US20030181908A1 - Methods of sealing an injection site - Google Patents

Methods of sealing an injection site Download PDF

Info

Publication number
US20030181908A1
US20030181908A1 US10/388,468 US38846803A US2003181908A1 US 20030181908 A1 US20030181908 A1 US 20030181908A1 US 38846803 A US38846803 A US 38846803A US 2003181908 A1 US2003181908 A1 US 2003181908A1
Authority
US
United States
Prior art keywords
tissue
therapeutic agent
mouth
needle track
injection device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/388,468
Inventor
Maria Palasis
Lucas Gordon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Boston Scientific Scimed Inc
Original Assignee
Maria Palasis
Gordon Lucas S.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maria Palasis, Gordon Lucas S. filed Critical Maria Palasis
Priority to US10/388,468 priority Critical patent/US20030181908A1/en
Publication of US20030181908A1 publication Critical patent/US20030181908A1/en
Assigned to BOSTON SCIENTIFIC SCIMED, INC. reassignment BOSTON SCIENTIFIC SCIMED, INC. MERGER (SEE DOCUMENT FOR DETAILS). Assignors: BOSTON SCIENTIFIC SCIMED, INC., SCIMED LIFE SYSTEMS, INC.
Abandoned legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/3205Excision instruments
    • A61B17/3207Atherectomy devices working by cutting or abrading; Similar devices specially adapted for non-vascular obstructions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/0057Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1477Needle-like probes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • A61B2017/00238Type of minimally invasive operation
    • A61B2017/00243Type of minimally invasive operation cardiac
    • A61B2017/00247Making holes in the wall of the heart, e.g. laser Myocardial revascularization
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B2017/22072Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for with an instrument channel, e.g. for replacing one instrument by the other
    • A61B2017/22074Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for with an instrument channel, e.g. for replacing one instrument by the other the instrument being only slidable in a channel, e.g. advancing optical fibre through a channel
    • A61B2017/22077Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for with an instrument channel, e.g. for replacing one instrument by the other the instrument being only slidable in a channel, e.g. advancing optical fibre through a channel with a part piercing the tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00345Vascular system
    • A61B2018/00351Heart
    • A61B2018/00392Transmyocardial revascularisation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B2018/1405Electrodes having a specific shape
    • A61B2018/1425Needle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2218/00Details of surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2218/001Details of surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body having means for irrigation and/or aspiration of substances to and/or from the surgical site
    • A61B2218/002Irrigation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/0067Catheters; Hollow probes characterised by the distal end, e.g. tips
    • A61M25/0082Catheter tip comprising a tool
    • A61M25/0084Catheter tip comprising a tool being one or more injection needles

Definitions

  • the present invention relates to methods of sealing an injection site, where therapeutic agent has been injected into tissue resulting in increased efficiency or agent uptake.
  • the present invention also relates to methods for delivering therapeutic agent to a tissue, which include injecting a therapeutic agent into a tissue and subsequently sealing the injection site, or engaging an injection device with the tissue for a sufficient period of time that sealing is not necessary to avoid leakage of the therapeutic agent.
  • the invention includes a method of sealing an injection site by performing radio frequency cautery at the mouth of a needle track in tissue in order to seal the mouth of the needle track.
  • the needle track is formed in tissue after a therapeutic agent has been injected into a tissue with an injection device and subsequently removed from the tissue.
  • the mouth of a needle track in tissue is sealed by performing resistance heating at the mouth, performing laser heating at the mouth, plugging the mouth with a solid plug, and coagulating material at the mouth of the needle track.
  • the invention includes a method of delivering therapeutic agent to tissue by injecting the therapeutic agent into the tissue of a mammal with an injection device, where the injection device is kept engaged with the tissue for a sufficient period of time after the injection has been completed to prevent the therapeutic agent from leaking from the injection site.
  • the invention includes methods of delivering therapeutic agent to tissue, wherein a thickening agent, bioadhesive material or tissue sealant is added to the materials being delivered to reduce or eliminate dispersion or leakage of the therapeutic agent from the tissue after injection into the tissue.
  • the therapeutic agent is delivered by injecting the therapeutic agent into tissue, preferably by an injection needle.
  • the invention includes a method for delivering a therapeutic agent into a tissue in a mammal, which includes injecting a therapeutic agent into tissue with an injection needle, withdrawing the injection needle from the tissue, thus forming a needle track having a mouth in the tissue, and sealing the mouth of said needle track.
  • the mouth of the needle track is sealed by radio frequency cautery.
  • the mouth of the needle track is sealed by resistance heating, laser heating, plugging the mouth with a solid plug, or by coagulating a material at the mouth of the needle track.
  • the inventors have surprisingly found that when therapeutic agent is delivered to target tissue with an injection device such as a needle, leaking and dispersion often result upon removal of the device from the tissue. For example, the inventors have discovered that where an injection is performed via a needle, there is potential for leakage of the administered therapeutic agent along the needle track left by needle withdrawal. This problem is exacerbated in situations where the therapeutic agent is injected into the tissue of an organ that undergoes expansion and contraction, such as the heart. In such cases, the organ wall thins during organ expansion, thus facilitating the leakage of previously-injected therapeutic agent from the organ tissue through the needle track and thereby decreasing the actual dose of therapeutic agent delivered to the target site and increasing systemic distribution of the drug.
  • the present invention solves the problems discovered by the inventors by providing any suitable means for inhibiting loss of injected therapeutic agent prior to cell uptake.
  • Embodiments of the invention thus result in an increased exposure of the target tissue to the therapeutic agents administered, and thus, increased efficiency of localized drug delivery.
  • Other embodiments of the invention include sealing the mouth of the needle track (at the injection site) upon needle removal.
  • the methods of the invention have the additional benefit of permitting a relatively large volume of therapeutic agent to be effectively and efficiently administered.
  • Examples of injection volumes of the present invention include a range of about 1 ⁇ l to about 1 ml, preferably 10-100 ⁇ l.
  • injection needle as the delivery device.
  • specific devices incorporating injection needles include needle injection catheters, hypodermic needles, biopsy needles, ablation catheters, cannulas and any other type of medically useful needle. It will be understood by one of ordinary skill in the art that other injection devices are contemplated and are within the scope of the invention. Specifically, any device competent to penetrate tissue is contemplated, particularly those that create an opening through which a delivered agent may escape or “leak out.” Non-needle injection devices are also contemplated by the present invention.
  • non-needle injection devices include, but are not limited to, transmural myocardial revascularization (TMR) devices and percutaneous myocardial revascularization (PMR) devices or any other device capable of wounding or creating a channel or crater in tissue.
  • TMR transmural myocardial revascularization
  • PMR percutaneous myocardial revascularization
  • suitable injection devices include ablation devices and needle-free injectors which propel fluid using a spring or pressurized gas, such as carbon dioxide injection devices.
  • therapeutic agent is delivered to tissue by injecting the therapeutic agent into tissue via an injection device, preferably an injection needle.
  • the injection needle may be kept engaged with the tissue (i.e., the needle is not withdrawn) for a period of time after the injection has been completed.
  • the time period that the needle is kept engaged with the tissue is sufficient for the therapeutic agent to be substantially completely absorbed by the target tissue and may include a prolonged time period.
  • this time period is within the range of about 5 seconds to about 2 minutes; more preferably, the time period is within the range of about 5 seconds to about 30 seconds.
  • therapeutic agent is delivered to tissue by injecting therapeutic agent into tissue with an injection needle, wherein a thickening agent is added to the therapeutic agent prior to injection.
  • thickening agent refers to any biocompatible additive that results in an increased viscosity of the materials being injected.
  • suitable thickening agents include albumin, iohexol or other contrast agent, alginates, polyacrylic acid, hyaluronic acid, dextran, collagen, gelatin, polyethylene glycol, poloxamers and various biocompatible polymers.
  • Suitable biocompatible polymers for use in the present invention are hydrophilic or hydrophobic, and include, but are not limited to, polycarboxylic acids, cellulosic polymers, including cellulose acetate and cellulose nitrate, gelatin, polyvinylpyrrolidone, cross-linked polyvinylpyrrolidone, hydrogels, polyanhydrides including maleic anhydride polymers, polyamides, polyvinyl alcohols, copolymers of vinyl monomers such as EVA, polyvinyl ethers, polyvinyl aromatics, polyethylene oxides, glycosaminoglycans, polysaccharides, ethylene vinylacetate, polyesters including polyethylene terephthalate, polyacrylamides, polyethers, polyether sulfone, polycarbonate, polyalkylenes including polypropylene, polyethylene and high molecular weight polyethylene, halogenated polyalkylenes including polytetrafluoroethylene, polyurethanes, polyortho
  • the therapeutic agent has an increased ability to resist forces tending to push the therapeutic agent out of the tissue via the needle tracks.
  • the injection needle remains engaged with the tissue for a period of time sufficient to allow cellular uptake of substantially all of the therapeutic agent.
  • the combination of therapeutic agent and thickening agent is sufficient to inhibit any leaking of the therapeutic agent from the tissue when the delivery device is withdrawn from the tissue.
  • therapeutic agent is delivered to tissue by injecting therapeutic agent into tissue with an injection needle, wherein a bioadhesive material is added to the materials being injected.
  • bioadhesive material refers to any biocompatible additive that results in an increase of the affinity of the injected material for tissue.
  • Bioadhesive materials for use in conjunction with the invention include suitable bioadhesive materials known to those of ordinary skill in the art.
  • suitable bioadhesive materials include fibrinogen with or without thrombin, fibrin, fibropectin, elastin, laminin, cyano-acrylates, polyacrylic acid, polystyrene, bioabsorbable and biostable polymers derivatized with sticky molecules such as arginine, glycine, and aspartic acid, and copolymers.
  • the injection needle remains engaged with the tissue for a period of time sufficient to allow cellular uptake of substantially all of the therapeutic agent.
  • the combination of therapeutic agent and bioadhesive material is sufficient to inhibit any leaking of the therapeutic agent from the tissue when the delivery device is withdrawn from the tissue.
  • therapeutic agent is delivered to tissue by injecting the therapeutic agent into the tissue with an injection needle, wherein a tissue sealant is used to seal the mouth of the needle track upon needle removal.
  • the sealant is delivered to the mouth of the needle track by any suitable means, such as through a lumen of a multi-lumen catheter, in which case the injection needle is delivered via a separate lumen.
  • the sealant may be added to the material being injected, or may be coated onto the exterior of the needle.
  • Tissue sealants for use in conjunction with the invention include suitable sealants known to those of ordinary skill in the art. Such tissue sealants preferably include those having suitable bonding properties, elasticity and biodegradability for the tissue to which the sealant is to be applied.
  • suitable sealants include cyanoacrylates, collagen, fibrinogen with or without thrombin, fibrin, fibrin glue, fibropectin, elastin, laminin, cyano-acrylates, polyacrylic acid, polystyrene, bioabsorbable and biostable polymers derivatized with sticky molecules such as arginine, glycine, and aspartic acid, and copolymers.
  • the injection needle remains engaged with the tissue for a period of time sufficient to allow cellular uptake of substantially all of the therapeutic agent.
  • the combination of therapeutic agent and tissue sealant is sufficient to inhibit any leaking of the therapeutic agent from the tissue when the delivery device is withdrawn from the tissue.
  • the invention also includes a method of sealing an injection site at the mouth of a needle track in tissue.
  • a needle track is formed in tissue after a therapeutic agent has been injected into a tissue with an injection device and subsequently removed from the tissue.
  • one method of sealing the injection site is by performing radio frequency cautery at the mouth of the needle track to seal the mouth upon needle removal from the tissue.
  • Cauterization involves using such intense heat to seal the open ends of the tissue.
  • Radio frequency cautery may be performed by any suitable method. Such methods are known to those skilled in the art.
  • a method for sealing the injection site is by resistance heating at the mouth of the needle track.
  • Intense heat may be used to seal the mouth of the needle track upon needle removal.
  • Intense heat used to seal open ends of tissue may be generated by a variety of different methods.
  • intense heat is generated by resistance heating a metallic probe, such that the generated heat is intense enough to seal the open ends of tissue. Methods of delivering intense heat, and more preferably resistance heating, are known to those skilled in the art.
  • Another preferred embodiment includes a method for sealing the injection site by performing laser heating at the mouth of the needle track to seal the mouth upon needle removal.
  • laser emitted optical energy may be used to heat biological tissue to a degree suitable for denaturing the tissue proteins such that the collagenous elements of the tissue form a “biological glue” to seal the tissue.
  • Suitable methods of laser heating a tissue are known to those skilled in the art.
  • the present invention includes a method for sealing the injection site by plugging the mouth of a needle track with a solid plug or by coagulating one or more materials at the mouth upon needle removal.
  • materials that may be used in accordance with this embodiment in order to seal the mouth of the needle track include fibrin glue, cyanoacrylate-based adhesives and the like.
  • Other suitable sealant plugs would be apparent to those in the art based on the present disclosure.
  • the sealant plug may be heated (or cooled, depending on the temperature at which the material being used is liquid) prior to application to the mouth of the needle track, and subsequent cooling (or heating) may aid in solidifying and sealing the tissue.
  • a temperature sensitive polymer which is liquid at above or below physiological temperature (i.e. about 37° C.) and solidifies at physiological temperature may be used in this embodiment.
  • suitable materials for use in this embodiment include N-isoproylacrylamide and certain celluloses.
  • the coagulating material is applied to the mouth of the injection site while the material is in a first fluent state. Then the material is maintained in a position so as to plug the mouth of the injection site under conditions which convert the material in situ into a second less-fluent or essentially non-fluent state.
  • the conversion may be achieved either by changing the environment surrounding the material by the addition or removal of chemicals or energy, or by passive means such as maintaining the material at the normal internal body temperature of a patient.
  • the transition of the state of the material from a fluent state to a less fluent or essentially non-fluent state may be the result of a phase change or of a viscosity change or of polymerization.
  • the material is one or more biocompatible materials.
  • the material is a polymeric material, which can be applied as polymers, monomers, macromers or combinations thereof.
  • the polymeric materials are preferably those materials that can be polymerized or have their viscosity altered in vivo, preferably by the application of light, ultrasound, radiation or chelation, alone or in the presence of added catalyst or by a change to physiological pH, diffusion or calcium ions (alginate) or borate ions (polyvinyl alcohol) into the polymer or change in temperature to body temperature.
  • in situ polymerization include, but are not limited to, alginates crosslinked with multivalent cations, fibrinogen crosslinked with thrombin and photochemical crosslinking.
  • suitable polymers include the following.
  • Materials which polymerize or alter viscosity as a function of temperature include poly(oxyalkene) polymers and copolymers such as poly(ethylene oxide)-poly(propylene oxide) (PEO-PPO) copolymers, and copolymers and blends of these polymers with polymers such as poly(alpha-hydroxy) acids, including but not limited to lactic, glycolic and hydroxybutyric acids, polycaprolactones, and polyvalerolactones.
  • Examples of materials which polymerize in the presence of divalent ions such as calcium, barium, magnesium, copper, and iron include naturally occurring polymers collagen, fibrin, elastin, agarose, agar, polysaccharides such as hyaluronic acid, hyalobiuronic acid, heparin, cellulose, alginate, curdlan, chitin and chitosan, and derivatives thereof, cellulose acetate, carboxymethyl cellulose, hydroxymethyl cellulose, cellulose sulfate sodium salt, and ethylcellulose.
  • divalent ions such as calcium, barium, magnesium, copper, and iron
  • Examples of materials that can be crosslinked photochemically with ultrasound or with radiation generally include those materials that contain a double bond or a triple bond; examples include monomers which are polymerized into poly(acrilic acids), poly(acrylates), polyacrylamides, polyvinyl alcohols, polyethylene glycols, and ethylene vinyl acetates.
  • Examples of materials that can be crosslinked by the addition of covalent crosslinking agents, such as glutaraldehyde, succindialdehyde or carbodiimide, include amino containing polymers including polypeptides and proteins such as albumin and polyethyleneimine.
  • a non-polymeric coagulant may be used, wherein the non-polymeric material is capable of transforming into a substantially solid matrix in situ is either added to the therapeutic agent prior to injection or applied to the mouth of a needle track after a needle is removed from tissue.
  • the non-polymeric material in this embodiment may be combined with at least one organic solvent.
  • Suitable organic solvents are those that are biocompatible, pharmaceutically-acceptable, and will at least partially dissolve the non-polymeric material.
  • the organic solvent has a solubility in water ranging from miscible to dispersible.
  • the solvent is capable of diffusing, dispersing, or leaching from the composition in situ into aqueous tissue fluid of the implant site such as blood serum, lymph, cerebral spinal fluid (CSF), saliva, and the like.
  • Solvents that are useful include, for example, substituted heterocyclic compounds such as N-methyl-2-pyrrolidone (NMP) and 2-pyrrolidone (2-pyrol); esters of carbonic acid and alkyl alcohols such as propylene carbonate, ethylene carbonate and dimethyl carbonate; fatty acids such as acetic acid, lactic acid and heptanoic acid; alkyl esters of mono-, di-, and tricarboxylic acids such as 2-ethyoxyethyl acetate, ethyl acetate, methyl acetate, ethyl lactate, ethyl butyrate, diethyl malonate, diethyl glutonate, tributyl citrate, diethyl succinate, tributyrin, isopropyl myristate, dimethyl adipate, dimethyl succinate, dimethyl oxalate, dimethyl citrate, triethyl citrate, acetyl tribut
  • Preferred solvents include N-methyl-2-pyrrolidone, 2-pyrrolidone, dimethylsulfoxide, ethyl lactate, propylene carbonate, glycofurol, glycerol, and isopropylidene glycol.
  • the organic solvent is biocompatible and non-toxic.
  • a composition of the non-polymeric material is preferably flowable with a consistency that ranges from watery to slightly viscous to a putty or paste.
  • the non-polymeric material eventually coagulates to a microporous, solid matrix upon the dissipation of the organic solvent into adjacent tissue fluids.
  • the non-polymeric composition can be manipulated and shaped within the defect site as it solidifies.
  • the moldability of the composition as it hardens allows it to conform to irregularities, crevices, cracks, holes, and the like, in the implant site.
  • the resulting substantially solid matrix is preferably biodegradable, bioabsorbable, and/or bioerodible, and will be gradually absorbed into the surrounding tissue fluids, and become disintegrated through enzymatic, chemical and/or cellular hydrolytic action.
  • biodegradable means that the non-polymeric material and/or matrix of the implant will degrade over time by the action of enzymes, by simple or enzymatically catalyzed hydrolytic action and/or by other similar mechanisms in the human body.
  • bioerodible means that the implant matrix will erode or degrade over time due, at least in part, to contact with substances found in the surrounding tissue fluids, cellular action, and the like.
  • bioabsorbable it is meant that the non-polymeric matrix will be broken down and absorbed within the human body, for example, by a cell, a tissue, and the like.
  • the composition of non-polymeric material of this embodiment can be combined with a minor amount of a biodegradable, bioabsorbable thermoplastic polymer such as a polylactide, polycaprolactone, polyglycolide, or copolymer thereof, to provide a more coherent solid implant or a composition with greater viscosity so as to hold it in place while it solidifies.
  • a biodegradable, bioabsorbable thermoplastic polymer such as a polylactide, polycaprolactone, polyglycolide, or copolymer thereof
  • the non-polymeric materials are also capable of coagulating or solidifying to form a solid implant matrix upon the dissipation, dispersement or leaching of the solvent component from the composition and contact of the non-polymeric material with an aqueous medium.
  • the solid matrix has a firm consistency ranging from gelatinous to impressionable and moldable, to a hard, dense solid.
  • Non-polymeric materials according to this embodiment that are suitable for use in the present invention generally include any having the foregoing characteristics.
  • useful non-polymeric materials include sterols such as cholesterol, stigmasterol, ⁇ -sitosterol, and estradiol; cholesteryl esters such as cholesteryl stearate; C 12 -C 24 fatty acids such as lauric acid, myristic acid, palmitic acid, stearic acid, arachidic acid, behenic acid, and lignoceric acid; C 18 -C 36 mono-, di- and triacylglycerides such as glyceryl monooleate, glyceryl monolinoleate, glyceryl monolaurate, glyceryl monodocosanoate, glyceryl monomyristate, glyceryl monodicenoate, glyceryl dipalmitate, glyceryl didocosanoate, glyceryl dimyr
  • Preferred non-polymeric materials include cholesterol, glyceryl monostearate, glycerol tristearate, stearic acid, stearic anhydride, glyceryl monooleate, glyceryl monolinoleate, and acetylated monoglycerides.
  • the present invention also includes a method for delivering a therapeutic agent into a tissue in a mammal, which includes injecting a therapeutic agent into tissue of a mammal in need of said therapeutic agent, with an injection needle, withdrawing the injection needle from the tissue, thus, forming a needle track in the tissue, and sealing the mouth of the needle track.
  • the mouth of the needle track is sealed by radio frequency cautery.
  • the mouth of the needle track is sealed by resistance heating, laser heating, plugging the mouth with a solid plug, by coagulating a material at the mouth of the needle track or by other methods known to those skilled in the art as described above.
  • any of the above-described thickening agents, bioadhesive materials, tissue sealants, solid plugs, or coagulants (including polymeric and non-polymeric coagulants), or compositions containing any of the above, may contain one or more additives that would be known to those in the art.
  • therapeutic agent includes one or more “therapeutic agents” or “drugs”.
  • therapeutic agents and “drugs” are used interchangeably herein and include pharmaceutically active compounds, nucleic acids with and without carrier vectors such as lipids, compacting agents (such as histones), virus (such as adenovirus, andenoassociated virus, retrovirus, lentivirus and ⁇ -virus), polymers, hyaluronic acid, proteins, cells and the like, with or without targeting sequences.
  • the injection administered in accordance with the invention includes the therapeutic agent(s) and solutions thereof.
  • therapeutic agents used in conjunction with the present invention include, for example, pharmaceutically active compounds, proteins, cells, oligonucleotides, ribozymes, anti-sense oligonucleotides, DNA compacting agents, gene/vector systems (i.e., any vehicle that allows for the uptake and expression of nucleic acids), nucleic acids (including, for example, recombinant nucleic acids; naked DNA, cDNA, RNA; genomic DNA, cDNA or RNA in a non-infectious vector or in a viral vector and which further may have attached peptide targeting sequences; antisense nucleic acid (RNA or DNA); and DNA chimeras which include gene sequences and encoding for ferry proteins such as membrane translocating sequences (“MTS”) and herpes simplex virus-1 (“VP22”)), and viral, liposomes and cationic and anionic polymers and neutral polymers that are selected from a number of types depending on the desired application.
  • gene/vector systems i.e., any vehicle
  • Non-limiting examples of virus vectors or vectors derived from viral sources include adenoviral vectors, herpes simplex vectors, papilloma vectors, adeno-associated vectors, retroviral vectors, and the like.
  • Non-limiting examples of biologically active solutes include anti-thrombogenic agents such as heparin, heparin derivatives, urokinase, and PPACK (dextrophenylalanine proline arginine chloromethylketone); antioxidants such as probucol and retinoic acid; angiogenic and anti-angiogenic agents and factors; agents blocking smooth muscle cell proliferation such as rapamycin, angiopeptin, and monoclonal antibodies capable of blocking smooth muscle cell proliferation; anti-inflammatory agents such as dexamethasone, prednisolone, corticosterone, budesonide, estrogen, sulfasalazine, acetyl salicylic acid, and mesalamine; calcium entry blockers
  • Cells can be of human origin (autologous or allogenic) or from an animal source (xenogeneic), genetically engineered if desired to deliver proteins of interest at the injection site.
  • the delivery mediated is formulated as needed to maintain cell function and viability. Any modifications are routinely made by one skilled in the art.
  • Polynucleotide sequences useful in practice of the invention include DNA or RNA sequences having a therapeutic effect after being taken up by a cell.
  • therapeutic polynucleotides include anti-sense DNA and RNA; DNA coding for an anti-sense RNA; or DNA coding for tRNA or rRNA to replace defective or deficient endogenous molecules.
  • the polynucleotides of the invention can also code for therapeutic proteins or polypeptides.
  • a polypeptide is understood to be any translation product of a polynucleotide regardless of size, and whether glycosylated or not.
  • Therapeutic proteins and polypeptides include as a primary example, those proteins or polypeptides that can compensate for defective or deficient species in an animal, or those that act through toxic effects to limit or remove harmful cells from the body.
  • the polypeptides or proteins that can be injected, or whose DNA can be incorporated include without limitation, angiogenic factors and other molecules competent to induce angiogenesis, including acidic and basic fibroblast growth factors, vascular endothelial growth factor, hif-1, epidermal growth factor, transforming growth factor ⁇ and ⁇ , platelet-derived endothelial growth factor, platelet-derived growth factor, tumor necrosis factor ⁇ , hepatocyte growth factor and insulin like growth factor; growth factors; cell cycle inhibitors including CDK inhibitors; anti-restenosis agents, including p15, p16, p18, p19, p21, p27, p53, p57, Rb, nFkB and E2F decoys, thymidine kina
  • MCP-1 monocyte chemoattractant protein
  • BMP's the family of bone morphogenic proteins
  • the known proteins include BMP-2, BMP-3, BMP-4, BMP-5, BMP-6 (Vgr-1), BMP-7 (OP-1), BMP-8, BMP-9, BMP-10, BMP-11, BMP-12, BMP-13, BMP-14, BMP-15, and BMP-16.
  • BMP's are any of BMP-2, BMP-3, BMP-4, BMP-5, BMP-6 and BMP-7.
  • dimeric proteins can be provided as homodimers, heterodimers, or combinations thereof, alone or together with other molecules.
  • molecules capable of inducing an upstream or downstream effect of a BMP can be provided.
  • Such molecules include any of the “hedgehog” proteins, or the DNA's encoding them.
  • Organs and tissues that may be treated by the methods of the present invention include any mammalian tissue or organ, whether injected in vivo or ex vivo.
  • Non-limiting examples include heart, lung, brain, liver, skeletal muscle, smooth muscle, kidney, bladder, intestines, stomach, pancreas, ovary, prostate, eye, tumors, cartilage and bone.
  • the therapeutic agents can be used, for example, in any application for treating, preventing, or otherwise affecting the course of a disease or tissue or organ dysfunction.
  • the methods of the invention can be used to induce or inhibit angiogenesis, as desired, to prevent or treat restenosis, to treat a cardiomyopathy or other dysfunction of the heart, for treating Parkinson's disease or a stroke or other dysfunction of the brain, for treating cystic fibrosis or other dysfunction of the lung, for treating or inhibiting malignant cell proliferation, for treating any malignancy, and for inducing nerve, blood vessel or tissue regeneration in a particular tissue or organ.
  • Therapeutic agents may be directly injected into tissue, or may be delivered in a solution or other form and may be delivered via a carrier. Therapeutic agents may be delivered via microspheres that are injected into the tissue, rather than injecting therapeutic agents directly into the tissue. In a preferred embodiment, therapeutic agents may be injected via microspheres into muscle tissue. Injecting therapeutic agents via microspheres may result in sustained release or delivery of the drug. Direct injection of therapeutic agents may represent an effective means to treat the entire myocardium. The authors have found that injected agents tend to disperse throughout the myocardium into uninjected areas. Thus, the number of injections that is necessary in order to deliver therapeutic agents to a specific area of tissue may be decreased.
  • therapeutic agents are delivered to muscle tissue by injecting a solution of microspheres directly into the muscle tissue.
  • the muscle tissue is the heart.
  • the myocardium of a mammal was treated by injecting therapeutic agents into muscle tissue.
  • protein expression is limited to the immediate area where the injections were made.
  • Single 10-100 ⁇ l (in volume) injections of a solution of microspheres were made into the anterior, lateral and posterior wall of the left ventrical, resulting in 1-6% of the injectate being recovered in the uninjected septal wall and 0.1-1% of the injectate being recovered in the uninjected right ventrical.
  • ligand may bind to cell surface receptors, extracellular matrix components or other components of the myocardial tissue.

Abstract

Methods of sealing an injection site of a tissue are provided, where therapeutic agent has been injected into tissue, resulting in increased efficiency or agent uptake. Also provided are methods for delivering therapeutic agent to a tissue, which include injecting a therapeutic agent into a tissue and subsequently sealing the injection site, or engaging an injection device with the tissue for a sufficient period of time that sealing is not necessary to avoid leakage of the therapeutic agent. In one embodiment radio frequency cautery is used to seal the injection site upon needle removal from the tissue. In other embodiments, the injection site is sealed by resistance heating, laser heating or plugging the site with a solid plug or coagulating material at the site.

Description

  • The present application claims the benefit of U.S. Provisional Application No. 60/133,122, filed May 7, 1999.[0001]
  • FIELD OF THE INVENTION
  • The present invention relates to methods of sealing an injection site, where therapeutic agent has been injected into tissue resulting in increased efficiency or agent uptake. The present invention also relates to methods for delivering therapeutic agent to a tissue, which include injecting a therapeutic agent into a tissue and subsequently sealing the injection site, or engaging an injection device with the tissue for a sufficient period of time that sealing is not necessary to avoid leakage of the therapeutic agent. [0002]
  • BACKGROUND OF THE INVENTION
  • The treatment of disease such as vascular disease by local pharmacotherapy presents a means of delivering therapeutic drug doses to target tissues while minimizing systemic side effects. Such localized delivery of therapeutic agents has been proposed or achieved using medical devices such as catheters, needle devices and various coated implantable devices such as stents. [0003]
  • The localized delivery of therapeutic agents using needle devices has the advantages of precise placement and accurate control over the volume and rate of delivery. The processing mechanisms by which therapeutic agent is released from the needle and absorbed by surrounding tissue, however, is not well-characterized. [0004]
  • SUMMARY OF THE INVENTION
  • In one embodiment, the invention includes a method of sealing an injection site by performing radio frequency cautery at the mouth of a needle track in tissue in order to seal the mouth of the needle track. The needle track is formed in tissue after a therapeutic agent has been injected into a tissue with an injection device and subsequently removed from the tissue. [0005]
  • In other embodiments the mouth of a needle track in tissue is sealed by performing resistance heating at the mouth, performing laser heating at the mouth, plugging the mouth with a solid plug, and coagulating material at the mouth of the needle track. [0006]
  • In another embodiment, the invention includes a method of delivering therapeutic agent to tissue by injecting the therapeutic agent into the tissue of a mammal with an injection device, where the injection device is kept engaged with the tissue for a sufficient period of time after the injection has been completed to prevent the therapeutic agent from leaking from the injection site. [0007]
  • In other embodiments, the invention includes methods of delivering therapeutic agent to tissue, wherein a thickening agent, bioadhesive material or tissue sealant is added to the materials being delivered to reduce or eliminate dispersion or leakage of the therapeutic agent from the tissue after injection into the tissue. The therapeutic agent is delivered by injecting the therapeutic agent into tissue, preferably by an injection needle. [0008]
  • In another embodiment, the invention includes a method for delivering a therapeutic agent into a tissue in a mammal, which includes injecting a therapeutic agent into tissue with an injection needle, withdrawing the injection needle from the tissue, thus forming a needle track having a mouth in the tissue, and sealing the mouth of said needle track. Preferably, the mouth of the needle track is sealed by radio frequency cautery. In other embodiments, the mouth of the needle track is sealed by resistance heating, laser heating, plugging the mouth with a solid plug, or by coagulating a material at the mouth of the needle track. [0009]
  • DETAILED DESCRIPTION
  • The inventors have surprisingly found that when therapeutic agent is delivered to target tissue with an injection device such as a needle, leaking and dispersion often result upon removal of the device from the tissue. For example, the inventors have discovered that where an injection is performed via a needle, there is potential for leakage of the administered therapeutic agent along the needle track left by needle withdrawal. This problem is exacerbated in situations where the therapeutic agent is injected into the tissue of an organ that undergoes expansion and contraction, such as the heart. In such cases, the organ wall thins during organ expansion, thus facilitating the leakage of previously-injected therapeutic agent from the organ tissue through the needle track and thereby decreasing the actual dose of therapeutic agent delivered to the target site and increasing systemic distribution of the drug. [0010]
  • The problem of leakage of injected therapeutic agent has not previously been appreciated. Conventionally, injection devices are immediately withdrawn from target tissue following injection without safeguards for the possibility of leakage because it has been assumed, given the relatively small volume of therapeutic agent that is administered by injection, that the therapeutic agent is immediately absorbed by the target tissue. [0011]
  • The present invention solves the problems discovered by the inventors by providing any suitable means for inhibiting loss of injected therapeutic agent prior to cell uptake. Embodiments of the invention thus result in an increased exposure of the target tissue to the therapeutic agents administered, and thus, increased efficiency of localized drug delivery. Other embodiments of the invention include sealing the mouth of the needle track (at the injection site) upon needle removal. The methods of the invention have the additional benefit of permitting a relatively large volume of therapeutic agent to be effectively and efficiently administered. Examples of injection volumes of the present invention include a range of about 1 μl to about 1 ml, preferably 10-100 μl. [0012]
  • The invention is described herein with specific reference to an injection needle as the delivery device. Examples of specific devices incorporating injection needles, and thus within the scope of the invention, include needle injection catheters, hypodermic needles, biopsy needles, ablation catheters, cannulas and any other type of medically useful needle. It will be understood by one of ordinary skill in the art that other injection devices are contemplated and are within the scope of the invention. Specifically, any device competent to penetrate tissue is contemplated, particularly those that create an opening through which a delivered agent may escape or “leak out.” Non-needle injection devices are also contemplated by the present invention. Examples of non-needle injection devices include, but are not limited to, transmural myocardial revascularization (TMR) devices and percutaneous myocardial revascularization (PMR) devices or any other device capable of wounding or creating a channel or crater in tissue. Further examples of suitable injection devices include ablation devices and needle-free injectors which propel fluid using a spring or pressurized gas, such as carbon dioxide injection devices. [0013]
  • In one embodiment of the present invention, therapeutic agent is delivered to tissue by injecting the therapeutic agent into tissue via an injection device, preferably an injection needle. Following injection, the injection needle may be kept engaged with the tissue (i.e., the needle is not withdrawn) for a period of time after the injection has been completed. The time period that the needle is kept engaged with the tissue is sufficient for the therapeutic agent to be substantially completely absorbed by the target tissue and may include a prolonged time period. Preferably, this time period is within the range of about 5 seconds to about 2 minutes; more preferably, the time period is within the range of about 5 seconds to about 30 seconds. When the needle is subsequently withdrawn, leakage of the therapeutic agent is minimized or eliminated because it has already been absorbed by the target tissue. [0014]
  • In another embodiment, therapeutic agent is delivered to tissue by injecting therapeutic agent into tissue with an injection needle, wherein a thickening agent is added to the therapeutic agent prior to injection. As used herein, “thickening agent” refers to any biocompatible additive that results in an increased viscosity of the materials being injected. By way of example, suitable thickening agents include albumin, iohexol or other contrast agent, alginates, polyacrylic acid, hyaluronic acid, dextran, collagen, gelatin, polyethylene glycol, poloxamers and various biocompatible polymers. [0015]
  • Suitable biocompatible polymers for use in the present invention are hydrophilic or hydrophobic, and include, but are not limited to, polycarboxylic acids, cellulosic polymers, including cellulose acetate and cellulose nitrate, gelatin, polyvinylpyrrolidone, cross-linked polyvinylpyrrolidone, hydrogels, polyanhydrides including maleic anhydride polymers, polyamides, polyvinyl alcohols, copolymers of vinyl monomers such as EVA, polyvinyl ethers, polyvinyl aromatics, polyethylene oxides, glycosaminoglycans, polysaccharides, ethylene vinylacetate, polyesters including polyethylene terephthalate, polyacrylamides, polyethers, polyether sulfone, polycarbonate, polyalkylenes including polypropylene, polyethylene and high molecular weight polyethylene, halogenated polyalkylenes including polytetrafluoroethylene, polyurethanes, polyorthoesters, proteins, polypeptides, silicones, siloxane polymers, polylactic acid, polyglycolic acid, polycaprolactone, polyhydroxybutyrate valerate and blends and copolymers thereof as well as other biodegradable, bioabsorbable and biostable polymers and copolymers. [0016]
  • By adding a thickening agent, the therapeutic agent has an increased ability to resist forces tending to push the therapeutic agent out of the tissue via the needle tracks. Preferably in this embodiment, the injection needle remains engaged with the tissue for a period of time sufficient to allow cellular uptake of substantially all of the therapeutic agent. In an even more preferred embodiment, the combination of therapeutic agent and thickening agent is sufficient to inhibit any leaking of the therapeutic agent from the tissue when the delivery device is withdrawn from the tissue. [0017]
  • In another embodiment, therapeutic agent is delivered to tissue by injecting therapeutic agent into tissue with an injection needle, wherein a bioadhesive material is added to the materials being injected. As used herein, “bioadhesive material” refers to any biocompatible additive that results in an increase of the affinity of the injected material for tissue. Bioadhesive materials for use in conjunction with the invention include suitable bioadhesive materials known to those of ordinary skill in the art. By way of example, suitable bioadhesive materials include fibrinogen with or without thrombin, fibrin, fibropectin, elastin, laminin, cyano-acrylates, polyacrylic acid, polystyrene, bioabsorbable and biostable polymers derivatized with sticky molecules such as arginine, glycine, and aspartic acid, and copolymers. [0018]
  • Preferably in this embodiment, the injection needle remains engaged with the tissue for a period of time sufficient to allow cellular uptake of substantially all of the therapeutic agent. In an even more preferred embodiment, the combination of therapeutic agent and bioadhesive material is sufficient to inhibit any leaking of the therapeutic agent from the tissue when the delivery device is withdrawn from the tissue. [0019]
  • In another embodiment, therapeutic agent is delivered to tissue by injecting the therapeutic agent into the tissue with an injection needle, wherein a tissue sealant is used to seal the mouth of the needle track upon needle removal. The sealant is delivered to the mouth of the needle track by any suitable means, such as through a lumen of a multi-lumen catheter, in which case the injection needle is delivered via a separate lumen. Alternatively, for example, the sealant may be added to the material being injected, or may be coated onto the exterior of the needle. Tissue sealants for use in conjunction with the invention include suitable sealants known to those of ordinary skill in the art. Such tissue sealants preferably include those having suitable bonding properties, elasticity and biodegradability for the tissue to which the sealant is to be applied. By way of example, suitable sealants include cyanoacrylates, collagen, fibrinogen with or without thrombin, fibrin, fibrin glue, fibropectin, elastin, laminin, cyano-acrylates, polyacrylic acid, polystyrene, bioabsorbable and biostable polymers derivatized with sticky molecules such as arginine, glycine, and aspartic acid, and copolymers. [0020]
  • Preferably in this embodiment, the injection needle remains engaged with the tissue for a period of time sufficient to allow cellular uptake of substantially all of the therapeutic agent. In an even more preferred embodiment, the combination of therapeutic agent and tissue sealant is sufficient to inhibit any leaking of the therapeutic agent from the tissue when the delivery device is withdrawn from the tissue. [0021]
  • The invention also includes a method of sealing an injection site at the mouth of a needle track in tissue. A needle track is formed in tissue after a therapeutic agent has been injected into a tissue with an injection device and subsequently removed from the tissue. [0022]
  • According to a preferred embodiment, one method of sealing the injection site is by performing radio frequency cautery at the mouth of the needle track to seal the mouth upon needle removal from the tissue. Cauterization involves using such intense heat to seal the open ends of the tissue. Radio frequency cautery may be performed by any suitable method. Such methods are known to those skilled in the art. [0023]
  • According to another preferred embodiment, a method for sealing the injection site is by resistance heating at the mouth of the needle track. Intense heat may be used to seal the mouth of the needle track upon needle removal. Intense heat used to seal open ends of tissue may be generated by a variety of different methods. In a preferred embodiment, intense heat is generated by resistance heating a metallic probe, such that the generated heat is intense enough to seal the open ends of tissue. Methods of delivering intense heat, and more preferably resistance heating, are known to those skilled in the art. [0024]
  • Another preferred embodiment includes a method for sealing the injection site by performing laser heating at the mouth of the needle track to seal the mouth upon needle removal. In this embodiment, laser emitted optical energy may be used to heat biological tissue to a degree suitable for denaturing the tissue proteins such that the collagenous elements of the tissue form a “biological glue” to seal the tissue. Suitable methods of laser heating a tissue are known to those skilled in the art. [0025]
  • According to yet another preferred embodiment, the present invention includes a method for sealing the injection site by plugging the mouth of a needle track with a solid plug or by coagulating one or more materials at the mouth upon needle removal. Examples of materials that may be used in accordance with this embodiment in order to seal the mouth of the needle track include fibrin glue, cyanoacrylate-based adhesives and the like. Other suitable sealant plugs would be apparent to those in the art based on the present disclosure. In a preferred embodiment, the sealant plug may be heated (or cooled, depending on the temperature at which the material being used is liquid) prior to application to the mouth of the needle track, and subsequent cooling (or heating) may aid in solidifying and sealing the tissue. For example, a temperature sensitive polymer, which is liquid at above or below physiological temperature (i.e. about 37° C.) and solidifies at physiological temperature may be used in this embodiment. Examples of suitable materials for use in this embodiment include N-isoproylacrylamide and certain celluloses. [0026]
  • When the injection site is sealed by a coagulating material, the coagulating material is applied to the mouth of the injection site while the material is in a first fluent state. Then the material is maintained in a position so as to plug the mouth of the injection site under conditions which convert the material in situ into a second less-fluent or essentially non-fluent state. The conversion may be achieved either by changing the environment surrounding the material by the addition or removal of chemicals or energy, or by passive means such as maintaining the material at the normal internal body temperature of a patient. The transition of the state of the material from a fluent state to a less fluent or essentially non-fluent state may be the result of a phase change or of a viscosity change or of polymerization. [0027]
  • Preferably the material is one or more biocompatible materials. In a preferred embodiment the material is a polymeric material, which can be applied as polymers, monomers, macromers or combinations thereof. The polymeric materials are preferably those materials that can be polymerized or have their viscosity altered in vivo, preferably by the application of light, ultrasound, radiation or chelation, alone or in the presence of added catalyst or by a change to physiological pH, diffusion or calcium ions (alginate) or borate ions (polyvinyl alcohol) into the polymer or change in temperature to body temperature. [0028]
  • Examples of polymers that may be suitable for use in this embodiment include those polymers listed above as being suitable thickening agents. Examples of in situ polymerization include, but are not limited to, alginates crosslinked with multivalent cations, fibrinogen crosslinked with thrombin and photochemical crosslinking. Further examples of suitable polymers include the following. Materials which polymerize or alter viscosity as a function of temperature include poly(oxyalkene) polymers and copolymers such as poly(ethylene oxide)-poly(propylene oxide) (PEO-PPO) copolymers, and copolymers and blends of these polymers with polymers such as poly(alpha-hydroxy) acids, including but not limited to lactic, glycolic and hydroxybutyric acids, polycaprolactones, and polyvalerolactones. Examples of materials which polymerize in the presence of divalent ions such as calcium, barium, magnesium, copper, and iron include naturally occurring polymers collagen, fibrin, elastin, agarose, agar, polysaccharides such as hyaluronic acid, hyalobiuronic acid, heparin, cellulose, alginate, curdlan, chitin and chitosan, and derivatives thereof, cellulose acetate, carboxymethyl cellulose, hydroxymethyl cellulose, cellulose sulfate sodium salt, and ethylcellulose. Examples of materials that can be crosslinked photochemically with ultrasound or with radiation generally include those materials that contain a double bond or a triple bond; examples include monomers which are polymerized into poly(acrilic acids), poly(acrylates), polyacrylamides, polyvinyl alcohols, polyethylene glycols, and ethylene vinyl acetates. Examples of materials that can be crosslinked by the addition of covalent crosslinking agents, such as glutaraldehyde, succindialdehyde or carbodiimide, include amino containing polymers including polypeptides and proteins such as albumin and polyethyleneimine. [0029]
  • In an alternative embodiment, a non-polymeric coagulant may be used, wherein the non-polymeric material is capable of transforming into a substantially solid matrix in situ is either added to the therapeutic agent prior to injection or applied to the mouth of a needle track after a needle is removed from tissue. [0030]
  • The non-polymeric material in this embodiment may be combined with at least one organic solvent. Suitable organic solvents are those that are biocompatible, pharmaceutically-acceptable, and will at least partially dissolve the non-polymeric material. The organic solvent has a solubility in water ranging from miscible to dispersible. The solvent is capable of diffusing, dispersing, or leaching from the composition in situ into aqueous tissue fluid of the implant site such as blood serum, lymph, cerebral spinal fluid (CSF), saliva, and the like. Solvents that are useful include, for example, substituted heterocyclic compounds such as N-methyl-2-pyrrolidone (NMP) and 2-pyrrolidone (2-pyrol); esters of carbonic acid and alkyl alcohols such as propylene carbonate, ethylene carbonate and dimethyl carbonate; fatty acids such as acetic acid, lactic acid and heptanoic acid; alkyl esters of mono-, di-, and tricarboxylic acids such as 2-ethyoxyethyl acetate, ethyl acetate, methyl acetate, ethyl lactate, ethyl butyrate, diethyl malonate, diethyl glutonate, tributyl citrate, diethyl succinate, tributyrin, isopropyl myristate, dimethyl adipate, dimethyl succinate, dimethyl oxalate, dimethyl citrate, triethyl citrate, acetyl tributyl citrate, glyceryl triacetate; alkyl ketones such as acetone and methyl ethyl ketone; ether alcohols such as 2-ethoxyethanol, ethylene glycol dimethyl ether, glycofurol and glycerol formal; alcohols such as ethanol and propanol; polyhydroxy alcohols such as propylene glycol, polyethylene glycol (PEG), glycerin (glycerol), 1,3-butyleneglycol, and isopropylidene glycol; dialkylamides such as dimethylformamide and dimethylacetamide; dimethylsulfoxide (DMSO) and dimethylsulfone; tetrahydrofuran; lactones such as ε-caprolactone and butyrolactone; cyclic alkyl amides such as caprolactam; aromatic amides such as N,N-dimethyl-m-toluamide, and 1-dodecylazacycloheptan-2-one; and the like; and mixtures and combinations thereof. Preferred solvents include N-methyl-2-pyrrolidone, 2-pyrrolidone, dimethylsulfoxide, ethyl lactate, propylene carbonate, glycofurol, glycerol, and isopropylidene glycol. Preferably the organic solvent is biocompatible and non-toxic. [0031]
  • A composition of the non-polymeric material is preferably flowable with a consistency that ranges from watery to slightly viscous to a putty or paste. The non-polymeric material eventually coagulates to a microporous, solid matrix upon the dissipation of the organic solvent into adjacent tissue fluids. The non-polymeric composition can be manipulated and shaped within the defect site as it solidifies. Advantageously, the moldability of the composition as it hardens allows it to conform to irregularities, crevices, cracks, holes, and the like, in the implant site. The resulting substantially solid matrix is preferably biodegradable, bioabsorbable, and/or bioerodible, and will be gradually absorbed into the surrounding tissue fluids, and become disintegrated through enzymatic, chemical and/or cellular hydrolytic action. The term “biodegradable” means that the non-polymeric material and/or matrix of the implant will degrade over time by the action of enzymes, by simple or enzymatically catalyzed hydrolytic action and/or by other similar mechanisms in the human body. The term “bioerodible” means that the implant matrix will erode or degrade over time due, at least in part, to contact with substances found in the surrounding tissue fluids, cellular action, and the like. By “bioabsorbable,” it is meant that the non-polymeric matrix will be broken down and absorbed within the human body, for example, by a cell, a tissue, and the like. [0032]
  • Optionally, the composition of non-polymeric material of this embodiment can be combined with a minor amount of a biodegradable, bioabsorbable thermoplastic polymer such as a polylactide, polycaprolactone, polyglycolide, or copolymer thereof, to provide a more coherent solid implant or a composition with greater viscosity so as to hold it in place while it solidifies. The non-polymeric materials are also capable of coagulating or solidifying to form a solid implant matrix upon the dissipation, dispersement or leaching of the solvent component from the composition and contact of the non-polymeric material with an aqueous medium. The solid matrix has a firm consistency ranging from gelatinous to impressionable and moldable, to a hard, dense solid. [0033]
  • Non-polymeric materials according to this embodiment that are suitable for use in the present invention generally include any having the foregoing characteristics. Examples of useful non-polymeric materials include sterols such as cholesterol, stigmasterol, β-sitosterol, and estradiol; cholesteryl esters such as cholesteryl stearate; C[0034] 12-C24 fatty acids such as lauric acid, myristic acid, palmitic acid, stearic acid, arachidic acid, behenic acid, and lignoceric acid; C18-C36 mono-, di- and triacylglycerides such as glyceryl monooleate, glyceryl monolinoleate, glyceryl monolaurate, glyceryl monodocosanoate, glyceryl monomyristate, glyceryl monodicenoate, glyceryl dipalmitate, glyceryl didocosanoate, glyceryl dimyristate, glyceryl didecenoate, glyceryl tridocosanoate, glyceryl trimyristate, glyceryl tridecenoate, glycerol tristearate and mixtures thereof; sucrose fatty acid esters such as sucrose distearate and sucrose palmitate; sorbitan fatty acid esters such as sorbitan monostearate, sorbitan monopalmitate and sorbitan tristearate; C16-C18 fatty alcohols such as cetyl alcohol, myristyl alcohol, stearyl alcohol, and cetostearyl alcohol; esters of fatty alcohols and fatty acids such as cetyl palmitate and cetearyl palmitate; anhydrides of fatty acids such as stearic anhydride; phospholipids including phosphatidylcholine (lecithin), phosphatidylserine, phosphatidylethanolamine, phosphatidylinositol, and lysoderivatives thereof; sphingosine and derivatives thereof; spingomyelins such as stearyl, palmitoyl, and tricosanyl spingomyelins; ceramides such as stearyl and palmitoyl ceramides; glycosphingolipids; lanolin and lanolin alcohols; and combinations and mixtures thereof. Preferred non-polymeric materials include cholesterol, glyceryl monostearate, glycerol tristearate, stearic acid, stearic anhydride, glyceryl monooleate, glyceryl monolinoleate, and acetylated monoglycerides.
  • The present invention also includes a method for delivering a therapeutic agent into a tissue in a mammal, which includes injecting a therapeutic agent into tissue of a mammal in need of said therapeutic agent, with an injection needle, withdrawing the injection needle from the tissue, thus, forming a needle track in the tissue, and sealing the mouth of the needle track. Preferably, the mouth of the needle track is sealed by radio frequency cautery. In other embodiments, the mouth of the needle track is sealed by resistance heating, laser heating, plugging the mouth with a solid plug, by coagulating a material at the mouth of the needle track or by other methods known to those skilled in the art as described above. [0035]
  • In addition to the above embodiments, other methods of sealing an injection site such as cryogenic techniques and electrosurgical techniques are contemplated by the present invention. [0036]
  • Any of the above-described thickening agents, bioadhesive materials, tissue sealants, solid plugs, or coagulants (including polymeric and non-polymeric coagulants), or compositions containing any of the above, may contain one or more additives that would be known to those in the art. [0037]
  • The term “therapeutic agent” as used herein includes one or more “therapeutic agents” or “drugs”. The terms “therapeutic agents” and “drugs” are used interchangeably herein and include pharmaceutically active compounds, nucleic acids with and without carrier vectors such as lipids, compacting agents (such as histones), virus (such as adenovirus, andenoassociated virus, retrovirus, lentivirus and α-virus), polymers, hyaluronic acid, proteins, cells and the like, with or without targeting sequences. The injection administered in accordance with the invention includes the therapeutic agent(s) and solutions thereof. [0038]
  • Specific examples of therapeutic agents used in conjunction with the present invention include, for example, pharmaceutically active compounds, proteins, cells, oligonucleotides, ribozymes, anti-sense oligonucleotides, DNA compacting agents, gene/vector systems (i.e., any vehicle that allows for the uptake and expression of nucleic acids), nucleic acids (including, for example, recombinant nucleic acids; naked DNA, cDNA, RNA; genomic DNA, cDNA or RNA in a non-infectious vector or in a viral vector and which further may have attached peptide targeting sequences; antisense nucleic acid (RNA or DNA); and DNA chimeras which include gene sequences and encoding for ferry proteins such as membrane translocating sequences (“MTS”) and herpes simplex virus-1 (“VP22”)), and viral, liposomes and cationic and anionic polymers and neutral polymers that are selected from a number of types depending on the desired application. Non-limiting examples of virus vectors or vectors derived from viral sources include adenoviral vectors, herpes simplex vectors, papilloma vectors, adeno-associated vectors, retroviral vectors, and the like. Non-limiting examples of biologically active solutes include anti-thrombogenic agents such as heparin, heparin derivatives, urokinase, and PPACK (dextrophenylalanine proline arginine chloromethylketone); antioxidants such as probucol and retinoic acid; angiogenic and anti-angiogenic agents and factors; agents blocking smooth muscle cell proliferation such as rapamycin, angiopeptin, and monoclonal antibodies capable of blocking smooth muscle cell proliferation; anti-inflammatory agents such as dexamethasone, prednisolone, corticosterone, budesonide, estrogen, sulfasalazine, acetyl salicylic acid, and mesalamine; calcium entry blockers such as verapamil, diltiazem and nifedipine; antineoplastic/antiproliferative/anti-mitotic agents such as paclitaxel, 5-fluorouracil, methotrexate, doxorubicin, daunorubicin, cyclosporine, cisplatin, vinblastine, vincristine, epothilones, endostatin, angiostatin and thymidine kinase inhibitors; antimicrobials such as triclosan, cephalosporins, aminoglycosides, and nitorfurantoin; anesthetic agents such as lidocaine, bupivacaine, and ropivacaine; nitric oxide (NO) donors such as lisidomine, molsidomine, L-arginine, NO-protein adducts, NO-carbohydrate adducts, polymeric or oligomeric NO adducts; anti-coagulants such as D-Phe-Pro-Arg chloromethyl ketone, an RGD peptide-containing compound, heparin, antithrombin compounds, platelet receptor antagonists, anti-thrombin antibodies, antiplatelet receptor antibodies, enoxaparin, hirudin, Warafin sodium, Dicumarol, aspirin, prostaglandin inhibitors, platelet inhibitors and tick antiplatelet factors; vascular cell growth promoters such as growth factors, growth factor receptor antagonists, transcriptional activators, and translational promoters; vascular cell growth inhibitors such as growth factor inhibitors, growth factor receptor antagonists, transcriptional repressors, translational repressors, replication inhibitors, inhibitory antibodies, antibodies directed against growth factors, bifunctional molecules consisting of a growth factor and a cytotoxin, bifunctional molecules consisting of an antibody and a cytotoxin; cholesterol-lowering agents; vasodilating agents; agents which interfere with endogeneus vascoactive mechanisms; survival genes which protect against cell death, such as anti-apoptotic Bcl-2 family factors and Akt kinase; and combinations thereof. Cells can be of human origin (autologous or allogenic) or from an animal source (xenogeneic), genetically engineered if desired to deliver proteins of interest at the injection site. The delivery mediated is formulated as needed to maintain cell function and viability. Any modifications are routinely made by one skilled in the art. [0039]
  • Polynucleotide sequences useful in practice of the invention include DNA or RNA sequences having a therapeutic effect after being taken up by a cell. Examples of therapeutic polynucleotides include anti-sense DNA and RNA; DNA coding for an anti-sense RNA; or DNA coding for tRNA or rRNA to replace defective or deficient endogenous molecules. The polynucleotides of the invention can also code for therapeutic proteins or polypeptides. A polypeptide is understood to be any translation product of a polynucleotide regardless of size, and whether glycosylated or not. Therapeutic proteins and polypeptides include as a primary example, those proteins or polypeptides that can compensate for defective or deficient species in an animal, or those that act through toxic effects to limit or remove harmful cells from the body. In addition, the polypeptides or proteins that can be injected, or whose DNA can be incorporated, include without limitation, angiogenic factors and other molecules competent to induce angiogenesis, including acidic and basic fibroblast growth factors, vascular endothelial growth factor, hif-1, epidermal growth factor, transforming growth factor α and β, platelet-derived endothelial growth factor, platelet-derived growth factor, tumor necrosis factor α, hepatocyte growth factor and insulin like growth factor; growth factors; cell cycle inhibitors including CDK inhibitors; anti-restenosis agents, including p15, p16, p18, p19, p21, p27, p53, p57, Rb, nFkB and E2F decoys, thymidine kinase (“TK”) and combinations thereof and other agents useful for interfering with cell proliferation, including agents for treating malignancies; and combinations thereof. Still other useful factors, which can be provided as polypeptides or as DNA encoding these polypeptides, include monocyte chemoattractant protein (“MCP-1”), and the family of bone morphogenic proteins (“BMP's”). The known proteins include BMP-2, BMP-3, BMP-4, BMP-5, BMP-6 (Vgr-1), BMP-7 (OP-1), BMP-8, BMP-9, BMP-10, BMP-11, BMP-12, BMP-13, BMP-14, BMP-15, and BMP-16. Currently preferred BMP's are any of BMP-2, BMP-3, BMP-4, BMP-5, BMP-6 and BMP-7. These dimeric proteins can be provided as homodimers, heterodimers, or combinations thereof, alone or together with other molecules. Alternatively or, in addition, molecules capable of inducing an upstream or downstream effect of a BMP can be provided. Such molecules include any of the “hedgehog” proteins, or the DNA's encoding them. [0040]
  • Organs and tissues that may be treated by the methods of the present invention include any mammalian tissue or organ, whether injected in vivo or ex vivo. Non-limiting examples include heart, lung, brain, liver, skeletal muscle, smooth muscle, kidney, bladder, intestines, stomach, pancreas, ovary, prostate, eye, tumors, cartilage and bone. [0041]
  • The therapeutic agents can be used, for example, in any application for treating, preventing, or otherwise affecting the course of a disease or tissue or organ dysfunction. For example, the methods of the invention can be used to induce or inhibit angiogenesis, as desired, to prevent or treat restenosis, to treat a cardiomyopathy or other dysfunction of the heart, for treating Parkinson's disease or a stroke or other dysfunction of the brain, for treating cystic fibrosis or other dysfunction of the lung, for treating or inhibiting malignant cell proliferation, for treating any malignancy, and for inducing nerve, blood vessel or tissue regeneration in a particular tissue or organ. [0042]
  • Therapeutic agents may be directly injected into tissue, or may be delivered in a solution or other form and may be delivered via a carrier. Therapeutic agents may be delivered via microspheres that are injected into the tissue, rather than injecting therapeutic agents directly into the tissue. In a preferred embodiment, therapeutic agents may be injected via microspheres into muscle tissue. Injecting therapeutic agents via microspheres may result in sustained release or delivery of the drug. Direct injection of therapeutic agents may represent an effective means to treat the entire myocardium. The authors have found that injected agents tend to disperse throughout the myocardium into uninjected areas. Thus, the number of injections that is necessary in order to deliver therapeutic agents to a specific area of tissue may be decreased. [0043]
  • In a preferred embodiment, therapeutic agents are delivered to muscle tissue by injecting a solution of microspheres directly into the muscle tissue. In a more preferred embodiment, the muscle tissue is the heart.[0044]
  • EXAMPLE
  • The myocardium of a mammal was treated by injecting therapeutic agents into muscle tissue. Upon injection of a gene, with and without a viral vector, protein expression is limited to the immediate area where the injections were made. Applicants surprisingly found that upon injection of a solution of microspheres directly into muscle tissue, the microspheres became dispersed throughout the myocardium and away from the injection site. Single 10-100 μl (in volume) injections of a solution of microspheres were made into the anterior, lateral and posterior wall of the left ventrical, resulting in 1-6% of the injectate being recovered in the uninjected septal wall and 0.1-1% of the injectate being recovered in the uninjected right ventrical. [0045]
  • This data shows that an injected solution of microspheres spreads significantly beyond the site of injection and thus, delivers therapeutic agent beyond the site of the injection. In this manner, it may be possible to treat a significant portion of the heart with a therapeutic protein or drug via a limited number of injections into the muscle tissue. [0046]
  • Furthermore, it may be possible to modulate the dispersion of therapeutic agents in the heart by adding ligand to the therapeutic agents, which may bind to cell surface receptors, extracellular matrix components or other components of the myocardial tissue. [0047]

Claims (25)

What is claimed is:
1. A method of sealing an injection site comprising
performing radio frequency cautery at a mouth of a needle track in tissue to seal the mouth;
wherein the needle track is formed by injecting a therapeutic agent into a tissue with an injection device and removing the injection device from the tissue.
2. A method of sealing an injection site comprising
performing resistance heating at a mouth of a needle track in tissue to seal the mouth;
wherein the needle track is formed by injecting a therapeutic agent into a tissue with an injection device and removing the injection device from the tissue.
3. A method of sealing an injection site comprising
performing laser heating at a mouth of a needle track in tissue to seal the mouth;
wherein the needle track is formed by injecting a therapeutic agent into a tissue with an injection device and removing the injection device from the tissue.
4. A method of sealing an injection site comprising
plugging a mouth of a needle track in tissue with a solid plug to seal the mouth;
wherein the needle track is formed by injecting a therapeutic agent into a tissue with an injection device and removing the injection device from the tissue.
5. A method of sealing an injection site comprising
coagulating at least one material at a mouth of a needle track in tissue to seal the mouth;
wherein the needle track is formed by injecting a therapeutic agent into a tissue with an injection device and removing the injection device from the tissue.
6. The method of claim 5, wherein said material is a polymeric material or a monomeric material that is polymerized into a polymeric material.
7. The method of claim 6, wherein said polymeric material is selected from the group consisting of poly(oxyalkene) polymers and copolymers and blends with poly(alpha-hydroxy) acids, collagen, fibrin, elastin, agarose, agar, hyaluronic acid, hyalobiuronic acid, heparin, cellulose, alginate, curdlan, chitin, chitosan, and derivatives thereof, cellulose acetate, carboxymethyl cellulose, hydroxymethyl cellulose, cellulose sulfate sodium salt, ethylcellulose, poly(acrilic acids), poly(acrylates), polyacrylamides, polyvinyl alcohols, polyethylene glycols, ethylene vinyl acetates, and amino containing polymers.
8. The method of claim 5, wherein said material is a non-polymeric material.
9. The method of claim 8, wherein said non-polymeric material is selected from the group consisting of sterols, cholesteryl esters, C12-C14 fatty acids, C18-C3, mono-, di- and triacylglyciderides, sucrose fatty acid esters, sorbitan fatty acid esters, C16-C18 fatty alcohols, esters of fatty alcohols, esters of fatty acids, anhydrides of fatty acids, phospholipids, sphingosine, spingomyelins, ceramides, glycosphingolipids, lanolin, lanolin alcohols, and derivatives, combinations, and mixtures thereof.
10. A method for delivering a therapeutic agent into a tissue in a mammal, comprising
injecting a therapeutic agent into tissue of a mammal in need of said therapeutic agent, with an injection device; and
delivering a thickening agent to the tissue of said mammal, in combination with said therapeutic agent.
11. The method of claim 10, wherein said thickening agent is selected from the group consisting of albumin, iohexol, alginates, polyacrylic acid, hyaluronic acid, dextran, poloxamers, collagen, gelatin, polyethylene glycol, polycarboxylic acids, cellulosic polymers, gelatin, polyvinylpyrrolidone, cross-linked polyvinylpyrrolidone, hydrogels, polyanhydrides, polyamides, polyvinyl alcohols, copolymers of vinyl monomers, polyvinyl ethers, polyvinyl aromatics, polyethylene oxides, glycosaminoglycans, polysaccharides, ethylene vinylacetate, polyesters, polyacrylamides, polyethers, polyether sulfone, polycarbonate, polyalkylenes, halogenated polyalkylenes, polyurethanes, polyorthoesters, proteins, polypeptides, silicones, siloxane polymers, polylactic acid, polyglycolic acid, polycaprolactone, polyhydroxybutyrate valerate and blends and copolymers thereof.
12. The method of claim 10, wherein said combination is sufficient to inhibit leaking of said agent from said tissue when said device is withdrawn from said tissue.
13. A method for delivering a therapeutic agent into a tissue in a mammal, comprising
injecting a therapeutic agent into tissue of a mammal in need of said therapeutic agent, with an injection device; and
delivering a bioadhesive material to the tissue of said mammal, in combination with said thickening agent.
14. The method of claim 13, wherein said bioadhesive material is selected from the group consisting of fibrinogen with or without thrombin, fibrin, fibropectin, elastin, laminin, cyano-acrylates, polyacrylic acid, polystyrene, polymers derivatized with arginine, polymers derivatized with glycine, polymers derivatized with aspartic acid, and copolymers.
15. The method of claim 13, wherein said combination is sufficient to inhibit leaking of said agent from said tissue when said device is withdrawn from said tissue.
16. A method for delivering a therapeutic agent into a tissue in a mammal, comprising
injecting a therapeutic agent into tissue of a mammal in need of said therapeutic agent, with an injection device; and
delivering a tissue sealant to the tissue of said mammal, in combination with said therapeutic agent.
17. The method of claim 16, wherein the tissue sealant is selected from the group consisting of cyanoacrylates, collagen, fibrinogen with or without thrombin, fibrin, fibrin glue, fibropectin, elastin, laminin, cyano-acrylates, polyacrylic acid, polystyrene, polymers derivatized with arginine, polymers derivatized with glycine, polymers derivatized with aspartic acid, and copolymers.
18. The method of claim 16, wherein said combination is sufficient to inhibit leaking of said agent from said tissue when said device is withdrawn from said tissue.
19. A method for delivering a therapeutic agent into a tissue in a mammal, comprising
injecting a therapeutic agent into tissue of a mammal in need of said therapeutic agent, with an injection device;
withdrawing said injection device from said tissue forming a needle track having a mouth in the tissue; and
sealing the mouth of said needle track.
20. The method of claim 19, wherein the mouth of the needle track is sealed by radio frequency cautery.
21. The method of claim 19, wherein the mouth of the needle track is sealed by resistance heating.
22. The method of claim 19, wherein the mouth of the needle track is sealed by laser heating.
23. The method of claim 19, wherein the mouth of the needle track is sealed by plugging the mouth with a solid plug.
24. The method of claim 19, wherein the mouth of the needle track is sealed by coagulating a material at the site.
25. The method of claim 24, wherein the material is selected from the group consisting of fibrin glue and cyanoacrylate adhesive.
US10/388,468 1999-05-07 2003-03-17 Methods of sealing an injection site Abandoned US20030181908A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/388,468 US20030181908A1 (en) 1999-05-07 2003-03-17 Methods of sealing an injection site

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US13312299P 1999-05-07 1999-05-07
US09/521,473 US6554851B1 (en) 1999-05-07 2000-03-08 Methods of sealing an injection site
US10/388,468 US20030181908A1 (en) 1999-05-07 2003-03-17 Methods of sealing an injection site

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/521,473 Division US6554851B1 (en) 1999-05-07 2000-03-08 Methods of sealing an injection site

Publications (1)

Publication Number Publication Date
US20030181908A1 true US20030181908A1 (en) 2003-09-25

Family

ID=26831067

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/521,473 Expired - Fee Related US6554851B1 (en) 1999-05-07 2000-03-08 Methods of sealing an injection site
US10/388,468 Abandoned US20030181908A1 (en) 1999-05-07 2003-03-17 Methods of sealing an injection site

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/521,473 Expired - Fee Related US6554851B1 (en) 1999-05-07 2000-03-08 Methods of sealing an injection site

Country Status (6)

Country Link
US (2) US6554851B1 (en)
EP (1) EP1176918A2 (en)
JP (1) JP2003530897A (en)
AU (1) AU4978400A (en)
CA (1) CA2373600C (en)
WO (1) WO2000067655A2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030091611A1 (en) * 1999-06-02 2003-05-15 Peter Zahradka Devices and compounds for treating arterial restenosis
US20070270757A1 (en) * 2006-05-17 2007-11-22 Willis Geoffrey H Needle array devices and methods
US20100034867A1 (en) * 2005-04-29 2010-02-11 Atrium Medical Corporation Drug delivery coating for use with a medical device and methods of treating vascular injury
CN108355164A (en) * 2018-03-24 2018-08-03 浙江理工大学 Absorbable imitative blood platelet organism material and its application
US10583218B2 (en) * 2008-11-05 2020-03-10 Hancock Jaffe Laboratories Aesthetics, Inc. Composite containing collagen and elastin as a dermal expander and tissue filler

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5968547A (en) 1997-02-24 1999-10-19 Euro-Celtique, S.A. Method of providing sustained analgesia with buprenorphine
US20030069601A1 (en) * 1998-12-15 2003-04-10 Closys Corporation Clotting cascade initiating apparatus and methods of use
US6622731B2 (en) * 2001-01-11 2003-09-23 Rita Medical Systems, Inc. Bone-treatment instrument and method
ATE415952T1 (en) * 2001-05-01 2008-12-15 Euro Celtique Sa OPIOID-CONTAINING TRANSDERMAL SYSTEMS PROTECTED FROM ABUSE
AUPR514201A0 (en) * 2001-05-21 2001-06-14 Ventrassist Pty Ltd Staged implantation of ventricular assist devices
US6592608B2 (en) * 2001-12-07 2003-07-15 Biopsy Sciences, Llc Bioabsorbable sealant
US6659966B2 (en) * 2001-11-15 2003-12-09 Roche Diagnostics Corporation Fluid sampling apparatus
US7169127B2 (en) * 2002-02-21 2007-01-30 Boston Scientific Scimed, Inc. Pressure apron direct injection catheter
US7108685B2 (en) 2002-04-15 2006-09-19 Boston Scientific Scimed, Inc. Patch stabilization of rods for treatment of cardiac muscle
US20030194505A1 (en) * 2002-04-16 2003-10-16 Milbocker Michael Thomas Accelerated implant polymerization
US20040009155A1 (en) * 2002-07-12 2004-01-15 Maria Palasis Method for sustaining direct cell delivery
US9101536B2 (en) * 2002-08-06 2015-08-11 Matrix Medical Llc Biocompatible phase invertable proteinaceous compositions and methods for making and using the same
CA2494295C (en) * 2002-08-06 2012-05-01 Matrix Medical, Llc Biocompatible phase invertable proteinaceous compositions and methods for making and using the same
US10098981B2 (en) 2002-08-06 2018-10-16 Baxter International Inc. Biocompatible phase invertable proteinaceous compositions and methods for making and using the same
US8349348B2 (en) * 2002-08-06 2013-01-08 Matrix Medical, Llc Biocompatible phase invertible proteinaceous compositions and methods for making and using the same
WO2004012791A2 (en) * 2002-08-06 2004-02-12 Genvec, Inc. Improved injection system
GB0227043D0 (en) * 2002-11-20 2002-12-24 Smith & Nephew Angiogenic medical cyanoacrylate
US20040122349A1 (en) * 2002-12-20 2004-06-24 Lafontaine Daniel M. Closure device with textured surface
US8709038B2 (en) * 2002-12-20 2014-04-29 Boston Scientific Scimed, Inc. Puncture hole sealing device
WO2004112864A2 (en) * 2003-06-19 2004-12-29 Vascular Therapies Llc Medical devices and methods for regulating the tissue response to vascular closure devices
US7942897B2 (en) * 2003-07-10 2011-05-17 Boston Scientific Scimed, Inc. System for closing an opening in a body cavity
US8419722B2 (en) * 2004-10-29 2013-04-16 Spinal Restoration, Inc. Apparatus and method for injection of fibrin sealant in spinal applications
US8206448B2 (en) 2004-10-29 2012-06-26 Spinal Restoration, Inc. Injection of fibrin sealant using reconstituted components in spinal applications
US7597687B2 (en) * 2004-10-29 2009-10-06 Spinal Restoration, Inc. Injection of fibrin sealant including an anesthetic in spinal applications
US20110213464A1 (en) * 2004-10-29 2011-09-01 Whitlock Steven I Injection of fibrin sealant in the absence of corticosteroids in spinal applications
US20080015481A1 (en) * 2005-05-04 2008-01-17 Bergin Patrick J Hemostatic bandage and method of use
US7622628B2 (en) * 2005-05-04 2009-11-24 Innovasa Corporation Hemostatic wire guided bandage and method of use
US8911472B2 (en) 2005-12-13 2014-12-16 Cardiva Medical, Inc. Apparatus and methods for delivering hemostatic materials for blood vessel closure
US20100168767A1 (en) 2008-06-30 2010-07-01 Cardiva Medical, Inc. Apparatus and methods for delivering hemostatic materials for blood vessel closure
KR20090114469A (en) * 2007-02-22 2009-11-03 플루로메드, 인코포레이티드 Use of reverse thermosensitive polymers to control biological fluid flow following a medical procedure
US8197507B2 (en) * 2008-01-14 2012-06-12 Sri International Sutureless methods for laceration closure
US8241324B2 (en) * 2008-03-03 2012-08-14 Eilaz Babaev Ultrasonic vascular closure device
ATE505128T1 (en) * 2008-06-04 2011-04-15 Olympus Medical Systems Corp CAPSULE-SHAPED MEDICAL DEVICE
JP5203050B2 (en) * 2008-06-04 2013-06-05 オリンパスメディカルシステムズ株式会社 Capsule medical device
US20130060279A1 (en) 2011-09-02 2013-03-07 Cardiva Medical, Inc. Catheter with sealed hydratable hemostatic occlusion element
US20140171930A1 (en) * 2012-02-06 2014-06-19 Empire Technology Development Llc Tissue reinforcing compositions, devices, and methods of use
US20130317339A1 (en) 2012-05-23 2013-11-28 Biosense Webster (Israel), Ltd. Endobronchial catheter
US20160324570A1 (en) * 2016-07-15 2016-11-10 Hamid Ehsani-Nia Injection Coagulation Electrosurgical Device
US10531868B2 (en) 2017-12-01 2020-01-14 Cardiva Medical, Inc. Apparatus and methods for accessing and closing multiple penetrations on a blood vessel

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4929246A (en) * 1988-10-27 1990-05-29 C. R. Bard, Inc. Method for closing and sealing an artery after removing a catheter
US5053046A (en) * 1988-08-22 1991-10-01 Woodrow W. Janese Dural sealing needle and method of use
US5129882A (en) * 1990-12-27 1992-07-14 Novoste Corporation Wound clotting device and method of using same
US5192301A (en) * 1989-01-17 1993-03-09 Nippon Zeon Co., Ltd. Closing plug of a defect for medical use and a closing plug device utilizing it
US5226902A (en) * 1991-07-30 1993-07-13 University Of Utah Pulsatile drug delivery device using stimuli sensitive hydrogel
US5292332A (en) * 1992-07-27 1994-03-08 Lee Benjamin I Methods and device for percutanceous sealing of arterial puncture sites
US5342393A (en) * 1992-08-27 1994-08-30 Duke University Method and device for vascular repair
US5486195A (en) * 1993-07-26 1996-01-23 Myers; Gene Method and apparatus for arteriotomy closure
US5782860A (en) * 1997-02-11 1998-07-21 Biointerventional Corporation Closure device for percutaneous occlusion of puncture sites and tracts in the human body and method
US5840059A (en) * 1995-06-07 1998-11-24 Cardiogenesis Corporation Therapeutic and diagnostic agent delivery
US6033427A (en) * 1998-01-07 2000-03-07 Lee; Benjamin I. Method and device for percutaneous sealing of internal puncture sites
US6071301A (en) * 1998-05-01 2000-06-06 Sub Q., Inc. Device and method for facilitating hemostasis of a biopsy tract
US6102926A (en) * 1996-12-02 2000-08-15 Angiotrax, Inc. Apparatus for percutaneously performing myocardial revascularization having means for sensing tissue parameters and methods of use
US20010046518A1 (en) * 1998-08-14 2001-11-29 Amarpreet S. Sawhney Methods of using in situ hydration of hydrogel articles for sealing or augmentation of tissue or vessels

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4071028A (en) 1976-02-17 1978-01-31 Perkins George C Radio frequency cautery instrument and control unit therefor
US5370675A (en) 1992-08-12 1994-12-06 Vidamed, Inc. Medical probe device and method
USRE32208E (en) * 1982-11-16 1986-07-15 Ethicon, Inc. Absorbable hemostatic composition
US4890621A (en) * 1988-01-19 1990-01-02 Northstar Research Institute, Ltd. Continuous glucose monitoring and a system utilized therefor
US5575815A (en) 1988-08-24 1996-11-19 Endoluminal Therapeutics, Inc. Local polymeric gel therapy
US5725491A (en) 1988-10-03 1998-03-10 Atrix Laboratories, Inc. Method of forming a biodegradable film dressing on tissue
US4938763B1 (en) 1988-10-03 1995-07-04 Atrix Lab Inc Biodegradable in-situ forming implants and method of producing the same
US5632727A (en) 1988-10-03 1997-05-27 Atrix Laboratories, Inc. Biodegradable film dressing and method for its formation
AU2605592A (en) 1991-10-15 1993-04-22 Atrix Laboratories, Inc. Polymeric compositions useful as controlled release implants
EP0560014A1 (en) 1992-03-12 1993-09-15 Atrix Laboratories, Inc. Biodegradable film dressing and method for its formation
JPH07506991A (en) 1992-04-23 1995-08-03 シメッド ライフ システムズ インコーポレイテッド Apparatus and method for sealing vascular punctures
US5415657A (en) 1992-10-13 1995-05-16 Taymor-Luria; Howard Percutaneous vascular sealing method
US5624669A (en) * 1993-03-31 1997-04-29 Tri-Point Medical Corporation Method of hemostatic sealing of blood vessels and internal organs
US5681873A (en) 1993-10-14 1997-10-28 Atrix Laboratories, Inc. Biodegradable polymeric composition
JPH09511666A (en) 1994-04-08 1997-11-25 アトリックス・ラボラトリーズ・インコーポレイテッド Ancillary polymer systems for use in medical devices
US5947964A (en) 1995-03-03 1999-09-07 Neothermia Corporation Methods and apparatus for therapeutic cauterization of predetermined volumes of biological tissue
US5900245A (en) 1996-03-22 1999-05-04 Focal, Inc. Compliant tissue sealants
AU7398196A (en) 1995-10-11 1997-04-30 Fusion Medical Technologies, Inc. Device and method for sealing tissue
US5736152A (en) 1995-10-27 1998-04-07 Atrix Laboratories, Inc. Non-polymeric sustained release delivery system
US5962006A (en) 1997-06-17 1999-10-05 Atrix Laboratories, Inc. Polymer formulation for prevention of surgical adhesions
US6159232A (en) * 1997-12-16 2000-12-12 Closys Corporation Clotting cascade initiating apparatus and methods of use and methods of closing wounds
US6391048B1 (en) 2000-01-05 2002-05-21 Integrated Vascular Systems, Inc. Integrated vascular device with puncture site closure component and sealant and methods of use

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5053046A (en) * 1988-08-22 1991-10-01 Woodrow W. Janese Dural sealing needle and method of use
US4929246A (en) * 1988-10-27 1990-05-29 C. R. Bard, Inc. Method for closing and sealing an artery after removing a catheter
US5192301A (en) * 1989-01-17 1993-03-09 Nippon Zeon Co., Ltd. Closing plug of a defect for medical use and a closing plug device utilizing it
US5129882A (en) * 1990-12-27 1992-07-14 Novoste Corporation Wound clotting device and method of using same
US5226902A (en) * 1991-07-30 1993-07-13 University Of Utah Pulsatile drug delivery device using stimuli sensitive hydrogel
US5292332A (en) * 1992-07-27 1994-03-08 Lee Benjamin I Methods and device for percutanceous sealing of arterial puncture sites
US5342393A (en) * 1992-08-27 1994-08-30 Duke University Method and device for vascular repair
US5486195A (en) * 1993-07-26 1996-01-23 Myers; Gene Method and apparatus for arteriotomy closure
US5840059A (en) * 1995-06-07 1998-11-24 Cardiogenesis Corporation Therapeutic and diagnostic agent delivery
US6102926A (en) * 1996-12-02 2000-08-15 Angiotrax, Inc. Apparatus for percutaneously performing myocardial revascularization having means for sensing tissue parameters and methods of use
US5782860A (en) * 1997-02-11 1998-07-21 Biointerventional Corporation Closure device for percutaneous occlusion of puncture sites and tracts in the human body and method
US6033427A (en) * 1998-01-07 2000-03-07 Lee; Benjamin I. Method and device for percutaneous sealing of internal puncture sites
US6071301A (en) * 1998-05-01 2000-06-06 Sub Q., Inc. Device and method for facilitating hemostasis of a biopsy tract
US20010046518A1 (en) * 1998-08-14 2001-11-29 Amarpreet S. Sawhney Methods of using in situ hydration of hydrogel articles for sealing or augmentation of tissue or vessels

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030091611A1 (en) * 1999-06-02 2003-05-15 Peter Zahradka Devices and compounds for treating arterial restenosis
US20100034867A1 (en) * 2005-04-29 2010-02-11 Atrium Medical Corporation Drug delivery coating for use with a medical device and methods of treating vascular injury
US20070270757A1 (en) * 2006-05-17 2007-11-22 Willis Geoffrey H Needle array devices and methods
US7621895B2 (en) 2006-05-17 2009-11-24 Abbott Cardiovascular Systems Inc. Needle array devices and methods
US10583218B2 (en) * 2008-11-05 2020-03-10 Hancock Jaffe Laboratories Aesthetics, Inc. Composite containing collagen and elastin as a dermal expander and tissue filler
CN108355164A (en) * 2018-03-24 2018-08-03 浙江理工大学 Absorbable imitative blood platelet organism material and its application

Also Published As

Publication number Publication date
CA2373600A1 (en) 2000-11-16
EP1176918A2 (en) 2002-02-06
US6554851B1 (en) 2003-04-29
JP2003530897A (en) 2003-10-21
CA2373600C (en) 2009-12-08
WO2000067655A2 (en) 2000-11-16
WO2000067655A8 (en) 2001-11-01
AU4978400A (en) 2000-11-21

Similar Documents

Publication Publication Date Title
US6554851B1 (en) Methods of sealing an injection site
US7070582B2 (en) Injection devices that provide reduced outflow of therapeutic agents and methods of delivering therapeutic agents
EP1480706B1 (en) A pressure apron direct injection catheter
JP4853696B2 (en) Device for delivering diagnostic and therapeutic drugs
US6953466B2 (en) Methods for delivering a therapeutic implant to tissue
US7674250B2 (en) Methods of delivering therapeutic agents
KR102634491B1 (en) Implantable drug delivery compositions and methods of using them
US8403923B2 (en) Injection of fibrin sealant in the absence of corticosteroids in spinal applications
CA2396357A1 (en) Lateral needle-less injection apparatus and method
JP2002543868A (en) Injection array device and method
CA2595584A1 (en) Multiple needle injection catheter and method of use of same
US7906125B2 (en) Solid or semi-solid therapeutic formulations
US20050064045A1 (en) Injectable therapeutic formulations
US20040009155A1 (en) Method for sustaining direct cell delivery
EP1383551B1 (en) Multilumen catheter and implants for the delivery of therapeutic agents to tissues
CN106902394B (en) Application of thermosensitive material in preparation of injection for protecting perivisceral structures in thermal ablation

Legal Events

Date Code Title Description
AS Assignment

Owner name: BOSTON SCIENTIFIC SCIMED, INC., MINNESOTA

Free format text: MERGER;ASSIGNORS:BOSTON SCIENTIFIC SCIMED, INC.;SCIMED LIFE SYSTEMS, INC.;REEL/FRAME:019499/0547

Effective date: 20041215

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION