US20040078121A1 - Control system and method with multiple linked inputs - Google Patents

Control system and method with multiple linked inputs Download PDF

Info

Publication number
US20040078121A1
US20040078121A1 US10/279,092 US27909202A US2004078121A1 US 20040078121 A1 US20040078121 A1 US 20040078121A1 US 27909202 A US27909202 A US 27909202A US 2004078121 A1 US2004078121 A1 US 2004078121A1
Authority
US
United States
Prior art keywords
force
controller
signal
directing
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/279,092
Inventor
Daniel Cartmell
Edward Coleman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Boeing Co
Original Assignee
Boeing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Boeing Co filed Critical Boeing Co
Priority to US10/279,092 priority Critical patent/US20040078121A1/en
Assigned to BOEING COMPANY, THE reassignment BOEING COMPANY, THE ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: COLEMAN, EDWARD E., CARTMELL, DANIEL H.
Publication of US20040078121A1 publication Critical patent/US20040078121A1/en
Priority to US11/099,684 priority patent/US7474944B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C13/00Control systems or transmitting systems for actuating flying-control surfaces, lift-increasing flaps, air brakes, or spoilers
    • B64C13/24Transmitting means
    • B64C13/38Transmitting means with power amplification
    • B64C13/50Transmitting means with power amplification using electrical energy
    • B64C13/503Fly-by-Wire
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C13/00Control systems or transmitting systems for actuating flying-control surfaces, lift-increasing flaps, air brakes, or spoilers
    • B64C13/24Transmitting means
    • B64C13/38Transmitting means with power amplification
    • B64C13/50Transmitting means with power amplification using electrical energy
    • B64C13/505Transmitting means with power amplification using electrical energy having duplication or stand-by provisions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C13/00Control systems or transmitting systems for actuating flying-control surfaces, lift-increasing flaps, air brakes, or spoilers
    • B64C13/24Transmitting means
    • B64C13/38Transmitting means with power amplification
    • B64C13/50Transmitting means with power amplification using electrical energy
    • B64C13/506Transmitting means with power amplification using electrical energy overriding of personal controls; with automatic return to inoperative position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C13/00Control systems or transmitting systems for actuating flying-control surfaces, lift-increasing flaps, air brakes, or spoilers
    • B64C13/24Transmitting means
    • B64C13/38Transmitting means with power amplification
    • B64C13/50Transmitting means with power amplification using electrical energy
    • B64C13/507Transmitting means with power amplification using electrical energy with artificial feel

Definitions

  • the present invention relates generally to control systems and methods having linked inputs, such as aircraft control systems with linked left and right pilot inputs.
  • More modern aircraft and aircraft flight simulators include fly-by-wire systems in which the controller position or the force each pilot applies to a controller, such as a yoke or control stick, is translated into an electrical signal which directs a servo actuator to move the aircraft control surface.
  • a servo motor coupled to the controller moves the controller to a position that corresponds to the amount of force applied by the pilot. The motor also provides resistance to the pilot's force on the controller.
  • a system 140 includes a dynamic response model 141 that receives an input pilot force signal F and outputs a controller position demand signal D.
  • a servo motor system 170 receives the position demand signal D and actuates the controller, moving it to position P.
  • a summing junction 144 provides a feedback loop that accounts for friction (calculated by a friction model 142 ) and controller feel (calculated by a feel profile module 143 ) to produce characteristics at the controller that mimic those produced by a mechanical system.
  • FIG. 1B illustrates a typical feel profile which illustrates feedback force as a function of position for a typical feel profile module 143 .
  • the feedback force i.e., the resistance the pilot feels when exerting a force on the controller to change a position of the controller
  • the profile then has a generally smooth, curved shape until the pilot approaches a stop point 124 , beyond which any additional attempts to change the controller position result in a very large feedback force.
  • FIG. 2A illustrates another existing system 240 that receives the pilot force input signal F, applies an inverse feel profile model 243 to produce a static controller position, then applies a second order dynamic response model 241 to produce the final controller position demand signal D.
  • FIG. 2B illustrates an associated inverse feel profile curve having a breakout point 223 and a stop point 224 .
  • FIG. 3 illustrates an existing arrangement having linked control modules 360 (shown as a left control module 360 a and a right control module 360 b ).
  • Each control module 360 receives an input force signal F, applies a dynamic response model 341 , provides feedback generated by a friction model 342 and a feel profile model 343 and implemented by a summing junction 344 to produce a corresponding controller position demand signal D.
  • Each control module 360 further includes a linking function 345 that inputs the output controller position demand signals and provides additional feedback via the summing junction 344 .
  • FIG. 4 schematically illustrates yet another existing arrangement having dual control modules 460 (shown as modules 460 a and 460 b ) that each receive a pilot force input F and, via a lookup table 446 , produce a position demand signal 452 , which corresponds to a static position for the corresponding controller.
  • the position demand signals 452 are linked via linking functions 445 and the resulting signals are passed to stick systems 441 which actuate the controllers to position P.
  • Systems having an arrangement generally similar to that shown in FIG. 4 are available from Stirling Dynamics, Ltd. of Clifton, Bristol, England.
  • One drawback with at least some of the foregoing systems is that they may not accurately simulate the feel and behavior of mechanically linked pilot controls. For example, some of the foregoing systems may not accurately simulate the feel that one pilot has upon seizing the controls when the other pilot has already exceeded the breakout point. Furthermore, these foregoing systems may not accurately simulate the result obtained when two pilots provide large, opposite inputs. Yet another drawback with some of the foregoing systems is that they may not be versatile enough to allow the simulated link between pilot input forces to be easily updated to take advantage of simulation improvements.
  • a computer-implemented method in accordance with one aspect of the invention includes receiving a first force signal corresponding to a first force applied to a first controller, and receiving a second force signal corresponding to a second force applied to a second controller. The method further includes directing a first position demand signal to the first controller to move the first controller to a first controller position, wherein the first controller has a first neutral position and the first controller position is displaced from the neutral position by a first distance, and wherein the first force signal and the first position signal are transmitted along a first signal path.
  • the method can further include directing a second position demand signal to the second controller to move the second controller to a second controller position, wherein the second controller has a second neutral position and the second controller position is displaced from the second neutral position by a second distance at least approximately equal to the first distance, and wherein the second force signal and the second position signal are transmitted along a second signal path.
  • a control signal is then directed to a control device based on at least one of the first and second force signals, and the first and second signal paths are linked at a point where the signals on the first and second signal paths correspond to a quantity other than a position of a controller.
  • a computer-implemented method in accordance with another aspect of the invention includes receiving a first force signal corresponding to a first force applied to the first controller and receiving a second force signal corresponding to a second force applied to the second controller.
  • the method further includes (if the first force signal meets or exceeds a threshold value), directing a first position demand signal to the first controller to move the first controller to a first controller position, and directing a second position demand signal to the second controller to move the second controller to a second controller position independent of whether or not the second force signal meets or exceeds the threshold value.
  • the first controller position is displaced from a first neutral position by a first distance and the second controller position is displaced from a second neutral position by a second distance at least approximately equal to the first distance.
  • the method further includes directing a control signal based on at least one of the first and second signals.
  • a computer-implemented method in accordance with yet another aspect of the invention includes receiving a first force signal corresponding to a first force applied to the first controller and receiving a second force signal corresponding to a second force applied to the second controller. If the first force signal is less than a selected limit value, the method further includes directing a first control signal corresponding to a combination of the first and second force signals. If the force signal exceeds the selected limit value, the method further includes directing a second control signal that at least partially discounts the first force signal.
  • the foregoing computer-implemented methods can be performed by computer-readable media in further aspects of the invention.
  • the computer-readable media performing any of the foregoing methods can form a portion of a system that includes the first and second controllers.
  • FIGS. 1 A- 1 B illustrate a control system in accordance with the prior art.
  • FIGS. 2 A- 2 B illustrate a control system having a second order dynamic model in accordance with the prior art.
  • FIG. 3 illustrates a control system arrangement linked in accordance with the prior art.
  • FIG. 4 illustrates another control system arrangement linked in accordance with the prior art.
  • FIG. 5 illustrates a system having controllers linked to a controlled device in accordance with an embodiment of the invention.
  • FIG. 6 schematically illustrates components of a control system in accordance with an embodiment of the invention.
  • FIG. 7 illustrates further details of components of a control system in accordance with an embodiment of the invention shown in FIG. 6.
  • FIG. 8 is a block diagram illustrating a method in accordance with an embodiment of the invention.
  • FIG. 9 is a block diagram illustrating a method in accordance with another embodiment of the invention.
  • FIG. 10 is a block diagram illustrating a method in accordance with yet another embodiment of the invention.
  • FIG. 11 is a block diagram illustrating a method in accordance with still another embodiment of the invention.
  • FIG. 12 is a block diagram illustrating a method in accordance with yet another embodiment of the invention.
  • FIG. 13 is a schematic illustration of components of a system in accordance with another embodiment of the invention.
  • the present disclosure describes systems and methods for providing linked controls to devices such as aircraft flight control surfaces. Many specific details of certain embodiments of the invention are set forth in the following description and in FIGS. 5 - 13 to provide a thorough understanding of these embodiments. One skilled in the art, however, will understand that the present invention may have additional embodiments, and that the invention may be practiced without several of the details described below.
  • FIG. 5 is a schematic illustration of a system 500 , such as a linked active feel system, having a plurality of controllers 520 (two are shown in FIG. 5 as a first or left controller 520 a and a second or right controller 520 b ) that provide linked inputs to direct the operation of a controlled device 510 .
  • the first controller 520 a and the second controller 520 b are linked via a controller computer 535 and a supervisory computer 530 to the controlled device 510 , which in one embodiment can include an aircraft 511 or a simulated aircraft.
  • each controller 520 includes an input device 525 , such as a yoke (shown schematically in FIG. 5) and in other embodiments, the controllers 520 can include other devices, such as center sticks, side sticks, foot pedals, input keys, etc. In any of these embodiments, each controller 520 can have a neutral position (at which the controller 520 outputs a baseline signal, or no signal) and a deflected position (at which the controller outputs a signal different than the baseline signal) to control the operation of the controlled device 510 .
  • a neutral position at which the controller 520 outputs a baseline signal, or no signal
  • a deflected position at which the controller outputs a signal different than the baseline signal
  • Each controller 520 can include a force sensor 521 a, 521 b that detects an input force from an operator (such as a pilot) and transmits a force signal Fa, Fb.
  • the force signals Fa, Fb are processed by the controller computer 535 .
  • the controller computer 535 can implement a control function 540 that produces corresponding position demand signals Da, Db.
  • the position demand signals Da, Db direct servo motors 522 a, 522 b or other actuators of the controllers 520 to move the corresponding input devices 525 a, 525 b to positions that reflect the forces Fa, Fb applied by the pilots.
  • the position demand signals Da, Db can also be transmitted to the supervisory computer 530 , which can include a flight control computer, a simulation computer or another computer, depending on the particular application.
  • the supervisory computer 530 can direct a signal to the controlled device 510 to move and/or otherwise manipulate portions of the controlled device 510 .
  • control signals issued by the control function 540 can direct both the motion of the controllers 520 and (via the supervisory computer 530 ) the controlled device 510 .
  • the signal used to control the controlled device 510 can correspond directly to the position demand signals Da, Db.
  • sensors are coupled to the controllers 520 a, 520 b and the signal used to control the controlled device 510 is transmitted by the sensors.
  • the feel at the controllers 520 a, 520 b will go limp (or provide some resistance via a mechanical return spring), but the independent sensor signals (corresponding to the actual positions of the controllers 520 , 520 b ) will provide the input signal for the controlled device 510 .
  • the supervisory computer 530 can direct the movement of flight control surfaces, such as ailerons 514 , elevators 512 and/or rudders 513 .
  • flight control surfaces such as ailerons 514 , elevators 512 and/or rudders 513 .
  • the supervisory computer 530 can direct changes in the motion of the flight simulator and/or the display presented to the pilots in the flight simulator. In either embodiment, the supervisory computer 530 can influence the activities of the control function 540 .
  • the manner in which the control system response is linked can provide a versatile, realistic electronic simulation of mechanically linked controls.
  • FIG. 6 is a schematic illustration of components of the control function 540 described above with reference to FIG. 5.
  • the control function 540 includes instructions that can be carried out by the controller computer 535 and can accordingly be stored in or on any computer-readable medium, such as computer memory or a removable or non-removable storage media.
  • the control function 540 operates digitally, and in another embodiment, it operates with analog circuitry.
  • the control function 540 can include a linking function 645 .
  • the control function 540 receives corresponding force signals Fa, Fb, processes the signals (for example, along corresponding signal paths 658 a, 658 b ) and outputs corresponding position demand signals Da, Db.
  • the signal paths 658 a, 658 b are linked by the linking function 645 as described in greater detail below.
  • the linking function 645 links signals corresponding directly to the force signals Fa, Fb.
  • the linked signals can be the force signals Fa, Fb or the force signals Fa, Fb with a linear or proportional correction factor or offset.
  • the linked signals correspond to the input forces and can be linked by (1) subtracting one-half the difference between the first and second force signals Fa, Fb from the first force signal Fa, then doubling the result, and (b) adding one-half the difference between the force signals Fa, Fb to the second force signal Fb, then doubling the result.
  • the linking function 645 transmits a signal with the value of 15 along each signal path 658 a and 658 b. This result simulates what each pilot would feel at the controls of a conventional, mechanically linked system.
  • the linking function 645 can link the force signals Fa, Fb in other manners, as described below with reference to FIG. 13.
  • the control function 540 can include dynamic response models 641 a, 641 b that operate in a manner generally similar to the dynamic response model 141 (FIG. 1) to generate the corresponding position demand signals Da, Db.
  • the response models 641 a, 641 b can include corresponding friction models 642 a, 642 b and feel profiles 643 a, 643 b, respectively.
  • the control function 540 can include other dynamic response models 641 .
  • the linking function 645 can perform functions in addition to linking the forces F provided by the first and second pilots.
  • the linking function 645 can include a limiter 647 .
  • the limiter 647 can automatically reduce the effect each pilot has on the other when the pilots provide large, opposite inputs.
  • the limiter 647 can provide an output force that (1) equals the input force when the input force is within a limit range, and (2) remains constant when the input force is outside the limit range.
  • any pilot force in a positive direction beyond +10 will register as a force of +10
  • any pilot force in a negative direction beyond ⁇ 10 will register as a force of ⁇ 10.
  • the net resultant force along both signal paths 658 a and 658 b will be zero and Da and Db will both be zero (i.e., neither controller will move).
  • the pilots increase the input force to +15 and ⁇ 15, respectively, then the resultant force along signal path 658 a will be +10 and the resultant force along signal path 658 b will be ⁇ 10.
  • the first pilot's controller will move in a positive direction and the second pilot's controller will move in a negative direction, and each pilot will no longer feel the increasing force applied by the other.
  • Each pilots' gain appears to double, however (e.g., 1 lb above the limit range has the effect of 2 lbs below the limit range).
  • the supervisory computer 530 (FIG. 5) can then determine what signal is sent to the controlled device 510 .
  • the foregoing arrangement will also provide relief for one pilot if the other pilot's controller jams.
  • the output value of the force that is outside the limit range can be discounted in manners other than making it constant.
  • the linking function 645 can more accurately simulate the situation that arises when one of the pilots has exceeded a breakout force before the other.
  • the breakout force refers to the minimum or threshold force necessary to be applied to the controller 520 a, 520 b (FIG. 5) before the control function 540 directs a change in the corresponding controller position demand signal Da, Db.
  • the linking function 645 can simulate this response by determining whether one of the pilots has exceeded the breakout force and, if so, the position of the controllers 520 a, 520 b for both the first and second pilots is independent of whether or not the second pilot has also exceeded the breakout force. For example, if the breakout force is 5 and the first pilot applies a force of 10 while the second pilot applied a force of 2, both controller position demand signals Da and Db will correspond to an input force of 12, even through only one pilot has exceeded the breakout force.
  • FIG. 7 is a schematic illustration of the control function 540 described above with reference to FIGS. 5 and 6, showing additional features in accordance with further aspects of this embodiment.
  • the control function 540 can include force normalizers 748 a, 748 b that account for different response characteristics for the first and second controllers, such as different response characteristics for sticks located on the left and right side of an aircraft.
  • the control function 540 can also include left and right faders 749 a, 749 b that smooth the transition from linked to unlinked controls and back again.
  • the supervisory computer 530 can coordinate and integrate the actions and responses of the control function 540 .
  • the supervisory computer 530 can provide the appropriate inputs to the force normalizers 748 .
  • the supervisory computer 530 can control the faders 749 to guide the phase-in and phase-out of the link between the two controls.
  • the supervisory computer 530 can also receive takeover input signals 754 a, 754 b which provide for either pilot taking over the controls of the system upon activating the appropriate takeover push button.
  • the supervisory computer 530 can also consolidate the first and second controller position demand signals Da, Db to provide a controlled device signal 751 that is directed to the controlled device 510 (FIG. 5.)
  • the controlled device signal 751 can be directed to a control surface servo actuator or other active device.
  • One feature of an embodiment of the system 500 described above with reference to FIGS. 5 - 7 is that the linking function 645 can more closely match the characteristics of conventional mechanical systems than can existing arrangements.
  • the behavior of an embodiment of the system 500 can more closely match the behavior of a mechanical system when one controller is jammed, when one controller has not yet exceeded a breakout force, and/or when the controllers receive large, oppositely directed inputs.
  • An advantage of this feature is that pilots or other operators who are familiar with the characteristics of mechanical systems may find more commonality between those systems and systems configured in accordance with embodiments of the present invention.
  • Another feature of an embodiment of the system 500 described above with reference to FIGS. 5 - 7 is that the signals generated by each controller are linked prior to calculating the target position of each controller.
  • An advantage of this arrangement is that the linking function can be installed, implemented, updated, changed and/or otherwise manipulated without disturbing the function or module that determines the controller position based on input force. This is unlike existing systems (such as those described above with reference to FIGS. 3 and 4) for which the link between first and second controllers is integrated with the calculation of controller position.
  • FIGS. 8 - 12 are block diagrams illustrating processes or methods that can be performed with the control function 540 described above with reference to FIGS. 5 - 7 in accordance with various embodiments of the invention.
  • a process 800 in accordance with one embodiment can include linking force signals to move the first and second controllers and to direct a combined control signal to the controlled device.
  • the method 800 can include receiving a first force signal corresponding directly to a first force applied to the first controller (process portion 801 ).
  • the process can further include receiving a second force signal corresponding directly to a second force applied to the second controller (process portion 802 ), then linking the first force signal and the second force signal (process portion 803 ).
  • the process 800 can further include directing the first position demand signal to the first controller (for example, via a servo motor of the first controller) to move the first controller to a first controller position displaced from a first neutral position by a first distance (process portion 804 ).
  • the process 800 can further include directing a second position demand signal to the second controller to move the second controller to a second controller position displaced from a second neutral position by a second distance at least approximately equal to the first distance (process portion 805 ). Accordingly, both the first and second controllers are moved approximately the same distance from their neutral positions.
  • the process can still further include directing a control signal to a controlled device based on at least one of the first and second force signals (process portion 806 ).
  • the linked signals correspond identically to the first and second force signals.
  • the linked signals can have values that correspond directly to the first and second force signals in other manners.
  • the linked signals may be directly proportional to and/or linearly related to the first and second force signals.
  • the signals are linked prior to determining the corresponding controller positions.
  • the signals are linked after determining whether corresponding force limits have been exceeded.
  • the link between the two signal paths can occur at other points along the paths, so long as the link occurs prior to determining the controller position demand. For example, as shown in FIG.
  • a process 900 can include receiving a first force signal corresponding to a first force applied to the first controller (process portion 901 ) and receiving a second force signal corresponding to a second force applied to the second controller (process portion 902 ).
  • the process 900 can further include directing a first position demand signal to the first controller to move the first controller from the first neutral position to the first controller position, with the first force signal and the first position demand signal defining a first signal path (process portion 903 ).
  • a second position demand signal is directed to the second controller to move the second controller from the second neutral position to the second controller position, with the second force signal and the second position demand signal defining a second signal path (process portion 904 ).
  • a control signal is then directed to the controlled device based on at least one of the first and second force signals (process portion 905 ), and the first and second signal paths are linked at a point where the signals on the first and second signal paths correspond to a quantity other than a position of one of the controllers (process portion 906 ).
  • a process 1000 can include accounting for one of the force inputs exceeding a breakout force while another input force does not.
  • the process 1000 can include receiving a first force signal corresponding to a first force applied to the first controller (process portion 1001 ), and receiving a second force signal corresponding to a second force applied to the second controller (process portion 1002 ).
  • a determination is made as to whether the first force signal meets or exceeds a threshold value (process portion 1003 ). If it does, then a first position demand signal is directed to the first controller to move the first controller from its neutral position to its first controller position (process portion 1004 ).
  • a second position signal is directed to the second controller to move the second controller by about the same distance (process portion 1005 ).
  • a control signal is directed to the controlled device based on at least one of the first and second force signals and is independent of whether or not the second force signal meets or exceeds the threshold value.
  • FIG. 11 is a block diagram illustrating a process 1100 for linking first and second force signals in accordance with another embodiment of the invention.
  • process portion 1101 a first value corresponding to the first force and a second value corresponding to the second force are obtained.
  • process portion 1102 the difference between the first value and the second value are determined.
  • process portion 1103 one-half the difference between the first value and the second value are subtracted from the first value and the resultant is multiplied by two (process portion 1104 ).
  • process portion 1105 a signal corresponding to a combination of the first and second force signals is directed.
  • FIG. 12 is a block diagram illustrating a process 1200 that can account for large opposite input forces, controller jams and/or other instances in which one controller input is defective or is to be ignored.
  • a first force signal corresponding to a first force applied to a first controller is received
  • a second force signal corresponding to a second force applied to a second controller is received.
  • FIG. 13 is a partially schematic illustration of a system 1340 that receives first and second pilot force input signals Fa and Fb and outputs first and second controller position demands Da and Db in accordance with another embodiment of the invention.
  • the system 1340 includes a linking function 1345 that has two limit models 1347 a and 1347 b.
  • the limit models 1347 a and 1347 b are coupled in the linking function 1345 such that each pilot feels the sum of the two input forces before the override limit is reached, and each pilot does not feel an effect of the other pilot's increasing input force after the limit is reached. For example, if the pilot's input forces are +15 and ⁇ 15, respectively, and the limit range is +10, then the first pilot will generate a net force signal of +5 and the second pilot will generate a net force signal of ⁇ 5.

Abstract

Methods and systems for linking input control signals, such as control signals used to control aspects of aircraft operation. In one embodiment, the method includes receiving first and second force signals corresponding to first and second forces applied to first and second controllers. The method can further include directing first and second position signals to the first and second controllers to move the first and second controllers to approximately the same positions. Each force signal is transmitted along a signal path, and the signal paths can be linked at a point where the signals on each path correspond to a quantity other that a position of a controller. The signal paths can be linked such that only one of the forces must exceed a threshold value for both controllers to be moved, and if one of the forces is outside a selected limit range, that force can be at least partially discounted.

Description

    TECHNICAL FIELD
  • The present invention relates generally to control systems and methods having linked inputs, such as aircraft control systems with linked left and right pilot inputs. [0001]
  • BACKGROUND
  • Early commercial aircraft include two sets of mechanically linked controls for pilots sitting in the left and right (or front and back) seats of the flight deck. These mechanical control systems include cables connected between the pilots' controllers and the aircraft control surfaces, such as the aircraft ailerons and elevators. The controllers for the two pilots are mechanically linked so that each pilot feels the effect of the other pilot's input, and the resultant force applied to the control surfaces corresponds to the sum of the forces applied by each pilot. [0002]
  • More modern aircraft and aircraft flight simulators include fly-by-wire systems in which the controller position or the force each pilot applies to a controller, such as a yoke or control stick, is translated into an electrical signal which directs a servo actuator to move the aircraft control surface. A servo motor coupled to the controller moves the controller to a position that corresponds to the amount of force applied by the pilot. The motor also provides resistance to the pilot's force on the controller. In one conventional arrangement shown in FIG. 1A, a [0003] system 140 includes a dynamic response model 141 that receives an input pilot force signal F and outputs a controller position demand signal D. A servo motor system 170 receives the position demand signal D and actuates the controller, moving it to position P. A summing junction 144 provides a feedback loop that accounts for friction (calculated by a friction model 142) and controller feel (calculated by a feel profile module 143) to produce characteristics at the controller that mimic those produced by a mechanical system.
  • FIG. 1B illustrates a typical feel profile which illustrates feedback force as a function of position for a typical [0004] feel profile module 143. The feedback force (i.e., the resistance the pilot feels when exerting a force on the controller to change a position of the controller) increases rapidly for small deflections, until the pilot surpasses a breakout point 123. The profile then has a generally smooth, curved shape until the pilot approaches a stop point 124, beyond which any additional attempts to change the controller position result in a very large feedback force.
  • FIG. 2A illustrates another existing [0005] system 240 that receives the pilot force input signal F, applies an inverse feel profile model 243 to produce a static controller position, then applies a second order dynamic response model 241 to produce the final controller position demand signal D. FIG. 2B illustrates an associated inverse feel profile curve having a breakout point 223 and a stop point 224.
  • One challenge associated with fly-by-wire systems has been to link the controllers for left and right seat pilots in a manner that simulates a mechanical system. For example, FIG. 3 illustrates an existing arrangement having linked control modules [0006] 360 (shown as a left control module 360 a and a right control module 360 b). Each control module 360 receives an input force signal F, applies a dynamic response model 341, provides feedback generated by a friction model 342 and a feel profile model 343 and implemented by a summing junction 344 to produce a corresponding controller position demand signal D. Each control module 360 further includes a linking function 345 that inputs the output controller position demand signals and provides additional feedback via the summing junction 344.
  • FIG. 4 schematically illustrates yet another existing arrangement having dual control modules [0007] 460 (shown as modules 460 a and 460 b) that each receive a pilot force input F and, via a lookup table 446, produce a position demand signal 452, which corresponds to a static position for the corresponding controller. The position demand signals 452 are linked via linking functions 445 and the resulting signals are passed to stick systems 441 which actuate the controllers to position P. Systems having an arrangement generally similar to that shown in FIG. 4 are available from Stirling Dynamics, Ltd. of Clifton, Bristol, England.
  • One drawback with at least some of the foregoing systems is that they may not accurately simulate the feel and behavior of mechanically linked pilot controls. For example, some of the foregoing systems may not accurately simulate the feel that one pilot has upon seizing the controls when the other pilot has already exceeded the breakout point. Furthermore, these foregoing systems may not accurately simulate the result obtained when two pilots provide large, opposite inputs. Yet another drawback with some of the foregoing systems is that they may not be versatile enough to allow the simulated link between pilot input forces to be easily updated to take advantage of simulation improvements. [0008]
  • SUMMARY
  • The present invention is directed to methods and systems for linking input control signals, such as control signals used to control aspects of aircraft operation. A computer-implemented method in accordance with one aspect of the invention includes receiving a first force signal corresponding to a first force applied to a first controller, and receiving a second force signal corresponding to a second force applied to a second controller. The method further includes directing a first position demand signal to the first controller to move the first controller to a first controller position, wherein the first controller has a first neutral position and the first controller position is displaced from the neutral position by a first distance, and wherein the first force signal and the first position signal are transmitted along a first signal path. The method can further include directing a second position demand signal to the second controller to move the second controller to a second controller position, wherein the second controller has a second neutral position and the second controller position is displaced from the second neutral position by a second distance at least approximately equal to the first distance, and wherein the second force signal and the second position signal are transmitted along a second signal path. A control signal is then directed to a control device based on at least one of the first and second force signals, and the first and second signal paths are linked at a point where the signals on the first and second signal paths correspond to a quantity other than a position of a controller. [0009]
  • A computer-implemented method in accordance with another aspect of the invention includes receiving a first force signal corresponding to a first force applied to the first controller and receiving a second force signal corresponding to a second force applied to the second controller. The method further includes (if the first force signal meets or exceeds a threshold value), directing a first position demand signal to the first controller to move the first controller to a first controller position, and directing a second position demand signal to the second controller to move the second controller to a second controller position independent of whether or not the second force signal meets or exceeds the threshold value. The first controller position is displaced from a first neutral position by a first distance and the second controller position is displaced from a second neutral position by a second distance at least approximately equal to the first distance. The method further includes directing a control signal based on at least one of the first and second signals. [0010]
  • A computer-implemented method in accordance with yet another aspect of the invention includes receiving a first force signal corresponding to a first force applied to the first controller and receiving a second force signal corresponding to a second force applied to the second controller. If the first force signal is less than a selected limit value, the method further includes directing a first control signal corresponding to a combination of the first and second force signals. If the force signal exceeds the selected limit value, the method further includes directing a second control signal that at least partially discounts the first force signal. [0011]
  • The foregoing computer-implemented methods can be performed by computer-readable media in further aspects of the invention. In yet a further aspect of the invention, the computer-readable media performing any of the foregoing methods can form a portion of a system that includes the first and second controllers.[0012]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIGS. [0013] 1A-1B illustrate a control system in accordance with the prior art.
  • FIGS. [0014] 2A-2B illustrate a control system having a second order dynamic model in accordance with the prior art.
  • FIG. 3 illustrates a control system arrangement linked in accordance with the prior art. [0015]
  • FIG. 4 illustrates another control system arrangement linked in accordance with the prior art. [0016]
  • FIG. 5 illustrates a system having controllers linked to a controlled device in accordance with an embodiment of the invention. [0017]
  • FIG. 6 schematically illustrates components of a control system in accordance with an embodiment of the invention. [0018]
  • FIG. 7 illustrates further details of components of a control system in accordance with an embodiment of the invention shown in FIG. 6. [0019]
  • FIG. 8 is a block diagram illustrating a method in accordance with an embodiment of the invention. [0020]
  • FIG. 9 is a block diagram illustrating a method in accordance with another embodiment of the invention. [0021]
  • FIG. 10 is a block diagram illustrating a method in accordance with yet another embodiment of the invention. [0022]
  • FIG. 11 is a block diagram illustrating a method in accordance with still another embodiment of the invention. [0023]
  • FIG. 12 is a block diagram illustrating a method in accordance with yet another embodiment of the invention. [0024]
  • FIG. 13 is a schematic illustration of components of a system in accordance with another embodiment of the invention.[0025]
  • DETAILED DESCRIPTION
  • The present disclosure describes systems and methods for providing linked controls to devices such as aircraft flight control surfaces. Many specific details of certain embodiments of the invention are set forth in the following description and in FIGS. [0026] 5-13 to provide a thorough understanding of these embodiments. One skilled in the art, however, will understand that the present invention may have additional embodiments, and that the invention may be practiced without several of the details described below.
  • FIG. 5 is a schematic illustration of a [0027] system 500, such as a linked active feel system, having a plurality of controllers 520 (two are shown in FIG. 5 as a first or left controller 520 a and a second or right controller 520 b) that provide linked inputs to direct the operation of a controlled device 510. The first controller 520 a and the second controller 520 b are linked via a controller computer 535 and a supervisory computer 530 to the controlled device 510, which in one embodiment can include an aircraft 511 or a simulated aircraft. Many features of the system 500 are identified in the Figures by a reference numeral with a lower case suffix “a” or a lower case suffix “b” that identifies the feature as corresponding to the first controller 520 a or the second controller 520 b , respectively. These features are often referred to in the text without the suffix (for example, controllers 520) when the corresponding discussion applies to aspects of both the first controller 520 a and the second controller 520 b.
  • In one embodiment, each controller [0028] 520 includes an input device 525, such as a yoke (shown schematically in FIG. 5) and in other embodiments, the controllers 520 can include other devices, such as center sticks, side sticks, foot pedals, input keys, etc. In any of these embodiments, each controller 520 can have a neutral position (at which the controller 520 outputs a baseline signal, or no signal) and a deflected position (at which the controller outputs a signal different than the baseline signal) to control the operation of the controlled device 510.
  • Each controller [0029] 520 can include a force sensor 521 a, 521 b that detects an input force from an operator (such as a pilot) and transmits a force signal Fa, Fb. The force signals Fa, Fb are processed by the controller computer 535. Accordingly, the controller computer 535 can implement a control function 540 that produces corresponding position demand signals Da, Db. The position demand signals Da, Db direct servo motors 522 a, 522 b or other actuators of the controllers 520 to move the corresponding input devices 525 a, 525 b to positions that reflect the forces Fa, Fb applied by the pilots.
  • The position demand signals Da, Db can also be transmitted to the [0030] supervisory computer 530, which can include a flight control computer, a simulation computer or another computer, depending on the particular application. The supervisory computer 530 can direct a signal to the controlled device 510 to move and/or otherwise manipulate portions of the controlled device 510. Accordingly, control signals issued by the control function 540 can direct both the motion of the controllers 520 and (via the supervisory computer 530) the controlled device 510. In one embodiment, the signal used to control the controlled device 510 can correspond directly to the position demand signals Da, Db. In another embodiment, sensors are coupled to the controllers 520 a, 520 b and the signal used to control the controlled device 510 is transmitted by the sensors. Accordingly, if the servo motors 522 a, 522 b fail and/or are shut down, the feel at the controllers 520 a, 520 b will go limp (or provide some resistance via a mechanical return spring), but the independent sensor signals (corresponding to the actual positions of the controllers 520, 520 b) will provide the input signal for the controlled device 510.
  • When the controlled [0031] device 510 includes the aircraft 511, the supervisory computer 530 can direct the movement of flight control surfaces, such as ailerons 514, elevators 512 and/or rudders 513. When the controlled device 510 forms part of a flight simulator, the supervisory computer 530 can direct changes in the motion of the flight simulator and/or the display presented to the pilots in the flight simulator. In either embodiment, the supervisory computer 530 can influence the activities of the control function 540. As discussed in greater detail below, the manner in which the control system response is linked can provide a versatile, realistic electronic simulation of mechanically linked controls.
  • FIG. 6 is a schematic illustration of components of the [0032] control function 540 described above with reference to FIG. 5. The control function 540 includes instructions that can be carried out by the controller computer 535 and can accordingly be stored in or on any computer-readable medium, such as computer memory or a removable or non-removable storage media. In one aspect of this embodiment, the control function 540 operates digitally, and in another embodiment, it operates with analog circuitry. In any of these embodiments, the control function 540 can include a linking function 645. The control function 540 receives corresponding force signals Fa, Fb, processes the signals (for example, along corresponding signal paths 658 a, 658 b) and outputs corresponding position demand signals Da, Db. The signal paths 658 a, 658 b are linked by the linking function 645 as described in greater detail below.
  • In one aspect of this embodiment, the linking [0033] function 645 links signals corresponding directly to the force signals Fa, Fb. For example, the linked signals can be the force signals Fa, Fb or the force signals Fa, Fb with a linear or proportional correction factor or offset. In any of these embodiments, the linked signals correspond to the input forces and can be linked by (1) subtracting one-half the difference between the first and second force signals Fa, Fb from the first force signal Fa, then doubling the result, and (b) adding one-half the difference between the force signals Fa, Fb to the second force signal Fb, then doubling the result. Accordingly, if the first pilot applies a force of 10 pounds (i.e., Fa=10) and the second pilot applied a force of 5 pounds (i.e., Fb=5), the linking function 645 transmits a signal with the value of 15 along each signal path 658 a and 658 b. This result simulates what each pilot would feel at the controls of a conventional, mechanically linked system. In other embodiments, the linking function 645 can link the force signals Fa, Fb in other manners, as described below with reference to FIG. 13.
  • Once the force signals Fa, Fb have been linked, they can be further operated on by the [0034] control function 540 to produce the corresponding position demand signals Da, Db. For example, the control function 540 can include dynamic response models 641 a, 641 b that operate in a manner generally similar to the dynamic response model 141 (FIG. 1) to generate the corresponding position demand signals Da, Db. Accordingly, the response models 641 a, 641 b can include corresponding friction models 642 a, 642 b and feel profiles 643 a, 643 b, respectively. In other embodiments, the control function 540 can include other dynamic response models 641.
  • In yet another aspect of this embodiment, the linking [0035] function 645 can perform functions in addition to linking the forces F provided by the first and second pilots. For example, the linking function 645 can include a limiter 647. In one embodiment, the limiter 647 can automatically reduce the effect each pilot has on the other when the pilots provide large, opposite inputs. In one aspect of this embodiment (as indicated schematically by the graph of FIG. 6), the limiter 647 can provide an output force that (1) equals the input force when the input force is within a limit range, and (2) remains constant when the input force is outside the limit range. For example, if the limit range is set at ±10, then any pilot force in a positive direction beyond +10 will register as a force of +10, and any pilot force in a negative direction beyond −10 will register as a force of −10. If the first pilot inputs a force of +10 and the second pilot inputs a force of −10, the net resultant force along both signal paths 658 a and 658 b will be zero and Da and Db will both be zero (i.e., neither controller will move). If the pilots increase the input force to +15 and −15, respectively, then the resultant force along signal path 658 a will be +10 and the resultant force along signal path 658 b will be −10. Accordingly, the first pilot's controller will move in a positive direction and the second pilot's controller will move in a negative direction, and each pilot will no longer feel the increasing force applied by the other. Each pilots' gain appears to double, however (e.g., 1 lb above the limit range has the effect of 2 lbs below the limit range). The supervisory computer 530 (FIG. 5) can then determine what signal is sent to the controlled device 510. The foregoing arrangement will also provide relief for one pilot if the other pilot's controller jams. In other embodiments, the output value of the force that is outside the limit range can be discounted in manners other than making it constant.
  • In a further aspect of this embodiment, the linking [0036] function 645 can more accurately simulate the situation that arises when one of the pilots has exceeded a breakout force before the other. The breakout force refers to the minimum or threshold force necessary to be applied to the controller 520 a, 520 b (FIG. 5) before the control function 540 directs a change in the corresponding controller position demand signal Da, Db. When this situation arises in a mechanically linked system, and the first pilot has already applied to the first controller 520 a a force at least equal the breakout force, the second pilot need not exceed the breakout force when he or she seizes the second controller 520 b. The linking function 645 can simulate this response by determining whether one of the pilots has exceeded the breakout force and, if so, the position of the controllers 520 a, 520 b for both the first and second pilots is independent of whether or not the second pilot has also exceeded the breakout force. For example, if the breakout force is 5 and the first pilot applies a force of 10 while the second pilot applied a force of 2, both controller position demand signals Da and Db will correspond to an input force of 12, even through only one pilot has exceeded the breakout force.
  • FIG. 7 is a schematic illustration of the [0037] control function 540 described above with reference to FIGS. 5 and 6, showing additional features in accordance with further aspects of this embodiment. For example, the control function 540 can include force normalizers 748 a, 748 b that account for different response characteristics for the first and second controllers, such as different response characteristics for sticks located on the left and right side of an aircraft. The control function 540 can also include left and right faders 749 a, 749 b that smooth the transition from linked to unlinked controls and back again.
  • In one aspect of this embodiment, the [0038] supervisory computer 530 can coordinate and integrate the actions and responses of the control function 540. For example, the supervisory computer 530 can provide the appropriate inputs to the force normalizers 748. The supervisory computer 530 can control the faders 749 to guide the phase-in and phase-out of the link between the two controls. The supervisory computer 530 can also receive takeover input signals 754 a, 754 b which provide for either pilot taking over the controls of the system upon activating the appropriate takeover push button. In another aspect of this embodiment, the supervisory computer 530 can also consolidate the first and second controller position demand signals Da, Db to provide a controlled device signal 751 that is directed to the controlled device 510 (FIG. 5.) When the controlled device 510 includes an aircraft, the controlled device signal 751 can be directed to a control surface servo actuator or other active device.
  • One feature of an embodiment of the [0039] system 500 described above with reference to FIGS. 5-7 is that the linking function 645 can more closely match the characteristics of conventional mechanical systems than can existing arrangements. For example, the behavior of an embodiment of the system 500 can more closely match the behavior of a mechanical system when one controller is jammed, when one controller has not yet exceeded a breakout force, and/or when the controllers receive large, oppositely directed inputs. An advantage of this feature is that pilots or other operators who are familiar with the characteristics of mechanical systems may find more commonality between those systems and systems configured in accordance with embodiments of the present invention.
  • Another feature of an embodiment of the [0040] system 500 described above with reference to FIGS. 5-7 is that the signals generated by each controller are linked prior to calculating the target position of each controller. An advantage of this arrangement is that the linking function can be installed, implemented, updated, changed and/or otherwise manipulated without disturbing the function or module that determines the controller position based on input force. This is unlike existing systems (such as those described above with reference to FIGS. 3 and 4) for which the link between first and second controllers is integrated with the calculation of controller position.
  • FIGS. [0041] 8-12 are block diagrams illustrating processes or methods that can be performed with the control function 540 described above with reference to FIGS. 5-7 in accordance with various embodiments of the invention. Referring first to FIG. 8, a process 800 in accordance with one embodiment can include linking force signals to move the first and second controllers and to direct a combined control signal to the controlled device. For example, the method 800 can include receiving a first force signal corresponding directly to a first force applied to the first controller (process portion 801). The process can further include receiving a second force signal corresponding directly to a second force applied to the second controller (process portion 802), then linking the first force signal and the second force signal (process portion 803). After linking the first and second force signals, the process 800 can further include directing the first position demand signal to the first controller (for example, via a servo motor of the first controller) to move the first controller to a first controller position displaced from a first neutral position by a first distance (process portion 804). The process 800 can further include directing a second position demand signal to the second controller to move the second controller to a second controller position displaced from a second neutral position by a second distance at least approximately equal to the first distance (process portion 805). Accordingly, both the first and second controllers are moved approximately the same distance from their neutral positions. The process can still further include directing a control signal to a controlled device based on at least one of the first and second force signals (process portion 806).
  • In one aspect of an embodiment described above with reference to FIG. 8, the linked signals correspond identically to the first and second force signals. In other embodiments, the linked signals can have values that correspond directly to the first and second force signals in other manners. For example, the linked signals may be directly proportional to and/or linearly related to the first and second force signals. In either embodiment, the signals are linked prior to determining the corresponding controller positions. For example, as shown in FIG. 6, the signals are linked after determining whether corresponding force limits have been exceeded. In other embodiments, the link between the two signal paths can occur at other points along the paths, so long as the link occurs prior to determining the controller position demand. For example, as shown in FIG. 9, a [0042] process 900 can include receiving a first force signal corresponding to a first force applied to the first controller (process portion 901) and receiving a second force signal corresponding to a second force applied to the second controller (process portion 902). The process 900 can further include directing a first position demand signal to the first controller to move the first controller from the first neutral position to the first controller position, with the first force signal and the first position demand signal defining a first signal path (process portion 903). A second position demand signal is directed to the second controller to move the second controller from the second neutral position to the second controller position, with the second force signal and the second position demand signal defining a second signal path (process portion 904). A control signal is then directed to the controlled device based on at least one of the first and second force signals (process portion 905), and the first and second signal paths are linked at a point where the signals on the first and second signal paths correspond to a quantity other than a position of one of the controllers (process portion 906).
  • In another embodiment, shown in a block diagram in FIG. 10, a [0043] process 1000 can include accounting for one of the force inputs exceeding a breakout force while another input force does not. For example, the process 1000 can include receiving a first force signal corresponding to a first force applied to the first controller (process portion 1001), and receiving a second force signal corresponding to a second force applied to the second controller (process portion 1002). A determination is made as to whether the first force signal meets or exceeds a threshold value (process portion 1003). If it does, then a first position demand signal is directed to the first controller to move the first controller from its neutral position to its first controller position (process portion 1004). A second position signal is directed to the second controller to move the second controller by about the same distance (process portion 1005). In process portion 1006, a control signal is directed to the controlled device based on at least one of the first and second force signals and is independent of whether or not the second force signal meets or exceeds the threshold value.
  • FIG. 11 is a block diagram illustrating a [0044] process 1100 for linking first and second force signals in accordance with another embodiment of the invention. In process portion 1101, a first value corresponding to the first force and a second value corresponding to the second force are obtained. In process portion 1102, the difference between the first value and the second value are determined. In process portion 1103, one-half the difference between the first value and the second value are subtracted from the first value and the resultant is multiplied by two (process portion 1104). In process portion 1105, a signal corresponding to a combination of the first and second force signals is directed.
  • FIG. 12 is a block diagram illustrating a [0045] process 1200 that can account for large opposite input forces, controller jams and/or other instances in which one controller input is defective or is to be ignored. In process portion 1201 a first force signal corresponding to a first force applied to a first controller is received, and in process portion 1202, a second force signal corresponding to a second force applied to a second controller is received. In process portion 1203, a determination is made as to whether at least one of the first force signal and the second force signal is outside a limit range. If not, then in process portion 1204, a first signal corresponding to a combination of the first and second force signals is directed. If so, a second signal that at least partially discounts at least one of the first and second force signals is directed (process portion 1205).
  • FIG. 13 is a partially schematic illustration of a [0046] system 1340 that receives first and second pilot force input signals Fa and Fb and outputs first and second controller position demands Da and Db in accordance with another embodiment of the invention. In one aspect of this embodiment, the system 1340 includes a linking function 1345 that has two limit models 1347 a and 1347 b. The limit models 1347 a and 1347 b are coupled in the linking function 1345 such that each pilot feels the sum of the two input forces before the override limit is reached, and each pilot does not feel an effect of the other pilot's increasing input force after the limit is reached. For example, if the pilot's input forces are +15 and −15, respectively, and the limit range is +10, then the first pilot will generate a net force signal of +5 and the second pilot will generate a net force signal of −5.
  • From the foregoing, it will be appreciated that specific embodiments of the invention have been described herein for purposes of illustration, but that various modifications may be made without deviating from the spirit and scope of the invention. For example, steps or processes performed by particular modules on particular computers in some embodiments may be performed by other modules and/or other computers in other embodiments. Control modules may operate from the same system (as shown in FIG. 5) or different control systems. Functions provided by the [0047] controller computer 535 and the supervisory computer 530 may be combined in a single computer. Accordingly, the invention is not limited except as by the appended claims.

Claims (96)

We claim:
1. A computer-implemented method for linking input control signals, comprising:
receiving a first force signal corresponding directly to a first force applied to a first controller;
receiving a second force signal corresponding directly to a second force applied to the second controller;
linking the first force signal and the second force signal;
after linking the first and second force signals, directing a first position demand signal to a first servo motor to move the first controller to a first controller position, and directing a second position demand signal to a second controller to move the second controller to a second servo motor position, the first controller having a first neutral position, the first controller position being displaced from the first neutral position by a first distance, the second controller having a second neutral position, the second controller position being displaced from the second neutral position by a second distance at least approximately equal to the first distance; and
directing a control signal to a controlled device based on at least one of the first and second force signals.
2. The method of claim 1 wherein linking the first and second signal paths includes linking the first and second signal paths at a point where a first signal on the first signal path corresponds linearly to the first force and a second signal on the second signal path corresponds linearly to the second force.
3. The method of claim 1, wherein directing the control signal includes directing the control signal to an actuator operatively coupled to an aircraft flight control surface.
4. The method of claim 1, further comprising combining a first value corresponding at least in part to the first force and a second value corresponding at least in part to the second force, and wherein directing a control signal includes directing a control signal based on a combination of the first value and the second value.
5. The method of claim 1, further comprising summing a first value corresponding at least in part to the first force and a second value corresponding at least in part to the second force, and wherein directing a control signal includes directing a control signal based on a sum of the first and second values.
6. The method of claim 1, further comprising combining a first value corresponding to the first force and a second value corresponding to the second force by:
determining a difference between the first value and the second value; and
subtracting half the difference from the first value and multiplying the resultant by two.
7. The method of claim 1, further comprising combining a first value corresponding to the first force and a second value corresponding to the second force by:
determining a difference between the first value and the second value; and
adding half the difference to the second value and multiplying the resultant by two.
8. The method of claim 1, further comprising:
determining whether at least one of the first force and the second force is outside a selected limit range; and
if the at least one force is outside the selected limit range, directing the control signal with the at least one force at least partially discounted.
9. The method of claim 1, further comprising directing the control signal to a controllable device of an aircraft.
10. The method of claim 1, further comprising directing the control signal to an actuator operatively coupled to at least one of an aircraft pitch control surface, an aircraft yaw control surface and an aircraft roll control surface.
11. The method of claim 1 wherein the first controller includes a control stick operatively coupled to a transducer and a motor, further wherein receiving the first force signal includes receiving the first force signal from the transducer, and wherein directing the first position signal includes directing the first position signal to the motor.
12. A computer-implemented method for linking input control signals, comprising:
receiving a first force signal corresponding to a first force applied to a first controller,
receiving a second force signal corresponding to a second force applied to a second controller;
directing a first position demand signal to the first controller to move the first controller to a first controller position, the first controller having a first neutral position, the first controller position being displaced from the first neutral position by a first distance, the first force signal and the first position demand signal being transmitted along a first signal path;
directing a second position signal to the second controller to move the second controller to a second controller position, the second controller having a second neutral position, the second controller position being displaced from the second neutral position by a second distance at least approximately equal to the first distance, the second force signal and the second position demand signal being transmitted along a second signal path;
directing a control signal to a controlled device based on at least one of the first and second force signals; and
linking the first and second signal paths at a point where signals on the first and second signal paths correspond to a quantity other than a position of a controller.
13. The method of claim 12 wherein linking the first and second signal paths includes linking the first and second signal paths at a point where a first signal on the first signal path corresponds linearly to the first force and a second signal on the second signal path corresponds linearly to the second force.
14. The method of claim 12, wherein directing the control signal includes directing the control signal to an actuator operatively coupled to an aircraft flight control surface.
15. The method of claim 12, further comprising combining a first value corresponding at least in part to the first force and a second value corresponding at least in part to the second force, and wherein directing a control signal includes directing a control signal based on a combination of the first value and the second value.
16. The method of claim 12, further comprising summing a first value corresponding at least in part to the first force and a second value corresponding at least in part to the second force, and wherein directing a control signal includes directing a control signal based on a sum of the first and second values.
17. The method of claim 12, further comprising combining a first value corresponding to the first force and a second value corresponding to the second force by:
determining a difference between the first value and the second value; and
subtracting half the difference from the first value and multiplying the resultant by two.
18. The method of claim 12, further comprising combining a first value corresponding to the first force and a second value corresponding to the second force by:
determining a difference between the first value and the second value; and
adding half the difference to the second value and multiplying the resultant by two.
19. The method of claim 12, further comprising:
determining whether at least one of the first force and the second force is outside a selected limit range; and
if the at least one force is outside the selected limit range, directing the control signal with the at least one force at least partially discounted.
20. The method of claim 12, further comprising directing the control signal to a controllable device of an aircraft.
21. The method of claim 12, further comprising directing the control signal to an actuator operatively coupled to at least one of an aircraft pitch control surface, an aircraft yaw control surface and an aircraft roll control surface.
22. The method of claim 12 wherein the first controller includes a control stick operatively coupled to a transducer and a motor, further wherein receiving the first force signal includes receiving the first force signal from the transducer, and wherein directing the first position demand signal includes directing the first position demand signal to the motor.
23. A computer-implemented method for linking input control signals, comprising:
receiving a first force signal corresponding to a first force applied to a first controller;
receiving a second force signal corresponding to a second force applied to a second controller;
if the first force signal meets or exceeds a threshold value, directing a first position demand signal to the first controller to move the first controller to a first controller position, and directing a second position demand signal to the second controller to move the second controller to a second controller position independent of whether or not the second force signal meets or exceeds the threshold value, the first controller having a first neutral position, the first controller position being displaced from the first neutral position by a first distance, the second controller having a second neutral position, the second controller position being displaced from the second neutral position by a second distance at least approximately equal to the first distance; and
directing a control signal based on at least one of the first and second force signals.
24. The method of claim 23, wherein directing the control signal includes directing the control signal to an actuator operatively coupled to an aircraft flight control surface.
25. The method of claim 23, further comprising combining a first value corresponding at least in part to the first force and a second value corresponding at least in part to the second force, and wherein directing a control signal includes directing a control signal based on a combination of the first value and the second value.
26. The method of claim 23, further comprising summing a first value corresponding at least in part to the first force and a second value corresponding at least in part to the second force, and wherein directing a control signal includes directing a control signal based on a sum of the first and second values.
27. The method of claim 23, further comprising combining a first value corresponding to the first force and a second value corresponding to the second force by:
determining a difference between the first value and the second value; and
subtracting half the difference from the first value and multiplying the resultant by two.
28. The method of claim 23, further comprising combining a first value corresponding to the first force and a second value corresponding to the second force by:
determining a difference between the first value and the second value; and
adding half the difference to the second value and multiplying the resultant by two.
29. The method of claim 23, further comprising:
determining whether at least one of the first force and the second force is outside a selected limit range; and
if the at least one force is outside the selected limit range, directing the control signal with the at least one force at least partially discounted.
30. The method of claim 23, further comprising directing the control signal to a controllable device of an aircraft.
31. The method of claim 23, further comprising directing the control signal to an actuator operatively coupled to at least one of an aircraft pitch control surface, an aircraft yaw control surface and an aircraft roll control surface.
32. The method of claim 23 wherein the first controller includes a control stick operatively coupled to a transducer and a motor, further wherein receiving the first force signal includes receiving the first force signal from the transducer, and wherein directing the first position demand signal includes directing the first position demand signal to the motor.
33. The method of claim 23, further comprising determining at least one of the first force and the second force exceeds a selected limit value.
34. The method of claim 23, further comprising temporally varying a degree to which the at least one force signal contributes to the control signal.
35. The method of claim 23 wherein receiving the first force signal includes receiving the first force signal from a transducer operatively coupled to a movable aircraft control stick.
36. A computer-implemented method for linking signals from a first aircraft controller having a first neutral position and a second aircraft controller having a second neutral position, the method comprising:
receiving a first force signal corresponding to a first force applied to the first aircraft controller;
receiving a second force signal corresponding to a second force applied to a second aircraft controller;
if the first force signal meets or exceeds a threshold value, directing a first position demand signal to the first aircraft controller to move the first aircraft controller to a first controller position and directing a second position demand signal to the second aircraft controller to move the second aircraft controller to a second controller position independent of whether or not the second force signal exceeds the threshold value, the first controller position being displaced from the first neutral position by a first distance, the second controller position being displaced from the second neutral position by a second distance at least approximately equal to the first distance; and
directing a control signal operatively coupled to a flight control surface based on at least one of the first and second force signals.
37. The method of claim 36, further comprising combining a first value corresponding at least in part to the first force and a second value corresponding at least in part to the second force, and wherein directing a control signal includes directing a control signal based on a combination of the first value and the second value.
38. The method of claim 36, further comprising summing a first value corresponding at least in part to the first force and a second value corresponding at least in part to the second force, and wherein directing a control signal includes directing a control signal based on a sum of the first and second values.
39. The method of claim 36, further comprising combining a first value corresponding to the first force and a second value corresponding to the second force by:
determining a difference between the first value and the second value; and
subtracting half the difference from the first value and multiplying the resultant by two.
40. The method of claim 36, further comprising combining a first value corresponding to the first force and a second value corresponding to the second force by:
determining a difference between the first value and the second value; and
adding half the difference to the second value and multiplying the resultant by two.
41. The method of claim 36, further comprising determining whether at least one of the first force and the second force is outside a selected limit range.
42. The method of claim 36, further comprising:
determining whether at least one of the first force and the second force is outside a selected limit range; and
if the at least one force is outside the selected limit range, directing the control signal on the basis of an at least partially discounted value of the at least one force.
43. The method of claim 36, further comprising directing the control signal to an actuator operatively coupled to at least one of an aircraft pitch control surface, an aircraft yaw control surface and an aircraft roll control surface.
44. The method of claim 36 wherein the first controller includes a control stick operatively coupled to a transducer and a motor, further wherein receiving the first force signal includes receiving the first force signal from the transducer, and wherein directing the first motion signal includes directing the first motion signal to the motor.
45. A computer-implemented method for linking input control signals, comprising:
receiving a first force signal corresponding to a first force applied to a first controller;
receiving a second force signal corresponding to a second force applied to a second controller,
if the first force signal is within a selected limit range, directing a first control signal corresponding to a combination of the first and second force signals; and
if the first force signal is outside the selected limit range, directing a second control signal that at least partially discounts the first force signal.
46. The method of claim 45, further comprising if the first force signal meets or exceeds a threshold value, directing a first position demand signal to the first controller to move the first controller to a first controller position, and directing a second position demand signal to the second controller to move the second controller to a second controller position independent of whether or not the second force signal meets or exceeds the threshold value, the first controller having a first neutral position, the first controller position being displaced from the first neutral position by a first distance, the second controller having a second neutral position, the second controller position being displaced from the second neutral position by a second distance at least approximately equal to the first distance.
47. The method of claim 45 wherein the first and second force signals indicate forces in at least approximately the same direction, and wherein directing the second control signal includes basing the second control signal on a constant value for the first force signal.
48. The method of claim 45 wherein directing the first and second control signals includes directing the control signals to an actuator operatively coupled to an aircraft flight control surface.
49. The method of claim 45, further comprising combining a first value corresponding at least in part to the first force and a second value corresponding at least in part to the second force, and wherein directing the first control signal includes directing a control signal based on a combination of the first and second values.
50. The method of claim 45, further comprising summing a first value corresponding at least in part to the first force and a second value corresponding at least in part to the second force.
51. The method of claim 45, further comprising combining a first value corresponding to the first force and a second value corresponding to the second force by:
determining a difference between the first value and the second value; and
subtracting half the difference from the first value and multiplying the resultant by two.
52. The method of claim 45, further comprising combining a first value corresponding to the first force and a second value corresponding to the second force by:
determining a difference between the first value and the second value; and
adding half the difference to the second value and multiplying the resultant by two.
53. The method of claim 45, further comprising directing the first control signal to a controllable device of an aircraft.
54. The method of claim 45, further comprising directing the first control signal to an actuator operatively coupled to at least one of an aircraft pitch control surface, an aircraft yaw control surface and an aircraft roll control surface.
55. The method of claim 45 wherein receiving the first force signal includes receiving the first force signal from a transducer operatively coupled to a movable aircraft control stick.
56. The method of claim 45 wherein the first controller includes a control stick operatively coupled to a transducer and a motor, further wherein receiving the first force signal includes receiving the first force signal from the transducer, and wherein directing the first and second control signals includes directing first and second position signals to the motor to move the first controller to corresponding first and second positions.
57. A computer-implemented method for linking signals from a first aircraft controller having a first neutral position and a second aircraft controller having a second neutral position, the method comprising:
receiving a first force signal corresponding to a first force applied to the first aircraft controller;
receiving a second force signal corresponding to a second force applied to the second aircraft controller,
if the first force signal is within a selected limit range, directing a first control signal to control a state of a flight control surface, the first control signal corresponding to a combination of the first and second force signals; and
if the first force signal is outside the selected limit range, directing a second control signal to control a state of a flight control surface, the second control signal at least partially discounting the first force signal.
58. The method of claim 57, further comprising:
if the first force signal meets or exceeds a threshold value, directing a first position demand signal to the first controller to move the first controller to a first controller position independent of whether or not the second force signal meets or exceeds the threshold value; and
directing a second position demand signal to the second controller to move the second controller to a second controller position, the first controller having a first neutral position, the first controller position being displaced from the first neutral position by a first distance, the second controller having a second neutral position, the second controller position being displaced from the second neutral position by a second distance at least approximately equal to the first distance.
59. The method of claim 57, further comprising combining a first value corresponding at least in part to the first force and a second value corresponding at least in part to the second force, and wherein directing the first control signal includes directing a control signal based on a combination of the first and second values.
60. The method of claim 57, further comprising summing a first value corresponding at least in part to the first force and a second value corresponding at least in part to the second force, and wherein directing the first control signal includes directing a control signal based on a sum of the first and second values.
61. The method of claim 57, further comprising combining a first value corresponding to the first force and a second value corresponding to the second force by:
determining a difference between the first value and the second value; and
subtracting half the difference from the first value and multiplying the resultant by two.
62. The method of claim 57, further comprising combining a first value corresponding to the first force and a second value corresponding to the second force by:
determining a difference between the first value and the second value; and
adding half the difference to the second value and multiplying the resultant by two.
63. The method of claim 57, further comprising normalizing the first force signal by applying a correction factor to the first force signal if the first force signal corresponds to a selected force direction.
64. The method of claim 57, further comprising directing the first control signal to an actuator operatively coupled to at least one of an aircraft pitch control surface, an aircraft yaw control surface and an aircraft roll control surface.
65. The method of claim 57 wherein receiving the first force signal includes receiving the first force signal from a transducer operatively coupled to a movable aircraft control stick.
66. The method of claim 57 wherein the first controller includes a control stick operatively coupled to a transducer and a motor, further wherein receiving the first force signal includes receiving the first force signal from the transducer, and wherein the method further comprises directing a motion signal to the motor to move the first controller to a selected position.
67. A computer-implemented method for linking signals from a first aircraft controller having a first neutral position and a second aircraft controller having a second neutral position, the method comprising:
receiving a first force signal corresponding to a first force applied to the first aircraft controller;
if the first force signal exceeds a threshold value, directing a first position demand signal to the first aircraft controller to move the first aircraft controller to a first controller position and directing a second position demand signal to a second controller to move the second aircraft controller to a second controller position, the first controller position being displaced from the first neutral position by a first distance, the second controller position being displaced from the second neutral position by a second distance at least approximately equal to the first distance;
receiving a second force signal corresponding to a second force applied to the second aircraft controller;
if the first force signal is within a selected limit rage, directing a first control signal to control a state of a flight control surface, the first control signal corresponding to a combination of the first and second force signals and being independent of whether or not the second force signal exceeds the threshold value; and
if the first force signal is outside the selected limit range, directing a second control signal to control the state of the flight control surface, the second control signal at least partially discounting the first force signal.
68. The method of claim 67, further comprising combining a first value corresponding at least in part to the first force and a second value corresponding at least in part to the second force, and wherein directing a control signal includes directing a control signal based on a combination of the first value and the second value.
69. The method of claim 67, further comprising combining a first value corresponding to the first force and a second value corresponding to the second force by:
determining a difference between the first value and the second value; and
subtracting half the difference from the first value and multiplying the resultant by two.
70. The method of claim 67, further comprising directing the control signal to an actuator operatively coupled to at least one of an aircraft pitch control surface, an aircraft yaw control surface and an aircraft roll control surface.
71. The method of claim 67 wherein the first and second force signals indicate forces in at least approximately opposite directions, and wherein at least partially discounting at least one of the first and second force signals includes setting the at least one force signal to a constant value.
72. The method of claim 67 wherein at least partially discounting at least one of the first and second force signals includes at least partially discounting both the first and second force signals.
73. A computer-readable medium the contents of which cause a computer to perform a method for linking signals from a first aircraft controller having a first neutral position and a second aircraft controller having a second neutral position, the method comprising:
receiving a first force signal corresponding to a first force applied to the first aircraft controller;
if the first force signal exceeds a threshold value, directing a first position demand signal to the first aircraft controller to move the first aircraft controller to a first controller position and directing a second position demand signal to a second aircraft controller to move the second aircraft controller to a second controller position independent of whether or not the second force signal exceeds the threshold value, the first controller position being displaced from the first neutral position by a first distance, the second controller position being displaced from the second neutral position by a second distance at least approximately equal to the first distance;
receiving a second force signal corresponding to a second force applied to the second aircraft controller; and
directing a control signal operatively coupled to a flight control surface based on at least one of the first and second force signals.
74. The computer-readable medium of claim 73 wherein the method further comprises combining a first value corresponding at least in part to the first force and a second value corresponding at least in part to the second force, and wherein directing a control signal includes directing a control signal based on a combination of the first value and the second value.
75. The computer-readable medium of claim 73 wherein the method further comprises combining a first value corresponding to the first force and a second value corresponding to the second force by:
determining a difference between the first value and the second value; and
subtracting half the difference from the first value and multiplying the resultant by two.
76. The computer-readable medium of claim 73 wherein the method further comprises:
determining whether at least one of the first force and the second force is outside a selected limit range; and
if the at least one force is outside the selected limit range, directing the control signal on the basis of an at least partially discounted value for the at least one force signal.
77. The computer-readable medium of claim 73 wherein the method further comprises directing the control signal to an actuator operatively coupled to at least one of an aircraft pitch control surface, an aircraft yaw control surface and an aircraft roll control surface.
78. The computer-readable medium of claim 73 wherein the first controller includes a control stick operatively coupled to a transducer and a motor, further wherein receiving the first force signal includes receiving the first force signal from the transducer, and wherein directing the first motion signal includes directing the first motion signal to the motor.
79. A computer-readable medium the contents of which cause a computer to perform a method for linking signals from a first aircraft controller having a first neutral position and a second aircraft controller having a second neutral position, the method comprising:
receiving a first force signal corresponding to a first force applied to the first aircraft controller;
receiving a second force signal corresponding to a second force applied to the second aircraft controller;
if the first force signal exceeds a threshold value, directing a first position demand signal to the first aircraft controller to move the first aircraft controller to a first controller position and directing a second position demand signal to a second controller to move the second aircraft controller to a second controller position, the first controller position being displaced from the first neutral position by a first distance, the second controller position being displaced from the second neutral position by a second distance at least approximately equal to the first distance;
if the first force signal is within a selected limit range, directing a control signal to control a state of a flight control surface, the first control signal corresponding to a combination of the first and second force signals and being independent of whether or not the second force signal exceeds the threshold value; and
if the first force signal is outside the selected limit range, directing a second control signal to control the state of the flight control surface, the second control signal at least partially discounting the first force signal.
80. The computer-readable medium of claim 79, wherein the method comprises:
if the first force signal meets or exceeds a threshold value, directing a first position demand signal to the first controller to move the first controller to a first controller position, and directing a second position demand signal to the second controller to move the second controller to a second controller position, the first controller having a first neutral position, the first controller position being displaced from the first neutral position by a first distance, the second controller having a second neutral position, the second controller position being displaced from the second neutral position by a second distance at least approximately equal to the first distance; and
directing the first control signal independent of whether or not the second force signal meets or exceeds the threshold value.
81. The computer-readable medium of claim 79 wherein the first and second force signals indicate forces in at least approximately the same direction, and wherein at least partially discounting at least one of the first and second force signals includes selecting the at least one force to have a constant value.
82. The computer-readable medium of claim 79 wherein the first and second force signals indicate forces in at least approximately opposite directions, and wherein at least partially discounting at least one of the first and second force signals includes selecting the at least one force to have a constant value.
83. The computer-readable medium of claim 79 wherein at least partially discounting at least one of the first and second force signals includes at least partially discounting both the first and second force signals.
84. The computer-readable medium of claim 79, wherein the method further comprises combining a first value corresponding at least in part to the first force and a second value corresponding at least in part to the second force, and wherein directing the first control signal includes directing a control signal based on a combination of the first and second values.
85. The computer-readable medium of claim 79, wherein the method further comprises directing the first control signal to an actuator operatively coupled to at least one of an aircraft pitch control surface, an aircraft yaw control surface and an aircraft roll control surface.
86. The computer-readable medium of claim 79 wherein receiving the first force signal includes receiving the first force signal from a transducer operatively coupled to a movable aircraft control stick.
87. The computer-readable medium of claim 79 wherein the first controller includes a control stick operatively coupled to a transducer and a motor, further wherein receiving the first force signal includes receiving the first force signal from the transducer, and wherein the method further comprises directing a motion signal to the motor to move the first controller to a selected position.
88. A system for controlling an aircraft flight control surface, comprising:
a first aircraft controller having a first input device configured to receive a first operator's input command, the first input device being coupled to a first sensor to sense a force applied to the first input device, the first input device being coupled to a first motor to move the first input device from a first neutral position;
a second aircraft controller having a second input device configured to receive a second operator's input command, the second input device being coupled to a second sensor to sense a force applied to the second input device, the second input device being coupled to a second motor to move the second input device from a second neutral position; and
a computer-readable medium operatively coupled to the first and second aircraft controllers, the computer-readable medium being configured to:
receive a first force signal corresponding to a first force applied to the first aircraft controller;
if the first force signal exceeds a threshold value, direct a first position signal to the first motor to move the first input device to a first input device position and direct a second signal to a second motor to move the second input device to a second input device position, the first input device position being displaced from the first neutral position by a first distance, the second input device position being displaced from the second neutral position by a second distance at least approximately equal to the first distance;
receive a second force signal corresponding to a second force applied to the second aircraft controller; and
direct a control signal operatively coupled to a flight control surface, the control signal being based on at least one of the first and second force signals and being independent of whether or not the second force signal exceeds the threshold value.
89. The system of claim 88, wherein the method further comprises combining a first value corresponding at least in part to the first force and a second value corresponding at least in part to the second force, and wherein directing a control signal includes directing a control signal based on a combination of the first value and the second value.
90. The system of claim 88, wherein the method further comprises combining a first value corresponding to the first force and a second value corresponding to the second force by:
determining a difference between the first value and the second value; and
subtracting half the difference from the first value and multiplying the resultant by two.
91. The system of claim 88, wherein the method further comprises determining whether a difference between the first force and the second force meets or exceeds a selected differential value.
92. The system of claim 88, wherein the method further comprises:
determining whether at least one of the first and second forces is outside a selected limit range; and
if the at least one force is outside the selected limit range, directing the control signal on the basis of an at least partially discounted value for the at least one force signal.
93. The method of claim 88, further comprising directing the control signal to an actuator operatively coupled to at least one of an aircraft pitch control surface, an aircraft yaw control surface and an aircraft roll control surface.
94. The method of claim 88 wherein the first controller includes a control stick operatively coupled to a transducer and a motor, further wherein receiving the first force signal includes receiving the first force signal from the transducer, and wherein directing the first motion signal includes directing the first motion signal to the motor.
95. A system for controlling an aircraft flight control surface, comprising:
a first aircraft controller having a first input device configured to receive a first operator's input command, the first input device being coupled to a first sensor to sense a force applied to the first input device, the first input device being coupled to a first motor to move the first input device from a first neutral position;
a second aircraft controller having a second input device configured to receive a second operator's input command, the second input device being coupled to a second sensor to sense a force applied to the second input device, the second input device being coupled to a second motor to move the second input device from a second neutral position; and
a computer-readable medium operatively coupled to the first and second aircraft controllers, the computer-readable medium being configured to:
receive a first force signal corresponding to a first force applied to the first aircraft controller;
receive a second force signal corresponding to a second force applied to the second aircraft controller;
if the first force signal is within a selected limit range, direct a first control signal to control a state of the aircraft flight control surface, the first control signal corresponding to a combination of the first and second force signals; and
if the first force signal is outside the selected limit range, direct a second control signal to control a state of the aircraft flight control surface, the second control signal at least partially discounting the first force signal.
96. The system of claim 95, wherein the computer-readable medium is configured to:
determine if the first force signal meets or exceeds a threshold value;
if the first force signal meets or exceeds a threshold value, direct a first position signal to the first controller to move the first controller to a first controller position, and direct a second position signal to the second controller to move the second controller to a second controller position, the first controller having a first neutral position, the first controller position being displaced from the first neutral position by a first distance, the second controller having a second neutral position, the second controller position being displaced from the second neutral position by a second distance at least approximately equal to the first distance; and
direct the first control signal independent of whether or not the second force signal meets or exceeds the threshold value.
US10/279,092 2002-10-22 2002-10-22 Control system and method with multiple linked inputs Abandoned US20040078121A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/279,092 US20040078121A1 (en) 2002-10-22 2002-10-22 Control system and method with multiple linked inputs
US11/099,684 US7474944B2 (en) 2002-10-22 2005-04-04 Control system and method with multiple linked inputs

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/279,092 US20040078121A1 (en) 2002-10-22 2002-10-22 Control system and method with multiple linked inputs

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/099,684 Continuation US7474944B2 (en) 2002-10-22 2005-04-04 Control system and method with multiple linked inputs

Publications (1)

Publication Number Publication Date
US20040078121A1 true US20040078121A1 (en) 2004-04-22

Family

ID=32093445

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/279,092 Abandoned US20040078121A1 (en) 2002-10-22 2002-10-22 Control system and method with multiple linked inputs
US11/099,684 Expired - Fee Related US7474944B2 (en) 2002-10-22 2005-04-04 Control system and method with multiple linked inputs

Family Applications After (1)

Application Number Title Priority Date Filing Date
US11/099,684 Expired - Fee Related US7474944B2 (en) 2002-10-22 2005-04-04 Control system and method with multiple linked inputs

Country Status (1)

Country Link
US (2) US20040078121A1 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050234607A1 (en) * 2002-10-22 2005-10-20 Cartmell Daniel H Control system and method with multiple linked inputs
US20070164168A1 (en) * 2006-01-17 2007-07-19 Hirvonen Jukka M System and method for an integrated backup control system
US20070164166A1 (en) * 2006-01-17 2007-07-19 Jukka Matti Hirvonen Apparatus and method for backup control in a distributed flight control system
EP2052966A2 (en) 2007-10-25 2009-04-29 Honeywell International Inc. Rate limited active pilot inceptor system and method
EP2058227A2 (en) * 2007-11-12 2009-05-13 Honeywell International Inc. Active user interface haptic feedback and linking control system using either force or position data
US20090302173A1 (en) * 2006-09-01 2009-12-10 Science Applications International Corporation Automatic flight control systems
US20090302172A1 (en) * 2008-06-04 2009-12-10 Honeywell International Inc., Input/steering mechanisms and aircraft control systems for use on aircraft
US20100127132A1 (en) * 2008-11-25 2010-05-27 Kirkland Douglas B Actuator force equalization controller
US20100131123A1 (en) * 2008-11-24 2010-05-27 Honeywell International Inc. Input/steering mechanisms and aircraft control systems
US20110251739A1 (en) * 2010-04-09 2011-10-13 Honeywell International Inc. Distributed fly-by-wire system
DE102010035822A1 (en) * 2010-08-30 2012-03-01 Liebherr-Aerospace Lindenberg Gmbh Control system for an aircraft
US20130164130A1 (en) * 2011-12-22 2013-06-27 Eads Deutschland Gmbh Stirling engine with flapping wing for an emission-free aircraft
FR2993065A1 (en) * 2012-07-09 2014-01-10 Ratier Figeac Soc DEVICE FOR CONJUGATION OF EFFORT BETWEEN CONTROL UNITS, STEERING BODY AND AIRCRAFT
US9096325B2 (en) 2013-11-18 2015-08-04 Bell Helicopter Textron Inc. Fly-by-wire engine power control system
US20150232177A1 (en) * 2014-02-19 2015-08-20 Sikorsky Aircraft Corporation Fly by wire servos with internal loop closure
US9233756B2 (en) 2003-02-15 2016-01-12 Gulfstream Aerospace Corporation System and method for aircraft cabin atmospheric composition control
CN111232188A (en) * 2018-11-29 2020-06-05 波音公司 Jam mitigation in aircraft fly-by-wire systems and related methods
US11148785B2 (en) * 2019-08-22 2021-10-19 The Boeing Company Parallel actuation control system providing dual mode operator control inputs for a compound aircraft
EP3943383A1 (en) * 2020-07-24 2022-01-26 The Boeing Company Providing continuously variable feel forces for fully-powered flight control systems
GB2620633A (en) * 2022-07-15 2024-01-17 Bae Systems Plc An electronic unit for a tactile cueing apparatus

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8155941B2 (en) * 2006-09-29 2012-04-10 Fujitsu Ten Limited Simulation apparatus, simulation system, and simulation method
US7750593B2 (en) * 2006-10-26 2010-07-06 Honeywell International Inc. Active human-machine interface system without a force sensor
FR2949219B1 (en) * 2009-08-21 2011-09-16 Ratier Figeac Soc DEVICE FOR CONTROLLING A VEHICLE AND METHOD FOR MOTORIZED ASSISTANCE AND FOR CONTROLLING SUCH A STEERING DEVICE
EP2296064B1 (en) * 2009-09-10 2019-04-24 Sikorsky Aircraft Corporation Life improving flight control system
FR2952447B1 (en) * 2009-11-06 2012-08-17 Ratier Figeac Soc ELECTRONIC CONTROL DEVICE FOR OPERATING A CRUISE MONITORING DRIVER, STEERING DEVICE AND AIRCRAFT
US8534599B2 (en) 2011-03-31 2013-09-17 Hamilton Sundstrand Corporation Redundant two stage electro-hydraulic servo actuator control

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3748749A (en) * 1971-12-30 1973-07-31 Lear Siegler Inc Electrically synchronized controllers
US4382281A (en) * 1980-08-08 1983-05-03 United Technologies Corporation Helicopter force feel actuator automatic static null compensation
US5076517A (en) * 1989-08-14 1991-12-31 United Technologies Corporation Programmable, linear collective control system for a helicopter
US5291113A (en) * 1992-10-06 1994-03-01 Honeywell Inc. Servo coupled hand controllers
US6459228B1 (en) * 2001-03-22 2002-10-01 Mpc Products Corporation Dual input servo coupled control sticks

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3719336A (en) * 1971-05-20 1973-03-06 United Aircraft Corp Fault detector for helicopter feel augmentation system
US3733039A (en) * 1971-05-20 1973-05-15 United Aircraft Corp Feel augmentation control system for helicopters
US3991486A (en) * 1975-11-07 1976-11-16 The United States Of America As Represented By The Secretary Of The Navy Aircraft landing signal officer trainer
US4067517A (en) * 1976-02-03 1978-01-10 United Technologies Corporation Automatic heading synchronization control system
US4484283A (en) * 1981-03-30 1984-11-20 United Technologies Corporation Aircraft roll-yaw fault protocols
US4507737A (en) * 1981-10-20 1985-03-26 Lear Siegler, Inc. Heading reference and land navigation system
US4825375A (en) * 1985-12-23 1989-04-25 Boeing Company Apparatus and methods for apportioning commands between aircraft flight control surfaces
US5123610A (en) * 1989-07-21 1992-06-23 Hughes Aircraft Company Retrofit digital electronics unit for a tube-launched missile
US6359601B1 (en) * 1993-09-14 2002-03-19 Francis J. Maguire, Jr. Method and apparatus for eye tracking
US5522568A (en) * 1993-11-09 1996-06-04 Deka Products Limited Partnership Position stick with automatic trim control
US5806805A (en) * 1996-08-07 1998-09-15 The Boeing Company Fault tolerant actuation system for flight control actuators
US5820071A (en) * 1996-09-05 1998-10-13 Mcdonnell Douglas Helicopter Company Mechanical coupler/decoupler
US6711476B2 (en) * 2001-09-27 2004-03-23 The Boeing Company Method and computer program product for estimating at least one state of a dynamic system
US20040078121A1 (en) * 2002-10-22 2004-04-22 Cartmell Daniel H. Control system and method with multiple linked inputs
US6981409B2 (en) * 2003-08-01 2006-01-03 The Boeing Company Control surface controller force measurement system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3748749A (en) * 1971-12-30 1973-07-31 Lear Siegler Inc Electrically synchronized controllers
US4382281A (en) * 1980-08-08 1983-05-03 United Technologies Corporation Helicopter force feel actuator automatic static null compensation
US5076517A (en) * 1989-08-14 1991-12-31 United Technologies Corporation Programmable, linear collective control system for a helicopter
US5291113A (en) * 1992-10-06 1994-03-01 Honeywell Inc. Servo coupled hand controllers
US6459228B1 (en) * 2001-03-22 2002-10-01 Mpc Products Corporation Dual input servo coupled control sticks

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7474944B2 (en) * 2002-10-22 2009-01-06 The Boeing Company Control system and method with multiple linked inputs
US20050234607A1 (en) * 2002-10-22 2005-10-20 Cartmell Daniel H Control system and method with multiple linked inputs
US9233756B2 (en) 2003-02-15 2016-01-12 Gulfstream Aerospace Corporation System and method for aircraft cabin atmospheric composition control
US8104720B2 (en) 2006-01-17 2012-01-31 Gulfstream Aerospace Corporation System and method for an integrated backup control system
US20070164166A1 (en) * 2006-01-17 2007-07-19 Jukka Matti Hirvonen Apparatus and method for backup control in a distributed flight control system
US8235328B2 (en) 2006-01-17 2012-08-07 Gulfstream Aerospace Corporation Apparatus and method for backup control in a distributed flight control system
US20070164168A1 (en) * 2006-01-17 2007-07-19 Hirvonen Jukka M System and method for an integrated backup control system
US20110190965A1 (en) * 2006-01-17 2011-08-04 Gulfstream Aerospace Corporation System and Method for an Integrated Backup Control System
US7984878B2 (en) 2006-01-17 2011-07-26 Gulfstream Aerospace Corporation Apparatus and method for backup control in a distributed flight control system
US7878461B2 (en) 2006-01-17 2011-02-01 Gulfstream Aerospace Corporation System and method for an integrated backup control system
US20090302173A1 (en) * 2006-09-01 2009-12-10 Science Applications International Corporation Automatic flight control systems
EP2052966A2 (en) 2007-10-25 2009-04-29 Honeywell International Inc. Rate limited active pilot inceptor system and method
EP2052966A3 (en) * 2007-10-25 2010-02-10 Honeywell International Inc. Rate limited active pilot inceptor system and method
US8002220B2 (en) 2007-10-25 2011-08-23 Honeywell International Inc. Rate limited active pilot inceptor system and method
US20090302171A1 (en) * 2007-10-25 2009-12-10 Honeywell International, Inc. Rate limited active pilot inceptor system and method
EP2058227A3 (en) * 2007-11-12 2012-12-26 Honeywell International Inc. Active user interface haptic feedback and linking control system using either force or position data
EP2058227A2 (en) * 2007-11-12 2009-05-13 Honeywell International Inc. Active user interface haptic feedback and linking control system using either force or position data
US20090302172A1 (en) * 2008-06-04 2009-12-10 Honeywell International Inc., Input/steering mechanisms and aircraft control systems for use on aircraft
US8083186B2 (en) * 2008-06-04 2011-12-27 Honeywell International Inc. Input/steering mechanisms and aircraft control systems for use on aircraft
US20100131123A1 (en) * 2008-11-24 2010-05-27 Honeywell International Inc. Input/steering mechanisms and aircraft control systems
US8474752B2 (en) 2008-11-25 2013-07-02 The Boeing Company Actuator force equalization controller
US20100127132A1 (en) * 2008-11-25 2010-05-27 Kirkland Douglas B Actuator force equalization controller
US8245967B2 (en) * 2008-11-25 2012-08-21 The Boeing Company Actuator force equalization controller
US20110251739A1 (en) * 2010-04-09 2011-10-13 Honeywell International Inc. Distributed fly-by-wire system
US20120056039A1 (en) * 2010-08-30 2012-03-08 Liebherr-Aerospace Lindenberg Gmbh Control system for an aircraft
DE102010035822A1 (en) * 2010-08-30 2012-03-01 Liebherr-Aerospace Lindenberg Gmbh Control system for an aircraft
US9080450B2 (en) * 2011-12-22 2015-07-14 Airbus Defence and Space GmbH Stirling engine with flapping wing for an emission-free aircraft
US20130164130A1 (en) * 2011-12-22 2013-06-27 Eads Deutschland Gmbh Stirling engine with flapping wing for an emission-free aircraft
US9469393B2 (en) * 2012-07-09 2016-10-18 Ratier Figeac Device for combining force among control units, control unit and aircraft
WO2014009639A3 (en) * 2012-07-09 2014-03-27 Ratier Figeac Device for combining force among control units, control unit and aircraft
CN104640769A (en) * 2012-07-09 2015-05-20 拉蒂埃-菲雅克公司 Device for combining force among control units, control unit and aircraft
US20150191241A1 (en) * 2012-07-09 2015-07-09 Ratier Figeac Device for combining force among control units, control unit and aircraft
FR2993065A1 (en) * 2012-07-09 2014-01-10 Ratier Figeac Soc DEVICE FOR CONJUGATION OF EFFORT BETWEEN CONTROL UNITS, STEERING BODY AND AIRCRAFT
US9096325B2 (en) 2013-11-18 2015-08-04 Bell Helicopter Textron Inc. Fly-by-wire engine power control system
US20150232177A1 (en) * 2014-02-19 2015-08-20 Sikorsky Aircraft Corporation Fly by wire servos with internal loop closure
US20150360771A1 (en) * 2014-02-19 2015-12-17 Sikorsky Aircraft Corporation Fly by wire servos with internal loop closure
US9452824B2 (en) * 2014-02-19 2016-09-27 Sikorsky Aircraft Corporation Fly by wire servos with internal loop closure
US9193455B2 (en) * 2014-02-19 2015-11-24 Sikorsky Aircraft Corporation Fly by wire servos with internal loop closure
CN111232188A (en) * 2018-11-29 2020-06-05 波音公司 Jam mitigation in aircraft fly-by-wire systems and related methods
US11148785B2 (en) * 2019-08-22 2021-10-19 The Boeing Company Parallel actuation control system providing dual mode operator control inputs for a compound aircraft
EP3943383A1 (en) * 2020-07-24 2022-01-26 The Boeing Company Providing continuously variable feel forces for fully-powered flight control systems
US11649040B2 (en) 2020-07-24 2023-05-16 Tlie Boeing Company Providing continuously variable feel forces for fully-powered flight control systems
GB2620633A (en) * 2022-07-15 2024-01-17 Bae Systems Plc An electronic unit for a tactile cueing apparatus

Also Published As

Publication number Publication date
US20050234607A1 (en) 2005-10-20
US7474944B2 (en) 2009-01-06

Similar Documents

Publication Publication Date Title
US7474944B2 (en) Control system and method with multiple linked inputs
US4236325A (en) Simulator control loading inertia compensator
US20050080495A1 (en) Apparatus and method for controlling a force-activated controller
US5489830A (en) Control system with loadfeel and backdrive
US11084571B2 (en) Motion control system for foot-actuated flight controller
US8401716B2 (en) Flight control systems
US9340278B2 (en) Flight control system
US8725321B2 (en) Flight control system
US20120053762A1 (en) Inceptor system and apparatus for generating a virtual real-time model
US20070271008A1 (en) Manual and computerized flight control system with natural feedback
US11167837B2 (en) Aircraft with outboard throttle quadrant arrangements
US2851795A (en) Simulated control loading for flight training apparatus
EP0321758A2 (en) Electro-hydraulic actuator system
CN108873919B (en) Civil robot in-loop system, active side rod servo tracking control system and method
KR101329199B1 (en) Controller to enhance control performance degradation by non-linearity of actuator using neural network
EP3659910B1 (en) Jam mitigation in aircraft fly-by-wire systems and related methods
US10647415B2 (en) Method and device for coupling piloting members
EP3472681B1 (en) Control laws for pedal-to-roll coupling
US20220244754A1 (en) Force compensation method and device
US10908560B2 (en) Variable rate damping based control system for backdriven control input devices
US20120053763A1 (en) Inceptor system
CA3086634A1 (en) Method, system and computer program product for compensation of simulator control loading mechanical effects
Shi et al. Mechanical Structure Design of the Aircraft ASD Control Isolation Control
Mandhata et al. Investigation of operator feedback in human-machine haptic interfaces for steer-by-wire transportation systems
EP3789847A1 (en) Force compensation method and device

Legal Events

Date Code Title Description
AS Assignment

Owner name: BOEING COMPANY, THE, WASHINGTON

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CARTMELL, DANIEL H.;COLEMAN, EDWARD E.;REEL/FRAME:013800/0259;SIGNING DATES FROM 20030102 TO 20030221

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION