US20030111012A1 - Method for forming a thin film and a thin film forming apparatus therefor - Google Patents

Method for forming a thin film and a thin film forming apparatus therefor Download PDF

Info

Publication number
US20030111012A1
US20030111012A1 US10/347,408 US34740803A US2003111012A1 US 20030111012 A1 US20030111012 A1 US 20030111012A1 US 34740803 A US34740803 A US 34740803A US 2003111012 A1 US2003111012 A1 US 2003111012A1
Authority
US
United States
Prior art keywords
raw material
forming
thin film
adduct
material container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/347,408
Inventor
Yutaka Takeshima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to US10/347,408 priority Critical patent/US20030111012A1/en
Publication of US20030111012A1 publication Critical patent/US20030111012A1/en
Assigned to MURATA MANUFACTURING CO., LTD. reassignment MURATA MANUFACTURING CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: TAKESHIMA, YUTAKA
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45593Recirculation of reactive gases
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/18Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metallo-organic compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4412Details relating to the exhausts, e.g. pumps, filters, scrubbers, particle traps
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45561Gas plumbing upstream of the reaction chamber

Definitions

  • the present invention relates to a method for forming a thin film and a forming apparatus therefor. More specifically, it relates to a method for successively forming a plurality of thin films by an MOCVD method and a forming apparatus therefor.
  • MOCVD metal organic chemical vapor deposition
  • a MOCVD method thin film forming apparatus shown in FIG. 1, is used for forming a (Ba, Sr)TiO 3 (Ba x Sr 1-x TiO 3 , 0 ⁇ x ⁇ 1) thin film, using, e.g., as raw materials, the following three materials; barium dipivaloyl methanate tetraethylenepentamine adduct ( ⁇ Ba(C 11 H 19 O 2 ) 2 (C 8 H 23 N 5 ) 2 ⁇ ⁇ HN(CH 2 CH 2 NHCH 2 CH 2 NH 2 ) 2 ⁇ ), strontium dipivaloyl methanate tetraethylenepentamine adduct ( ⁇ Sr(C 11 H 19 O 2 ) 2 (C 8 H 23 N 5 ) 2 ⁇ ⁇ HN(CH 2 CH 2 NHCH 2 CH 2 NH 2 ) 2 ⁇ ), and titanium isopropoxide (Ti(i-OC 3 H 7 ) 4 ).
  • the thin film forming apparatus is equipped with raw material containers 51 a , 51 b and 51 c for containing liquid or solid raw materials, a mixer 52 for mixing raw material gases vaporized from each of the raw materials, a film deposition chamber 53 for depositing a film by the MOCVD method using the supplied raw material gas mixture mixed in the mixer 52 , and a vacuum pump 54 for maintaining the inside of the above-described film deposition chamber 53 at a specific pressure (vacuum).
  • a carrier gas Ar gas in this case
  • the temperatures and the pressures are regulated at specific levels, at certain flow rates via mass flow controllers 55 a , 55 b and 55 c , for vaporizing each of the raw materials and for supplying the thus vaporized raw material gases to the mixer 52 .
  • the film deposition chamber 53 is constructed so that O 2 gas is introduced into the chamber as an oxidizing gas, at a given flow rate.
  • the raw material gas mixture is introduced into the film deposition chamber 53 together with this O 2 gas and blown onto a substrate 60 .
  • the raw material gas mixture is subjected to a thermal decomposition and combustion reaction to form a (Ba, Sr)TiO 3 thin film on the substrate 60 .
  • the carrier gas is supplied to the raw material containers 51 a , 51 b and 51 c for vaporizing each of the raw materials, while the insides of the raw material containers 51 a , 51 b and 51 c are evacuated and heated to specific temperatures, it is possible to bubble the carrier gas into the raw materials in order to efficiently vaporize them, and to efficiently convey and supply them to the film deposition chamber 53 .
  • dipivaloyl methanate tetraethylenepentamine adduct and strontium dipivaloyl methanate tetraethylenepentamine adduct have to be heated up to 100° C. or more in order to vaporize them for use as raw materials for MOCVD, in spite of their lowered vaporization temperatures.
  • the present invention aims at solving the above-described problems, and, accordingly, aims at providing a forming method for forming a thin film having excellent stability of properties, which can decrease the cost for the raw materials by using them effectively, and a thin film forming apparatus therefor.
  • the method for forming a thin film comprises the steps of: forming a first thin film using a raw material which comprises an adduct of metal ⁇ -diketonate and adduct-forming material by a metal organic chemical vapor deposition (MOCVD) method; associating metal ⁇ -diketonate dissociated from the adduct in the raw material with an adduct-forming material to regenerate the raw material; and forming a second thin film using the raw material by the MOCVD method.
  • MOCVD metal organic chemical vapor deposition
  • the metal ⁇ -diketonate is preferably a metal dipivaloyl methanate and the adduct-forming material is preferably tetraethylenepentamine.
  • the associating step may include the step of contacting a vapor of the adduct-forming material with a liquid of the raw material.
  • the contacting step is performed while the liquid of the raw material is kept at a temperature lower than the that of the first or second thin film forming step.
  • the contacting step is performed while the vapor pressure of the adduct-forming material is kept higher than the vapor pressure of the raw material during the first or second thin film forming step.
  • the thin film forming apparatus comprises: a raw material container for a raw material comprising an adduct of metal ⁇ -diketonate and adduct-forming material; an adduct-forming material container communicated with the raw material container such that a vapor of the adduct-forming material is capable of being supplied to the raw material container; and a film deposition chamber for depositing a thin film by an MOCVD method with a raw material gas supplied from the raw material container.
  • the apparatus may be constructed so that a carrier gas can be supplied to the adduct-forming material container in order to supply the adduct-forming material vapor to the raw material container together with the carrier gas, and either of the following alternatives can be chosen:
  • FIG. 1 is a schematic diagram illustrating a conventional thin film forming apparatus.
  • FIG. 2 is a schematic diagram illustrating a thin film forming apparatus according to the present invention.
  • One of the unique features of the method according to the present invention is that, during successive formation of a plurality of thin films using the an adduct of metal ⁇ -diketonate and adduct-forming material as a raw material by MOCVD, the metal ⁇ -diketonate dissociated from the adduct in the raw material is associated with an adduct-forming material to regenerate the raw material.
  • An adduct-forming material associated with metal ⁇ -diketonate is dissociated gradually by heating.
  • the adduct of metal ⁇ -diketonate and adduct-forming material is regenerated by associating metal ⁇ -diketonate with an adduct-forming material, thereby making it possible to effectively utilize the raw material, to stabilize the composition of the raw material and to stabilize the properties of the thin film.
  • the raw material regeneration treatment can be performed at any one step or more included in the above-described non-deposition step, in consideration of the thin film manufacturing conditions.
  • the treatment can be performed at all of the steps. It can also be performed only at a specific step.
  • the raw material regeneration treatment when plural raw materials are used as the raw materials for MOCVD, it is possible to apply the raw material regeneration treatment to all the raw materials comprising an adduct or only to a specific raw material. Furthermore, the present invention is not limited to a case in which only adducts of metal ⁇ -diketonate and an adduct-forming material is used as the raw materials. It can be applied to a case in which both a metal ⁇ -diketonate compound including such an adduct and a raw material which does not include an adduct are used.
  • the above-described metal ⁇ -diketonate compound is a metal dipivaloyl methanate compound, it is possible to efficiently regenerate the metal dipivaloyl methanate tetraethylenepentamine adduct by applying the present invention so that it is possible to effectively utilize the raw material, to stabilize the composition of the raw material and to stabilize the properties of the thin film.
  • Regeneration of the raw material through efficient adduct formation of an adduct-forming material with the raw material is preferably made by contacting a vapor of the adduct-forming material with a liquid of the metal ⁇ -diketonate.
  • the liquid of the raw material is kept at a temperature lower than that of the first or second thin film forming step or the contacting step is performed or the vapor pressure of the adduct-forming material is kept higher than the vapor pressure of the raw material during the first or second thin film forming step.
  • both of the two conditions may be employed at the same time. By these conditions, it is possible to prevent the dissociation of the adduct and achieve the regeneration of the adduct at high efficiency.
  • the thin film manufacturing apparatus is characterized by comprising: a raw material container in which is a raw material comprising an adduct of metal ⁇ -diketonate and adduct-forming material; an adduct-forming material container communicated with the raw material container such that a vapor of the adduct-forming material is able to be supplied to the raw material container; and a film deposition chamber for depositing a thin film by the MOCVD method with a raw material gas supplied from the raw material container.
  • the thin film manufacturing apparatus is constructed so that the adduct-forming material container is connected with the raw material container, and thus a vapor of the adduct-forming material can be supplied to the raw material container through the connection to the above-described raw material container in the above-described raw material regeneration step. Therefore, it is possible to efficiently regenerate the raw material and to manufacture a thin film excellent in stabilization of the properties, with little redundant raw materials and at a decreased cost.
  • the present invention does not exclude a manufacturing apparatus which is constructed so that a different type of raw material which does not include an adduct-forming material is used together, and it can also be applied to a thin film manufacturing apparatus in which both a metal ⁇ -diketonate compound including an adduct-forming material and a raw material which does not include an adduct-forming material are used.
  • the carrier gas is supplied via the adduct-forming material container to the raw material container or it is supplied to the raw material container without passing through the adduct-forming material container, and it is possible to efficiently supply the adduct-forming material vapor to the raw material container by supplying the carrier gas to the raw material container via the adduct-forming material containers only in the raw material regeneration step, thus further facilitating the present invention.
  • FIG. 2 is an illustrative view showing a thin film forming apparatus for use in performing a method for forming the thin film according to the present invention.
  • the thin film forming apparatus in this embodiment is equipped with raw material containers (vaporizers) 11 , 21 and 31 for containing MOCVD raw materials, containers for containing an adduct-forming material (adduct-forming material containers) 12 and 32 which are connected to the raw material containers 11 and 31 , a mixer 20 for mixing raw material gases supplied from each of the raw material containers 11 , 21 and 31 , a film deposition chamber 6 for performing film deposition by an MOCVD method using the raw material gas mixture supplied from the mixer 20 where the gases have been mixed, and a vacuum pump 24 for an evacuation purpose.
  • raw material containers vaporizers
  • containers for containing an adduct-forming material (adduct-forming material containers) 12 and 32 which are connected to the raw material containers 11 and 31
  • a mixer 20 for mixing raw material gases supplied from each of the raw material containers 11 , 21 and 31
  • a film deposition chamber 6 for performing film deposition by an MOCVD method using the raw material gas mixture supplied from the mixer 20 where the gases have been mixed
  • the raw material containers 11 , 21 and 31 , the adduct-forming material containers 12 and 32 , and the film deposition chamber 6 are constructed so that the inside pressures (vacuums) can be maintained at specific levels by the vacuum pump 24 .
  • the raw material container (vaporizer) 11 contains, as an MOCVD raw material, barium dipivaloyl methanate tetraethylenepentamine adduct ( ⁇ Ba(C 11 H 19 O 2 ) 2 (C 8 H 23 N 5 ) 2 ⁇ ⁇ HN(CH 2 CH 2 NHCH 2 CH 2 NH 2 ) 2 ⁇ ), the raw material container 21 contains titanium isopropoxide (Ti(i-OC 3 H 7 ) 4 ), and the raw material container 31 contains strontium dipivaloyl methanate tetraethylenepentamine adduct ( ⁇ Sr(C 11 H 19 O 2 ) 2 (C 8 H 23 N 5 ) 2 ⁇ ⁇ HN(CH 2 CH 2 NHCH 2 CH 2 NH 2 ) 2 ⁇ ).
  • barium dipivaloyl methanate tetraethylenepentamine adduct ⁇ Ba(C 11 H 19 O 2 ) 2 (C 8 H 23 N 5 ) 2 ⁇ ⁇ H
  • adduct-forming material containers 12 and 32 which contain tetraethylenepentamine as an adduct-forming material are connected to the upstream sides of the raw material container (Ba raw material container) 11 and the raw material container (Sr raw material container) 31 .
  • adduct-forming material containers are not connected with the raw material container (Ti raw material container) 21 , since titanium isopropoxide (Ti(i-OC 3 H 7 ) 4 ) as a titanium raw material does not include an adduct-forming material.
  • the thin film forming apparatus is also equipped with pipes for supplying the carrier gas to the raw material containers 11 , 21 and 31 , and to the adduct-forming material containers 12 and 32 , pipes for supplying the raw material gases to the mixer 20 , a pipe for supplying the raw material gas mixture mixed in the mixer 20 to the film deposition chamber 6 , and valves installed on these pipes.
  • the functions (operations) of these pipes and valves will be explained step by step in the course of explaining the following method for forming a (Ba, Sr)TiO 3 thin film.
  • valves 14 , 15 , 16 , 22 , 23 , 34 , 35 and 36 installed on the pipes for supplying the raw materials, are opened while the temperatures of all of the raw material containers (raw materials), pipes, and the substrate 10 , are kept at specific values, to allow a specific amount of a carrier gas (Ar gas) to flow into each of the raw material containers 11 , 21 and 31 , and to evacuate the raw material containers (vaporizers) 11 , 21 and 31 until specific degrees of vacuum are reached.
  • a carrier gas Ar gas
  • a three-way valve 13 is set to be conducted to the pipes connecting the Ba raw material container 11 and the adduct-forming material container 12 , respectively, and a three-way valve 33 is set to be conducted to the pipes connecting the Sr raw material container 31 and the adduct-forming material container 32 .
  • variable flow valve 43 is regulated so that the pressure of the upstream side of the mixer 20 (the side on which the raw material containers 11 , 21 and 31 are located) has a specific pressure (vacuum), which is indicated by a pressure gauge 51 .
  • the variable flow valves 14 , 22 and 34 are also regulated so that each of the raw material containers (vaporizers) 11 , 21 and 31 is regulated to have a specific pressure (vacuum).
  • This pressure regulation is made to avoid sudden fluctuation of the pressures of the raw material containers (vaporizers) 11 , 21 and 31 at the time of film deposition, that is, when the valve 43 on the pipe for supplying O 2 to the film deposition chamber 6 is closed and the valve 44 is opened for supplying the raw material gas mixture.
  • the target pressure has been determined beforehand through preliminary experiments. After the completion of the pressure regulation, the pressure is held for a determined period of time to stabilize the amount of each vaporized raw material.
  • a valve 22 on the pipe connecting the Ti raw material container 21 and the mixer 20 is closed to return the pressure of the container to atmospheric pressure, followed by cooling.
  • valves 16 and 36 on the pipes for conducting the carrier gas to the raw material containers 11 and 31 bypassing the adduct-forming material containers 12 and 32 are closed, and the valves 17 , 18 , 37 , and 38 on the pipes connecting the adduct-forming material containers (tetraethylenepentamine containers) 12 and 32 to the raw material containers 11 and 31 , are opened. It is noted that the adduct-forming material containers 12 and 32 have been maintained at the temperatures indicated in Table 2.
  • the temperatures of the adduct-forming material containers 12 and 32 are calculated by the pressure difference between the raw material container 11 or 31 , and the adduct-forming material container 12 or 32 , and the vapor pressure curve of tetraethylenepentamine, and they are set so that the amounts of vaporized tetraethylenepentamine in the raw material container 11 and the adduct-forming material container 12 , or in the raw material container 31 and the adduct-forming material container 32 are approximately the same. Furthermore, the pipes including the valves located before or after the raw material containers 11 and 31 are maintained at temperatures 30° C.
  • the pipes including the valves located before or after the adduct-forming material containers (tetraethylenepentamine containers) 12 and 32 are maintained at temperatures 10° C. higher than those of the adduct-forming material containers 12 and 32 .
  • the state is maintained for a specific period of time.
  • the pressures of the raw material containers 11 and 31 are set to about 16 Torr and about 11 Torr, respectively.
  • valves 14 and 34 installed on each pipe for supplying the raw materials are closed, the valves 15 , 17 , 18 , 35 , 37 and 38 are closed while the raw material containers 11 and 31 are under atmospheric pressure, and the raw material containers 11 and 31 as well as the adduct-forming material containers 12 and 32 are cooled.
  • valves 16 and 36 on the pipes for bypassing the adduct-forming material containers 12 and 32 are opened, as appropriate, in order to remove tetraethylenepentamine in the pipes by purging with the career gas.
  • the thin film forming method according to the present invention since it is possible, as described above, to regenerate a metal dipivaloyl methanate adduct, it is possible not only to efficiently utilize the raw materials, to decrease redundant raw materials and to decrease the production cost, but also to efficiently manufacture a thin film having good stabilization of the properties, avoiding the fluctuation of the compositions of the raw materials.
  • Table 3 shows the compositions and dielectric constants measure from the (Ba, Sr)TiO 3 thin films obtained in the second batch through to the eleventh batch of use of the raw materials in the course of film deposition starting with 5 grams of the Ba raw material and 5 grams of the Sr raw material, respectively contained in the raw material containers.
  • the film thickness of the dielectric body decreased down to 120 m at the eleventh batch using the raw materials as compared with 200 nm at the second batch in the comparative example, while in the working examples, the film thicknesses of the dielectric bodies were all within the range of 200 ⁇ 10 nm for all the film deposition batches, showing almost no recognizable decrease when the number of uses of the raw materials was increased.
  • the stabilized composition and the stabilized dielectric constant of the thin film obtained by the thin film forming method according to the present invention results from the fact that it is possible to efficiently associate the metal ⁇ -diketonate dissociated from the adduct in the raw material with an adduct-forming material by supplying the vapor of the adduct-forming material to the metal ⁇ -diketonate in a heated state, and thus the vaporization state and the composition of the vaporized raw material gases are stabilized at the time of film deposition.
  • temperatures for the raw materials in the regeneration step it is not desirable to increase them up near to the vaporization temperatures, since vaporization of the raw materials will occur in the regeneration step, too, resulting in a larger loss of the raw materials. Also, it is not desirable to have too low temperatures for the raw materials in the regeneration step, since the recombination reaction will proceed with difficulty, resulting in a longer time required for the regeneration step. Therefore, it is desirable to have the raw material temperatures in the regeneration step about 10 to 50° C. lower than the vaporization temperatures of the raw materials.
  • the raw material is a Sr raw material and its temperature is lowered too much at the regeneration step, an increase in viscosity and solidification will occur. It is necessary, therefore, to choose a raw material temperature which does not cause a large increase of the viscosity or solidification.
  • the pressures of the adduct-forming material containers are determined when the pressures of the raw material containers and the flow amounts of the carrier gas are determined, the temperatures of the adduct-forming material are determined by the pressure differences and the vapor pressure curve.
  • the explanation is limited to the example in which the regeneration treatment is performed using barium dipivaloyl methanate and strontium dipivaloyl methanate adducted with tetraethylenepentamine as the MOCVD raw materials, the present invention is not limited to the embodiment, and barium dipivaloyl methanate and strontium dipivaloyl methanate adducted with another adduct-forming material such as triethylenetetramine, phenanthroline or tetraglyme can be applied as MOCVD raw materials with similar effect.
  • another adduct-forming material such as triethylenetetramine, phenanthroline or tetraglyme
  • a method for supplying raw materials including a sufficient amount of an adduct-forming material to the film deposition chamber by supplying a carrier gas to the raw material containers through the adduct-forming material containers also in the film deposition step can be considered as one of the methods for achieving the purpose of the present invention.
  • film deposition is performed according to this method, there was observed a tendency that the dielectric constant of the formed thin film decrease by 30% or more, although the film composition and the film properties were stabilized.
  • the present invention is not limited to the above-described embodiment further in other points, and various applications and modifications are possible regarding the concrete conditions in the film deposition step and the raw material regeneration step, as long as they are within the scope of the gist of the present invention.

Abstract

A method for forming a thin film comprises the steps of: forming a first thin film using a raw material which comprises an adduct of metal β-diketonate and adduct-forming material by a metal organic chemical vapor deposition (MOCVD) method; associating metal β-diketonate dissociated from the adduct in the raw material with an adduct-forming material to regenerate the raw material; and forming a second thin film using the regenerated raw material by the MOCVD method.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention [0001]
  • The present invention relates to a method for forming a thin film and a forming apparatus therefor. More specifically, it relates to a method for successively forming a plurality of thin films by an MOCVD method and a forming apparatus therefor. [0002]
  • 2. Description of the Related Art [0003]
  • The metal organic chemical vapor deposition (MOCVD) method is a well known technique to form a thin film such as a dielectric thin film, for example. [0004]
  • A MOCVD method thin film forming apparatus, shown in FIG. 1, is used for forming a (Ba, Sr)TiO[0005] 3 (BaxSr1-xTiO3, 0≦x≦1) thin film, using, e.g., as raw materials, the following three materials; barium dipivaloyl methanate tetraethylenepentamine adduct ({Ba(C11H19O2)2(C8H23N5)2} {HN(CH2CH2NHCH2CH2NH2)2}), strontium dipivaloyl methanate tetraethylenepentamine adduct ({Sr(C11H 19O2)2(C8H23N5)2} {HN(CH2CH2NHCH2CH2NH2)2}), and titanium isopropoxide (Ti(i-OC3H7)4).
  • The thin film forming apparatus is equipped with [0006] raw material containers 51 a, 51 b and 51 c for containing liquid or solid raw materials, a mixer 52 for mixing raw material gases vaporized from each of the raw materials, a film deposition chamber 53 for depositing a film by the MOCVD method using the supplied raw material gas mixture mixed in the mixer 52, and a vacuum pump 54 for maintaining the inside of the above-described film deposition chamber 53 at a specific pressure (vacuum).
  • When the thin film forming apparatus is used for forming a (Ba, Sr)TiO[0007] 3 thin film, the following process will be performed.
  • (1) First, a carrier gas (Ar gas in this case) is supplied to the [0008] raw material containers 51 a, 51 b and 51 c in which the temperatures and the pressures (vacuums) are regulated at specific levels, at certain flow rates via mass flow controllers 55 a, 55 b and 55 c, for vaporizing each of the raw materials and for supplying the thus vaporized raw material gases to the mixer 52.
  • (2) The raw material gas mixture mixed in the [0009] mixer 52 and containing the Ar gas is then introduced into the film deposition chamber 53 heated at a specific film deposition temperature employing the vacuum pump 54 such that the deposition chamber 53 reaches to a specific degree of vacuum.
  • (3) The [0010] film deposition chamber 53 is constructed so that O2 gas is introduced into the chamber as an oxidizing gas, at a given flow rate. The raw material gas mixture is introduced into the film deposition chamber 53 together with this O2 gas and blown onto a substrate 60. Through this process, the raw material gas mixture is subjected to a thermal decomposition and combustion reaction to form a (Ba, Sr)TiO3 thin film on the substrate 60.
  • According to the above-described conventional thin film forming method, since the melting points as well as the vaporization temperatures of the metal dipivaloyl methanate compounds are lowered (that is, the vapor pressures are raised) by forming an adduct compound with tetraethylenepentamine, it is possible to easily handle the metal dipivaloyl methanate compounds in a liquid state, and to manufacture a thin film efficiently, in comparison with the conventional method in which the metal dipivaloyl methanate compounds must be handled as raw material powders, and, therefore, are difficult to handle. [0011]
  • Also in the above-described thin film forming apparatus, since the carrier gas is supplied to the [0012] raw material containers 51 a, 51 b and 51 c for vaporizing each of the raw materials, while the insides of the raw material containers 51 a, 51 b and 51 c are evacuated and heated to specific temperatures, it is possible to bubble the carrier gas into the raw materials in order to efficiently vaporize them, and to efficiently convey and supply them to the film deposition chamber 53.
  • In spite of the above-explained merits, the above-described thin film forming apparatus still has drawbacks. Specifically, dipivaloyl methanate tetraethylenepentamine adduct and strontium dipivaloyl methanate tetraethylenepentamine adduct have to be heated up to 100° C. or more in order to vaporize them for use as raw materials for MOCVD, in spite of their lowered vaporization temperatures. [0013]
  • Furthermore, since tetraethylenepentamine is gradually dissociated from the adduct by heating, which gradually decreases the vaporization temperatures, the vapor pressures of the raw materials (metal dipivaloyl methanate tetraethylenepentamine adduct) decrease with the passage of time. Accordingly, in order to keep the compositions of the thin films formed in plural batches of the film deposition step at a constant level, it is necessary to increase the temperature of the vaporizers, decrease the pressure of the vaporizers or increase the flow amount of the carrier gas, corresponding to each film deposition step (each batch of the film deposition). [0014]
  • In addition, even when these measures are adopted, dissociation of tetraethylenepentamine proceeds, causing a problem of leaving significant amounts of raw materials unusable in the raw material containers. [0015]
  • Furthermore, since the compositions of the raw materials change with the passage of time, there is another problem of gradual change of the properties of the thin film even when efforts are made to maintain the thin film composition constant by regulating the vaporization conditions according to the above-described method. [0016]
  • SUMMARY OF THE INVENTION
  • The present invention aims at solving the above-described problems, and, accordingly, aims at providing a forming method for forming a thin film having excellent stability of properties, which can decrease the cost for the raw materials by using them effectively, and a thin film forming apparatus therefor. [0017]
  • The method for forming a thin film, comprises the steps of: forming a first thin film using a raw material which comprises an adduct of metal β-diketonate and adduct-forming material by a metal organic chemical vapor deposition (MOCVD) method; associating metal β-diketonate dissociated from the adduct in the raw material with an adduct-forming material to regenerate the raw material; and forming a second thin film using the raw material by the MOCVD method. [0018]
  • The metal β-diketonate is preferably a metal dipivaloyl methanate and the adduct-forming material is preferably tetraethylenepentamine. [0019]
  • The associating step may include the step of contacting a vapor of the adduct-forming material with a liquid of the raw material. In the case, the contacting step is performed while the liquid of the raw material is kept at a temperature lower than the that of the first or second thin film forming step. Alternatively, or in addition, the contacting step is performed while the vapor pressure of the adduct-forming material is kept higher than the vapor pressure of the raw material during the first or second thin film forming step. [0020]
  • The thin film forming apparatus according to the present invention comprises: a raw material container for a raw material comprising an adduct of metal β-diketonate and adduct-forming material; an adduct-forming material container communicated with the raw material container such that a vapor of the adduct-forming material is capable of being supplied to the raw material container; and a film deposition chamber for depositing a thin film by an MOCVD method with a raw material gas supplied from the raw material container. [0021]
  • In supplying an adduct-forming material vapor from the adduct-forming material container to the raw material container, the apparatus may be constructed so that a carrier gas can be supplied to the adduct-forming material container in order to supply the adduct-forming material vapor to the raw material container together with the carrier gas, and either of the following alternatives can be chosen: [0022]
  • (a) supplying the carrier gas via the adduct-forming material container to the raw material container; and [0023]
  • (b) supplying the carrier gas to the raw material container without passing through the adduct-forming material container. [0024]
  • For the purpose of illustrating the invention, there is shown in the drawings several forms which are presently preferred, it being understood, however, that the invention is not limited to the precise arrangements and instrumentalities shown.[0025]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a schematic diagram illustrating a conventional thin film forming apparatus. [0026]
  • FIG. 2 is a schematic diagram illustrating a thin film forming apparatus according to the present invention. [0027]
  • DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS
  • One of the unique features of the method according to the present invention is that, during successive formation of a plurality of thin films using the an adduct of metal β-diketonate and adduct-forming material as a raw material by MOCVD, the metal β-diketonate dissociated from the adduct in the raw material is associated with an adduct-forming material to regenerate the raw material. [0028]
  • An adduct-forming material associated with metal β-diketonate is dissociated gradually by heating. According to the present invention, the adduct of metal β-diketonate and adduct-forming material is regenerated by associating metal β-diketonate with an adduct-forming material, thereby making it possible to effectively utilize the raw material, to stabilize the composition of the raw material and to stabilize the properties of the thin film. [0029]
  • It is noted that the raw material regeneration treatment can be performed at any one step or more included in the above-described non-deposition step, in consideration of the thin film manufacturing conditions. The treatment can be performed at all of the steps. It can also be performed only at a specific step. [0030]
  • Also, when plural raw materials are used as the raw materials for MOCVD, it is possible to apply the raw material regeneration treatment to all the raw materials comprising an adduct or only to a specific raw material. Furthermore, the present invention is not limited to a case in which only adducts of metal β-diketonate and an adduct-forming material is used as the raw materials. It can be applied to a case in which both a metal β-diketonate compound including such an adduct and a raw material which does not include an adduct are used. [0031]
  • When the above-described metal β-diketonate compound is a metal dipivaloyl methanate compound, it is possible to efficiently regenerate the metal dipivaloyl methanate tetraethylenepentamine adduct by applying the present invention so that it is possible to effectively utilize the raw material, to stabilize the composition of the raw material and to stabilize the properties of the thin film. [0032]
  • While the vapor pressure of an MOCVD raw material can be increased efficiently by associating tetraethylenepentamine with a metal β-diketonate such as a metal dipivaloyl methanate compound, there is a problem that tetraethylenepentamine which is associated with metal β-diketonate is dissociated gradually by heating, and the raw material cannot be utilized when a certain length of time has passed by, causing a cost hike. However, by applying the regeneration treatment according to the present invention, it is possible to use the raw material efficiently, to stabilize the composition of the raw material and to stabilize the properties of the thin film. [0033]
  • Regeneration of the raw material through efficient adduct formation of an adduct-forming material with the raw material is preferably made by contacting a vapor of the adduct-forming material with a liquid of the metal β-diketonate. In this case, it is preferable that the liquid of the raw material is kept at a temperature lower than that of the first or second thin film forming step or the contacting step is performed or the vapor pressure of the adduct-forming material is kept higher than the vapor pressure of the raw material during the first or second thin film forming step. Alternatively, both of the two conditions may be employed at the same time. By these conditions, it is possible to prevent the dissociation of the adduct and achieve the regeneration of the adduct at high efficiency. [0034]
  • The thin film manufacturing apparatus according to the present invention is characterized by comprising: a raw material container in which is a raw material comprising an adduct of metal β-diketonate and adduct-forming material; an adduct-forming material container communicated with the raw material container such that a vapor of the adduct-forming material is able to be supplied to the raw material container; and a film deposition chamber for depositing a thin film by the MOCVD method with a raw material gas supplied from the raw material container. [0035]
  • The thin film manufacturing apparatus according to the present invention is constructed so that the adduct-forming material container is connected with the raw material container, and thus a vapor of the adduct-forming material can be supplied to the raw material container through the connection to the above-described raw material container in the above-described raw material regeneration step. Therefore, it is possible to efficiently regenerate the raw material and to manufacture a thin film excellent in stabilization of the properties, with little redundant raw materials and at a decreased cost. [0036]
  • It is noted that the present invention does not exclude a manufacturing apparatus which is constructed so that a different type of raw material which does not include an adduct-forming material is used together, and it can also be applied to a thin film manufacturing apparatus in which both a metal β-diketonate compound including an adduct-forming material and a raw material which does not include an adduct-forming material are used. [0037]
  • In supplying the adduct-forming material vapor from the adduct-forming material container to the raw material container, it can be chosen whether the carrier gas is supplied via the adduct-forming material container to the raw material container or it is supplied to the raw material container without passing through the adduct-forming material container, and it is possible to efficiently supply the adduct-forming material vapor to the raw material container by supplying the carrier gas to the raw material container via the adduct-forming material containers only in the raw material regeneration step, thus further facilitating the present invention. [0038]
  • Hereinafter, the preferred embodiments of the present invention are explained in detail with reference to the drawings. [0039]
  • Thin Film Forming Apparatus [0040]
  • FIG. 2 is an illustrative view showing a thin film forming apparatus for use in performing a method for forming the thin film according to the present invention. [0041]
  • The thin film forming apparatus in this embodiment is equipped with raw material containers (vaporizers) [0042] 11, 21 and 31 for containing MOCVD raw materials, containers for containing an adduct-forming material (adduct-forming material containers) 12 and 32 which are connected to the raw material containers 11 and 31, a mixer 20 for mixing raw material gases supplied from each of the raw material containers 11, 21 and 31, a film deposition chamber 6 for performing film deposition by an MOCVD method using the raw material gas mixture supplied from the mixer 20 where the gases have been mixed, and a vacuum pump 24 for an evacuation purpose.
  • It is noted that the part enclosed with a dotted line in FIG. 2, including the [0043] raw material containers 11, 21 and 31, the adduct-forming material containers 12 and 32, the mixer 20, and pipes (lines) covering the region up to the film deposition chamber 6, is constructed so that it can be maintained at a specific temperature by heating.
  • Furthermore, the [0044] raw material containers 11, 21 and 31, the adduct-forming material containers 12 and 32, and the film deposition chamber 6 are constructed so that the inside pressures (vacuums) can be maintained at specific levels by the vacuum pump 24.
  • The raw material container (vaporizer) [0045] 11 contains, as an MOCVD raw material, barium dipivaloyl methanate tetraethylenepentamine adduct ({Ba(C11H19O2)2(C8H23N5)2} {HN(CH2CH2NHCH2CH2NH2)2}), the raw material container 21 contains titanium isopropoxide (Ti(i-OC3H7)4), and the raw material container 31 contains strontium dipivaloyl methanate tetraethylenepentamine adduct ({Sr(C11H19O2)2(C8H23N5)2} {HN(CH2CH2NHCH2CH2NH2)2}).
  • Among these raw materials for MOCVD, ({Ba(C[0046] 11H19O2)2(C8H23N5)2} {HN(CH2CH2NHCH2CH2NH2)2}) contained in the raw material container 11 and Ti(i-OC3H7)4 contained in the raw material container 21 are liquids at room temperature, and ({Ba(C11H19O2)2(C8H23N5)2} {HN(CH2CH2NHCH2CH2NH2)2}) contained in the raw material container 31 is a solid at room temperature with a melting point of nearly 70° C.
  • Furthermore, adduct-forming [0047] material containers 12 and 32 which contain tetraethylenepentamine as an adduct-forming material are connected to the upstream sides of the raw material container (Ba raw material container) 11 and the raw material container (Sr raw material container) 31.
  • It is noted that the adduct-forming material containers are not connected with the raw material container (Ti raw material container) [0048] 21, since titanium isopropoxide (Ti(i-OC3H7)4) as a titanium raw material does not include an adduct-forming material.
  • The thin film forming apparatus according to this embodiment is also equipped with pipes for supplying the carrier gas to the [0049] raw material containers 11, 21 and 31, and to the adduct-forming material containers 12 and 32, pipes for supplying the raw material gases to the mixer 20, a pipe for supplying the raw material gas mixture mixed in the mixer 20 to the film deposition chamber 6, and valves installed on these pipes. The functions (operations) of these pipes and valves will be explained step by step in the course of explaining the following method for forming a (Ba, Sr)TiO3 thin film.
  • Forming of a (Ba, Sr)TiO[0050] 3 Thin Film
  • Next, a method for forming a (Ba, Sr)TiO[0051] 3 thin film using the thin film forming apparatus which is constructed as descried above, will be explained. It is noted that Table 1 describes typical conditions for forming a (Ba, Sr)TiO3 thin film.
    TABLE 1
    Temperature of Ba raw material container 130° C.
    Pressure of Ba raw material container 30 Torr
    Flow rate of carrier gas to Ba raw material container 50 mL/min
    Temperature of Sr raw material container 110° C.
    Pressure of Sr raw material container 30 Torr
    Flow rate of carrier gas to Sr raw material container 30 mL/min
    Temperature of Ti raw material container 40° C.
    Pressure of Ti raw material container 250 Torr
    Flow rate of carrier gas to Ti raw material container 20 mL/min
    Temperature of substrate 650° C.
    Flow rate of O2 gas 900 mL/min
    Pressure of film deposition chamber 10 Torr
    Duration of film deposition 60 min
  • A method for forming a (Ba, Sr)TiO[0052] 3 thin film according to the conditions described in Table 1 will be explained below.
  • (1) First, only O[0053] 2 as an oxidizing agent is supplied to the substrate (MgO substrate) 10 in the film deposition chamber 6, wherein a valve 41 installed on the pipe for supplying O2 to the film deposition chamber 6, a valve 42 installed on the pipe connecting the vacuum pump 24 and the film deposition chamber 6, and a valve 43 installed on the pipe connecting the mixer 20 and the vacuum pump 24 for bypassing the film deposition chamber 6, are opened, and the other valves are closed.
  • (2) Next, heating of the [0054] raw material containers 11, 21 and 31, each of the pipes, and the substrate 10 in the film deposition chamber 6, is started, while keeping the inside of the film deposition chamber 6 at a specific pressure (vacuum).
  • (3) Then, the [0055] valves 14, 15, 16, 22, 23, 34, 35 and 36, installed on the pipes for supplying the raw materials, are opened while the temperatures of all of the raw material containers (raw materials), pipes, and the substrate 10, are kept at specific values, to allow a specific amount of a carrier gas (Ar gas) to flow into each of the raw material containers 11, 21 and 31, and to evacuate the raw material containers (vaporizers) 11, 21 and 31 until specific degrees of vacuum are reached.
  • At this point, a three-[0056] way valve 13 is set to be conducted to the pipes connecting the Ba raw material container 11 and the adduct-forming material container 12, respectively, and a three-way valve 33 is set to be conducted to the pipes connecting the Sr raw material container 31 and the adduct-forming material container 32.
  • (4) Next, the [0057] variable flow valve 43 is regulated so that the pressure of the upstream side of the mixer 20 (the side on which the raw material containers 11, 21 and 31 are located) has a specific pressure (vacuum), which is indicated by a pressure gauge 51. The variable flow valves 14, 22 and 34 are also regulated so that each of the raw material containers (vaporizers) 11, 21 and 31 is regulated to have a specific pressure (vacuum).
  • This pressure regulation is made to avoid sudden fluctuation of the pressures of the raw material containers (vaporizers) [0058] 11, 21 and 31 at the time of film deposition, that is, when the valve 43 on the pipe for supplying O2 to the film deposition chamber 6 is closed and the valve 44 is opened for supplying the raw material gas mixture. The target pressure (vacuum) has been determined beforehand through preliminary experiments. After the completion of the pressure regulation, the pressure is held for a determined period of time to stabilize the amount of each vaporized raw material.
  • (5) Then, after a specific period of time has passed, the [0059] valve 43 is closed, and the valve 44 is opened to introduce the raw material gas mixture into the film deposition chamber 6 for starting film deposition.
  • (6) When the film deposition is completed, the [0060] valve 44 is closed, the valve 43 is opened, and the valve 42 on the pipe connecting the film deposition chamber 6 and the vacuum pump 24 is closed to return the pressure of the film deposition chamber 6 to atmospheric pressure. Then annealing is conducted in an oxygen atmosphere for one hour, followed by cooling.
  • (7) Furthermore, regarding the raw material supplying system, a [0061] valve 22 on the pipe connecting the Ti raw material container 21 and the mixer 20 is closed to return the pressure of the container to atmospheric pressure, followed by cooling.
  • Regeneration of the Raw Materials [0062]
  • (1) The Ba raw material and the Sr raw material are cooled while flowing the carrier gas until they are cooled down to the temperatures indicated in Table 2. When the temperatures become stabilized, the three-[0063] way valves 13 and 33 are switched to the side conducting to the mixer 20.
    TABLE 2
    Temperature of Ba raw material container 100° C.
    Temperature of adduct-forming material container 103° C.
    on Ba raw material side
    Temperature of Sr raw material container  80° C.
    Temperature of adduct-forming material container  83° C.
    of Sr raw material side
  • (2) Then the [0064] valves 16 and 36 on the pipes for conducting the carrier gas to the raw material containers 11 and 31 bypassing the adduct-forming material containers 12 and 32, are closed, and the valves 17, 18, 37, and 38 on the pipes connecting the adduct-forming material containers (tetraethylenepentamine containers) 12 and 32 to the raw material containers 11 and 31, are opened. It is noted that the adduct-forming material containers 12 and 32 have been maintained at the temperatures indicated in Table 2.
  • The temperatures of the adduct-forming [0065] material containers 12 and 32 are calculated by the pressure difference between the raw material container 11 or 31, and the adduct-forming material container 12 or 32, and the vapor pressure curve of tetraethylenepentamine, and they are set so that the amounts of vaporized tetraethylenepentamine in the raw material container 11 and the adduct-forming material container 12, or in the raw material container 31 and the adduct-forming material container 32 are approximately the same. Furthermore, the pipes including the valves located before or after the raw material containers 11 and 31 are maintained at temperatures 30° C. higher than those of the raw material containers 11 and 31, and the pipes including the valves located before or after the adduct-forming material containers (tetraethylenepentamine containers) 12 and 32 are maintained at temperatures 10° C. higher than those of the adduct-forming material containers 12 and 32.
  • (3) In this state, the carrier gas heated at the respective vaporization temperature of the raw materials is flown into the [0066] raw material containers 11 and 31.
  • The state is maintained for a specific period of time. [0067]
  • It is noted that the pressures of the [0068] raw material containers 11 and 31 are set to about 16 Torr and about 11 Torr, respectively.
  • (4) After that, the [0069] valves 14 and 34 installed on each pipe for supplying the raw materials are closed, the valves 15, 17, 18, 35, 37 and 38 are closed while the raw material containers 11 and 31 are under atmospheric pressure, and the raw material containers 11 and 31 as well as the adduct-forming material containers 12 and 32 are cooled.
  • (5) Furthermore, the [0070] valves 16 and 36 on the pipes for bypassing the adduct-forming material containers 12 and 32 are opened, as appropriate, in order to remove tetraethylenepentamine in the pipes by purging with the career gas.
  • Thus, regeneration of the raw materials (the Ba raw material and the Sr raw material) in the [0071] raw material containers 11 and 31 is accomplished.
  • By the thin film forming method according to the present invention, since it is possible, as described above, to regenerate a metal dipivaloyl methanate adduct, it is possible not only to efficiently utilize the raw materials, to decrease redundant raw materials and to decrease the production cost, but also to efficiently manufacture a thin film having good stabilization of the properties, avoiding the fluctuation of the compositions of the raw materials. [0072]
  • Evaluation of Properties [0073]
  • (Ba, Sr)TiO[0074] 3 thin films manufactured according to the method described above are subjected to analysis of the compositions and measurement of the dielectric constants. The results are shown in Table 3.
    TABLE 3
    Working example Comparative example
    Composition Composition
    of thin of thin
    film (mol %) film (mol %)
    No. of uses of Ba Sr Ti Dielectric Ba Sr Ti Dielectric
    raw materials (%) (%) (%) constant (%) (%) (%) constant
    2 30 19 51 760 30 20 50 780
    3 30 20 50 800 29 20 51 800
    4 29 20 51 770 29 19 52 780
    5 31 19 50 800 29 18 53 760
    6 29 19 52 790 27 16 57 600
    7 30 19 51 790 24 15 61 420
    8 29 21 50 780 20 11 69 290
    9 29 20 51 760 14 8 78 160
    10 30 20 50 780 13 6 81 130
    11 28 21 51 770 8 6 84 80
  • It is noted that Table 3 shows the compositions and dielectric constants measure from the (Ba, Sr)TiO[0075] 3 thin films obtained in the second batch through to the eleventh batch of use of the raw materials in the course of film deposition starting with 5 grams of the Ba raw material and 5 grams of the Sr raw material, respectively contained in the raw material containers.
  • Film deposition experiments using raw materials without the regeneration treatment were also performed as a comparative example, and the compositions and the dielectric constants of the (Ba, Sr) TiO[0076] 3 thin films obtained were measured. The results are also shown in Table 3.
  • From Table 3, it is understood that while in the comparative example in which the raw material regeneration treatment was not performed, the Ba and Sr amounts in the thin film compositions decreased sharply, and the dielectric constants also decreased sharply when the number of uses of the raw materials exceeded 5, and that, when the raw material regeneration treatment was preformed each time after the completion of film deposition step (that is, in the case of the working example according to the present invention), the fluctuation of the thin film compositions was small and the dielectric constants were stable in the range of 760 to 800. [0077]
  • Furthermore, although it is not shown in Table 3, the film thickness of the dielectric body decreased down to 120 m at the eleventh batch using the raw materials as compared with 200 nm at the second batch in the comparative example, while in the working examples, the film thicknesses of the dielectric bodies were all within the range of 200±10 nm for all the film deposition batches, showing almost no recognizable decrease when the number of uses of the raw materials was increased. [0078]
  • From these results, it is understood that according to the forming method of the present invention, a thin film having a more stabilized thin film composition and a more stabilized dielectric constant as well as less fluctuation of the film thickness, can be manufactured efficiently, as compared with the method described in the comparative example (prior art thin film forming method) without regeneration of the raw materials. [0079]
  • It is noted that the stabilized composition and the stabilized dielectric constant of the thin film obtained by the thin film forming method according to the present invention results from the fact that it is possible to efficiently associate the metal β-diketonate dissociated from the adduct in the raw material with an adduct-forming material by supplying the vapor of the adduct-forming material to the metal β-diketonate in a heated state, and thus the vaporization state and the composition of the vaporized raw material gases are stabilized at the time of film deposition. [0080]
  • Although it is possible to freely choose the temperatures for the raw materials in the regeneration step, it is not desirable to increase them up near to the vaporization temperatures, since vaporization of the raw materials will occur in the regeneration step, too, resulting in a larger loss of the raw materials. Also, it is not desirable to have too low temperatures for the raw materials in the regeneration step, since the recombination reaction will proceed with difficulty, resulting in a longer time required for the regeneration step. Therefore, it is desirable to have the raw material temperatures in the regeneration step about 10 to 50° C. lower than the vaporization temperatures of the raw materials. [0081]
  • Also, if the raw material is a Sr raw material and its temperature is lowered too much at the regeneration step, an increase in viscosity and solidification will occur. It is necessary, therefore, to choose a raw material temperature which does not cause a large increase of the viscosity or solidification. [0082]
  • It is noted that since, in this embodiment, the pressures of the adduct-forming material containers are determined when the pressures of the raw material containers and the flow amounts of the carrier gas are determined, the temperatures of the adduct-forming material are determined by the pressure differences and the vapor pressure curve. [0083]
  • Also, although according to the method described in the above-described embodiment, there is a possibility that unreacted tetraethylenepentamine may remain in the raw material containers at the termination of the raw material regeneration step, there is a step before the film deposition in which the amounts of vaporized materials are stabilized by temperatures higher than those at the regeneration step, and free tetraethylenepentamine is vaporized in this step, resulting in no effect on the film deposition. [0084]
  • Although, in the above-described embodiment, the explanation is limited to the example in which the regeneration treatment is performed using barium dipivaloyl methanate and strontium dipivaloyl methanate adducted with tetraethylenepentamine as the MOCVD raw materials, the present invention is not limited to the embodiment, and barium dipivaloyl methanate and strontium dipivaloyl methanate adducted with another adduct-forming material such as triethylenetetramine, phenanthroline or tetraglyme can be applied as MOCVD raw materials with similar effect. [0085]
  • It is noted that a method for supplying raw materials including a sufficient amount of an adduct-forming material to the film deposition chamber by supplying a carrier gas to the raw material containers through the adduct-forming material containers also in the film deposition step, can be considered as one of the methods for achieving the purpose of the present invention. However, when film deposition is performed according to this method, there was observed a tendency that the dielectric constant of the formed thin film decrease by 30% or more, although the film composition and the film properties were stabilized. It is believed that this was caused by the adverse effects on film deposition by the adduct-forming material vapor which was supplied together with the raw material gas to the film deposition chamber but was not necessary for the film deposition, and by the decomposed gases therefrom, or gases generated from the combustion. Therefore, it is believed desirable to supply the carrier gas to the raw material containers without passing through the adduct-forming material containers, as described in the above-described embodiment of the present invention. [0086]
  • The present invention is not limited to the above-described embodiment further in other points, and various applications and modifications are possible regarding the concrete conditions in the film deposition step and the raw material regeneration step, as long as they are within the scope of the gist of the present invention. [0087]
  • While preferred embodiments of the invention have been disclosed, various modes of carrying out the principles disclosed herein are contemplated as being within the scope of the following claims. Therefore, it is understood that the scope of the invention is not to be limited except as otherwise set forth in the claims. [0088]

Claims (20)

What is claimed is:
1. A method for forming a thin film, comprising the steps of:
forming a first thin film from a raw material which comprises an adduct of metal β-diketonate and adduct-forming material by a metal organic chemical vapor deposition (MOCVD) method;
associating metal β-diketonate dissociated from the adduct in the raw material with an adduct-forming material to regenerate the raw material; and
forming a second thin film using the regenerated raw material by the MOCVD method.
2. A method for forming a thin film according to claim 1, wherein the metal β-diketonate is a metal dipivaloyl methanate.
3. A method for forming a thin film according to claim 2, wherein the adduct-forming material comprises tetraethylenepentamine.
4. A method for forming a thin film according to claim 3, wherein the associating step comprises the step of contacting a vapor of the adduct-forming material with a liquid of the residual raw material from the first thin film formation.
5. A method for forming a thin film according to claim 4, wherein the metal comprises at least one of Ba and Sr.
6. A method for forming a thin film according to claim 4, wherein the contacting step is performed while the liquid of the residual raw material is at a temperature lower than the temperature of the raw material or regenerated raw material during the first or second thin film forming step.
7. A method for forming a thin film according to claim 4, wherein the contacting step is performed while the adduct-forming material has a vapor pressure which is higher than the vapor pressure of the raw material or regenerated raw material during the first or second thin film formation.
8. A method for forming a thin film according to claim 2, wherein the metal comprises at least one of Ba and Sr.
9. A method for forming a thin film according to claim 1, wherein the associating step comprises the step of contacting a vapor of the adduct-forming material with a liquid of the residual raw material from the first thin film formation.
10. A method for forming a thin film according to claim 9, wherein the contacting step is performed while the liquid of the residual raw material is at a temperature lower than the temperature of the raw material or regenerated raw material during of the first or second thin film forming step.
11. A method for forming a thin film according to claim 9, wherein the contacting step is performed while the adduct-forming material has a vapor pressure which is higher than the vapor pressure of the raw material or regenerated raw material during the first or second thin film formation.
12. A method for forming a thin film according to claim 1, wherein during formation of the first and second thin films, the raw material and regenerated raw material are conveyed from a supply thereof to a MOCVD deposition chamber in combination with an inert carrier, and wherein during the association, the adduct-forming material is conveyed from a supply thereof to the supply of raw material in combination with an inert carrier.
13. A method for forming a thin film according to claim 1, wherein an inert carrier is conveyed from a supply thereof to a supply of the raw material and regenerated raw material and during formation of the first and second thin films, the raw material and regenerated raw material are conveyed from the a supply thereof to a MOCVD deposition chamber in combination with the inert carrier, and wherein during the association, the adduct-forming material supply is isolated from the inert carrier supply.
14. A thin film forming apparatus comprising:
a raw material container containing a supply of raw material comprising an adduct of metal β-diketonate and adduct-forming material;
an adduct-forming material container containing a supply of adduct-forming material and which container is communicated with the raw material container such that a vapor of the adduct-forming material is capable of being supplied to the raw material container; and
a MOCVD thin film deposition chamber communicated with the raw material container such that a vapor of raw material is capable of being supplied thereto from the raw material container.
15. A thin film forming apparatus according to claim 14, wherein the metal β-diketonate is a metal dipivaloyl methanate.
16. A thin film forming apparatus according to claim 15, further comprising a carrier gas supply separately communicated with both the raw material container and the adduct-forming material container, and a control adapted to permit (a) supply of the carrier gas via the adduct-forming material container to the raw material container or (b) supply of the carrier gas to the raw material container without passing through the adduct-forming material container.
17. A thin film forming apparatus according to claim 16, further comprising a temperature sensor communicated with the raw material container and a temperature sensor communicated with the adduct-forming material container.
18. A thin film forming apparatus according to claim 16, further comprising a vapor pressure sensor communicated with the raw material container and a vapor pressure sensor communicated with the adduct-forming material container.
19. A thin film forming apparatus according to claim 14, further comprising a temperature sensor communicated with the raw material container and a temperature sensor communicated with the adduct-forming material container.
20. A thin film forming apparatus according to claim 14, further comprising a vapor pressure sensor communicated with the raw material container and a vapor pressure sensor communicated with the adduct-forming material container.
US10/347,408 1999-12-24 2003-01-21 Method for forming a thin film and a thin film forming apparatus therefor Abandoned US20030111012A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/347,408 US20030111012A1 (en) 1999-12-24 2003-01-21 Method for forming a thin film and a thin film forming apparatus therefor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP36634899A JP3582437B2 (en) 1999-12-24 1999-12-24 Thin film manufacturing method and thin film manufacturing apparatus used therefor
JP11-366348 1999-12-24
US09/737,186 US6555165B2 (en) 1999-12-24 2000-12-14 Method for forming a thin film and a thin film forming apparatus therefor
US10/347,408 US20030111012A1 (en) 1999-12-24 2003-01-21 Method for forming a thin film and a thin film forming apparatus therefor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/737,186 Division US6555165B2 (en) 1999-12-24 2000-12-14 Method for forming a thin film and a thin film forming apparatus therefor

Publications (1)

Publication Number Publication Date
US20030111012A1 true US20030111012A1 (en) 2003-06-19

Family

ID=18486565

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/737,186 Expired - Fee Related US6555165B2 (en) 1999-12-24 2000-12-14 Method for forming a thin film and a thin film forming apparatus therefor
US10/347,408 Abandoned US20030111012A1 (en) 1999-12-24 2003-01-21 Method for forming a thin film and a thin film forming apparatus therefor

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/737,186 Expired - Fee Related US6555165B2 (en) 1999-12-24 2000-12-14 Method for forming a thin film and a thin film forming apparatus therefor

Country Status (4)

Country Link
US (2) US6555165B2 (en)
JP (1) JP3582437B2 (en)
KR (1) KR100360790B1 (en)
DE (1) DE10064178A1 (en)

Cited By (162)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008080249A2 (en) * 2007-01-04 2008-07-10 Oc Oerlikon Balzers Ag Apparatus for gas handling in vacuum processes
US20110020187A1 (en) * 2008-03-06 2011-01-27 Toyo Tanso Co., Ltd. Surface treatment apparatus
US20110177649A1 (en) * 2010-01-21 2011-07-21 Oc Oerlikon Balzers Ag Process for the deposition of an anti-reflection film on a substrate
CN102747338A (en) * 2011-04-18 2012-10-24 北大方正集团有限公司 Gas transmission pipeline and silica deposition device
US11274369B2 (en) 2018-09-11 2022-03-15 Asm Ip Holding B.V. Thin film deposition method
US11286558B2 (en) 2019-08-23 2022-03-29 Asm Ip Holding B.V. Methods for depositing a molybdenum nitride film on a surface of a substrate by a cyclical deposition process and related semiconductor device structures including a molybdenum nitride film
US11296189B2 (en) 2018-06-21 2022-04-05 Asm Ip Holding B.V. Method for depositing a phosphorus doped silicon arsenide film and related semiconductor device structures
USD947913S1 (en) 2019-05-17 2022-04-05 Asm Ip Holding B.V. Susceptor shaft
US11295980B2 (en) 2017-08-30 2022-04-05 Asm Ip Holding B.V. Methods for depositing a molybdenum metal film over a dielectric surface of a substrate by a cyclical deposition process and related semiconductor device structures
US11306395B2 (en) 2017-06-28 2022-04-19 Asm Ip Holding B.V. Methods for depositing a transition metal nitride film on a substrate by atomic layer deposition and related deposition apparatus
US11315794B2 (en) 2019-10-21 2022-04-26 Asm Ip Holding B.V. Apparatus and methods for selectively etching films
US11342216B2 (en) 2019-02-20 2022-05-24 Asm Ip Holding B.V. Cyclical deposition method and apparatus for filling a recess formed within a substrate surface
US11339476B2 (en) 2019-10-08 2022-05-24 Asm Ip Holding B.V. Substrate processing device having connection plates, substrate processing method
US11345999B2 (en) 2019-06-06 2022-05-31 Asm Ip Holding B.V. Method of using a gas-phase reactor system including analyzing exhausted gas
US11355338B2 (en) 2019-05-10 2022-06-07 Asm Ip Holding B.V. Method of depositing material onto a surface and structure formed according to the method
US11361990B2 (en) 2018-05-28 2022-06-14 Asm Ip Holding B.V. Substrate processing method and device manufactured by using the same
US11378337B2 (en) 2019-03-28 2022-07-05 Asm Ip Holding B.V. Door opener and substrate processing apparatus provided therewith
US11387106B2 (en) 2018-02-14 2022-07-12 Asm Ip Holding B.V. Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process
US11387120B2 (en) 2017-09-28 2022-07-12 Asm Ip Holding B.V. Chemical dispensing apparatus and methods for dispensing a chemical to a reaction chamber
US11390945B2 (en) 2019-07-03 2022-07-19 Asm Ip Holding B.V. Temperature control assembly for substrate processing apparatus and method of using same
US11390946B2 (en) 2019-01-17 2022-07-19 Asm Ip Holding B.V. Methods of forming a transition metal containing film on a substrate by a cyclical deposition process
US11393690B2 (en) 2018-01-19 2022-07-19 Asm Ip Holding B.V. Deposition method
US11390950B2 (en) 2017-01-10 2022-07-19 Asm Ip Holding B.V. Reactor system and method to reduce residue buildup during a film deposition process
US11396702B2 (en) 2016-11-15 2022-07-26 Asm Ip Holding B.V. Gas supply unit and substrate processing apparatus including the gas supply unit
US11398382B2 (en) 2018-03-27 2022-07-26 Asm Ip Holding B.V. Method of forming an electrode on a substrate and a semiconductor device structure including an electrode
US11401605B2 (en) 2019-11-26 2022-08-02 Asm Ip Holding B.V. Substrate processing apparatus
US11410851B2 (en) 2017-02-15 2022-08-09 Asm Ip Holding B.V. Methods for forming a metallic film on a substrate by cyclical deposition and related semiconductor device structures
US11411088B2 (en) 2018-11-16 2022-08-09 Asm Ip Holding B.V. Methods for forming a metal silicate film on a substrate in a reaction chamber and related semiconductor device structures
US11414760B2 (en) 2018-10-08 2022-08-16 Asm Ip Holding B.V. Substrate support unit, thin film deposition apparatus including the same, and substrate processing apparatus including the same
US11417545B2 (en) 2017-08-08 2022-08-16 Asm Ip Holding B.V. Radiation shield
US11424119B2 (en) 2019-03-08 2022-08-23 Asm Ip Holding B.V. Method for selective deposition of silicon nitride layer and structure including selectively-deposited silicon nitride layer
US11430640B2 (en) 2019-07-30 2022-08-30 Asm Ip Holding B.V. Substrate processing apparatus
US11430674B2 (en) 2018-08-22 2022-08-30 Asm Ip Holding B.V. Sensor array, apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods
US11437241B2 (en) 2020-04-08 2022-09-06 Asm Ip Holding B.V. Apparatus and methods for selectively etching silicon oxide films
US11443926B2 (en) 2019-07-30 2022-09-13 Asm Ip Holding B.V. Substrate processing apparatus
US11450529B2 (en) 2019-11-26 2022-09-20 Asm Ip Holding B.V. Methods for selectively forming a target film on a substrate comprising a first dielectric surface and a second metallic surface
US11447861B2 (en) * 2016-12-15 2022-09-20 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus and a method of forming a patterned structure
US11447864B2 (en) 2019-04-19 2022-09-20 Asm Ip Holding B.V. Layer forming method and apparatus
USD965044S1 (en) 2019-08-19 2022-09-27 Asm Ip Holding B.V. Susceptor shaft
US11453943B2 (en) 2016-05-25 2022-09-27 Asm Ip Holding B.V. Method for forming carbon-containing silicon/metal oxide or nitride film by ALD using silicon precursor and hydrocarbon precursor
USD965524S1 (en) 2019-08-19 2022-10-04 Asm Ip Holding B.V. Susceptor support
US11473195B2 (en) 2018-03-01 2022-10-18 Asm Ip Holding B.V. Semiconductor processing apparatus and a method for processing a substrate
US11476109B2 (en) 2019-06-11 2022-10-18 Asm Ip Holding B.V. Method of forming an electronic structure using reforming gas, system for performing the method, and structure formed using the method
US11482418B2 (en) 2018-02-20 2022-10-25 Asm Ip Holding B.V. Substrate processing method and apparatus
US11482533B2 (en) 2019-02-20 2022-10-25 Asm Ip Holding B.V. Apparatus and methods for plug fill deposition in 3-D NAND applications
US11482412B2 (en) 2018-01-19 2022-10-25 Asm Ip Holding B.V. Method for depositing a gap-fill layer by plasma-assisted deposition
US11488819B2 (en) 2018-12-04 2022-11-01 Asm Ip Holding B.V. Method of cleaning substrate processing apparatus
US11488854B2 (en) 2020-03-11 2022-11-01 Asm Ip Holding B.V. Substrate handling device with adjustable joints
US11495459B2 (en) 2019-09-04 2022-11-08 Asm Ip Holding B.V. Methods for selective deposition using a sacrificial capping layer
US11492703B2 (en) 2018-06-27 2022-11-08 Asm Ip Holding B.V. Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material
US20220356568A1 (en) * 2021-05-07 2022-11-10 United Semiconductor (Xiamen) Co., Ltd. Semiconductor deposition method
US11499222B2 (en) 2018-06-27 2022-11-15 Asm Ip Holding B.V. Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material
US11499226B2 (en) 2018-11-02 2022-11-15 Asm Ip Holding B.V. Substrate supporting unit and a substrate processing device including the same
US11501973B2 (en) 2018-01-16 2022-11-15 Asm Ip Holding B.V. Method for depositing a material film on a substrate within a reaction chamber by a cyclical deposition process and related device structures
US11501968B2 (en) 2019-11-15 2022-11-15 Asm Ip Holding B.V. Method for providing a semiconductor device with silicon filled gaps
US11515187B2 (en) 2020-05-01 2022-11-29 Asm Ip Holding B.V. Fast FOUP swapping with a FOUP handler
US11515188B2 (en) 2019-05-16 2022-11-29 Asm Ip Holding B.V. Wafer boat handling device, vertical batch furnace and method
US11521851B2 (en) 2020-02-03 2022-12-06 Asm Ip Holding B.V. Method of forming structures including a vanadium or indium layer
US11527403B2 (en) 2019-12-19 2022-12-13 Asm Ip Holding B.V. Methods for filling a gap feature on a substrate surface and related semiconductor structures
US11532757B2 (en) 2016-10-27 2022-12-20 Asm Ip Holding B.V. Deposition of charge trapping layers
US11530483B2 (en) 2018-06-21 2022-12-20 Asm Ip Holding B.V. Substrate processing system
US11530876B2 (en) 2020-04-24 2022-12-20 Asm Ip Holding B.V. Vertical batch furnace assembly comprising a cooling gas supply
US11551912B2 (en) 2020-01-20 2023-01-10 Asm Ip Holding B.V. Method of forming thin film and method of modifying surface of thin film
US11551925B2 (en) 2019-04-01 2023-01-10 Asm Ip Holding B.V. Method for manufacturing a semiconductor device
USD975665S1 (en) 2019-05-17 2023-01-17 Asm Ip Holding B.V. Susceptor shaft
US11557474B2 (en) 2019-07-29 2023-01-17 Asm Ip Holding B.V. Methods for selective deposition utilizing n-type dopants and/or alternative dopants to achieve high dopant incorporation
US11562901B2 (en) 2019-09-25 2023-01-24 Asm Ip Holding B.V. Substrate processing method
US11572620B2 (en) 2018-11-06 2023-02-07 Asm Ip Holding B.V. Methods for selectively depositing an amorphous silicon film on a substrate
US11581186B2 (en) * 2016-12-15 2023-02-14 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus
US11587814B2 (en) 2019-07-31 2023-02-21 Asm Ip Holding B.V. Vertical batch furnace assembly
US11587815B2 (en) 2019-07-31 2023-02-21 Asm Ip Holding B.V. Vertical batch furnace assembly
US11587821B2 (en) 2017-08-08 2023-02-21 Asm Ip Holding B.V. Substrate lift mechanism and reactor including same
US11594600B2 (en) 2019-11-05 2023-02-28 Asm Ip Holding B.V. Structures with doped semiconductor layers and methods and systems for forming same
USD979506S1 (en) 2019-08-22 2023-02-28 Asm Ip Holding B.V. Insulator
US11594450B2 (en) 2019-08-22 2023-02-28 Asm Ip Holding B.V. Method for forming a structure with a hole
US11605528B2 (en) 2019-07-09 2023-03-14 Asm Ip Holding B.V. Plasma device using coaxial waveguide, and substrate treatment method
USD980813S1 (en) 2021-05-11 2023-03-14 Asm Ip Holding B.V. Gas flow control plate for substrate processing apparatus
USD980814S1 (en) 2021-05-11 2023-03-14 Asm Ip Holding B.V. Gas distributor for substrate processing apparatus
US11610775B2 (en) 2016-07-28 2023-03-21 Asm Ip Holding B.V. Method and apparatus for filling a gap
US11610774B2 (en) 2019-10-02 2023-03-21 Asm Ip Holding B.V. Methods for forming a topographically selective silicon oxide film by a cyclical plasma-enhanced deposition process
US11615980B2 (en) 2019-02-20 2023-03-28 Asm Ip Holding B.V. Method and apparatus for filling a recess formed within a substrate surface
USD981973S1 (en) 2021-05-11 2023-03-28 Asm Ip Holding B.V. Reactor wall for substrate processing apparatus
US11615970B2 (en) 2019-07-17 2023-03-28 Asm Ip Holding B.V. Radical assist ignition plasma system and method
US11626316B2 (en) 2019-11-20 2023-04-11 Asm Ip Holding B.V. Method of depositing carbon-containing material on a surface of a substrate, structure formed using the method, and system for forming the structure
US11626308B2 (en) 2020-05-13 2023-04-11 Asm Ip Holding B.V. Laser alignment fixture for a reactor system
US11629407B2 (en) 2019-02-22 2023-04-18 Asm Ip Holding B.V. Substrate processing apparatus and method for processing substrates
US11637014B2 (en) 2019-10-17 2023-04-25 Asm Ip Holding B.V. Methods for selective deposition of doped semiconductor material
US11637011B2 (en) 2019-10-16 2023-04-25 Asm Ip Holding B.V. Method of topology-selective film formation of silicon oxide
US11639811B2 (en) 2017-11-27 2023-05-02 Asm Ip Holding B.V. Apparatus including a clean mini environment
US11639548B2 (en) 2019-08-21 2023-05-02 Asm Ip Holding B.V. Film-forming material mixed-gas forming device and film forming device
US11646184B2 (en) 2019-11-29 2023-05-09 Asm Ip Holding B.V. Substrate processing apparatus
US11646204B2 (en) 2020-06-24 2023-05-09 Asm Ip Holding B.V. Method for forming a layer provided with silicon
US11646205B2 (en) 2019-10-29 2023-05-09 Asm Ip Holding B.V. Methods of selectively forming n-type doped material on a surface, systems for selectively forming n-type doped material, and structures formed using same
US11643724B2 (en) 2019-07-18 2023-05-09 Asm Ip Holding B.V. Method of forming structures using a neutral beam
US11644758B2 (en) 2020-07-17 2023-05-09 Asm Ip Holding B.V. Structures and methods for use in photolithography
US11646197B2 (en) 2018-07-03 2023-05-09 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US11649546B2 (en) 2016-07-08 2023-05-16 Asm Ip Holding B.V. Organic reactants for atomic layer deposition
US11658029B2 (en) 2018-12-14 2023-05-23 Asm Ip Holding B.V. Method of forming a device structure using selective deposition of gallium nitride and system for same
US11658035B2 (en) 2020-06-30 2023-05-23 Asm Ip Holding B.V. Substrate processing method
US11664245B2 (en) 2019-07-16 2023-05-30 Asm Ip Holding B.V. Substrate processing device
US11664199B2 (en) 2018-10-19 2023-05-30 Asm Ip Holding B.V. Substrate processing apparatus and substrate processing method
US11664267B2 (en) 2019-07-10 2023-05-30 Asm Ip Holding B.V. Substrate support assembly and substrate processing device including the same
US11676812B2 (en) 2016-02-19 2023-06-13 Asm Ip Holding B.V. Method for forming silicon nitride film selectively on top/bottom portions
US11674220B2 (en) 2020-07-20 2023-06-13 Asm Ip Holding B.V. Method for depositing molybdenum layers using an underlayer
US11682572B2 (en) 2017-11-27 2023-06-20 Asm Ip Holdings B.V. Storage device for storing wafer cassettes for use with a batch furnace
US11680839B2 (en) 2019-08-05 2023-06-20 Asm Ip Holding B.V. Liquid level sensor for a chemical source vessel
US11685991B2 (en) 2018-02-14 2023-06-27 Asm Ip Holding B.V. Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process
USD990441S1 (en) 2021-09-07 2023-06-27 Asm Ip Holding B.V. Gas flow control plate
USD990534S1 (en) 2020-09-11 2023-06-27 Asm Ip Holding B.V. Weighted lift pin
US11688603B2 (en) 2019-07-17 2023-06-27 Asm Ip Holding B.V. Methods of forming silicon germanium structures
US11695054B2 (en) 2017-07-18 2023-07-04 Asm Ip Holding B.V. Methods for forming a semiconductor device structure and related semiconductor device structures
US11694892B2 (en) 2016-07-28 2023-07-04 Asm Ip Holding B.V. Method and apparatus for filling a gap
US11705333B2 (en) 2020-05-21 2023-07-18 Asm Ip Holding B.V. Structures including multiple carbon layers and methods of forming and using same
US11718913B2 (en) 2018-06-04 2023-08-08 Asm Ip Holding B.V. Gas distribution system and reactor system including same
US11725277B2 (en) 2011-07-20 2023-08-15 Asm Ip Holding B.V. Pressure transmitter for a semiconductor processing environment
US11725280B2 (en) 2020-08-26 2023-08-15 Asm Ip Holding B.V. Method for forming metal silicon oxide and metal silicon oxynitride layers
US11735422B2 (en) 2019-10-10 2023-08-22 Asm Ip Holding B.V. Method of forming a photoresist underlayer and structure including same
US11735414B2 (en) 2018-02-06 2023-08-22 Asm Ip Holding B.V. Method of post-deposition treatment for silicon oxide film
US11735445B2 (en) 2018-10-31 2023-08-22 Asm Ip Holding B.V. Substrate processing apparatus for processing substrates
US11742189B2 (en) 2015-03-12 2023-08-29 Asm Ip Holding B.V. Multi-zone reactor, system including the reactor, and method of using the same
US11742198B2 (en) 2019-03-08 2023-08-29 Asm Ip Holding B.V. Structure including SiOCN layer and method of forming same
US11749562B2 (en) 2016-07-08 2023-09-05 Asm Ip Holding B.V. Selective deposition method to form air gaps
US11769682B2 (en) 2017-08-09 2023-09-26 Asm Ip Holding B.V. Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith
US11767589B2 (en) 2020-05-29 2023-09-26 Asm Ip Holding B.V. Substrate processing device
US11769670B2 (en) 2018-12-13 2023-09-26 Asm Ip Holding B.V. Methods for forming a rhenium-containing film on a substrate by a cyclical deposition process and related semiconductor device structures
US11776846B2 (en) 2020-02-07 2023-10-03 Asm Ip Holding B.V. Methods for depositing gap filling fluids and related systems and devices
US11781243B2 (en) 2020-02-17 2023-10-10 Asm Ip Holding B.V. Method for depositing low temperature phosphorous-doped silicon
US11781221B2 (en) 2019-05-07 2023-10-10 Asm Ip Holding B.V. Chemical source vessel with dip tube
US11788190B2 (en) 2019-07-05 2023-10-17 Asm Ip Holding B.V. Liquid vaporizer
US11795545B2 (en) 2014-10-07 2023-10-24 Asm Ip Holding B.V. Multiple temperature range susceptor, assembly, reactor and system including the susceptor, and methods of using the same
US11802338B2 (en) 2017-07-26 2023-10-31 Asm Ip Holding B.V. Chemical treatment, deposition and/or infiltration apparatus and method for using the same
US11804388B2 (en) 2018-09-11 2023-10-31 Asm Ip Holding B.V. Substrate processing apparatus and method
US11804364B2 (en) 2020-05-19 2023-10-31 Asm Ip Holding B.V. Substrate processing apparatus
US11810788B2 (en) 2016-11-01 2023-11-07 Asm Ip Holding B.V. Methods for forming a transition metal niobium nitride film on a substrate by atomic layer deposition and related semiconductor device structures
US11814747B2 (en) 2019-04-24 2023-11-14 Asm Ip Holding B.V. Gas-phase reactor system-with a reaction chamber, a solid precursor source vessel, a gas distribution system, and a flange assembly
US11821078B2 (en) 2020-04-15 2023-11-21 Asm Ip Holding B.V. Method for forming precoat film and method for forming silicon-containing film
US11823866B2 (en) 2020-04-02 2023-11-21 Asm Ip Holding B.V. Thin film forming method
US11823876B2 (en) 2019-09-05 2023-11-21 Asm Ip Holding B.V. Substrate processing apparatus
US11830730B2 (en) 2017-08-29 2023-11-28 Asm Ip Holding B.V. Layer forming method and apparatus
US11830738B2 (en) 2020-04-03 2023-11-28 Asm Ip Holding B.V. Method for forming barrier layer and method for manufacturing semiconductor device
US11827981B2 (en) 2020-10-14 2023-11-28 Asm Ip Holding B.V. Method of depositing material on stepped structure
US11828707B2 (en) 2020-02-04 2023-11-28 Asm Ip Holding B.V. Method and apparatus for transmittance measurements of large articles
US11840761B2 (en) 2019-12-04 2023-12-12 Asm Ip Holding B.V. Substrate processing apparatus
US11848200B2 (en) 2017-05-08 2023-12-19 Asm Ip Holding B.V. Methods for selectively forming a silicon nitride film on a substrate and related semiconductor device structures
US11876008B2 (en) 2019-07-31 2024-01-16 Asm Ip Holding B.V. Vertical batch furnace assembly
US11876356B2 (en) 2020-03-11 2024-01-16 Asm Ip Holding B.V. Lockout tagout assembly and system and method of using same
US11873557B2 (en) 2020-10-22 2024-01-16 Asm Ip Holding B.V. Method of depositing vanadium metal
US11885013B2 (en) 2019-12-17 2024-01-30 Asm Ip Holding B.V. Method of forming vanadium nitride layer and structure including the vanadium nitride layer
US11887857B2 (en) 2020-04-24 2024-01-30 Asm Ip Holding B.V. Methods and systems for depositing a layer comprising vanadium, nitrogen, and a further element
US11885020B2 (en) 2020-12-22 2024-01-30 Asm Ip Holding B.V. Transition metal deposition method
US11885023B2 (en) 2018-10-01 2024-01-30 Asm Ip Holding B.V. Substrate retaining apparatus, system including the apparatus, and method of using same
USD1012873S1 (en) 2020-09-24 2024-01-30 Asm Ip Holding B.V. Electrode for semiconductor processing apparatus
US11891696B2 (en) 2020-11-30 2024-02-06 Asm Ip Holding B.V. Injector configured for arrangement within a reaction chamber of a substrate processing apparatus
US11898243B2 (en) 2020-04-24 2024-02-13 Asm Ip Holding B.V. Method of forming vanadium nitride-containing layer
US11901179B2 (en) 2020-10-28 2024-02-13 Asm Ip Holding B.V. Method and device for depositing silicon onto substrates
US11923190B2 (en) 2018-07-03 2024-03-05 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US11923181B2 (en) 2019-11-29 2024-03-05 Asm Ip Holding B.V. Substrate processing apparatus for minimizing the effect of a filling gas during substrate processing
US11929251B2 (en) 2019-12-02 2024-03-12 Asm Ip Holding B.V. Substrate processing apparatus having electrostatic chuck and substrate processing method
US11939673B2 (en) 2018-02-23 2024-03-26 Asm Ip Holding B.V. Apparatus for detecting or monitoring for a chemical precursor in a high temperature environment
US11946137B2 (en) 2020-12-16 2024-04-02 Asm Ip Holding B.V. Runout and wobble measurement fixtures
US11946136B2 (en) 2019-09-20 2024-04-02 Asm Ip Holding B.V. Semiconductor processing device
US11952658B2 (en) 2022-10-24 2024-04-09 Asm Ip Holding B.V. Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7563328B2 (en) * 2001-01-19 2009-07-21 Tokyo Electron Limited Method and apparatus for gas injection system with minimum particulate contamination
US7192486B2 (en) * 2002-08-15 2007-03-20 Applied Materials, Inc. Clog-resistant gas delivery system
KR100568306B1 (en) 2004-07-23 2006-04-05 삼성전기주식회사 Thin film type multi-layered ceramic capacitor and method of producing the same
US8252113B2 (en) * 2005-03-24 2012-08-28 Ulvac, Inc. Method for producing component for vacuum apparatus, resin coating forming apparatus and vacuum film forming system
DE102010000479A1 (en) * 2010-02-19 2011-08-25 Aixtron Ag, 52134 Device for homogenizing a vaporized aerosol and device for depositing an organic layer on a substrate with such a homogenizing device
JP6081720B2 (en) * 2012-07-04 2017-02-15 東京エレクトロン株式会社 Film forming method and film forming apparatus
EP2708542B1 (en) * 2012-09-17 2015-04-08 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Salen-type barium precursors for vapor phase deposition of thin films
EP2708545A1 (en) * 2012-09-18 2014-03-19 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Pentadienyl strontium-organic compounds and their use for thin films deposition
EP2708544A1 (en) * 2012-09-18 2014-03-19 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Pentadienyl barium-organic compounds and their use for thin films deposition
US10214817B2 (en) * 2013-10-16 2019-02-26 The Board Of Trustees Of The University Of Illinois Multi-metal films, alternating film multilayers, formation methods and deposition system
US20150259797A1 (en) * 2014-03-17 2015-09-17 Jiangsu Nata Opto-electronic Material Co., Ltd. Liquid-Metal Organic Compound Supply System
CN104928650B (en) * 2014-03-17 2017-09-26 江苏南大光电材料股份有限公司 Liquid metals organic compound feed system
KR101642570B1 (en) 2014-06-24 2016-07-29 삼성전기주식회사 Multi-layered capacitor and manufaturing method for the same
DE102014115497A1 (en) * 2014-10-24 2016-05-12 Aixtron Se Tempered gas supply with diluent gas streams fed in at several points
KR102520541B1 (en) * 2018-02-14 2023-04-10 엘지디스플레이 주식회사 Apparatus and method for manufacturing of oxide film and display device comprising the oxide film
DE102018120580A1 (en) * 2018-08-23 2020-02-27 Infineon Technologies Ag DEVICE AND METHOD FOR DEPOSITING A LAYER AT ATMOSPHERIC PRESSURE

Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2949357A (en) * 1958-01-16 1960-08-16 Chicago Dev Corp High purity titanium-manganese alloy
US4436674A (en) * 1981-07-30 1984-03-13 J.C. Schumacher Co. Vapor mass flow control system
US4830665A (en) * 1979-07-05 1989-05-16 Cockerill S.A. Process and unit for preparing alloyed and non-alloyed reactive metals by reduction
US4903117A (en) * 1985-09-11 1990-02-20 Mitsubishi Denki Kabushiki Kaisha Semiconductor device
US5160542A (en) * 1989-09-12 1992-11-03 Stec Inc. Apparatus for vaporizing and supplying organometal compounds
US5171379A (en) * 1991-05-15 1992-12-15 Cabot Corporation Tantalum base alloys
US5209835A (en) * 1988-03-03 1993-05-11 Asahi Glass Company Ltd. Method for producing a specified zirconium-silicon amorphous oxide film composition by sputtering
US5356477A (en) * 1990-10-05 1994-10-18 U.S. Philips Corporation Device for providing a substrate with a surface layer from a vapor
US5372659A (en) * 1992-05-12 1994-12-13 Cezus-Compagnie Europeenne Du Zirconium Alloys of refractory metals suitable for transformation into homogeneous and pure ingots
US5403458A (en) * 1993-08-05 1995-04-04 Guardian Industries Corp. Sputter-coating target and method of use
US5462014A (en) * 1990-03-09 1995-10-31 Nippon Telegraph And Telephone Corporation Apparatus for growing a thin metallic film
US5900279A (en) * 1995-11-20 1999-05-04 Tri Chemical Laboratory Inc. Processes for the chemical vapor deposition and solvent used for the processes
US5919522A (en) * 1995-03-31 1999-07-06 Advanced Technology Materials, Inc. Growth of BaSrTiO3 using polyamine-based precursors
US5939788A (en) * 1998-03-11 1999-08-17 Micron Technology, Inc. Copper diffusion barrier, aluminum wetting layer and improved methods for filling openings in silicon substrates with cooper
US6022416A (en) * 1998-04-23 2000-02-08 Novellus Systems, Inc. Point-of-use vaporization system and method
US6024847A (en) * 1997-04-30 2000-02-15 The Alta Group, Inc. Apparatus for producing titanium crystal and titanium
US6038919A (en) * 1997-06-06 2000-03-21 Applied Materials Inc. Measurement of quantity of incompressible substance in a closed container
US6099653A (en) * 1997-12-12 2000-08-08 Advanced Technology Materials, Inc. Liquid reagent delivery system with constant thermal loading of vaporizer
US6179925B1 (en) * 1999-05-14 2001-01-30 Applied Materials, Inc. Method and apparatus for improved control of process and purge material in substrate processing system
US6218518B1 (en) * 1990-07-06 2001-04-17 Advanced Technology Materials, Inc. Tetrahydrofuran-adducted group II β-diketonate complexes as source reagents for chemical vapor deposition
US6245151B1 (en) * 1998-07-17 2001-06-12 Advanced Technology Materials, Inc. Liquid delivery system comprising upstream pressure control means
US6358323B1 (en) * 1998-07-21 2002-03-19 Applied Materials, Inc. Method and apparatus for improved control of process and purge material in a substrate processing system
US6521173B2 (en) * 1999-08-19 2003-02-18 H.C. Starck, Inc. Low oxygen refractory metal powder for powder metallurgy

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2704705B2 (en) 1994-05-23 1998-01-26 株式会社トリケミカル研究所 Solutions used in chemical vapor deposition
KR100228768B1 (en) 1996-10-02 1999-11-01 김영환 Apparatus for chemical vapor deposition and method for deposition

Patent Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2949357A (en) * 1958-01-16 1960-08-16 Chicago Dev Corp High purity titanium-manganese alloy
US4830665A (en) * 1979-07-05 1989-05-16 Cockerill S.A. Process and unit for preparing alloyed and non-alloyed reactive metals by reduction
US4436674A (en) * 1981-07-30 1984-03-13 J.C. Schumacher Co. Vapor mass flow control system
US4903117A (en) * 1985-09-11 1990-02-20 Mitsubishi Denki Kabushiki Kaisha Semiconductor device
US5209835A (en) * 1988-03-03 1993-05-11 Asahi Glass Company Ltd. Method for producing a specified zirconium-silicon amorphous oxide film composition by sputtering
US5160542A (en) * 1989-09-12 1992-11-03 Stec Inc. Apparatus for vaporizing and supplying organometal compounds
US5462014A (en) * 1990-03-09 1995-10-31 Nippon Telegraph And Telephone Corporation Apparatus for growing a thin metallic film
US6218518B1 (en) * 1990-07-06 2001-04-17 Advanced Technology Materials, Inc. Tetrahydrofuran-adducted group II β-diketonate complexes as source reagents for chemical vapor deposition
US5356477A (en) * 1990-10-05 1994-10-18 U.S. Philips Corporation Device for providing a substrate with a surface layer from a vapor
US5171379A (en) * 1991-05-15 1992-12-15 Cabot Corporation Tantalum base alloys
US5372659A (en) * 1992-05-12 1994-12-13 Cezus-Compagnie Europeenne Du Zirconium Alloys of refractory metals suitable for transformation into homogeneous and pure ingots
US5403458A (en) * 1993-08-05 1995-04-04 Guardian Industries Corp. Sputter-coating target and method of use
US5919522A (en) * 1995-03-31 1999-07-06 Advanced Technology Materials, Inc. Growth of BaSrTiO3 using polyamine-based precursors
US5900279A (en) * 1995-11-20 1999-05-04 Tri Chemical Laboratory Inc. Processes for the chemical vapor deposition and solvent used for the processes
US6024847A (en) * 1997-04-30 2000-02-15 The Alta Group, Inc. Apparatus for producing titanium crystal and titanium
US6038919A (en) * 1997-06-06 2000-03-21 Applied Materials Inc. Measurement of quantity of incompressible substance in a closed container
US6099653A (en) * 1997-12-12 2000-08-08 Advanced Technology Materials, Inc. Liquid reagent delivery system with constant thermal loading of vaporizer
US5939788A (en) * 1998-03-11 1999-08-17 Micron Technology, Inc. Copper diffusion barrier, aluminum wetting layer and improved methods for filling openings in silicon substrates with cooper
US6022416A (en) * 1998-04-23 2000-02-08 Novellus Systems, Inc. Point-of-use vaporization system and method
US6245151B1 (en) * 1998-07-17 2001-06-12 Advanced Technology Materials, Inc. Liquid delivery system comprising upstream pressure control means
US6358323B1 (en) * 1998-07-21 2002-03-19 Applied Materials, Inc. Method and apparatus for improved control of process and purge material in a substrate processing system
US6179925B1 (en) * 1999-05-14 2001-01-30 Applied Materials, Inc. Method and apparatus for improved control of process and purge material in substrate processing system
US6521173B2 (en) * 1999-08-19 2003-02-18 H.C. Starck, Inc. Low oxygen refractory metal powder for powder metallurgy

Cited By (182)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080163817A1 (en) * 2007-01-04 2008-07-10 Oc Oerlikon Balzers Ag Apparatus for gas handling in vacuum processes
WO2008080249A3 (en) * 2007-01-04 2009-07-09 Oc Oerlikon Balzers Ag Apparatus for gas handling in vacuum processes
WO2008080249A2 (en) * 2007-01-04 2008-07-10 Oc Oerlikon Balzers Ag Apparatus for gas handling in vacuum processes
US20110020187A1 (en) * 2008-03-06 2011-01-27 Toyo Tanso Co., Ltd. Surface treatment apparatus
US20110177649A1 (en) * 2010-01-21 2011-07-21 Oc Oerlikon Balzers Ag Process for the deposition of an anti-reflection film on a substrate
US8263489B2 (en) 2010-01-21 2012-09-11 Oc Oerlikon Balzers Ag Process for the deposition of an anti-reflection film on a substrate
CN102747338A (en) * 2011-04-18 2012-10-24 北大方正集团有限公司 Gas transmission pipeline and silica deposition device
US11725277B2 (en) 2011-07-20 2023-08-15 Asm Ip Holding B.V. Pressure transmitter for a semiconductor processing environment
US11795545B2 (en) 2014-10-07 2023-10-24 Asm Ip Holding B.V. Multiple temperature range susceptor, assembly, reactor and system including the susceptor, and methods of using the same
US11742189B2 (en) 2015-03-12 2023-08-29 Asm Ip Holding B.V. Multi-zone reactor, system including the reactor, and method of using the same
US11676812B2 (en) 2016-02-19 2023-06-13 Asm Ip Holding B.V. Method for forming silicon nitride film selectively on top/bottom portions
US11453943B2 (en) 2016-05-25 2022-09-27 Asm Ip Holding B.V. Method for forming carbon-containing silicon/metal oxide or nitride film by ALD using silicon precursor and hydrocarbon precursor
US11749562B2 (en) 2016-07-08 2023-09-05 Asm Ip Holding B.V. Selective deposition method to form air gaps
US11649546B2 (en) 2016-07-08 2023-05-16 Asm Ip Holding B.V. Organic reactants for atomic layer deposition
US11694892B2 (en) 2016-07-28 2023-07-04 Asm Ip Holding B.V. Method and apparatus for filling a gap
US11610775B2 (en) 2016-07-28 2023-03-21 Asm Ip Holding B.V. Method and apparatus for filling a gap
US11532757B2 (en) 2016-10-27 2022-12-20 Asm Ip Holding B.V. Deposition of charge trapping layers
US11810788B2 (en) 2016-11-01 2023-11-07 Asm Ip Holding B.V. Methods for forming a transition metal niobium nitride film on a substrate by atomic layer deposition and related semiconductor device structures
US11396702B2 (en) 2016-11-15 2022-07-26 Asm Ip Holding B.V. Gas supply unit and substrate processing apparatus including the gas supply unit
US11447861B2 (en) * 2016-12-15 2022-09-20 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus and a method of forming a patterned structure
US11851755B2 (en) 2016-12-15 2023-12-26 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus and a method of forming a patterned structure
US11581186B2 (en) * 2016-12-15 2023-02-14 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus
US11390950B2 (en) 2017-01-10 2022-07-19 Asm Ip Holding B.V. Reactor system and method to reduce residue buildup during a film deposition process
US11410851B2 (en) 2017-02-15 2022-08-09 Asm Ip Holding B.V. Methods for forming a metallic film on a substrate by cyclical deposition and related semiconductor device structures
US11848200B2 (en) 2017-05-08 2023-12-19 Asm Ip Holding B.V. Methods for selectively forming a silicon nitride film on a substrate and related semiconductor device structures
US11306395B2 (en) 2017-06-28 2022-04-19 Asm Ip Holding B.V. Methods for depositing a transition metal nitride film on a substrate by atomic layer deposition and related deposition apparatus
US11695054B2 (en) 2017-07-18 2023-07-04 Asm Ip Holding B.V. Methods for forming a semiconductor device structure and related semiconductor device structures
US11802338B2 (en) 2017-07-26 2023-10-31 Asm Ip Holding B.V. Chemical treatment, deposition and/or infiltration apparatus and method for using the same
US11587821B2 (en) 2017-08-08 2023-02-21 Asm Ip Holding B.V. Substrate lift mechanism and reactor including same
US11417545B2 (en) 2017-08-08 2022-08-16 Asm Ip Holding B.V. Radiation shield
US11769682B2 (en) 2017-08-09 2023-09-26 Asm Ip Holding B.V. Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith
US11830730B2 (en) 2017-08-29 2023-11-28 Asm Ip Holding B.V. Layer forming method and apparatus
US11295980B2 (en) 2017-08-30 2022-04-05 Asm Ip Holding B.V. Methods for depositing a molybdenum metal film over a dielectric surface of a substrate by a cyclical deposition process and related semiconductor device structures
US11581220B2 (en) 2017-08-30 2023-02-14 Asm Ip Holding B.V. Methods for depositing a molybdenum metal film over a dielectric surface of a substrate by a cyclical deposition process and related semiconductor device structures
US11387120B2 (en) 2017-09-28 2022-07-12 Asm Ip Holding B.V. Chemical dispensing apparatus and methods for dispensing a chemical to a reaction chamber
US11682572B2 (en) 2017-11-27 2023-06-20 Asm Ip Holdings B.V. Storage device for storing wafer cassettes for use with a batch furnace
US11639811B2 (en) 2017-11-27 2023-05-02 Asm Ip Holding B.V. Apparatus including a clean mini environment
US11501973B2 (en) 2018-01-16 2022-11-15 Asm Ip Holding B.V. Method for depositing a material film on a substrate within a reaction chamber by a cyclical deposition process and related device structures
US11393690B2 (en) 2018-01-19 2022-07-19 Asm Ip Holding B.V. Deposition method
US11482412B2 (en) 2018-01-19 2022-10-25 Asm Ip Holding B.V. Method for depositing a gap-fill layer by plasma-assisted deposition
US11735414B2 (en) 2018-02-06 2023-08-22 Asm Ip Holding B.V. Method of post-deposition treatment for silicon oxide film
US11387106B2 (en) 2018-02-14 2022-07-12 Asm Ip Holding B.V. Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process
US11685991B2 (en) 2018-02-14 2023-06-27 Asm Ip Holding B.V. Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process
US11482418B2 (en) 2018-02-20 2022-10-25 Asm Ip Holding B.V. Substrate processing method and apparatus
US11939673B2 (en) 2018-02-23 2024-03-26 Asm Ip Holding B.V. Apparatus for detecting or monitoring for a chemical precursor in a high temperature environment
US11473195B2 (en) 2018-03-01 2022-10-18 Asm Ip Holding B.V. Semiconductor processing apparatus and a method for processing a substrate
US11398382B2 (en) 2018-03-27 2022-07-26 Asm Ip Holding B.V. Method of forming an electrode on a substrate and a semiconductor device structure including an electrode
US11361990B2 (en) 2018-05-28 2022-06-14 Asm Ip Holding B.V. Substrate processing method and device manufactured by using the same
US11908733B2 (en) 2018-05-28 2024-02-20 Asm Ip Holding B.V. Substrate processing method and device manufactured by using the same
US11718913B2 (en) 2018-06-04 2023-08-08 Asm Ip Holding B.V. Gas distribution system and reactor system including same
US11530483B2 (en) 2018-06-21 2022-12-20 Asm Ip Holding B.V. Substrate processing system
US11296189B2 (en) 2018-06-21 2022-04-05 Asm Ip Holding B.V. Method for depositing a phosphorus doped silicon arsenide film and related semiconductor device structures
US11814715B2 (en) 2018-06-27 2023-11-14 Asm Ip Holding B.V. Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material
US11492703B2 (en) 2018-06-27 2022-11-08 Asm Ip Holding B.V. Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material
US11499222B2 (en) 2018-06-27 2022-11-15 Asm Ip Holding B.V. Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material
US11923190B2 (en) 2018-07-03 2024-03-05 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US11646197B2 (en) 2018-07-03 2023-05-09 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US11430674B2 (en) 2018-08-22 2022-08-30 Asm Ip Holding B.V. Sensor array, apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods
US11804388B2 (en) 2018-09-11 2023-10-31 Asm Ip Holding B.V. Substrate processing apparatus and method
US11274369B2 (en) 2018-09-11 2022-03-15 Asm Ip Holding B.V. Thin film deposition method
US11885023B2 (en) 2018-10-01 2024-01-30 Asm Ip Holding B.V. Substrate retaining apparatus, system including the apparatus, and method of using same
US11414760B2 (en) 2018-10-08 2022-08-16 Asm Ip Holding B.V. Substrate support unit, thin film deposition apparatus including the same, and substrate processing apparatus including the same
US11664199B2 (en) 2018-10-19 2023-05-30 Asm Ip Holding B.V. Substrate processing apparatus and substrate processing method
US11735445B2 (en) 2018-10-31 2023-08-22 Asm Ip Holding B.V. Substrate processing apparatus for processing substrates
US11499226B2 (en) 2018-11-02 2022-11-15 Asm Ip Holding B.V. Substrate supporting unit and a substrate processing device including the same
US11866823B2 (en) 2018-11-02 2024-01-09 Asm Ip Holding B.V. Substrate supporting unit and a substrate processing device including the same
US11572620B2 (en) 2018-11-06 2023-02-07 Asm Ip Holding B.V. Methods for selectively depositing an amorphous silicon film on a substrate
US11411088B2 (en) 2018-11-16 2022-08-09 Asm Ip Holding B.V. Methods for forming a metal silicate film on a substrate in a reaction chamber and related semiconductor device structures
US11798999B2 (en) 2018-11-16 2023-10-24 Asm Ip Holding B.V. Methods for forming a metal silicate film on a substrate in a reaction chamber and related semiconductor device structures
US11488819B2 (en) 2018-12-04 2022-11-01 Asm Ip Holding B.V. Method of cleaning substrate processing apparatus
US11769670B2 (en) 2018-12-13 2023-09-26 Asm Ip Holding B.V. Methods for forming a rhenium-containing film on a substrate by a cyclical deposition process and related semiconductor device structures
US11658029B2 (en) 2018-12-14 2023-05-23 Asm Ip Holding B.V. Method of forming a device structure using selective deposition of gallium nitride and system for same
US11390946B2 (en) 2019-01-17 2022-07-19 Asm Ip Holding B.V. Methods of forming a transition metal containing film on a substrate by a cyclical deposition process
US11615980B2 (en) 2019-02-20 2023-03-28 Asm Ip Holding B.V. Method and apparatus for filling a recess formed within a substrate surface
US11798834B2 (en) 2019-02-20 2023-10-24 Asm Ip Holding B.V. Cyclical deposition method and apparatus for filling a recess formed within a substrate surface
US11482533B2 (en) 2019-02-20 2022-10-25 Asm Ip Holding B.V. Apparatus and methods for plug fill deposition in 3-D NAND applications
US11342216B2 (en) 2019-02-20 2022-05-24 Asm Ip Holding B.V. Cyclical deposition method and apparatus for filling a recess formed within a substrate surface
US11629407B2 (en) 2019-02-22 2023-04-18 Asm Ip Holding B.V. Substrate processing apparatus and method for processing substrates
US11742198B2 (en) 2019-03-08 2023-08-29 Asm Ip Holding B.V. Structure including SiOCN layer and method of forming same
US11424119B2 (en) 2019-03-08 2022-08-23 Asm Ip Holding B.V. Method for selective deposition of silicon nitride layer and structure including selectively-deposited silicon nitride layer
US11901175B2 (en) 2019-03-08 2024-02-13 Asm Ip Holding B.V. Method for selective deposition of silicon nitride layer and structure including selectively-deposited silicon nitride layer
US11378337B2 (en) 2019-03-28 2022-07-05 Asm Ip Holding B.V. Door opener and substrate processing apparatus provided therewith
US11551925B2 (en) 2019-04-01 2023-01-10 Asm Ip Holding B.V. Method for manufacturing a semiconductor device
US11447864B2 (en) 2019-04-19 2022-09-20 Asm Ip Holding B.V. Layer forming method and apparatus
US11814747B2 (en) 2019-04-24 2023-11-14 Asm Ip Holding B.V. Gas-phase reactor system-with a reaction chamber, a solid precursor source vessel, a gas distribution system, and a flange assembly
US11781221B2 (en) 2019-05-07 2023-10-10 Asm Ip Holding B.V. Chemical source vessel with dip tube
US11355338B2 (en) 2019-05-10 2022-06-07 Asm Ip Holding B.V. Method of depositing material onto a surface and structure formed according to the method
US11515188B2 (en) 2019-05-16 2022-11-29 Asm Ip Holding B.V. Wafer boat handling device, vertical batch furnace and method
USD947913S1 (en) 2019-05-17 2022-04-05 Asm Ip Holding B.V. Susceptor shaft
USD975665S1 (en) 2019-05-17 2023-01-17 Asm Ip Holding B.V. Susceptor shaft
US11345999B2 (en) 2019-06-06 2022-05-31 Asm Ip Holding B.V. Method of using a gas-phase reactor system including analyzing exhausted gas
US11453946B2 (en) 2019-06-06 2022-09-27 Asm Ip Holding B.V. Gas-phase reactor system including a gas detector
US11476109B2 (en) 2019-06-11 2022-10-18 Asm Ip Holding B.V. Method of forming an electronic structure using reforming gas, system for performing the method, and structure formed using the method
US11908684B2 (en) 2019-06-11 2024-02-20 Asm Ip Holding B.V. Method of forming an electronic structure using reforming gas, system for performing the method, and structure formed using the method
US11746414B2 (en) 2019-07-03 2023-09-05 Asm Ip Holding B.V. Temperature control assembly for substrate processing apparatus and method of using same
US11390945B2 (en) 2019-07-03 2022-07-19 Asm Ip Holding B.V. Temperature control assembly for substrate processing apparatus and method of using same
US11788190B2 (en) 2019-07-05 2023-10-17 Asm Ip Holding B.V. Liquid vaporizer
US11605528B2 (en) 2019-07-09 2023-03-14 Asm Ip Holding B.V. Plasma device using coaxial waveguide, and substrate treatment method
US11664267B2 (en) 2019-07-10 2023-05-30 Asm Ip Holding B.V. Substrate support assembly and substrate processing device including the same
US11664245B2 (en) 2019-07-16 2023-05-30 Asm Ip Holding B.V. Substrate processing device
US11615970B2 (en) 2019-07-17 2023-03-28 Asm Ip Holding B.V. Radical assist ignition plasma system and method
US11688603B2 (en) 2019-07-17 2023-06-27 Asm Ip Holding B.V. Methods of forming silicon germanium structures
US11643724B2 (en) 2019-07-18 2023-05-09 Asm Ip Holding B.V. Method of forming structures using a neutral beam
US11557474B2 (en) 2019-07-29 2023-01-17 Asm Ip Holding B.V. Methods for selective deposition utilizing n-type dopants and/or alternative dopants to achieve high dopant incorporation
US11430640B2 (en) 2019-07-30 2022-08-30 Asm Ip Holding B.V. Substrate processing apparatus
US11443926B2 (en) 2019-07-30 2022-09-13 Asm Ip Holding B.V. Substrate processing apparatus
US11587815B2 (en) 2019-07-31 2023-02-21 Asm Ip Holding B.V. Vertical batch furnace assembly
US11587814B2 (en) 2019-07-31 2023-02-21 Asm Ip Holding B.V. Vertical batch furnace assembly
US11876008B2 (en) 2019-07-31 2024-01-16 Asm Ip Holding B.V. Vertical batch furnace assembly
US11680839B2 (en) 2019-08-05 2023-06-20 Asm Ip Holding B.V. Liquid level sensor for a chemical source vessel
USD965524S1 (en) 2019-08-19 2022-10-04 Asm Ip Holding B.V. Susceptor support
USD965044S1 (en) 2019-08-19 2022-09-27 Asm Ip Holding B.V. Susceptor shaft
US11639548B2 (en) 2019-08-21 2023-05-02 Asm Ip Holding B.V. Film-forming material mixed-gas forming device and film forming device
US11594450B2 (en) 2019-08-22 2023-02-28 Asm Ip Holding B.V. Method for forming a structure with a hole
USD979506S1 (en) 2019-08-22 2023-02-28 Asm Ip Holding B.V. Insulator
US11827978B2 (en) 2019-08-23 2023-11-28 Asm Ip Holding B.V. Methods for depositing a molybdenum nitride film on a surface of a substrate by a cyclical deposition process and related semiconductor device structures including a molybdenum nitride film
US11286558B2 (en) 2019-08-23 2022-03-29 Asm Ip Holding B.V. Methods for depositing a molybdenum nitride film on a surface of a substrate by a cyclical deposition process and related semiconductor device structures including a molybdenum nitride film
US11898242B2 (en) 2019-08-23 2024-02-13 Asm Ip Holding B.V. Methods for forming a polycrystalline molybdenum film over a surface of a substrate and related structures including a polycrystalline molybdenum film
US11495459B2 (en) 2019-09-04 2022-11-08 Asm Ip Holding B.V. Methods for selective deposition using a sacrificial capping layer
US11823876B2 (en) 2019-09-05 2023-11-21 Asm Ip Holding B.V. Substrate processing apparatus
US11946136B2 (en) 2019-09-20 2024-04-02 Asm Ip Holding B.V. Semiconductor processing device
US11562901B2 (en) 2019-09-25 2023-01-24 Asm Ip Holding B.V. Substrate processing method
US11610774B2 (en) 2019-10-02 2023-03-21 Asm Ip Holding B.V. Methods for forming a topographically selective silicon oxide film by a cyclical plasma-enhanced deposition process
US11339476B2 (en) 2019-10-08 2022-05-24 Asm Ip Holding B.V. Substrate processing device having connection plates, substrate processing method
US11735422B2 (en) 2019-10-10 2023-08-22 Asm Ip Holding B.V. Method of forming a photoresist underlayer and structure including same
US11637011B2 (en) 2019-10-16 2023-04-25 Asm Ip Holding B.V. Method of topology-selective film formation of silicon oxide
US11637014B2 (en) 2019-10-17 2023-04-25 Asm Ip Holding B.V. Methods for selective deposition of doped semiconductor material
US11315794B2 (en) 2019-10-21 2022-04-26 Asm Ip Holding B.V. Apparatus and methods for selectively etching films
US11646205B2 (en) 2019-10-29 2023-05-09 Asm Ip Holding B.V. Methods of selectively forming n-type doped material on a surface, systems for selectively forming n-type doped material, and structures formed using same
US11594600B2 (en) 2019-11-05 2023-02-28 Asm Ip Holding B.V. Structures with doped semiconductor layers and methods and systems for forming same
US11501968B2 (en) 2019-11-15 2022-11-15 Asm Ip Holding B.V. Method for providing a semiconductor device with silicon filled gaps
US11626316B2 (en) 2019-11-20 2023-04-11 Asm Ip Holding B.V. Method of depositing carbon-containing material on a surface of a substrate, structure formed using the method, and system for forming the structure
US11915929B2 (en) 2019-11-26 2024-02-27 Asm Ip Holding B.V. Methods for selectively forming a target film on a substrate comprising a first dielectric surface and a second metallic surface
US11450529B2 (en) 2019-11-26 2022-09-20 Asm Ip Holding B.V. Methods for selectively forming a target film on a substrate comprising a first dielectric surface and a second metallic surface
US11401605B2 (en) 2019-11-26 2022-08-02 Asm Ip Holding B.V. Substrate processing apparatus
US11646184B2 (en) 2019-11-29 2023-05-09 Asm Ip Holding B.V. Substrate processing apparatus
US11923181B2 (en) 2019-11-29 2024-03-05 Asm Ip Holding B.V. Substrate processing apparatus for minimizing the effect of a filling gas during substrate processing
US11929251B2 (en) 2019-12-02 2024-03-12 Asm Ip Holding B.V. Substrate processing apparatus having electrostatic chuck and substrate processing method
US11840761B2 (en) 2019-12-04 2023-12-12 Asm Ip Holding B.V. Substrate processing apparatus
US11885013B2 (en) 2019-12-17 2024-01-30 Asm Ip Holding B.V. Method of forming vanadium nitride layer and structure including the vanadium nitride layer
US11527403B2 (en) 2019-12-19 2022-12-13 Asm Ip Holding B.V. Methods for filling a gap feature on a substrate surface and related semiconductor structures
US11551912B2 (en) 2020-01-20 2023-01-10 Asm Ip Holding B.V. Method of forming thin film and method of modifying surface of thin film
US11521851B2 (en) 2020-02-03 2022-12-06 Asm Ip Holding B.V. Method of forming structures including a vanadium or indium layer
US11828707B2 (en) 2020-02-04 2023-11-28 Asm Ip Holding B.V. Method and apparatus for transmittance measurements of large articles
US11776846B2 (en) 2020-02-07 2023-10-03 Asm Ip Holding B.V. Methods for depositing gap filling fluids and related systems and devices
US11781243B2 (en) 2020-02-17 2023-10-10 Asm Ip Holding B.V. Method for depositing low temperature phosphorous-doped silicon
US11876356B2 (en) 2020-03-11 2024-01-16 Asm Ip Holding B.V. Lockout tagout assembly and system and method of using same
US11837494B2 (en) 2020-03-11 2023-12-05 Asm Ip Holding B.V. Substrate handling device with adjustable joints
US11488854B2 (en) 2020-03-11 2022-11-01 Asm Ip Holding B.V. Substrate handling device with adjustable joints
US11823866B2 (en) 2020-04-02 2023-11-21 Asm Ip Holding B.V. Thin film forming method
US11830738B2 (en) 2020-04-03 2023-11-28 Asm Ip Holding B.V. Method for forming barrier layer and method for manufacturing semiconductor device
US11437241B2 (en) 2020-04-08 2022-09-06 Asm Ip Holding B.V. Apparatus and methods for selectively etching silicon oxide films
US11821078B2 (en) 2020-04-15 2023-11-21 Asm Ip Holding B.V. Method for forming precoat film and method for forming silicon-containing film
US11887857B2 (en) 2020-04-24 2024-01-30 Asm Ip Holding B.V. Methods and systems for depositing a layer comprising vanadium, nitrogen, and a further element
US11530876B2 (en) 2020-04-24 2022-12-20 Asm Ip Holding B.V. Vertical batch furnace assembly comprising a cooling gas supply
US11898243B2 (en) 2020-04-24 2024-02-13 Asm Ip Holding B.V. Method of forming vanadium nitride-containing layer
US11515187B2 (en) 2020-05-01 2022-11-29 Asm Ip Holding B.V. Fast FOUP swapping with a FOUP handler
US11798830B2 (en) 2020-05-01 2023-10-24 Asm Ip Holding B.V. Fast FOUP swapping with a FOUP handler
US11626308B2 (en) 2020-05-13 2023-04-11 Asm Ip Holding B.V. Laser alignment fixture for a reactor system
US11804364B2 (en) 2020-05-19 2023-10-31 Asm Ip Holding B.V. Substrate processing apparatus
US11705333B2 (en) 2020-05-21 2023-07-18 Asm Ip Holding B.V. Structures including multiple carbon layers and methods of forming and using same
US11767589B2 (en) 2020-05-29 2023-09-26 Asm Ip Holding B.V. Substrate processing device
US11646204B2 (en) 2020-06-24 2023-05-09 Asm Ip Holding B.V. Method for forming a layer provided with silicon
US11658035B2 (en) 2020-06-30 2023-05-23 Asm Ip Holding B.V. Substrate processing method
US11644758B2 (en) 2020-07-17 2023-05-09 Asm Ip Holding B.V. Structures and methods for use in photolithography
US11674220B2 (en) 2020-07-20 2023-06-13 Asm Ip Holding B.V. Method for depositing molybdenum layers using an underlayer
US11725280B2 (en) 2020-08-26 2023-08-15 Asm Ip Holding B.V. Method for forming metal silicon oxide and metal silicon oxynitride layers
USD990534S1 (en) 2020-09-11 2023-06-27 Asm Ip Holding B.V. Weighted lift pin
USD1012873S1 (en) 2020-09-24 2024-01-30 Asm Ip Holding B.V. Electrode for semiconductor processing apparatus
US11827981B2 (en) 2020-10-14 2023-11-28 Asm Ip Holding B.V. Method of depositing material on stepped structure
US11873557B2 (en) 2020-10-22 2024-01-16 Asm Ip Holding B.V. Method of depositing vanadium metal
US11901179B2 (en) 2020-10-28 2024-02-13 Asm Ip Holding B.V. Method and device for depositing silicon onto substrates
US11891696B2 (en) 2020-11-30 2024-02-06 Asm Ip Holding B.V. Injector configured for arrangement within a reaction chamber of a substrate processing apparatus
US11946137B2 (en) 2020-12-16 2024-04-02 Asm Ip Holding B.V. Runout and wobble measurement fixtures
US11885020B2 (en) 2020-12-22 2024-01-30 Asm Ip Holding B.V. Transition metal deposition method
US20220356568A1 (en) * 2021-05-07 2022-11-10 United Semiconductor (Xiamen) Co., Ltd. Semiconductor deposition method
USD981973S1 (en) 2021-05-11 2023-03-28 Asm Ip Holding B.V. Reactor wall for substrate processing apparatus
USD980814S1 (en) 2021-05-11 2023-03-14 Asm Ip Holding B.V. Gas distributor for substrate processing apparatus
USD980813S1 (en) 2021-05-11 2023-03-14 Asm Ip Holding B.V. Gas flow control plate for substrate processing apparatus
US11956977B2 (en) 2021-08-31 2024-04-09 Asm Ip Holding B.V. Atomic layer deposition of III-V compounds to form V-NAND devices
USD990441S1 (en) 2021-09-07 2023-06-27 Asm Ip Holding B.V. Gas flow control plate
US11952658B2 (en) 2022-10-24 2024-04-09 Asm Ip Holding B.V. Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material

Also Published As

Publication number Publication date
DE10064178A1 (en) 2001-09-20
US6555165B2 (en) 2003-04-29
US20010006705A1 (en) 2001-07-05
KR100360790B1 (en) 2002-11-13
JP2001181839A (en) 2001-07-03
JP3582437B2 (en) 2004-10-27
KR20010062699A (en) 2001-07-07

Similar Documents

Publication Publication Date Title
US6555165B2 (en) Method for forming a thin film and a thin film forming apparatus therefor
JP3819660B2 (en) Semiconductor device manufacturing method and semiconductor manufacturing apparatus
JP5048476B2 (en) Method for forming insulating film or metal film
EP0873343B1 (en) Metal complex source reagents for chemical vapor deposition
US6624072B2 (en) Organometallic compound mixtures in chemical vapor deposition
KR101483318B1 (en) Methods for forming a ruthenium-based film on a substrate
US5360646A (en) Chemical vapor deposition method of silicon dioxide film
US20080038486A1 (en) Radical Assisted Batch Film Deposition
TWI435947B (en) Preparation of metal oxide thin film via cyclic cvd or ald
JP2003527481A (en) Gas supply system for precursors with low vapor pressure
JP3547471B2 (en) Vapor phase growth method of dielectric film
US7462245B2 (en) Single-wafer-processing type CVD apparatus
KR100474565B1 (en) Method and apparatus for supplying a source gas
KR20100117500A (en) Zirconium precursors useful in atomic layer deposition of zirconium-containing films
US20070231251A1 (en) Capacitor Film Forming Material
TWI392760B (en) Methods for producing silicon nitride films by vapor-phase growth
KR100756626B1 (en) Gas mixing port and liquid reagent delivery system using the same
JP2747442B2 (en) Lead-based organometallic precursor and method for producing the same
WO2024071205A1 (en) Method for forming silicon oxide film
US20060198958A1 (en) Methods for producing silicon nitride films by vapor-phase growth
KR100520901B1 (en) Method of manufacturing a tantalum oxide
KR20230072875A (en) Method for preparing thin film using organometallic compound and the thin film prepared therefrom
KR100712435B1 (en) Method of fabricating a BST thin film and vaporizer used therefor
JPH0959089A (en) Growing of chemical vapor phase
JPH11293461A (en) Vapor deposition method of oxide and vapor-deposited thin film

Legal Events

Date Code Title Description
AS Assignment

Owner name: MURATA MANUFACTURING CO., LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:TAKESHIMA, YUTAKA;REEL/FRAME:016705/0797

Effective date: 20001206

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION