US20030155065A1 - Method of making window unit - Google Patents

Method of making window unit Download PDF

Info

Publication number
US20030155065A1
US20030155065A1 US10/073,266 US7326602A US2003155065A1 US 20030155065 A1 US20030155065 A1 US 20030155065A1 US 7326602 A US7326602 A US 7326602A US 2003155065 A1 US2003155065 A1 US 2003155065A1
Authority
US
United States
Prior art keywords
coating
protective layer
layer
glass substrate
window unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/073,266
Inventor
Scott Thomsen
Vijayen Veerasamy
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guardian Glass LLC
Original Assignee
Guardian Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guardian Industries Corp filed Critical Guardian Industries Corp
Priority to US10/073,266 priority Critical patent/US20030155065A1/en
Assigned to GUARDIAN INDUSTRIES CORP. reassignment GUARDIAN INDUSTRIES CORP. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: VEERASAMY, VIJAYEN S., THOMSEN, SCOTT V.
Priority to EP03710999A priority patent/EP1476299A1/en
Priority to AU2003215185A priority patent/AU2003215185A1/en
Priority to PL03370561A priority patent/PL370561A1/en
Priority to PCT/US2003/004239 priority patent/WO2003068502A1/en
Priority to CA002483027A priority patent/CA2483027C/en
Publication of US20030155065A1 publication Critical patent/US20030155065A1/en
Priority to US11/523,014 priority patent/US7803427B2/en
Priority to US12/923,109 priority patent/US8119199B2/en
Assigned to GUARDIAN GLASS, LLC. reassignment GUARDIAN GLASS, LLC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GUARDIAN INDUSTRIES CORP.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3618Coatings of type glass/inorganic compound/other inorganic layers, at least one layer being metallic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B7/00Cleaning by methods not provided for in a single other subclass or a single group in this subclass
    • B08B7/0064Cleaning by methods not provided for in a single other subclass or a single group in this subclass by temperature changes
    • B08B7/0071Cleaning by methods not provided for in a single other subclass or a single group in this subclass by temperature changes by heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10036Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets comprising two outer glass sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10165Functional features of the laminated safety glass or glazing
    • B32B17/10174Coatings of a metallic or dielectric material on a constituent layer of glass or polymer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10807Making laminated safety glass or glazing; Apparatus therefor
    • B32B17/10981Pre-treatment of the layers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3634Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer one layer at least containing carbon, a carbide or oxycarbide
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3639Multilayers containing at least two functional metal layers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3657Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating having optical properties
    • C03C17/366Low-emissivity or solar control coatings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/70Properties of coatings
    • C03C2217/78Coatings specially designed to be durable, e.g. scratch-resistant
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/30Aspects of methods for coating glass not covered above
    • C03C2218/355Temporary coating
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/66Units comprising two or more parallel glass or like panes permanently secured together
    • E06B3/67Units comprising two or more parallel glass or like panes permanently secured together characterised by additional arrangements or devices for heat or sound insulation or for controlled passage of light
    • E06B3/6715Units comprising two or more parallel glass or like panes permanently secured together characterised by additional arrangements or devices for heat or sound insulation or for controlled passage of light specially adapted for increased thermal insulation or for controlled passage of light
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/66Units comprising two or more parallel glass or like panes permanently secured together
    • E06B3/673Assembling the units
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S427/00Coating processes
    • Y10S427/103Diamond-like carbon coating, i.e. DLC
    • Y10S427/104Utilizing low energy electromagnetic radiation, e.g. microwave, radio wave, IR, UV, visible, actinic laser
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S427/00Coating processes
    • Y10S427/103Diamond-like carbon coating, i.e. DLC
    • Y10S427/105Utilizing ion plating or ion implantation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S427/00Coating processes
    • Y10S427/103Diamond-like carbon coating, i.e. DLC
    • Y10S427/106Utilizing plasma, e.g. corona, glow discharge, cold plasma

Definitions

  • This invention relates to a method of making a window unit (e.g., IG window unit). More particularly, this invention relates to a method of making a window unit in which a temporary protective layer (e.g., of or including diamond-like carbon (DLC)) is provided over a solar control coating so that the coated article can be protected from scratches or the like during processing, with the temporary protective layer subsequently being burned off during heat treatment (e.g., thermal tempering or heat bending) prior to use of the final resulting product.
  • a temporary protective layer e.g., of or including diamond-like carbon (DLC)
  • Insulating glass (IG) window units typically include first and second glass substrates spaced apart from one another via at least one spacer so as to define a gap therebetween.
  • the gap between the glass substrates may or may not be evacuated and/or filled with gas in different instances.
  • one of the glass substrates of the IG window unit is often coated with a solar control/management coating (e.g., a low-E coating).
  • Solar control/management coatings typically include at least one layer (e.g., of or including Ag, Au, NiCr, and/or the like) that reflects infrared (IR) and/or ultraviolet (UV) radiation.
  • Example solar control/management coatings may be found, for example and without limitation, in any of U.S. Pat. Nos. 3,682,528; 4,898,790; 5,376,455; 5,377,045; 5,514,476; 5,557,462; 5,688,585; 5,770,321; 5,902,505; 5,942,338; 6,059,909; 6,060,178; 6,132,881; or 6,159,607.
  • IG window units are typically made in the following manner.
  • a first glass substrate is coated (e.g., via sputtering or the like) with a solar control/management coating, and processed as follows.
  • the coated glass substrate may be shipped (e.g., via truck, train, ship, plane, or the like) from the coating facility to an IG manufacturing facility, and put in inventory using a forklift or the like.
  • a forklift may move the coated substrate from its inventory location to a cut-down line where the coated substrate is cut to size.
  • the cut coated substrate may then be seamed, washed, and heat treated (e.g., thermally tempered).
  • the coated substrate is coupled to another glass substrate via at least one spacer so as to form an IG window unit.
  • window units e.g., IG units, vehicle windshields, and/or the like
  • window units e.g., IG units, vehicle windshields, and/or the like
  • An object of this invention is to provide an improved method of making insulating glass (IG) window units.
  • Another object of this invention is to provide an improved method of making vehicle windshields.
  • the method is also applicable to other types of windows, monolithic and/or laminated.
  • Another object of this invention is to provide a method of making a window unit (e.g., IG unit and/or vehicle windshield) which results in improved yields.
  • the method involves coating a substrate with both (i) a solar control/management coating, and (ii) at least one protective layer (e.g., of or including diamond-like carbon (DLC)) over the solar control/management coating.
  • the protective layer(s) protects the coated substrate from scratches and/or the like during processing prior to heat treatment (HT). Then, during heat treatment, the protective layer(s) is burned off in part or in whole. Following heat treatment, the coated article (substrate with solar control/management coating thereon) is coupled to another substrate in order to form the window unit.
  • Another object of this invention is to fulfill one or more of the above-listed objects and/or needs.
  • Certain example embodiments of this invention fulfill one or more of the above-listed objects and/or needs by providing a method of making a window unit, the method comprising: providing a solar control coating on a glass substrate; depositing a temporary protective layer on the glass substrate over the coating, the temporary protective layer having an average hardness of at least 10 GPa; heat treating the substrate with the coating and protective layer thereon at a temperature of at least 570 degrees C. so that the protective layer burns off; and following said heat treating, coupling the glass substrate with the coating thereon to another substrate in order to form the window unit.
  • FIG. 1 Another example embodiments of this invention fulfill one or more of the above-listed objects and/or needs by providing a method of making a window unit, the method comprising: providing a coating on a glass substrate, the coating including at least one layer comprising Ag; depositing a protective layer comprising diamond-like carbon (DLC) on the substrate over the coating; heat treating the substrate with the coating and protective layer thereon so that the protective layer comprising diamond-like carbon (DLC) at least partially burns off during the heat treating; and following said heat treating, coupling the glass substrate with the coating thereon to another substrate in order to form the window unit.
  • DLC diamond-like carbon
  • FIG. 1 is a cross sectional view of an IG window unit according to an example embodiment of this invention.
  • FIG. 2 is a cross sectional view of a vehicle windshield according to an example embodiment of this invention.
  • FIGS. 3 ( a ), 3 ( b ), 3 ( c ) and 3 ( d ) are cross sectional views progressively illustrating how a window unit is made according to an example embodiment of this invention.
  • FIG. 4 is a flowchart illustrating steps showing how a window unit is made according to an example embodiment of this invention.
  • FIG. 5 is a cross sectional view of a coated substrate at a point in time during the manufacturing process according to an example embodiment of this invention, at which point in time the substrate is coated with both a solar control coating and a temporary protective layer(s) (the precise illustrated coating is provided for purposes of example only).
  • FIG. 6 is a cross sectional view of a coated substrate at a point in time during the manufacturing process according to another example embodiment of this invention, at which point in time the substrate is coated with both a solar control coating and a temporary protective layer(s) (this precise illustrated coating is provided for purposes of example only).
  • FIGS. 1 - 2 illustrate example window units which may be made according to different example embodiments of this invention.
  • FIG. 1 is a cross sectional view of an insulating glass (IG) window unit which may be made in certain example embodiments of this invention.
  • the IG window unit includes first glass substrate 1 and second glass substrate 2 which are spaced apart from one another by one or more spacers 4 .
  • Each of substrates 1 and 2 is from about 1.0 to 10.0 mm thick, more preferably from about 1.8 mm to 4 mm thick.
  • Spacer(s) 4 may be provided around the edge/periphery of the window unit as in conventional IG window units, or alternatively may be provided in an array throughout the viewing area of the window unit as in vacuum IG window units. Spacer(s) 4 function to space the substrates 1 and 2 from one another so as to define space 6 therebetween.
  • Space 6 may be at atmospheric pressure or lower in different embodiments of this invention, and may or may not be filled with gas. While substrates 1 and 2 are of glass in preferred embodiments of this invention, they may be of other materials such as plastic in alternative embodiments of the invention.
  • the IG window unit of FIG. 1 has a visible transmission of at least about 30% in certain example embodiments of this invention, more preferably at least about 60%, and most preferably at least about 70%.
  • FIG. 2 is a cross sectional view of a vehicle windshield which may be made in certain example embodiments of this invention.
  • the windshield includes first glass substrate 1 and second glass substrate 2 that are laminated together via a polymer inclusive interlayer 8 .
  • Interlayer 8 may be of or include polyvinyl butyral (PVB), polyvinyl chloride, polypropylene, polyethylene, polyurethane, or any other suitable laminating material.
  • the windshield of FIG. 2 preferably has a visible transmission of at least 70%, more preferably of at least 75%.
  • each of these window units includes at least one solar control/management coating 27 for reflecting certain amounts of infrared (IR) and/or ultraviolet (UV) radiation. While coating 27 is provided on the interior surface of substrate 1 in FIGS. 1 - 2 , the coating 27 may instead be provided on the interior surface of the other substrate 2 in alternative embodiments of this invention. Moreover, in other embodiments of this invention it is possible to provide a solar control/management coating 27 on each of substrates 1 - 2 . Coating 27 may include one or more layers in different embodiments of this invention, although a multi-layered coating 27 is preferred.
  • solar control coating and “solar management coating” herein mean that the coating includes at least one layer of a material (e.g., Ag, Au, and/or NiCr) that functions to reflect certain amounts of UV and/or IR radiation.
  • Example solar control coatings 27 are shown in FIGS. 5 - 6 .
  • solar control coating 27 may comprise any of the coatings described and/or illustrated in any of U.S. Pat. Nos.
  • FIGS. 3 - 4 illustrate a method of making a window unit (e.g., IG unit or windshield) according to an example embodiment of this invention.
  • a window unit e.g., IG unit or windshield
  • FIGS. 3 - 4 illustrate a method of making a window unit (e.g., IG unit or windshield) according to an example embodiment of this invention.
  • a process for making an IG window unit according to an example embodiment of this invention will now be described.
  • a first glass substrate 1 e.g., soda-lime-silica glass, borosilicate glass, or any other suitable type of glass
  • a solar control/management coating 27 see step A in FIG. 4
  • Coating 27 may be deposited on substrate 1 via sputtering or any other suitable technique.
  • at least one temporary protective layer 29 is deposited on the substrate 1 over solar control/management coating 27 (see step B in FIG. 4).
  • Protective layer(s) 29 may or may not directly contact coating 27 in different embodiments of this invention (i.e., other layer(s) may be provided between coating 27 and layer 29 ).
  • Layer 29 may be from about 5 to 3,000 ⁇ thick in certain example embodiments of this invention, more preferably from about 10-1,000 ⁇ thick, and most preferably from about 25 to 200 ⁇ thick.
  • temporary protective layer(s) 29 is of or includes diamond-like carbon (DLC).
  • DLC inclusive layer(s) 29 may be deposited on substrate 1 over coating 27 using an ion beam source, or any other suitable technique.
  • any of the DLC layer(s) (and corresponding deposition techniques) disclosed in any of U.S. Pat. Nos. 6,335,086, 6,261,693, 6,303,225, 6,303,226, 5,635,245, 5,527,596, or 5,508,092 (all hereby incorporated herein by reference) may be used to form layer(s) 29 .
  • any other suitable type of DLC may be used in layer(s) 29 in other embodiments of this invention.
  • Temporary protective layer(s) 29 may include one or more layers in different embodiments of this invention. While protective layer 29 preferably comprises DLC in certain embodiments of this invention, this invention is not so limited; in particular, layer 29 may be of or include any other suitable material that is capable of protecting coating 27 from scratching and can at least partially burn off during heat treatment.
  • the coated article may be processed (e.g., shipped, moved, cut, cleaned, seamed, washed, and/or the like) (see step C in FIG. 4).
  • the coated article is then subjected to heat treatment (e.g., thermal tempering, heat bending, and/or heat strengthening); and during this heat treatment the DLC layer(s) 29 burns off either in part or entirely (see step D in FIG. 4) (it is noted that the DLC may tend to burn off at a temperature of about 400 degrees C.).
  • heat treatment e.g., thermal tempering, heat bending, and/or heat strengthening
  • Such heat treatment may, in certain example embodiments of this invention, involve heating the coated substrate to temperature(s) of at least about 570 degrees C.; more preferably from 1100° F. (593° C.) up to 1450° F. (788° C.) (more preferably from about 1100 to 1200 degrees F., and most preferably from 1150-1200 degrees F.) for a sufficient period of time (e.g., at least 1 minute, more preferably at least 5 minutes) to achieve the end result (e.g., tempering, bending, layer 29 burn-off, and/or heat strengthening).
  • FIG. 3( c ) illustrates that after this heat treatment, much or all of the DLC inclusive layer 29 is no longer present on the coated article since it has burned off during the heat treatment.
  • the coated substrate i.e., substrate 1 with the solar control coating 27 thereon
  • the coated substrate is coupled to another substrate 2 in order to form the resulting window unit (see step E in FIG. 4).
  • Example resulting window units are shown in FIGS. 1, 2 and 3 ( d ).
  • DLC is hard and serves to protect the coating 27 from scratches and the like during the processing period between the coating and heat treating stages of the manufacturing process.
  • addition of the DLC layer(s) 29 to the coated article tends to reduce the visible transmission of the article.
  • the DLC layer(s) 29 is useful for protection purposes during the manufacturing process (its reduction in visible transmission is irrelevant during production), and it can be removed (e.g., burned off) during heat treatment. It will be appreciated that the visible transmission of the coated article increases when the DLC layer(s) 29 is burned off, prior to formation of the final window unit.
  • the layer(s) 29 when DLC for example is provided in temporary protective layer(s) 29 , the layer(s) 29 includes has an average hardness of at least about 10 GPa, more preferably at least about 20 GPa, and most preferably from about 20-90 GPa. Such hardness renders layer(s) 29 resistant to scratching, certain solvents, and/or the like.
  • Layer 29 may, in certain example embodiments where DLC is used, include more sp 3 carbon-carbon (C—C) bonds than sp 2 carbon-carbon (C—C) bonds.
  • the DLC may be a special type of DLC known as highly tetrahedral amorphous carbon (ta-C) (which may or may not be hydrogenated or otherwise doped) (e.g., see U.S. Pat. No. 6,261,693, which is incorporated herein by reference).
  • the DLC may have a density of at least about 2.4 gm/cm 3 , more preferably of at least about 2.7 gm/cm 3 .
  • Example linear ion beam sources that may be used to deposit DLC inclusive layer 29 on substrate 1 include any of those in any of U.S. Pat. Nos. 6,261,693, 6,002,208, 6,335,086, or 6,303,225 (all incorporated herein by reference).
  • hydrocarbon feedstock gas(es) e.g., C 2 H 2
  • HMDSO hydrogen
  • the hardness and/or density of layer(s) 29 may be adjusted by varying the ion energy of the depositing apparatus.
  • any suitable type of solar control coating 27 may be used in different embodiments of this invention.
  • two example solar control coatings 27 are illustrated in FIGS. 5 - 6 .
  • Each of FIGS. 5 and 6 shows an example solar control coating 27 provided on a substrate between the substrate 1 and the DLC inclusive temporary protective layer 29 (i.e., at the FIG. 3( b ) stage of the manufacturing process).
  • the example solar control coating 27 includes first dielectric layer 3 , second dielectric layer 5 , first lower contact layer 7 (which contacts layer 9 ), first conductive metallic infrared (IR) reflecting layer 9 , first upper contact layer 11 (which contacts layer 9 ), third dielectric layer 13 (which may be deposited in one or multiple steps in different embodiments of this invention), fourth dielectric layer 15 , second lower contact layer 17 (which contacts layer 19 ), second conductive metallic IR reflecting layer 19 , second upper contact layer 21 (which contacts layer 19 ), fifth dielectric layer 23 , and finally sixth protective dielectric layer 25 .
  • the “contact” layers each contact at least one IR reflecting layer.
  • the aforesaid layers make up heat treatable low-E (i.e., low emissivity) coating 27 which is provided on substrate 1 .
  • the coating 27 is preferably deposited on substrate 1 via sputtering, although other deposition techniques may also be used.
  • the coating 27 according to the FIG. 5 embodiment may be as in the Table 1 below.
  • TABLE 1 Example Materials/Thicknesses; FIG. 5 Embodiment
  • FIG. 6 illustrates a low-E heat treatable coating 27 according to another embodiment of this invention.
  • the FIG. 6 coating 27 is the same as the FIG. 5 coating described above, except that either (i) dielectric layer 3 is removed, or (ii) layers 3 and 5 are replaced with a single silicon nitride layer 40 .
  • Silicon nitride layer 40 may be of or include Si 3 N 4 in certain embodiments of this invention. In other embodiments, silicon nitride layer 40 may be of or include Si x N y where x/y may be from about 0.65 to 0.80, or alternatively from about 0.76 to 1.5 in silicon rich embodiments. Additional details regarding the coatings 27 of FIGS. 5 - 6 , including example sputter process parameters for forming the coatings, may be found in U.S. patent application Ser. No. 09/794,224 (hereby incorporated herein by reference).
  • each of these coatings 27 includes a pair of metallic silver (Ag) layers 9 , 19 which function to reflect IR and UV radiation, in order to achieve low-E characteristics.
  • a tie layer or the like may be provided between the DLC inclusive layer 29 and coating 27 .
  • Such a layer(s) may or may not burn off along with layer 29 during heat treatment.
  • the temporary layer 29 comprises DLC in many embodiments discussed above, certain embodiments of this invention are not so limited.
  • protective paint may be used instead of DLC for layer 29 in certain embodiments of this invention, can be burned off in a similar manner.

Abstract

A method of making a window unit is provided which may result in improved yields. In certain example embodiments, the method involves coating a substrate with both (i) a solar control/management coating, and (ii) a protective layer (e.g., of or including diamond-like carbon (DLC)) over the solar control/management coating. The protective layer protects the coated substrate from scratches and/or the like during processing prior to heat treatment. Then, during heat treatment, the protective layer(s) is burned off in part or in whole. Following heat treatment, the coated article (substrate with solar control/management coating thereon) is coupled to another substrate in order to form the window unit.

Description

  • This invention relates to a method of making a window unit (e.g., IG window unit). More particularly, this invention relates to a method of making a window unit in which a temporary protective layer (e.g., of or including diamond-like carbon (DLC)) is provided over a solar control coating so that the coated article can be protected from scratches or the like during processing, with the temporary protective layer subsequently being burned off during heat treatment (e.g., thermal tempering or heat bending) prior to use of the final resulting product. [0001]
  • BACKGROUND OF THE INVENTION
  • Insulating glass (IG) window units typically include first and second glass substrates spaced apart from one another via at least one spacer so as to define a gap therebetween. For example, see U.S. Pat. No. 5,557,462. The gap between the glass substrates may or may not be evacuated and/or filled with gas in different instances. As in the '462 patent, one of the glass substrates of the IG window unit is often coated with a solar control/management coating (e.g., a low-E coating). Solar control/management coatings typically include at least one layer (e.g., of or including Ag, Au, NiCr, and/or the like) that reflects infrared (IR) and/or ultraviolet (UV) radiation. Example solar control/management coatings may be found, for example and without limitation, in any of U.S. Pat. Nos. 3,682,528; 4,898,790; 5,376,455; 5,377,045; 5,514,476; 5,557,462; 5,688,585; 5,770,321; 5,902,505; 5,942,338; 6,059,909; 6,060,178; 6,132,881; or 6,159,607. [0002]
  • IG window units are typically made in the following manner. A first glass substrate is coated (e.g., via sputtering or the like) with a solar control/management coating, and processed as follows. The coated glass substrate may be shipped (e.g., via truck, train, ship, plane, or the like) from the coating facility to an IG manufacturing facility, and put in inventory using a forklift or the like. Subsequently, a forklift may move the coated substrate from its inventory location to a cut-down line where the coated substrate is cut to size. The cut coated substrate may then be seamed, washed, and heat treated (e.g., thermally tempered). Thereafter, the coated substrate is coupled to another glass substrate via at least one spacer so as to form an IG window unit. [0003]
  • Unfortunately, during the course of such processing between coating and heat treatment, the coated substrate is moved on numerous occasions and is subject to damage (e.g., scratching). Low-E coatings are often soft and tend to be prone to damage in this regard such as scratching. Yields have been found to suffer due to coated substrates which are damaged (e.g., scratched or otherwise rendered non-useable) between coating and heat treatment. [0004]
  • In view of the above, it will be appreciated by those skilled in the art that there exists a need in the art for an improved method of making window units (e.g., IG units, vehicle windshields, and/or the like) which include at least one coated substrate. [0005]
  • BRIEF SUMMARY OF THE INVENTION
  • An object of this invention is to provide an improved method of making insulating glass (IG) window units. [0006]
  • Another object of this invention is to provide an improved method of making vehicle windshields. The method is also applicable to other types of windows, monolithic and/or laminated. [0007]
  • Another object of this invention is to provide a method of making a window unit (e.g., IG unit and/or vehicle windshield) which results in improved yields. In certain example embodiments of this invention, the method involves coating a substrate with both (i) a solar control/management coating, and (ii) at least one protective layer (e.g., of or including diamond-like carbon (DLC)) over the solar control/management coating. The protective layer(s) protects the coated substrate from scratches and/or the like during processing prior to heat treatment (HT). Then, during heat treatment, the protective layer(s) is burned off in part or in whole. Following heat treatment, the coated article (substrate with solar control/management coating thereon) is coupled to another substrate in order to form the window unit. [0008]
  • Another object of this invention is to fulfill one or more of the above-listed objects and/or needs. [0009]
  • Certain example embodiments of this invention fulfill one or more of the above-listed objects and/or needs by providing a method of making a window unit, the method comprising: providing a solar control coating on a glass substrate; depositing a temporary protective layer on the glass substrate over the coating, the temporary protective layer having an average hardness of at least 10 GPa; heat treating the substrate with the coating and protective layer thereon at a temperature of at least 570 degrees C. so that the protective layer burns off; and following said heat treating, coupling the glass substrate with the coating thereon to another substrate in order to form the window unit. [0010]
  • Other example embodiments of this invention fulfill one or more of the above-listed objects and/or needs by providing a method of making a window unit, the method comprising: providing a coating on a glass substrate, the coating including at least one layer comprising Ag; depositing a protective layer comprising diamond-like carbon (DLC) on the substrate over the coating; heat treating the substrate with the coating and protective layer thereon so that the protective layer comprising diamond-like carbon (DLC) at least partially burns off during the heat treating; and following said heat treating, coupling the glass substrate with the coating thereon to another substrate in order to form the window unit.[0011]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a cross sectional view of an IG window unit according to an example embodiment of this invention. [0012]
  • FIG. 2 is a cross sectional view of a vehicle windshield according to an example embodiment of this invention. [0013]
  • FIGS. [0014] 3(a), 3(b), 3(c) and 3(d) are cross sectional views progressively illustrating how a window unit is made according to an example embodiment of this invention.
  • FIG. 4 is a flowchart illustrating steps showing how a window unit is made according to an example embodiment of this invention. [0015]
  • FIG. 5 is a cross sectional view of a coated substrate at a point in time during the manufacturing process according to an example embodiment of this invention, at which point in time the substrate is coated with both a solar control coating and a temporary protective layer(s) (the precise illustrated coating is provided for purposes of example only). [0016]
  • FIG. 6 is a cross sectional view of a coated substrate at a point in time during the manufacturing process according to another example embodiment of this invention, at which point in time the substrate is coated with both a solar control coating and a temporary protective layer(s) (this precise illustrated coating is provided for purposes of example only).[0017]
  • DETAILED DESCRIPTION OF EXAMPLE EMBODIMENTS OF THE INVENTION
  • Referring now more particularly to the accompanying drawings in which like reference numerals refer to like parts/layers throughout the several views. The instant invention relates to methods of making window units including but not limited to insulating glass (IG) window units and vehicle windshields. Initially, before describing methods according to example embodiments of the instant invention, reference is made to FIGS. [0018] 1-2 which illustrate example window units which may be made according to different example embodiments of this invention.
  • FIG. 1 is a cross sectional view of an insulating glass (IG) window unit which may be made in certain example embodiments of this invention. The IG window unit includes [0019] first glass substrate 1 and second glass substrate 2 which are spaced apart from one another by one or more spacers 4. Each of substrates 1 and 2 is from about 1.0 to 10.0 mm thick, more preferably from about 1.8 mm to 4 mm thick. Spacer(s) 4 may be provided around the edge/periphery of the window unit as in conventional IG window units, or alternatively may be provided in an array throughout the viewing area of the window unit as in vacuum IG window units. Spacer(s) 4 function to space the substrates 1 and 2 from one another so as to define space 6 therebetween. Space 6 may be at atmospheric pressure or lower in different embodiments of this invention, and may or may not be filled with gas. While substrates 1 and 2 are of glass in preferred embodiments of this invention, they may be of other materials such as plastic in alternative embodiments of the invention. The IG window unit of FIG. 1 has a visible transmission of at least about 30% in certain example embodiments of this invention, more preferably at least about 60%, and most preferably at least about 70%.
  • FIG. 2 is a cross sectional view of a vehicle windshield which may be made in certain example embodiments of this invention. The windshield includes [0020] first glass substrate 1 and second glass substrate 2 that are laminated together via a polymer inclusive interlayer 8. Interlayer 8 may be of or include polyvinyl butyral (PVB), polyvinyl chloride, polypropylene, polyethylene, polyurethane, or any other suitable laminating material. The windshield of FIG. 2 preferably has a visible transmission of at least 70%, more preferably of at least 75%.
  • Still referring to FIGS. [0021] 1-2, each of these window units includes at least one solar control/management coating 27 for reflecting certain amounts of infrared (IR) and/or ultraviolet (UV) radiation. While coating 27 is provided on the interior surface of substrate 1 in FIGS. 1-2, the coating 27 may instead be provided on the interior surface of the other substrate 2 in alternative embodiments of this invention. Moreover, in other embodiments of this invention it is possible to provide a solar control/management coating 27 on each of substrates 1-2. Coating 27 may include one or more layers in different embodiments of this invention, although a multi-layered coating 27 is preferred.
  • The phrases “solar control coating” and “solar management coating” herein mean that the coating includes at least one layer of a material (e.g., Ag, Au, and/or NiCr) that functions to reflect certain amounts of UV and/or IR radiation. Example [0022] solar control coatings 27 are shown in FIGS. 5-6. Moreover, solar control coating 27 may comprise any of the coatings described and/or illustrated in any of U.S. Pat. Nos. 3,682,528; 4,898,790; 5,376,455; 5,377,045; 5,514,476; 5,557,462; 5,688,585; 5,770,321; 5,902,505; 5,942,338; 6,059,909; 6,060,178; 6,132,881; or 6,159,607, or may comprise any other suitable solar control coating.
  • FIGS. [0023] 3-4 illustrate a method of making a window unit (e.g., IG unit or windshield) according to an example embodiment of this invention. In this regard, for purposes of example, a process for making an IG window unit according to an example embodiment of this invention will now be described.
  • As shown in FIG. 3([0024] a), a first glass substrate 1 (e.g., soda-lime-silica glass, borosilicate glass, or any other suitable type of glass) is coated with a solar control/management coating 27 (see step A in FIG. 4). Coating 27 may be deposited on substrate 1 via sputtering or any other suitable technique. Thereafter, as shown in FIG. 3(b), at least one temporary protective layer 29 is deposited on the substrate 1 over solar control/management coating 27 (see step B in FIG. 4). Protective layer(s) 29 may or may not directly contact coating 27 in different embodiments of this invention (i.e., other layer(s) may be provided between coating 27 and layer 29). Layer 29 may be from about 5 to 3,000 Å thick in certain example embodiments of this invention, more preferably from about 10-1,000 Å thick, and most preferably from about 25 to 200 Å thick.
  • In certain example embodiments of this invention, temporary protective layer(s) [0025] 29 is of or includes diamond-like carbon (DLC). The DLC inclusive layer(s) 29 may be deposited on substrate 1 over coating 27 using an ion beam source, or any other suitable technique. For example, any of the DLC layer(s) (and corresponding deposition techniques) disclosed in any of U.S. Pat. Nos. 6,335,086, 6,261,693, 6,303,225, 6,303,226, 5,635,245, 5,527,596, or 5,508,092 (all hereby incorporated herein by reference) may be used to form layer(s) 29. Alternatively, any other suitable type of DLC may be used in layer(s) 29 in other embodiments of this invention. Temporary protective layer(s) 29 may include one or more layers in different embodiments of this invention. While protective layer 29 preferably comprises DLC in certain embodiments of this invention, this invention is not so limited; in particular, layer 29 may be of or include any other suitable material that is capable of protecting coating 27 from scratching and can at least partially burn off during heat treatment.
  • After [0026] substrate 1 has been coated with both solar control coating 27 and DLC layer(s) 29 (see FIG. 3(b)), the coated article may be processed (e.g., shipped, moved, cut, cleaned, seamed, washed, and/or the like) (see step C in FIG. 4). As shown in FIG. 3(c), the coated article is then subjected to heat treatment (e.g., thermal tempering, heat bending, and/or heat strengthening); and during this heat treatment the DLC layer(s) 29 burns off either in part or entirely (see step D in FIG. 4) (it is noted that the DLC may tend to burn off at a temperature of about 400 degrees C.). Such heat treatment may, in certain example embodiments of this invention, involve heating the coated substrate to temperature(s) of at least about 570 degrees C.; more preferably from 1100° F. (593° C.) up to 1450° F. (788° C.) (more preferably from about 1100 to 1200 degrees F., and most preferably from 1150-1200 degrees F.) for a sufficient period of time (e.g., at least 1 minute, more preferably at least 5 minutes) to achieve the end result (e.g., tempering, bending, layer 29 burn-off, and/or heat strengthening). FIG. 3(c) illustrates that after this heat treatment, much or all of the DLC inclusive layer 29 is no longer present on the coated article since it has burned off during the heat treatment.
  • After heat treatment (and thus after the [0027] DLC layer 29 has at least partially burned off), the coated substrate (i.e., substrate 1 with the solar control coating 27 thereon) is coupled to another substrate 2 in order to form the resulting window unit (see step E in FIG. 4). Example resulting window units are shown in FIGS. 1, 2 and 3(d).
  • As will be explained below, DLC is hard and serves to protect the [0028] coating 27 from scratches and the like during the processing period between the coating and heat treating stages of the manufacturing process. However, addition of the DLC layer(s) 29 to the coated article tends to reduce the visible transmission of the article. Thus, according to certain embodiments of this invention, the DLC layer(s) 29 is useful for protection purposes during the manufacturing process (its reduction in visible transmission is irrelevant during production), and it can be removed (e.g., burned off) during heat treatment. It will be appreciated that the visible transmission of the coated article increases when the DLC layer(s) 29 is burned off, prior to formation of the final window unit.
  • In certain example embodiments of this invention, when DLC for example is provided in temporary protective layer(s) [0029] 29, the layer(s) 29 includes has an average hardness of at least about 10 GPa, more preferably at least about 20 GPa, and most preferably from about 20-90 GPa. Such hardness renders layer(s) 29 resistant to scratching, certain solvents, and/or the like. Layer 29 may, in certain example embodiments where DLC is used, include more sp3 carbon-carbon (C—C) bonds than sp2 carbon-carbon (C—C) bonds. In certain example embodiments at least about 50% of the carbon-carbon bonds in the layer 29 may be Sp3 carbon-carbon (C—C) bonds, more preferably at least about 60% of the carbon-carbon bonds in the layer 29 may be sp3 carbon-carbon (C—C) bonds, and most preferably at least about 70% of the carbon-carbon bonds in the layer 29 may be sp3 carbon-carbon (C—C) bonds. In such embodiments, the DLC may be a special type of DLC known as highly tetrahedral amorphous carbon (ta-C) (which may or may not be hydrogenated or otherwise doped) (e.g., see U.S. Pat. No. 6,261,693, which is incorporated herein by reference). In certain example embodiments of this invention, the DLC may have a density of at least about 2.4 gm/cm3, more preferably of at least about 2.7 gm/cm3. Example linear ion beam sources that may be used to deposit DLC inclusive layer 29 on substrate 1 include any of those in any of U.S. Pat. Nos. 6,261,693, 6,002,208, 6,335,086, or 6,303,225 (all incorporated herein by reference). When using an ion beam source to deposit layer(s) 29, hydrocarbon feedstock gas(es) (e.g., C2H2), HMDSO, or any other suitable gas, may be used in the ion beam source in order to cause the source to emit an ion beam toward substrate 1 for forming layer(s) 29 over coating 27. It is noted that the hardness and/or density of layer(s) 29 may be adjusted by varying the ion energy of the depositing apparatus.
  • As discussed above, any suitable type of [0030] solar control coating 27 may be used in different embodiments of this invention. For purposes of example, and without limitation, two example solar control coatings 27 are illustrated in FIGS. 5-6. Each of FIGS. 5 and 6 shows an example solar control coating 27 provided on a substrate between the substrate 1 and the DLC inclusive temporary protective layer 29 (i.e., at the FIG. 3(b) stage of the manufacturing process).
  • The example [0031] solar control coating 27 according to the FIG. 5 embodiment includes first dielectric layer 3, second dielectric layer 5, first lower contact layer 7 (which contacts layer 9), first conductive metallic infrared (IR) reflecting layer 9, first upper contact layer 11 (which contacts layer 9), third dielectric layer 13 (which may be deposited in one or multiple steps in different embodiments of this invention), fourth dielectric layer 15, second lower contact layer 17 (which contacts layer 19), second conductive metallic IR reflecting layer 19, second upper contact layer 21 (which contacts layer 19), fifth dielectric layer 23, and finally sixth protective dielectric layer 25. The “contact” layers each contact at least one IR reflecting layer. The aforesaid layers make up heat treatable low-E (i.e., low emissivity) coating 27 which is provided on substrate 1. The coating 27 is preferably deposited on substrate 1 via sputtering, although other deposition techniques may also be used.
  • In certain examples embodiments, the [0032] coating 27 according to the FIG. 5 embodiment may be as in the Table 1 below.
    TABLE 1
    (Example Materials/Thicknesses; FIG. 5 Embodiment)
    Preferred
    Layer Range ({acute over (Å)}) More Preferred ({acute over (Å)}) Example (Å)
    TiO2 (layer 3) 0-400 {acute over (Å)} 50-250 100
    SixNy (layer 0-400 {acute over (Å)} 50-250 {acute over (Å)} 170
    NiCrOx (layer 7) 5-100 {acute over (Å)} 10-50  {acute over (Å)} 18
    Ag (layer 9) 50-250 {acute over (Å)} 80-120 {acute over (Å)} 105
    NiCrOx (layer 11) 5-100 {acute over (Å)} 1O-50  {acute over (Å)} 16
    SnO2 (layer 13) 0-800 500-850 650
    SixNy (layer 15) 0-800 {acute over (Å)} 50-250 {acute over (Å)} 170
    NiCrOx (layer 17) 5-100 {acute over (Å)} 10-50  {acute over (Å)} 18
    Ag (layer 19) 50-250 {acute over (Å)} 80-120 {acute over (Å)} 105
    NiCrOx (layer 21) 5-100 {acute over (Å)} 10-50  {acute over (Å)} 16
    SnO2 (layer 23) 0-500 {acute over (Å)} 100-300 {acute over (Å)} 150
    Si3N4 (layer 25) 0-500 {acute over (Å)} 100-300 {acute over (Å)} 250
  • FIG. 6 illustrates a low-E heat [0033] treatable coating 27 according to another embodiment of this invention. The FIG. 6 coating 27 is the same as the FIG. 5 coating described above, except that either (i) dielectric layer 3 is removed, or (ii) layers 3 and 5 are replaced with a single silicon nitride layer 40. Silicon nitride layer 40 may be of or include Si3N4 in certain embodiments of this invention. In other embodiments, silicon nitride layer 40 may be of or include SixNy where x/y may be from about 0.65 to 0.80, or alternatively from about 0.76 to 1.5 in silicon rich embodiments. Additional details regarding the coatings 27 of FIGS. 5-6, including example sputter process parameters for forming the coatings, may be found in U.S. patent application Ser. No. 09/794,224 (hereby incorporated herein by reference).
  • In certain exemplary embodiments of this invention, [0034] solar control coatings 27 may have one or more of the following characteristics before/after heat treatment (HT) when in monolithic form, as set forth in Table 2:
    TABLE 2
    Coating 27 Monolithic Before/After Heat Treatment (HT)
    Characteristic General More Preferred Most Preferred
    Rs (ohms/sq.) (before HT): <=40.0 <=20.0 <=8.0 
    Rs (ohms/sq.) (after HT): <=40.0 <=20.0 <=8.0 
    Eu (before HT): <=0.30 <=0.20 <=0.08
    Eu (after HT): <=0.30 <=0.20 <=0.08
  • The [0035] example coatings 27 are provided for purposes of example and without limitations. Other suitable solar control coatings may instead be used in other embodiments of this invention. With regard to FIGS. 5-6, it is noted that each of these coatings 27 includes a pair of metallic silver (Ag) layers 9, 19 which function to reflect IR and UV radiation, in order to achieve low-E characteristics.
  • In certain embodiments of this invention, it is noted that other layers (e.g., a tie layer or the like) may be provided between the DLC [0036] inclusive layer 29 and coating 27. Such a layer(s) may or may not burn off along with layer 29 during heat treatment.
  • While the [0037] temporary layer 29 comprises DLC in many embodiments discussed above, certain embodiments of this invention are not so limited. For example, protective paint may be used instead of DLC for layer 29 in certain embodiments of this invention, can be burned off in a similar manner.
  • While the invention has been described in connection with what is presently considered to be the most practical and preferred embodiment, it is to be understood that the invention is not to be limited to the disclosed embodiments, but on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims. [0038]

Claims (16)

1. A method of making a window unit, the method comprising:
providing a coating on a glass substrate, the coating including at least one layer comprising Ag;
depositing a protective layer comprising diamond-like carbon (DLC) on the glass substrate over the coating;
heat treating the glass substrate with the coating and protective layer thereon so that the protective layer comprising diamond-like carbon (DLC) at least partially burns off during the heat treating; and
following said heat treating, coupling the glass substrate with the coating thereon to another substrate in order to form the window unit.
2. The method of claim 1, wherein the window unit is an insulating glass (IG) window unit.
3. The method of claim 1, wherein said coupling comprises laminating the glass substrate to the another substrate via a polymer inclusive interlayer in order to form a vehicle windshield.
4. The method of claim 1, wherein said heat treating comprises heating the glass substrate to a temperature of at least about 570° C.
5. The method of claim 4, wherein said heat treating comprises heating the glass substrate to a temperature of from about 590° C. to 788° C. for at least one minute in thermally tempering and/or heat bending the glass substrate.
6. The method of claim 1, wherein the protective layer comprising DLC entirely burns off during the heat treatment.
7. The method of claim 1, wherein the protective layer comprising DLC is deposited on the glass substrate over the coating via ion beam deposition using a hydrocarbon inclusive gas in an ion beam source.
8. The method of claim 1, wherein the protective layer comprising DLC has an average hardness of at least about 10 GPa.
9. The method of claim 8, wherein the protective layer comprising DLC has an average hardness of at least about 20 GPa.
10. The method of claim 1, wherein the protective layer comprising DLC includes more sp3 carbon-carbon bonds than sp2 carbon-carbon bonds.
11. The method of claim 1, wherein the coating comprises a second layer comprising Ag, and wherein the two layers comprising Ag in the coating are spaced from one another with at least one dielectric layer provided therebetween.
12. The method of claim 1, wherein the dielectric layer comprises at least one of tin oxide and silicon nitride.
13. A method of making a window unit, the method comprising:
providing a solar control coating on a glass substrate;
ion beam depositing a protective layer comprising diamond-like carbon (DLC) on the glass substrate over the coating;
heat treating the substrate with the coating and protective layer thereon at a temperature of at least 570 degrees C. so that the protective layer comprising diamond-like carbon (DLC) at least partially burns off; and
following said heat treating, coupling the glass substrate with the coating thereon to another substrate in order to form the window unit.
14. The method of claim 13, wherein the window unit comprises at least one of an IG window unit and a vehicle windshield.
15. The method of claim 13, wherein the solar control coating comprises at least one layer comprising Ag, and at least first and second dielectric layers on opposites sides of the layer comprising Ag.
16. A method of making a window unit, the method comprising:
providing a solar control coating on a glass substrate;
depositing at least one temporary protective layer on the glass substrate over the coating;
heat treating the substrate with the coating and protective layer thereon at a temperature of at least 570 degrees C. so that the protective layer burns off; and
following said heat treating, coupling the glass substrate with the coating thereon to another substrate in order to form the window unit.
US10/073,266 2002-02-13 2002-02-13 Method of making window unit Abandoned US20030155065A1 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
US10/073,266 US20030155065A1 (en) 2002-02-13 2002-02-13 Method of making window unit
CA002483027A CA2483027C (en) 2002-02-13 2003-02-13 Method of making window unit
PCT/US2003/004239 WO2003068502A1 (en) 2002-02-13 2003-02-13 Method of making window unit
AU2003215185A AU2003215185A1 (en) 2002-02-13 2003-02-13 Method of making window unit
PL03370561A PL370561A1 (en) 2002-02-13 2003-02-13 Method of making window unit
EP03710999A EP1476299A1 (en) 2002-02-13 2003-02-13 Method of making window unit
US11/523,014 US7803427B2 (en) 2002-02-13 2006-09-19 Method of making window unit
US12/923,109 US8119199B2 (en) 2002-02-13 2010-09-02 Method of making window unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/073,266 US20030155065A1 (en) 2002-02-13 2002-02-13 Method of making window unit

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/523,014 Division US7803427B2 (en) 2002-02-13 2006-09-19 Method of making window unit

Publications (1)

Publication Number Publication Date
US20030155065A1 true US20030155065A1 (en) 2003-08-21

Family

ID=27732333

Family Applications (3)

Application Number Title Priority Date Filing Date
US10/073,266 Abandoned US20030155065A1 (en) 2002-02-13 2002-02-13 Method of making window unit
US11/523,014 Expired - Fee Related US7803427B2 (en) 2002-02-13 2006-09-19 Method of making window unit
US12/923,109 Expired - Fee Related US8119199B2 (en) 2002-02-13 2010-09-02 Method of making window unit

Family Applications After (2)

Application Number Title Priority Date Filing Date
US11/523,014 Expired - Fee Related US7803427B2 (en) 2002-02-13 2006-09-19 Method of making window unit
US12/923,109 Expired - Fee Related US8119199B2 (en) 2002-02-13 2010-09-02 Method of making window unit

Country Status (6)

Country Link
US (3) US20030155065A1 (en)
EP (1) EP1476299A1 (en)
AU (1) AU2003215185A1 (en)
CA (1) CA2483027C (en)
PL (1) PL370561A1 (en)
WO (1) WO2003068502A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040074260A1 (en) * 1999-05-03 2004-04-22 Veerasamy Vijayen S. Method of making heat treatable coated article with diamond-like carbon (DLC) inclusive layer
US20050095431A1 (en) * 2003-11-04 2005-05-05 Guardian Industries Corp. Heat treatable coated article with diamond-like carbon (DLC) and/or zirconium in coating
US20050095430A1 (en) * 2003-11-04 2005-05-05 Guardian Industries Corp. Heat treatable coated article with diamond-like carbon (DLC) and/or zirconium in coating
US20050191494A1 (en) * 2003-11-04 2005-09-01 Veerasamy Vijayen S. Heat treatable coated article with diamond-like carbon (DLC) and/or zirconium in coating
US20060057294A1 (en) * 2003-11-04 2006-03-16 Veerasamy Vijayen S Heat treatable coated article with diamond-like carbon (DLC) and/or zirconium in coating
CN102276157A (en) * 2011-06-07 2011-12-14 福莱特光伏玻璃集团股份有限公司 Niobium, LOW-E glass and preparation method thereof
CN102276156A (en) * 2011-06-07 2011-12-14 福莱特光伏玻璃集团股份有限公司 Method for manufacturing toughening low-emission (LOW-E) coated glass
CN102529210A (en) * 2011-12-19 2012-07-04 林嘉宏 Coated glass with protective film layer and preparation method
US20170283315A1 (en) * 2005-10-11 2017-10-05 Cardinal Cg Company High quality reflectance coatings

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030155065A1 (en) * 2002-02-13 2003-08-21 Thomsen Scott V. Method of making window unit
US7060322B2 (en) 2003-09-02 2006-06-13 Guardian Industries Corp. Method of making heat treatable coated article with diamond-like carbon (DLC) coating
PL1867614T3 (en) * 2003-09-02 2010-08-31 Guardian Industries Method of making a coated article coated with a hard protective highly transparent layer
US7892662B2 (en) 2006-04-27 2011-02-22 Guardian Industries Corp. Window with anti-bacterial and/or anti-fungal feature and method of making same
US7846492B2 (en) * 2006-04-27 2010-12-07 Guardian Industries Corp. Photocatalytic window and method of making same
FR3005654B1 (en) * 2013-05-17 2017-03-24 Saint Gobain METHOD FOR DEPOSITING COATINGS ON A SUBSTRATE
FR3030490B1 (en) * 2014-12-23 2019-12-20 Saint-Gobain Glass France GLAZING COMPRISING A TOP PROTECTIVE LAYER BASED ON HYDROGENIC CARBON
FR3030492B1 (en) * 2014-12-23 2021-09-03 Saint Gobain GLAZING INCLUDING A SUPERIOR CARBON-BASED PROTECTIVE LAYER
FR3030491B1 (en) * 2014-12-23 2016-12-30 Saint Gobain GLAZING COMPRISING A PROTECTIVE COATING
ES2762632T3 (en) * 2014-12-30 2020-05-25 Montparnasse 56 Usa Llc System for a tilting recreational attraction
US10611679B2 (en) 2017-10-26 2020-04-07 Guardian Glass, LLC Coated article including noble metal and polymeric hydrogenated diamond like carbon composite material having antibacterial and photocatalytic properties, and/or methods of making the same

Citations (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3261693A (en) * 1964-03-05 1966-07-19 Ruth W Jung Method of preparing and freezing lobsters and crabs
US3682528A (en) * 1970-09-10 1972-08-08 Optical Coating Laboratory Inc Infra-red interference filter
US4341576A (en) * 1981-06-01 1982-07-27 Ppg Industries, Inc. Fabricating laminated safety glass without an autoclave
US4882827A (en) * 1987-09-28 1989-11-28 Hoya Corporation Process for producing glass mold
US4898790A (en) * 1986-12-29 1990-02-06 Ppg Industries, Inc. Low emissivity film for high temperature processing
US5376455A (en) * 1993-10-05 1994-12-27 Guardian Industries Corp. Heat-treatment convertible coated glass and method of converting same
US5377045A (en) * 1990-05-10 1994-12-27 The Boc Group, Inc. Durable low-emissivity solar control thin film coating
US5506038A (en) * 1990-09-27 1996-04-09 Diamonex, Incorporated Abrasion wear resistant coated substrate product
US5508092A (en) * 1990-09-27 1996-04-16 Diamonex, Incorporated Abrasion wear resistant coated substrate product
US5514476A (en) * 1994-12-15 1996-05-07 Guardian Industries Corp. Low-E glass coating system and insulating glass units made therefrom
US5557462A (en) * 1995-01-17 1996-09-17 Guardian Industries Corp. Dual silver layer Low-E glass coating system and insulating glass units made therefrom
US5688585A (en) * 1993-08-05 1997-11-18 Guardian Industries Corp. Matchable, heat treatable, durable, IR-reflecting sputter-coated glasses and method of making same
US5770321A (en) * 1995-11-02 1998-06-23 Guardian Industries Corp. Neutral, high visible, durable low-e glass coating system and insulating glass units made therefrom
US5800933A (en) * 1995-11-02 1998-09-01 Guardian Industries Corp. Neutral, high performance, durable low-E glass coating system and insulating glass units made therefrom
US5821001A (en) * 1996-04-25 1998-10-13 Ppg Industries, Inc. Coated articles
US5902505A (en) * 1988-04-04 1999-05-11 Ppg Industries, Inc. Heat load reduction windshield
US5942338A (en) * 1996-04-25 1999-08-24 Ppg Industries Ohio, Inc. Coated articles
US6001462A (en) * 1994-01-18 1999-12-14 Libbey-Owens-Ford Co. Laminated glazing unit with polyvinyl chloride interlayer
US6060178A (en) * 1996-06-21 2000-05-09 Cardinal Ig Company Heat temperable transparent glass article
US6132881A (en) * 1997-09-16 2000-10-17 Guardian Industries Corp. High light transmission, low-E sputter coated layer systems and insulated glass units made therefrom
US6159607A (en) * 1993-08-05 2000-12-12 Guardian Industries Corp. Heat treatable, durable, ir-reflecting sputter-coated glasses and method of making same
US6180247B1 (en) * 1998-10-30 2001-01-30 Leybold Systems Gmbh Thermally-insulating coating system
US6261672B1 (en) * 1997-11-28 2001-07-17 Saint-Gobain Vitrage Laminated glazing and its manufacturing process
US6280847B1 (en) * 1997-05-03 2001-08-28 Pilkington Plc Laminated glazings
US6303225B1 (en) * 2000-05-24 2001-10-16 Guardian Industries Corporation Hydrophilic coating including DLC on substrate
US6303226B2 (en) * 1999-05-03 2001-10-16 Guardian Industries Corporation Highly tetrahedral amorphous carbon coating on glass
US6335086B1 (en) * 1999-05-03 2002-01-01 Guardian Industries Corporation Hydrophobic coating including DLC on substrate
US6514620B1 (en) * 1999-12-06 2003-02-04 Guardian Industries Corp. Matchable low-E I G units and laminates and methods of making same
US6576349B2 (en) * 2000-07-10 2003-06-10 Guardian Industries Corp. Heat treatable low-E coated articles and methods of making same
US6592993B2 (en) * 1999-05-03 2003-07-15 Guardian Industries Corp. Coated article with DLC inclusive layer(s) having increased hydrogen content at surface area
US6625875B2 (en) * 2001-03-26 2003-09-30 Centre Luxembourgeois De Recherches Pour Le Verre Et La Ceramique S.A. (C.R.V.C.) Method of attaching bus bars to a conductive coating for a heatable vehicle window
US6632491B1 (en) * 2002-05-21 2003-10-14 Guardian Industries Corp. IG window unit and method of making the same
US6663753B2 (en) * 1999-05-03 2003-12-16 Guardian Industries Corp. Method of making coated article including DLC inclusive layer over low-E coating
US6770321B2 (en) * 2002-01-25 2004-08-03 Afg Industries, Inc. Method of making transparent articles utilizing protective layers for optical coatings
US6827977B2 (en) * 2002-03-07 2004-12-07 Guardian Industries Corp. Method of making window unit including diamond-like carbon (DLC) coating

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5470661A (en) * 1993-01-07 1995-11-28 International Business Machines Corporation Diamond-like carbon films from a hydrocarbon helium plasma
US6849328B1 (en) * 1999-07-02 2005-02-01 Ppg Industries Ohio, Inc. Light-transmitting and/or coated article with removable protective coating and methods of making the same
US6936347B2 (en) * 2001-10-17 2005-08-30 Guardian Industries Corp. Coated article with high visible transmission and low emissivity
US20030155065A1 (en) * 2002-02-13 2003-08-21 Thomsen Scott V. Method of making window unit
US7833574B2 (en) * 2007-01-29 2010-11-16 Guardian Industries Corp. Method of making heat treated coated article using diamond-like carbon (DLC) coating and protective film

Patent Citations (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3261693A (en) * 1964-03-05 1966-07-19 Ruth W Jung Method of preparing and freezing lobsters and crabs
US3682528A (en) * 1970-09-10 1972-08-08 Optical Coating Laboratory Inc Infra-red interference filter
US4341576A (en) * 1981-06-01 1982-07-27 Ppg Industries, Inc. Fabricating laminated safety glass without an autoclave
US4898790A (en) * 1986-12-29 1990-02-06 Ppg Industries, Inc. Low emissivity film for high temperature processing
US4882827A (en) * 1987-09-28 1989-11-28 Hoya Corporation Process for producing glass mold
US5902505A (en) * 1988-04-04 1999-05-11 Ppg Industries, Inc. Heat load reduction windshield
US5377045A (en) * 1990-05-10 1994-12-27 The Boc Group, Inc. Durable low-emissivity solar control thin film coating
US5508092A (en) * 1990-09-27 1996-04-16 Diamonex, Incorporated Abrasion wear resistant coated substrate product
US5506038A (en) * 1990-09-27 1996-04-09 Diamonex, Incorporated Abrasion wear resistant coated substrate product
US5527596A (en) * 1990-09-27 1996-06-18 Diamonex, Incorporated Abrasion wear resistant coated substrate product
US5635245A (en) * 1990-09-27 1997-06-03 Monsanto Company Process of making abrasion wear resistant coated substrate product
US5688585A (en) * 1993-08-05 1997-11-18 Guardian Industries Corp. Matchable, heat treatable, durable, IR-reflecting sputter-coated glasses and method of making same
US6159607A (en) * 1993-08-05 2000-12-12 Guardian Industries Corp. Heat treatable, durable, ir-reflecting sputter-coated glasses and method of making same
US5376455A (en) * 1993-10-05 1994-12-27 Guardian Industries Corp. Heat-treatment convertible coated glass and method of converting same
US6001462A (en) * 1994-01-18 1999-12-14 Libbey-Owens-Ford Co. Laminated glazing unit with polyvinyl chloride interlayer
US5514476A (en) * 1994-12-15 1996-05-07 Guardian Industries Corp. Low-E glass coating system and insulating glass units made therefrom
US5557462A (en) * 1995-01-17 1996-09-17 Guardian Industries Corp. Dual silver layer Low-E glass coating system and insulating glass units made therefrom
US6059909A (en) * 1995-11-02 2000-05-09 Guardian Industries Corp. Neutral, high visible, durable low-E glass coating system, insulating glass units made therefrom, and methods of making same
US5800933A (en) * 1995-11-02 1998-09-01 Guardian Industries Corp. Neutral, high performance, durable low-E glass coating system and insulating glass units made therefrom
US5770321A (en) * 1995-11-02 1998-06-23 Guardian Industries Corp. Neutral, high visible, durable low-e glass coating system and insulating glass units made therefrom
US5942338A (en) * 1996-04-25 1999-08-24 Ppg Industries Ohio, Inc. Coated articles
US5821001A (en) * 1996-04-25 1998-10-13 Ppg Industries, Inc. Coated articles
US6060178A (en) * 1996-06-21 2000-05-09 Cardinal Ig Company Heat temperable transparent glass article
US6280847B1 (en) * 1997-05-03 2001-08-28 Pilkington Plc Laminated glazings
US6132881A (en) * 1997-09-16 2000-10-17 Guardian Industries Corp. High light transmission, low-E sputter coated layer systems and insulated glass units made therefrom
US6261672B1 (en) * 1997-11-28 2001-07-17 Saint-Gobain Vitrage Laminated glazing and its manufacturing process
US6180247B1 (en) * 1998-10-30 2001-01-30 Leybold Systems Gmbh Thermally-insulating coating system
US6303226B2 (en) * 1999-05-03 2001-10-16 Guardian Industries Corporation Highly tetrahedral amorphous carbon coating on glass
US6663753B2 (en) * 1999-05-03 2003-12-16 Guardian Industries Corp. Method of making coated article including DLC inclusive layer over low-E coating
US6335086B1 (en) * 1999-05-03 2002-01-01 Guardian Industries Corporation Hydrophobic coating including DLC on substrate
US20020001718A1 (en) * 1999-05-03 2002-01-03 Guardian Industries Corporation Hydrophilic coating including DLC on substrate
US7067175B2 (en) * 1999-05-03 2006-06-27 Guardian Industries Corp. Method of making heat treatable coated article with diamond-like carbon (DLC) inclusive layer
US6592993B2 (en) * 1999-05-03 2003-07-15 Guardian Industries Corp. Coated article with DLC inclusive layer(s) having increased hydrogen content at surface area
US6592992B2 (en) * 1999-05-03 2003-07-15 Guardian Industries Corp. Hydrophilic coating including DLC
US6514620B1 (en) * 1999-12-06 2003-02-04 Guardian Industries Corp. Matchable low-E I G units and laminates and methods of making same
US6303225B1 (en) * 2000-05-24 2001-10-16 Guardian Industries Corporation Hydrophilic coating including DLC on substrate
US6576349B2 (en) * 2000-07-10 2003-06-10 Guardian Industries Corp. Heat treatable low-E coated articles and methods of making same
US6625875B2 (en) * 2001-03-26 2003-09-30 Centre Luxembourgeois De Recherches Pour Le Verre Et La Ceramique S.A. (C.R.V.C.) Method of attaching bus bars to a conductive coating for a heatable vehicle window
US6770321B2 (en) * 2002-01-25 2004-08-03 Afg Industries, Inc. Method of making transparent articles utilizing protective layers for optical coatings
US6827977B2 (en) * 2002-03-07 2004-12-07 Guardian Industries Corp. Method of making window unit including diamond-like carbon (DLC) coating
US6632491B1 (en) * 2002-05-21 2003-10-14 Guardian Industries Corp. IG window unit and method of making the same

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060166009A1 (en) * 1999-05-03 2006-07-27 Guardian Industries Corp. Method of making heat treatable coated article with carbon inclusive protective layer
US7858150B2 (en) 1999-05-03 2010-12-28 Guardian Industries Corp. Method of making heat treatable coated article with protective layer
US20040074260A1 (en) * 1999-05-03 2004-04-22 Veerasamy Vijayen S. Method of making heat treatable coated article with diamond-like carbon (DLC) inclusive layer
US7718267B2 (en) 2003-11-04 2010-05-18 Guardian Industries Corp. Heat treatable coated article with diamond-like carbon (DLC) and/or zirconium in coating
US7537801B2 (en) 2003-11-04 2009-05-26 Guardian Industries Corp. Heat treatable coated article with diamond-like carbon (DLC) and/or zirconium in coating
US8518475B2 (en) 2003-11-04 2013-08-27 Guardian Industries Corp. Heat treatable coated article with diamond-like carbon (DLC) and/or zirconium in coating
US20050191494A1 (en) * 2003-11-04 2005-09-01 Veerasamy Vijayen S. Heat treatable coated article with diamond-like carbon (DLC) and/or zirconium in coating
US7150849B2 (en) 2003-11-04 2006-12-19 Guardian Industries Corp. Heat treatable coated article with diamond-like carbon (DLC) and/or zirconium in coating
US20070042186A1 (en) * 2003-11-04 2007-02-22 Guardian Industries Corp. Heat treatable coated article with diamond-like carbon (DLC) and/or zirconium in coating
US20100273002A1 (en) * 2003-11-04 2010-10-28 Guardian Industries Corp. Heat treatable coated article with diamond-like carbon (DLC) and/or Zirconium in coating
US7767306B2 (en) 2003-11-04 2010-08-03 Guardian Industries Corp. Heat treatable coated article with diamond-like carbon (DLC) and/or zirconium in coating
US7449218B2 (en) 2003-11-04 2008-11-11 Guardian Industries Corp. Heat treatable coated article with diamond-like carbon (DLC) and/or zirconium in coating
US7501148B2 (en) 2003-11-04 2009-03-10 Guardian Industries Corp. Method of making heat treatable coated article with diamond-like carbon (DLC) and/or zirconium in coating
US7507442B2 (en) 2003-11-04 2009-03-24 Guardian Industries Corp. Heat treatable coated article with diamond-like carbon (DLC) and/or zirconium in coating
US8277946B2 (en) 2003-11-04 2012-10-02 Guardian Industries Corp. Heat treatable coated article with diamond-like carbon (DLC) and/or zirconium in coating
US20090142603A1 (en) * 2003-11-04 2009-06-04 Guardian Industries Corp. Heat treatable coated article with diamond-like carbon (DLC) and/or zirconium in coating
US20050095430A1 (en) * 2003-11-04 2005-05-05 Guardian Industries Corp. Heat treatable coated article with diamond-like carbon (DLC) and/or zirconium in coating
US20100186450A1 (en) * 2003-11-04 2010-07-29 Guardian Industries Corp., Heat treatable coated article with diamond-like carbon (DLC) and/or zirconium in coating
US20060057294A1 (en) * 2003-11-04 2006-03-16 Veerasamy Vijayen S Heat treatable coated article with diamond-like carbon (DLC) and/or zirconium in coating
US20070042187A1 (en) * 2003-11-04 2007-02-22 Guardian Industries Corp. Heat treatable coated article with diamond-like carbon (DLC) and/or zirconium in coating
US20050095431A1 (en) * 2003-11-04 2005-05-05 Guardian Industries Corp. Heat treatable coated article with diamond-like carbon (DLC) and/or zirconium in coating
US7892604B2 (en) 2003-11-04 2011-02-22 Guardian Industries Corp. Heat treatable coated article with diamond-like carbon (DLC) and/or zirconium in coating
US20110104374A1 (en) * 2003-11-04 2011-05-05 Guardian Industries Corp. Heat treatable coated article with diamond-like carbon (DLC) and/or zirconium in coating
US8029864B2 (en) 2003-11-04 2011-10-04 Guardian Industries Corp. Heat treatable coated article with diamond-like carbon (DLC) and/or zirconium in coating
JP2008520539A (en) * 2004-11-22 2008-06-19 ガーディアン・インダストリーズ・コーポレーション Heat-treatable coating product containing diamond-like carbon (DLC) and zirconium in the coating
WO2006057846A1 (en) * 2004-11-22 2006-06-01 Guardian Industries Corp. Heat treatable coated article with diamond-like carbon (dlc) and zirconium in coating
JP4904282B2 (en) * 2004-11-22 2012-03-28 ガーディアン・インダストリーズ・コーポレーション Heat-treatable coating product containing diamond-like carbon (DLC) and zirconium in the coating
US10590035B2 (en) * 2005-10-11 2020-03-17 Cardinal Cg Company High quality reflectance coatings
US20170283315A1 (en) * 2005-10-11 2017-10-05 Cardinal Cg Company High quality reflectance coatings
US10442728B2 (en) 2005-10-11 2019-10-15 Cardinal Cg Company High infrared reflection coatings, thin film coating deposition methods and associated technologies
US10773996B2 (en) 2005-10-11 2020-09-15 Cardinal Cg Company Deposition methods for high quality reflectance coatings
US11028011B2 (en) 2005-10-11 2021-06-08 Cardinal Cg Company High infrared reflection coatings, thin film coating deposition methods and associated technologies
CN102276156A (en) * 2011-06-07 2011-12-14 福莱特光伏玻璃集团股份有限公司 Method for manufacturing toughening low-emission (LOW-E) coated glass
CN102276157A (en) * 2011-06-07 2011-12-14 福莱特光伏玻璃集团股份有限公司 Niobium, LOW-E glass and preparation method thereof
CN102529210A (en) * 2011-12-19 2012-07-04 林嘉宏 Coated glass with protective film layer and preparation method

Also Published As

Publication number Publication date
US20070017624A1 (en) 2007-01-25
CA2483027A1 (en) 2003-08-21
US20110000602A1 (en) 2011-01-06
EP1476299A1 (en) 2004-11-17
WO2003068502A1 (en) 2003-08-21
AU2003215185A1 (en) 2003-09-04
CA2483027C (en) 2009-05-26
US7803427B2 (en) 2010-09-28
PL370561A1 (en) 2005-05-30
US8119199B2 (en) 2012-02-21

Similar Documents

Publication Publication Date Title
US7803427B2 (en) Method of making window unit
CA2468270C (en) Method of making window unit including diamond-like carbon (dlc) coating
US7521096B2 (en) Method of making a low-E coated article including heat bending
EP2432745B1 (en) Coated article with low-e coating having zinc stannate based layer between ir reflecting layers for reduced mottling and corresponding method
EP2041040B1 (en) Method of making coated article using rapid heating for reducing emissivity and/or sheet resistance, and corresponding product
EP1718460B1 (en) Coated article with low-e coating including ir reflecting layer(s) and corresponding method
KR102028220B1 (en) Articles including anticondensation and/or low-e coatings and/or methods of making the same
US7060322B2 (en) Method of making heat treatable coated article with diamond-like carbon (DLC) coating
US20040229074A1 (en) Coated article with low-E coating including IR reflecting layer (S) and corresponding method

Legal Events

Date Code Title Description
AS Assignment

Owner name: GUARDIAN INDUSTRIES CORP., MICHIGAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:THOMSEN, SCOTT V.;VEERASAMY, VIJAYEN S.;REEL/FRAME:012952/0242;SIGNING DATES FROM 20020426 TO 20020531

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: GUARDIAN GLASS, LLC., MICHIGAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GUARDIAN INDUSTRIES CORP.;REEL/FRAME:044053/0318

Effective date: 20170801