders such as Sn-3.5% Ag and Sn—Ag—Cu solders such as Sn-3.5% Ag-0.6% Cu have relatively good solder wettability, and their mechanical strength is comparable or even superior to that of Sn—Pb solders. Thus, these solders are advantageous in their properties as a solder, but their cost is much higher than that of conventional Sn—Pb solders due to the presence of Ag, which is an expensive metal. If the Ag content in these solders is decreased in order to reduce costs, the wettability and the strength of the solders worsen. [0014]
  • Thus, there is a need for an improved lead-free solder which has the cost advantages of a Sn—Cu solder but has improved properties, and particularly improved wettability. [0015]
  • SUMMARY OF THE INVENTION
  • The present inventors found that the addition of P (phosphorus) to a Sn—Cu lead-free solder alloy improves the wettability of the solder. Although this effect is obtained when P is added alone, the wettability of the solder can be further improved by the addition of P in combination with Ge (germanium). [0016]
  • According to one form of the present invention, a lead-free solder alloy comprises 0.1%-3% of Cu, 0.001%-0.1% of P, and a balance of Sn. According to another form of the present invention, a lead-free solder alloy comprises 0.1%-3% of Cu, 0.001%-0.1% of P, 0.001%-0.1% of Ge, and a balance of Sn. [0017]
  • The lead-free solder alloy may further contain one or more additional elements which improve the mechanical strength or lower the melting point of the solder in an amount which does not have a significant adverse effect on other properties of the solder. [0018]
  • DETAILED DESCRIPTION OF THE INVENTION
  • A Sn—based, lead-free solder alloy according to the present invention comprises 0.1%-3% of Cu, 0.001%-0.1% of P, and optionally 0.001%-0.1% of Ge. [0019]
  • The presence of Cu in the solder alloy increases the mechanical strength of the solder. If the Cu content is smaller than 0.1%, Cu has no substantial effect in this respect. If the Cu content is larger than 3%, Cu increases the melting temperature of the solder significantly and reduces solder wettability. Furthermore, when melted to prepare a molten solder bath for use in flow soldering, such a Sn—Cu solder alloy containing more than 3% of Cu causes the formation of a large amount of dross, which makes the soldering operation cumbersome or difficult. Preferably, the Cu content is 0.3%-1.5% and more preferably 0.4%-1.0%. [0020]
  • The addition of P improves the wettability of a Sn—Cu solder. The wettability of the solder can be further improved by the combined addition of P and Ge. [0021]
  • Although it is not desired to be bound by a particular mechanism, it is thought that in a molten state of a solder alloy according to the present invention, P or P and Ge present in the solder are diffused toward the surface of the molten solder and oxidized at the surface to form a thin oxide layer, which serves to shield the surface of the molten solder from direct contact with the atmosphere, thereby preventing the oxidation of the molten solder and improving its wettability. The oxides of P tends to sublimate at the temperature of the molten solder (around 250° C.), while the oxides of Ge tends to remain for an extended time on the surface of the molten solder. [0022]
  • The addition of P or Ge to an Sn—Cu solder in an amount of smaller than 0.001% has no substantial effect on the wettability of the solder. [0023]
  • If P is added in an amount of larger than 0.1%, it forms a molten solder having a viscosity at its surface which is increased to an extent that may interfere with soldering operations, particularly in flow soldering, and cause soldering defects such as bridges, which are short circuits between adjacent soldered joints. Preferably, the P content is 0.001%-0.05% and more preferably 0.001%-0.01%. [0024]
  • Likewise, if the Ge content is larger than 0.1%, soldering operations may be impeded by an increased viscosity of molten solder at its surface. In this case, due to the above-described tendency for Ge to remain for an extended time on the surface, addition of Ge in an amount of more than 0.1% may cause more severe soldering defects such as non-wetting. When added, Ge is preferably present in an amount of 0.001%-0.05% and more preferably 0.002%-0.03%. [0025]
  • In the present invention, the addition of P or the combined addition of P and Ge to a lead-free, Sn—Cu solder is effective in improving wettability, but it does not increase the mechanical strength of the solder alloy. The mechanical strength of a Sn—Cu solder alloy is generally inferior to that of a Sn—Ag or Sn—Ag—Cu solder alloy. Therefore, when it is desired to improve both wettability and mechanical strength, one or more strength-improving elements which are effective in improving the strength of a Sn—based solder alloy can be added to the Sn—Cu—P or Sn—Cu—P—Ge solder alloy according to the present invention. [0026]
  • Examples of such strength-improving elements are Ag, Sb, Ni, Co, Fe, Mn, Cr, and Mo. Each of these elements forms either a solid solution in Sn or an intermetallic compound with Sn in a Sn—Cu-based solder alloy, thereby improving the mechanical strength of the alloy. However, if the content of such elements is too large, they substantially elevate the liquidus temperature of the solder. As a result, the fluidity of molten solder at a given soldering temperature is decreased. For this reason, the total content of Ag and Sb is at most 4%, preferably at most 3.5%, and more preferably at most 3%, and the total content of Ni, Co, Fe, Mn, Cr, and Mo is at most 0.5% and preferably at most 0.3%. [0027]
  • Sn—Cu solders, Sn—Ag solders, and Sn—Ag—Cu solder, which are considered to be promising as lead-free solders, have a melting point which is considerably higher than that of Sn—Pb solders. At present, most electronic components are designed for soldering with Sn—Pb solders. When such electronic components are mounted on a printed wiring board by soldering with one of the above-described higher-melting, lead-free solders, the electronic components may possibly be thermally damaged during soldering so that they cannot operate properly. [0028]
  • In order to eliminate or minimize such thermal damage of electronic components during soldering, a lead-free solder alloy according to the present invention may contain one or more elements for lowering the melting point of a Sn-based solder alloy. Examples of such melting point-lowering elements are Bi, In, and Zn. However, these elements have problems when added in a large amount. Specifically, Bi has poor ductility and can degrade the mechanical strength of a solder alloy, as described previously. Indium (In) and Zn are highly susceptible to oxidation to form oxides, which can interfere with soldering performed near the surface of molten solder such as wave soldering, as previously discussed with respect to P and Ge. Therefore, when added, the total content of Bi, In, and Zn in a lead-free solder alloy according to the present invention is at most 5% and preferably at most 3%. [0029]
  • A lead-free solder alloy according to the present invention can have a wide variety of shapes and forms, which include but are not limited to rods, wires, ribbons, pellets, discs, washers, balls, and other shapes, as well as powders. The powder form of the solder alloy may be used to prepare a solder paste. [0030]
  • Although a lead-free solder alloy according to the present invention may be used in various soldering methods, it is particularly suitable for use in flow soldering which includes wave soldering and dip soldering and which uses a molten solder bath. The lead-free solder alloy is more particularly suitable for use in wave soldering of electronic components to printed wiring boards. In wave soldering, a wave is formed in a molten solder bath by means of a pump and a nozzle, for example, and the surface to be soldered (e.g., the back surface of a printed wiring board on which electronic parts have been placed) is brought into contact with the wave while being traveled in a horizontal direction above the solder bath. [0031]
  • When a lead-free solder alloy according to the present invention is used to perform flow soldering and particularly wave soldering in a continuous process using a molten solder bath, the P content of the solder alloy in the bath may decrease with time due to sublimation of its oxides formed at the surface of the bath as described above. If necessary, the alloy composition may be adjusted during the continuous soldering operation by addition of one or more elements which are insufficient in the bath. The added elements may be in the form of an alloy with other alloying elements. [0032]
  • EXAMPLES
  • A number of Sn—Cu-based, lead-free solder alloys were prepared by casting and were subjected to tests for evaluating their wettability and bulk strength. The compositions of the solder alloys and the test results are shown in the following table, in which Examples 1 to 7 illustrate solder alloys according to the present invention. [0033]
    Properties
    Composition (wt %) Bulk strength
    Sn Cu P Ge Ag Ni Bi Sb Wettability (MPa)
    Example 1 Bal. 0.5 0.005 Excellent 32
    Example 2 Bal. 0.7 0.01 Excellent 36
    Example 3 Bal. 0.7 0.005 0.01 Excellent 36
    Example 4 Bal. 0.5 0.005 0.3 Excellent 37
    Example 5 Bal. 0.7 0.01 0.3 Good 36
    Example 6 Bal. 0.7 0.003 0.01 0.05 Good 33
    Example 7 Bal. 0.5 0.005 2 2 Excellent 73
    Comparative Bal. 0.7 Poor 31
    Example 1
    Comparative Bal. 0.7 0.3 Poor 31
    Example 2
  • The wettability of each solder alloy was tested by the wetting balance test (meniscograph method) using a standard testing apparatus for the test. The test pieces used as a substrate to be wetted by a molten solder were Cu plates which measured 0.3 mm thick×10 mm wide×30 mm long and which had been subjected to oxidizing treatment. In the test, after a soldering flux was applied to the surface of a test piece, the test piece was moved downward into a molten bath of the solder alloy to be tested which was maintained at 250° C. and then pulled up from the molten bath while measuring the load placed on the test piece to obtain a curve of wetting force as a function of time. The wettability was evaluated by the zero crossing time on this curve in the following manner: [0034]
  • Excellent: zero crossing time of less than 2 seconds; [0035]
  • Good: zero crossing time of at least 2 seconds and less than 3 seconds; [0036]
  • Poor: zero crossing time of 3 seconds or longer. [0037]
  • The bulk strength of each solder alloy was measured using a test piece of the solder alloy having the shape specified as JIS Z 2201 No. 4 Test Piece. The test piece was prepared by machining a cast bar of the solder alloy. The test piece was subjected to a tensile test using a universal testing machine with a crosshead speed corresponding to approximately 20%/min of the gauge length of the test piece. The maximum stress was recorded as the bulk strength. [0038]
  • As can be seen from the table, each solder alloy according to the present invention has good wettability in spite of being an inexpensive Sn—Cu-based solder, thereby making it possible to perform soldering operations with such a solder in a stable manner. [0039]
  • Although the present invention has been described with respect to preferred embodiments, they are mere illustrative and not intended to limit the present invention. It should be understood by those skilled in the art that various modifications and variations of the embodiments described above can be employed without departing from the scope of the present invention as set forth in the claims. [0040]

Claims (11)

What is claimed is:
1. A lead-free solder alloy comprising 0.1-3 wt % of Cu, 0.001-0.1 wt % of P, 0-0.1 wt % of Ge, and a balance of Sn.
2. A lead-free solder alloy as claimed in claim 1 wherein the content of Ge is 0.001-0.1 wt %.
3. A lead-free solder alloy as claimed in claim 1 which further contains one or more strength-improving elements.
4. A lead-free solder alloy as claimed in claim 3 wherein the one or more strength-improving elements comprise at least one of Ag and Sb in a total amount of at most 4 wt %.
5. A lead-free solder alloy as claimed in claim 3 wherein the one or more strength-improving elements comprise at least one element selected from the group consisting of Ni, Co, Fe, Mn, Cr, and Mo in a total amount of at most 0.5 wt %.
6. A lead-free solder alloy as claimed in claim 1 which further contains one or more melting point-lowering elements.
7. A lead-free solder alloy as claimed in claim 7 wherein the one or more melting point-lowering elements comprise at least one of Bi, In, and Zn in a total amount of at most 5 wt %.
8. A soldered joint formed from a lead-free solder alloy as claimed in claim 1.
9. A soldered joint as claimed in claim 8 wherein the soldered joint is formed by flow soldering.
10. A method of performing flow soldering comprising using a lead-free solder alloy as claimed in claim 1.
11. A method as claimed in claim 10 wherein the flow soldering is wave soldering.
US10/175,149 2001-06-28 2002-06-20 Lead-free solder alloy Abandoned US20030021718A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/666,129 US7338567B2 (en) 2001-06-28 2003-09-22 Lead-free solder alloy
US11/889,356 US7682468B2 (en) 2001-06-28 2007-08-10 Lead-free solder alloy
US12/659,815 US8216395B2 (en) 2001-06-28 2010-03-22 Lead-free solder alloy

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001-195903 2001-06-28
JP2001195903 2001-06-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/666,129 Continuation US7338567B2 (en) 2001-06-28 2003-09-22 Lead-free solder alloy

Publications (1)

Publication Number Publication Date
US20030021718A1 true US20030021718A1 (en) 2003-01-30

Family

ID=19033808

Family Applications (3)

Application Number Title Priority Date Filing Date
US10/175,149 Abandoned US20030021718A1 (en) 2001-06-28 2002-06-20 Lead-free solder alloy
US10/666,129 Expired - Lifetime US7338567B2 (en) 2001-06-28 2003-09-22 Lead-free solder alloy
US11/889,356 Expired - Lifetime US7682468B2 (en) 2001-06-28 2007-08-10 Lead-free solder alloy

Family Applications After (2)

Application Number Title Priority Date Filing Date
US10/666,129 Expired - Lifetime US7338567B2 (en) 2001-06-28 2003-09-22 Lead-free solder alloy
US11/889,356 Expired - Lifetime US7682468B2 (en) 2001-06-28 2007-08-10 Lead-free solder alloy

Country Status (7)

Country Link
US (3) US20030021718A1 (en)
EP (2) EP1897649B1 (en)
JP (6) JP3622788B2 (en)
KR (1) KR100659890B1 (en)
CN (2) CN100534699C (en)
MY (1) MY136743A (en)
TW (1) TW592872B (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040101190A1 (en) * 2002-11-21 2004-05-27 Fujitsu Limited Characteristic amount calculating device for soldering inspection
US20050036902A1 (en) * 2002-07-09 2005-02-17 Masazumi Amagai Lead-free solder alloy
US20050039943A1 (en) * 2003-07-15 2005-02-24 Hitachi Cable, Ltd. Straight angle conductor and method of manufacturing the same
US20050153523A1 (en) * 2003-03-31 2005-07-14 Fay Hua Method for compensating for CTE mismatch using phase change lead-free super plastic solders
US20070276100A1 (en) * 2004-10-04 2007-11-29 Solvay Advanced Polymers, L.L.C. Electronic Components
CN100366377C (en) * 2006-01-24 2008-02-06 昆山成利焊锡制造有限公司 Leadless soft soldering material
CN100387741C (en) * 2005-08-04 2008-05-14 上海交通大学 Sn-Zn-Cr alloy lead-free solder preparation method
US20080246164A1 (en) * 2004-06-01 2008-10-09 Minoru Ueshima Soldering Method, Solder Pellet for Die Bonding, Method for Manufacturing a Solder Pellet for Die Bonding, and Electronic Component
US20080292493A1 (en) * 2007-05-25 2008-11-27 Korea Institute Of Industrial Technology Quaternary Pb-free solder composition incorporating Sn-Ag-Cu-In
CN100439027C (en) * 2007-01-18 2008-12-03 广州有色金属研究院 Lead-free welding flux alloy suitable for dissimilar metals soldering flux of aluminum and copper
US20090218387A1 (en) * 2005-06-10 2009-09-03 Ryoichi Kurata Method of soldering portions plated by electroless ni plating
US20090304545A1 (en) * 2006-03-09 2009-12-10 Nippon Steel Materials Co., Ltd Lead-free solder alloy, solder ball and electronic member, and lead-free solder alloy, solder ball and electronic member for automobile-mounted electronic member
US20100266870A1 (en) * 2007-10-19 2010-10-21 Nihon Superior Sha Co., Ltd. Solder joint
US20100294565A1 (en) * 2007-07-13 2010-11-25 Yuji Kawamata Lead-free solder for vehicles and an vehicle-mounted electronic circuit
US20100307823A1 (en) * 2007-07-18 2010-12-09 Yuji Kawamata Indium-containing lead-free solder for vehicle-mounted electronic circuits
US20100307292A1 (en) * 2008-02-22 2010-12-09 Tetsuro Nishimura Method of regulating nickel concentration in lead-free solder containing nickel
US20120292087A1 (en) * 2009-12-28 2012-11-22 Senju Metal Industry Co., Ltd. Method for soldering surface-mount component and surface-mount component
CN103008903A (en) * 2007-08-14 2013-04-03 株式会社爱科草英 Lead-free solder combination and printed circuit board and electronic device provided with lead-free solder combination
US20130098506A1 (en) * 2010-06-01 2013-04-25 Yoshitaka Toyoda Lead-free solder paste
US20150037087A1 (en) * 2013-08-05 2015-02-05 Senju Metal Industry Co., Ltd. Lead-Free Solder Alloy
US20160279741A1 (en) * 2015-03-24 2016-09-29 Tamura Corporation Lead-free solder alloy, electronic circuit board, and electronic control device
US20170151636A1 (en) * 2015-11-30 2017-06-01 Senju Metal Industry Co., Ltd. Solder alloy
US20180029169A1 (en) * 2016-03-22 2018-02-01 Tamura Corporation Lead-free solder alloy, solder joint, solder paste composition, electronic circuit board, and electronic device
US20190070696A1 (en) * 2016-03-08 2019-03-07 Senju Metal Industry Co., Ltd. Solder Alloy, Solder Ball, Chip Solder, Solder Paste, and Solder Joint
US10286497B2 (en) 2014-04-30 2019-05-14 Nihon Superior Co., Ltd. Lead-free solder alloy
US10456872B2 (en) 2017-09-08 2019-10-29 Tamura Corporation Lead-free solder alloy, electronic circuit substrate, and electronic device
US10500680B2 (en) 2016-09-13 2019-12-10 Senju Metal Industry Co., Ltd. Solder alloy, solder ball, and solder joint
US11465244B2 (en) 2015-05-26 2022-10-11 Senju Metal Industry Co., Ltd. Solder alloy, solder ball, chip solder, solder paste and solder joint
US11607753B2 (en) 2019-06-28 2023-03-21 Senju Metal Industry Co., Ltd. Solder alloy, cast article, formed article, and solder joint

Families Citing this family (116)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW592872B (en) * 2001-06-28 2004-06-21 Senju Metal Industry Co Lead-free solder alloy
US8216395B2 (en) * 2001-06-28 2012-07-10 Senju Metal Industry Co., Ltd. Lead-free solder alloy
CN1318172C (en) * 2002-01-10 2007-05-30 千住金属工业株式会社<Del/> Soldering method and solder alloy for additional supply
JP3991788B2 (en) * 2002-07-04 2007-10-17 日本電気株式会社 Solder and mounted product using it
JP3724486B2 (en) * 2002-10-17 2005-12-07 千住金属工業株式会社 Lead-free solder ball alloys and solder balls
WO2004113013A1 (en) * 2003-06-24 2004-12-29 Kabushiki Kaisha Toshiba Solder member, solder material, soldering method, method of manufacturing solder material, and solder connecting member
CN1295054C (en) * 2003-08-20 2007-01-17 中国科学院金属研究所 Sn-Ag-Cu-X eutectic alloy leadless welding materials for electronic elements
CN1293985C (en) * 2003-09-29 2007-01-10 中国科学院金属研究所 Oxidation resistant stannum-cuprum eutectic alloy leadless solder
EP1679149B1 (en) * 2003-10-07 2012-05-02 Senju Metal Industry Co., Ltd. Lead-free solder ball
JP4453473B2 (en) * 2003-10-10 2010-04-21 パナソニック株式会社 Lead-free solder alloys, solder materials and solder joints using them
JP2005153010A (en) 2003-10-27 2005-06-16 Topy Ind Ltd Lead-free solder alloy
CN1317101C (en) * 2003-11-07 2007-05-23 中国科学院金属研究所 Tin and silver co-crystal solder without lead against oxidation
WO2006011204A1 (en) * 2004-07-29 2006-02-02 Senju Metal Industry Co., Ltd Lead-free solder alloy
GB2417038B (en) * 2004-08-12 2006-08-02 Kyoung Dae Kim Low-temperature unleaded alloy
CN1310737C (en) * 2004-09-17 2007-04-18 张毅 Environmental protection type high temperature antioxidation solder and its preparation method
GB2419137A (en) * 2004-10-15 2006-04-19 Alpha Fry Ltd Solder alloy
KR100885543B1 (en) * 2004-10-22 2009-02-26 엠케이전자 주식회사 Pb-free solder alloy
GB2406101C (en) * 2004-10-27 2007-09-11 Quantum Chem Tech Singapore Improvements in ro relating to solders
GB2421030B (en) * 2004-12-01 2008-03-19 Alpha Fry Ltd Solder alloy
JP2006181635A (en) * 2004-12-28 2006-07-13 Senju Metal Ind Co Ltd Method for preventing blackening of lead-free solder and solder paste
US7335269B2 (en) * 2005-03-30 2008-02-26 Aoki Laboratories Ltd. Pb-free solder alloy compositions comprising essentially Tin(Sn), Silver(Ag), Copper(Cu), and Phosphorus(P)
JP4635715B2 (en) * 2005-05-20 2011-02-23 富士電機システムズ株式会社 Solder alloy and semiconductor device using the same
US7816249B2 (en) 2005-05-20 2010-10-19 Fuji Electric Systems Co., Ltd. Method for producing a semiconductor device using a solder alloy
KR20100113626A (en) * 2005-06-03 2010-10-21 센주긴조쿠고교 가부시키가이샤 Lead-free solder alloy
CN1895837B (en) * 2005-07-12 2011-04-20 北京有色金属研究总院 Sn-Cu-Cr lead-free soldering material and its preparation
TWI465312B (en) * 2005-07-19 2014-12-21 Nihon Superior Co Ltd A replenished lead-free solder and a control method for copper density and nickel density in a solder dipping bath
CN100348361C (en) * 2005-08-04 2007-11-14 上海交通大学 Sn-Zn-Cr alloy lead-free solder
CN1325679C (en) * 2005-08-04 2007-07-11 上海交通大学 Sn-Zn-Bi-Cr alloy lead-free solder preparation method
EP1749616A1 (en) * 2005-08-05 2007-02-07 Grillo-Werke AG Process for arc or beam soldering or welding of workpieces from same or different metal or metallic aloys using a Sn-Basis alloy filler; Wire of Tin-basis alloy
EP1924394A2 (en) * 2005-08-24 2008-05-28 FRY'S METALS, INC. d/b/a ALPHA METALS, INC. Solder alloy
US8641964B2 (en) 2005-08-24 2014-02-04 Fry's Metals, Inc. Solder alloy
CZ297596B6 (en) * 2005-10-19 2007-01-10 JenĂ­k@Jan Lead-free solder
GB2431412B (en) * 2005-10-24 2009-10-07 Alpha Fry Ltd Lead-free solder alloy
US9175368B2 (en) 2005-12-13 2015-11-03 Indium Corporation MN doped SN-base solder alloy and solder joints thereof with superior drop shock reliability
CN100453244C (en) * 2005-12-16 2009-01-21 浙江亚通焊材有限公司 Lead les tin solder
EP1971699A2 (en) * 2006-01-10 2008-09-24 Illinois Tool Works Inc. Lead-free solder with low copper dissolution
WO2007100014A1 (en) * 2006-03-03 2007-09-07 Orient Instrument Computer Co., Ltd. Protection file creation system, protection file creation program, and application program protecting method
WO2007102589A1 (en) * 2006-03-09 2007-09-13 Nippon Steel Materials Co., Ltd. Lead-free solder alloy, solder ball and electronic member, and lead-free solder alloy, solder ball and electronic member for automobile-mounted electronic member
CN100453245C (en) * 2006-03-15 2009-01-21 浙江亚通焊材有限公司 Lead-free tin-radicel soft solder
JP5023583B2 (en) * 2006-07-07 2012-09-12 富士電機株式会社 Solder paste composition and method for mounting electronic component on printed wiring board using the same
JP4076182B2 (en) * 2006-07-27 2008-04-16 トピー工業株式会社 Lead-free solder alloy
CN1927525B (en) * 2006-08-11 2010-11-24 北京有色金属研究总院 Silver-free tin-bismuth-copper leadless solder and preparation method
CN100445018C (en) * 2006-08-16 2008-12-24 东莞市普赛特电子科技有限公司 Lead-free solder
JP4979120B2 (en) * 2006-08-17 2012-07-18 日本アルミット株式会社 Lead-free solder alloy
JP5080946B2 (en) * 2007-01-11 2012-11-21 株式会社日本フィラーメタルズ Lead-free solder alloy for manual soldering
WO2008084603A1 (en) * 2007-01-11 2008-07-17 Topy Kogyo Kabushiki Kaisha Manual soldering lead-free solder alloy
CN100439028C (en) * 2007-01-24 2008-12-03 太仓市南仓金属材料有限公司 Leadless soft tin solder
WO2009022758A1 (en) * 2007-08-14 2009-02-19 Ecojoin Pb-free solder compositions and pcb and electronic device using the same
US8252677B2 (en) * 2007-09-28 2012-08-28 Intel Corporation Method of forming solder bumps on substrates
TW200927357A (en) * 2007-10-17 2009-07-01 Ishikawa Metal Co Ltd Lead-free solder
EP2261964A4 (en) * 2008-03-05 2011-12-07 Senju Metal Industry Co Lead-free solder joint structure and solder ball
US8220692B2 (en) 2008-04-23 2012-07-17 Senju Metal Industry Co., Ltd. Lead-free solder
US8013444B2 (en) * 2008-12-24 2011-09-06 Intel Corporation Solder joints with enhanced electromigration resistance
CN101474728B (en) * 2009-01-07 2011-06-01 高新锡业(惠州)有限公司 Leadless soft brazing material
JP4554713B2 (en) * 2009-01-27 2010-09-29 株式会社日本フィラーメタルズ Lead-free solder alloy, fatigue-resistant solder joint material including the solder alloy, and joined body using the joint material
CN101554684A (en) * 2009-05-19 2009-10-14 广州瀚源电子科技有限公司 Method for reducing dregs of leadless welding material
CN101988165B (en) * 2009-07-31 2014-06-18 中国科学院金属研究所 High-temperature oxidation resistant lead-free tin-coated alloy
JP5463845B2 (en) * 2009-10-15 2014-04-09 三菱電機株式会社 Power semiconductor device and manufacturing method thereof
CN101780608B (en) * 2010-04-12 2011-09-21 天津市恒固科技有限公司 SnAgCu series lead-free solder containing Si and Ge
US9024442B2 (en) 2010-08-18 2015-05-05 Nippon Steel & Sumikin Materials Co., Ltd. Solder ball for semiconductor packaging and electronic member using the same
WO2012066795A1 (en) * 2010-11-19 2012-05-24 株式会社村田製作所 Electroconductive material, method of connection with same, and connected structure
CN102476251A (en) * 2010-11-25 2012-05-30 中国科学院金属研究所 Sn-Cu lead-free welding flux capable of resisting atmospheric corrosion
WO2012131861A1 (en) 2011-03-28 2012-10-04 千住金属工業株式会社 Lead-free solder ball
JP5958841B2 (en) * 2011-06-17 2016-08-02 エルジー・ケム・リミテッド Secondary battery component and method for manufacturing the same, and secondary battery and multi-battery system manufactured using the component
CN102896439B (en) * 2011-07-28 2015-08-26 北京有色金属研究总院 A kind of Sn-Sb-X high-temperature lead-free solder
CN109986234A (en) * 2011-08-02 2019-07-09 阿尔法金属公司 The solder alloy of high impact toughness
CN106799550A (en) * 2011-10-04 2017-06-06 铟泰公司 The Sn based solder alloys and its weld seam of the Mn doping with superior drop impact reliability
KR101283580B1 (en) * 2011-12-14 2013-07-05 엠케이전자 주식회사 Tin-based solder ball and semiconductor package including the same
CN103476540B (en) * 2012-04-09 2015-11-25 千住金属工业株式会社 Solder alloy
CN102699563A (en) * 2012-06-23 2012-10-03 浙江亚通焊材有限公司 Low-silver lead-free soft solder
WO2014002304A1 (en) 2012-06-29 2014-01-03 ハリマ化成株式会社 Solder alloy, solder paste, and electronic circuit board
KR101738007B1 (en) * 2012-10-09 2017-05-29 알파 어셈블리 솔루션스 인크. Lead-free and antimony-free tin solder reliable at high temperatures
US20140284794A1 (en) * 2012-11-07 2014-09-25 Mk Electron Co., Ltd. Tin-based solder ball and semiconductor package including the same
TWI460046B (en) * 2012-11-12 2014-11-11 Accurus Scient Co Ltd High strength silver-free lead-free solder
JP5825265B2 (en) * 2013-01-16 2015-12-02 千住金属工業株式会社 Soldering method for printed circuit boards
EP2974818B1 (en) * 2013-03-13 2019-01-16 Nihon Superior Co., Ltd. Solder joining method
CN104070302A (en) * 2013-03-26 2014-10-01 昆山市天和焊锡制造有限公司 Leadless solder for photovoltaic solder strips
KR101941831B1 (en) * 2013-04-18 2019-01-23 센주긴조쿠고교 가부시키가이샤 Solder joint and substrate
CN103243234B (en) * 2013-04-27 2015-08-26 深圳市同方电子新材料有限公司 A kind of Electronic Packaging soldering serial low silver leadless solder and preparation method thereof
CN105283954B (en) 2013-05-03 2018-12-18 霍尼韦尔国际公司 Lead frame structure for lead-free solder connection
US9320152B2 (en) 2013-05-29 2016-04-19 Nippon Steel & Sumikin Materials Co., Ltd. Solder ball and electronic member
CN103480978A (en) * 2013-09-29 2014-01-01 宁波市鄞州恒迅电子材料有限公司 Environmentally-friendly lead-free anti-electrode-stripping solder wire
KR102522501B1 (en) * 2013-10-31 2023-04-14 알파 어셈블리 솔루션스 인크. Lead-free, silver-free solder alloys
CN103586599A (en) * 2013-11-12 2014-02-19 宁波市鄞州恒迅电子材料有限公司 Lead-free soldering tin wire
KR101513494B1 (en) 2013-12-04 2015-04-21 엠케이전자 주식회사 Lead-free solder, solder paste and semiconductor device
JP5652560B1 (en) * 2014-02-04 2015-01-14 千住金属工業株式会社 Cu core ball, solder paste, foam solder and solder joint
KR20160121562A (en) 2014-02-20 2016-10-19 허니웰 인터내셔날 인코포레이티드 Lead-free solder compositions
EP3112080A4 (en) * 2014-02-24 2017-11-29 Koki Company Limited Lead-free solder alloy, solder material, and joined structure
CN104923951A (en) * 2014-03-17 2015-09-23 广西民族大学 Novel antioxidized leadless solder
CN108311812A (en) * 2014-04-02 2018-07-24 千住金属工业株式会社 Solder alloy and use its method
KR101985646B1 (en) * 2014-07-21 2019-06-04 알파 어셈블리 솔루션스 인크. Low temperature high reliability tin alloy for soldering
JP5842973B1 (en) * 2014-09-04 2016-01-13 千住金属工業株式会社 Lead-free solder alloy and electronic parts for terminal pre-plating
JP6648468B2 (en) * 2014-10-29 2020-02-14 Tdk株式会社 Pb-free solder and electronic component built-in module
CN104353840B (en) * 2014-11-25 2017-11-03 北京康普锡威科技有限公司 A kind of LED inexpensive lead-free solder alloy powders and preparation method thereof
CN104668810B (en) * 2015-01-29 2016-09-07 苏州天兼新材料科技有限公司 A kind of novel lead-free welding material and the preparation method of scaling powder thereof
CN106031963A (en) * 2015-03-11 2016-10-19 中山翰华锡业有限公司 A lead-free and silver-free tin bar and a preparation method thereof
CN106271181A (en) * 2015-05-13 2017-01-04 广西民族大学 A kind of Sn-Sb-X system high-temperature oxidation resistant lead-free brazing
CN105220014A (en) * 2015-11-13 2016-01-06 无锡清杨机械制造有限公司 A kind of preparation method of tin alloy silk
CN105479031A (en) * 2016-01-29 2016-04-13 谢拂晓 Lead-free brazing filler metal
CN106181109B (en) * 2016-08-16 2018-12-28 镇江市锶达合金材料有限公司 A kind of High-performance green brazing material
JP6119912B1 (en) * 2016-09-13 2017-04-26 千住金属工業株式会社 Solder alloys, solder balls and solder joints
JP6119911B1 (en) * 2016-09-13 2017-04-26 千住金属工業株式会社 Solder alloys, solder balls and solder joints
CN109641323B (en) * 2017-03-17 2022-02-08 富士电机株式会社 Soft soldering material
KR102373856B1 (en) * 2017-09-11 2022-03-14 가부시키가이샤 다무라 세이사쿠쇼 Lead-free solder alloy, electronic circuit board and electronic control unit
CN107538149B (en) * 2017-10-25 2019-09-24 郑州轻工业学院 A kind of Sn-Cu-Co-Ni lead-free solder and preparation method thereof
CN107931883A (en) * 2017-11-29 2018-04-20 广西厚思品牌策划顾问有限公司 A kind of solder alloy and preparation method thereof
CN108044255B (en) * 2018-01-17 2020-04-28 中山翰华锡业有限公司 Be used for intelligent welded tin wire
JP6578393B2 (en) * 2018-02-27 2019-09-18 株式会社タムラ製作所 Lead-free solder alloy, electronic circuit mounting board, and electronic control device
CN108611522B (en) * 2018-05-03 2020-05-26 绍兴市天龙锡材有限公司 Tin alloy wire
WO2020116372A1 (en) * 2018-12-03 2020-06-11 千住金属工業株式会社 Flux, solder alloy, joined body, and method for producing joined body
JP6731034B2 (en) * 2018-12-25 2020-07-29 株式会社タムラ製作所 Lead-free solder alloy, solder joint material, electronic circuit mounting board and electronic control device
TWI714420B (en) * 2020-01-06 2020-12-21 昇貿科技股份有限公司 Lead-free copper-free tin alloy and tin balls for ball grid array packaging
JP6799701B1 (en) * 2020-03-12 2020-12-16 有限会社 ナプラ Metal particles
CN113385853A (en) * 2021-07-30 2021-09-14 浙江亚通焊材有限公司 Low-silver high-reliability lead-free soft solder and preparation method and application thereof
JP7007623B1 (en) * 2021-08-27 2022-01-24 千住金属工業株式会社 Solder alloys and solder fittings
CN115464299A (en) * 2021-10-21 2022-12-13 上海华庆焊材技术股份有限公司 Preformed lead-free soldering lug capable of reducing soldering cavity and preparation method and application thereof

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US51728A (en) * 1865-12-26 Improved compound for tempering steel springs
GB601029A (en) 1945-06-20 1948-04-26 William Martin An improved aluminium solder
FR2612035B1 (en) 1987-03-03 1989-05-26 Loire Electronique TIN WELDING MACHINE WITH AUTOMATIC WAVE GUARD, FOR PRINTED CIRCUIT BOARDS
GB8807730D0 (en) 1988-03-31 1988-05-05 Cookson Group Plc Low toxicity soldering compositions
US5240169A (en) 1991-12-06 1993-08-31 Electrovert Ltd. Gas shrouded wave soldering with gas knife
US5390845A (en) 1992-06-24 1995-02-21 Praxair Technology, Inc. Low-bridging soldering process
JP3205466B2 (en) * 1994-06-13 2001-09-04 福田金属箔粉工業株式会社 Sn-based low melting point brazing material
JPH0994687A (en) * 1995-09-29 1997-04-08 Senju Metal Ind Co Ltd Lead-free solder alloy
WO1997012719A1 (en) * 1995-09-29 1997-04-10 Matsushita Electric Industrial Co., Ltd. Lead-free solder
KR100320545B1 (en) * 1995-12-11 2002-04-22 후꾸다 긴조꾸하꾸훈 고오교 가부시끼가이샤 Sn-based low melting point solder material
CN1044212C (en) * 1995-12-12 1999-07-21 福田金属箔粉工业株式会社 Sn Base low-melting solder
JP3693762B2 (en) 1996-07-26 2005-09-07 株式会社ニホンゲンマ Lead-free solder
JPH10144718A (en) 1996-11-14 1998-05-29 Fukuda Metal Foil & Powder Co Ltd Tin group lead free solder wire and ball
KR19980068127A (en) * 1997-02-15 1998-10-15 김광호 Lead-Free Alloys for Soldering
US6179935B1 (en) 1997-04-16 2001-01-30 Fuji Electric Co., Ltd. Solder alloys
JP3296289B2 (en) 1997-07-16 2002-06-24 富士電機株式会社 Solder alloy
KR100377232B1 (en) * 1998-03-26 2003-03-26 니혼 슈페리어 샤 가부시키 가이샤 Leadless Solder
CN1168571C (en) * 1998-03-26 2004-09-29 斯比瑞尔社股份有限公司 Leadless solder
JP2000015476A (en) 1998-06-29 2000-01-18 Ishikawa Kinzoku Kk Lead-free solder
JP2000288772A (en) 1999-02-02 2000-10-17 Nippon Genma:Kk Lead-free solder
CN1144649C (en) * 1999-06-11 2004-04-07 日本板硝子株式会社 Lead-free solder
GB9915954D0 (en) 1999-07-07 1999-09-08 Multicore Solders Ltd Solder alloy
JP3753168B2 (en) * 1999-08-20 2006-03-08 千住金属工業株式会社 Solder paste for joining microchip components
JP2001071173A (en) 1999-09-06 2001-03-21 Ishikawa Kinzoku Kk Non-leaded solder
JP2001191196A (en) * 1999-10-29 2001-07-17 Topy Ind Ltd Sn BASE Pb-FREE SOLDER EXCELLENT IN WETTABILITY, HEAT CYCLE CHARACTERISTICS AND OXIDATION RESISTANCE
US6517602B2 (en) 2000-03-14 2003-02-11 Hitachi Metals, Ltd Solder ball and method for producing same
JP3775172B2 (en) 2000-05-22 2006-05-17 株式会社村田製作所 Solder composition and soldered article
KR100333401B1 (en) * 2000-05-26 2002-04-19 김경대 Lead-Free Alloys for Soldering
KR100337498B1 (en) * 2000-06-08 2002-05-24 김경대 Lead-Free Alloys for Soldering
KR100337496B1 (en) * 2000-06-08 2002-05-24 김경대 Lead-Free Alloys for Soldering
JP3786251B2 (en) * 2000-06-30 2006-06-14 日本アルミット株式会社 Lead-free solder alloy
JP2002263880A (en) * 2001-03-06 2002-09-17 Hitachi Cable Ltd Pb-FREE SOLDER, AND CONNECTION LEAD WIRE AND ELECTRIC PART USING THE SAME
JP2002336988A (en) * 2001-05-15 2002-11-26 Tokyo Daiichi Shoko:Kk Lead-free solder alloy
TW592872B (en) * 2001-06-28 2004-06-21 Senju Metal Industry Co Lead-free solder alloy
US7282175B2 (en) 2003-04-17 2007-10-16 Senju Metal Industry Co., Ltd. Lead-free solder
US7335269B2 (en) 2005-03-30 2008-02-26 Aoki Laboratories Ltd. Pb-free solder alloy compositions comprising essentially Tin(Sn), Silver(Ag), Copper(Cu), and Phosphorus(P)

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050036902A1 (en) * 2002-07-09 2005-02-17 Masazumi Amagai Lead-free solder alloy
US7029542B2 (en) * 2002-07-09 2006-04-18 Senju Metal Industry Co., Ltd. Lead-free solder alloy
US7308129B2 (en) * 2002-11-21 2007-12-11 Fujitsu Limited Characteristic amount calculating device for soldering inspection
US20040101190A1 (en) * 2002-11-21 2004-05-27 Fujitsu Limited Characteristic amount calculating device for soldering inspection
US20050153523A1 (en) * 2003-03-31 2005-07-14 Fay Hua Method for compensating for CTE mismatch using phase change lead-free super plastic solders
US7776651B2 (en) * 2003-03-31 2010-08-17 Intel Corporation Method for compensating for CTE mismatch using phase change lead-free super plastic solders
US20050039943A1 (en) * 2003-07-15 2005-02-24 Hitachi Cable, Ltd. Straight angle conductor and method of manufacturing the same
US7173188B2 (en) * 2003-07-15 2007-02-06 Hitachi Cable, Ltd. Straight angle conductor and method of manufacturing the same
US20080246164A1 (en) * 2004-06-01 2008-10-09 Minoru Ueshima Soldering Method, Solder Pellet for Die Bonding, Method for Manufacturing a Solder Pellet for Die Bonding, and Electronic Component
US20070276100A1 (en) * 2004-10-04 2007-11-29 Solvay Advanced Polymers, L.L.C. Electronic Components
US8887980B2 (en) * 2005-06-10 2014-11-18 Senju Metal Industry Co., Ltd. Method of soldering portions plated by electroless Ni plating
US20090218387A1 (en) * 2005-06-10 2009-09-03 Ryoichi Kurata Method of soldering portions plated by electroless ni plating
CN100387741C (en) * 2005-08-04 2008-05-14 上海交通大学 Sn-Zn-Cr alloy lead-free solder preparation method
CN100366377C (en) * 2006-01-24 2008-02-06 昆山成利焊锡制造有限公司 Leadless soft soldering material
US20090304545A1 (en) * 2006-03-09 2009-12-10 Nippon Steel Materials Co., Ltd Lead-free solder alloy, solder ball and electronic member, and lead-free solder alloy, solder ball and electronic member for automobile-mounted electronic member
US8562906B2 (en) 2006-03-09 2013-10-22 Nippon Steel & Sumikin Materials Co., Ltd. Lead-free solder alloy, solder ball and electronic member, and lead-free solder alloy, solder ball and electronic member for automobile-mounted electronic member
CN100439027C (en) * 2007-01-18 2008-12-03 广州有色金属研究院 Lead-free welding flux alloy suitable for dissimilar metals soldering flux of aluminum and copper
US20080292493A1 (en) * 2007-05-25 2008-11-27 Korea Institute Of Industrial Technology Quaternary Pb-free solder composition incorporating Sn-Ag-Cu-In
US20100294565A1 (en) * 2007-07-13 2010-11-25 Yuji Kawamata Lead-free solder for vehicles and an vehicle-mounted electronic circuit
US8845826B2 (en) * 2007-07-13 2014-09-30 Senju Metal Industry Co., Ltd. Lead-free solder for vehicles and a vehicle-mounted electronic circuit using the solder
US20100307823A1 (en) * 2007-07-18 2010-12-09 Yuji Kawamata Indium-containing lead-free solder for vehicle-mounted electronic circuits
US8888932B2 (en) * 2007-07-18 2014-11-18 Senju Metal Industry Co., Ltd. Indium-containing lead-free solder for vehicle-mounted electronic circuits
CN103008903A (en) * 2007-08-14 2013-04-03 株式会社爱科草英 Lead-free solder combination and printed circuit board and electronic device provided with lead-free solder combination
US20100266870A1 (en) * 2007-10-19 2010-10-21 Nihon Superior Sha Co., Ltd. Solder joint
US8999519B2 (en) 2007-10-19 2015-04-07 Nihon Superior Sha Co., Ltd. Solder joint
US8557021B2 (en) 2008-02-22 2013-10-15 Nihon Superior Sha Co., Ltd. Method of regulating nickel concentration in lead-free solder containing nickel
US20100307292A1 (en) * 2008-02-22 2010-12-09 Tetsuro Nishimura Method of regulating nickel concentration in lead-free solder containing nickel
US20120292087A1 (en) * 2009-12-28 2012-11-22 Senju Metal Industry Co., Ltd. Method for soldering surface-mount component and surface-mount component
US10297539B2 (en) 2009-12-28 2019-05-21 Senju Metal Industry Co., Ltd. Electronic device including soldered surface-mount component
US10354944B2 (en) * 2009-12-28 2019-07-16 Senju Metal Industry Co., Ltd. Method for soldering surface-mount component and surface-mount component
US20130098506A1 (en) * 2010-06-01 2013-04-25 Yoshitaka Toyoda Lead-free solder paste
US9770786B2 (en) * 2010-06-01 2017-09-26 Senju Metal Industry Co., Ltd. Lead-free solder paste
US20150037087A1 (en) * 2013-08-05 2015-02-05 Senju Metal Industry Co., Ltd. Lead-Free Solder Alloy
US10286497B2 (en) 2014-04-30 2019-05-14 Nihon Superior Co., Ltd. Lead-free solder alloy
US20160279741A1 (en) * 2015-03-24 2016-09-29 Tamura Corporation Lead-free solder alloy, electronic circuit board, and electronic control device
US11465244B2 (en) 2015-05-26 2022-10-11 Senju Metal Industry Co., Ltd. Solder alloy, solder ball, chip solder, solder paste and solder joint
US10213879B2 (en) * 2015-11-30 2019-02-26 Senju Metal Industry Co., Ltd. Solder alloy
US20170151636A1 (en) * 2015-11-30 2017-06-01 Senju Metal Industry Co., Ltd. Solder alloy
US20190070696A1 (en) * 2016-03-08 2019-03-07 Senju Metal Industry Co., Ltd. Solder Alloy, Solder Ball, Chip Solder, Solder Paste, and Solder Joint
US10773345B2 (en) * 2016-03-08 2020-09-15 Senju Metal Industry Co., Ltd. Solder alloy, solder ball, chip solder, solder paste, and solder joint
US10926360B2 (en) * 2016-03-22 2021-02-23 Tamura Corporation Lead-free solder alloy, solder joint, solder paste composition, electronic circuit board, and electronic device
US20180029169A1 (en) * 2016-03-22 2018-02-01 Tamura Corporation Lead-free solder alloy, solder joint, solder paste composition, electronic circuit board, and electronic device
US10500680B2 (en) 2016-09-13 2019-12-10 Senju Metal Industry Co., Ltd. Solder alloy, solder ball, and solder joint
US10456872B2 (en) 2017-09-08 2019-10-29 Tamura Corporation Lead-free solder alloy, electronic circuit substrate, and electronic device
US11607753B2 (en) 2019-06-28 2023-03-21 Senju Metal Industry Co., Ltd. Solder alloy, cast article, formed article, and solder joint

Also Published As

Publication number Publication date
TW592872B (en) 2004-06-21
MY136743A (en) 2008-11-28
JP2007007732A (en) 2007-01-18
JP5099048B2 (en) 2012-12-12
CN1400081A (en) 2003-03-05
EP1897649B1 (en) 2011-11-02
EP1273384A1 (en) 2003-01-08
KR20030003030A (en) 2003-01-09
US20080061117A1 (en) 2008-03-13
JP4432946B2 (en) 2010-03-17
US7682468B2 (en) 2010-03-23
EP1897649A1 (en) 2008-03-12
US7338567B2 (en) 2008-03-04
JP2003094195A (en) 2003-04-02
US20040062679A1 (en) 2004-04-01
KR100659890B1 (en) 2006-12-20
JP2004001100A (en) 2004-01-08
JP2007260779A (en) 2007-10-11
JP2009131903A (en) 2009-06-18
JP4225165B2 (en) 2009-02-18
CN101508062A (en) 2009-08-19
JP3622788B2 (en) 2005-02-23
JP2010029942A (en) 2010-02-12
CN100534699C (en) 2009-09-02
JP5152150B2 (en) 2013-02-27

Similar Documents

Publication Publication Date Title
US7338567B2 (en) Lead-free solder alloy
US8216395B2 (en) Lead-free solder alloy
US6241942B1 (en) Lead-free solder alloys
Abtew et al. Lead-free solders in microelectronics
KR101184234B1 (en) Lead-free solder
JP2002018589A (en) Lead-free solder alloy
JPWO2005102594A1 (en) Solder and mounted products using it
JP4401671B2 (en) High temperature lead-free solder alloys and electronic components
US6503338B1 (en) Lead-free solder alloys
JP5140644B2 (en) Soldering composition and electronic component
EP3707285B1 (en) Low-silver tin based alternative solder alloy to standard sac alloys for high reliability applications
JP2019155467A (en) Lead-free solder alloy
CA2540486A1 (en) Pb-free solder alloy compositions comprising essentially tin (sn), silver (ag), copper (cu), nickel (ni), phosphorus (p) and/or rare earth: cerium (ce) or lanthanum (la)
JP2008221330A (en) Solder alloy
KR100903026B1 (en) Leed-free alloy for soldering
KR20110097329A (en) Sn-ag-ce ternary pb-free solder alloy

Legal Events

Date Code Title Description
AS Assignment

Owner name: SENJU METAL INDUSTRY CO., LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MUNEKATA, OSAMU;TOYODA, YOSHITAKA;OHNISHI, TSUKASA;AND OTHERS;REEL/FRAME:013331/0634

Effective date: 20020905

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION