US20040084210A1 - Apparatus and method for interconnection between a component and a printed circuit board - Google Patents

Apparatus and method for interconnection between a component and a printed circuit board Download PDF

Info

Publication number
US20040084210A1
US20040084210A1 US10/625,216 US62521603A US2004084210A1 US 20040084210 A1 US20040084210 A1 US 20040084210A1 US 62521603 A US62521603 A US 62521603A US 2004084210 A1 US2004084210 A1 US 2004084210A1
Authority
US
United States
Prior art keywords
pcb
signal routing
routing layer
array
padless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/625,216
Inventor
Terrance Dishongh
Carolyn McCormick
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US10/625,216 priority Critical patent/US20040084210A1/en
Publication of US20040084210A1 publication Critical patent/US20040084210A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/11Printed elements for providing electric connections to or between printed circuits
    • H05K1/111Pads for surface mounting, e.g. lay-out
    • H05K1/112Pads for surface mounting, e.g. lay-out directly combined with via connections
    • H05K1/113Via provided in pad; Pad over filled via
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0094Filling or covering plated through-holes or blind plated vias, e.g. for masking or for mechanical reinforcement
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/341Surface mounted components
    • H05K3/3431Leadless components
    • H05K3/3436Leadless components having an array of bottom contacts, e.g. pad grid array or ball grid array components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0556Disposition
    • H01L2224/05568Disposition the whole external layer protruding from the surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05573Single external layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/095Conductive through-holes or vias
    • H05K2201/09545Plated through-holes or blind vias without lands
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/095Conductive through-holes or vias
    • H05K2201/0959Plated through-holes or plated blind vias filled with insulating material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10227Other objects, e.g. metallic pieces
    • H05K2201/10234Metallic balls
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10613Details of electrical connections of non-printed components, e.g. special leads
    • H05K2201/10621Components characterised by their electrical contacts
    • H05K2201/10734Ball grid array [BGA]; Bump grid array
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/3452Solder masks
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/42Plated through-holes or plated via connections
    • H05K3/429Plated through-holes specially for multilayer circuits, e.g. having connections to inner circuit layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/49155Manufacturing circuit on or in base
    • Y10T29/49165Manufacturing circuit on or in base by forming conductive walled aperture in base
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/49155Manufacturing circuit on or in base
    • Y10T29/49165Manufacturing circuit on or in base by forming conductive walled aperture in base
    • Y10T29/49167Manufacturing circuit on or in base by forming conductive walled aperture in base with deforming of conductive path

Definitions

  • Embodiments of the present invention relate to printed circuit board (PCB) technology and more particularly to interconnecting a component with a PCB.
  • PCB printed circuit board
  • a BGA component 110 may be interconnected with a printed circuit board (PCB) 120 by aligning an array of solder balls 112 having an array pitch “P” with a corresponding array of contact pads, such as contact pads 122 and 124 , formed on a top surface of the PCB 120 .
  • the solder balls 112 may be reflowed to make electrical connections between the solder balls 112 and the contact pads 122 and 124 .
  • a layer of solder mask 160 may prevent solder from wicking to adjacent contact pads during reflow.
  • the PCB 120 has numerous layers of conductive traces to route signals from the BGA component 110 to other electronic components mounted on both sides of the PCB 120 .
  • the PCB 120 may also have a number of vias to route signals from contact pads to the signal routing layers. For example, a signal may travel from the solder ball 112 to the contact pad 122 and through a via 130 to a conductive trace on a bottom surface signal routing layer.
  • the via 130 is typically formed by drilling a hole through the contact pad 122 and plating the drilled hole with a plating material 132 . For example, a hole having a diameter D 1 from 10-16 mils may be drilled through a contact pad having a diameter D 3 from 18-24 mils.
  • one or more conductive traces may be routed between adjacent contact pads 122 and 124 .
  • the BGA array pitch may shrink and the contact pads may occupy a larger percentage of signal routing area beneath the BGA component which may prevent signal routing between adjacent contact pads.
  • One approach to increase the signal routing area is to reduce the diameter of the contact pads.
  • Another approach to increase signal routing area is to reduce the width and spacing of conductive traces. However, this approach may require more complicated manufacturing processes which may increase overall PCB cost.
  • FIG. 1 illustrates a cross-sectional view of a printed circuit board (PCB) with a via according to the prior art.
  • FIG. 2 illustrates a cross-sectional view of an exemplary system comprising a PCB according to one embodiment of the present invention.
  • FIG. 4 illustrates a flow diagram of a method to fabricate a PCB according to one embodiment of the present invention.
  • FIG. 5 illustrates a cross-sectional view of a PCB with a blind padless via according to one embodiment of the present invention.
  • FIG. 6 illustrates a cross-sectional view of a PCB with a padless via with a via plug according to one embodiment of the present invention.
  • FIG. 7 illustrates a cross-sectional view of a PCB with a padless via with a conductive via plug according to one embodiment of the present invention.
  • FIG. 8 illustrates a cross-sectional view of a PCB with a padless via with a conductive via plug according to another embodiment of the present invention.
  • FIG. 9 is a table comparing routable conductive traces between interconnections having different diameters for various component pitches.
  • Embodiments of the present invention may increase signal routing area on a printed circuit board (PCB) by forming vias without contact pads (“padless vias”).
  • An electronic component such as a ball grid array (BGA) component may be attached to the PCB with solder interconnections between the padless vias and contact pads on a bottom surface of the electronic component.
  • BGA ball grid array
  • conductive traces may be routed between padless vias and adjacent interconnections even for reduced pitch BGA components, which may reduce a total number of PCB layers needed for signal routing and may reduce overall PCB cost.
  • These conductive traces may have a standard width and spacing which may further reduce overall PCB cost.
  • the component 210 may be, for example, an electronic component, such as a processor, a chipset, a memory, a memory controller, graphics controller, etc., housed in a BGA package or a leadless surface mount package.
  • the PCB 220 may be a computer system motherboard and the component 210 may be a processor.
  • the component 210 may be a socket for mounting an electronic component, such as a BGA socket or a land grid array (LGA) socket.
  • LGA land grid array
  • the PCB 220 may have a number of signal routing layers, such as top surface signal routing layer 240 , and one or more conductive planes, such as conductive plane 245 .
  • the signal routing layers may have a plurality of conductive traces 242 and 244 to route signals to and from the component 210 .
  • the padless via 230 may extend from the top surface signal routing layer 240 to a bottom surface signal routing layer 250 .
  • a conductive trace on the bottom surface signal routing layer 250 may be in electrical contact with a plating material 232 formed on an inner surface of the padless via 230 .
  • the padless via 230 may be in electrical contact with the conductive plane 245 , which may be a power or ground plane.
  • a layer of solder mask material 260 may be deposited over the top surface signal routing layer 240 , with openings to expose the padless via 230 and the contact pad 234 .
  • the openings may allow attachment of solder balls 212 , which may be used for electrical interconnection with the component 210 .
  • the solder mask material 260 may prevent solder from the solder balls 212 from wicking to adjacent interconnections during a reflow process.
  • FIG. 3 illustrates a top view of the PCB 220 with the layer of solder mask material 260 removed to allow a view of the top surface routing layer 240 .
  • the contact pad 234 may be in electrical contact with the conductive trace 244 on the top surface signal routing layer 240 . Therefore, a via may not be required to route a signal from the contact pad 234 to another PCB layer and the contact pad 234 may have a smaller diameter D 3 than traditional contact pads.
  • traditional contact pads may be in the range of 18 to 32 mils
  • the contact pad 234 may have a diameter less than 18 mils because a via will not be drilled through it.
  • the contact pad 234 may also have a diameter approximately equal to the diameter of the padless via 230 , for example, 12 mils. As illustrated, the reduced diameter of the padless vias 230 and the contact pad 234 may allow the conductive traces 242 and 244 to be routed between adjacent interconnections. It should be noted, however, that the dimensions of the padless vias and contact pads shown in FIG. 4 are exemplary only, and embodiments of the present invention may have any suitable combination of padless vias and contact pads arranged in any suitable pattern, for example, corresponding to contact pads of a component to be attached to the PCB.
  • FIG. 4 illustrates a flow diagram 400 illustrating exemplary operations of a method to fabricate a PCB according to one embodiment of the present invention.
  • a first signal routing layer is formed on a first surface of a PCB.
  • the first signal routing layer may be formed by any suitable process. Comment: FIG. 4 shows step 430 as a required plugging step. Note that plugging may not be required.
  • an array of interconnections is formed on the first surface of the PCB, the array of interconnections comprising at least one padless via extending from the first signal routing layer to at least one conductive plane and/or a second signal routing layer, wherein the at least one padless via is in electrical contact with the at least one conductive plane and/or a conductive trace on the second signal routing layer.
  • the array of interconnections may include any suitable combination of contact pads and padless vias, which may be formed by any suitable methods.
  • the padless via 230 may be formed by drilling a hole through the top surface signal routing layer 240 and plating the drilled hole with the plating material 232 . Because the hole is not drilled through a contact pad, the padless via 230 may have an outer diameter D 1 equal to a diameter of the drilled hole. Any suitable drilling technique may be used, such as mechanical drilling, laser drilling and plasma drilling. Drilled holes having a diameter less than 8 mils may be achieved using such methods. However, as drilling technologies progress, the achievable diameter of drilled holes may decrease.
  • the drilled hole may be plated according to any suitable method, such as electrodeposition or electroless plating.
  • the plating material 232 may be any suitable conductive material, such as copper or silver, and may be plated to any suitable thickness.
  • a drilled hole having a diameter D 1 of 12 mils may be plated with the plating material 232 to a thickness of 1 mil, resulting in the padless via 230 having an inner diameter D 2 of 10 mils.
  • the padless via 230 may extend from the top surface routing layer 240 to the bottom surface routing layer 250 .
  • a blind padless via 530 may be formed in a PCB 520 extending from a top surface signal routing layer 540 to an inner layer 545 .
  • the inner layer 545 may be an inner signal routing layer or a conductive plane. It may be an advantage that the blind padless via 530 does not extend below inner layer 545 , and therefore does not occupy routing area on signal routing layers below inner layer 545 .
  • a via plug may be formed in the padless via.
  • a top-side via plug 262 may prevent solder from solder ball 212 from wicking into the padless via 230 which may leave insufficient solder for electrical connection between the padless via 230 and the contact pad 234 .
  • the top-side via plug 262 may be formed by allowing the solder mask material 260 to flow into the padless via 230 during formation of the layer of solder mask. After curing, a top portion of the solder mask material 260 in the padless via may be removed, for example, by laser ablation, leaving the top-side via plug 262 .
  • a via plug 662 may be formed by depositing a solder mask material 660 on a bottom surface of a PCB 620 , and allowing the solder mask material 660 to flow into a padless via 630 .
  • a conductive via plug 762 may be formed of an electrically conductive material, which may provide a greater conductive surface for electrical connection with a solder ball 712 .
  • the conductive via plug 762 may be formed by filling a padless via 730 formed in a PCB 720 with an electrically conductive material, which may be any suitable electrically conductive material, such as a solder or a silver-filled epoxy.
  • a conductive via plug may be formed by overplating a padless via, such as the blind padless via 530 and removing a top portion of the plating material 532 , for example, by etching. Further, for some embodiments of the present invention, padless vias may not require via plugs.
  • a component is attached to the PCB, with a solder interconnection between the at least one padless via and a contact pad on a bottom surface of the component.
  • the component 210 may be attached to the PCB 220 by aligning solder balls 212 attached to the contact pads 214 of the component 210 with the padless via 230 and the adjacent contact pad 234 and reflowing the solder balls 212 to electrically couple the contact pads 214 to the plating material 232 of the padless vias 230 and the adjacent contact pad 234 .
  • the solder balls 212 may be made of any suitable solder material, such as a common lead-tin alloy. Alternatively, the solder balls 212 may be made of a lead free solder, such as a tin-copper alloy. The solder balls 212 may be reflowed according to any suitable reflow process. For some embodiments of the present invention, in an effort to avoid trapping air, moisture, or gas, which may expand during reflow and create a void or open in a solder joint, a solder ball may be formed with a solder shell solder surrounding a solid center of a material having a higher melting temperature than the solder shell.
  • FIG. 8A illustrates a solder ball 812 having a solder shell 814 surrounding a solid center 816 .
  • the solder shell 814 may be made of a lead-free solder, for example, having a melting temperature of approximately 410° F.
  • the center ball may be made of aluminum or copper, having melting temperatures of approximately 1221° F. or 1981° F., respectively.
  • the solid center 816 may have a diameter D 3 greater than an inner diameter D 2 of a padless via 830 formed in a PCB 820 .
  • the padless via 830 may have an inner diameter D 2 of 10 mils
  • the solid center 816 may have a diameter D 3 of 20 mils.
  • the solid center 816 may come in contact with a plating material 832 during reflow of the solder shell 814 , which may enhance the electrical connection between the solder ball 812 and the plating material 832 and may prevent solder from wicking into the padless via 830 .
  • Solid-centered solder balls may also help achieve a uniform height among solder interconnections after reflow.
  • the padless via 230 and adjacent contact pad 234 be formed on a top surface of the PCB 220 as part of an array of interconnections to connect with a corresponding array of contact pads 214 on a bottom surface of the component 210 .
  • the contact pads 214 on the bottom surface of the component 210 may be formed as an array have a substantially uniform pitch P.
  • the component 210 may be a BGA component having a standard BGA pitch, such as 1.5 mm, 1.27 mm or 1.0 mm.
  • the component 210 may be a BGA component having a reduced BGA pitch, such as 0.8 mm, 0.75 mm, 0.6 mm and 0.5 mm.
  • conductive traces may be routed between padless vias and adjacent interconnections for reduced pitch BGA components.
  • conductive traces 242 and 244 may be routed between adjacent padless vias 230 .
  • D Assuming adjacent padless vias have a same diameter, “D”, a minimum pitch “P” for a component to be attached to the array of interconnections may be determined by the following equation:
  • N is the number of conductive traces routed between adjacent interconnections
  • t is the trace width
  • s is the space between traces
  • a is a trace-via spacing
  • N ( P ⁇ D ⁇ 2 a+s )/( t+s )
  • FIG. 9 is a table comparing a maximum number of routable conductive traces N between interconnections of varying diameters for component pitches ranging from 0.5 mm (19.7 mils) to 1.0 mm (39.4 mils). The table assumes trace and space widths of 3 mils and trace-via spacing of 5 mils. As illustrated, for a component pitch of 0.8 mm, two conductive traces may be routed between adjacent padless vias having a diameter of 12 mils, while no conductive traces may be routed between traditional vias formed through contact pads having a diameter of 24 mils. Further, contact pads having a diameter of 24 mils or greater overlap for component pitches of 0.75 mm or less.
  • routing conductive traces between adjacent interconnections may reduce a total number of PCB layers needed for interconnection, which may reduce overall PCB cost. Further, by using a standard width for the conductive traces and spaces, such as 3 mils, PCB costs may be further reduced by avoiding complicated and expensive manufacturing processes which may be required for finer width conductive traces and spaces.

Abstract

A first signal routing layer may be formed on a first surface of a printed circuit board (PCB). An array of interconnections may formed on the first surface of the PCB, the array of interconnections comprising at least one padless via formed within the PCB, the at least one padless via extending from the first signal routing layer to at least one conductive plane and/or a second signal routing layer. The at least one padless via may be in electrical contact with the at least one conductive plane and/or a conductive trace on the second signal routing layer. A component may be attached to the PCB, with a solder interconnection between the at least one padless via and a contact pad on a bottom surface of the component. The component may be, for example, an electronic component such as a ball grid array (BGA) component or a leadless surface mount component.

Description

    FIELD
  • Embodiments of the present invention relate to printed circuit board (PCB) technology and more particularly to interconnecting a component with a PCB. [0001]
  • BACKGROUND
  • Within the electronics industry there is a continuing effort to increase device density and speed. As device density increases, the number of interconnections per square inch of an electronic component may increase accordingly. To accommodate an increased number of interconnections, some electronic components are packaged in a ball grid array (BGA) package with an array of solder balls formed on a bottom surface. As illustrated in FIG. 1, a [0002] BGA component 110 may be interconnected with a printed circuit board (PCB) 120 by aligning an array of solder balls 112 having an array pitch “P” with a corresponding array of contact pads, such as contact pads 122 and 124, formed on a top surface of the PCB 120. The solder balls 112 may be reflowed to make electrical connections between the solder balls 112 and the contact pads 122 and 124. A layer of solder mask 160 may prevent solder from wicking to adjacent contact pads during reflow.
  • Typically, the PCB [0003] 120 has numerous layers of conductive traces to route signals from the BGA component 110 to other electronic components mounted on both sides of the PCB 120. The PCB 120 may also have a number of vias to route signals from contact pads to the signal routing layers. For example, a signal may travel from the solder ball 112 to the contact pad 122 and through a via 130 to a conductive trace on a bottom surface signal routing layer. The via 130 is typically formed by drilling a hole through the contact pad 122 and plating the drilled hole with a plating material 132. For example, a hole having a diameter D1 from 10-16 mils may be drilled through a contact pad having a diameter D3 from 18-24 mils. To make efficient use of the signal routing area on the PCB 120 beneath the BGA component 110, one or more conductive traces may be routed between adjacent contact pads 122 and 124.
  • However, as device density increases, the BGA array pitch may shrink and the contact pads may occupy a larger percentage of signal routing area beneath the BGA component which may prevent signal routing between adjacent contact pads. One approach to increase the signal routing area is to reduce the diameter of the contact pads. However, as contact pad diameter decreases, it may become more difficult to drill a via hole through the contact pad due to drill wander and tolerance errors in the drilling process. Errors in the drilling process may lead to non-uniformity in contact pad configuration, which may result in manufacturing errors during assembly of the PCB, and may ultimately lead to scrapping the PCB. Another approach to increase signal routing area is to reduce the width and spacing of conductive traces. However, this approach may require more complicated manufacturing processes which may increase overall PCB cost. [0004]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 illustrates a cross-sectional view of a printed circuit board (PCB) with a via according to the prior art. [0005]
  • FIG. 2 illustrates a cross-sectional view of an exemplary system comprising a PCB according to one embodiment of the present invention. [0006]
  • FIG. 3 illustrates a top view of the PCB illustrated in FIG. 2. [0007]
  • FIG. 4 illustrates a flow diagram of a method to fabricate a PCB according to one embodiment of the present invention. [0008]
  • FIG. 5 illustrates a cross-sectional view of a PCB with a blind padless via according to one embodiment of the present invention. [0009]
  • FIG. 6 illustrates a cross-sectional view of a PCB with a padless via with a via plug according to one embodiment of the present invention. [0010]
  • FIG. 7 illustrates a cross-sectional view of a PCB with a padless via with a conductive via plug according to one embodiment of the present invention. [0011]
  • FIG. 8 illustrates a cross-sectional view of a PCB with a padless via with a conductive via plug according to another embodiment of the present invention. [0012]
  • FIG. 9 is a table comparing routable conductive traces between interconnections having different diameters for various component pitches. [0013]
  • DETAILED DESCRIPTION
  • In the following description, numerous specific details are set forth such as material types and ranges, in order to provide a thorough understanding of specific embodiments of the present invention. However, it will be obvious to one of skill in the art, that embodiments of the invention may be practiced without these specific details. In other instances, well-known elements and processing techniques have not been shown in particular detail in order to avoid unnecessarily obscuring the understanding of this description. [0014]
  • Embodiments of the present invention may increase signal routing area on a printed circuit board (PCB) by forming vias without contact pads (“padless vias”). An electronic component, such as a ball grid array (BGA) component may be attached to the PCB with solder interconnections between the padless vias and contact pads on a bottom surface of the electronic component. Because padless vias may have a smaller diameter than traditional contact pads, conductive traces may be routed between padless vias and adjacent interconnections even for reduced pitch BGA components, which may reduce a total number of PCB layers needed for signal routing and may reduce overall PCB cost. These conductive traces may have a standard width and spacing which may further reduce overall PCB cost. [0015]
  • FIG. 2 illustrates an [0016] exemplary system 200, according to one embodiment of the present invention, comprising a component 210 mounted on a PCB 220. A padless via 230 and an adjacent contact pad 234 may be formed on a top surface of the PCB 220. The padless via 230 and the contact pad 234 may be collectively referred to as interconnections. The padless via 230 and the contact pad 234 may be part of an array of interconnections that comprise any suitable combination of padless vias 230 and contact pads 234 for electrically coupling the PCB to a corresponding array of contact pads 214 formed on a bottom surface of a component 210.
  • The [0017] component 210 may be, for example, an electronic component, such as a processor, a chipset, a memory, a memory controller, graphics controller, etc., housed in a BGA package or a leadless surface mount package. For one embodiment of the present invention, the PCB 220 may be a computer system motherboard and the component 210 may be a processor. Alternatively, the component 210 may be a socket for mounting an electronic component, such as a BGA socket or a land grid array (LGA) socket.
  • The PCB [0018] 220 may have a number of signal routing layers, such as top surface signal routing layer 240, and one or more conductive planes, such as conductive plane 245. The signal routing layers may have a plurality of conductive traces 242 and 244 to route signals to and from the component 210. The padless via 230 may extend from the top surface signal routing layer 240 to a bottom surface signal routing layer 250. A conductive trace on the bottom surface signal routing layer 250 may be in electrical contact with a plating material 232 formed on an inner surface of the padless via 230. For some embodiments of the present invention, the padless via 230 may be in electrical contact with the conductive plane 245, which may be a power or ground plane.
  • A layer of [0019] solder mask material 260 may be deposited over the top surface signal routing layer 240, with openings to expose the padless via 230 and the contact pad 234. The openings may allow attachment of solder balls 212, which may be used for electrical interconnection with the component 210. The solder mask material 260 may prevent solder from the solder balls 212 from wicking to adjacent interconnections during a reflow process.
  • FIG. 3 illustrates a top view of the [0020] PCB 220 with the layer of solder mask material 260 removed to allow a view of the top surface routing layer 240. As illustrated, the contact pad 234 may be in electrical contact with the conductive trace 244 on the top surface signal routing layer 240. Therefore, a via may not be required to route a signal from the contact pad 234 to another PCB layer and the contact pad 234 may have a smaller diameter D3 than traditional contact pads. For example, while traditional contact pads may be in the range of 18 to 32 mils, the contact pad 234 may have a diameter less than 18 mils because a via will not be drilled through it.
  • The [0021] contact pad 234 may also have a diameter approximately equal to the diameter of the padless via 230, for example, 12 mils. As illustrated, the reduced diameter of the padless vias 230 and the contact pad 234 may allow the conductive traces 242 and 244 to be routed between adjacent interconnections. It should be noted, however, that the dimensions of the padless vias and contact pads shown in FIG. 4 are exemplary only, and embodiments of the present invention may have any suitable combination of padless vias and contact pads arranged in any suitable pattern, for example, corresponding to contact pads of a component to be attached to the PCB.
  • FIG. 4 illustrates a flow diagram [0022] 400 illustrating exemplary operations of a method to fabricate a PCB according to one embodiment of the present invention. For block 410, a first signal routing layer is formed on a first surface of a PCB. The first signal routing layer may be formed by any suitable process. Comment: FIG. 4 shows step 430 as a required plugging step. Note that plugging may not be required.
  • For [0023] block 420, an array of interconnections is formed on the first surface of the PCB, the array of interconnections comprising at least one padless via extending from the first signal routing layer to at least one conductive plane and/or a second signal routing layer, wherein the at least one padless via is in electrical contact with the at least one conductive plane and/or a conductive trace on the second signal routing layer. The array of interconnections may include any suitable combination of contact pads and padless vias, which may be formed by any suitable methods.
  • For example, referring back to FIG. 2, the padless via [0024] 230 may be formed by drilling a hole through the top surface signal routing layer 240 and plating the drilled hole with the plating material 232. Because the hole is not drilled through a contact pad, the padless via 230 may have an outer diameter D1 equal to a diameter of the drilled hole. Any suitable drilling technique may be used, such as mechanical drilling, laser drilling and plasma drilling. Drilled holes having a diameter less than 8 mils may be achieved using such methods. However, as drilling technologies progress, the achievable diameter of drilled holes may decrease.
  • The drilled hole may be plated according to any suitable method, such as electrodeposition or electroless plating. The [0025] plating material 232 may be any suitable conductive material, such as copper or silver, and may be plated to any suitable thickness. For example, a drilled hole having a diameter D1 of 12 mils may be plated with the plating material 232 to a thickness of 1 mil, resulting in the padless via 230 having an inner diameter D2 of 10 mils.
  • As illustrated, the padless via [0026] 230 may extend from the top surface routing layer 240 to the bottom surface routing layer 250. However, as illustrated in FIG. 5, for some embodiments of the present invention, a blind padless via 530 may be formed in a PCB 520 extending from a top surface signal routing layer 540 to an inner layer 545. The inner layer 545 may be an inner signal routing layer or a conductive plane. It may be an advantage that the blind padless via 530 does not extend below inner layer 545, and therefore does not occupy routing area on signal routing layers below inner layer 545.
  • Forming Via Plugs
  • Optionally, for [0027] block 430 of FIG. 4, a via plug may be formed in the padless via. For example, as illustrated in FIG. 2, a top-side via plug 262 may prevent solder from solder ball 212 from wicking into the padless via 230 which may leave insufficient solder for electrical connection between the padless via 230 and the contact pad 234. The top-side via plug 262 may be formed by allowing the solder mask material 260 to flow into the padless via 230 during formation of the layer of solder mask. After curing, a top portion of the solder mask material 260 in the padless via may be removed, for example, by laser ablation, leaving the top-side via plug 262. Alternatively, as illustrated in FIG. 6, a via plug 662 may be formed by depositing a solder mask material 660 on a bottom surface of a PCB 620, and allowing the solder mask material 660 to flow into a padless via 630.
  • As illustrated in FIG. 7, a conductive via [0028] plug 762 may be formed of an electrically conductive material, which may provide a greater conductive surface for electrical connection with a solder ball 712. The conductive via plug 762 may be formed by filling a padless via 730 formed in a PCB 720 with an electrically conductive material, which may be any suitable electrically conductive material, such as a solder or a silver-filled epoxy. Alternatively, as illustrated in FIG. 5, a conductive via plug may be formed by overplating a padless via, such as the blind padless via 530 and removing a top portion of the plating material 532, for example, by etching. Further, for some embodiments of the present invention, padless vias may not require via plugs.
  • For [0029] block 440 of FIG. 4, a component is attached to the PCB, with a solder interconnection between the at least one padless via and a contact pad on a bottom surface of the component. For example, referring back to FIG. 2, the component 210 may be attached to the PCB 220 by aligning solder balls 212 attached to the contact pads 214 of the component 210 with the padless via 230 and the adjacent contact pad 234 and reflowing the solder balls 212 to electrically couple the contact pads 214 to the plating material 232 of the padless vias 230 and the adjacent contact pad 234.
  • The [0030] solder balls 212 may be made of any suitable solder material, such as a common lead-tin alloy. Alternatively, the solder balls 212 may be made of a lead free solder, such as a tin-copper alloy. The solder balls 212 may be reflowed according to any suitable reflow process. For some embodiments of the present invention, in an effort to avoid trapping air, moisture, or gas, which may expand during reflow and create a void or open in a solder joint, a solder ball may be formed with a solder shell solder surrounding a solid center of a material having a higher melting temperature than the solder shell.
  • FIG. 8A illustrates a [0031] solder ball 812 having a solder shell 814 surrounding a solid center 816. The solder shell 814 may be made of a lead-free solder, for example, having a melting temperature of approximately 410° F., while the center ball may be made of aluminum or copper, having melting temperatures of approximately 1221° F. or 1981° F., respectively. As illustrated, the solid center 816 may have a diameter D3 greater than an inner diameter D2 of a padless via 830 formed in a PCB 820. For example, the padless via 830 may have an inner diameter D2 of 10 mils, while the solid center 816 may have a diameter D3 of 20 mils.
  • As illustrated in FIG. 8B, the [0032] solid center 816 may come in contact with a plating material 832 during reflow of the solder shell 814, which may enhance the electrical connection between the solder ball 812 and the plating material 832 and may prevent solder from wicking into the padless via 830. Solid-centered solder balls may also help achieve a uniform height among solder interconnections after reflow.
  • Signal Routing Between Adjacent Interconnections
  • Referring back to FIG. 2, the padless via [0033] 230 and adjacent contact pad 234 be formed on a top surface of the PCB 220 as part of an array of interconnections to connect with a corresponding array of contact pads 214 on a bottom surface of the component 210. As illustrated, the contact pads 214 on the bottom surface of the component 210 may be formed as an array have a substantially uniform pitch P. For example, the component 210 may be a BGA component having a standard BGA pitch, such as 1.5 mm, 1.27 mm or 1.0 mm. Alternatively, the component 210 may be a BGA component having a reduced BGA pitch, such as 0.8 mm, 0.75 mm, 0.6 mm and 0.5 mm.
  • As previously described, due to a reduced diameter of padless vias, conductive traces may be routed between padless vias and adjacent interconnections for reduced pitch BGA components. For example, as illustrated in FIG. 3, [0034] conductive traces 242 and 244 may be routed between adjacent padless vias 230. Assuming adjacent padless vias have a same diameter, “D”, a minimum pitch “P” for a component to be attached to the array of interconnections may be determined by the following equation:
  • P=D+N*t+(N−1)*s+2*a
  • where “N” is the number of conductive traces routed between adjacent interconnections, “t” is the trace width, “s” is the space between traces, and “a” is a trace-via spacing. Alternatively, the number of conductive traces N that may be routed between padless vias for a given pitch P may be determined by solving the above equation for N, which yields: [0035]
  • N=(P−D−2a+s)/(t+s)
  • If adjacent interconnections, such as a [0036] padless vias 230 and the contact pad 234, have differing diameters, D1 and D2, the above equations may be modified by substituting (D1+D2)/2 for D to find the number of conductive traces that may be routed between the adjacent interconnections.
  • FIG. 9 is a table comparing a maximum number of routable conductive traces N between interconnections of varying diameters for component pitches ranging from 0.5 mm (19.7 mils) to 1.0 mm (39.4 mils). The table assumes trace and space widths of 3 mils and trace-via spacing of 5 mils. As illustrated, for a component pitch of 0.8 mm, two conductive traces may be routed between adjacent padless vias having a diameter of 12 mils, while no conductive traces may be routed between traditional vias formed through contact pads having a diameter of 24 mils. Further, contact pads having a diameter of 24 mils or greater overlap for component pitches of 0.75 mm or less. [0037]
  • As previously described, routing conductive traces between adjacent interconnections may reduce a total number of PCB layers needed for interconnection, which may reduce overall PCB cost. Further, by using a standard width for the conductive traces and spaces, such as 3 mils, PCB costs may be further reduced by avoiding complicated and expensive manufacturing processes which may be required for finer width conductive traces and spaces. [0038]
  • In the foregoing description, the invention has been described with reference to specific exemplary embodiments thereof. It will, however, be evident that various modifications and changes may be made thereto without departing from the broader spirit or scope of the appended claims. The specification and drawings are, accordingly, to be regarded in an illustrative rather than a restrictive sense. [0039]

Claims (30)

What is claimed is:
1. A printed circuit board (PCB) comprising:
a first signal routing layer formed on a first surface of the PCB;
at least one conductive plane and/or a second signal routing layer;
at least one padless via extending from the first signal routing layer to the at least one conductive plane and/or the second signal routing layer, the at least one padless via in electrical contact with the at least one conductive plane and/or a conductive trace on the second signal routing layer; and
a layer of solder mask material formed over the first signal routing layer, the layer of solder mask material having at least one opening to expose the at least one padless via.
2. The PCB of claim 1, wherein the second signal routing layer is an inner signal routing layer and the at least one padless via is a blind padless via extending from the first signal routing layer to the second signal routing layer.
3. The PCB of claim 1, further comprising a via plug formed within the padless via.
4. The PCB of claim 3, wherein the via plug is formed of an electrically conductive material.
5. The PCB of claim 1, further comprising a component attached to the PCB with a solder interconnection between a contact pad on a bottom surface of the component and the at least one padless via.
6. A printed circuit board (PCB) comprising:
a first signal routing layer formed on a first surface of the PCB;
at least one conductive plane and/or a second signal routing layer; and
an array of interconnections formed on the first surface of the PCB, the array of interconnections comprises at least one padless via extending from the first signal routing layer to the at least one conductive plane and/or the second signal routing layer, wherein the padless via is in electrical contact with the at least one conductive plane and/or a conductive trace on the second signal routing layer.
7. The PCB of claim 6, further comprising an electrically conductive via plug formed within the at least one padless via.
8. The PCB of claim 6, wherein the array of interconnections further comprises at least one contact pad electrically coupled with a conductive trace on the first signal routing layer, wherein the at least one contact pad has a diameter less than 18 mils.
9. The PCB of claim 6, further comprising at least two conductive traces formed on the first signal routing layer between the at least one padless via and an adjacent interconnection.
10. The PCB of claim 9, wherein the array of interconnections has an array pitch of 0.8 mm or less.
11. The PCB of claim 10, wherein the at least two conductive traces have a width of approximately 3 mils.
12. The PCB of claim 6, wherein the at least one padless via has a diameter of 12 mils or less.
13. A system comprising:
a printed circuit board (PCB) comprising a first signal routing layer formed on a first surface of the PCB, at least one conductive plane and/or a second signal routing layer, and an array of interconnections formed on the first surface of the PCB, wherein the array of interconnections comprises at least one padless via extending from the first signal routing layer to the at least one conductive plane and/or the second signal routing layer, the at least one padless via electrically connected to the at least one conductive plane and/or a conductive trace on the second signal routing layer; and
a component attached to the PCB by a plurality of solder ball interconnections between the array of interconnections formed on the first surface of the PCB and a corresponding array of contact pads disposed on a bottom surface of the electronic component.
14. The system of claim 13, wherein the component is a ball grid array (BGA) component having an array pitch less than 1.0 mm.
15. The system of claim 14, further comprising at least two conductive traces on the first signal routing layer routed between the at least one padless via and an adjacent interconnection.
16. The system of claim 15, wherein a width of the at least two conductive traces is approximately 3 mils.
17. The system of claim 13, wherein the at least one padless via has a diameter of 12 mils or less.
18. The system of claim 13, wherein the PCB is a motherboard and the component is a processor.
19. A method of fabricating a printed circuit board (PCB) comprising:
forming a first signal routing layer on a first surface of a printed circuit board (PCB); and
forming an array of interconnections on the first surface of the PCB, the array of interconnections comprising at least one padless via extending from the first signal routing layer to a conductive plane and/or a second signal routing layer, wherein the first padless via is in electrical contact with the conductive plane and/or a conductive trace on the second signal routing layer.
20. The method of claim 19, wherein the second signal routing layer is an inner signal routing layer and the at least one padless via is a blind via extending from the first signal routing layer to the second signal routing layer.
21. The method of claim 19, wherein forming an array of interconnections on the first surface of the PCB comprises forming an array of interconnections having an array pitch of 0.8 mm or less.
22. The method of claim 21, further comprising routing at least two conductive traces on the first signal routing layer between the at least one padless via and an adjacent interconnection.
23. The method of claim 19, further comprising forming a via plug within the at least one padless via.
24. The method of claim 19, wherein forming a via plug within the at least one padless via comprises overplating the at least one padless via to form a via plug of plating material.
25. The method of claim 19, wherein forming an array of interconnections on the first surface of the PCB comprises forming at least one contact pad on the first surface of the PCB adjacent to the at least one padless via, the at least one contact pad in electrical contact with a conductive trace on the first signal routing layer.
26. A method of attaching a component to a printed circuit board (PCB) comprising:
aligning solder balls attached to an array of contact pads on a bottom surface of the component with a corresponding array of interconnections formed on a first surface of the PCB, the array of interconnections comprising at least one padless via extending from a first signal routing layer on the first surface of the PCB to a conductive plane and/or a second signal routing layer within the PCB, wherein the at least one padless via is in electrical contact with the conductive plane and/or a conductive trace on the second signal routing layer; and
reflowing the solder balls to electrically connect the array of contact pads to the corresponding array of interconnections.
27. The method of claim 26, wherein the solder balls comprise a solder shell surrounding a solid center of a material having a higher melting temperature than the solder shell.
28. The method of claim 27, wherein the solder shell is made of a lead-free solder and the solid center is copper or aluminum.
29. The method of claim 26, wherein the component is an electronic component housed in a ball grid array (BGA) package having a BGA pitch of 0.8 mm or less.
30. The method of claim 29, wherein the component is a land grid array (LGA) socket.
US10/625,216 2002-03-27 2003-07-22 Apparatus and method for interconnection between a component and a printed circuit board Abandoned US20040084210A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/625,216 US20040084210A1 (en) 2002-03-27 2003-07-22 Apparatus and method for interconnection between a component and a printed circuit board

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/108,219 US6630631B1 (en) 2002-03-27 2002-03-27 Apparatus and method for interconnection between a component and a printed circuit board
US10/625,216 US20040084210A1 (en) 2002-03-27 2003-07-22 Apparatus and method for interconnection between a component and a printed circuit board

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/108,219 Continuation US6630631B1 (en) 2002-03-27 2002-03-27 Apparatus and method for interconnection between a component and a printed circuit board

Publications (1)

Publication Number Publication Date
US20040084210A1 true US20040084210A1 (en) 2004-05-06

Family

ID=28452826

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/108,219 Expired - Lifetime US6630631B1 (en) 2002-03-27 2002-03-27 Apparatus and method for interconnection between a component and a printed circuit board
US10/625,216 Abandoned US20040084210A1 (en) 2002-03-27 2003-07-22 Apparatus and method for interconnection between a component and a printed circuit board

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/108,219 Expired - Lifetime US6630631B1 (en) 2002-03-27 2002-03-27 Apparatus and method for interconnection between a component and a printed circuit board

Country Status (1)

Country Link
US (2) US6630631B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060284301A1 (en) * 2005-06-17 2006-12-21 Corisis David J CSP semiconductor chip and BGA assembly with enhanced physical protection, protective members and assemblies used with same, and methods of enhancing physical protection of chips and assemblies
US20080185178A1 (en) * 2003-12-04 2008-08-07 Matsushita Electric Industrial Co., Ltd. Circuit board and method for manufacturing the same, semiconductor package, component built-in module and board for electronic equipment
US20090233402A1 (en) * 2008-03-11 2009-09-17 Taiwan Semiconductor Manufacturing Co., Ltd. Wafer level ic assembly method
US20150092381A1 (en) * 2007-01-12 2015-04-02 Broadcom Corporation Padless via

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7061095B2 (en) * 2001-09-26 2006-06-13 Intel Corporation Printed circuit board conductor channeling
US6927346B2 (en) * 2002-12-20 2005-08-09 Intel Corporation Surface mount technology to via-in-pad interconnections
JP4255842B2 (en) * 2004-01-09 2009-04-15 パナソニック株式会社 Semiconductor device
WO2005074335A1 (en) * 2004-01-23 2005-08-11 Textron Systems Corporation Conductive vias and associated methods and structures
US7645940B2 (en) * 2004-02-06 2010-01-12 Solectron Corporation Substrate with via and pad structures
US7241680B2 (en) * 2004-04-30 2007-07-10 Intel Corporation Electronic packaging using conductive interposer connector
US7317255B2 (en) * 2004-09-30 2008-01-08 Kyocera Wireless Corp. Reliable printed wiring board assembly employing packages with solder joints
US7172438B2 (en) 2005-03-03 2007-02-06 Samtec, Inc. Electrical contacts having solder stops
US8353995B2 (en) * 2005-07-15 2013-01-15 3M Innovative Properties Company Automobile panel repair laminate
US7596482B2 (en) * 2006-05-25 2009-09-29 Dell Products L.P. System and method to analyze and determine ampacity risks on PCB interconnections
DE102009040022B3 (en) * 2009-09-03 2011-03-24 Beru Ag Method for forming a fuse and circuit board with fuse
US9468090B2 (en) 2012-10-29 2016-10-11 Cisco Technology, Inc. Current redistribution in a printed circuit board
US10074919B1 (en) * 2017-06-16 2018-09-11 Intel Corporation Board integrated interconnect
US10757801B2 (en) * 2018-09-10 2020-08-25 Hewlett Packard Enterprise Development Lp Solder mask void regions for printed circuit boards
JP2020174146A (en) * 2019-04-11 2020-10-22 イビデン株式会社 Wiring board and method for measuring wiring board

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5399898A (en) * 1992-07-17 1995-03-21 Lsi Logic Corporation Multi-chip semiconductor arrangements using flip chip dies
US5418689A (en) * 1993-02-01 1995-05-23 International Business Machines Corporation Printed circuit board or card for direct chip attachment and fabrication thereof
US5680701A (en) * 1992-08-26 1997-10-28 International Business Machines Corporation Fabrication process for circuit boards
US5880030A (en) * 1997-11-25 1999-03-09 Intel Corporation Unlanded via structure and method for making same
US6020561A (en) * 1996-03-29 2000-02-01 Intel Corporation Printed circuit substrate with solder formed on pad-on-via and pad-off-via contacts thereof
US20010009066A1 (en) * 1995-06-06 2001-07-26 International Business Machines Corporation Full additive process with filled plated through holes
US6274821B1 (en) * 1998-09-16 2001-08-14 Denso Corporation Shock-resistive printed circuit board and electronic device including the same
US6335565B1 (en) * 1996-12-04 2002-01-01 Hitachi, Ltd. Semiconductor device
US20030001287A1 (en) * 2001-06-27 2003-01-02 Intel Corporation Flexible tape electronics packaging
US6521846B1 (en) * 2002-01-07 2003-02-18 Sun Microsystems, Inc. Method for assigning power and ground pins in array packages to enhance next level routing
US6555208B2 (en) * 1997-01-10 2003-04-29 Ibiden Co., Ltd. Printed wiring board and method of manufacturing the same

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5399898A (en) * 1992-07-17 1995-03-21 Lsi Logic Corporation Multi-chip semiconductor arrangements using flip chip dies
US5680701A (en) * 1992-08-26 1997-10-28 International Business Machines Corporation Fabrication process for circuit boards
US5418689A (en) * 1993-02-01 1995-05-23 International Business Machines Corporation Printed circuit board or card for direct chip attachment and fabrication thereof
US20010009066A1 (en) * 1995-06-06 2001-07-26 International Business Machines Corporation Full additive process with filled plated through holes
US6020561A (en) * 1996-03-29 2000-02-01 Intel Corporation Printed circuit substrate with solder formed on pad-on-via and pad-off-via contacts thereof
US6335565B1 (en) * 1996-12-04 2002-01-01 Hitachi, Ltd. Semiconductor device
US6555208B2 (en) * 1997-01-10 2003-04-29 Ibiden Co., Ltd. Printed wiring board and method of manufacturing the same
US5880030A (en) * 1997-11-25 1999-03-09 Intel Corporation Unlanded via structure and method for making same
US6274821B1 (en) * 1998-09-16 2001-08-14 Denso Corporation Shock-resistive printed circuit board and electronic device including the same
US20030001287A1 (en) * 2001-06-27 2003-01-02 Intel Corporation Flexible tape electronics packaging
US6521846B1 (en) * 2002-01-07 2003-02-18 Sun Microsystems, Inc. Method for assigning power and ground pins in array packages to enhance next level routing

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080185178A1 (en) * 2003-12-04 2008-08-07 Matsushita Electric Industrial Co., Ltd. Circuit board and method for manufacturing the same, semiconductor package, component built-in module and board for electronic equipment
US20060284301A1 (en) * 2005-06-17 2006-12-21 Corisis David J CSP semiconductor chip and BGA assembly with enhanced physical protection, protective members and assemblies used with same, and methods of enhancing physical protection of chips and assemblies
US20150092381A1 (en) * 2007-01-12 2015-04-02 Broadcom Corporation Padless via
US9237651B2 (en) * 2007-01-12 2016-01-12 Broadcom Corporation Padless via
US20090233402A1 (en) * 2008-03-11 2009-09-17 Taiwan Semiconductor Manufacturing Co., Ltd. Wafer level ic assembly method
US8247267B2 (en) * 2008-03-11 2012-08-21 Taiwan Semiconductor Manufacturing Company, Ltd. Wafer level IC assembly method
US8551813B2 (en) 2008-03-11 2013-10-08 Taiwan Semiconductor Manufacturing Company, Ltd. Wafer level IC assembly method

Also Published As

Publication number Publication date
US20030183421A1 (en) 2003-10-02
US6630631B1 (en) 2003-10-07

Similar Documents

Publication Publication Date Title
US6630631B1 (en) Apparatus and method for interconnection between a component and a printed circuit board
US5459287A (en) Socketed printed circuit board BGA connection apparatus and associated methods
US5706178A (en) Ball grid array integrated circuit package that has vias located within the solder pads of a package
US5875102A (en) Eclipse via in pad structure
US4851614A (en) Non-occluding mounting hole with solder pad for printed circuit boards
US7323787B2 (en) Off-grid decoupling of ball grid array (BGA) devices and method
US6400018B2 (en) Via plug adapter
US7875811B2 (en) High speed interposer
US6817870B1 (en) Technique for interconnecting multilayer circuit boards
US6514845B1 (en) Solder ball contact and method
US7155821B1 (en) Techniques for manufacturing a circuit board having a countersunk via
KR20120056128A (en) Soldering connecting pin, semiconductor package substrate and method of mounting a semiconductor chip using the same
US10510633B1 (en) Package and printed circuit board attachment
US6791035B2 (en) Interposer to couple a microelectronic device package to a circuit board
US20110147058A1 (en) Electronic device and method of manufacturing electronic device
US10912194B2 (en) Printed circuit board
US7073253B2 (en) Interconnect for electrically connecting a multichip module to a circuit substrate and processes for making and using same
US6511347B2 (en) Terminating floating signals on a BGA module to a ground plane on a ball grid array (BGA) circuit board site
US8063481B2 (en) High-speed memory package
KR101292594B1 (en) Embedded printed circuit board with metal dam and method for manufacturing the same
JP2715945B2 (en) Mounting structure of ball grid array package
US7135764B2 (en) Shielded semiconductor chip carrier having a high-density external interface
JPH0341793A (en) Conductive board
JPH10270856A (en) Mounting structure for ball grid array package type semiconductor part

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION