US20040024422A1 - Method and system for sensing cardiac contractions during a medical procedure - Google Patents

Method and system for sensing cardiac contractions during a medical procedure Download PDF

Info

Publication number
US20040024422A1
US20040024422A1 US10/629,491 US62949103A US2004024422A1 US 20040024422 A1 US20040024422 A1 US 20040024422A1 US 62949103 A US62949103 A US 62949103A US 2004024422 A1 US2004024422 A1 US 2004024422A1
Authority
US
United States
Prior art keywords
electrodes
sensor
procedure
type
cardiac
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/629,491
Inventor
Michael Hill
Scott Jahns
James Keogh
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Medtronic Inc
Original Assignee
Medtronic Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Medtronic Inc filed Critical Medtronic Inc
Priority to US10/629,491 priority Critical patent/US20040024422A1/en
Assigned to MEDTRONIC, INC. reassignment MEDTRONIC, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HILL, MICHAEL R. S., JAHNS, SCOTT E., KEOGH, JAMES R.
Priority to US10/724,978 priority patent/US7225019B2/en
Publication of US20040024422A1 publication Critical patent/US20040024422A1/en
Priority to US13/183,269 priority patent/US20120022605A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/3605Implantable neurostimulators for stimulating central or peripheral nerve system
    • A61N1/3606Implantable neurostimulators for stimulating central or peripheral nerve system adapted for a particular treatment
    • A61N1/36114Cardiac control, e.g. by vagal stimulation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/38Applying electric currents by contact electrodes alternating or intermittent currents for producing shock effects
    • A61N1/385Devices for inducing an abnormal cardiac function, e.g. fibrillation

Definitions

  • This invention relates to methods and systems for performing a medical procedure, especially procedures during which it is necessary to adjust the beating of the heart. More particularly, this invention relates to methods and systems for sensing imminent cardiac contractions during such a procedure.
  • CABG coronary artery bypass graph
  • CABG surgery also known as “heart bypass” surgery
  • CABG surgery generally entails using a graph to bypass the coronary obstruction.
  • the procedure is generally lengthy, traumatic and subject to patient risks.
  • a cardiopulmonary bypass (CPB) circuit also known as a “heart-lung machine”, to pump blood and oxygenate the blood so that the patient's heart may be stopped during the surgery.
  • CPB cardiopulmonary bypass
  • CABG procedures are typically conducted on a stopped heart while the patient is on a CPB circuit.
  • a stopped heart and a CPB circuit enables a surgeon to work in a bloodless, still operative field.
  • problems associated with CABG procedures performed while on CPB including the initiation of a systemic inflammatory response due to interactions of blood elements with the artificial material surfaces of the CPB circuit and global myocardial ischemia due to cardioplegic cardiac arrest. For these reasons, avoiding the use of CPB or cardioplegic cardiac arrest may help minimize post-operative complications.
  • One method, as disclosed in U.S. Pat. No. 5,651,378 to inventors Matheny and Taylor and in U.S. Pat. No. 5,913,876 to inventors Taylor et al., for facilitating coronary bypass surgery on a beating heart and thereby avoid the use of CPB and cardioplegic cardiac arrest includes stimulating the vagal nerve electrically in order to temporarily stop or substantially reduce the beating of the heart. This may be followed by pacing the heart to start its beating.
  • Another method involves stopping the beating of the heart during coronary bypass surgery using electrical stimulation of the vagal nerve in combination with administration of drugs.
  • Another method as disclosed in U.S. Pat. No. 6,060,454 to inventor Duhaylongsod, involves stopping the beating of the heart during coronary bypass surgery via the local delivery of drugs to the heart.
  • the heart may still contract occasionally. This is sometimes referred to as an “escape beat.” Such an “escape beat” may occur without any warning to the surgeon and the movement associated with the escape beat may interfere with the medical procedure being carried out.
  • One aspect of the present invention provides a system for performing a medical procedure.
  • the system includes a sensor to sense a state of a cardiac tissue and an indicator to indicate the state of the cardiac tissue.
  • the system may also include a nerve stimulator in communication with the sensor to inhibit beating of a heart when the state indicated by the indicator is a non-contracting state.
  • the nerve stimulator may stimulate a nerve such as a vagal nerve, a carotid sinus nerve, a fat pad.
  • the nerve stimulator may be, for example, one or more electrodes, such as nerve stimulation electrodes, endotracheal electrodes, endoesophageal electrodes, intravascular electrodes, transcutaneous electrodes, intracutaneous electrodes, balloon-type electrodes, basket-type electrodes, umbrella-type electrodes, tape-type electrodes, suction-type electrodes, screw-type electrodes, barb-type electrodes, bipolar electrodes, monopolar electrodes, metal electrodes, wire electrodes, patch electrodes, cuff electrodes, clip electrodes, needle electrodes and probe electrodes.
  • electrodes such as nerve stimulation electrodes, endotracheal electrodes, endoesophageal electrodes, intravascular electrodes, transcutaneous electrodes, intracutaneous electrodes, balloon-type electrodes, basket-type electrodes, umbrella-type electrodes, tape-type electrodes, suction-type electrodes, screw-type electrodes, barb-type electrodes, bipolar electrodes, monopolar electrodes, metal electrodes, wire electrodes, patch electrodes, cuff electrodes,
  • the system may also include a cardiac stimulator in communication with the sensor to stimulate beating of a heart when the state indicated by the indicator is a contracting state.
  • the cardiac stimulator may be, for example, one or more electrodes, such as cardiac stimulation electrodes, clip electrodes, needle electrodes, probe electrodes, pacing electrodes, epicardial electrodes, patch electrodes, intravascular electrodes, balloon-type electrodes, basket-type electrodes, tape-type electrodes, umbrella-type electrodes, suction-type electrodes, endotracheal electrodes, endoesophageal electrodes, transcutaneous electrodes, intracutaneous electrodes, screw-type electrodes, barb-type electrodes, bipolar electrodes, monopolar electrodes, metal electrodes, wire electrodes and cuff electrodes.
  • cardiac stimulation electrodes such as cardiac stimulation electrodes, clip electrodes, needle electrodes, probe electrodes, pacing electrodes, epicardial electrodes, patch electrodes, intravascular electrodes, balloon-type electrodes, basket-type electrodes, tape-type electrodes, umbrella
  • the sensor may be an electrical sensor, a chemical sensor, an electromagnetic interference sensor, an electrochemical sensor, a pressure sensor, a sound wave sensor, a magnetic sensor, an ultraviolet sensor, a visible light sensor, an infrared sensor, a radiation sensor, a flow sensor, a temperature sensor, a gas sensor, an optical sensor, a pH sensor, a potentiometric sensor, a fluorescence sensor, a depolarization sensor and a biosensor.
  • the sensor may also comprise one or more electrodes, such as cardiac stimulation electrodes, clip electrodes, needle electrodes, probe electrodes, pacing electrodes, epicardial electrodes, patch electrodes, intravascular electrodes, balloon-type electrodes, basket-type electrodes, tape-type electrodes, umbrella-type electrodes, suction-type electrodes, endotracheal electrodes, endoesophageal electrodes, transcutaneous electrodes, intracutaneous electrodes, screw-type electrodes, barb-type electrodes, bipolar electrodes, monopolar electrodes, metal electrodes, wire electrodes and cuff electrodes.
  • the sensor and the cardiac stimulator may be the same.
  • the system may also include drug delivery means such as a spray, a cream, an ointment, a medicament, a pill, a patch, a catheter, a cannula, a needle and syringe, a pump, and an iontophoretic drug delivery device to deliver at least one drug during the procedure.
  • drug delivery means such as a spray, a cream, an ointment, a medicament, a pill, a patch, a catheter, a cannula, a needle and syringe, a pump, and an iontophoretic drug delivery device to deliver at least one drug during the procedure.
  • the drug may be a beta-blocker, a cholinergic agent, a cholinesterase inhibitor, a calcium channel blocker, a sodium channel blocker, a potassium channel agent, adenosine, an adenosine receptor agonist, an adenosine deaminase inhibitor, dipyridamole, a monoamine oxidase inhibitor, digoxin, digitalis, lignocaine, a bradykinin agent, a serotoninergic agonist, an antiarrythmic agent, a cardiac glycoside, a local anesthetic, atropine, a calcium solution, an agent that promotes heart rate, an agent that promotes heart contractions, dopamine, a catecholamine, an inotrope glucagon, a hormone, forskolin, epinephrine, norepinephrine, thyroid hormone, a phosphodiesterase inhibitor, prostacyclin, prostaglandin and a methylxanthine.
  • the system may also include a breathing regulator, which may control a respirator.
  • the breathing regulator may stimulate a phrenic nerve.
  • the breathing regulator may be, for example, one or more electrodes such as nerve stimulation electrodes, endotracheal electrodes, endoesophageal electrodes, intravascular electrodes, transcutaneous electrodes, intracutaneous electrodes, balloon-type electrodes, basket-type electrodes, umbrella-type electrodes, suction-type electrodes, screw-type electrodes, tape-type electrodes, barb-type electrodes, bipolar electrodes, monopolar electrodes, metal electrodes, wire electrodes, patch electrodes, cuff electrodes, clip electrodes, needle electrodes and probe electrodes.
  • electrodes such as nerve stimulation electrodes, endotracheal electrodes, endoesophageal electrodes, intravascular electrodes, transcutaneous electrodes, intracutaneous electrodes, balloon-type electrodes, basket-type electrodes, umbrella-type electrodes, suction-type electrodes, screw-type electrodes, tape-type electrodes, barb
  • the medical procedure may be a surgical procedure, a non-surgical procedure, a fluoroscopic procedure, a cardiac procedure, a vascular procedure, a neurosurgical procedure, an electrophysiological procedure, a diagnostic procedure, a therapeutic procedure, an ablation procedure, an endovascular procedure, a liver procedure, a spleen procedure, a pulmonary procedure, an aneurysm repair, an imaging procedure, a CAT scan procedure, a MRI procedure, a pharmacological therapy, a drug delivery procedure, a biological delivery procedure, a genetic therapy, a cellular therapy, a cancer therapy, a radiation therapy, a transplantation procedure, a coronary angioplasty procedure, a stent delivery procedure, an atherectomy procedure, a procedure that requires precise control of cardiac motion, a procedure that requires precise control of bleeding, a non-invasive procedure, a minimally invasive procedure, an invasive procedure, a port-access procedure, an endoscopic procedure, a sternotomy procedure, a thoracot
  • Another aspect of the present invention provides a method for performing a medical procedure.
  • Beating of a heart is inhibited.
  • the medical procedure is performed and a state of cardiac tissue is sensed while beating of the heart is inhibited.
  • the beating of the heart may be inhibited automatically when the state of cardiac tissue is a non-contracting state.
  • a nerve may also be stimulated to inhibit beating of the heart when the state of cardiac tissue is a non-contracting state. Stimulation of the nerve may be stopped when the state of cardiac contraction is a contracting state.
  • Beating of the heart may be allowed to occur when the state of cardiac tissue is a contracting state.
  • Beating of the heart may also be stimulated automatically when the state of cardiac tissue is a contracting state.
  • At least one drug may be delivered during the medical procedure. Breathing may be stopped when the state of cardiac tissue is a non-contracting state.
  • the device includes a processor a sensor to sense a state of cardiac tissue at least one nerve stimulation electrode.
  • the processor receives a signal from the sensor and adjusts output from the nerve stimulation electrode in response to the signal.
  • the sensor may be an electrical sensor, a chemical sensor, an electromagnetic interference sensor, an electrochemical sensor, a pressure sensor, a sound wave sensor, a magnetic sensor, an ultraviolet sensor, a visible light sensor, an infrared sensor, a radiation sensor, a flow sensor, a temperature sensor, a gas sensor, an optical sensor, a pH sensor, a potentiometric sensor, a fluorescence sensor, a depolarization sensor and a biosensor.
  • the nerve stimulation electrode may be, for example, one or more electrodes such as endotracheal electrodes, endoesophageal electrodes, intravascular electrodes, transcutaneous electrodes, intracutaneous electrodes, balloon-type electrodes, basket-type electrodes, umbrella-type electrodes, tape-type electrodes, suction-type electrodes, screw-type electrodes, barb-type electrodes, bipolar electrodes, monopolar electrodes, metal electrodes, wire electrodes, patch electrodes, cuff electrodes, clip electrodes, needle electrodes and probe electrodes.
  • electrodes such as endotracheal electrodes, endoesophageal electrodes, intravascular electrodes, transcutaneous electrodes, intracutaneous electrodes, balloon-type electrodes, basket-type electrodes, umbrella-type electrodes, tape-type electrodes, suction-type electrodes, screw-type electrodes, barb-type electrodes, bipolar electrodes, monopolar electrodes, metal electrodes, wire electrodes, patch electrodes, cuff electrodes, clip electrodes, needle electrodes and probe electrodes
  • the device may also include at least one cardiac stimulation electrode to stimulate beating of the heart.
  • the processor receives a signal from the sensor and adjusts output from the cardiac stimulation electrode in response to the signal.
  • the cardiac stimulation electrode may be, for example, one or more electrodes such as clip electrodes, needle electrodes, probe electrodes, pacing electrodes, epicardial electrodes, patch electrodes, intravascular electrodes, balloon-type electrodes, basket-type electrodes, tape-type electrodes, umbrella-type electrodes, suction-type electrodes, endotracheal electrodes, endoesophageal electrodes, transcutaneous electrodes, intracutaneous electrodes, screw-type electrodes, barb-type electrodes, bipolar electrodes, monopolar electrodes, metal electrodes, wire electrodes and cuff electrodes.
  • the cardiac stimulation electrode and the sensor may be the same.
  • the device may also include at least one breathing regulation electrode for controlling breathing.
  • the processor adjusts the output from the breathing regulation electrode in response to the signal.
  • the breathing electrode may be, for example, one or more electrodes, such as nerve stimulation electrodes, endotracheal electrodes, endoesophageal electrodes, intravascular electrodes, transcutaneous electrodes, intracutaneous electrodes, balloon-type electrodes, basket-type electrodes, umbrella-type electrodes, suction-type electrodes, screw-type electrodes, tape-type electrodes, barb-type electrodes, bipolar electrodes, monopolar electrodes, metal electrodes, wire electrodes, patch electrodes, cuff electrodes, clip electrodes, needle electrodes and probe electrodes.
  • electrodes such as nerve stimulation electrodes, endotracheal electrodes, endoesophageal electrodes, intravascular electrodes, transcutaneous electrodes, intracutaneous electrodes, balloon-type electrodes, basket-type electrodes, umbrella-type electrodes, suction-type electrodes, screw-type electrodes, tape-type electrodes
  • the device may also include a drug pump for delivering at least one drug.
  • the processor adjusts the output of the drug.
  • FIG. 1 is a schematic view of one embodiment of a system for sensing imminent cardiac contractions during a medical procedure in accordance with the present invention
  • FIG. 2 is a schematic view of one embodiment of a medical device in accordance with the present invention.
  • FIG. 3 is a flow diagram of one embodiment of a method of performing a medical procedure in accordance with the present invention.
  • FIG. 4 is a timeline view of one embodiment of a system for sensing imminent cardiac contractions during a medical procedure in accordance with the present invention.
  • FIG. 1 shows a schematic view of one embodiment of a system for performing a medical procedure in accordance with the present invention at 100 .
  • System 100 comprises a cardiac contraction sensor 6 , a nerve stimulator 10 , and a cardiac stimulator 20 .
  • System 100 may also feature a controller 30 and a breathing regulator 40 .
  • FIG. 2 shows one embodiment of the present invention at 200 .
  • the elements named above may be combined or connected to a control unit along with other components.
  • the unit 200 may be used to coordinate the various elements.
  • Cardiac contraction sensor 6 may be any suitable sensor, e.g., an electrical sensor, a chemical sensor or a biosensor, for detecting one or more signals indicative of a cardiac contraction or heartbeat.
  • cardiac contraction sensor 6 may also comprise a sensor 206 incorporated with a control unit 200 .
  • sensor 206 may be a monitor for mounting on or near the heart during surgery.
  • a monitor may monitor the electrical activity of the heart by picking up and amplifying electrical signals from the heart and displaying an output.
  • the output may be displayed on display 216 .
  • the surgeon may check this output periodically to see if the output reaches a level that indicates an escape beat is probable.
  • the monitor may be programmed to indicate by a signal, such as an audio or visual signal, that the electrical activity has reached a predetermined level that is indicative of an imminent escape beat.
  • Cardiac contraction sensor 6 may also be a sensor that detects cardiac depolarizations.
  • the electrical signal generated by the sinus node of the heart causes the atria to contract to force blood into the ventricles. After a brief delay, the ventricles contract to force blood out through the body. The contraction of the ventricles is reflected by the passage of a depolarization wavefront through the heart muscle. If a depolarization is sensed, an escape beat is likely to occur.
  • One such depolarization sensor is disclosed in U.S. Pat. No. 5,156,149 entitled “Sensor for Detecting Cardiac Depolarizations Particularly Adapted for use in a Cardiac Pacemaker”, Oct. 2, 1992, to inventor Hudrlik. This patent is assigned to Medtronic, Inc. and is incorporated herein by reference.
  • Cardiac contraction sensor 6 may also be coupled to cardiac stimulator 20 .
  • Such a sensor may detect the response of tissue near the stimulator 20 . If the tissue is stimulated during the procedure by stimulator 20 , the cardiac stimulation may cause an escape beat even after stimulation has been reduced or stopped, particularly if cardiac stimulation is only reduced during the procedure rather than fully stopped.
  • One such detector is disclosed in U.S. Pat. No. 5,265,603 entitled “Electronic Capture Detection for a Pacer,” Nov. 30, 1993, to inventor Hudrlik. This patent is assigned to Medtronic, Inc. and is incorporated herein by reference.
  • Cardiac contraction sensor 6 may be an apparatus that senses power levels of depolarizations in heart tissue. Such a sensor may be used to distinguish between normally conducted and ectopic heart beats while the heart is beating or may be used to sense an imminent heart beat while the heart is slowed or substantially stilled during a medical procedure.
  • One apparatus that may serve as such a sensor is disclosed in U.S. Pat. No. 5,411,529 entitled “Waveform Discriminator for Cardiac Stimulation Devices”, May 2, 1995, to inventor Hurdlik. This patent is assigned to Medtronic, Inc. and is incorporated herein by reference.
  • cardiac contraction sensor 6 Other suitable sensors may also serve as cardiac contraction sensor 6 .
  • cardiac contraction sensor 6 may be placed in any suitable manner for sensing an imminent cardiac contraction.
  • sensor 206 may incorporate a lead as shown at 226 , which may be used to attach the sensor to the heart. The lead may also be used to monitor electrical signals of the heart as described above.
  • Sensor 206 may be placed in any suitable area of the heart. For example, sensor 206 may be placed near the location of the cardiac stimulator 220 as described above. Sensor 206 may be placed near the right ventricle, the left ventricle, the right atrium, or the left atrium. Other suitable placements of the sensor 206 may be possible. The sensor's optimal location will depend primarily on the sensor's mode of operation.
  • System 100 may also include a nerve stimulator 10 .
  • the nerve stimulator 10 may be used to electrically manipulate cardiac rhythm by stimulating the vagus nerve. This vagal stimulation may produce asystole (slowing or stopping of the heart's beating.) Once this induced asystole is stopped, i.e. once the vagal stimulation is stopped, the heart may be allowed to return to its usual cardiac rhythm. Alternatively, the heart may be paced with an electrical pacing system, thereby maintaining a normal cardiac output. Vagal stimulation, alone or in combination with electrical pacing, may be used selectively and intermittently to allow a surgeon to perform a medical procedure during intermittent periods of asystole.
  • vagal nerve stimulation can reduce the sinus rate, as well as prolong AV conduction time or, if stimulation energies are high enough, induce AV node block.
  • Use of vagal nerve stimulation to treat supraventricular arrhythmias and angina pectoris is disclosed in the article “Vagal Tuning” by Bilgutay et al., Journal of Thoracic and Cardiovascular Surgery, Vol. 56, No. 1, July, 1968, pp. 71-82.
  • the fat pads associated with both the AV node and the SA node may be stimulated by means of electrodes located in the right pulmonary artery.
  • the results obtained include both a depression of the sinus rate and a prolongation of the AV conduction time in response to continuous stimulation at 2-80 Hz at up to 50 ma.
  • the SA node functions as the pacemaker.
  • Normal heart rhythm associated with the SA node is typically referred to as sinus rhythm.
  • the AV node generally takes over creating a heart rate of approximately 35 to 60 beats per minute.
  • Heart rhythm associated with the AV node is typically referred to as nodal rhythm.
  • nodal rhythm When the AV node itself is blocked or injured, a new even slower pacemaker site may form at the junction of the AV node and the His bundle. Heart rhythm associated with this junction is typically referred to as junctional escape rhythm.
  • the Purkinje fibers in the His bundle or below may act as a pacemaker creating a heart rate of approximately 30 beats per minute.
  • Heart rhythm associated with the Purkinje fibers is typically referred to as idioventricular rhythm.
  • nerve stimulator 10 may be used to electrically manipulate cardiac rhythm by stimulating the carotid sinus nerve, the fat pad associated with the SA node, the fat pad associated with the AV node, the junction of the AV node and the His bundle and/or the Purkinje fibers.
  • nerve stimulator 10 is used alone or in combination with other heart rate inhibiting agents to temporarily stop or slow the beating heart, thereby eliminating or reducing heart motion and/or blood flow during a medical procedure.
  • the present invention may be used to eliminate or reduce motion in the anastomosis field during CABG procedures such that a facilitated anastomosis procedure may be performed safely and effectively.
  • the number of occasions that the vagal nerve may be stimulated depends on the type of medical procedure to be performed. Likewise, the type of medical procedure to be performed will dictate the duration of the individual electrical stimulations.
  • Nerve stimulator 10 may be powered by AC current, DC current or it may be battery powered by a disposable or re-chargeable battery. Nerve stimulator 10 may be configured to synchronize activation and deactivation of breathing regulator 40 with vagal stimulation, thereby minimizing or eliminating unwanted heart and chest motion associated with the patient's breathing. Nerve stimulator 10 may comprise a surgeon controlled switch box. A switch may be incorporated in or on one of the surgeon's instruments, such as surgical site retractor, or any other location easily and quickly accessed by the surgeon for regulation of the nerve stimulator 10 by the surgeon. The switch may be, for example, a hand switch, a foot switch, or a voice-activated switch comprising voice-recognition technologies.
  • a visual and/or audible signal used to alert a surgeon to the completion or resumption of vagal nerve stimulation may be incorporated into nerve stimulator 10 .
  • a beeping tone or flashing light that increases in frequency as the nerve stimulation period should end or begin may be used.
  • Nerve stimulator 10 may be slaved to cardiac stimulator 20 or cardiac stimulator 20 may be slaved to nerve stimulator 10 .
  • the output of cardiac stimulator 20 may be off whenever the output of nerve stimulator 10 is on.
  • Software controlling cardiac stimulator 20 may be designed to automatically commence cardiac pacing if the heart does not resume beating within a pre-determined interval after cessation of vagal nerve stimulation.
  • the software controlling nerve stimulator 10 may be designed to automatically stop vagal nerve stimulation if the heart has been stopped for too long.
  • System 100 may also include cardiac stimulator 20 which may be used to stimulate the heart as desired. As with nerve stimulator 10 , cardiac stimulator 20 may be intermittently stopped and started to allow the surgeon to perform individual steps of a medical procedure.
  • Cardiac stimulator 20 may be a conventional ventricular demand pacer or dual chamber (atrial-ventricular) pacer. Cardiac stimulator 20 may be powered by AC current, DC current or it may be battery powered by a disposable or re-chargeable battery. Cardiac stimulator 20 may be configured to synchronize activation and deactivation of breathing regulator 40 with pacing, thereby minimizing or eliminating unwanted heart and chest motion associated with the patient's breathing. Cardiac stimulator 20 may be any conventional pacing device suitable for ventricular demand pacing and having leads electrically coupled to a switch box. Cardiac stimulator 20 may be combined in a single unit with a switch box. Cardiac stimulator 20 may comprise a surgeon controlled switch box.
  • a switch may be incorporated in or on one of the surgeon's instruments, such as surgical site retractor, or any other location easily and quickly accessed by the surgeon for regulation of the cardiac stimulator by the surgeon.
  • the switch may be, for example, a hand switch, a foot switch, or a voice-activated switch comprising voice-recognition technologies.
  • a single switch may be used to regulate both cardiac stimulator 20 and nerve stimulator 10 .
  • a visual and/or audible signal used to prepare a surgeon for the resumption of pacing may be incorporated into cardiac stimulator 20 .
  • a beeping tone or flashing light that increases in frequency as the pacing period ends may be used.
  • a single signaling method or device may be used for both cardiac stimulator 20 and nerve stimulator 10 .
  • Sensor 6 , nerve stimulator 10 and/or cardiac stimulator 20 may be slaved to a robotic system or a robotic system may be slaved to sensor 6 , nerve stimulator 10 and/or cardiac stimulator 20 .
  • Breathing regulator 40 and other components may also be slaved to such a system.
  • Computer and voice-controlled robotic systems that position and maneuver endoscopes and/or other surgical instruments for performing microsurgical procedures such as anastomoses through small incisions may be used by a surgeon to perform precise and delicate maneuvers. These robotic systems may allow a surgeon to perform a variety of microsurgical procedures including endoscopic CABG. Endoscopic CABG may allow multiple occluded coronary arteries to be bypassed without a thoracotomy or mini-thoracotomy.
  • Robot systems may include head-mounted displays that integrate 3-D visualization of surgical anatomy and related diagnostic and monitoring data, miniature high-resolution 2-D and 3-D digital cameras, a computer, a high power light source and a standard video monitor.
  • System 100 may also include a breathing regulator 40 .
  • the breathing regulator 40 may be used to stimulate the phrenic nerve in order to provide a diaphragmatic pacemaker.
  • Breathing regulator 40 may comprise one or more electrodes for supplying electrical current to the phrenic nerve to control breathing during vagal and/or cardiac stimulation and/or destimulation. Electrodes used to stimulate the phrenic nerve may be, for example, non-invasive, e.g., clips, or invasive, e.g., needles or probes.
  • the application of an electrical stimulus to the phrenic nerve may include, but is not limited to bipolar and/or monopolar techniques. Different electrode positions are accessible through various access openings, for example, in the cervical or thorax regions.
  • Nerve stimulation electrodes may be positioned through a thoracotomy, sternotomy, endoscopically through a percutaneous port, through a stab wound or puncture, through a small incision, placed on the skin or in combinations thereof.
  • the present invention may include various electrodes, catheters and electrode catheters suitable for phrenic nerve stimulation to control breathing.
  • Phrenic nerve stimulation electrodes may be intravascular, patch-type, balloon-type, basket-type, umbrella-type, tape-type, cuff-type, suction-type, screw-type, barb-type, bipolar, monopolar, metal, wire, endotracheal, endoesophageal, intravascular, transcutaneous or intracutaneous electrodes.
  • Guided or steerable catheter devices comprising electrodes may be used alone or in combination with the nerve stimulation electrodes.
  • a catheter comprising one or more wire, metal strips or metal foil electrodes or electrode arrays may be used.
  • the catheter may comprise, for example, a balloon, which may be inflated with air, or liquid to press the electrodes firmly against a vessel wall that lays adjacent the phrenic nerve.
  • Phrenic nerve stimulation electrodes may be oriented in any fashion along the catheter device, including longitudinally or transversely. Various techniques such as ultrasound, fluoroscopy and echocardiography may be used to facilitate positioning of the electrodes. If desired or necessary, avoidance of obstruction of blood flow may be achieved with notched catheter designs or with catheters which incorporate one or more tunnels or passageways.
  • the breathing regulator 40 may comprise a connector which interfaces with a patient's respirator, and sends a logic signal to activate or deactivate the respirator to control breathing during vagal and/or cardiac stimulation and/or destimulation.
  • FIG. 2 shows one embodiment of the present invention at 200 .
  • the elements named above may be combined or connected to a control unit along with other components.
  • the unit 200 may be used to coordinate the various elements.
  • Unit 200 may incorporate a controller or any suitable processor 230 .
  • Unit 200 may incorporate a cardiac contraction sensor 206 as described above.
  • the sensor 206 may be or may incorporate one or more sensing electrodes 226 .
  • Such an electrode may also be attached to a display component 216 .
  • Sensing electrodes 226 incorporated with sensor 206 may be, for example, non-invasive, e.g., clips, or invasive, e.g., needles or probes.
  • Electrodes 226 may be positioned through a thoracotomy, sternotomy, endoscopically through a percutaneous port, through a stab wound or puncture, through a small incision in the chest, placed on the chest or in combinations thereof.
  • the present invention may also use various electrodes, catheters and electrode catheters suitable for pacing the heart, e.g., epicardial, patch-type, intravascular, balloon-type, basket-type, umbrella-type, tape-type, transcutaneous, intracutaneous, screw-type, barb-type, bipolar, monopolar, metal, wire, cuff-type or suction-type.
  • Guided or steerable catheter devices comprising electrodes may be used alone or in combination with the electrodes.
  • FIG. 2 shows a separate sensor 206 and cardiac stimulator 220 , one sensing/stimulating electrode may serve both functions in one embodiment of the invention.
  • Unit 200 may also incorporate a separate cardiac stimulator and sensing electrode.
  • FIG. 2 shows an electrode for stimulation of the heart at 220 separate from sensing electrode 226 .
  • Cardiac electrodes 220 used to stimulate the heart may be, for example, non-invasive, e.g., clips, or invasive, e.g., needles or probes. Electrodes 220 may be positioned through a thoracotomy, sternotomy, endoscopically through a percutaneous port, through a stab wound or puncture, through a small incision in the chest, placed on the chest or in combinations thereof.
  • the present invention may also use various electrodes, catheters and electrode catheters suitable for pacing the heart, e.g., epicardial, patch-type, intravascular, balloon-type, basket-type, umbrella-type, tape-type electrodes, suction-type, pacing electrodes, endotracheal electrodes, endoesophageal electrodes, transcutaneous electrodes, intracutaneous electrodes, screw-type electrodes, barb-type electrodes, bipolar electrodes, monopolar electrodes, metal electrodes, wire electrodes and cuff electrodes. Guided or steerable catheter devices comprising electrodes may be used alone or in combination with the electrodes.
  • Unit 200 may also incorporate a nerve stimulator.
  • FIG. 2 shows an electrode for nerve stimulation at 210 .
  • Electrodes used to stimulate a nerve such as the vagal nerve may be, for example, non-invasive, e.g., clips, or invasive, e.g., needles or probes.
  • the application of an electrical stimulus to the right or left vagal nerve may include, but is not limited to bipolar and/or monopolar techniques. Different electrode positions are accessible through various access openings, for example, in the cervical or thorax regions.
  • Nerve stimulation electrodes 210 may be positioned through a thoracotomy, sternotomy, endoscopically through a percutaneous port, through a stab wound or puncture, through a small incision in the neck or chest, through the internal jugular vein, the esophagus, the trachea, placed on the skin or in combinations thereof. Electrical stimulation may be carried out on the right vagal nerve, the left vagal nerve or to both nerves simultaneously or sequentially.
  • the present invention may include various electrodes, catheters and electrode catheters suitable for vagal nerve stimulation to temporarily stop or slow the beating heart alone or in combination with other heart rate inhibiting agents.
  • Nerve stimulation electrodes 210 may be endotracheal, endoesophageal, intravascular, transcutaneous, intracutaneous, patch-type, balloon-type, cuff-type, basket-type, umbrella-type, tape-type, screw-type, barb-type, metal, wire or suction-type electrodes.
  • Guided or steerable catheter devices comprising electrodes may be used alone or in combination with the nerve stimulation electrodes 210 .
  • a catheter comprising one or more wire, metal strips or metal foil electrodes or electrode arrays may be inserted into the internal jugular vein to make electrical contact with the wall of the internal jugular vein, and thus stimulate the vagal nerve adjacent to the internal jugular vein.
  • Access to the internal jugular vein may be via, for example, the right atrium, the right atrial appendage, the inferior vena cava or the superior vena cava.
  • the catheter may comprise, for example, a balloon, which may be inflated with air or liquid to press the electrodes firmly against the vessel wall. Similar techniques may be performed by insertion of a catheter-type device into the trachea or esophagus. Additionally, tracheal tubes and esophageal tubes comprising electrodes may be used.
  • Nerve stimulation electrodes 210 may be oriented in any fashion along the catheter device, including longitudinally or transversely. Various techniques such as ultrasound, fluoroscopy and echocardiography may be used to facilitate positioning of the electrodes. If desired or necessary, avoidance of obstruction of blood flow may be achieved with notched catheter designs or with catheters which incorporate one or more tunnels or passageways.
  • the location of the electrodes 210 is chosen to elicit maximum bradycardia effectiveness while minimizing current spread to adjacent tissues and vessels and to prevent the induction of post stimulation tachycardia.
  • a non-conductive material such as plastic may be employed to sufficiently enclose the electrodes of all the configurations to shield them from the surrounding tissues and vessels, while exposing their confronting edges and surfaces for positive contact with the vagal nerve or selected tissues.
  • Controller 230 may be used to gather information from nerve stimulation electrodes 210 and cardiac stimulation electrodes 220 . Controller 230 may also be used to control the stimulation levels and stimulation duration from nerve stimulation electrodes 210 and cardiac stimulation electrodes 220 . Controller 230 may also gather and process information from sensor 206 . This information may be used to adjust stimulation levels and stimulation times from nerve stimulation electrodes 210 and cardiac stimulation electrodes 220 .
  • Unit 200 may incorporate one or more switches to facilitate regulation of the various components by the surgeon.
  • One example of such a switch is shown as foot pedal 250 .
  • the switch may also be, for example, a hand switch, or a voice-activated switch comprising voice-recognition technologies.
  • the switch may be incorporated in or on one of the surgeon's instruments, such as surgical site retractor, or any other location easily and quickly accessed by the surgeon.
  • Unit 200 may also include a display 260 .
  • Unit 200 may also include other means of indicating the status of various components to the surgeon such as a numerical display, gauges, a monitor display or audio feedback.
  • Unit 200 may also include one or more visual and/or audible signals used to prepare a surgeon for the start or stop of nerve stimulation and/or cardiac stimulation.
  • FIG. 3 shows a flow diagram of one embodiment of the present invention.
  • the patient is prepared for a medical procedure at 500 .
  • the patient's initial heart rate may be measured (Block 505 ). This initial reading is then used as a gauge to compare with the electrical signals detected by sensor 6 during the procedure.
  • the sensor alerts the surgeon if the sensed electrical (or depolarization) signals reach a predetermined level.
  • a nerve that controls the beating of the heart is stimulated.
  • a nerve may be for example a vagal nerve.
  • one or more of a variety of pharmacological agents or drugs may be delivered. These drugs may produce reversible asystole of a heart while maintaining the ability of the heart to be electrically paced.
  • a variety of pharmacological agents or drugs may also be delivered at other times during the procedure 500 . These drugs may also produce reversible asystole of a heart while maintaining the ability of the heart to be electrically paced. Other drugs may be administered for a variety of functions and purposes as described below. Drugs may be delivered at any appropriate time during the medical procedure, for example, at the beginning of the procedure, intermittently during the procedure, continuously during the procedure or following the procedure.
  • Drugs, drug formulations or compositions suitable for administration to a patient during a medical procedure may include a pharmaceutically acceptable carrier or solution in an appropriate dosage.
  • a pharmaceutically acceptable carrier or solution in an appropriate dosage.
  • pharmaceutically acceptable carriers include a number of solutions, preferably sterile, for example, water, saline, Ringer's solution and/or sugar solutions such as dextrose in water or saline.
  • Carrier solutions may or may not be buffered.
  • Drug formulations or compositions may include antioxidants or preservatives such as ascorbic acid. They may also be in a pharmaceutically acceptable form for parenteral administration, for example to the cardiovascular system, or directly to the heart, such as intracoronary infusion or injection. Drug formulations or compositions may comprise agents that provide a synergistic effect when administered together. A synergistic effect between two or more drugs or agents may reduce the amount that normally is required for therapeutic delivery of an individual drug or agent. Two or more drugs may be administered, for example, sequentially or simultaneously. Drugs may be administered via one or more bolus injections and/or infusions or combinations thereof. The injections and/or infusions may be continuous or intermittent.
  • Drugs may be administered, for example, systemically or locally, for example, to the heart, to a coronary artery and/or vein, to a pulmonary artery and/or vein, to the right atrium and/or ventricle, to the left atrium and/or ventricle, to the aorta, to the AV node, to the SA node, to a nerve and/or to the coronary sinus.
  • Drugs may be administered or delivered via intravenous, intracoronary and/or intraventricular administration in a suitable carrier.
  • Examples of arteries that may be used to deliver drugs to the AV node include the AV node artery, the right coronary artery, the right descending coronary artery, the left coronary artery, the left anterior descending coronary artery and Kugel's artery.
  • Drugs may be delivered systemically, for example, via oral, transdermal, intranasal, suppository or inhalation methods. Drugs also may be delivered via a pill, a spray, a cream, an ointment or a medicament formulation.
  • Drugs may be delivered via a drug delivery device that may comprise a catheter, such as a drug delivery catheter or a guide catheter, a patch, such as a transepicardial patch that slowly releases drugs directly into the myocardium, a cannula, a pump and/or a hypodermic needle and syringe assembly.
  • a drug delivery catheter may include an expandable member, e.g., a low-pressure balloon, and a shaft having a distal portion, wherein the expandable member is disposed along the distal portion.
  • a catheter for drug delivery may comprise one or more lumens and may be delivered endovascularly via insertion into a blood vessel, e.g., an artery such as a femoral, radial, subclavian or coronary artery.
  • the catheter can be guided into a desired position using various guidance techniques, e.g., flouroscopic guidance and/or a guiding catheter or guide wire techniques.
  • Drugs may be delivered via an iontophoretic drug delivery device placed on the heart.
  • the delivery of ionized drugs may be enhanced via a small current applied across two electrodes.
  • Positive ions may be introduced into the tissues from the positive pole, or negative ions from the negative pole.
  • the use of iontophoresis may markedly facilitate the transport of certain ionized drug molecules.
  • lidocaine hydrochloride may be applied to the heart via a drug patch comprising the drug.
  • a positive electrode could be placed over the patch and current passed.
  • the negative electrode would contact the heart or other body part at some desired distance point to complete the circuit.
  • One or more of the electrodes may also be used as nerve stimulation electrodes 210 , as cardiac stimulation electrodes 220 or as sensing electrodes 226 .
  • the two divisions of the autonomic nervous system that regulate the heart have opposite functions.
  • the adrenergic or sympathetic nervous system increases heart rate by releasing epinephrine and norepinephrine.
  • the parasympathetic system also known as the cholinergic nervous system or the vagal nervous system decreases heart rate by releasing acetylcholine.
  • Catecholamines such as norepinephrine (also called noradrenaline) and epinephrine (also called adrenaline) are agonists for beta-adrenergic receptors.
  • An agonist is a stimulant biomolecule or agent that binds to a receptor.
  • Beta-adrenergic receptor blocking agents compete with beta-adrenergic receptor stimulating agents for available beta-receptor sites.
  • receptor blocking agents also known as beta-adrenergic blockade
  • the chronotropic or heart rate, inotropic or contractility, and vasodilator responses to receptor stimulating agents are decreased proportionately. Therefore, beta-adrenergic receptor blocking agents are agents that are capable of blocking beta-adrenergic receptor sites.
  • beta-adrenergic receptors are concerned with contractility and heart rate
  • stimulation of beta-adrenergic receptors in general, increases heart rate, the contractility of the heart and the rate of conduction of electrical impulses through the AV node and the conduction system.
  • Drugs, drug formulations and/or drug compositions that may be used according to this invention may include any naturally occurring or chemically synthesized (synthetic analogues) beta-adrenergic receptor blocking agents.
  • Beta-adrenergic receptor blocking agents or ⁇ -adrenergic blocking agents are also known as beta-blockers or ⁇ -blockers and as class II antiarrhythmics.
  • beta-blocker may refer to one or more agents that antagonize the effects of beta-stimulating catecholamines by blocking the catecholamines from binding to the beta-receptors.
  • beta-blockers include, but are not limited to, acebutolol, alprenolol, atenolol, betantolol, betaxolol, bevantolol, bisoprolol, carterolol, celiprolol, chlorthalidone, esmolol, labetalol, metoprolol, nadolol, penbutolol, pindolol, propranolol, oxprenolol, sotalol, teratolo, timolol and combinations, mixtures and/or salts thereof.
  • beta-blockers may be reversed by administration of beta-receptor agonists, e.g., dobutamine or isoproterenol.
  • beta-receptor agonists e.g., dobutamine or isoproterenol.
  • the parasympathetic or cholinergic system participates in control of heart rate via the sinoatrial (SA) node, where it reduces heart rate.
  • Other cholinergic effects include inhibition of the AV node and an inhibitory effect on contractile force.
  • the cholinergic system acts through the vagal nerve to release acetylcholine, which, in turn, stimulates cholinergic receptors.
  • Cholinergic receptors are also known as muscarinic receptors. Stimulation of the cholinergic receptors decreases the formation of cAMP. Stimulation of cholinergic receptors generally has an opposite effect on heart rate compared to stimulation of beta-adrenergic receptors.
  • beta-adrenergic stimulation increases heart rate, whereas cholinergic stimulation decreases it.
  • vagal tone is high and adrenergic tone is low, there is a marked slowing of the heart (sinus bradycardia).
  • Acetylcholine effectively reduces the amplitude, rate of increase and duration of the SA node action potential.
  • the SA node does not arrest. Rather, pacemaker function may shift to cells that fire at a slower rate.
  • acetylcholine may help open certain potassium channels thereby creating an outward flow of potassium ions and hyperpolarization. Acetylcholine also slows conduction through the AV node.
  • Drugs, drug formulations and/or drug compositions that may be used according to this invention may include any naturally occurring or chemically synthesized (synthetic analogues) cholinergic agent.
  • the term “cholinergic agent” appearing herein may refer to one or more cholinergic receptor modulators or agonists.
  • Examples of cholinergic agents include, but are not limited to, acetylcholine, carbachol (carbamyl choline chloride), bethanechol, methacholine, arecoline, norarecoline and combinations, mixtures and/or salts thereof.
  • Drugs, drug formulations and/or drug compositions that may be used according to this invention may include any naturally occurring or chemically synthesized cholinesterase inhibitor.
  • the term “cholinesterase inhibitor” appearing herein may refer to one or more agents that prolong the action of acetylcholine by inhibiting its destruction or hydrolysis by cholinesterase. Cholinesterase inhibitors are also known as acetylcholinesterase inhibitors. Examples of cholinesterase inhibitors include, but are not limited to, edrophonium, neostigmine, neostigmine methylsulfate, pyridostigmine, tacrine and combinations, mixtures and/or salts thereof.
  • ion-selective channels within certain cell membranes. These ion selective channels include calcium channels, sodium channels and/or potassium channels. Therefore, other drugs, drug formulations and/or drug compositions that may be used according to this invention may include any naturally occurring or chemically synthesized calcium channel blocker.
  • Calcium channel blockers inhibit the inward flux of calcium ions across cell membranes of arterial smooth muscle cells and myocardial cells. Therefore, the term “calcium channel blocker” appearing herein may refer to one or more agents that inhibit or block the flow of calcium ions across a cell membrane.
  • the calcium channel is generally concerned with the triggering of the contractile cycle. Calcium channel blockers are also known as calcium ion influx inhibitors, slow channel blockers, calcium ion antagonists, calcium channel antagonist drugs and as class IV antiarrhythmics.
  • a commonly used calcium channel blocker is verapamil.
  • a calcium channel blocker e.g., verapamil
  • a calcium channel blocker generally prolongs the effective refractory period within the AV node and slows AV conduction in a rate-related manner, since the electrical activity through the AV node depends significantly upon the influx of calcium ions through the slow channel.
  • a calcium channel blocker has the ability to slow a patient's heart rate, as well as produce AV block.
  • calcium channel blockers examples include, but are not limited to, amiloride, amlodipine, bepridil, diltiazem, felodipine, isradipine, mibefradil, nicardipine, nifedipine (dihydropyridines), nickel, nimodinpine, nisoldipine, nitric oxide (NO), norverapamil and verapamil and combinations, mixtures and/or salts thereof.
  • Verapamil and diltiazem are very effective at inhibiting the AV node, whereas drugs of the nifedipine family have a lesser inhibitory effect on the AV node.
  • Nitric oxide (NO) indirectly promotes calcium channel closure.
  • NO may be used to inhibit contraction. NO may also be used to inhibit sympathetic outflow, lessen the release of norepinephrine, cause vasodilation, decrease heart rate and decrease contractility. In the SA node, cholinergic stimulation leads to formation of NO.
  • Other drugs, drug formulations and/or drug compositions may include any naturally occurring or chemically synthesized sodium channel blocker.
  • Sodium channel blockers are also known as sodium channel inhibitors, sodium channel blocking agents, rapid channel blockers or rapid channel inhibitors.
  • Antiarrhythmic agents that inhibit or block the sodium channel are known as class I antiarrhythmics, examples include, but are not limited to, quinidine and quinidine-like agents, lidocaine and lidocaine-like agents, tetrodotoxin, encainide, flecainide and combinations, mixtures and/or salts thereof.
  • sodium channel blocker may refer to one or more agents that inhibit or block the flow of sodium ions across a cell membrane or remove the potential difference across a cell membrane.
  • the sodium channel may also be totally inhibited by increasing the extracellular potassium levels to depolarizing hyperkalemic values, which remove the potential difference across the cell membrane. The result is inhibition of cardiac contraction with cardiac arrest (cardioplegia). The opening of the sodium channel (influx of sodium) is for swift conduction of the electrical impulse throughout the heart.
  • potassium channel agent may refer to one or more agents that impact the flow of potassium ions across the cell membrane.
  • the first type of channel is voltage-gated and the second type is ligand-gated.
  • Acetylcholine-activated potassium channels which are ligand-gated channels, open in response to vagal stimulation and the release of acetylcholine. Opening of the potassium channel causes hyperpolarization, which decreases the rate at which the activation threshold is reached.
  • Adenosine is one example of a potassium channel opener.
  • Adenosine slows conduction through the AV node.
  • Adenosine a breakdown product of adenosine triphosphate, inhibits the AV node and atria.
  • adenosine causes the shortening of the action potential duration and causes hyperpolarization.
  • adenosine has similar effects and also decreases the action potential amplitude and the rate of increase of the action potential.
  • Adenosine is also a direct vasodilator by its actions on the adenosine receptor on vascular smooth muscle cells.
  • adenosine acts as a negative neuromodulator, thereby inhibiting release of norepinephrine.
  • Class III antiarrhythmic agents also known as potassium channel inhibitors lengthen the action potential duration and refractoriness by blocking the outward potassium channel to prolong the action potential.
  • Amiodarone and d-sotalol are both examples of class III antiarrhythmic agents.
  • Potassium is the most common component in cardioplegic solutions. High extracellular potassium levels reduce the membrane resting potential. Opening of the sodium channel, which normally allows rapid sodium influx during the upstroke of the action potential, is therefore inactivated because of a reduction in the membrane resting potential.
  • the present invention may be combined with conventional CPB.
  • the induced asystole as described by this invention may serve as a substitute for conventional cardioplegic arrest.
  • the combination of drugs and vagal stimulation may be used as a cardioplegic agent in a variety of medical procedures.
  • Drugs, drug formulations and/or drug compositions may comprise one or more of any naturally occurring or chemically synthesized beta-blocker, cholinergic agent, cholinesterase inhibitor, calcium channel blocker, sodium channel blocker, potassium channel agent, adenosine, adenosine receptor agonist, adenosine deaminase inhibitor, dipyridamole, monoamine oxidase inhibitor, digoxin, digitalis, lignocaine, bradykinin agents, serotoninergic agonist, antiarrythmic agents, cardiac glycosides, local anesthetics and combinations or mixtures thereof. Digitalis and digoxin both inhibit the sodium pump.
  • Digitalis is a natural inotrope derived from plant material, while digoxin is a synthesized inotrope. Dipyridamole inhibits adenosine deaminase, which breaks down adenosine. Drugs, drug formulations and/or drug compositions capable of reversibly suppressing autonomous electrical conduction at the SA and/or AV node, while still allowing the heart to be electrically paced to maintain cardiac output may be used according to this invention.
  • the cardiac asystole produced in accordance with the present invention is reversible, e.g., chemically such as by the administration of atropine or by natural forces.
  • Beta-adrenergic stimulation or administration of calcium solutions may be used to reverse the effects of a calcium channel blocker such as verapamil.
  • Agents that promote heart rate and/or contraction may be used in a preferred embodiment of the present invention.
  • dopamine a natural catecholamine
  • Positive inotropes are agents that specifically increase the force of contraction of the heart.
  • Glucagon a naturally occurring hormone, is known to increase heart rate and contractility.
  • Glucagon may be used to reverse the effects of a beta-blocker since its effects bypass the beta receptor.
  • Forskolin is known to increase heart rate and contractility.
  • epinephrine and norepinephrine naturally increase heart rate and contractility.
  • Thyroid hormone, phosphodiesterase inhibitors and prostacyclin, a prostaglandin are also known to increase heart rate and contractility.
  • methylxanthines are known to prevent adenosine from interacting with its cell receptors.
  • vagal nerve stimulation prevents the heart from contracting. This non-contraction must then be followed by periods without vagal nerve stimulation during which the heart is allowed to contract, and blood flow is restored throughout the body.
  • the sensor 6 may be checked to determine if an escape beat is imminent. The sensor may be checked periodically during the procedure, for example, as shown at 517 . Alternatively, the sensor may interrupt the procedure at any point by indicating that an escape beat is imminent. For example, a visual and/or audible signal, such as a flashing light or beeping tone, may be used to alert a surgeon that an escape beat is imminent. If no contraction is imminent, then all or a portion of the medical procedure may be carried out (Block 520 ).
  • a signal may indicate an escape beat is about to occur (as seen at 523 ). If the sensor indicates an escape beat is imminent, the surgeon may stop the medical procedure to allow the beat to occur. In one embodiment, the surgeon may then proceed to Block 530 , where the nerve stimulation is ceased and the heart is allowed to contract. Alternatively, unit 200 may automatically proceed to Block 530 to cease nerve stimulation when sensor 6 indicates that a beat is imminent.
  • the output of sensor 6 may be communicated to the surgeon by a number of suitable means.
  • the output may be indicated on a display or monitor.
  • a visual or audio signal may indicate when the electrical signals from the heart reach a certain level, e.g. a level indicating an imminent escape beat.
  • the system of the present invention may “lock” the controls of the vagal stimulator in an “off” state when an escape beat is sensed.
  • the system of the present invention may “lock” the controls of the surgical instruments being used to perform the surgery to indicate to the surgeon that an escape beat is imminent. The system may then release the controls when the signals indicate that the heart is again appropriately stilled.
  • the amount of vagal nerve stimulation used and/or the amount of drugs administered may be adjusted based on the output of the sensor 6 .
  • the level of stimulation may be increased if sensor 6 indicates that too many escape beats are occurring or are likely to occur. This adjustment may be automatic or may be controlled by the surgeon.
  • a medical procedure may be performed or begun. Such a procedure may be for example surgery on the heart. Alternatively, the procedure may be surgery performed on another organ of the body.
  • one or more of a variety of pharmacological agents or drugs may be delivered or may continue to be delivered. These drugs may produce reversible asystole of a heart while maintaining the ability of the heart to be electrically paced. Other drugs may be administered for a variety of functions and purposes as described above.
  • the term “medical procedure” may mean any one or more medical or surgical procedures such as, for example cardiac surgery, performed with or without cardiopulmonary bypass (CPB) circuits, heart valve repair, heart valve replacement, MAZE procedures, revascularization procedures, transmyocardial revascularization (TMR) procedures, percutaneous myocardial revascularization (PMR) procedures, CABG procedures, anastomosis procedures, non-surgical procedures, fluoroscopic procedures, beating heart surgery, vascular surgery, neurosurgery, brain surgery, electrophysiology procedures, diagnostic and therapeutic procedures, ablation procedures, ablation of arrhythmias, endovascular procedures, treatment of the liver, spleen, heart, lungs, and major blood vessels, aneurysm repair, imaging procedures of the heart and great vessels, CAT scans or MRI procedures, pharmacological therapies, drug delivery procedures, gene therapies, cellular therapies, cancer therapies, radiation therapies, genetic, cellular, tissue and/or organ manipulation or transplantation procedures, coronary angioplasty procedures, placement or delivery of coated
  • the medical procedure comprises one or more medical devices, e.g., coated stents
  • these devices may be coated with one or more radioactive materials and/or biological agents such as, for example, an anticoagulant agent, an antithrombotic agent, a clotting agent, a platelet agent, an anti-inflammatory agent, an antibody, an antigen, an immunoglobulin, a defense agent, an enzyme, a hormone, a growth factor, a neurotransmitter, a cytokine, a blood agent, a regulatory agent, a transport agent, a fibrous agent, a protein, a peptide, a proteoglycan, a toxin, an antibiotic agent, an antibacterial agent, an antimicrobial agent, a bacterial agent or component, hyaluronic acid, a polysaccharide, a carbohydrate, a fatty acid, a catalyst, a drug, a vitamin, a DNA segment, a RNA segment, a nucleic acid, a
  • the medical procedure may be non-invasive, minimally invasive and/or invasive.
  • the medical procedure may entail a port-access approach, a partial or total endoscopic approach, a sternotomy approach or a thoracotomy approach.
  • the medical procedure may include the use of various mechanical stabilization devices or techniques as well as various robotic or imaging systems.
  • the heart may be temporarily slowed or intermittently stopped for short periods of time to permit the surgeon to accomplish the required surgical task and yet still allow the heart itself to supply blood circulation to the body.
  • stimulation of the vagus nerve in order to temporarily and intermittently slow or stop the heart is described in U.S. Pat. No. 6,006,134 entitled “Method and Device for Electronically Controlling the Beating of a Heart Using Venous Electrical Stimulation of Nerve Fibers,” Dec. 21, 1999, to inventors Hill and Junkman. This patent is assigned to Medtronic, Inc. and is incorporated herein by reference.
  • cardiac contractions or cardiac signals may be monitored constantly or intermittently as described above. An assessment of the likelihood of a contraction may again be taken at Block 525 . If no contraction is imminent, the physician may continue with the medical procedure that is in progress. However, if a contraction is likely to occur, the surgeon may increase nerve stimulation and/or the administration of drugs. Alternatively, the surgeon may choose to proceed to Block 530 and allow the heart to beat normally for a period of time. The heart will therefore be allowed to contract and thus blood will again be allowed to flow to the brain and vital organs.
  • the medical procedure or one phase of the procedure is completed at 520 .
  • cardiac contractions are allowed to occur (Block 530 ). Cardiac contractions may need to occur intermittently during the procedure to ensure adequate blood flow.
  • the stimulation from the nerve stimulator 10 is stopped or slowed enough to allow the heart to contract. For example, the vagal nerve stimulation is removed, thereby allowing cardiac contractions to occur.
  • the heart may be determined if the heart is contracting as desired ( 532 ). If appropriate, the heart may be stimulated to ensure that cardiac contractions occur (Block 535 ). For example, cardiac stimulator 20 may be used to apply pacing pulses to the heart to encourage the heart to contract normally. In particular, the pacing pulses may be applied to the ventricle as is well known in the field. Additionally, the amount of cardiac stimulation used may be adjusted based on the output of the sensor 6 . For example, the level of stimulation may be decreased or the duration of stimulation may be decreased if the sensor 6 indicates that too many escape beats are occurring or are likely to occur at such a level of stimulation.
  • the present invention permits the heart to be stilled or quiescent for selected and controllable periods of time in order to permit a medical procedure to be performed. While such a period of quiescence is desired, it must not last too long, otherwise insufficient blood and oxygen is delivered to organs. Thus, it is necessary to have the periods when the heart is beating (Blocks 530 , 535 ).
  • Blocks 530 , 535 one or more of a variety of pharmacological agents or drugs may be delivered or may continue to be delivered. These drugs may produce reversible asystole of a heart while maintaining the ability of the heart to be electrically paced.
  • drugs may be administered to encourage heart contractions. Other drugs may be administered for a variety of functions and purposes as described above
  • Sensor 6 may also be used to determine whether the heart is beating as desired at Block 532 .
  • Such output may be communicated to the surgeon by a number of suitable means.
  • the output may be indicated on a display or monitor.
  • a visual or audio signal may also indicate output.
  • the system of the present invention may “lock” the controls of the cardiac stimulator in an “on” state after an escape beat has occurred in order to return the heart to a normal rate.
  • the system of the present invention may “lock” the controls of the cardiac stimulator in an “off” state to prevent an escape beat. The system may then release the controls when the electrical signals sensed by the sensor are again as desired.
  • the heart may again be stilled using the methods of stilling the heart described above.
  • the method may then be repeated (as in the loop designated by 540 ).
  • the heart may again be prevented from contracting by stimulation of the vagal nerve ( 510 ). Additional drugs may be delivered or the drugs previously administered may continue to be administered.
  • This cycle may be repeated until the procedure, such as surgery, is completed.
  • sensor 6 enables monitoring of heart rate and, if necessary, appropriate adjustment of nerve stimulation and cardiac stimulation to ensure the heart is beating appropriately.
  • a surgical procedure at 520 may require several stitches to be made by the surgeon.
  • the surgeon may stimulate the vagal nerve at 510 to stop the heart. Then the surgeon may make the first stitch at 520 .
  • the surgeon may then reduce or halt stimulation at 530 and allow the heart to contract.
  • the surgeon may also pace the heart at 535 .
  • the surgeon may return to 510 to inhibit contractions of the heart.
  • the surgeon will then make the second stitch. This process may be repeated (the loop designated by 540 may be repeated) until all the required stitches have been made.
  • the heart's electrical signals are monitored continuously or, for example at Blocks 517 , 525 by sensor 6 . The procedure may proceed uninterrupted if no contractions are imminent.
  • step 535 may be performed until the heart is beating normally. Once it has been determined at 539 that the medical procedure is complete, the surgeon may continue stimulating the heart until satisfied that the heart is beating normally. Additionally, sensor 6 may be used to monitor heart rate until it has reached an acceptable level. At the procedure's end, one or more of a variety of pharmacological agents or drugs may be delivered or may continue to be delivered for example to alleviate pain or aid in recuperation. Other drugs may be administered for a variety of functions and purposes as described above.
  • FIG. 4 is a timeline illustrating one relationship between a cardiac contraction sensor, a nerve stimulator and a cardiac stimulator.
  • Point 610 indicates a point before the medical procedure has begun. At this point 610 , both nerve stimulation and cardiac stimulation are off. At point 610 , the heart is beating regularly. The patient's heart rate may be measured by sensor 6 at point 610 . Thus, sensor 6 may be turned on at point 610 .
  • nerve stimulation is turned on to inhibit beating of the heart.
  • the vagal nerve stimulation is on and the cardiac stimulation is off. This is the condition of the two types of stimulation at step 520 described above.
  • cardiac contraction sensor 6 is on throughout the entire procedure. Alternatively, cardiac contraction sensor 6 may be turned on during phase 601 to check whether a contraction is imminent (as described at Block 517 ).
  • Point 611 is a representative point during phase 601 .
  • the contractions of the heart are stilled or substantially slowed.
  • sensor 6 may be used to determine that no contractions are imminent (as described at Blocks 517 and 525 ). If no contractions are impending at point 611 , then the medical procedure can proceed (as described at Block 520 ). However, if a contraction is impending at point 611 , sensor 6 may provide a signal indicating the impending contraction. The surgeon may then stop the medical procedure and allow the contraction to occur. After the contraction has occurred, the surgeon may then continue in phase 601 and finish the step of the procedure. Alternatively, the surgeon may proceed immediately to phase 602 after the contraction has occurred. Alternatively, control unit 200 may automatically proceed to phase 602 after providing the signal.
  • the vagal stimulation is turned off (as described at step 530 ) and the cardiac stimulation may be turned on (as described at 535 ).
  • Point 612 is a representative point during phase 602 .
  • the contractions are allowed and/or may be induced.
  • cardiac contraction sensor 6 is still on during phase 602 and may be used to determine if the contractions are occurring appropriately.
  • the sensor 6 may be turned on during phase 602 to determine if the contractions are occurring appropriately.
  • phase 603 the vagal nerve stimulation is again turned on and the cardiac stimulation is turned off.
  • the cardiac contraction sensor 6 has been operating throughout each phase and continues to operate through phase 603 .
  • the amount or duration of vagal stimulation during phase 603 may be different than the amount or duration of vagal stimulation during phase 601 , based on the data gathered from sensor 6 during phase 601 .
  • the vagal stimulation may be increased if sensor 6 detected an undesirable number of escape beats.
  • sensor 6 may be turned on during phase 603 to again determine if an escape beat is imminent (as described at Block 525 ).
  • Point 613 is a representative point during phase 603 .
  • step 520 If no escape beat is imminent at 613 , then the medical procedure can proceed (as described in step 520 ). However, if an escape beat is impending, sensor 6 may provide a signal indicating this. The surgeon may then stop the medical procedure and allow the contraction to occur. After the contraction has occurred, the surgeon may then continue in phase 603 and finish the step of the procedure. Alternatively, the surgeon may proceed immediately to phase 604 after the contraction has occurred. Alternatively, control unit 200 may automatically proceed to phase 604 after providing the signal.
  • phase 604 the vagal stimulation is again turned off and the cardiac stimulation may again be turned on.
  • the amount or duration of cardiac stimulation during phase 604 may be different than the amount or duration of cardiac stimulation during phase 602 , based on the data gathered from sensor 6 during the previous phases. For example, the amount or duration of cardiac stimulation may be decreased if too many escape beats occurred during the previous phases.
  • Point 614 is a representative point during phase 602 .
  • the contractions are allowed and/or may be induced.
  • cardiac contraction sensor 6 is still on during phase 604 and may be used to determine if the contractions are occurring appropriately. Alternatively, the sensor 6 may be turned on during phase 604 to determine if the contractions are occurring appropriately.
  • the method of the present invention may be repeated as necessary until a point is reached, represented by point 615 , when the necessary medical procedures are completed.
  • nerve stimulation is off although cardiac stimulation may be left on in order to pace the heart to its normal rhythm.
  • sensor 6 may be used to check the heart rate for a final time (as described at 532 ).

Abstract

A system of performing a medical procedure, such as surgery, is provided. The system comprises a sensor to sense a state of cardiac tissue, such as an impending contraction and an indicator to indicate the state of the cardiac tissue. Methods and devices for performing the medical procedure are also provided.

Description

    PRIORITY
  • This application claims priority as a divisional application to 09/669,335 filed on Sep. 26, 2000.[0001]
  • FIELD OF THE INVENTION
  • This invention relates to methods and systems for performing a medical procedure, especially procedures during which it is necessary to adjust the beating of the heart. More particularly, this invention relates to methods and systems for sensing imminent cardiac contractions during such a procedure. [0002]
  • BACKGROUND OF THE INVENTION
  • The current leading cause of death in the United States is coronary artery disease in which the coronary arteries are blocked by atherosclerotic plaques or deposits of fat. The typical treatment to relieve a partially or fully blocked coronary artery is coronary artery bypass graph (CABG) surgery. [0003]
  • CABG surgery, also known as “heart bypass” surgery, generally entails using a graph to bypass the coronary obstruction. The procedure is generally lengthy, traumatic and subject to patient risks. Among the risk factors involved is the use of a cardiopulmonary bypass (CPB) circuit, also known as a “heart-lung machine”, to pump blood and oxygenate the blood so that the patient's heart may be stopped during the surgery. [0004]
  • Conventional CABG procedures are typically conducted on a stopped heart while the patient is on a CPB circuit. A stopped heart and a CPB circuit enables a surgeon to work in a bloodless, still operative field. However, there are a number of problems associated with CABG procedures performed while on CPB including the initiation of a systemic inflammatory response due to interactions of blood elements with the artificial material surfaces of the CPB circuit and global myocardial ischemia due to cardioplegic cardiac arrest. For these reasons, avoiding the use of CPB or cardioplegic cardiac arrest may help minimize post-operative complications. [0005]
  • One method, as disclosed in U.S. Pat. No. 5,651,378 to inventors Matheny and Taylor and in U.S. Pat. No. 5,913,876 to inventors Taylor et al., for facilitating coronary bypass surgery on a beating heart and thereby avoid the use of CPB and cardioplegic cardiac arrest includes stimulating the vagal nerve electrically in order to temporarily stop or substantially reduce the beating of the heart. This may be followed by pacing the heart to start its beating. [0006]
  • Another method, as disclosed in two published PCT applications, WO 99/09971 and WO 99/09973, both to inventor Puskas, involves stopping the beating of the heart during coronary bypass surgery using electrical stimulation of the vagal nerve in combination with administration of drugs. Another method, as disclosed in U.S. Pat. No. 6,060,454 to inventor Duhaylongsod, involves stopping the beating of the heart during coronary bypass surgery via the local delivery of drugs to the heart. [0007]
  • Although it is desirable to stop the heart for a period of time in order to allow the surgeon to accomplish a required task without interference from heart movement, i.e. a motionless operative field, it is undesirable to have the heart stopped for too long a period of time since the body needs, among other things, a constant supply of oxygen. In fact, it is particularly important to maintain sufficient blood flow, and therefore oxygen flow, to the brain. Stopping the heart for prolonged periods of time may cause damage to the patient. [0008]
  • Moreover, once stopped or still, the heart may still contract occasionally. This is sometimes referred to as an “escape beat.” Such an “escape beat” may occur without any warning to the surgeon and the movement associated with the escape beat may interfere with the medical procedure being carried out. [0009]
  • It would be desirable therefore to provide a method for temporarily stopping or slowing the heart in order to control blood flow during a medical procedure. [0010]
  • It would further be desirable to provide a means for sensing an imminent cardiac contraction during the procedure. [0011]
  • It would further be desirable to provide a means for alerting the surgeon of an imminent contraction during the procedure. [0012]
  • SUMMARY OF THE INVENTION
  • One aspect of the present invention provides a system for performing a medical procedure. The system includes a sensor to sense a state of a cardiac tissue and an indicator to indicate the state of the cardiac tissue. [0013]
  • The system may also include a nerve stimulator in communication with the sensor to inhibit beating of a heart when the state indicated by the indicator is a non-contracting state. The nerve stimulator may stimulate a nerve such as a vagal nerve, a carotid sinus nerve, a fat pad. The nerve stimulator may be, for example, one or more electrodes, such as nerve stimulation electrodes, endotracheal electrodes, endoesophageal electrodes, intravascular electrodes, transcutaneous electrodes, intracutaneous electrodes, balloon-type electrodes, basket-type electrodes, umbrella-type electrodes, tape-type electrodes, suction-type electrodes, screw-type electrodes, barb-type electrodes, bipolar electrodes, monopolar electrodes, metal electrodes, wire electrodes, patch electrodes, cuff electrodes, clip electrodes, needle electrodes and probe electrodes. [0014]
  • The system may also include a cardiac stimulator in communication with the sensor to stimulate beating of a heart when the state indicated by the indicator is a contracting state. The cardiac stimulator may be, for example, one or more electrodes, such as cardiac stimulation electrodes, clip electrodes, needle electrodes, probe electrodes, pacing electrodes, epicardial electrodes, patch electrodes, intravascular electrodes, balloon-type electrodes, basket-type electrodes, tape-type electrodes, umbrella-type electrodes, suction-type electrodes, endotracheal electrodes, endoesophageal electrodes, transcutaneous electrodes, intracutaneous electrodes, screw-type electrodes, barb-type electrodes, bipolar electrodes, monopolar electrodes, metal electrodes, wire electrodes and cuff electrodes. [0015]
  • The sensor may be an electrical sensor, a chemical sensor, an electromagnetic interference sensor, an electrochemical sensor, a pressure sensor, a sound wave sensor, a magnetic sensor, an ultraviolet sensor, a visible light sensor, an infrared sensor, a radiation sensor, a flow sensor, a temperature sensor, a gas sensor, an optical sensor, a pH sensor, a potentiometric sensor, a fluorescence sensor, a depolarization sensor and a biosensor. The sensor may also comprise one or more electrodes, such as cardiac stimulation electrodes, clip electrodes, needle electrodes, probe electrodes, pacing electrodes, epicardial electrodes, patch electrodes, intravascular electrodes, balloon-type electrodes, basket-type electrodes, tape-type electrodes, umbrella-type electrodes, suction-type electrodes, endotracheal electrodes, endoesophageal electrodes, transcutaneous electrodes, intracutaneous electrodes, screw-type electrodes, barb-type electrodes, bipolar electrodes, monopolar electrodes, metal electrodes, wire electrodes and cuff electrodes. The sensor and the cardiac stimulator may be the same. [0016]
  • The system may also include drug delivery means such as a spray, a cream, an ointment, a medicament, a pill, a patch, a catheter, a cannula, a needle and syringe, a pump, and an iontophoretic drug delivery device to deliver at least one drug during the procedure. The drug may be a beta-blocker, a cholinergic agent, a cholinesterase inhibitor, a calcium channel blocker, a sodium channel blocker, a potassium channel agent, adenosine, an adenosine receptor agonist, an adenosine deaminase inhibitor, dipyridamole, a monoamine oxidase inhibitor, digoxin, digitalis, lignocaine, a bradykinin agent, a serotoninergic agonist, an antiarrythmic agent, a cardiac glycoside, a local anesthetic, atropine, a calcium solution, an agent that promotes heart rate, an agent that promotes heart contractions, dopamine, a catecholamine, an inotrope glucagon, a hormone, forskolin, epinephrine, norepinephrine, thyroid hormone, a phosphodiesterase inhibitor, prostacyclin, prostaglandin and a methylxanthine. The drug may be naturally occurring or chemically synthesized. [0017]
  • The system may also include a breathing regulator, which may control a respirator. The breathing regulator may stimulate a phrenic nerve. The breathing regulator may be, for example, one or more electrodes such as nerve stimulation electrodes, endotracheal electrodes, endoesophageal electrodes, intravascular electrodes, transcutaneous electrodes, intracutaneous electrodes, balloon-type electrodes, basket-type electrodes, umbrella-type electrodes, suction-type electrodes, screw-type electrodes, tape-type electrodes, barb-type electrodes, bipolar electrodes, monopolar electrodes, metal electrodes, wire electrodes, patch electrodes, cuff electrodes, clip electrodes, needle electrodes and probe electrodes. [0018]
  • The medical procedure may be a surgical procedure, a non-surgical procedure, a fluoroscopic procedure, a cardiac procedure, a vascular procedure, a neurosurgical procedure, an electrophysiological procedure, a diagnostic procedure, a therapeutic procedure, an ablation procedure, an endovascular procedure, a liver procedure, a spleen procedure, a pulmonary procedure, an aneurysm repair, an imaging procedure, a CAT scan procedure, a MRI procedure, a pharmacological therapy, a drug delivery procedure, a biological delivery procedure, a genetic therapy, a cellular therapy, a cancer therapy, a radiation therapy, a transplantation procedure, a coronary angioplasty procedure, a stent delivery procedure, an atherectomy procedure, a procedure that requires precise control of cardiac motion, a procedure that requires precise control of bleeding, a non-invasive procedure, a minimally invasive procedure, an invasive procedure, a port-access procedure, an endoscopic procedure, a sternotomy procedure, a thoracotomy procedure and a robotic procedure. [0019]
  • Another aspect of the present invention provides a method for performing a medical procedure. Beating of a heart is inhibited. The medical procedure is performed and a state of cardiac tissue is sensed while beating of the heart is inhibited. The beating of the heart may be inhibited automatically when the state of cardiac tissue is a non-contracting state. A nerve may also be stimulated to inhibit beating of the heart when the state of cardiac tissue is a non-contracting state. Stimulation of the nerve may be stopped when the state of cardiac contraction is a contracting state. Beating of the heart may be allowed to occur when the state of cardiac tissue is a contracting state. Beating of the heart may also be stimulated automatically when the state of cardiac tissue is a contracting state. At least one drug may be delivered during the medical procedure. Breathing may be stopped when the state of cardiac tissue is a non-contracting state. [0020]
  • Another aspect of the present invention provides a device for performing a medical procedure. The device includes a processor a sensor to sense a state of cardiac tissue at least one nerve stimulation electrode. The processor receives a signal from the sensor and adjusts output from the nerve stimulation electrode in response to the signal. The sensor may be an electrical sensor, a chemical sensor, an electromagnetic interference sensor, an electrochemical sensor, a pressure sensor, a sound wave sensor, a magnetic sensor, an ultraviolet sensor, a visible light sensor, an infrared sensor, a radiation sensor, a flow sensor, a temperature sensor, a gas sensor, an optical sensor, a pH sensor, a potentiometric sensor, a fluorescence sensor, a depolarization sensor and a biosensor. The nerve stimulation electrode may be, for example, one or more electrodes such as endotracheal electrodes, endoesophageal electrodes, intravascular electrodes, transcutaneous electrodes, intracutaneous electrodes, balloon-type electrodes, basket-type electrodes, umbrella-type electrodes, tape-type electrodes, suction-type electrodes, screw-type electrodes, barb-type electrodes, bipolar electrodes, monopolar electrodes, metal electrodes, wire electrodes, patch electrodes, cuff electrodes, clip electrodes, needle electrodes and probe electrodes. [0021]
  • The device may also include at least one cardiac stimulation electrode to stimulate beating of the heart. The processor receives a signal from the sensor and adjusts output from the cardiac stimulation electrode in response to the signal. The cardiac stimulation electrode may be, for example, one or more electrodes such as clip electrodes, needle electrodes, probe electrodes, pacing electrodes, epicardial electrodes, patch electrodes, intravascular electrodes, balloon-type electrodes, basket-type electrodes, tape-type electrodes, umbrella-type electrodes, suction-type electrodes, endotracheal electrodes, endoesophageal electrodes, transcutaneous electrodes, intracutaneous electrodes, screw-type electrodes, barb-type electrodes, bipolar electrodes, monopolar electrodes, metal electrodes, wire electrodes and cuff electrodes. The cardiac stimulation electrode and the sensor may be the same. [0022]
  • The device may also include at least one breathing regulation electrode for controlling breathing. The processor adjusts the output from the breathing regulation electrode in response to the signal. The breathing electrode may be, for example, one or more electrodes, such as nerve stimulation electrodes, endotracheal electrodes, endoesophageal electrodes, intravascular electrodes, transcutaneous electrodes, intracutaneous electrodes, balloon-type electrodes, basket-type electrodes, umbrella-type electrodes, suction-type electrodes, screw-type electrodes, tape-type electrodes, barb-type electrodes, bipolar electrodes, monopolar electrodes, metal electrodes, wire electrodes, patch electrodes, cuff electrodes, clip electrodes, needle electrodes and probe electrodes. [0023]
  • The device may also include a drug pump for delivering at least one drug. The processor adjusts the output of the drug. [0024]
  • The foregoing, and other, features and advantages of the invention will become further apparent from the following detailed description of the presently preferred embodiments, read in conjunction with the accompanying drawings. The detailed description and drawings are merely illustrative of the invention rather than limiting, the scope of the invention being defined by the appended claims in equivalence thereof. [0025]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a schematic view of one embodiment of a system for sensing imminent cardiac contractions during a medical procedure in accordance with the present invention; [0026]
  • FIG. 2 is a schematic view of one embodiment of a medical device in accordance with the present invention; [0027]
  • FIG. 3 is a flow diagram of one embodiment of a method of performing a medical procedure in accordance with the present invention; and [0028]
  • FIG. 4 is a timeline view of one embodiment of a system for sensing imminent cardiac contractions during a medical procedure in accordance with the present invention.[0029]
  • DETAILED DESCRIPTION OF THE PRESENTLY PREFERRED EMBODIMENTS
  • FIG. 1 shows a schematic view of one embodiment of a system for performing a medical procedure in accordance with the present invention at [0030] 100. System 100 comprises a cardiac contraction sensor 6, a nerve stimulator 10, and a cardiac stimulator 20. System 100 may also feature a controller 30 and a breathing regulator 40.
  • FIG. 2 shows one embodiment of the present invention at [0031] 200. In this embodiment, the elements named above may be combined or connected to a control unit along with other components. The unit 200 may be used to coordinate the various elements.
  • [0032] Cardiac contraction sensor 6 may be any suitable sensor, e.g., an electrical sensor, a chemical sensor or a biosensor, for detecting one or more signals indicative of a cardiac contraction or heartbeat. In one embodiment, as seen in FIG. 2, cardiac contraction sensor 6 may also comprise a sensor 206 incorporated with a control unit 200.
  • In one embodiment, as shown in FIG. 2, [0033] sensor 206 may be a monitor for mounting on or near the heart during surgery. Such a monitor may monitor the electrical activity of the heart by picking up and amplifying electrical signals from the heart and displaying an output. For example, the output may be displayed on display 216. The surgeon may check this output periodically to see if the output reaches a level that indicates an escape beat is probable. Alternatively, the monitor may be programmed to indicate by a signal, such as an audio or visual signal, that the electrical activity has reached a predetermined level that is indicative of an imminent escape beat.
  • [0034] Cardiac contraction sensor 6 may also be a sensor that detects cardiac depolarizations. The electrical signal generated by the sinus node of the heart causes the atria to contract to force blood into the ventricles. After a brief delay, the ventricles contract to force blood out through the body. The contraction of the ventricles is reflected by the passage of a depolarization wavefront through the heart muscle. If a depolarization is sensed, an escape beat is likely to occur. One such depolarization sensor is disclosed in U.S. Pat. No. 5,156,149 entitled “Sensor for Detecting Cardiac Depolarizations Particularly Adapted for use in a Cardiac Pacemaker”, Oct. 2, 1992, to inventor Hudrlik. This patent is assigned to Medtronic, Inc. and is incorporated herein by reference.
  • [0035] Cardiac contraction sensor 6 may also be coupled to cardiac stimulator 20. Such a sensor may detect the response of tissue near the stimulator 20. If the tissue is stimulated during the procedure by stimulator 20, the cardiac stimulation may cause an escape beat even after stimulation has been reduced or stopped, particularly if cardiac stimulation is only reduced during the procedure rather than fully stopped. One such detector is disclosed in U.S. Pat. No. 5,265,603 entitled “Electronic Capture Detection for a Pacer,” Nov. 30, 1993, to inventor Hudrlik. This patent is assigned to Medtronic, Inc. and is incorporated herein by reference.
  • [0036] Cardiac contraction sensor 6 may be an apparatus that senses power levels of depolarizations in heart tissue. Such a sensor may be used to distinguish between normally conducted and ectopic heart beats while the heart is beating or may be used to sense an imminent heart beat while the heart is slowed or substantially stilled during a medical procedure. One apparatus that may serve as such a sensor is disclosed in U.S. Pat. No. 5,411,529 entitled “Waveform Discriminator for Cardiac Stimulation Devices”, May 2, 1995, to inventor Hurdlik. This patent is assigned to Medtronic, Inc. and is incorporated herein by reference.
  • Other suitable sensors may also serve as [0037] cardiac contraction sensor 6.
  • All or a portion of [0038] cardiac contraction sensor 6 may be placed in any suitable manner for sensing an imminent cardiac contraction. For example, sensor 206 may incorporate a lead as shown at 226, which may be used to attach the sensor to the heart. The lead may also be used to monitor electrical signals of the heart as described above. Sensor 206 may be placed in any suitable area of the heart. For example, sensor 206 may be placed near the location of the cardiac stimulator 220 as described above. Sensor 206 may be placed near the right ventricle, the left ventricle, the right atrium, or the left atrium. Other suitable placements of the sensor 206 may be possible. The sensor's optimal location will depend primarily on the sensor's mode of operation.
  • As indicated above, [0039] sensor 206 and/or control unit 200 may be incorporated into system 100. System 100 may also include a nerve stimulator 10. In one embodiment, the nerve stimulator 10 may be used to electrically manipulate cardiac rhythm by stimulating the vagus nerve. This vagal stimulation may produce asystole (slowing or stopping of the heart's beating.) Once this induced asystole is stopped, i.e. once the vagal stimulation is stopped, the heart may be allowed to return to its usual cardiac rhythm. Alternatively, the heart may be paced with an electrical pacing system, thereby maintaining a normal cardiac output. Vagal stimulation, alone or in combination with electrical pacing, may be used selectively and intermittently to allow a surgeon to perform a medical procedure during intermittent periods of asystole.
  • It is known that stimulation of the vagus nerve can reduce the sinus rate, as well as prolong AV conduction time or, if stimulation energies are high enough, induce AV node block. Use of vagal nerve stimulation to treat supraventricular arrhythmias and angina pectoris is disclosed in the article “Vagal Tuning” by Bilgutay et al., Journal of Thoracic and Cardiovascular Surgery, Vol. 56, No. 1, July, 1968, pp. 71-82. It is also known that stimulation of the carotid sinus nerve produces a similar result, as disclosed in the article “Carotid Sinus Nerve Stimulation in the Treatment of Angina Pectoris and Supraventricular Tachycardia” by Braunwald et al., published in California Medicine, Vol. 112, pp. 41-50, March, 1970. [0040]
  • As set forth in “Functional Anatomy of the Cardiac Efferent Innervation” by Randall et al., in Neurocardiology, edited by Kulbertus et al, Futura Publishing Co., 1988, direct surgical excision of the fat pad associated with the SA node affects the functioning of the SA node without significantly affecting the AV node. Similarly, excision of the fat pad associated with the AV node affects functioning of the AV node without significantly affecting the SA node. [0041]
  • As set forth in the article “Parasympathetic Postganglionic Pathways to the Sinoatrial Node,” Bluemel et al., Am. J. Physiol. 259, (Heart Circ. Physiol. 28) H1504-H1510, 1990, stimulation of the fat pad associated with the SA node results in slowing of the sinus rate without the accompanying prolongation of AV conduction time which normally results from vagal nerve stimulation. The article also indicates that stimulation of the fat pad associated with the AV node is believed to produce corresponding effects limited to the AV node, i.e., extension of the AV conduction time without concurrent slowing of the sinus rate. [0042]
  • As set forth in the article “Neural Effects on Sinus Rate and Atrial Ventricular Conduction Produced by Electrical Stimulation From a Transvenous Electrode Catheter in the Canine Right Pulmonary Artery” by Cooper et al., published in Circulation Research, Vol. 46, No. 1, January, 1980, pp. 48-57, the fat pads associated with both the AV node and the SA node may be stimulated by means of electrodes located in the right pulmonary artery. The results obtained include both a depression of the sinus rate and a prolongation of the AV conduction time in response to continuous stimulation at 2-80 Hz at up to 50 ma. [0043]
  • Generally in healthy individuals, the SA node functions as the pacemaker. Normal heart rhythm associated with the SA node is typically referred to as sinus rhythm. When the SA node fails, the AV node generally takes over creating a heart rate of approximately 35 to 60 beats per minute. Heart rhythm associated with the AV node is typically referred to as nodal rhythm. When the AV node itself is blocked or injured, a new even slower pacemaker site may form at the junction of the AV node and the His bundle. Heart rhythm associated with this junction is typically referred to as junctional escape rhythm. When this junction site is inhibited, the Purkinje fibers in the His bundle or below may act as a pacemaker creating a heart rate of approximately 30 beats per minute. Heart rhythm associated with the Purkinje fibers is typically referred to as idioventricular rhythm. [0044]
  • In one embodiment of the present invention, [0045] nerve stimulator 10 may be used to electrically manipulate cardiac rhythm by stimulating the carotid sinus nerve, the fat pad associated with the SA node, the fat pad associated with the AV node, the junction of the AV node and the His bundle and/or the Purkinje fibers.
  • In one embodiment of the present invention, [0046] nerve stimulator 10 is used alone or in combination with other heart rate inhibiting agents to temporarily stop or slow the beating heart, thereby eliminating or reducing heart motion and/or blood flow during a medical procedure. For example, the present invention may be used to eliminate or reduce motion in the anastomosis field during CABG procedures such that a facilitated anastomosis procedure may be performed safely and effectively. The number of occasions that the vagal nerve may be stimulated depends on the type of medical procedure to be performed. Likewise, the type of medical procedure to be performed will dictate the duration of the individual electrical stimulations.
  • [0047] Nerve stimulator 10 may be powered by AC current, DC current or it may be battery powered by a disposable or re-chargeable battery. Nerve stimulator 10 may be configured to synchronize activation and deactivation of breathing regulator 40 with vagal stimulation, thereby minimizing or eliminating unwanted heart and chest motion associated with the patient's breathing. Nerve stimulator 10 may comprise a surgeon controlled switch box. A switch may be incorporated in or on one of the surgeon's instruments, such as surgical site retractor, or any other location easily and quickly accessed by the surgeon for regulation of the nerve stimulator 10 by the surgeon. The switch may be, for example, a hand switch, a foot switch, or a voice-activated switch comprising voice-recognition technologies.
  • A visual and/or audible signal used to alert a surgeon to the completion or resumption of vagal nerve stimulation may be incorporated into [0048] nerve stimulator 10. For example, a beeping tone or flashing light that increases in frequency as the nerve stimulation period should end or begin may be used.
  • [0049] Nerve stimulator 10 may be slaved to cardiac stimulator 20 or cardiac stimulator 20 may be slaved to nerve stimulator 10. For example, the output of cardiac stimulator 20 may be off whenever the output of nerve stimulator 10 is on. Software controlling cardiac stimulator 20 may be designed to automatically commence cardiac pacing if the heart does not resume beating within a pre-determined interval after cessation of vagal nerve stimulation. In addition, the software controlling nerve stimulator 10 may be designed to automatically stop vagal nerve stimulation if the heart has been stopped for too long.
  • [0050] System 100 may also include cardiac stimulator 20 which may be used to stimulate the heart as desired. As with nerve stimulator 10, cardiac stimulator 20 may be intermittently stopped and started to allow the surgeon to perform individual steps of a medical procedure.
  • [0051] Cardiac stimulator 20 may be a conventional ventricular demand pacer or dual chamber (atrial-ventricular) pacer. Cardiac stimulator 20 may be powered by AC current, DC current or it may be battery powered by a disposable or re-chargeable battery. Cardiac stimulator 20 may be configured to synchronize activation and deactivation of breathing regulator 40 with pacing, thereby minimizing or eliminating unwanted heart and chest motion associated with the patient's breathing. Cardiac stimulator 20 may be any conventional pacing device suitable for ventricular demand pacing and having leads electrically coupled to a switch box. Cardiac stimulator 20 may be combined in a single unit with a switch box. Cardiac stimulator 20 may comprise a surgeon controlled switch box. A switch may be incorporated in or on one of the surgeon's instruments, such as surgical site retractor, or any other location easily and quickly accessed by the surgeon for regulation of the cardiac stimulator by the surgeon. The switch may be, for example, a hand switch, a foot switch, or a voice-activated switch comprising voice-recognition technologies. A single switch may be used to regulate both cardiac stimulator 20 and nerve stimulator 10.
  • A visual and/or audible signal used to prepare a surgeon for the resumption of pacing may be incorporated into [0052] cardiac stimulator 20. For example, a beeping tone or flashing light that increases in frequency as the pacing period ends may be used. A single signaling method or device may be used for both cardiac stimulator 20 and nerve stimulator 10.
  • [0053] Sensor 6, nerve stimulator 10 and/or cardiac stimulator 20 may be slaved to a robotic system or a robotic system may be slaved to sensor 6, nerve stimulator 10 and/or cardiac stimulator 20. Breathing regulator 40 and other components may also be slaved to such a system. Computer and voice-controlled robotic systems that position and maneuver endoscopes and/or other surgical instruments for performing microsurgical procedures such as anastomoses through small incisions may be used by a surgeon to perform precise and delicate maneuvers. These robotic systems may allow a surgeon to perform a variety of microsurgical procedures including endoscopic CABG. Endoscopic CABG may allow multiple occluded coronary arteries to be bypassed without a thoracotomy or mini-thoracotomy. Heart valve repair and replacement may also be other surgical applications for these robotic systems. In general, robotic systems may include head-mounted displays that integrate 3-D visualization of surgical anatomy and related diagnostic and monitoring data, miniature high-resolution 2-D and 3-D digital cameras, a computer, a high power light source and a standard video monitor.
  • [0054] System 100 may also include a breathing regulator 40. In one embodiment, the breathing regulator 40 may be used to stimulate the phrenic nerve in order to provide a diaphragmatic pacemaker. Breathing regulator 40 may comprise one or more electrodes for supplying electrical current to the phrenic nerve to control breathing during vagal and/or cardiac stimulation and/or destimulation. Electrodes used to stimulate the phrenic nerve may be, for example, non-invasive, e.g., clips, or invasive, e.g., needles or probes. The application of an electrical stimulus to the phrenic nerve may include, but is not limited to bipolar and/or monopolar techniques. Different electrode positions are accessible through various access openings, for example, in the cervical or thorax regions. Nerve stimulation electrodes may be positioned through a thoracotomy, sternotomy, endoscopically through a percutaneous port, through a stab wound or puncture, through a small incision, placed on the skin or in combinations thereof. The present invention may include various electrodes, catheters and electrode catheters suitable for phrenic nerve stimulation to control breathing.
  • Phrenic nerve stimulation electrodes may be intravascular, patch-type, balloon-type, basket-type, umbrella-type, tape-type, cuff-type, suction-type, screw-type, barb-type, bipolar, monopolar, metal, wire, endotracheal, endoesophageal, intravascular, transcutaneous or intracutaneous electrodes. Guided or steerable catheter devices comprising electrodes may be used alone or in combination with the nerve stimulation electrodes. For example, a catheter comprising one or more wire, metal strips or metal foil electrodes or electrode arrays may be used. The catheter may comprise, for example, a balloon, which may be inflated with air, or liquid to press the electrodes firmly against a vessel wall that lays adjacent the phrenic nerve. [0055]
  • Phrenic nerve stimulation electrodes may be oriented in any fashion along the catheter device, including longitudinally or transversely. Various techniques such as ultrasound, fluoroscopy and echocardiography may be used to facilitate positioning of the electrodes. If desired or necessary, avoidance of obstruction of blood flow may be achieved with notched catheter designs or with catheters which incorporate one or more tunnels or passageways. [0056]
  • In another embodiment, the [0057] breathing regulator 40 may comprise a connector which interfaces with a patient's respirator, and sends a logic signal to activate or deactivate the respirator to control breathing during vagal and/or cardiac stimulation and/or destimulation.
  • As indicated above, FIG. 2 shows one embodiment of the present invention at [0058] 200. In this embodiment, the elements named above may be combined or connected to a control unit along with other components. The unit 200 may be used to coordinate the various elements. Unit 200 may incorporate a controller or any suitable processor 230.
  • [0059] Unit 200 may incorporate a cardiac contraction sensor 206 as described above. As seen in FIG. 2, the sensor 206 may be or may incorporate one or more sensing electrodes 226. Such an electrode may also be attached to a display component 216. Sensing electrodes 226 incorporated with sensor 206 may be, for example, non-invasive, e.g., clips, or invasive, e.g., needles or probes. Electrodes 226 may be positioned through a thoracotomy, sternotomy, endoscopically through a percutaneous port, through a stab wound or puncture, through a small incision in the chest, placed on the chest or in combinations thereof. The present invention may also use various electrodes, catheters and electrode catheters suitable for pacing the heart, e.g., epicardial, patch-type, intravascular, balloon-type, basket-type, umbrella-type, tape-type, transcutaneous, intracutaneous, screw-type, barb-type, bipolar, monopolar, metal, wire, cuff-type or suction-type. Guided or steerable catheter devices comprising electrodes may be used alone or in combination with the electrodes. Although FIG. 2 shows a separate sensor 206 and cardiac stimulator 220, one sensing/stimulating electrode may serve both functions in one embodiment of the invention.
  • [0060] Unit 200 may also incorporate a separate cardiac stimulator and sensing electrode. For example, FIG. 2 shows an electrode for stimulation of the heart at 220 separate from sensing electrode 226. Cardiac electrodes 220 used to stimulate the heart may be, for example, non-invasive, e.g., clips, or invasive, e.g., needles or probes. Electrodes 220 may be positioned through a thoracotomy, sternotomy, endoscopically through a percutaneous port, through a stab wound or puncture, through a small incision in the chest, placed on the chest or in combinations thereof. The present invention may also use various electrodes, catheters and electrode catheters suitable for pacing the heart, e.g., epicardial, patch-type, intravascular, balloon-type, basket-type, umbrella-type, tape-type electrodes, suction-type, pacing electrodes, endotracheal electrodes, endoesophageal electrodes, transcutaneous electrodes, intracutaneous electrodes, screw-type electrodes, barb-type electrodes, bipolar electrodes, monopolar electrodes, metal electrodes, wire electrodes and cuff electrodes. Guided or steerable catheter devices comprising electrodes may be used alone or in combination with the electrodes.
  • [0061] Unit 200 may also incorporate a nerve stimulator. For example, FIG. 2 shows an electrode for nerve stimulation at 210. Electrodes used to stimulate a nerve such as the vagal nerve may be, for example, non-invasive, e.g., clips, or invasive, e.g., needles or probes. The application of an electrical stimulus to the right or left vagal nerve may include, but is not limited to bipolar and/or monopolar techniques. Different electrode positions are accessible through various access openings, for example, in the cervical or thorax regions. Nerve stimulation electrodes 210 may be positioned through a thoracotomy, sternotomy, endoscopically through a percutaneous port, through a stab wound or puncture, through a small incision in the neck or chest, through the internal jugular vein, the esophagus, the trachea, placed on the skin or in combinations thereof. Electrical stimulation may be carried out on the right vagal nerve, the left vagal nerve or to both nerves simultaneously or sequentially. The present invention may include various electrodes, catheters and electrode catheters suitable for vagal nerve stimulation to temporarily stop or slow the beating heart alone or in combination with other heart rate inhibiting agents.
  • [0062] Nerve stimulation electrodes 210 may be endotracheal, endoesophageal, intravascular, transcutaneous, intracutaneous, patch-type, balloon-type, cuff-type, basket-type, umbrella-type, tape-type, screw-type, barb-type, metal, wire or suction-type electrodes. Guided or steerable catheter devices comprising electrodes may be used alone or in combination with the nerve stimulation electrodes 210. For example, a catheter comprising one or more wire, metal strips or metal foil electrodes or electrode arrays may be inserted into the internal jugular vein to make electrical contact with the wall of the internal jugular vein, and thus stimulate the vagal nerve adjacent to the internal jugular vein. Access to the internal jugular vein may be via, for example, the right atrium, the right atrial appendage, the inferior vena cava or the superior vena cava. The catheter may comprise, for example, a balloon, which may be inflated with air or liquid to press the electrodes firmly against the vessel wall. Similar techniques may be performed by insertion of a catheter-type device into the trachea or esophagus. Additionally, tracheal tubes and esophageal tubes comprising electrodes may be used.
  • [0063] Nerve stimulation electrodes 210 may be oriented in any fashion along the catheter device, including longitudinally or transversely. Various techniques such as ultrasound, fluoroscopy and echocardiography may be used to facilitate positioning of the electrodes. If desired or necessary, avoidance of obstruction of blood flow may be achieved with notched catheter designs or with catheters which incorporate one or more tunnels or passageways.
  • In one embodiment of the present invention, the location of the [0064] electrodes 210 is chosen to elicit maximum bradycardia effectiveness while minimizing current spread to adjacent tissues and vessels and to prevent the induction of post stimulation tachycardia. Furthermore, a non-conductive material such as plastic may be employed to sufficiently enclose the electrodes of all the configurations to shield them from the surrounding tissues and vessels, while exposing their confronting edges and surfaces for positive contact with the vagal nerve or selected tissues.
  • [0065] Controller 230 may be used to gather information from nerve stimulation electrodes 210 and cardiac stimulation electrodes 220. Controller 230 may also be used to control the stimulation levels and stimulation duration from nerve stimulation electrodes 210 and cardiac stimulation electrodes 220. Controller 230 may also gather and process information from sensor 206. This information may be used to adjust stimulation levels and stimulation times from nerve stimulation electrodes 210 and cardiac stimulation electrodes 220.
  • [0066] Unit 200 may incorporate one or more switches to facilitate regulation of the various components by the surgeon. One example of such a switch is shown as foot pedal 250. The switch may also be, for example, a hand switch, or a voice-activated switch comprising voice-recognition technologies. The switch may be incorporated in or on one of the surgeon's instruments, such as surgical site retractor, or any other location easily and quickly accessed by the surgeon.
  • [0067] Unit 200 may also include a display 260. Unit 200 may also include other means of indicating the status of various components to the surgeon such as a numerical display, gauges, a monitor display or audio feedback. Unit 200 may also include one or more visual and/or audible signals used to prepare a surgeon for the start or stop of nerve stimulation and/or cardiac stimulation.
  • FIG. 3 shows a flow diagram of one embodiment of the present invention. The patient is prepared for a medical procedure at [0068] 500. In one embodiment of the invention, the patient's initial heart rate may be measured (Block 505). This initial reading is then used as a gauge to compare with the electrical signals detected by sensor 6 during the procedure. In one embodiment, the sensor alerts the surgeon if the sensed electrical (or depolarization) signals reach a predetermined level.
  • At [0069] Block 510, a nerve that controls the beating of the heart is stimulated. Such a nerve may be for example a vagal nerve. At Block 510, one or more of a variety of pharmacological agents or drugs may be delivered. These drugs may produce reversible asystole of a heart while maintaining the ability of the heart to be electrically paced.
  • A variety of pharmacological agents or drugs may also be delivered at other times during the [0070] procedure 500. These drugs may also produce reversible asystole of a heart while maintaining the ability of the heart to be electrically paced. Other drugs may be administered for a variety of functions and purposes as described below. Drugs may be delivered at any appropriate time during the medical procedure, for example, at the beginning of the procedure, intermittently during the procedure, continuously during the procedure or following the procedure.
  • Drugs, drug formulations or compositions suitable for administration to a patient during a medical procedure may include a pharmaceutically acceptable carrier or solution in an appropriate dosage. There are a number of pharmaceutically acceptable carriers that may be used for delivery of various drugs, for example, via direct injection, oral delivery, suppository delivery, transdermal delivery, epicardial delivery and/or inhalation delivery. Pharmaceutically acceptable carriers include a number of solutions, preferably sterile, for example, water, saline, Ringer's solution and/or sugar solutions such as dextrose in water or saline. Other possible carriers that may be used include sodium citrate, citric acid, amino acids, lactate, mannitol, maltose, glycerol, sucrose, ammonium chloride, sodium chloride, potassium chloride, calcium chloride, sodium lactate, and/or sodium bicarbonate. Carrier solutions may or may not be buffered. [0071]
  • Drug formulations or compositions may include antioxidants or preservatives such as ascorbic acid. They may also be in a pharmaceutically acceptable form for parenteral administration, for example to the cardiovascular system, or directly to the heart, such as intracoronary infusion or injection. Drug formulations or compositions may comprise agents that provide a synergistic effect when administered together. A synergistic effect between two or more drugs or agents may reduce the amount that normally is required for therapeutic delivery of an individual drug or agent. Two or more drugs may be administered, for example, sequentially or simultaneously. Drugs may be administered via one or more bolus injections and/or infusions or combinations thereof. The injections and/or infusions may be continuous or intermittent. Drugs may be administered, for example, systemically or locally, for example, to the heart, to a coronary artery and/or vein, to a pulmonary artery and/or vein, to the right atrium and/or ventricle, to the left atrium and/or ventricle, to the aorta, to the AV node, to the SA node, to a nerve and/or to the coronary sinus. Drugs may be administered or delivered via intravenous, intracoronary and/or intraventricular administration in a suitable carrier. Examples of arteries that may be used to deliver drugs to the AV node include the AV node artery, the right coronary artery, the right descending coronary artery, the left coronary artery, the left anterior descending coronary artery and Kugel's artery. Drugs may be delivered systemically, for example, via oral, transdermal, intranasal, suppository or inhalation methods. Drugs also may be delivered via a pill, a spray, a cream, an ointment or a medicament formulation. [0072]
  • Drugs may be delivered via a drug delivery device that may comprise a catheter, such as a drug delivery catheter or a guide catheter, a patch, such as a transepicardial patch that slowly releases drugs directly into the myocardium, a cannula, a pump and/or a hypodermic needle and syringe assembly. A drug delivery catheter may include an expandable member, e.g., a low-pressure balloon, and a shaft having a distal portion, wherein the expandable member is disposed along the distal portion. A catheter for drug delivery may comprise one or more lumens and may be delivered endovascularly via insertion into a blood vessel, e.g., an artery such as a femoral, radial, subclavian or coronary artery. The catheter can be guided into a desired position using various guidance techniques, e.g., flouroscopic guidance and/or a guiding catheter or guide wire techniques. [0073]
  • Drugs may be delivered via an iontophoretic drug delivery device placed on the heart. In general, the delivery of ionized drugs may be enhanced via a small current applied across two electrodes. Positive ions may be introduced into the tissues from the positive pole, or negative ions from the negative pole. The use of iontophoresis may markedly facilitate the transport of certain ionized drug molecules. For example, lidocaine hydrochloride may be applied to the heart via a drug patch comprising the drug. A positive electrode could be placed over the patch and current passed. The negative electrode would contact the heart or other body part at some desired distance point to complete the circuit. One or more of the electrodes may also be used as [0074] nerve stimulation electrodes 210, as cardiac stimulation electrodes 220 or as sensing electrodes 226.
  • The two divisions of the autonomic nervous system that regulate the heart have opposite functions. First, the adrenergic or sympathetic nervous system increases heart rate by releasing epinephrine and norepinephrine. Second, the parasympathetic system also known as the cholinergic nervous system or the vagal nervous system decreases heart rate by releasing acetylcholine. Catecholamines such as norepinephrine (also called noradrenaline) and epinephrine (also called adrenaline) are agonists for beta-adrenergic receptors. An agonist is a stimulant biomolecule or agent that binds to a receptor. [0075]
  • Beta-adrenergic receptor blocking agents compete with beta-adrenergic receptor stimulating agents for available beta-receptor sites. When access to beta-receptor sites are blocked by receptor blocking agents, also known as beta-adrenergic blockade, the chronotropic or heart rate, inotropic or contractility, and vasodilator responses to receptor stimulating agents are decreased proportionately. Therefore, beta-adrenergic receptor blocking agents are agents that are capable of blocking beta-adrenergic receptor sites. [0076]
  • Since beta-adrenergic receptors are concerned with contractility and heart rate, stimulation of beta-adrenergic receptors, in general, increases heart rate, the contractility of the heart and the rate of conduction of electrical impulses through the AV node and the conduction system. [0077]
  • Drugs, drug formulations and/or drug compositions that may be used according to this invention may include any naturally occurring or chemically synthesized (synthetic analogues) beta-adrenergic receptor blocking agents. Beta-adrenergic receptor blocking agents or □-adrenergic blocking agents are also known as beta-blockers or □-blockers and as class II antiarrhythmics. [0078]
  • The term “beta-blocker” appearing herein may refer to one or more agents that antagonize the effects of beta-stimulating catecholamines by blocking the catecholamines from binding to the beta-receptors. Examples of beta-blockers include, but are not limited to, acebutolol, alprenolol, atenolol, betantolol, betaxolol, bevantolol, bisoprolol, carterolol, celiprolol, chlorthalidone, esmolol, labetalol, metoprolol, nadolol, penbutolol, pindolol, propranolol, oxprenolol, sotalol, teratolo, timolol and combinations, mixtures and/or salts thereof. [0079]
  • The effects of administered beta-blockers may be reversed by administration of beta-receptor agonists, e.g., dobutamine or isoproterenol. [0080]
  • The parasympathetic or cholinergic system participates in control of heart rate via the sinoatrial (SA) node, where it reduces heart rate. Other cholinergic effects include inhibition of the AV node and an inhibitory effect on contractile force. The cholinergic system acts through the vagal nerve to release acetylcholine, which, in turn, stimulates cholinergic receptors. Cholinergic receptors are also known as muscarinic receptors. Stimulation of the cholinergic receptors decreases the formation of cAMP. Stimulation of cholinergic receptors generally has an opposite effect on heart rate compared to stimulation of beta-adrenergic receptors. For example, beta-adrenergic stimulation increases heart rate, whereas cholinergic stimulation decreases it. When vagal tone is high and adrenergic tone is low, there is a marked slowing of the heart (sinus bradycardia). Acetylcholine effectively reduces the amplitude, rate of increase and duration of the SA node action potential. During vagal nerve stimulation, the SA node does not arrest. Rather, pacemaker function may shift to cells that fire at a slower rate. In addition, acetylcholine may help open certain potassium channels thereby creating an outward flow of potassium ions and hyperpolarization. Acetylcholine also slows conduction through the AV node. [0081]
  • Drugs, drug formulations and/or drug compositions that may be used according to this invention may include any naturally occurring or chemically synthesized (synthetic analogues) cholinergic agent. The term “cholinergic agent” appearing herein may refer to one or more cholinergic receptor modulators or agonists. Examples of cholinergic agents include, but are not limited to, acetylcholine, carbachol (carbamyl choline chloride), bethanechol, methacholine, arecoline, norarecoline and combinations, mixtures and/or salts thereof. [0082]
  • Drugs, drug formulations and/or drug compositions that may be used according to this invention may include any naturally occurring or chemically synthesized cholinesterase inhibitor. The term “cholinesterase inhibitor” appearing herein may refer to one or more agents that prolong the action of acetylcholine by inhibiting its destruction or hydrolysis by cholinesterase. Cholinesterase inhibitors are also known as acetylcholinesterase inhibitors. Examples of cholinesterase inhibitors include, but are not limited to, edrophonium, neostigmine, neostigmine methylsulfate, pyridostigmine, tacrine and combinations, mixtures and/or salts thereof. [0083]
  • There are ion-selective channels within certain cell membranes. These ion selective channels include calcium channels, sodium channels and/or potassium channels. Therefore, other drugs, drug formulations and/or drug compositions that may be used according to this invention may include any naturally occurring or chemically synthesized calcium channel blocker. Calcium channel blockers inhibit the inward flux of calcium ions across cell membranes of arterial smooth muscle cells and myocardial cells. Therefore, the term “calcium channel blocker” appearing herein may refer to one or more agents that inhibit or block the flow of calcium ions across a cell membrane. The calcium channel is generally concerned with the triggering of the contractile cycle. Calcium channel blockers are also known as calcium ion influx inhibitors, slow channel blockers, calcium ion antagonists, calcium channel antagonist drugs and as class IV antiarrhythmics. A commonly used calcium channel blocker is verapamil. [0084]
  • Administration of a calcium channel blocker, e.g., verapamil, generally prolongs the effective refractory period within the AV node and slows AV conduction in a rate-related manner, since the electrical activity through the AV node depends significantly upon the influx of calcium ions through the slow channel. A calcium channel blocker has the ability to slow a patient's heart rate, as well as produce AV block. Examples of calcium channel blockers include, but are not limited to, amiloride, amlodipine, bepridil, diltiazem, felodipine, isradipine, mibefradil, nicardipine, nifedipine (dihydropyridines), nickel, nimodinpine, nisoldipine, nitric oxide (NO), norverapamil and verapamil and combinations, mixtures and/or salts thereof. Verapamil and diltiazem are very effective at inhibiting the AV node, whereas drugs of the nifedipine family have a lesser inhibitory effect on the AV node. Nitric oxide (NO) indirectly promotes calcium channel closure. NO may be used to inhibit contraction. NO may also be used to inhibit sympathetic outflow, lessen the release of norepinephrine, cause vasodilation, decrease heart rate and decrease contractility. In the SA node, cholinergic stimulation leads to formation of NO. [0085]
  • Other drugs, drug formulations and/or drug compositions that may be used according to this invention may include any naturally occurring or chemically synthesized sodium channel blocker. Sodium channel blockers are also known as sodium channel inhibitors, sodium channel blocking agents, rapid channel blockers or rapid channel inhibitors. Antiarrhythmic agents that inhibit or block the sodium channel are known as class I antiarrhythmics, examples include, but are not limited to, quinidine and quinidine-like agents, lidocaine and lidocaine-like agents, tetrodotoxin, encainide, flecainide and combinations, mixtures and/or salts thereof. Therefore, the term “sodium channel blocker” appearing herein may refer to one or more agents that inhibit or block the flow of sodium ions across a cell membrane or remove the potential difference across a cell membrane. For example, the sodium channel may also be totally inhibited by increasing the extracellular potassium levels to depolarizing hyperkalemic values, which remove the potential difference across the cell membrane. The result is inhibition of cardiac contraction with cardiac arrest (cardioplegia). The opening of the sodium channel (influx of sodium) is for swift conduction of the electrical impulse throughout the heart. [0086]
  • Other drugs, drug formulations and/or drug compositions that may be used according to this invention may include any naturally occurring or chemically synthesized potassium channel agent. The term “potassium channel agent” appearing herein may refer to one or more agents that impact the flow of potassium ions across the cell membrane. There are two major types of potassium channels. The first type of channel is voltage-gated and the second type is ligand-gated. Acetylcholine-activated potassium channels, which are ligand-gated channels, open in response to vagal stimulation and the release of acetylcholine. Opening of the potassium channel causes hyperpolarization, which decreases the rate at which the activation threshold is reached. Adenosine is one example of a potassium channel opener. Adenosine slows conduction through the AV node. Adenosine, a breakdown product of adenosine triphosphate, inhibits the AV node and atria. In atrial tissue, adenosine causes the shortening of the action potential duration and causes hyperpolarization. In the AV node, adenosine has similar effects and also decreases the action potential amplitude and the rate of increase of the action potential. Adenosine is also a direct vasodilator by its actions on the adenosine receptor on vascular smooth muscle cells. In addition, adenosine acts as a negative neuromodulator, thereby inhibiting release of norepinephrine. Class III antiarrhythmic agents also known as potassium channel inhibitors lengthen the action potential duration and refractoriness by blocking the outward potassium channel to prolong the action potential. Amiodarone and d-sotalol are both examples of class III antiarrhythmic agents. [0087]
  • Potassium is the most common component in cardioplegic solutions. High extracellular potassium levels reduce the membrane resting potential. Opening of the sodium channel, which normally allows rapid sodium influx during the upstroke of the action potential, is therefore inactivated because of a reduction in the membrane resting potential. The present invention may be combined with conventional CPB. Alternatively, the induced asystole as described by this invention may serve as a substitute for conventional cardioplegic arrest. For example, the combination of drugs and vagal stimulation may be used as a cardioplegic agent in a variety of medical procedures. [0088]
  • Drugs, drug formulations and/or drug compositions that may be used according to this invention may comprise one or more of any naturally occurring or chemically synthesized beta-blocker, cholinergic agent, cholinesterase inhibitor, calcium channel blocker, sodium channel blocker, potassium channel agent, adenosine, adenosine receptor agonist, adenosine deaminase inhibitor, dipyridamole, monoamine oxidase inhibitor, digoxin, digitalis, lignocaine, bradykinin agents, serotoninergic agonist, antiarrythmic agents, cardiac glycosides, local anesthetics and combinations or mixtures thereof. Digitalis and digoxin both inhibit the sodium pump. Digitalis is a natural inotrope derived from plant material, while digoxin is a synthesized inotrope. Dipyridamole inhibits adenosine deaminase, which breaks down adenosine. Drugs, drug formulations and/or drug compositions capable of reversibly suppressing autonomous electrical conduction at the SA and/or AV node, while still allowing the heart to be electrically paced to maintain cardiac output may be used according to this invention. [0089]
  • In one embodiment, the cardiac asystole produced in accordance with the present invention is reversible, e.g., chemically such as by the administration of atropine or by natural forces. Beta-adrenergic stimulation or administration of calcium solutions may be used to reverse the effects of a calcium channel blocker such as verapamil. Agents that promote heart rate and/or contraction may be used in a preferred embodiment of the present invention. For example, dopamine, a natural catecholamine, is known to increase contractility. Positive inotropes are agents that specifically increase the force of contraction of the heart. Glucagon, a naturally occurring hormone, is known to increase heart rate and contractility. Glucagon may be used to reverse the effects of a beta-blocker since its effects bypass the beta receptor. Forskolin is known to increase heart rate and contractility. As mentioned earlier, epinephrine and norepinephrine naturally increase heart rate and contractility. Thyroid hormone, phosphodiesterase inhibitors and prostacyclin, a prostaglandin, are also known to increase heart rate and contractility. In addition, methylxanthines are known to prevent adenosine from interacting with its cell receptors. [0090]
  • Typically, vagal nerve stimulation prevents the heart from contracting. This non-contraction must then be followed by periods without vagal nerve stimulation during which the heart is allowed to contract, and blood flow is restored throughout the body. At [0091] 517, the sensor 6 may be checked to determine if an escape beat is imminent. The sensor may be checked periodically during the procedure, for example, as shown at 517. Alternatively, the sensor may interrupt the procedure at any point by indicating that an escape beat is imminent. For example, a visual and/or audible signal, such as a flashing light or beeping tone, may be used to alert a surgeon that an escape beat is imminent. If no contraction is imminent, then all or a portion of the medical procedure may be carried out (Block 520). However, if a contraction is imminent, then a signal may indicate an escape beat is about to occur (as seen at 523). If the sensor indicates an escape beat is imminent, the surgeon may stop the medical procedure to allow the beat to occur. In one embodiment, the surgeon may then proceed to Block 530, where the nerve stimulation is ceased and the heart is allowed to contract. Alternatively, unit 200 may automatically proceed to Block 530 to cease nerve stimulation when sensor 6 indicates that a beat is imminent.
  • The output of [0092] sensor 6 may be communicated to the surgeon by a number of suitable means. For example, the output may be indicated on a display or monitor. A visual or audio signal may indicate when the electrical signals from the heart reach a certain level, e.g. a level indicating an imminent escape beat. Alternatively, the system of the present invention may “lock” the controls of the vagal stimulator in an “off” state when an escape beat is sensed. Alternatively, the system of the present invention may “lock” the controls of the surgical instruments being used to perform the surgery to indicate to the surgeon that an escape beat is imminent. The system may then release the controls when the signals indicate that the heart is again appropriately stilled.
  • Additionally, the amount of vagal nerve stimulation used and/or the amount of drugs administered may be adjusted based on the output of the [0093] sensor 6. For example, the level of stimulation may be increased if sensor 6 indicates that too many escape beats are occurring or are likely to occur. This adjustment may be automatic or may be controlled by the surgeon.
  • At [0094] Block 520, a medical procedure may be performed or begun. Such a procedure may be for example surgery on the heart. Alternatively, the procedure may be surgery performed on another organ of the body. At Block 520, one or more of a variety of pharmacological agents or drugs may be delivered or may continue to be delivered. These drugs may produce reversible asystole of a heart while maintaining the ability of the heart to be electrically paced. Other drugs may be administered for a variety of functions and purposes as described above.
  • The term “medical procedure” may mean any one or more medical or surgical procedures such as, for example cardiac surgery, performed with or without cardiopulmonary bypass (CPB) circuits, heart valve repair, heart valve replacement, MAZE procedures, revascularization procedures, transmyocardial revascularization (TMR) procedures, percutaneous myocardial revascularization (PMR) procedures, CABG procedures, anastomosis procedures, non-surgical procedures, fluoroscopic procedures, beating heart surgery, vascular surgery, neurosurgery, brain surgery, electrophysiology procedures, diagnostic and therapeutic procedures, ablation procedures, ablation of arrhythmias, endovascular procedures, treatment of the liver, spleen, heart, lungs, and major blood vessels, aneurysm repair, imaging procedures of the heart and great vessels, CAT scans or MRI procedures, pharmacological therapies, drug delivery procedures, gene therapies, cellular therapies, cancer therapies, radiation therapies, genetic, cellular, tissue and/or organ manipulation or transplantation procedures, coronary angioplasty procedures, placement or delivery of coated or noncoated stents, atherectomy procedures, atherosclerotic plaque manipulation and/or removal procedures, procedures where bleeding needs to be precisely controlled, procedures that require precise control of cardiac motion and/or bleeding. [0095]
  • When the medical procedure comprises one or more medical devices, e.g., coated stents, these devices may be coated with one or more radioactive materials and/or biological agents such as, for example, an anticoagulant agent, an antithrombotic agent, a clotting agent, a platelet agent, an anti-inflammatory agent, an antibody, an antigen, an immunoglobulin, a defense agent, an enzyme, a hormone, a growth factor, a neurotransmitter, a cytokine, a blood agent, a regulatory agent, a transport agent, a fibrous agent, a protein, a peptide, a proteoglycan, a toxin, an antibiotic agent, an antibacterial agent, an antimicrobial agent, a bacterial agent or component, hyaluronic acid, a polysaccharide, a carbohydrate, a fatty acid, a catalyst, a drug, a vitamin, a DNA segment, a RNA segment, a nucleic acid, a lectin, an antiviral agent, a viral agent or component, a genetic agent, a ligand and a dye (which acts as a biological ligand). Biological agents may be found in nature (naturally occurring) or may be chemically synthesized. [0096]
  • The medical procedure may be non-invasive, minimally invasive and/or invasive. The medical procedure may entail a port-access approach, a partial or total endoscopic approach, a sternotomy approach or a thoracotomy approach. The medical procedure may include the use of various mechanical stabilization devices or techniques as well as various robotic or imaging systems. [0097]
  • In one method, the heart may be temporarily slowed or intermittently stopped for short periods of time to permit the surgeon to accomplish the required surgical task and yet still allow the heart itself to supply blood circulation to the body. For example, stimulation of the vagus nerve in order to temporarily and intermittently slow or stop the heart is described in U.S. Pat. No. 6,006,134 entitled “Method and Device for Electronically Controlling the Beating of a Heart Using Venous Electrical Stimulation of Nerve Fibers,” Dec. 21, 1999, to inventors Hill and Junkman. This patent is assigned to Medtronic, Inc. and is incorporated herein by reference. [0098]
  • During this medical procedure, cardiac contractions or cardiac signals may be monitored constantly or intermittently as described above. An assessment of the likelihood of a contraction may again be taken at [0099] Block 525. If no contraction is imminent, the physician may continue with the medical procedure that is in progress. However, if a contraction is likely to occur, the surgeon may increase nerve stimulation and/or the administration of drugs. Alternatively, the surgeon may choose to proceed to Block 530 and allow the heart to beat normally for a period of time. The heart will therefore be allowed to contract and thus blood will again be allowed to flow to the brain and vital organs.
  • After a time, the medical procedure or one phase of the procedure is completed at [0100] 520. After some phase of the medical procedure is performed, cardiac contractions are allowed to occur (Block 530). Cardiac contractions may need to occur intermittently during the procedure to ensure adequate blood flow. In one embodiment, the stimulation from the nerve stimulator 10 is stopped or slowed enough to allow the heart to contract. For example, the vagal nerve stimulation is removed, thereby allowing cardiac contractions to occur.
  • In another embodiment, it may be determined if the heart is contracting as desired ([0101] 532). If appropriate, the heart may be stimulated to ensure that cardiac contractions occur (Block 535). For example, cardiac stimulator 20 may be used to apply pacing pulses to the heart to encourage the heart to contract normally. In particular, the pacing pulses may be applied to the ventricle as is well known in the field. Additionally, the amount of cardiac stimulation used may be adjusted based on the output of the sensor 6. For example, the level of stimulation may be decreased or the duration of stimulation may be decreased if the sensor 6 indicates that too many escape beats are occurring or are likely to occur at such a level of stimulation.
  • The present invention permits the heart to be stilled or quiescent for selected and controllable periods of time in order to permit a medical procedure to be performed. While such a period of quiescence is desired, it must not last too long, otherwise insufficient blood and oxygen is delivered to organs. Thus, it is necessary to have the periods when the heart is beating ([0102] Blocks 530, 535). At Blocks 530, 535, one or more of a variety of pharmacological agents or drugs may be delivered or may continue to be delivered. These drugs may produce reversible asystole of a heart while maintaining the ability of the heart to be electrically paced. Particularly at Blocks 530, 535, drugs may be administered to encourage heart contractions. Other drugs may be administered for a variety of functions and purposes as described above
  • [0103] Sensor 6 may also be used to determine whether the heart is beating as desired at Block 532. Such output may be communicated to the surgeon by a number of suitable means. For example, the output may be indicated on a display or monitor. A visual or audio signal may also indicate output. Alternatively, the system of the present invention may “lock” the controls of the cardiac stimulator in an “on” state after an escape beat has occurred in order to return the heart to a normal rate. Alternatively, the system of the present invention may “lock” the controls of the cardiac stimulator in an “off” state to prevent an escape beat. The system may then release the controls when the electrical signals sensed by the sensor are again as desired.
  • At [0104] 539, it may be determined if additional medical procedures or additional stages of medical procedures need to be performed. If so, the heart may again be stilled using the methods of stilling the heart described above. The method may then be repeated (as in the loop designated by 540). For example, the heart may again be prevented from contracting by stimulation of the vagal nerve (510). Additional drugs may be delivered or the drugs previously administered may continue to be administered.
  • This cycle may be repeated until the procedure, such as surgery, is completed. As the cycle continues, [0105] sensor 6 enables monitoring of heart rate and, if necessary, appropriate adjustment of nerve stimulation and cardiac stimulation to ensure the heart is beating appropriately.
  • For example, a surgical procedure at [0106] 520 may require several stitches to be made by the surgeon. The surgeon may stimulate the vagal nerve at 510 to stop the heart. Then the surgeon may make the first stitch at 520. The surgeon may then reduce or halt stimulation at 530 and allow the heart to contract. The surgeon may also pace the heart at 535. Then at 540, the surgeon may return to 510 to inhibit contractions of the heart. At 520, the surgeon will then make the second stitch. This process may be repeated (the loop designated by 540 may be repeated) until all the required stitches have been made. Meanwhile, the heart's electrical signals are monitored continuously or, for example at Blocks 517, 525 by sensor 6. The procedure may proceed uninterrupted if no contractions are imminent.
  • After the procedure is completed, [0107] step 535 may be performed until the heart is beating normally. Once it has been determined at 539 that the medical procedure is complete, the surgeon may continue stimulating the heart until satisfied that the heart is beating normally. Additionally, sensor 6 may be used to monitor heart rate until it has reached an acceptable level. At the procedure's end, one or more of a variety of pharmacological agents or drugs may be delivered or may continue to be delivered for example to alleviate pain or aid in recuperation. Other drugs may be administered for a variety of functions and purposes as described above.
  • FIG. 4 is a timeline illustrating one relationship between a cardiac contraction sensor, a nerve stimulator and a cardiac stimulator. [0108]
  • [0109] Point 610 indicates a point before the medical procedure has begun. At this point 610, both nerve stimulation and cardiac stimulation are off. At point 610, the heart is beating regularly. The patient's heart rate may be measured by sensor 6 at point 610. Thus, sensor 6 may be turned on at point 610.
  • Then nerve stimulation is turned on to inhibit beating of the heart. During [0110] phase 601, the vagal nerve stimulation is on and the cardiac stimulation is off. This is the condition of the two types of stimulation at step 520 described above. In one embodiment, as shown in FIG. 4, cardiac contraction sensor 6 is on throughout the entire procedure. Alternatively, cardiac contraction sensor 6 may be turned on during phase 601 to check whether a contraction is imminent (as described at Block 517).
  • [0111] Point 611 is a representative point during phase 601. At point 611, the contractions of the heart are stilled or substantially slowed. In addition, at point 611, sensor 6 may be used to determine that no contractions are imminent (as described at Blocks 517 and 525). If no contractions are impending at point 611, then the medical procedure can proceed (as described at Block 520). However, if a contraction is impending at point 611, sensor 6 may provide a signal indicating the impending contraction. The surgeon may then stop the medical procedure and allow the contraction to occur. After the contraction has occurred, the surgeon may then continue in phase 601 and finish the step of the procedure. Alternatively, the surgeon may proceed immediately to phase 602 after the contraction has occurred. Alternatively, control unit 200 may automatically proceed to phase 602 after providing the signal.
  • During [0112] phase 602 the vagal stimulation is turned off (as described at step 530) and the cardiac stimulation may be turned on (as described at 535). Point 612 is a representative point during phase 602. At point 612, the contractions are allowed and/or may be induced. In one embodiment, cardiac contraction sensor 6 is still on during phase 602 and may be used to determine if the contractions are occurring appropriately. Alternatively, the sensor 6 may be turned on during phase 602 to determine if the contractions are occurring appropriately.
  • During [0113] phase 603, the vagal nerve stimulation is again turned on and the cardiac stimulation is turned off. In one embodiment, the cardiac contraction sensor 6 has been operating throughout each phase and continues to operate through phase 603. The amount or duration of vagal stimulation during phase 603 may be different than the amount or duration of vagal stimulation during phase 601, based on the data gathered from sensor 6 during phase 601. For example, the vagal stimulation may be increased if sensor 6 detected an undesirable number of escape beats. Alternatively, sensor 6 may be turned on during phase 603 to again determine if an escape beat is imminent (as described at Block 525). Point 613 is a representative point during phase 603. If no escape beat is imminent at 613, then the medical procedure can proceed (as described in step 520). However, if an escape beat is impending, sensor 6 may provide a signal indicating this. The surgeon may then stop the medical procedure and allow the contraction to occur. After the contraction has occurred, the surgeon may then continue in phase 603 and finish the step of the procedure. Alternatively, the surgeon may proceed immediately to phase 604 after the contraction has occurred. Alternatively, control unit 200 may automatically proceed to phase 604 after providing the signal.
  • During [0114] phase 604 the vagal stimulation is again turned off and the cardiac stimulation may again be turned on. The amount or duration of cardiac stimulation during phase 604 may be different than the amount or duration of cardiac stimulation during phase 602, based on the data gathered from sensor 6 during the previous phases. For example, the amount or duration of cardiac stimulation may be decreased if too many escape beats occurred during the previous phases. Point 614 is a representative point during phase 602. At point 614, the contractions are allowed and/or may be induced. In one embodiment, cardiac contraction sensor 6 is still on during phase 604 and may be used to determine if the contractions are occurring appropriately. Alternatively, the sensor 6 may be turned on during phase 604 to determine if the contractions are occurring appropriately.
  • The method of the present invention may be repeated as necessary until a point is reached, represented by [0115] point 615, when the necessary medical procedures are completed. At this point 615, nerve stimulation is off although cardiac stimulation may be left on in order to pace the heart to its normal rhythm. At point 615, sensor 6 may be used to check the heart rate for a final time (as described at 532).
  • It will be appreciated by those skilled in the art that while the invention has been described above in connection with particular embodiments and examples, the invention is not necessarily so limited, and that numerous other embodiments, examples, uses, modifications and departures from the embodiments, examples and uses are intended to be encompassed by the claims attached hereto. The entire disclosure of each patent and publication cited herein is incorporated by reference, as if each such patent or publication were individually incorporated by reference herein. [0116]

Claims (41)

We claim:
1. A system for performing a medical procedure, comprising:
a sensor to sense a state of a cardiac tissue; and
an indicator to indicate the state of the cardiac tissue.
2. The system of claim 1 further comprising:
a cardiac stimulator in communication with the sensor to stimulate beating of a heart when the state indicated by the indicator is a contracting state.
3. The system of claim 1 further comprising:
a nerve stimulator in communication with the sensor to inhibit beating of a heart when the state indicated by the indicator is a non-contracting state.
4. The system of claim 1 further comprising:
drug delivery means for delivering at least one drug during the medical procedure.
5. The system of claim 4 wherein the drug delivery means is selected from the group consisting of:
a spray, a cream, an ointment, a medicament, a pill, a patch, a catheter, a cannula, a needle and syringe, a pump, and an iontophoretic drug delivery device.
6. The system of claim 4 wherein the drug is selected from the group consisting of:
a beta-blocker, a cholinergic agent, a cholinesterase inhibitor, a calcium channel blocker, a sodium channel blocker, a potassium channel agent, adenosine, an adenosine receptor agonist, an adenosine deaminase inhibitor, dipyridamole, a monoamine oxidase inhibitor, digoxin, digitalis, lignocaine, a bradykinin agent, a serotoninergic agonist, an antiarrythmic agent, a cardiac glycoside, a local anesthetic, atropine, a calcium solution, an agent that promotes heart rate, an agent that promotes heart contractions, dopamine, a catecholamine, an inotrope glucagon, a hormone, forskolin, epinephrine, norepinephrine, thyroid hormone, a phosphodiesterase inhibitor, prostacyclin, prostaglandin and a methylxanthine.
7. The system of claim 4 wherein the drug is naturally occurring.
8. The system of claim 4 wherein the drug is chemically synthesized.
9. The system of claim 3 wherein the nerve stimulator stimulates a nerve selected from the group consisting of:
a vagal nerve, a carotid sinus nerve, a fat pad.
10. The system of claim 3 wherein the nerve stimulator stops stimulation automatically when the state indicated by the indicator is a contracting state.
11. The system of claim 1 wherein the sensor is selected from the group consisting of:
an electrical sensor, a chemical sensor, an electromagnetic interference sensor, an electrochemical sensor, a pressure sensor, a sound wave sensor, a magnetic sensor, an ultraviolet sensor, a visible light sensor, an infrared sensor, a radiation sensor, a flow sensor, a temperature sensor, a gas sensor, an optical sensor, a pH sensor, a potentiometric sensor, a fluorescence sensor, a depolarization sensor and a biosensor.
12. The system of claim 1 wherein the sensor comprises at least one electrode.
13. The system of claim 12 wherein the electrode is selected from the group consisting of:
cardiac stimulation electrodes, clip electrodes, needle electrodes, probe electrodes, pacing electrodes, epicardial electrodes, patch electrodes, intravascular electrodes, balloon-type electrodes, basket-type electrodes, tape-type electrodes, umbrella-type electrodes, suction-type electrodes, endotracheal electrodes, endoesophageal electrodes, transcutaneous electrodes, intracutaneous electrodes, screw-type electrodes, barb-type electrodes, bipolar electrodes, monopolar electrodes, metal electrodes, wire electrodes and cuff electrodes.
14. The system of claim 2 wherein the cardiac stimulator comprises at least one electrode.
15. The system of claim 14 wherein the electrode is selected from the group consisting of:
cardiac stimulation electrodes, clip electrodes, needle electrodes, probe electrodes, pacing electrodes, epicardial electrodes, patch electrodes, intravascular electrodes, balloon-type electrodes, basket-type electrodes, tape-ype electrodes, umbrella-type electrodes, suction-type electrodes, endotracheal electrodes, endoesophageal electrodes, transcutaneous electrodes, intracutaneous electrodes, screw-type electrodes, barb-type electrodes, bipolar electrodes, monopolar electrodes, metal electrodes, wire electrodes and cuff electrodes.
16. The system of claim 2 wherein the sensor and the cardiac stimulator are the same.
17. The system of claim 3 wherein the nerve stimulator comprises at least one electrode.
18. The system of claim 17 wherein the electrode is selected from the group consisting of:
nerve stimulation electrodes, endotracheal electrodes, endoesophageal electrodes, intravascular electrodes, transcutaneous electrodes, intracutaneous electrodes, balloon-type electrodes, basket-type electrodes, umbrella-type electrodes, tape-type electrodes, suction-type electrodes, screw-type electrodes, barb-type electrodes, bipolar electrodes, monopolar electrodes, metal electrodes, wire electrodes, patch electrodes, cuff electrodes, clip electrodes, needle electrodes and probe electrodes.
19. The system of claim 1 further comprising a breathing regulator.
20. The system of claim 19 wherein the breathing regulator stimulates a phrenic nerve.
21. The system of claim 19 wherein the breathing regulator controls a respirator.
22. The system of claim 19 wherein the breathing regulator comprises at least one electrode.
23. The system of claim 22 wherein the electrode is selected from the group consisting of:
nerve stimulation electrodes, endotracheal electrodes, endoesophageal electrodes, intravascular electrodes, transcutaneous electrodes, intracutaneous electrodes, balloon-type electrodes, basket-type electrodes, umbrella-type electrodes, suction-type electrodes, screw-type electrodes, tape-type electrodes, barb-type electrodes, bipolar electrodes, monopolar electrodes, metal electrodes, wire electrodes, patch electrodes, cuff electrodes, clip electrodes, needle electrodes and probe electrodes.
24. The system of claim 1 wherein the medical procedure is selected from the group consisting of:
a surgical procedure, a non-surgical procedure, a fluoroscopic procedure, a cardiac procedure, a vascular procedure, a neurosurgical procedure, an electrophysiology procedure, a diagnostic procedure, a therapeutic procedure, an ablation procedure, an endovascular procedure, a liver procedure, a spleen procedure, a pulmonary procedure, an aneurysm repair, an imaging procedure, a CAT scan procedure, a MRI procedure, a pharmacological therapy, a drug delivery procedure, a biological delivery procedure, a genetic therapy, a cellular therapy, a cancer therapy, a radiation therapy, a transplantation procedure, a coronary angioplasty procedure, a stent delivery procedure, an atherectomy procedure, a procedure that requires precise control of cardiac motion, a procedure that requires precise control of bleeding, a non-invasive procedure, a minimally invasive procedure, an invasive procedure, a port-access procedure, an endoscopic procedure, a sternotomy procedure, a thoracotomy procedure and a robotic procedure.
25. A method for performing a medical procedure, comprising:
inhibiting beating of a heart;
performing the medical procedure; and
sensing a state of cardiac tissue while beating of the heart is inhibited.
26. The method of claim 25, further comprising:
inhibiting beating of the heart automatically when the state of cardiac tissue is a non-contracting state.
27. The method of claim 25 further comprising:
stimulating a nerve to inhibit beating of the heart when the state of cardiac tissue is a non-contracting state.
28. The method of claim 27 further comprising:
stopping stimulation of the nerve when the state of cardiac contraction is a contracting state.
29. The method of claim 25, further comprising:
allowing beating of the heart to occur when the state of cardiac tissue is a contracting state.
30. The method of claim 25, further comprising:
stimulating beating of the heart automatically when the state of cardiac tissue is a contracting state.
31. The method of claim 25 further comprising:
delivering at least one drug during the medical procedure.
32. The method of claim 25 further comprising:
stopping breathing when the state of cardiac tissue is a non-contracting state.
33. A device for performing a medical procedure, comprising:
a processor;
a sensor to sense a state of cardiac tissue, the sensor operatively connected to the processor; and
at least one nerve stimulation electrode, the nerve stimulation electrode operatively connected to the processor wherein the processor receives a signal from the sensor and adjusts output from the nerve stimulation electrode in response to the signal.
34. The device of claim 33 wherein the sensor is selected from the group consisting of:
an electrical sensor, a chemical sensor, an electromagnetic interference sensor, an electrochemical sensor, a pressure sensor, a sound wave sensor, a magnetic sensor, an ultraviolet sensor, a visible light sensor, an infrared sensor, a radiation sensor, a flow sensor, a temperature sensor, a gas sensor, an optical sensor, a pH sensor, a potentiometric sensor, a fluorescence sensor, a depolarization sensor and a biosensor.
35. The device of claim 33 wherein the nerve stimulation electrode selected from the group consisting of:
endotracheal electrodes, endoesophageal electrodes, intravascular electrodes, transcutaneous electrodes, intracutaneous electrodes, balloon-type electrodes, basket-type electrodes, umbrella-type electrodes, tape-type electrodes, suction-type electrodes, screw-type electrodes, barb-type electrodes, bipolar electrodes, monopolar electrodes, metal electrodes, wire electrodes, patch electrodes, cuff electrodes, clip electrodes, needle electrodes and probe electrodes.
36. The device of claim 33 further comprising:
at least one cardiac stimulation electrode to stimulate beating of the heart, the cardiac stimulator operatively connected to the processor wherein the processor receives a signal from the sensor and adjusts output from the cardiac stimulation electrode in response to the signal.
37. The device of claim 36 wherein the cardiac stimulation electrode is selected from the group consisting of:
clip electrodes, needle electrodes, probe electrodes, pacing electrodes, epicardial electrodes, patch electrodes, intravascular electrodes, balloon-type electrodes, basket-type electrodes, tape-type electrodes, umbrella-type electrodes, suction-type electrodes, endotracheal electrodes, endoesophageal electrodes, transcutaneous electrodes, intracutaneous electrodes, screw-type electrodes, barb-type electrodes, bipolar electrodes, monopolar electrodes, metal electrodes, wire electrodes and cuff electrodes.
38. The device of claim 36 wherein the cardiac stimulation electrode and the sensor are the same.
38. The device of claim 33 further comprising:
at least one breathing regulation electrode for controlling breathing, the breathing regulation electrode operatively connected to the processor wherein the processor adjusts the output from the breathing regulation electrode in response to the signal.
39. The device of claim 38 wherein the breathing regulation electrode is selected from the group consisting of:
nerve stimulation electrodes, endotracheal electrodes, endoesophageal electrodes, intravascular electrodes, transcutaneous electrodes, intracutaneous electrodes, balloon-type electrodes, basket-type electrodes, umbrella-type electrodes, suction-type electrodes, screw-type electrodes, tape-type electrodes, barb-type electrodes, bipolar electrodes, monopolar electrodes, metal electrodes, wire electrodes, patch electrodes, cuff electrodes, clip electrodes, needle electrodes and probe electrodes.
40. The device of claim 33 further comprising:
a drug pump for delivering at least one drug, the drug pump operatively connected to the processor wherein the processor adjusts the output of the drug.
US10/629,491 1996-04-30 2003-07-29 Method and system for sensing cardiac contractions during a medical procedure Abandoned US20040024422A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/629,491 US20040024422A1 (en) 2000-09-26 2003-07-29 Method and system for sensing cardiac contractions during a medical procedure
US10/724,978 US7225019B2 (en) 1996-04-30 2003-12-01 Method and system for nerve stimulation and cardiac sensing prior to and during a medical procedure
US13/183,269 US20120022605A1 (en) 1996-04-30 2011-07-14 System for nerve stimulation and cardiac sensing prior to and during a medical procedure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/669,355 US6628987B1 (en) 2000-09-26 2000-09-26 Method and system for sensing cardiac contractions during vagal stimulation-induced cardiopalegia
US10/629,491 US20040024422A1 (en) 2000-09-26 2003-07-29 Method and system for sensing cardiac contractions during a medical procedure

Related Parent Applications (3)

Application Number Title Priority Date Filing Date
US09/669,335 Division US7006986B1 (en) 2000-09-25 2000-09-25 Order file processes for purchasing on the internet using verified order information
US09/669,355 Division US6628987B1 (en) 1996-04-30 2000-09-26 Method and system for sensing cardiac contractions during vagal stimulation-induced cardiopalegia
US10/421,459 Continuation-In-Part US6904318B2 (en) 1996-04-30 2003-04-23 Method and system for monitoring and controlling systemic and pulmonary circulation during a medical procedure

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US10/657,353 Continuation-In-Part US20040199209A1 (en) 1996-04-30 2003-09-08 Method and system for delivery of vasoactive drugs to the heart prior to and during a medical procedure
US10/724,978 Continuation-In-Part US7225019B2 (en) 1996-04-30 2003-12-01 Method and system for nerve stimulation and cardiac sensing prior to and during a medical procedure

Publications (1)

Publication Number Publication Date
US20040024422A1 true US20040024422A1 (en) 2004-02-05

Family

ID=28455139

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/669,355 Expired - Lifetime US6628987B1 (en) 1996-04-30 2000-09-26 Method and system for sensing cardiac contractions during vagal stimulation-induced cardiopalegia
US10/629,491 Abandoned US20040024422A1 (en) 1996-04-30 2003-07-29 Method and system for sensing cardiac contractions during a medical procedure

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/669,355 Expired - Lifetime US6628987B1 (en) 1996-04-30 2000-09-26 Method and system for sensing cardiac contractions during vagal stimulation-induced cardiopalegia

Country Status (1)

Country Link
US (2) US6628987B1 (en)

Cited By (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020198570A1 (en) * 1997-08-26 2002-12-26 Puskas John D. Apparatus for indirectly stimulating the vagus nerve with an electrical field
US20040111118A1 (en) * 2000-09-26 2004-06-10 Hill Michael R.S. Method and system for spinal cord stimulation prior to and during a medical procedure
US20040172075A1 (en) * 1996-04-30 2004-09-02 Shafer Lisa L. Method and system for vagal nerve stimulation with multi-site cardiac pacing
US20040186517A1 (en) * 1996-04-30 2004-09-23 Hill Michael R.S. Method and system for nerve stimulation prior to and during a medical procedure
US20040199209A1 (en) * 2003-04-07 2004-10-07 Hill Michael R.S. Method and system for delivery of vasoactive drugs to the heart prior to and during a medical procedure
US20050096707A1 (en) * 2000-09-26 2005-05-05 Medtronic, Inc. Method and system for monitoring and controlling systemic and pulmonary circulation during a medical procedure
US20050125044A1 (en) * 2000-05-23 2005-06-09 North Shore-Long Island Jewish Research Institute Inhibition of inflammatory cytokine production by cholinergic agonists and vagus nerve stimulation
US20050149143A1 (en) * 2003-12-24 2005-07-07 Imad Libbus Baroreflex stimulator with integrated pressure sensor
US20050149133A1 (en) * 2003-12-24 2005-07-07 Imad Libbus Sensing with compensation for neural stimulator
US20050149155A1 (en) * 2003-12-24 2005-07-07 Avram Scheiner Stimulation lead for stimulating the baroreceptors in the pulmonary artery
US20050282906A1 (en) * 2004-03-25 2005-12-22 North Shore-Long Island Jewish Research Institute Neural tourniquet
US20060118122A1 (en) * 2003-04-29 2006-06-08 Martens Paul W Medical device with antimicrobial layer
US20060224202A1 (en) * 2005-04-05 2006-10-05 Julia Moffitt System to treat AV-conducted ventricular tachyarrhythmia
US20070191904A1 (en) * 2006-02-14 2007-08-16 Imad Libbus Expandable stimulation electrode with integrated pressure sensor and methods related thereto
US20070197859A1 (en) * 2003-11-07 2007-08-23 Paracor Medical, Inc. Cardiac harness having diagnostic sensors and method of use
US20080140138A1 (en) * 2002-02-26 2008-06-12 Ivanova Svetlana M Inhibition of inflammatory cytokine production by stimulation of brain muscarinic receptors
US20080249439A1 (en) * 2004-03-25 2008-10-09 The Feinstein Institute For Medical Research Treatment of inflammation by non-invasive stimulation
US20090275997A1 (en) * 2008-05-01 2009-11-05 Michael Allen Faltys Vagus nerve stimulation electrodes and methods of use
US7657312B2 (en) 2003-11-03 2010-02-02 Cardiac Pacemakers, Inc. Multi-site ventricular pacing therapy with parasympathetic stimulation
US20100125304A1 (en) * 2008-11-18 2010-05-20 Faltys Michael A Devices and methods for optimizing electrode placement for anti-inflamatory stimulation
US7840278B1 (en) 1999-06-25 2010-11-23 Puskas John D Devices and methods for vagus nerve stimulation
US20100312320A1 (en) * 2009-06-09 2010-12-09 Faltys Michael A Nerve cuff with pocket for leadless stimulator
US20110190849A1 (en) * 2009-12-23 2011-08-04 Faltys Michael A Neural stimulation devices and systems for treatment of chronic inflammation
CN102166388A (en) * 2011-03-28 2011-08-31 北京品驰医疗设备有限公司 Embedded nerve stimulator with constant voltage/constant current dipulse mode
US8024050B2 (en) 2003-12-24 2011-09-20 Cardiac Pacemakers, Inc. Lead for stimulating the baroreceptors in the pulmonary artery
US8036741B2 (en) 1996-04-30 2011-10-11 Medtronic, Inc. Method and system for nerve stimulation and cardiac sensing prior to and during a medical procedure
US8170668B2 (en) 2006-07-14 2012-05-01 Cardiac Pacemakers, Inc. Baroreflex sensitivity monitoring and trending for tachyarrhythmia detection and therapy
CN102580243A (en) * 2011-01-14 2012-07-18 苏州景昱医疗器械有限公司 Implanted dual-mode stimulating chip, system and mode converting method
US8391970B2 (en) 2007-08-27 2013-03-05 The Feinstein Institute For Medical Research Devices and methods for inhibiting granulocyte activation by neural stimulation
US8406868B2 (en) 2010-04-29 2013-03-26 Medtronic, Inc. Therapy using perturbation and effect of physiological systems
US8620425B2 (en) 2010-04-29 2013-12-31 Medtronic, Inc. Nerve signal differentiation in cardiac therapy
US8639327B2 (en) 2010-04-29 2014-01-28 Medtronic, Inc. Nerve signal differentiation in cardiac therapy
US8660648B2 (en) 2005-10-24 2014-02-25 Cardiac Pacemakers, Inc. Implantable and rechargeable neural stimulator
US8706223B2 (en) 2011-01-19 2014-04-22 Medtronic, Inc. Preventative vagal stimulation
US8718763B2 (en) 2011-01-19 2014-05-06 Medtronic, Inc. Vagal stimulation
US8725259B2 (en) 2011-01-19 2014-05-13 Medtronic, Inc. Vagal stimulation
US8781583B2 (en) 2011-01-19 2014-07-15 Medtronic, Inc. Vagal stimulation
US8781582B2 (en) 2011-01-19 2014-07-15 Medtronic, Inc. Vagal stimulation
US8788034B2 (en) 2011-05-09 2014-07-22 Setpoint Medical Corporation Single-pulse activation of the cholinergic anti-inflammatory pathway to treat chronic inflammation
US8996116B2 (en) 2009-10-30 2015-03-31 Setpoint Medical Corporation Modulation of the cholinergic anti-inflammatory pathway to treat pain or addiction
US9211409B2 (en) 2008-03-31 2015-12-15 The Feinstein Institute For Medical Research Methods and systems for reducing inflammation by neuromodulation of T-cell activity
US9211410B2 (en) 2009-05-01 2015-12-15 Setpoint Medical Corporation Extremely low duty-cycle activation of the cholinergic anti-inflammatory pathway to treat chronic inflammation
US20160295957A1 (en) * 2015-04-08 2016-10-13 Nike, Inc. Article of Footwear With Sole Structure Having Fluid-Filled Chambers
US9572983B2 (en) 2012-03-26 2017-02-21 Setpoint Medical Corporation Devices and methods for modulation of bone erosion
US9662490B2 (en) 2008-03-31 2017-05-30 The Feinstein Institute For Medical Research Methods and systems for reducing inflammation by neuromodulation and administration of an anti-inflammatory drug
US9833621B2 (en) 2011-09-23 2017-12-05 Setpoint Medical Corporation Modulation of sirtuins by vagus nerve stimulation
US10314501B2 (en) 2016-01-20 2019-06-11 Setpoint Medical Corporation Implantable microstimulators and inductive charging systems
US10583304B2 (en) 2016-01-25 2020-03-10 Setpoint Medical Corporation Implantable neurostimulator having power control and thermal regulation and methods of use
US10596367B2 (en) 2016-01-13 2020-03-24 Setpoint Medical Corporation Systems and methods for establishing a nerve block
US10695569B2 (en) 2016-01-20 2020-06-30 Setpoint Medical Corporation Control of vagal stimulation
US10912712B2 (en) 2004-03-25 2021-02-09 The Feinstein Institutes For Medical Research Treatment of bleeding by non-invasive stimulation
US11051744B2 (en) 2009-11-17 2021-07-06 Setpoint Medical Corporation Closed-loop vagus nerve stimulation
US11173307B2 (en) 2017-08-14 2021-11-16 Setpoint Medical Corporation Vagus nerve stimulation pre-screening test
US11207518B2 (en) 2004-12-27 2021-12-28 The Feinstein Institutes For Medical Research Treating inflammatory disorders by stimulation of the cholinergic anti-inflammatory pathway
US11260229B2 (en) 2018-09-25 2022-03-01 The Feinstein Institutes For Medical Research Methods and apparatuses for reducing bleeding via coordinated trigeminal and vagal nerve stimulation
US11311725B2 (en) 2014-10-24 2022-04-26 Setpoint Medical Corporation Systems and methods for stimulating and/or monitoring loci in the brain to treat inflammation and to enhance vagus nerve stimulation
US11344724B2 (en) 2004-12-27 2022-05-31 The Feinstein Institutes For Medical Research Treating inflammatory disorders by electrical vagus nerve stimulation
US11406833B2 (en) 2015-02-03 2022-08-09 Setpoint Medical Corporation Apparatus and method for reminding, prompting, or alerting a patient with an implanted stimulator
US11471681B2 (en) 2016-01-20 2022-10-18 Setpoint Medical Corporation Batteryless implantable microstimulators
US11938324B2 (en) 2020-05-21 2024-03-26 The Feinstein Institutes For Medical Research Systems and methods for vagus nerve stimulation

Families Citing this family (175)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6006134A (en) * 1998-04-30 1999-12-21 Medtronic, Inc. Method and device for electronically controlling the beating of a heart using venous electrical stimulation of nerve fibers
US7706882B2 (en) 2000-01-19 2010-04-27 Medtronic, Inc. Methods of using high intensity focused ultrasound to form an ablated tissue area
US8241274B2 (en) 2000-01-19 2012-08-14 Medtronic, Inc. Method for guiding a medical device
US8221402B2 (en) 2000-01-19 2012-07-17 Medtronic, Inc. Method for guiding a medical device
US6907295B2 (en) * 2001-08-31 2005-06-14 Biocontrol Medical Ltd. Electrode assembly for nerve control
US6684105B2 (en) * 2001-08-31 2004-01-27 Biocontrol Medical, Ltd. Treatment of disorders by unidirectional nerve stimulation
US8571653B2 (en) 2001-08-31 2013-10-29 Bio Control Medical (B.C.M.) Ltd. Nerve stimulation techniques
US7734355B2 (en) * 2001-08-31 2010-06-08 Bio Control Medical (B.C.M.) Ltd. Treatment of disorders by unidirectional nerve stimulation
US7778703B2 (en) 2001-08-31 2010-08-17 Bio Control Medical (B.C.M.) Ltd. Selective nerve fiber stimulation for treating heart conditions
US7974693B2 (en) 2001-08-31 2011-07-05 Bio Control Medical (B.C.M.) Ltd. Techniques for applying, configuring, and coordinating nerve fiber stimulation
US7778711B2 (en) 2001-08-31 2010-08-17 Bio Control Medical (B.C.M.) Ltd. Reduction of heart rate variability by parasympathetic stimulation
US8615294B2 (en) 2008-08-13 2013-12-24 Bio Control Medical (B.C.M.) Ltd. Electrode devices for nerve stimulation and cardiac sensing
US8565896B2 (en) 2010-11-22 2013-10-22 Bio Control Medical (B.C.M.) Ltd. Electrode cuff with recesses
US7885709B2 (en) 2001-08-31 2011-02-08 Bio Control Medical (B.C.M.) Ltd. Nerve stimulation for treating disorders
US20090005845A1 (en) * 2007-06-26 2009-01-01 Tamir Ben David Intra-Atrial parasympathetic stimulation
US7904176B2 (en) 2006-09-07 2011-03-08 Bio Control Medical (B.C.M.) Ltd. Techniques for reducing pain associated with nerve stimulation
US8204591B2 (en) 2002-05-23 2012-06-19 Bio Control Medical (B.C.M.) Ltd. Techniques for prevention of atrial fibrillation
US7321793B2 (en) * 2003-06-13 2008-01-22 Biocontrol Medical Ltd. Vagal stimulation for atrial fibrillation therapy
US7844346B2 (en) 2002-05-23 2010-11-30 Biocontrol Medical Ltd. Electrode assembly for nerve control
US7189204B2 (en) 2002-12-04 2007-03-13 Cardiac Pacemakers, Inc. Sleep detection using an adjustable threshold
US8880192B2 (en) 2012-04-02 2014-11-04 Bio Control Medical (B.C.M.) Ltd. Electrode cuffs
US7627384B2 (en) 2004-11-15 2009-12-01 Bio Control Medical (B.C.M.) Ltd. Techniques for nerve stimulation
US8718791B2 (en) 2003-05-23 2014-05-06 Bio Control Medical (B.C.M.) Ltd. Electrode cuffs
US8060197B2 (en) 2003-05-23 2011-11-15 Bio Control Medical (B.C.M.) Ltd. Parasympathetic stimulation for termination of non-sinus atrial tachycardia
US7149574B2 (en) * 2003-06-09 2006-12-12 Palo Alto Investors Treatment of conditions through electrical modulation of the autonomic nervous system
EP1648560A4 (en) 2003-06-13 2015-10-28 Biocontrol Medical Ltd Vagal stimulation for anti-embolic therapy
US8002553B2 (en) 2003-08-18 2011-08-23 Cardiac Pacemakers, Inc. Sleep quality data collection and evaluation
US8606356B2 (en) 2003-09-18 2013-12-10 Cardiac Pacemakers, Inc. Autonomic arousal detection system and method
US7887493B2 (en) * 2003-09-18 2011-02-15 Cardiac Pacemakers, Inc. Implantable device employing movement sensing for detecting sleep-related disorders
US7787946B2 (en) 2003-08-18 2010-08-31 Cardiac Pacemakers, Inc. Patient monitoring, diagnosis, and/or therapy systems and methods
US7392084B2 (en) 2003-09-23 2008-06-24 Cardiac Pacemakers, Inc. Demand-based cardiac function therapy
US7572226B2 (en) 2003-10-28 2009-08-11 Cardiac Pacemakers, Inc. System and method for monitoring autonomic balance and physical activity
US9050469B1 (en) 2003-11-26 2015-06-09 Flint Hills Scientific, Llc Method and system for logging quantitative seizure information and assessing efficacy of therapy using cardiac signals
US7783353B2 (en) 2003-12-24 2010-08-24 Cardiac Pacemakers, Inc. Automatic neural stimulation modulation based on activity and circadian rhythm
US7769450B2 (en) * 2004-11-18 2010-08-03 Cardiac Pacemakers, Inc. Cardiac rhythm management device with neural sensor
US7509166B2 (en) 2003-12-24 2009-03-24 Cardiac Pacemakers, Inc. Automatic baroreflex modulation responsive to adverse event
US8126559B2 (en) 2004-11-30 2012-02-28 Cardiac Pacemakers, Inc. Neural stimulation with avoidance of inappropriate stimulation
US7647114B2 (en) 2003-12-24 2010-01-12 Cardiac Pacemakers, Inc. Baroreflex modulation based on monitored cardiovascular parameter
US7486991B2 (en) 2003-12-24 2009-02-03 Cardiac Pacemakers, Inc. Baroreflex modulation to gradually decrease blood pressure
US7706884B2 (en) 2003-12-24 2010-04-27 Cardiac Pacemakers, Inc. Baroreflex stimulation synchronized to circadian rhythm
US7460906B2 (en) 2003-12-24 2008-12-02 Cardiac Pacemakers, Inc. Baroreflex stimulation to treat acute myocardial infarction
US20050149129A1 (en) * 2003-12-24 2005-07-07 Imad Libbus Baropacing and cardiac pacing to control output
US20050149132A1 (en) 2003-12-24 2005-07-07 Imad Libbus Automatic baroreflex modulation based on cardiac activity
US7643875B2 (en) 2003-12-24 2010-01-05 Cardiac Pacemakers, Inc. Baroreflex stimulation system to reduce hypertension
US8396560B2 (en) * 2004-11-18 2013-03-12 Cardiac Pacemakers, Inc. System and method for closed-loop neural stimulation
US9020595B2 (en) * 2003-12-24 2015-04-28 Cardiac Pacemakers, Inc. Baroreflex activation therapy with conditional shut off
US20050182319A1 (en) 2004-02-17 2005-08-18 Glossop Neil D. Method and apparatus for registration, verification, and referencing of internal organs
US7840263B2 (en) 2004-02-27 2010-11-23 Cardiac Pacemakers, Inc. Method and apparatus for device controlled gene expression
US7260431B2 (en) * 2004-05-20 2007-08-21 Cardiac Pacemakers, Inc. Combined remodeling control therapy and anti-remodeling therapy by implantable cardiac device
EP1759536B1 (en) 2004-06-01 2011-05-18 Kwalata Trading Limited In vitro techniques for use with stem cells
US7764995B2 (en) 2004-06-07 2010-07-27 Cardiac Pacemakers, Inc. Method and apparatus to modulate cellular regeneration post myocardial infarct
US7747323B2 (en) 2004-06-08 2010-06-29 Cardiac Pacemakers, Inc. Adaptive baroreflex stimulation therapy for disordered breathing
US7729761B2 (en) * 2004-07-14 2010-06-01 Cardiac Pacemakers, Inc. Method and apparatus for controlled gene or protein delivery
US8175705B2 (en) * 2004-10-12 2012-05-08 Cardiac Pacemakers, Inc. System and method for sustained baroreflex stimulation
WO2006057786A1 (en) 2004-11-05 2006-06-01 The Government Of The United States Of America As Represented By The Secretary, Department Of Health And Human Services Access system
US7751868B2 (en) 2004-11-12 2010-07-06 Philips Electronics Ltd Integrated skin-mounted multifunction device for use in image-guided surgery
US7805269B2 (en) 2004-11-12 2010-09-28 Philips Electronics Ltd Device and method for ensuring the accuracy of a tracking device in a volume
US8332047B2 (en) * 2004-11-18 2012-12-11 Cardiac Pacemakers, Inc. System and method for closed-loop neural stimulation
US8060219B2 (en) 2004-12-20 2011-11-15 Cardiac Pacemakers, Inc. Epicardial patch including isolated extracellular matrix with pacing electrodes
US7981065B2 (en) 2004-12-20 2011-07-19 Cardiac Pacemakers, Inc. Lead electrode incorporating extracellular matrix
US8611983B2 (en) 2005-01-18 2013-12-17 Philips Electronics Ltd Method and apparatus for guiding an instrument to a target in the lung
US7840254B2 (en) 2005-01-18 2010-11-23 Philips Electronics Ltd Electromagnetically tracked K-wire device
US8609082B2 (en) 2005-01-25 2013-12-17 Bio Control Medical Ltd. Administering bone marrow progenitor cells or myoblasts followed by application of an electrical current for cardiac repair, increasing blood supply or enhancing angiogenesis
US8600521B2 (en) 2005-01-27 2013-12-03 Cyberonics, Inc. Implantable medical device having multiple electrode/sensor capability and stimulation based on sensed intrinsic activity
US9314633B2 (en) 2008-01-25 2016-04-19 Cyberonics, Inc. Contingent cardio-protection for epilepsy patients
US7454245B2 (en) * 2005-01-28 2008-11-18 Cyberonics, Inc. Trained and adaptive response in a neurostimulator
US8565867B2 (en) 2005-01-28 2013-10-22 Cyberonics, Inc. Changeable electrode polarity stimulation by an implantable medical device
US8260426B2 (en) 2008-01-25 2012-09-04 Cyberonics, Inc. Method, apparatus and system for bipolar charge utilization during stimulation by an implantable medical device
US7561918B2 (en) * 2005-01-28 2009-07-14 Cyberonics, Inc. Autocapture in a neurostimulator
US7660628B2 (en) 2005-03-23 2010-02-09 Cardiac Pacemakers, Inc. System to provide myocardial and neural stimulation
US8406876B2 (en) 2005-04-05 2013-03-26 Cardiac Pacemakers, Inc. Closed loop neural stimulation synchronized to cardiac cycles
US8473049B2 (en) 2005-05-25 2013-06-25 Cardiac Pacemakers, Inc. Implantable neural stimulator with mode switching
US7542800B2 (en) 2005-04-05 2009-06-02 Cardiac Pacemakers, Inc. Method and apparatus for synchronizing neural stimulation to cardiac cycles
US7493161B2 (en) 2005-05-10 2009-02-17 Cardiac Pacemakers, Inc. System and method to deliver therapy in presence of another therapy
US7499748B2 (en) 2005-04-11 2009-03-03 Cardiac Pacemakers, Inc. Transvascular neural stimulation device
US7962208B2 (en) 2005-04-25 2011-06-14 Cardiac Pacemakers, Inc. Method and apparatus for pacing during revascularization
US7676275B1 (en) 2005-05-02 2010-03-09 Pacesetter, Inc. Endovascular lead for chronic nerve stimulation
WO2007002079A2 (en) 2005-06-21 2007-01-04 Traxtal Inc. System, method and apparatus for navigated therapy and diagnosis
DE602006019117D1 (en) 2005-06-21 2011-02-03 Us Government DEVICE AND METHOD FOR A TRACKABLE ULTRASOUND
US8660647B2 (en) * 2005-07-28 2014-02-25 Cyberonics, Inc. Stimulating cranial nerve to treat pulmonary disorder
US7706874B2 (en) 2005-07-28 2010-04-27 Cyberonics, Inc. Stimulating cranial nerve to treat disorders associated with the thyroid gland
US9661991B2 (en) 2005-08-24 2017-05-30 Koninklijke Philips N.V. System, method and devices for navigated flexible endoscopy
US7774057B2 (en) 2005-09-06 2010-08-10 Cardiac Pacemakers, Inc. Method and apparatus for device controlled gene expression for cardiac protection
US8428731B2 (en) * 2005-10-27 2013-04-23 Cyberonics, Inc. Sequenced therapy protocols for an implantable medical device
US8694118B2 (en) * 2005-10-28 2014-04-08 Cyberonics, Inc. Variable output ramping for an implantable medical device
US20070100377A1 (en) * 2005-10-28 2007-05-03 Cyberonics, Inc. Providing multiple signal modes for a medical device
US7957796B2 (en) 2005-10-28 2011-06-07 Cyberonics, Inc. Using physiological sensor data with an implantable medical device
US7570999B2 (en) 2005-12-20 2009-08-04 Cardiac Pacemakers, Inc. Implantable device for treating epilepsy and cardiac rhythm disorders
US7869869B1 (en) 2006-01-11 2011-01-11 Pacesetter, Inc. Subcardiac threshold vagal nerve stimulation
US7813805B1 (en) 2006-01-11 2010-10-12 Pacesetter, Inc. Subcardiac threshold vagal nerve stimulation
US7996079B2 (en) 2006-01-24 2011-08-09 Cyberonics, Inc. Input response override for an implantable medical device
US7801601B2 (en) 2006-01-27 2010-09-21 Cyberonics, Inc. Controlling neuromodulation using stimulus modalities
US20070190028A1 (en) * 2006-02-13 2007-08-16 Jihong Qu Method and apparatus for heat or electromagnetic control of gene expression
TW200734462A (en) 2006-03-08 2007-09-16 In Motion Invest Ltd Regulating stem cells
EP2026874B1 (en) 2006-03-29 2015-05-20 Dignity Health Vagus nerve stimulation system
US7962220B2 (en) 2006-04-28 2011-06-14 Cyberonics, Inc. Compensation reduction in tissue stimulation therapy
US7869885B2 (en) 2006-04-28 2011-01-11 Cyberonics, Inc Threshold optimization for tissue stimulation therapy
US20080039746A1 (en) 2006-05-25 2008-02-14 Medtronic, Inc. Methods of using high intensity focused ultrasound to form an ablated tissue area containing a plurality of lesions
US7811549B2 (en) 2006-07-05 2010-10-12 Adenobio N.V. Methods, compositions, unit dosage forms, and kits for pharmacologic stress testing with reduced side effects
US8457734B2 (en) 2006-08-29 2013-06-04 Cardiac Pacemakers, Inc. System and method for neural stimulation
US7869867B2 (en) 2006-10-27 2011-01-11 Cyberonics, Inc. Implantable neurostimulator with refractory stimulation
US7706875B2 (en) * 2007-01-25 2010-04-27 Cyberonics, Inc. Modulation of drug effects by vagus nerve stimulation
AU2008227875B2 (en) 2007-03-19 2014-06-12 Insuline Medical Ltd. Drug delivery device
US8622991B2 (en) 2007-03-19 2014-01-07 Insuline Medical Ltd. Method and device for drug delivery
US9220837B2 (en) 2007-03-19 2015-12-29 Insuline Medical Ltd. Method and device for drug delivery
US7869884B2 (en) * 2007-04-26 2011-01-11 Cyberonics, Inc. Non-surgical device and methods for trans-esophageal vagus nerve stimulation
US7962214B2 (en) 2007-04-26 2011-06-14 Cyberonics, Inc. Non-surgical device and methods for trans-esophageal vagus nerve stimulation
US7904175B2 (en) 2007-04-26 2011-03-08 Cyberonics, Inc. Trans-esophageal vagus nerve stimulation
US7974701B2 (en) 2007-04-27 2011-07-05 Cyberonics, Inc. Dosing limitation for an implantable medical device
EP2231229A1 (en) 2007-12-18 2010-09-29 Insuline Medical Ltd. Drug delivery device with sensor for closed-loop operation
US20090185973A1 (en) * 2008-01-22 2009-07-23 Adenobio N.V. Methods, compositions, unit dosage forms, and kits for pharmacologic stress testing with reduced side effects
US8382667B2 (en) 2010-10-01 2013-02-26 Flint Hills Scientific, Llc Detecting, quantifying, and/or classifying seizures using multimodal data
US8571643B2 (en) 2010-09-16 2013-10-29 Flint Hills Scientific, Llc Detecting or validating a detection of a state change from a template of heart rate derivative shape or heart beat wave complex
US8337404B2 (en) 2010-10-01 2012-12-25 Flint Hills Scientific, Llc Detecting, quantifying, and/or classifying seizures using multimodal data
US8204603B2 (en) 2008-04-25 2012-06-19 Cyberonics, Inc. Blocking exogenous action potentials by an implantable medical device
US8097926B2 (en) 2008-10-07 2012-01-17 Mc10, Inc. Systems, methods, and devices having stretchable integrated circuitry for sensing and delivering therapy
US9123614B2 (en) 2008-10-07 2015-09-01 Mc10, Inc. Methods and applications of non-planar imaging arrays
US8389862B2 (en) 2008-10-07 2013-03-05 Mc10, Inc. Extremely stretchable electronics
US8457747B2 (en) 2008-10-20 2013-06-04 Cyberonics, Inc. Neurostimulation with signal duration determined by a cardiac cycle
US8417344B2 (en) 2008-10-24 2013-04-09 Cyberonics, Inc. Dynamic cranial nerve stimulation based on brain state determination from cardiac data
EP2355758A2 (en) 2008-11-07 2011-08-17 Insuline Medical Ltd. Device and method for drug delivery
US20100191304A1 (en) 2009-01-23 2010-07-29 Scott Timothy L Implantable Medical Device for Providing Chronic Condition Therapy and Acute Condition Therapy Using Vagus Nerve Stimulation
US8827912B2 (en) 2009-04-24 2014-09-09 Cyberonics, Inc. Methods and systems for detecting epileptic events using NNXX, optionally with nonlinear analysis parameters
US8239028B2 (en) 2009-04-24 2012-08-07 Cyberonics, Inc. Use of cardiac parameters in methods and systems for treating a chronic medical condition
US8548585B2 (en) 2009-12-08 2013-10-01 Cardiac Pacemakers, Inc. Concurrent therapy detection in implantable medical devices
US8562536B2 (en) 2010-04-29 2013-10-22 Flint Hills Scientific, Llc Algorithm for detecting a seizure from cardiac data
US8831732B2 (en) 2010-04-29 2014-09-09 Cyberonics, Inc. Method, apparatus and system for validating and quantifying cardiac beat data quality
US8649871B2 (en) 2010-04-29 2014-02-11 Cyberonics, Inc. Validity test adaptive constraint modification for cardiac data used for detection of state changes
US8679009B2 (en) 2010-06-15 2014-03-25 Flint Hills Scientific, Llc Systems approach to comorbidity assessment
US8641646B2 (en) 2010-07-30 2014-02-04 Cyberonics, Inc. Seizure detection using coordinate data
US8684921B2 (en) 2010-10-01 2014-04-01 Flint Hills Scientific Llc Detecting, assessing and managing epilepsy using a multi-variate, metric-based classification analysis
US9504390B2 (en) 2011-03-04 2016-11-29 Globalfoundries Inc. Detecting, assessing and managing a risk of death in epilepsy
US9498162B2 (en) 2011-04-25 2016-11-22 Cyberonics, Inc. Identifying seizures using heart data from two or more windows
US9402550B2 (en) 2011-04-29 2016-08-02 Cybertronics, Inc. Dynamic heart rate threshold for neurological event detection
US9549677B2 (en) 2011-10-14 2017-01-24 Flint Hills Scientific, L.L.C. Seizure detection methods, apparatus, and systems using a wavelet transform maximum modulus algorithm
US10448839B2 (en) 2012-04-23 2019-10-22 Livanova Usa, Inc. Methods, systems and apparatuses for detecting increased risk of sudden death
US9171794B2 (en) 2012-10-09 2015-10-27 Mc10, Inc. Embedding thin chips in polymer
US9082025B2 (en) 2012-10-09 2015-07-14 Mc10, Inc. Conformal electronics integrated with apparel
WO2014110176A1 (en) * 2013-01-08 2014-07-17 Fastert Steven Application for monitoring a property of a surface
US10220211B2 (en) 2013-01-22 2019-03-05 Livanova Usa, Inc. Methods and systems to diagnose depression
US9370660B2 (en) 2013-03-29 2016-06-21 Rainbow Medical Ltd. Independently-controlled bidirectional nerve stimulation
US9706647B2 (en) 2013-05-14 2017-07-11 Mc10, Inc. Conformal electronics including nested serpentine interconnects
EP3071096A4 (en) 2013-11-22 2017-08-09 Mc10, Inc. Conformal sensor systems for sensing and analysis of cardiac activity
KR20160129007A (en) 2014-03-04 2016-11-08 엠씨10, 인크 Multi-part flexible encapsulation housing for electronic devices
USD781270S1 (en) 2014-10-15 2017-03-14 Mc10, Inc. Electronic device having antenna
US10477354B2 (en) 2015-02-20 2019-11-12 Mc10, Inc. Automated detection and configuration of wearable devices based on on-body status, location, and/or orientation
JP6959871B2 (en) 2015-06-29 2021-11-05 ライラ・セラピューティクス・インコーポレーテッド Scaffold loading and delivery system
US10232082B2 (en) 2015-06-29 2019-03-19 480 Biomedical, Inc. Implantable scaffolds for treatment of sinusitis
EP3313325B1 (en) 2015-06-29 2023-09-06 Lyra Therapeutics, Inc. Implantable scaffolds for treatment of sinusitis
US10709384B2 (en) 2015-08-19 2020-07-14 Mc10, Inc. Wearable heat flux devices and methods of use
EP3356003A4 (en) 2015-10-01 2019-04-03 Mc10, Inc. Method and system for interacting with a virtual environment
CN108289630A (en) 2015-10-05 2018-07-17 Mc10股份有限公司 Method and system for nerve modulation and stimulation
US10105540B2 (en) 2015-11-09 2018-10-23 Bluewind Medical Ltd. Optimization of application of current
US10973664B2 (en) 2015-12-30 2021-04-13 Lyra Therapeutics, Inc. Scaffold loading and delivery systems
US10277386B2 (en) 2016-02-22 2019-04-30 Mc10, Inc. System, devices, and method for on-body data and power transmission
US10673280B2 (en) 2016-02-22 2020-06-02 Mc10, Inc. System, device, and method for coupled hub and sensor node on-body acquisition of sensor information
CN109310340A (en) 2016-04-19 2019-02-05 Mc10股份有限公司 For measuring the method and system of sweat
US10447347B2 (en) 2016-08-12 2019-10-15 Mc10, Inc. Wireless charger and high speed data off-loader
US10201639B2 (en) 2017-05-01 2019-02-12 480 Biomedical, Inc. Drug-eluting medical implants
WO2019195860A2 (en) 2018-04-04 2019-10-10 Vdyne, Llc Devices and methods for anchoring transcatheter heart valve
US11071627B2 (en) 2018-10-18 2021-07-27 Vdyne, Inc. Orthogonally delivered transcatheter heart valve frame for valve in valve prosthesis
US11278437B2 (en) 2018-12-08 2022-03-22 Vdyne, Inc. Compression capable annular frames for side delivery of transcatheter heart valve replacement
US11344413B2 (en) 2018-09-20 2022-05-31 Vdyne, Inc. Transcatheter deliverable prosthetic heart valves and methods of delivery
US10321995B1 (en) 2018-09-20 2019-06-18 Vdyne, Llc Orthogonally delivered transcatheter heart valve replacement
US11109969B2 (en) 2018-10-22 2021-09-07 Vdyne, Inc. Guidewire delivery of transcatheter heart valve
US11253359B2 (en) 2018-12-20 2022-02-22 Vdyne, Inc. Proximal tab for side-delivered transcatheter heart valves and methods of delivery
US11185409B2 (en) 2019-01-26 2021-11-30 Vdyne, Inc. Collapsible inner flow control component for side-delivered transcatheter heart valve prosthesis
US11273032B2 (en) 2019-01-26 2022-03-15 Vdyne, Inc. Collapsible inner flow control component for side-deliverable transcatheter heart valve prosthesis
JP2022522411A (en) 2019-03-05 2022-04-19 ブイダイン,インコーポレイテッド Tricuspid valve closure regurgitation controller for heart valve prosthesis with orthogonal transcatheter
US11076956B2 (en) 2019-03-14 2021-08-03 Vdyne, Inc. Proximal, distal, and anterior anchoring tabs for side-delivered transcatheter mitral valve prosthesis
US11173027B2 (en) 2019-03-14 2021-11-16 Vdyne, Inc. Side-deliverable transcatheter prosthetic valves and methods for delivering and anchoring the same
CN114072106A (en) 2019-05-04 2022-02-18 维迪内股份有限公司 Cinching device and method for deploying a laterally delivered prosthetic heart valve in a native annulus
AU2020334080A1 (en) 2019-08-20 2022-03-24 Vdyne, Inc. Delivery and retrieval devices and methods for side-deliverable transcatheter prosthetic valves
AU2020337235A1 (en) 2019-08-26 2022-03-24 Vdyne, Inc. Side-deliverable transcatheter prosthetic valves and methods for delivering and anchoring the same
US11234813B2 (en) 2020-01-17 2022-02-01 Vdyne, Inc. Ventricular stability elements for side-deliverable prosthetic heart valves and methods of delivery

Citations (95)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2043A (en) * 1841-04-10 Improvement in the manner of casting hinges onto their axes
US100273A (en) * 1870-03-01 Improvement in breaker-rollers
US189526A (en) * 1877-04-10 Improvement in dental engines
US226320A (en) * 1880-04-06 Shutter-worker
US1051168A (en) * 1910-08-13 1913-01-21 Thomas Smith Water-supply apparatus.
US1181947A (en) * 1915-07-22 1916-05-02 Connecticut Telephone & Elec Telephone.
US2376903A (en) * 1944-07-12 1945-05-29 Urie M Coe Haystack fence
US3804098A (en) * 1972-04-17 1974-04-16 Medronic Inc Body implantable lead
US3937226A (en) * 1974-07-10 1976-02-10 Medtronic, Inc. Arrhythmia prevention apparatus
US4088140A (en) * 1976-06-18 1978-05-09 Medtronic, Inc. Demand anti-arrhythmia pacemaker
US4088138A (en) * 1974-01-02 1978-05-09 Cardiac Resuscitator Corp. Cardiac resuscitator and monitoring apparatus
US4198963A (en) * 1978-10-19 1980-04-22 Michigan Instruments, Inc. Cardiopulmonary resuscitator, defibrillator and monitor
US4321929A (en) * 1979-10-12 1982-03-30 Lemelson Jerome H Tourniquet
US4332259A (en) * 1979-09-19 1982-06-01 Mccorkle Jr Charles E Intravenous channel cardiac electrode and lead assembly and method
US4574807A (en) * 1984-03-02 1986-03-11 Carl Hewson Method and apparatus for pacing the heart employing external and internal electrodes
US4640298A (en) * 1980-06-03 1987-02-03 Peter Pless Esophageal electrode probe useful for electrical stimulation of the heart
US4671295A (en) * 1985-01-15 1987-06-09 Applied Biometrics, Inc. Method for measuring cardiac output
US4722347A (en) * 1985-01-15 1988-02-02 Applied Biometrics, Inc. Apparatus for measuring cardiac output
US4753244A (en) * 1987-06-23 1988-06-28 Landymore Roderick W Encapsulated microelectronic heart monitor
US4919147A (en) * 1986-10-27 1990-04-24 Josef Reinhardt Esophagus probe
US4929688A (en) * 1988-08-11 1990-05-29 The Goodyear Tire & Rubber Company Cure system for open steam curing of mineral-loaded chlorobutyl compounds
US4928688A (en) * 1989-01-23 1990-05-29 Mieczyslaw Mirowski Method and apparatus for treating hemodynamic disfunction
US4931464A (en) * 1989-02-15 1990-06-05 E. R. Squibb & Sons, Inc. Method of reducing pre- and post-ischemic myocardial arrhythmias and fibrillation
US5003991A (en) * 1987-03-31 1991-04-02 Olympus Optical Co., Ltd. Hyperthermia apparatus
US5007893A (en) * 1988-03-16 1991-04-16 Row Roderick J Combination anti-g and pressure suit
US5014698A (en) * 1987-10-06 1991-05-14 Leonard Bloom Method of and system for monitoring and treating a malfunctioning heart
US5024228A (en) * 1989-11-29 1991-06-18 Goldstone Andrew C Electrode endotracheal tube
US5025807A (en) * 1983-09-14 1991-06-25 Jacob Zabara Neurocybernetic prosthesis
US5117828A (en) * 1989-09-25 1992-06-02 Arzco Medical Electronics, Inc. Expandable esophageal catheter
US5117822A (en) * 1991-04-05 1992-06-02 Laghi Aldo A Silicone heart spoon
US5125406A (en) * 1989-11-29 1992-06-30 Eet Limited Partnership (Del) Electrode endotracheal tube
US5178149A (en) * 1989-11-06 1993-01-12 Michael Imburgia Transesophageal probe having simultaneous pacing and echocardiographic capability, and method of diagnosing heart disease using same
US5179952A (en) * 1990-08-13 1993-01-19 Arzco Medical Electronics Inc. Electrocardial stimulator probe
US5179950A (en) * 1989-11-13 1993-01-19 Cyberonics, Inc. Implanted apparatus having micro processor controlled current and voltage sources with reduced voltage levels when not providing stimulation
US5186170A (en) * 1989-11-13 1993-02-16 Cyberonics, Inc. Simultaneous radio frequency and magnetic field microprocessor reset circuit
US5188104A (en) * 1991-02-01 1993-02-23 Cyberonics, Inc. Treatment of eating disorders by nerve stimulation
US5199428A (en) * 1991-03-22 1993-04-06 Medtronic, Inc. Implantable electrical nerve stimulator/pacemaker with ischemia for decreasing cardiac workload
US5203326A (en) * 1991-12-18 1993-04-20 Telectronics Pacing Systems, Inc. Antiarrhythmia pacer using antiarrhythmia pacing and autonomic nerve stimulation therapy
US5205285A (en) * 1991-06-14 1993-04-27 Cyberonics, Inc. Voice suppression of vagal stimulation
US5215086A (en) * 1991-05-03 1993-06-01 Cyberonics, Inc. Therapeutic treatment of migraine symptoms by stimulation
US5282468A (en) * 1990-06-07 1994-02-01 Medtronic, Inc. Implantable neural electrode
US5284146A (en) * 1991-06-03 1994-02-08 Applied Biometrics Inc. Removable implanted device
US5292338A (en) * 1992-07-30 1994-03-08 Medtronic, Inc. Atrial defibrillator employing transvenous and subcutaneous electrodes and method of use
US5299569A (en) * 1991-05-03 1994-04-05 Cyberonics, Inc. Treatment of neuropsychiatric disorders by nerve stimulation
US5304220A (en) * 1991-07-03 1994-04-19 Maginot Thomas J Method and apparatus for implanting a graft prosthesis in the body of a patient
US5304120A (en) * 1992-07-01 1994-04-19 Btx Inc. Electroporation method and apparatus for insertion of drugs and genes into endothelial cells
US5304206A (en) * 1991-11-18 1994-04-19 Cyberonics, Inc. Activation techniques for implantable medical device
US5379765A (en) * 1991-06-12 1995-01-10 Kajiwara; Nagao Monitoring apparatus for use in obtaining bronchial electrocardiogram
US5403356A (en) * 1993-04-28 1995-04-04 Medtronic, Inc. Method and apparatus for prevention of atrial tachy arrhythmias
US5411529A (en) * 1990-08-10 1995-05-02 Medtronic, Inc. Waveform discriminator for cardiac stimulation devices
US5417713A (en) * 1993-02-09 1995-05-23 Leonard Bloom Transesophageal defibrillating system
US5501702A (en) * 1994-06-06 1996-03-26 Medtronic, Inc. Time sharing multipolar rheography apparatus and method
US5501703A (en) * 1994-01-24 1996-03-26 Medtronic, Inc. Multichannel apparatus for epidural spinal cord stimulator
US5507784A (en) * 1993-09-23 1996-04-16 Medtronic, Inc. Method and apparatus for control of A-V interval
US5514161A (en) * 1994-04-05 1996-05-07 Ela Medical S.A. Methods and apparatus for controlling atrial stimulation in a double atrial triple chamber cardiac pacemaker
US5611350A (en) * 1996-02-08 1997-03-18 John; Michael S. Method and apparatus for facilitating recovery of patients in deep coma
US5620468A (en) * 1994-04-21 1997-04-15 Medtronic, Inc. Method and apparatus for treatment of atrial fibrillation
US5707400A (en) * 1995-09-19 1998-01-13 Cyberonics, Inc. Treating refractory hypertension by nerve stimulation
US5713924A (en) * 1995-06-27 1998-02-03 Medtronic, Inc. Defibrillation threshold reduction system
US5713929A (en) * 1996-05-03 1998-02-03 Medtronic, Inc. Arrhythmia and fibrillation prevention pacemaker using ratchet up and decay modes of operation
US5720768A (en) * 1996-05-22 1998-02-24 Sulzer Intermedics Inc. Dual chamber pacing with interchamber delay
US5755682A (en) * 1996-08-13 1998-05-26 Heartstent Corporation Method and apparatus for performing coronary artery bypass surgery
US5874420A (en) * 1995-12-26 1999-02-23 Allegheny University Of The Health Sciences Process for regulating vagal tone
US5889033A (en) * 1991-02-14 1999-03-30 Mount Sinai School Of Medicine Method and composition for the treatment of apathy-amotivation syndrome
US5893882A (en) * 1996-12-17 1999-04-13 Medtronic, Inc. Method and apparatus for diagnosis and treatment of arrhythmias
US5893881A (en) * 1995-09-08 1999-04-13 Medtronic, Inc. Method and apparatus for alleviating cardioversion shock pain by delivering a bolus of analgesic
US5902324A (en) * 1998-04-28 1999-05-11 Medtronic, Inc. Bi-atrial and/or bi-ventricular sequential cardiac pacing systems
US5913876A (en) * 1996-02-20 1999-06-22 Cardiothoracic Systems, Inc. Method and apparatus for using vagus nerve stimulation in surgery
US5917911A (en) * 1997-01-23 1999-06-29 Motorola, Inc. Method and system for hierarchical key access and recovery
US5916239A (en) * 1996-03-29 1999-06-29 Purdue Research Foundation Method and apparatus using vagal stimulation for control of ventricular rate during atrial fibrillation
US6014588A (en) * 1998-04-07 2000-01-11 Fitz; William R. Facet joint pain relief method and apparatus
US6043273A (en) * 1997-08-08 2000-03-28 Duke University Compositions, apparatus and methods for facilitating surgical procedures
US6042538A (en) * 1998-11-18 2000-03-28 Emory University Device for endoscopic vessel harvesting
US6073048A (en) * 1995-11-17 2000-06-06 Medtronic, Inc. Baroreflex modulation with carotid sinus nerve stimulation for the treatment of heart failure
US6185459B1 (en) * 1998-08-17 2001-02-06 Medtronic, Inc. Method and apparatus for prevention of atrial tachyarrhythmias
US6221851B1 (en) * 1997-09-19 2001-04-24 Arthur M. Feldman Pharmaceutical therapy for congestive heart failure
US6234985B1 (en) * 1998-06-11 2001-05-22 Cprx Llc Device and method for performing cardiopulmonary resuscitation
US6253108B1 (en) * 1999-04-30 2001-06-26 Intermedics Inc. Method and apparatus for treatment of cardiac electromechanical dissociation
US20020072782A1 (en) * 1999-04-30 2002-06-13 Medtronic, Inc. Vagal nerve stimulation techniques for treatment of epileptic seizures
US20030045909A1 (en) * 2001-08-31 2003-03-06 Biocontrol Medical Ltd. Selective nerve fiber stimulation for treating heart conditions
US6532388B1 (en) * 1996-04-30 2003-03-11 Medtronic, Inc. Method and system for endotracheal/esophageal stimulation prior to and during a medical procedure
US6537540B1 (en) * 1999-05-28 2003-03-25 Targeted Genetics Corporation Methods and composition for lowering the level of tumor necrosis factor (TNF) in TNF-associated disorders
US6542774B2 (en) * 1996-04-30 2003-04-01 Medtronic, Inc. Method and device for electronically controlling the beating of a heart
US20030074039A1 (en) * 1999-06-25 2003-04-17 Puskas John D. Devices and methods for vagus nerve stimulation
US6554781B1 (en) * 1998-12-14 2003-04-29 Spinal Sensor Technologies Limited Spinal monitor apparatus and method
US6572895B2 (en) * 2000-01-18 2003-06-03 Vasogen Ireland Limited Treatment of congestive heart failure
US6690973B2 (en) * 2000-09-26 2004-02-10 Medtronic, Inc. Method and system for spinal cord stimulation prior to and during a medical procedure
US6711436B1 (en) * 1997-08-08 2004-03-23 Duke University Compositions, apparatus and methods for facilitating surgical procedures
US20040059383A1 (en) * 1997-08-26 2004-03-25 Puskas John D. Methods of indirectly stimulating the vagus nerve with an electrical field
US6718208B2 (en) * 1996-04-30 2004-04-06 Medtronic, Inc. Method and system for nerve stimulation prior to and during a medical procedure
US6721603B2 (en) * 2002-01-25 2004-04-13 Cyberonics, Inc. Nerve stimulation as a treatment for pain
US6735471B2 (en) * 1996-04-30 2004-05-11 Medtronic, Inc. Method and system for endotracheal/esophageal stimulation prior to and during a medical procedure
US6738667B2 (en) * 2000-12-28 2004-05-18 Medtronic, Inc. Implantable medical device for treating cardiac mechanical dysfunction by electrical stimulation
USRE38705E1 (en) * 1996-04-30 2005-02-22 Medtronic, Inc. Method and device for electronically controlling the beating of a heart using venous electrical stimulation of nerve fibers
US20050096707A1 (en) * 2000-09-26 2005-05-05 Medtronic, Inc. Method and system for monitoring and controlling systemic and pulmonary circulation during a medical procedure

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2811325C2 (en) 1978-03-16 1982-05-06 Messerschmitt-Bölkow-Blohm GmbH, 8000 München Cardiac surgery fibrillator
US4304239A (en) 1980-03-07 1981-12-08 The Kendall Company Esophageal probe with balloon electrode
US5052390A (en) 1988-07-05 1991-10-01 Hewson Carl E Method and apparatus for defibrillating the heart using internal esophageal electrode and external chest electrode
US4960133A (en) 1988-11-21 1990-10-02 Brunswick Manufacturing Co., Inc. Esophageal electrode
US5044367A (en) 1989-06-26 1991-09-03 The State Of Oregon Acting By And Through The State Board Of Higher Education On Behalf Of Oregon Health Sciences University Method and apparatus for switching cardiac stimulation signals
US5056532A (en) 1989-07-25 1991-10-15 Medtronic, Inc. Esophageal pacing lead
US5024226A (en) 1989-08-17 1991-06-18 Critikon, Inc. Epidural oxygen sensor
US5056519A (en) 1990-05-14 1991-10-15 Vince Dennis J Unilateral diaphragmatic pacer
US5156149A (en) 1990-08-10 1992-10-20 Medtronic, Inc. Sensor for detecting cardiac depolarizations particularly adapted for use in a cardiac pacemaker
US5265603A (en) 1990-12-12 1993-11-30 Medtronic, Inc. Electronic capture detection for a pacer
US5129392A (en) 1990-12-20 1992-07-14 Medtronic, Inc. Apparatus for automatically inducing fibrillation
US5330507A (en) 1992-04-24 1994-07-19 Medtronic, Inc. Implantable electrical vagal stimulation for prevention or interruption of life threatening arrhythmias
US5330515A (en) 1992-06-17 1994-07-19 Cyberonics, Inc. Treatment of pain by vagal afferent stimulation
US5243980A (en) 1992-06-30 1993-09-14 Medtronic, Inc. Method and apparatus for discrimination of ventricular and supraventricular tachycardia
JPH07504597A (en) 1992-06-30 1995-05-25 メドトロニック インコーポレーテッド Electrical medical stimulators and electrical stimulation methods
JPH07504596A (en) 1992-06-30 1995-05-25 メドトロニック インコーポレーテッド Electrical medical stimulators and electrical stimulation methods
EP0589252A3 (en) 1992-09-25 1994-12-07 Cardiac Pacemakers Inc Fibrillation induction method for implantable devices.
US5447526A (en) 1992-12-24 1995-09-05 Karsdon; Jeffrey Transcutaneous electric muscle/nerve controller/feedback unit
US5799661A (en) 1993-02-22 1998-09-01 Heartport, Inc. Devices and methods for port-access multivessel coronary artery bypass surgery
US5792187A (en) 1993-02-22 1998-08-11 Angeion Corporation Neuro-stimulation to control pain during cardioversion defibrillation
US5354318A (en) 1993-04-30 1994-10-11 Medtronic, Inc. Method and apparatus for monitoring brain hemodynamics
EP0688579B1 (en) 1994-06-24 2001-08-22 St. Jude Medical AB Device for heart therapy
US5549655A (en) 1994-09-21 1996-08-27 Medtronic, Inc. Method and apparatus for synchronized treatment of obstructive sleep apnea
US5540732A (en) 1994-09-21 1996-07-30 Medtronic, Inc. Method and apparatus for impedance detecting and treating obstructive airway disorders
US5571150A (en) 1994-12-19 1996-11-05 Cyberonics, Inc. Treatment of patients in coma by nerve stimulation
US5540730A (en) 1995-06-06 1996-07-30 Cyberonics, Inc. Treatment of motility disorders by nerve stimulation
US5700282A (en) 1995-10-13 1997-12-23 Zabara; Jacob Heart rhythm stabilization using a neurocybernetic prosthesis
US5651378A (en) 1996-02-20 1997-07-29 Cardiothoracic Systems, Inc. Method of using vagal nerve stimulation in surgery
WO1997040885A1 (en) 1996-04-30 1997-11-06 Medtronic, Inc. Method and device for electronically controlling the beating of a heart
US5836994A (en) 1997-04-30 1998-11-17 Medtronic, Inc. Method and apparatus for electrical stimulation of the gastrointestinal tract
AU8695698A (en) 1997-08-26 1999-03-16 Emory University Pharmacologic drug combination in vagal-induced asystole
US5928272A (en) 1998-05-02 1999-07-27 Cyberonics, Inc. Automatic activation of a neurostimulator device using a detection algorithm based on cardiac activity
US6304777B1 (en) * 1999-05-26 2001-10-16 Impulse Dynamics N.V. Induction of cardioplegia applied electrical signals

Patent Citations (98)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2043A (en) * 1841-04-10 Improvement in the manner of casting hinges onto their axes
US100273A (en) * 1870-03-01 Improvement in breaker-rollers
US189526A (en) * 1877-04-10 Improvement in dental engines
US226320A (en) * 1880-04-06 Shutter-worker
US1051168A (en) * 1910-08-13 1913-01-21 Thomas Smith Water-supply apparatus.
US1181947A (en) * 1915-07-22 1916-05-02 Connecticut Telephone & Elec Telephone.
US2376903A (en) * 1944-07-12 1945-05-29 Urie M Coe Haystack fence
US3804098A (en) * 1972-04-17 1974-04-16 Medronic Inc Body implantable lead
US4088138A (en) * 1974-01-02 1978-05-09 Cardiac Resuscitator Corp. Cardiac resuscitator and monitoring apparatus
US3937226A (en) * 1974-07-10 1976-02-10 Medtronic, Inc. Arrhythmia prevention apparatus
US4088140A (en) * 1976-06-18 1978-05-09 Medtronic, Inc. Demand anti-arrhythmia pacemaker
US4198963A (en) * 1978-10-19 1980-04-22 Michigan Instruments, Inc. Cardiopulmonary resuscitator, defibrillator and monitor
US4332259A (en) * 1979-09-19 1982-06-01 Mccorkle Jr Charles E Intravenous channel cardiac electrode and lead assembly and method
US4321929A (en) * 1979-10-12 1982-03-30 Lemelson Jerome H Tourniquet
US4640298A (en) * 1980-06-03 1987-02-03 Peter Pless Esophageal electrode probe useful for electrical stimulation of the heart
US5025807A (en) * 1983-09-14 1991-06-25 Jacob Zabara Neurocybernetic prosthesis
US4574807A (en) * 1984-03-02 1986-03-11 Carl Hewson Method and apparatus for pacing the heart employing external and internal electrodes
US4671295A (en) * 1985-01-15 1987-06-09 Applied Biometrics, Inc. Method for measuring cardiac output
US4722347A (en) * 1985-01-15 1988-02-02 Applied Biometrics, Inc. Apparatus for measuring cardiac output
US4919147A (en) * 1986-10-27 1990-04-24 Josef Reinhardt Esophagus probe
US5003991A (en) * 1987-03-31 1991-04-02 Olympus Optical Co., Ltd. Hyperthermia apparatus
US4753244A (en) * 1987-06-23 1988-06-28 Landymore Roderick W Encapsulated microelectronic heart monitor
US5014698A (en) * 1987-10-06 1991-05-14 Leonard Bloom Method of and system for monitoring and treating a malfunctioning heart
US5007893A (en) * 1988-03-16 1991-04-16 Row Roderick J Combination anti-g and pressure suit
US4929688A (en) * 1988-08-11 1990-05-29 The Goodyear Tire & Rubber Company Cure system for open steam curing of mineral-loaded chlorobutyl compounds
US4928688A (en) * 1989-01-23 1990-05-29 Mieczyslaw Mirowski Method and apparatus for treating hemodynamic disfunction
US4931464A (en) * 1989-02-15 1990-06-05 E. R. Squibb & Sons, Inc. Method of reducing pre- and post-ischemic myocardial arrhythmias and fibrillation
US5117828A (en) * 1989-09-25 1992-06-02 Arzco Medical Electronics, Inc. Expandable esophageal catheter
US5178149A (en) * 1989-11-06 1993-01-12 Michael Imburgia Transesophageal probe having simultaneous pacing and echocardiographic capability, and method of diagnosing heart disease using same
US5179950A (en) * 1989-11-13 1993-01-19 Cyberonics, Inc. Implanted apparatus having micro processor controlled current and voltage sources with reduced voltage levels when not providing stimulation
US5186170A (en) * 1989-11-13 1993-02-16 Cyberonics, Inc. Simultaneous radio frequency and magnetic field microprocessor reset circuit
US5024228A (en) * 1989-11-29 1991-06-18 Goldstone Andrew C Electrode endotracheal tube
US5125406A (en) * 1989-11-29 1992-06-30 Eet Limited Partnership (Del) Electrode endotracheal tube
US5282468A (en) * 1990-06-07 1994-02-01 Medtronic, Inc. Implantable neural electrode
US5411529A (en) * 1990-08-10 1995-05-02 Medtronic, Inc. Waveform discriminator for cardiac stimulation devices
US5179952A (en) * 1990-08-13 1993-01-19 Arzco Medical Electronics Inc. Electrocardial stimulator probe
US5188104A (en) * 1991-02-01 1993-02-23 Cyberonics, Inc. Treatment of eating disorders by nerve stimulation
US5889033A (en) * 1991-02-14 1999-03-30 Mount Sinai School Of Medicine Method and composition for the treatment of apathy-amotivation syndrome
US5199428A (en) * 1991-03-22 1993-04-06 Medtronic, Inc. Implantable electrical nerve stimulator/pacemaker with ischemia for decreasing cardiac workload
US5117822A (en) * 1991-04-05 1992-06-02 Laghi Aldo A Silicone heart spoon
US5215086A (en) * 1991-05-03 1993-06-01 Cyberonics, Inc. Therapeutic treatment of migraine symptoms by stimulation
US5299569A (en) * 1991-05-03 1994-04-05 Cyberonics, Inc. Treatment of neuropsychiatric disorders by nerve stimulation
US5284146A (en) * 1991-06-03 1994-02-08 Applied Biometrics Inc. Removable implanted device
US5379765A (en) * 1991-06-12 1995-01-10 Kajiwara; Nagao Monitoring apparatus for use in obtaining bronchial electrocardiogram
US5205285A (en) * 1991-06-14 1993-04-27 Cyberonics, Inc. Voice suppression of vagal stimulation
US5304220A (en) * 1991-07-03 1994-04-19 Maginot Thomas J Method and apparatus for implanting a graft prosthesis in the body of a patient
US5304206A (en) * 1991-11-18 1994-04-19 Cyberonics, Inc. Activation techniques for implantable medical device
US5203326A (en) * 1991-12-18 1993-04-20 Telectronics Pacing Systems, Inc. Antiarrhythmia pacer using antiarrhythmia pacing and autonomic nerve stimulation therapy
US5304120A (en) * 1992-07-01 1994-04-19 Btx Inc. Electroporation method and apparatus for insertion of drugs and genes into endothelial cells
US5292338A (en) * 1992-07-30 1994-03-08 Medtronic, Inc. Atrial defibrillator employing transvenous and subcutaneous electrodes and method of use
US5417713A (en) * 1993-02-09 1995-05-23 Leonard Bloom Transesophageal defibrillating system
US5403356A (en) * 1993-04-28 1995-04-04 Medtronic, Inc. Method and apparatus for prevention of atrial tachy arrhythmias
US5507784A (en) * 1993-09-23 1996-04-16 Medtronic, Inc. Method and apparatus for control of A-V interval
US5501703A (en) * 1994-01-24 1996-03-26 Medtronic, Inc. Multichannel apparatus for epidural spinal cord stimulator
US5514161A (en) * 1994-04-05 1996-05-07 Ela Medical S.A. Methods and apparatus for controlling atrial stimulation in a double atrial triple chamber cardiac pacemaker
US5620468A (en) * 1994-04-21 1997-04-15 Medtronic, Inc. Method and apparatus for treatment of atrial fibrillation
US5501702A (en) * 1994-06-06 1996-03-26 Medtronic, Inc. Time sharing multipolar rheography apparatus and method
US5713924A (en) * 1995-06-27 1998-02-03 Medtronic, Inc. Defibrillation threshold reduction system
US5893881A (en) * 1995-09-08 1999-04-13 Medtronic, Inc. Method and apparatus for alleviating cardioversion shock pain by delivering a bolus of analgesic
US5707400A (en) * 1995-09-19 1998-01-13 Cyberonics, Inc. Treating refractory hypertension by nerve stimulation
US6073048A (en) * 1995-11-17 2000-06-06 Medtronic, Inc. Baroreflex modulation with carotid sinus nerve stimulation for the treatment of heart failure
US5874420A (en) * 1995-12-26 1999-02-23 Allegheny University Of The Health Sciences Process for regulating vagal tone
US5611350A (en) * 1996-02-08 1997-03-18 John; Michael S. Method and apparatus for facilitating recovery of patients in deep coma
US5913876A (en) * 1996-02-20 1999-06-22 Cardiothoracic Systems, Inc. Method and apparatus for using vagus nerve stimulation in surgery
US6381499B1 (en) * 1996-02-20 2002-04-30 Cardiothoracic Systems, Inc. Method and apparatus for using vagus nerve stimulation in surgery
US5916239A (en) * 1996-03-29 1999-06-29 Purdue Research Foundation Method and apparatus using vagal stimulation for control of ventricular rate during atrial fibrillation
US6542774B2 (en) * 1996-04-30 2003-04-01 Medtronic, Inc. Method and device for electronically controlling the beating of a heart
US6718208B2 (en) * 1996-04-30 2004-04-06 Medtronic, Inc. Method and system for nerve stimulation prior to and during a medical procedure
US6532388B1 (en) * 1996-04-30 2003-03-11 Medtronic, Inc. Method and system for endotracheal/esophageal stimulation prior to and during a medical procedure
US6735471B2 (en) * 1996-04-30 2004-05-11 Medtronic, Inc. Method and system for endotracheal/esophageal stimulation prior to and during a medical procedure
USRE38705E1 (en) * 1996-04-30 2005-02-22 Medtronic, Inc. Method and device for electronically controlling the beating of a heart using venous electrical stimulation of nerve fibers
US5713929A (en) * 1996-05-03 1998-02-03 Medtronic, Inc. Arrhythmia and fibrillation prevention pacemaker using ratchet up and decay modes of operation
US5720768A (en) * 1996-05-22 1998-02-24 Sulzer Intermedics Inc. Dual chamber pacing with interchamber delay
US5755682A (en) * 1996-08-13 1998-05-26 Heartstent Corporation Method and apparatus for performing coronary artery bypass surgery
US5893882A (en) * 1996-12-17 1999-04-13 Medtronic, Inc. Method and apparatus for diagnosis and treatment of arrhythmias
US5917911A (en) * 1997-01-23 1999-06-29 Motorola, Inc. Method and system for hierarchical key access and recovery
US6060454A (en) * 1997-08-08 2000-05-09 Duke University Compositions, apparatus and methods for facilitating surgical procedures
US6043273A (en) * 1997-08-08 2000-03-28 Duke University Compositions, apparatus and methods for facilitating surgical procedures
US6711436B1 (en) * 1997-08-08 2004-03-23 Duke University Compositions, apparatus and methods for facilitating surgical procedures
US20040059383A1 (en) * 1997-08-26 2004-03-25 Puskas John D. Methods of indirectly stimulating the vagus nerve with an electrical field
US6221851B1 (en) * 1997-09-19 2001-04-24 Arthur M. Feldman Pharmaceutical therapy for congestive heart failure
US6014588A (en) * 1998-04-07 2000-01-11 Fitz; William R. Facet joint pain relief method and apparatus
US5902324A (en) * 1998-04-28 1999-05-11 Medtronic, Inc. Bi-atrial and/or bi-ventricular sequential cardiac pacing systems
US6234985B1 (en) * 1998-06-11 2001-05-22 Cprx Llc Device and method for performing cardiopulmonary resuscitation
US6185459B1 (en) * 1998-08-17 2001-02-06 Medtronic, Inc. Method and apparatus for prevention of atrial tachyarrhythmias
US6042538A (en) * 1998-11-18 2000-03-28 Emory University Device for endoscopic vessel harvesting
US6554781B1 (en) * 1998-12-14 2003-04-29 Spinal Sensor Technologies Limited Spinal monitor apparatus and method
US20020072782A1 (en) * 1999-04-30 2002-06-13 Medtronic, Inc. Vagal nerve stimulation techniques for treatment of epileptic seizures
US6253108B1 (en) * 1999-04-30 2001-06-26 Intermedics Inc. Method and apparatus for treatment of cardiac electromechanical dissociation
US6537540B1 (en) * 1999-05-28 2003-03-25 Targeted Genetics Corporation Methods and composition for lowering the level of tumor necrosis factor (TNF) in TNF-associated disorders
US20030074039A1 (en) * 1999-06-25 2003-04-17 Puskas John D. Devices and methods for vagus nerve stimulation
US6572895B2 (en) * 2000-01-18 2003-06-03 Vasogen Ireland Limited Treatment of congestive heart failure
US6690973B2 (en) * 2000-09-26 2004-02-10 Medtronic, Inc. Method and system for spinal cord stimulation prior to and during a medical procedure
US20040111118A1 (en) * 2000-09-26 2004-06-10 Hill Michael R.S. Method and system for spinal cord stimulation prior to and during a medical procedure
US20050096707A1 (en) * 2000-09-26 2005-05-05 Medtronic, Inc. Method and system for monitoring and controlling systemic and pulmonary circulation during a medical procedure
US6738667B2 (en) * 2000-12-28 2004-05-18 Medtronic, Inc. Implantable medical device for treating cardiac mechanical dysfunction by electrical stimulation
US20030045909A1 (en) * 2001-08-31 2003-03-06 Biocontrol Medical Ltd. Selective nerve fiber stimulation for treating heart conditions
US6721603B2 (en) * 2002-01-25 2004-04-13 Cyberonics, Inc. Nerve stimulation as a treatment for pain

Cited By (105)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040172075A1 (en) * 1996-04-30 2004-09-02 Shafer Lisa L. Method and system for vagal nerve stimulation with multi-site cardiac pacing
US8036741B2 (en) 1996-04-30 2011-10-11 Medtronic, Inc. Method and system for nerve stimulation and cardiac sensing prior to and during a medical procedure
US20040186517A1 (en) * 1996-04-30 2004-09-23 Hill Michael R.S. Method and system for nerve stimulation prior to and during a medical procedure
US20050143412A1 (en) * 1997-08-26 2005-06-30 Puskas John D. Methods of indirectly stimulating the vagus nerve with an electrical field
US20020198570A1 (en) * 1997-08-26 2002-12-26 Puskas John D. Apparatus for indirectly stimulating the vagus nerve with an electrical field
US20040059383A1 (en) * 1997-08-26 2004-03-25 Puskas John D. Methods of indirectly stimulating the vagus nerve with an electrical field
US7840278B1 (en) 1999-06-25 2010-11-23 Puskas John D Devices and methods for vagus nerve stimulation
US9987492B2 (en) 2000-05-23 2018-06-05 The Feinstein Institute For Medical Research Inhibition of inflammatory cytokine production by cholinergic agonists and vagus nerve stimulation
US20090248097A1 (en) * 2000-05-23 2009-10-01 Feinstein Institute For Medical Research, The Inhibition of inflammatory cytokine production by cholinergic agonists and vagus nerve stimulation
US8914114B2 (en) 2000-05-23 2014-12-16 The Feinstein Institute For Medical Research Inhibition of inflammatory cytokine production by cholinergic agonists and vagus nerve stimulation
US10166395B2 (en) 2000-05-23 2019-01-01 The Feinstein Institute For Medical Research Inhibition of inflammatory cytokine production by cholinergic agonists and vagus nerve stimulation
US20050125044A1 (en) * 2000-05-23 2005-06-09 North Shore-Long Island Jewish Research Institute Inhibition of inflammatory cytokine production by cholinergic agonists and vagus nerve stimulation
US10561846B2 (en) 2000-05-23 2020-02-18 The Feinstein Institutes For Medical Research Inhibition of inflammatory cytokine production by cholinergic agonists and vagus nerve stimulation
US20040111118A1 (en) * 2000-09-26 2004-06-10 Hill Michael R.S. Method and system for spinal cord stimulation prior to and during a medical procedure
US20050096707A1 (en) * 2000-09-26 2005-05-05 Medtronic, Inc. Method and system for monitoring and controlling systemic and pulmonary circulation during a medical procedure
US20080140138A1 (en) * 2002-02-26 2008-06-12 Ivanova Svetlana M Inhibition of inflammatory cytokine production by stimulation of brain muscarinic receptors
US20040199209A1 (en) * 2003-04-07 2004-10-07 Hill Michael R.S. Method and system for delivery of vasoactive drugs to the heart prior to and during a medical procedure
US20060118122A1 (en) * 2003-04-29 2006-06-08 Martens Paul W Medical device with antimicrobial layer
US20110067703A1 (en) * 2003-04-29 2011-03-24 Mallinckrodt Inc. Medical device with antimicrobial layer
US20100125307A1 (en) * 2003-11-03 2010-05-20 Pastore Joseph M Multi-site ventricular pacing therapy with parasympathetic stimulation
US7657312B2 (en) 2003-11-03 2010-02-02 Cardiac Pacemakers, Inc. Multi-site ventricular pacing therapy with parasympathetic stimulation
US8571655B2 (en) 2003-11-03 2013-10-29 Cardiac Pacemakers, Inc. Multi-site ventricular pacing therapy with parasympathetic stimulation
US20070197859A1 (en) * 2003-11-07 2007-08-23 Paracor Medical, Inc. Cardiac harness having diagnostic sensors and method of use
US7869881B2 (en) 2003-12-24 2011-01-11 Cardiac Pacemakers, Inc. Baroreflex stimulator with integrated pressure sensor
US8126560B2 (en) 2003-12-24 2012-02-28 Cardiac Pacemakers, Inc. Stimulation lead for stimulating the baroreceptors in the pulmonary artery
US20050149143A1 (en) * 2003-12-24 2005-07-07 Imad Libbus Baroreflex stimulator with integrated pressure sensor
US20050149133A1 (en) * 2003-12-24 2005-07-07 Imad Libbus Sensing with compensation for neural stimulator
US8473076B2 (en) 2003-12-24 2013-06-25 Cardiac Pacemakers, Inc. Lead for stimulating the baroreceptors in the pulmonary artery
US20050149155A1 (en) * 2003-12-24 2005-07-07 Avram Scheiner Stimulation lead for stimulating the baroreceptors in the pulmonary artery
US20110106216A1 (en) * 2003-12-24 2011-05-05 Imad Libbus Baroreflex stimulator with integrated pressure sensor
US8024050B2 (en) 2003-12-24 2011-09-20 Cardiac Pacemakers, Inc. Lead for stimulating the baroreceptors in the pulmonary artery
US20080249439A1 (en) * 2004-03-25 2008-10-09 The Feinstein Institute For Medical Research Treatment of inflammation by non-invasive stimulation
US20050282906A1 (en) * 2004-03-25 2005-12-22 North Shore-Long Island Jewish Research Institute Neural tourniquet
US10912712B2 (en) 2004-03-25 2021-02-09 The Feinstein Institutes For Medical Research Treatment of bleeding by non-invasive stimulation
US8729129B2 (en) 2004-03-25 2014-05-20 The Feinstein Institute For Medical Research Neural tourniquet
US11207518B2 (en) 2004-12-27 2021-12-28 The Feinstein Institutes For Medical Research Treating inflammatory disorders by stimulation of the cholinergic anti-inflammatory pathway
US11344724B2 (en) 2004-12-27 2022-05-31 The Feinstein Institutes For Medical Research Treating inflammatory disorders by electrical vagus nerve stimulation
US20090234408A1 (en) * 2005-04-05 2009-09-17 Julia Moffitt System to treat av-conducted ventricular tachyarrhythmia
US8190257B2 (en) 2005-04-05 2012-05-29 Cardiac Pacemakers, Inc. System to treat AV-conducted ventricular tachyarrhythmia
US8909337B2 (en) 2005-04-05 2014-12-09 Cardiac Pacemakers, Inc. System to treat AV-conducted ventricular tachyarrhythmia
US20060224202A1 (en) * 2005-04-05 2006-10-05 Julia Moffitt System to treat AV-conducted ventricular tachyarrhythmia
US7555341B2 (en) 2005-04-05 2009-06-30 Cardiac Pacemakers, Inc. System to treat AV-conducted ventricular tachyarrhythmia
US8660648B2 (en) 2005-10-24 2014-02-25 Cardiac Pacemakers, Inc. Implantable and rechargeable neural stimulator
US20070191904A1 (en) * 2006-02-14 2007-08-16 Imad Libbus Expandable stimulation electrode with integrated pressure sensor and methods related thereto
US8170668B2 (en) 2006-07-14 2012-05-01 Cardiac Pacemakers, Inc. Baroreflex sensitivity monitoring and trending for tachyarrhythmia detection and therapy
US8391970B2 (en) 2007-08-27 2013-03-05 The Feinstein Institute For Medical Research Devices and methods for inhibiting granulocyte activation by neural stimulation
US9662490B2 (en) 2008-03-31 2017-05-30 The Feinstein Institute For Medical Research Methods and systems for reducing inflammation by neuromodulation and administration of an anti-inflammatory drug
US9211409B2 (en) 2008-03-31 2015-12-15 The Feinstein Institute For Medical Research Methods and systems for reducing inflammation by neuromodulation of T-cell activity
US20090275997A1 (en) * 2008-05-01 2009-11-05 Michael Allen Faltys Vagus nerve stimulation electrodes and methods of use
US8412338B2 (en) 2008-11-18 2013-04-02 Setpoint Medical Corporation Devices and methods for optimizing electrode placement for anti-inflamatory stimulation
US20100125304A1 (en) * 2008-11-18 2010-05-20 Faltys Michael A Devices and methods for optimizing electrode placement for anti-inflamatory stimulation
US9849286B2 (en) 2009-05-01 2017-12-26 Setpoint Medical Corporation Extremely low duty-cycle activation of the cholinergic anti-inflammatory pathway to treat chronic inflammation
US9211410B2 (en) 2009-05-01 2015-12-15 Setpoint Medical Corporation Extremely low duty-cycle activation of the cholinergic anti-inflammatory pathway to treat chronic inflammation
US10220203B2 (en) 2009-06-09 2019-03-05 Setpoint Medical Corporation Nerve cuff with pocket for leadless stimulator
US9700716B2 (en) 2009-06-09 2017-07-11 Setpoint Medical Corporation Nerve cuff with pocket for leadless stimulator
US20100312320A1 (en) * 2009-06-09 2010-12-09 Faltys Michael A Nerve cuff with pocket for leadless stimulator
US9174041B2 (en) 2009-06-09 2015-11-03 Setpoint Medical Corporation Nerve cuff with pocket for leadless stimulator
US8886339B2 (en) 2009-06-09 2014-11-11 Setpoint Medical Corporation Nerve cuff with pocket for leadless stimulator
US10716936B2 (en) 2009-06-09 2020-07-21 Setpoint Medical Corporation Nerve cuff with pocket for leadless stimulator
US8996116B2 (en) 2009-10-30 2015-03-31 Setpoint Medical Corporation Modulation of the cholinergic anti-inflammatory pathway to treat pain or addiction
US11051744B2 (en) 2009-11-17 2021-07-06 Setpoint Medical Corporation Closed-loop vagus nerve stimulation
US11110287B2 (en) 2009-12-23 2021-09-07 Setpoint Medical Corporation Neural stimulation devices and systems for treatment of chronic inflammation
US20110190849A1 (en) * 2009-12-23 2011-08-04 Faltys Michael A Neural stimulation devices and systems for treatment of chronic inflammation
US9162064B2 (en) 2009-12-23 2015-10-20 Setpoint Medical Corporation Neural stimulation devices and systems for treatment of chronic inflammation
US8855767B2 (en) 2009-12-23 2014-10-07 Setpoint Medical Corporation Neural stimulation devices and systems for treatment of chronic inflammation
US10384068B2 (en) 2009-12-23 2019-08-20 Setpoint Medical Corporation Neural stimulation devices and systems for treatment of chronic inflammation
US9993651B2 (en) 2009-12-23 2018-06-12 Setpoint Medical Corporation Neural stimulation devices and systems for treatment of chronic inflammation
US8612002B2 (en) 2009-12-23 2013-12-17 Setpoint Medical Corporation Neural stimulation devices and systems for treatment of chronic inflammation
US10207112B2 (en) 2010-04-29 2019-02-19 Medtronic, Inc. Cardiac therapy including vagal stimulation
US8423134B2 (en) 2010-04-29 2013-04-16 Medtronic, Inc. Therapy using perturbation and effect of physiological systems
US8888699B2 (en) 2010-04-29 2014-11-18 Medtronic, Inc. Therapy using perturbation and effect of physiological systems
US8639327B2 (en) 2010-04-29 2014-01-28 Medtronic, Inc. Nerve signal differentiation in cardiac therapy
US11129988B2 (en) 2010-04-29 2021-09-28 Medtronic, Inc. Nerve signal differentiation in cardiac therapy
US9468764B2 (en) 2010-04-29 2016-10-18 Medtronic, Inc. Nerve signal differentiation in cardiac therapy
US8620425B2 (en) 2010-04-29 2013-12-31 Medtronic, Inc. Nerve signal differentiation in cardiac therapy
US8406868B2 (en) 2010-04-29 2013-03-26 Medtronic, Inc. Therapy using perturbation and effect of physiological systems
CN102580243A (en) * 2011-01-14 2012-07-18 苏州景昱医疗器械有限公司 Implanted dual-mode stimulating chip, system and mode converting method
US9155893B2 (en) 2011-01-19 2015-10-13 Medtronic, Inc. Use of preventative vagal stimulation in treatment of acute myocardial infarction or ischemia
US8725259B2 (en) 2011-01-19 2014-05-13 Medtronic, Inc. Vagal stimulation
US8718763B2 (en) 2011-01-19 2014-05-06 Medtronic, Inc. Vagal stimulation
US9211413B2 (en) 2011-01-19 2015-12-15 Medtronic, Inc. Preventing use of vagal stimulation parameters
US8706223B2 (en) 2011-01-19 2014-04-22 Medtronic, Inc. Preventative vagal stimulation
US8781582B2 (en) 2011-01-19 2014-07-15 Medtronic, Inc. Vagal stimulation
US8781583B2 (en) 2011-01-19 2014-07-15 Medtronic, Inc. Vagal stimulation
CN102166388A (en) * 2011-03-28 2011-08-31 北京品驰医疗设备有限公司 Embedded nerve stimulator with constant voltage/constant current dipulse mode
US8788034B2 (en) 2011-05-09 2014-07-22 Setpoint Medical Corporation Single-pulse activation of the cholinergic anti-inflammatory pathway to treat chronic inflammation
US9833621B2 (en) 2011-09-23 2017-12-05 Setpoint Medical Corporation Modulation of sirtuins by vagus nerve stimulation
US10449358B2 (en) 2012-03-26 2019-10-22 Setpoint Medical Corporation Devices and methods for modulation of bone erosion
US9572983B2 (en) 2012-03-26 2017-02-21 Setpoint Medical Corporation Devices and methods for modulation of bone erosion
US11311725B2 (en) 2014-10-24 2022-04-26 Setpoint Medical Corporation Systems and methods for stimulating and/or monitoring loci in the brain to treat inflammation and to enhance vagus nerve stimulation
US11406833B2 (en) 2015-02-03 2022-08-09 Setpoint Medical Corporation Apparatus and method for reminding, prompting, or alerting a patient with an implanted stimulator
US20160295957A1 (en) * 2015-04-08 2016-10-13 Nike, Inc. Article of Footwear With Sole Structure Having Fluid-Filled Chambers
US10596367B2 (en) 2016-01-13 2020-03-24 Setpoint Medical Corporation Systems and methods for establishing a nerve block
US11278718B2 (en) 2016-01-13 2022-03-22 Setpoint Medical Corporation Systems and methods for establishing a nerve block
US10695569B2 (en) 2016-01-20 2020-06-30 Setpoint Medical Corporation Control of vagal stimulation
US10314501B2 (en) 2016-01-20 2019-06-11 Setpoint Medical Corporation Implantable microstimulators and inductive charging systems
US11471681B2 (en) 2016-01-20 2022-10-18 Setpoint Medical Corporation Batteryless implantable microstimulators
US11547852B2 (en) 2016-01-20 2023-01-10 Setpoint Medical Corporation Control of vagal stimulation
US10583304B2 (en) 2016-01-25 2020-03-10 Setpoint Medical Corporation Implantable neurostimulator having power control and thermal regulation and methods of use
US11383091B2 (en) 2016-01-25 2022-07-12 Setpoint Medical Corporation Implantable neurostimulator having power control and thermal regulation and methods of use
US11173307B2 (en) 2017-08-14 2021-11-16 Setpoint Medical Corporation Vagus nerve stimulation pre-screening test
US11890471B2 (en) 2017-08-14 2024-02-06 Setpoint Medical Corporation Vagus nerve stimulation pre-screening test
US11260229B2 (en) 2018-09-25 2022-03-01 The Feinstein Institutes For Medical Research Methods and apparatuses for reducing bleeding via coordinated trigeminal and vagal nerve stimulation
US11857788B2 (en) 2018-09-25 2024-01-02 The Feinstein Institutes For Medical Research Methods and apparatuses for reducing bleeding via coordinated trigeminal and vagal nerve stimulation
US11938324B2 (en) 2020-05-21 2024-03-26 The Feinstein Institutes For Medical Research Systems and methods for vagus nerve stimulation

Also Published As

Publication number Publication date
US6628987B1 (en) 2003-09-30

Similar Documents

Publication Publication Date Title
US6628987B1 (en) Method and system for sensing cardiac contractions during vagal stimulation-induced cardiopalegia
US6904318B2 (en) Method and system for monitoring and controlling systemic and pulmonary circulation during a medical procedure
US7225019B2 (en) Method and system for nerve stimulation and cardiac sensing prior to and during a medical procedure
US8036741B2 (en) Method and system for nerve stimulation and cardiac sensing prior to and during a medical procedure
US6690973B2 (en) Method and system for spinal cord stimulation prior to and during a medical procedure
US7184829B2 (en) Method and system for nerve stimulation prior to and during a medical procedure
US20070208388A1 (en) Method and system for nerve stimulation and cardiac sensing prior to and during a medical procedure
EP1322382B1 (en) System for endotracheal/esophageal stimulation prior to and during a medical procedure
US6735471B2 (en) Method and system for endotracheal/esophageal stimulation prior to and during a medical procedure
EP1324709B1 (en) Medical device for directing blood flow
US20040199209A1 (en) Method and system for delivery of vasoactive drugs to the heart prior to and during a medical procedure
US7269457B2 (en) Method and system for vagal nerve stimulation with multi-site cardiac pacing
US8162933B2 (en) Vibration sensitive ablation device and method
WO2005053788A1 (en) Method and system for vagal nerve stimulation with multi-site cardiac pacing
US20040267110A1 (en) Method for detection of vulnerable plaque

Legal Events

Date Code Title Description
AS Assignment

Owner name: MEDTRONIC, INC., MINNESOTA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HILL, MICHAEL R. S.;JAHNS, SCOTT E.;KEOGH, JAMES R.;REEL/FRAME:014355/0932;SIGNING DATES FROM 20000912 TO 20000918

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION