US20040080357A1 - Block parallel efuse apparatus blown with serial data input - Google Patents

Block parallel efuse apparatus blown with serial data input Download PDF

Info

Publication number
US20040080357A1
US20040080357A1 US10/340,373 US34037303A US2004080357A1 US 20040080357 A1 US20040080357 A1 US 20040080357A1 US 34037303 A US34037303 A US 34037303A US 2004080357 A1 US2004080357 A1 US 2004080357A1
Authority
US
United States
Prior art keywords
input
efuse
output
coupled
blown
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US10/340,373
Other versions
US6720820B1 (en
Inventor
Yu Chuang
Mang-Shiang Wang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanya Technology Corp
Original Assignee
Nanya Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanya Technology Corp filed Critical Nanya Technology Corp
Assigned to NANYA TECHNOLOGY CORPORATION reassignment NANYA TECHNOLOGY CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHUANG, YU MENG, WANG, MANG-SHIANG
Application granted granted Critical
Publication of US6720820B1 publication Critical patent/US6720820B1/en
Publication of US20040080357A1 publication Critical patent/US20040080357A1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C17/00Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards
    • G11C17/14Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards in which contents are determined by selectively establishing, breaking or modifying connecting links by permanently altering the state of coupling elements, e.g. PROM
    • G11C17/18Auxiliary circuits, e.g. for writing into memory
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C17/00Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards
    • G11C17/14Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards in which contents are determined by selectively establishing, breaking or modifying connecting links by permanently altering the state of coupling elements, e.g. PROM
    • G11C17/16Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards in which contents are determined by selectively establishing, breaking or modifying connecting links by permanently altering the state of coupling elements, e.g. PROM using electrically-fusible links

Definitions

  • the present invention relates to a block parallel efuse apparatus blown with serial data input.
  • the present invention provides a block parallel efuse apparatus blown with serial data input.
  • the block parallel apparatus includes a high voltage source, efuse circuits, a plurality of multiplexes, registers, and an input-output terminal.
  • Each efuse circuit includes an efuse, a blown-control terminal, an input terminal, and an output terminal.
  • Each efuse is coupled between the high voltage source and the output terminal of the efuse circuit.
  • Each blown-control terminal is coupled to a blown-control line.
  • Each multiplex includes a first input terminal, a second input terminal, a control terminal, and an output terminal.
  • the second input terminal of each multiplex is coupled to an output terminal of each corresponding efuse circuit.
  • the control terminal of each multiplex receives a load signal.
  • Each register includes an input terminal, an output terminal, and a control terminal.
  • the input terminal of each register is coupled to the output terminal of each corresponding multiplex.
  • the output terminal of each register is coupled to the first input terminal of another corresponding multiplex and coupled to the input terminal of each corresponding efuse circuit.
  • the control terminal of each register is coupled to a clock line and the input-output terminal for inputting and reading serial data.
  • FIG. 1 shows a block diagram of the block parallel efuse apparatus blown with serial data input.
  • FIG. 2 shows another block diagram of the block parallel efuse apparatus in the present invention.
  • FIG. 1 shows a block diagram of the block parallel efuse apparatus blown with serial data input.
  • the block parallel efuse apparatus, blown with serial data input 100 includes register R 1 , R 2 , and R 3 , multiplex M 1 , M 2 , and M 3 , and efuse circuits FS 1 , FS 2 , and FS 3 .
  • the registers R 1 , R 2 , and R 3 can be D type flip-flop.
  • An input-output terminal 55 is coupled to the first input of the multiplex M 1 by the buffer 52 .
  • the output of the multiplex M 1 is coupled to the input D of the register R 1 .
  • the output Q 1 of the register R 1 is coupled to the first input of the multiplex M 2 .
  • the output of the multiplex M 2 is coupled to the input D of the register R 2 .
  • the output Q 2 of the register R 2 is coupled to the first input of the multiplex M 3 .
  • the output of the multiplex M 3 is coupled to the input D of the register R 3 .
  • the output Q 3 of the register R 3 is coupled to the input of the buffer 50 .
  • the output of the buffer 50 is coupled the input-output terminal.
  • the efuse circuit FS 1 includes an AND gate, a switch transistor T 1 , and a poly efuse.
  • the inputs of the AND gate are the first input and the second input of the efuse circuit FS 1 respectively.
  • the output of the AND gate is coupled to the input of the switch transistor T 1 .
  • the junction of the poly fuse and the switch transistor T 1 is the output of the efuse circuit FS 1 .
  • the first input of the efuse circuit FS 1 is coupled to the blown control line EBLOWN.
  • the second input of the efuse circuit FS 1 is coupled to the output Q 1 of the register R 1 .
  • the output of the efuse circuit FS 1 is coupled to the second input of the multiplex M 1 .
  • Poly efuse is coupled to the voltage source at HV.
  • the first input of the efuse circuit FS 2 is coupled to the blown control line EBLOWN.
  • the second input of the efuse circuit FS 2 is coupled to the output Q 2 of the register R 2 .
  • the output of the efuse circuit FS 2 is coupled to the second input of the multiplex M 2 .
  • Poly efuse is coupled to the voltage source at HV.
  • the first input of the efuse circuit FS 3 is coupled to the blown control line EBLOWN.
  • the second input of the efuse circuit FS 3 is coupled to the Q 3 output of the register R 3 .
  • the output of the efuse circuit FS 3 is coupled to the second input of the multiplex M 3 .
  • Poly efuse is coupled to the voltage source at HV.
  • the combinational circuit 110 receives the enable signal ENABLE, the clock signal CLK, and the load signal LOAD. The output of the combinational circuit 110 is coupled to the clock control line 102 .
  • the clock control line 102 is coupled to the control terminals C of the register R 1 , R 2 , and R 3 .
  • the switch SW of the multiplex M 1 When the switch SW of the multiplex M 1 is at 0, the first input of the multiplex M 1 is coupled to the output of the multiplex M 1 . When the switch SW of the multiplex M 1 is at 1, the second input of the multiplex M 1 is coupled to the output of the multiplex M 1 .
  • the multiplexes M 2 , M 3 have the same function.
  • the data d 1 emerges at the output Q 1 of the register R 1 , at the first input of the multiplex M 2 , passes through the multiplex M 2 , and is output at the output of the multiplex M 2 .
  • the data d 2 is fed at the input-output terminal 55 , passes through the buffer 52 , the first input of the multiplex M 1 , the output of the multiplex M 1 , and is ready at the input D of the register R 1 .
  • the clock signal CLK triggers the registers R 1 and R 2 at the rising edge of the second clock
  • the data d 2 emerges at the output Q 1 of the register R 1 , at the first input of the multiplex M 2 , passes through the multiplex M 2 , and is output at the output of the multiplex M 2 .
  • the data d 1 emerges at the output Q 2 of the register R 2 , at the first input of the multiplex M 3 , passes through the multiplex M 3 , and is output at the output of the multiplex M 3 .
  • the data d 3 is fed at the input-output terminal 55 , passes through the buffer 52 , the first input of the multiplex M 1 , the output of the multiplex M 1 , and is ready at the input D of the register R 1 .
  • the clock signal CLK triggers the registers R 1 , R 2 , and R 3 at the rising edge of the third clock, the data d 3 emerges at the output Q 1 of the register R 1 , at the first input of the multiplex M 2 , passes through the multiplex M 2 , and is output at the output of the multiplex M 2 .
  • the data d 2 emerges at the output Q 2 of the register R 2 , at the first input of the multiplex M 3 , passes through the multiplex M 3 , and is output at the output of the multiplex M 3 .
  • the data d 1 emerges at the output Q 3 of the register R 3 , and at the input of the buffer 50 .
  • the data d 1 , d 2 , and d 3 emerge at the outputs of the registers R 3 , R 2 , and R 1 , i.e., at the second inputs of the efuse circuits FS 3 , FS 2 , and FS 3 .
  • the transistors T 1 are turned on or off according to the data d 1 , d 2 , and d 3 , and the efuse circuits FS 1 , FS 2 , and FS 3 are blown at once.
  • the blown-in data dd 1 , dd 2 , and dd 3 in theefuse circuits FS 1 , FS 2 , and FS 3 are read serially in order to verify them. Before being read, the blown-in data dd 1 , dd 2 , and dd 3 must be loaded to the registers R 1 , R 2 , and R 3 . When the load signal is 1, the control terminals C of the register R 1 , R 2 , and R 3 are enabled, the blown-in data dd 1 , dd 2 , and dd 3 are loaded to the register R 1 , R 2 , R 3 at once.
  • the efuse circuit FS 1 outputs the blown-in data dd 1 , passing through the multiplex M 1 from the second input to the output, loaded from the input D of the register R 1 to the output Q 1 .
  • the efuse circuit FS 2 outputs the blown-in data dd 2 , passing through the multiplex M 2 from the second input to the output, loaded from the input D of the register R 2 to the output Q 2 .
  • the efuse circuit FS 3 outputs the blown-in data dd 3 , passing through the multiplex M 3 from the second input to the output, loaded from the input D of the register R 3 to the output Q 3 .
  • the blown-in data dd 1 , dd 2 , and dd 3 are to be read serially at the input-output 55 .
  • the enable signal ENABLE is active
  • the clock signal CLK triggers the control terminals C of the registers R 1 , R 2 , and R 3 .
  • the register R 3 outputs the blown-in data dd 1 at Q 3 , passing through the buffer 52 to the input-output 55 .
  • the register R 2 outputs the blown-in data dd 2 at Q 2 , passing through the multiplex M 3 from the first input to the output.
  • the register R 1 outputs the blown-in data dd 3 at Q 1 , passing through the multiplex M 2 from the first input to the output.
  • the register R 3 After the fourth rising edge of the clock signal CLK, the register R 3 outputs the blown-in data dd 2 at Q 3 , passing through the buffer 52 to the input-output 55 .
  • the register R 2 outputs the blown-in data dd 3 at Q 2 , passing through the multiplex M 3 from the first input to the output.
  • the register R 3 After the fifth rising edge of the clock signal CLK, the register R 3 outputs the blown-in data dd 1 at Q 3 , passing through the buffer 52 to the input-output 55 .
  • the blown-in data dd 1 , dd 2 , and dd 3 received by the input-output terminal are compared with the data d 1 , d 2 , and d 3 for verification.
  • FIG. 2 shows another block diagram of the block parallel efuse apparatus in the present invention.
  • the efuse circuits are grouped into some segments FUSE-SEGO ⁇ FUSE-SEG 2 ” according to current limits of the high voltage source VSOURCE, therefore, blown in segment by segment.
  • the advantages of the present invention are that data is fed serially, blown in parallelly, can be loaded to registers, read serially, and, according to current limits of the high voltage source VSOURCE, the efuse circuits are grouped into segments, thereby blown in segment by segment

Abstract

A block parallel efuse apparatus blown with serial data input. The block parallel apparatus includes a high voltage source, efuse circuits, a plurality of multiplex, registers, and an input-output terminal, wherein each efuse circuit includes an efuse, a blown-control terminal, an input terminal, and an output terminal. Each efuse is coupled between the high voltage source and the output terminal of the efuse circuit.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention [0001]
  • The present invention relates to a block parallel efuse apparatus blown with serial data input. [0002]
  • 2. Description of the Related Art [0003]
  • When an efuse is blown, it takes more time to blow or read serial data. For example, a 0.175 um efuse needs 125 us to be blown in. The more efuses deployed, more time, proportional to the efuses, is required for the fuses to be blown in. [0004]
  • There is thus a need for a block parallel efuse apparatus blown with serial data. [0005]
  • SUMMARY OF THE INVENTION
  • It is therefore an object of the present invention to shorten the time for blowing efuses. [0006]
  • To achieve the above objects, the present invention provides a block parallel efuse apparatus blown with serial data input. [0007]
  • The block parallel apparatus includes a high voltage source, efuse circuits, a plurality of multiplexes, registers, and an input-output terminal. Each efuse circuit includes an efuse, a blown-control terminal, an input terminal, and an output terminal. Each efuse is coupled between the high voltage source and the output terminal of the efuse circuit. Each blown-control terminal is coupled to a blown-control line. Each multiplex includes a first input terminal, a second input terminal, a control terminal, and an output terminal. The second input terminal of each multiplex is coupled to an output terminal of each corresponding efuse circuit. The control terminal of each multiplex receives a load signal. Each register includes an input terminal, an output terminal, and a control terminal. The input terminal of each register is coupled to the output terminal of each corresponding multiplex. The output terminal of each register is coupled to the first input terminal of another corresponding multiplex and coupled to the input terminal of each corresponding efuse circuit. The control terminal of each register is coupled to a clock line and the input-output terminal for inputting and reading serial data.[0008]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The aforementioned objects, features and advantages of this invention will become apparent by referring to the following detailed description of the preferred embodiments with reference to the accompanying drawings, wherein: [0009]
  • FIG. 1 shows a block diagram of the block parallel efuse apparatus blown with serial data input. [0010]
  • FIG. 2 shows another block diagram of the block parallel efuse apparatus in the present invention.[0011]
  • DETAILED DESCRIPTION OF THE INVENTION
  • FIG. 1 shows a block diagram of the block parallel efuse apparatus blown with serial data input. As shown in FIG. 1, the block parallel efuse apparatus, blown with serial data input [0012] 100, includes register R1, R2, and R3, multiplex M1, M2, and M3, and efuse circuits FS1, FS2, and FS3. The registers R1, R2, and R3 can be D type flip-flop.
  • An input-[0013] output terminal 55 is coupled to the first input of the multiplex M1 by the buffer 52. The output of the multiplex M1 is coupled to the input D of the register R1. The output Q1 of the register R1 is coupled to the first input of the multiplex M2. The output of the multiplex M2 is coupled to the input D of the register R2. The output Q2 of the register R2 is coupled to the first input of the multiplex M3. The output of the multiplex M3 is coupled to the input D of the register R3. The output Q3 of the register R3 is coupled to the input of the buffer 50. The output of the buffer 50 is coupled the input-output terminal.
  • The efuse circuit FS[0014] 1 includes an AND gate, a switch transistor T1, and a poly efuse. The inputs of the AND gate are the first input and the second input of the efuse circuit FS1 respectively. The output of the AND gate is coupled to the input of the switch transistor T1. The junction of the poly fuse and the switch transistor T1 is the output of the efuse circuit FS1.
  • The first input of the efuse circuit FS[0015] 1 is coupled to the blown control line EBLOWN. The second input of the efuse circuit FS1 is coupled to the output Q1 of the register R1. The output of the efuse circuit FS1 is coupled to the second input of the multiplex M1. Poly efuse is coupled to the voltage source at HV. The first input of the efuse circuit FS2 is coupled to the blown control line EBLOWN. The second input of the efuse circuit FS2 is coupled to the output Q2 of the register R2. The output of the efuse circuit FS2 is coupled to the second input of the multiplex M2. Poly efuse is coupled to the voltage source at HV. The first input of the efuse circuit FS3 is coupled to the blown control line EBLOWN. The second input of the efuse circuit FS3 is coupled to the Q3 output of the register R3. The output of the efuse circuit FS3 is coupled to the second input of the multiplex M3. Poly efuse is coupled to the voltage source at HV.
  • The [0016] combinational circuit 110 receives the enable signal ENABLE, the clock signal CLK, and the load signal LOAD. The output of the combinational circuit 110 is coupled to the clock control line 102. The clock control line 102 is coupled to the control terminals C of the register R1, R2, and R3.
  • When the switch SW of the multiplex M[0017] 1 is at 0, the first input of the multiplex M1 is coupled to the output of the multiplex M1. When the switch SW of the multiplex M1 is at 1, the second input of the multiplex M1 is coupled to the output of the multiplex M1. The multiplexes M2, M3 have the same function.
  • When serial data is to be fed to the registers R[0018] 1, R2, and R3, the load signal is 0, the enable signal is active, the clock signal CLK is fed to the control terminal C of the registers R1, R2, and R3. The input-output terminal 55 is to be fed serial data d1d2d3. The data d1 is passed through the buffer 52, the first input of the multiplex M1, the output of the multiplex M1, and ready at the input D of the register R1. When the clock signal CLK triggers the register R1 at the rising edge of the first clock, the data d1 emerges at the output Q1 of the register R1, at the first input of the multiplex M2, passes through the multiplex M2, and is output at the output of the multiplex M2.
  • The data d[0019] 2 is fed at the input-output terminal 55, passes through the buffer 52, the first input of the multiplex M1, the output of the multiplex M1, and is ready at the input D of the register R1. When the clock signal CLK triggers the registers R1 and R2 at the rising edge of the second clock, the data d2 emerges at the output Q1 of the register R1, at the first input of the multiplex M2, passes through the multiplex M2, and is output at the output of the multiplex M2. The data d1 emerges at the output Q2 of the register R2, at the first input of the multiplex M3, passes through the multiplex M3, and is output at the output of the multiplex M3.
  • The data d[0020] 3 is fed at the input-output terminal 55, passes through the buffer 52, the first input of the multiplex M1, the output of the multiplex M1, and is ready at the input D of the register R1. When the clock signal CLK triggers the registers R1, R2, and R3 at the rising edge of the third clock, the data d3 emerges at the output Q1 of the register R1, at the first input of the multiplex M2, passes through the multiplex M2, and is output at the output of the multiplex M2. The data d2 emerges at the output Q2 of the register R2, at the first input of the multiplex M3, passes through the multiplex M3, and is output at the output of the multiplex M3. The data d1 emerges at the output Q3 of the register R3, and at the input of the buffer 50.
  • After some rising edges of the clock signal CLK, the data d[0021] 1, d2, and d3 emerge at the outputs of the registers R3, R2, and R1, i.e., at the second inputs of the efuse circuits FS3, FS2, and FS3. When the voltage source rises to a required voltage for blowing poly efuse, and the blown control line EBLOWN is active, the transistors T1 are turned on or off according to the data d1, d2, and d3, and the efuse circuits FS1, FS2, and FS3 are blown at once.
  • The blown-in data dd[0022] 1, dd2, and dd3 in theefuse circuits FS1, FS2, and FS3 are read serially in order to verify them. Before being read, the blown-in data dd1, dd2, and dd3 must be loaded to the registers R1, R2, and R3. When the load signal is 1, the control terminals C of the register R1, R2, and R3 are enabled, the blown-in data dd1, dd2, and dd3 are loaded to the register R1, R2, R3 at once. The efuse circuit FS1 outputs the blown-in data dd1, passing through the multiplex M1 from the second input to the output, loaded from the input D of the register R1 to the output Q1. The efuse circuit FS2 outputs the blown-in data dd2, passing through the multiplex M2 from the second input to the output, loaded from the input D of the register R2 to the output Q2. The efuse circuit FS3 outputs the blown-in data dd3, passing through the multiplex M3 from the second input to the output, loaded from the input D of the register R3 to the output Q3.
  • After the load signal is active, the blown-in data dd[0023] 1, dd2, and dd3 emerge at outputs Q1, Q2, and Q3 respectively.
  • The blown-in data dd[0024] 1, dd2, and dd3 are to be read serially at the input-output 55. When the load signal is 0, the enable signal ENABLE is active, the clock signal CLK triggers the control terminals C of the registers R1, R2, and R3.
  • The register R[0025] 3 outputs the blown-in data dd1 at Q3, passing through the buffer 52 to the input-output 55. The register R2 outputs the blown-in data dd2 at Q2, passing through the multiplex M3 from the first input to the output. The register R1 outputs the blown-in data dd3 at Q1, passing through the multiplex M2 from the first input to the output.
  • After the fourth rising edge of the clock signal CLK, the register R[0026] 3 outputs the blown-in data dd2 at Q3, passing through the buffer 52 to the input-output 55. The register R2 outputs the blown-in data dd3 at Q2, passing through the multiplex M3 from the first input to the output.
  • After the fifth rising edge of the clock signal CLK, the register R[0027] 3 outputs the blown-in data dd1 at Q3, passing through the buffer 52 to the input-output 55.
  • The blown-in data dd[0028] 1, dd2, and dd3 received by the input-output terminal are compared with the data d1, d2, and d3 for verification.
  • FIG. 2 shows another block diagram of the block parallel efuse apparatus in the present invention. The efuse circuits are grouped into some segments FUSE-SEGO˜FUSE-SEG[0029] 2” according to current limits of the high voltage source VSOURCE, therefore, blown in segment by segment.
  • The advantages of the present invention are that data is fed serially, blown in parallelly, can be loaded to registers, read serially, and, according to current limits of the high voltage source VSOURCE, the efuse circuits are grouped into segments, thereby blown in segment by segment [0030]
  • Although the present invention has been described in its preferred embodiments, it is not intended to limit the invention to the precise embodiments disclosed herein. Those who are skilled in this technology can still make various alterations and modifications without departing from the scope and spirit of this invention. Therefore, the scope of the present invention shall be defined and protected by the following claims and their equivalents. [0031]

Claims (13)

What is claimed is:
1. A block parallel efuse apparatus comprising:
a high voltage source;
a clock control line;
a blown control line;
a plurality of efuse circuits, each having a efuse, a blown control terminal, an input, and an output, the efuse coupled between the high voltage source and the output, the blown control terminal coupled to the blown control line;
a plurality of multiplexes, each having a first input and a second input, a control terminal, and an output, the second input coupled to the output of the efuse circuit, the control terminal receiving a load signal;
a plurality of registers, each having an input, an output, and a control terminal, the input of each register coupled to the output of each corresponding multiplex, the output of each register coupled to the first input of another corresponding multiplex and coupled to the input of the corresponding efuse circuit, the control terminal of each register coupled to the clock control line; and
an input-output terminal, coupled between the first input of the first multiplex and the output of the last register, thereby data is input or output serially.
2. The block parallel efuse apparatus as claimed in claim 1, wherein when the load signal is the first level, the first input of each multiplex is coupled to the output, the plurality of multiplex and the plurality of registers form a series of registers.
3. The block parallel efuse apparatus as claimed in claim 2, wherein when a clock signal is fed to the clock control line, serial data is fed to the input-output according to the triggering of the clock signal, thereby allowing the plurality of registers to store the serial data.
4. The block parallel efuse apparatus as claimed in claim 3, wherein when the high voltage source is active, the blown control line is active, and the plurality of efuse circuits are blown in according to the serial data at each input at once.
5. The block parallel efuse apparatus as claimed in claim 4, wherein when the load signal is the second level, the second input of each multiplex is coupled to the output, the load signal is fed to the clock control line, and the plurality of registers stores the blown-in serial data.
6. The block parallel efuse apparatus as claimed in claim 5, wherein when a clock signal is fed to the clock control line, the blown-in serial data, stored in the plurality of registers, is read at the input-output according to the triggering of the clock signal.
7. A block parallel efuse apparatus comprising:
a high voltage source;
a clock control line;
a blown control line;
a shift register, having a first input, a plurality of second inputs, a clock control terminal, a selective terminal, and a plurality of outputs, the first input being used for feeding serial data,
a plurality of second inputs being parallel inputs, the selective terminal receiving a load signal to select the first input or the plurality of inputs to be enabled, the clock control terminal coupled to the clock control line;
a plurality of efuse circuits, each having an efuse, a blown control terminal, an input, and an output, the efuse coupled between the high voltage source and the output, the blown control terminal coupled to the blown control line, the input of each efuse circuit coupled to each corresponding output of the shift register; and
an input-output terminal, coupled between the first input of the shift register and the last output of the shift register, thereby data is input or output serially.
8. The block parallel efuse apparatus as claimed in claim 7, wherein the shift register has:
a plurality of multiplexes, each having a first input and a second input, a control terminal, and an output, the second input coupled to each corresponding second input of the shift register, the control terminal coupled to the selective terminal of the shift register; and
a plurality of registers, each having an input, an output, and a control terminal, the input of each register coupled to the output of each corresponding multiplex, the output of each register coupled to the first input of another corresponding multiplex, the control terminal of each register coupled to the clock control terminal of the shift register.
9. The block parallel efuse apparatus as claimed in claim 7, wherein when the load signal is the first level, the shift register is loaded with serial data according the clock signal.
10. The block parallel efuse apparatus as claimed in claim 7, wherein when the load signal is the first level, and a clock signal is fed to the clock control line, serial data is fed to the input-output according to the triggering of the clock signal.
11. The block parallel efuse apparatus as claimed in claim 10, wherein when the high voltage source is active, the blown control line is active, and the plurality of efuse circuits are blown in according the serial data at each input at once.
12. The block parallel efuse apparatus as claimed in claim 11, wherein when the load signal is the second level, the plurality of second input of the shift register is active, the shift register stores the blown-in serial data.
13. The block parallel efuse apparatus as claimed in claim 12, wherein when a clock signal is fed to the clock control line, the blown-in serial data, stored in the shift register, is read at the input-output according to the triggering of the clock signal.
US10/340,373 2002-10-25 2003-01-10 Block parallel efuse apparatus blown with serial data input Expired - Lifetime US6720820B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW091125199A TW569231B (en) 2002-10-25 2002-10-25 A block parallel efuse apparatus blown with serial data input
TW91125199 2002-10-25

Publications (2)

Publication Number Publication Date
US6720820B1 US6720820B1 (en) 2004-04-13
US20040080357A1 true US20040080357A1 (en) 2004-04-29

Family

ID=32105877

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/340,373 Expired - Lifetime US6720820B1 (en) 2002-10-25 2003-01-10 Block parallel efuse apparatus blown with serial data input

Country Status (2)

Country Link
US (1) US6720820B1 (en)
TW (1) TW569231B (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080036527A1 (en) * 2006-08-09 2008-02-14 Ryuji Nishihara Electrical fuse device
CN101283412A (en) * 2005-10-07 2008-10-08 国际商业机器公司 Electrically one time programmable and one time erasable fuse
US20090067211A1 (en) * 2007-09-10 2009-03-12 Mohammad Jahidur Rahman Electronic Fuse System and Methods
US8066713B2 (en) 2003-03-31 2011-11-29 Depuy Spine, Inc. Remotely-activated vertebroplasty injection device
US8540722B2 (en) 2003-06-17 2013-09-24 DePuy Synthes Products, LLC Methods, materials and apparatus for treating bone and other tissue
US8579908B2 (en) 2003-09-26 2013-11-12 DePuy Synthes Products, LLC. Device for delivering viscous material
US8809418B2 (en) 2004-03-21 2014-08-19 DePuy Synthes Products, LLC Methods, materials and apparatus for treating bone and other tissue
US8992541B2 (en) 2003-03-14 2015-03-31 DePuy Synthes Products, LLC Hydraulic device for the injection of bone cement in percutaneous vertebroplasty
US9159667B2 (en) 2013-07-26 2015-10-13 Globalfoundries Inc. Methods of forming an e-fuse for an integrated circuit product and the resulting e-fuse structure
US9259696B2 (en) 2005-11-22 2016-02-16 DePuy Synthes Products, Inc. Mixing apparatus having central and planetary mixing elements
US9293414B2 (en) 2013-06-26 2016-03-22 Globalfoundries Inc. Electronic fuse having a substantially uniform thermal profile
US9381024B2 (en) 2005-07-31 2016-07-05 DePuy Synthes Products, Inc. Marked tools
US10494158B2 (en) 2006-10-19 2019-12-03 DePuy Synthes Products, Inc. Fluid delivery system

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7759226B1 (en) 2005-08-30 2010-07-20 Altera Corporation Electrical fuse with sacrificial contact
KR100827664B1 (en) 2006-12-26 2008-05-07 삼성전자주식회사 Electrical fuse, semiconductor device having the same, and programming and reading method thereof
KR20120126653A (en) * 2011-05-12 2012-11-21 에스케이하이닉스 주식회사 Semiconductor Apparatus And Semiconductor Package System including the same
CN112631410B (en) * 2020-12-18 2022-07-29 苏州浪潮智能科技有限公司 Bridge connection power supply circuit and server of multichannel Efuse chip

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100546300B1 (en) * 1999-10-01 2006-01-26 삼성전자주식회사 Output circiut for chip information

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10799278B2 (en) 2003-03-14 2020-10-13 DePuy Synthes Products, Inc. Hydraulic device for the injection of bone cement in percutaneous vertebroplasty
US9186194B2 (en) 2003-03-14 2015-11-17 DePuy Synthes Products, Inc. Hydraulic device for the injection of bone cement in percutaneous vertebroplasty
US8992541B2 (en) 2003-03-14 2015-03-31 DePuy Synthes Products, LLC Hydraulic device for the injection of bone cement in percutaneous vertebroplasty
US8066713B2 (en) 2003-03-31 2011-11-29 Depuy Spine, Inc. Remotely-activated vertebroplasty injection device
US9504508B2 (en) 2003-06-17 2016-11-29 DePuy Synthes Products, Inc. Methods, materials and apparatus for treating bone and other tissue
US8956368B2 (en) 2003-06-17 2015-02-17 DePuy Synthes Products, LLC Methods, materials and apparatus for treating bone and other tissue
US10039585B2 (en) 2003-06-17 2018-08-07 DePuy Synthes Products, Inc. Methods, materials and apparatus for treating bone and other tissue
US8540722B2 (en) 2003-06-17 2013-09-24 DePuy Synthes Products, LLC Methods, materials and apparatus for treating bone and other tissue
US8579908B2 (en) 2003-09-26 2013-11-12 DePuy Synthes Products, LLC. Device for delivering viscous material
US9750840B2 (en) 2004-03-21 2017-09-05 DePuy Synthes Products, Inc. Methods, materials and apparatus for treating bone and other tissue
US8809418B2 (en) 2004-03-21 2014-08-19 DePuy Synthes Products, LLC Methods, materials and apparatus for treating bone and other tissue
US9381024B2 (en) 2005-07-31 2016-07-05 DePuy Synthes Products, Inc. Marked tools
CN101283412A (en) * 2005-10-07 2008-10-08 国际商业机器公司 Electrically one time programmable and one time erasable fuse
US9259696B2 (en) 2005-11-22 2016-02-16 DePuy Synthes Products, Inc. Mixing apparatus having central and planetary mixing elements
US10631906B2 (en) 2005-11-22 2020-04-28 DePuy Synthes Products, Inc. Apparatus for transferring a viscous material
US20080036527A1 (en) * 2006-08-09 2008-02-14 Ryuji Nishihara Electrical fuse device
US7622982B2 (en) * 2006-08-09 2009-11-24 Panasonic Corporation Electrical fuse device
US10494158B2 (en) 2006-10-19 2019-12-03 DePuy Synthes Products, Inc. Fluid delivery system
WO2009035964A2 (en) * 2007-09-10 2009-03-19 Texas Instruments Incorporated Electronic fuse system and methods
US20090067211A1 (en) * 2007-09-10 2009-03-12 Mohammad Jahidur Rahman Electronic Fuse System and Methods
US7656695B2 (en) 2007-09-10 2010-02-02 Texas Instruments Incorporated Electronic fuse system and methods
WO2009035964A3 (en) * 2007-09-10 2010-07-29 Texas Instruments Incorporated Electronic fuse system and methods
US9293414B2 (en) 2013-06-26 2016-03-22 Globalfoundries Inc. Electronic fuse having a substantially uniform thermal profile
US9159667B2 (en) 2013-07-26 2015-10-13 Globalfoundries Inc. Methods of forming an e-fuse for an integrated circuit product and the resulting e-fuse structure

Also Published As

Publication number Publication date
US6720820B1 (en) 2004-04-13
TW569231B (en) 2004-01-01

Similar Documents

Publication Publication Date Title
US6720820B1 (en) Block parallel efuse apparatus blown with serial data input
US3693159A (en) Data storage system with means for eliminating defective storage locations
US3943377A (en) Logic circuit arrangement employing insulated gate field effect transistors
JPH06150687A (en) Method of bypassing flaw and its circuit
EP0051920B1 (en) Memory arrangement with means for interfacing a central processing unit
US11600347B2 (en) Storage device
US8134854B2 (en) Efuse device
US6798272B2 (en) Shift register for sequential fuse latch operation
US8072831B2 (en) Fuse element reading circuit
US6262924B1 (en) Programmable semiconductor memory device
KR850003616A (en) Information memory circuit using blown and blown fuse
US5101483A (en) Instruction decoder simplification by reuse of bits to produce the same control states for different instructions
US7135882B2 (en) Semiconductor integrated circuit device and control method for the semiconductor integrated circuit device
US6678846B1 (en) Semiconductor integrated circuit with a scan path circuit
US7403432B2 (en) Differential read-out circuit for fuse memory cells
US6532183B2 (en) Semiconductor device capable of adjusting internal potential
US6353336B1 (en) Electrical ID method for output driver
US6570515B2 (en) Decoder for reducing test time for detecting defective switches in a digital-to-analog converter
KR100217270B1 (en) Semiconductor memory device
US6753718B2 (en) Auto fusing circuit
US6424557B2 (en) Integrated device with trimming elements
US7299391B2 (en) Circuit for control and observation of a scan chain
US8526244B2 (en) Anti-fuse circuit
JPH11328991A (en) Anti-fuse stabilizing device for memory device
US4536738A (en) Programmable circuit arrangement

Legal Events

Date Code Title Description
AS Assignment

Owner name: NANYA TECHNOLOGY CORPORATION, TAIWAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CHUANG, YU MENG;WANG, MANG-SHIANG;REEL/FRAME:013664/0238

Effective date: 20021224

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12