US20040210226A1 - Anchoring devices and implants for intervertebral disc augmentation - Google Patents

Anchoring devices and implants for intervertebral disc augmentation Download PDF

Info

Publication number
US20040210226A1
US20040210226A1 US10/842,103 US84210304A US2004210226A1 US 20040210226 A1 US20040210226 A1 US 20040210226A1 US 84210304 A US84210304 A US 84210304A US 2004210226 A1 US2004210226 A1 US 2004210226A1
Authority
US
United States
Prior art keywords
anchoring
implant
rod
implants
securable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/842,103
Inventor
Hai Trieu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US10/842,103 priority Critical patent/US20040210226A1/en
Publication of US20040210226A1 publication Critical patent/US20040210226A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/44Joints for the spine, e.g. vertebrae, spinal discs
    • A61F2/442Intervertebral or spinal discs, e.g. resilient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/28Bones
    • A61F2/2846Support means for bone substitute or for bone graft implants, e.g. membranes or plates for covering bone defects
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/3094Designing or manufacturing processes
    • A61F2/30965Reinforcing the prosthesis by embedding particles or fibres during moulding or dipping
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/28Bones
    • A61F2002/2817Bone stimulation by chemical reactions or by osteogenic or biological products for enhancing ossification, e.g. by bone morphogenetic or morphogenic proteins [BMP] or by transforming growth factors [TGF]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30003Material related properties of the prosthesis or of a coating on the prosthesis
    • A61F2002/3006Properties of materials and coating materials
    • A61F2002/30092Properties of materials and coating materials using shape memory or superelastic materials, e.g. nitinol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30108Shapes
    • A61F2002/3011Cross-sections or two-dimensional shapes
    • A61F2002/30112Rounded shapes, e.g. with rounded corners
    • A61F2002/30133Rounded shapes, e.g. with rounded corners kidney-shaped or bean-shaped
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30108Shapes
    • A61F2002/3011Cross-sections or two-dimensional shapes
    • A61F2002/30159Concave polygonal shapes
    • A61F2002/30179X-shaped
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30108Shapes
    • A61F2002/30199Three-dimensional shapes
    • A61F2002/30224Three-dimensional shapes cylindrical
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30535Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30565Special structural features of bone or joint prostheses not otherwise provided for having spring elements
    • A61F2002/30566Helical springs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30535Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30576Special structural features of bone or joint prostheses not otherwise provided for with extending fixation tabs
    • A61F2002/30578Special structural features of bone or joint prostheses not otherwise provided for with extending fixation tabs having apertures, e.g. for receiving fixation screws
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30621Features concerning the anatomical functioning or articulation of the prosthetic joint
    • A61F2002/30649Ball-and-socket joints
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30667Features concerning an interaction with the environment or a particular use of the prosthesis
    • A61F2002/30677Means for introducing or releasing pharmaceutical products, e.g. antibiotics, into the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2/30771Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
    • A61F2002/30772Apertures or holes, e.g. of circular cross section
    • A61F2002/3079Stepped or enlarged apertures, e.g. having discrete diameter changes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2/30907Nets or sleeves applied to surface of prostheses or in cement
    • A61F2002/30909Nets
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/44Joints for the spine, e.g. vertebrae, spinal discs
    • A61F2/442Intervertebral or spinal discs, e.g. resilient
    • A61F2002/444Intervertebral or spinal discs, e.g. resilient for replacing the nucleus pulposus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/44Joints for the spine, e.g. vertebrae, spinal discs
    • A61F2002/448Joints for the spine, e.g. vertebrae, spinal discs comprising multiple adjacent spinal implants within the same intervertebral space or within the same vertebra, e.g. comprising two adjacent spinal implants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/44Joints for the spine, e.g. vertebrae, spinal discs
    • A61F2002/4495Joints for the spine, e.g. vertebrae, spinal discs having a fabric structure, e.g. made from wires or fibres
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2210/00Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2210/0014Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof using shape memory or superelastic materials, e.g. nitinol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0002Two-dimensional shapes, e.g. cross-sections
    • A61F2230/0004Rounded shapes, e.g. with rounded corners
    • A61F2230/0015Kidney-shaped, e.g. bean-shaped
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0002Two-dimensional shapes, e.g. cross-sections
    • A61F2230/0028Shapes in the form of latin or greek characters
    • A61F2230/0058X-shaped
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0063Three-dimensional shapes
    • A61F2230/0069Three-dimensional shapes cylindrical
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00005The prosthesis being constructed from a particular material
    • A61F2310/00011Metals or alloys
    • A61F2310/00017Iron- or Fe-based alloys, e.g. stainless steel
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00005The prosthesis being constructed from a particular material
    • A61F2310/00011Metals or alloys
    • A61F2310/00023Titanium or titanium-based alloys, e.g. Ti-Ni alloys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00005The prosthesis being constructed from a particular material
    • A61F2310/00011Metals or alloys
    • A61F2310/00029Cobalt-based alloys, e.g. Co-Cr alloys or Vitallium
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00389The prosthesis being coated or covered with a particular material
    • A61F2310/00592Coating or prosthesis-covering structure made of ceramics or of ceramic-like compounds
    • A61F2310/00796Coating or prosthesis-covering structure made of a phosphorus-containing compound, e.g. hydroxy(l)apatite
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00389The prosthesis being coated or covered with a particular material
    • A61F2310/00928Coating or prosthesis-covering structure made of glass or of glass-containing compounds, e.g. of bioglass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S606/00Surgery
    • Y10S606/907Composed of particular material or coated
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S606/00Surgery
    • Y10S606/907Composed of particular material or coated
    • Y10S606/91Polymer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S606/00Surgery
    • Y10S606/907Composed of particular material or coated
    • Y10S606/911Memory material

Definitions

  • the present invention relates to spinal implants, devices for anchoring, and methods for implantation of, such implants in an intervertebral disc space.
  • the intervertebral disc functions to stabilize the spine and to distribute forces between vertebral bodies.
  • a normal disc includes a gelatinous nucleus pulposus, an annulus fibrosis and two vertebral end plates. The nucleus pulposus is surrounded and confined by the annulus fibrosis.
  • Intervertebral discs may be displaced or damaged due to trauma or disease. Disruption of the annulus fibrosis allows the nucleus pulposus to protrude into the spinal canal, a condition commonly referred to as a herniated or ruptured disc. The extruded nucleus pulposus may press on the spinal nerve, which may result in nerve damage, pain, numbness, muscle weakness and paralysis. Intervertebral discs may also deteriorate due to the normal aging process. As a disc dehydrates and hardens, the disc space height will be reduced, leading to instability of the spine, decreased mobility and pain.
  • One way to relieve the symptoms of these conditions is by surgical removal of a portion or all of the intervertebral disc.
  • the removal of the damaged or unhealthy disc may allow the disc space to collapse, which could lead to instability of the spine, abnormal joint mechanics, nerve damage, as well as severe pain. Therefore, after removal of the disc, adjacent vertebrae are typically fused to preserve the disc space.
  • hydrogel implants may migrate in the disc space and/or may be expelled from the disc space through an annular defect. Closure of the annular defect, or other opening, using surgical sutures or staples following implantion is typically difficult and, in some cases, ineffective. Moreover, such hydrogel implants may be subject to extensive deformation. Additionally, such hydrogel implants typically lack mechanical strength at high water content and are therefore more prone to excessive deformation, creep, cracking, tearing or other damage under fatigue loading conditions.
  • the present invention addresses these needs.
  • a device for anchoring a spinal implant in an intervertebral disc space.
  • a device includes an elongated anchoring body, such as an anchoring rod, and at least one securing member attached to the anchoring rod.
  • the anchoring body or rod is configured to anchor, hold, or otherwise retain a spinal implant.
  • the securing members are spaced apart along the length of the anchoring rod and may define a region for disposing an implant therebetween.
  • the anchoring rod has a first end and a second end, wherein the first end is securable to an adjacent vertebra.
  • the anchoring devices may be made from metallic materials, non-metallic materials and combinations thereof.
  • the anchoring devices include an anchoring rod and at least one securing member attached to the anchoring rod.
  • the anchoring rod includes a first end, a second end, a longitudinal axis and extends at least partially through the implant.
  • the anchoring component is securable to an adjacent vertebra.
  • the securing members may be external to the implant, while in other forms of the invention the securing members may be internal to the implant or may be both internal and external to the implant.
  • the implant includes an elastic body sized for introduction into the intervertebral disc space.
  • the elastic body includes an upper surface and a lower surface for contacting adjacent vertebral endplates.
  • a flexible peripheral supporting band is disposed circumferentially about the elastic body to reduce deformation of the body. At least a portion of the upper and lower surfaces of the elastic body are free of the supporting band.
  • the implant, including the band is sized to fit within an intervertebral disc space which is at least partially defined by an annulus fibrosis.
  • a preferred method includes providing an elastic spinal implant and an anchoring component that includes the anchoring devices described above, extending the anchoring rod of the device at least partially through the implant, and securing the anchoring component to an adjacent vertebra.
  • a method includes disposing a flexible peripheral supporting band circumferentially about the implants described above.
  • One object of the present invention is to provide devices for anchoring spinal implants so they will be resistant to excessive migration in, and/or expulsion from, the intervertebral disc space.
  • Yet another object of the invention is to provide spinal implant systems including an elastic spinal implant and an anchoring component for anchoring the implant.
  • a further object of the invention is to provide spinal implants that are more resistant to lateral deformation.
  • FIG. 1 is a side view of a device for anchoring a spinal implant in an intervertebral disc space.
  • FIG. 2 is an end view of the device of FIG. 1, taken along line 2 - 2 .
  • FIG. 3 is a side view of an alternative embodiment of a device for anchoring a spinal implant in an intervertebral disc space, having a ball-and-socket joint.
  • FIG. 4 is a perspective view of the device of FIG. 3.
  • FIG. 5 depicts a side view of an alternative embodiment of a device for anchoring a spinal implant in an intervertebral disc space.
  • FIG. 6 is an end view of the device of FIG. 5, taken along line 6 - 6 .
  • FIGS. 7A-7T depict top views of alternative embodiments of securing members of the anchoring devices described herein.
  • the anchoring members are shown with a superimposed outline of how an implant I may be disposed on the anchoring device.
  • FIGS. 8A-8H depict top views of further alternative embodiments of securing members of the anchoring devices described herein.
  • the anchoring members are shown with a superimposed outline of how an implant I may be disposed on the anchoring device.
  • FIG. 9 is a side view of a spinal implant system.
  • FIG. 10 depicts an end view of the system of FIG. 9, taken along line 10 - 10 .
  • FIG. 11 depicts a side view of the spinal implant system of FIG. 9, implanted in an intervertebral disc space, that includes an anchoring component 10 , an elastic body 100 and, optionally, a peripheral supporting band 101 .
  • FIG. 12 depicts a side view of an alternative embodiment of a spinal implant system.
  • FIG. 13 depicts an end view of the system of FIG. 12, taken along line 13 - 13 .
  • FIG. 14 depicts a side view of the system of FIG. 12 implanted in an intervertebral disc space.
  • FIG. 15A depicts a perspective view of a spinal implant that may be anchored with the anchoring devices described herein.
  • FIG. 15B depicts a side view of the implant of FIG. 15A.
  • FIG. 16 is a side view of a spinal implant reinforced with a flexible peripheral supporting band.
  • FIG. 17 depicts a top view of the implant of FIG. 16.
  • FIG. 18A shows the effect of imposing a load, represented by the darkened arrows, on the deformation of a spinal implant reinforced with a flexible supporting band. Top to bottom: no load; low load, moderate load; high load.
  • FIG. 18B is a graphical representation of the effect of imposing a load on the deformation of a spinal implant of FIG. 18A.
  • FIGS. 19A-19D depict alternative embodiments of a flexible peripheral supporting band of the present invention.
  • FIG. 20 depicts a side view of a spinal implant of the present invention that is reinforced, and otherwise supported, by peripheral supporting band 130 ′ and straps 134 and 135 .
  • FIG. 21 shows a top view of the implant of FIG. 20.
  • FIG. 22 depicts a side view of an alternative embodiment of a spinal implant of the present invention, that includes a peripheral supporting band 130 ′′ and securing straps 134 ′, 135 ′, 820 , 830 , 840 and 850 .
  • FIG. 23 depicts a top view of the implant of FIG. 22.
  • FIG. 24 shows a cut-away view of an alternative embodiment of an anchoring device implanted in an intervertebral disc space for anchoring implant 100 with a tension band 700 extending between vertebrae 107 and 109 .
  • FIG. 25 depicts a side view of the device of FIG. 24.
  • FIG. 26 depicts a top, cut-away view of an alternative embodiment of a device for anchoring a spinal implant that is implanted in an intervertebral disc space.
  • FIG. 27 shows a top, cut-away view of an alternative embodiment of a device for anchoring a spinal implant that is implanted in an intervertebral disc space.
  • FIGS. 28-31 depicts cut-away, top views of anchoring devices, along with anchored implants, inserted via posterior, lateral, oblique and anterior approaches, respectively.
  • FIG. 32 depicts a top, cut-away view of a device for anchoring a spinal implant that is implanted in an intervertebral disc space, wherein two implants are advantageously anchored.
  • FIG. 33 depicts a top, cut-away view of an alternative embodiment of a device for anchoring a spinal implant, wherein two devices are used to anchor two spinal implants.
  • the present invention relates to devices for anchoring a spinal implant in an intervertebral disc space to prevent excessive migration in and/or expulsion from the disc space, as well as novel spinal implants.
  • Spinal implant systems are also described that include the anchoring device as well as an anchored elastic spinal implant.
  • the spinal implants described herein include those that may be useful as nucleus pulposus replacements, partial or complete disc replacements, and those that may be useful in other disc reconstruction or augmentation procedures.
  • spinal implants include an elastic body that is constrained and supported by a flexible supporting member, such as a peripheral supporting band.
  • the band may advantageously have high resistance to hoop stress, and may thus function in a similar manner as the annulus fibrosis. More particularly, the hoop stress in the band preferably increases exponentially after some small, allowable initial deformation.
  • Such implants may advantageously be used where the integrity of the annulus fibrosis has been negatively affected, or in other circumstances wherein increased support of an implant is needed.
  • a device for anchoring a spinal implant in an intervertebral disc space may include an elongated anchoring body, such as an anchoring rod, having at least one securing member attached thereto, or otherwise disposed thereon.
  • anchoring device 10 may include an elongated anchoring body, or rod, 20 , first securing member 30 and second securing member 40 .
  • Securing members 30 and 40 may oppose each other, may be spaced apart along the length of anchoring rod 20 and may define a region R for disposing a spinal implant therebetween.
  • the longitudinal axes A of the securing members preferably extend transverse with respect to the longitudinal axis X of the anchoring rod.
  • the device may advantageously be secured to an adjacent vertebra.
  • anchoring device 10 includes a first end 21 and a second end 22 , wherein first end 21 is securable to an adjacent vertebra.
  • First end 21 may define a bracket 23 , or other similar structure, for securing first end 21 to an adjacent vertebra.
  • Bracket 23 includes a vertebra-contacting surface 24 and at least one aperture 25 through which a bone screw, or other similar securing device, may be placed to secure the elongated body to an adjacent vertebra as more fully described below.
  • a screw securing mechanism such as a lock screw or other known mechanism, may be used to further secure the screw so it will not back out, or otherwise loosen.
  • Bracket 23 is shown as generally V-shaped in FIG.
  • bracket 23 includes arm 23 a and arm 23 b .
  • Arms 23 a and 23 b may be formed from one piece, or may be formed of more than one piece that are attached, or otherwise connected, to each other by methods known to the skilled artisan.
  • first end 21 may define a bracket that extends along the length of two adjacent vertebrae, so that the bracket may be secured both to an upper adjacent vertebra and to a lower adjacent vertebra in order to more stably secure anchoring rod 20 , and ultimately to more stably secure a spinal implant.
  • first end 21 ′ of anchoring rod 20 ′ may define a ball or other spherical-shaped end that fits in a socket 26 on bracket 23 ′ to form a ball-and-socket joint, or ball joint.
  • the ball joint advantageously allows further movement of the attached elongated body of anchoring device 10 ′, which may reduce or eliminate stress that may otherwise exist near end E′ of the elongated body.
  • Anchoring rod 20 may be formed from rigid, or otherwise non-flexible materials, including carbon fiber reinforced composite, such as carbon fiber/epoxy composites or carbon fiber/polyaryletherketone composites.
  • Anchoring rod 20 may further be formed from a wide variety of metallic materials, including, for example, shape memory materials, stainless steel, titanium, titanium alloys, cobalt chrome alloys, and combinations thereof.
  • the shape memory materials may be made from, for example, the nickel-titanium alloy known as Nitinol.
  • the response of the shape memory material to deformation generally has two triggers as known in the art to induce the material to partially or fully recover its memorized shape.
  • the first trigger is a thermal trigger where the deformed state is initially at a temperature such that the deformed state is stable.
  • the second trigger is a stress-actuated trigger and may take advantage of superelasticity.
  • the undeformed state is at a temperature such that at least some of the material is in the austenitic state. That is, the temperature may be such that the material is within the hysterisis loop responsible for the superelastic phenomenon or behavior. Under the influence of sufficient stress, the austenitic material will transform into the martensitic state. Upon the release of some or all of the stress, the temperature is such that the martensitic state is unstable and will automatically attempt to revert to the austenitic state with consequent shape reformation.
  • anchoring rod 20 preferably includes an end E having an arcuate shape, as seen in FIG. 1, so that elongated body 20 may be secured to an adjacent vertebra.
  • the anchoring rod component of the device may also, in other forms of the invention, be formed of flexible materials so that the anchoring rod acts as a tether, or other flexible anchor.
  • a flexible, anchoring rod component of an anchoring device 50 is shown in FIGS. 5 and 6.
  • Flexible, anchoring rod 60 also includes a first securing member 70 and a second securing member 80 .
  • Anchoring rod 60 further includes a first end 61 and a second end 62 , wherein the first end is securable to an adjacent vertebra.
  • First end 61 may also define a bracket, such as bracket 23 as described above.
  • First end 61 of anchoring rod 60 may also be mounted, or otherwise attached, to bracket 23 ′ through a ball-and-socket joint as described above by modifying first end 61 appropriately.
  • first end 61 may be secured to an adjacent vertebra with an interference screw, especially when the device is implanted via a posterior approach as discussed below.
  • Securing members 70 and 80 also define a region R′ for disposing a spinal implant therebetween.
  • rod 20 is shown as being cylindrical herein, it is realized that the rods described herein may assume a wide variety of shapes as known in the art, including pyramidal, square and other polygonal shapes. The shapes of the rods may be advantageously chosen so that the rods are effective in anchoring the implants described herein.
  • a wide variety of materials may be used to form flexible anchoring rod 60 , including the same materials that may be used to form a rigid anchoring rod described above, although the thickness or diameter of the rod will be smaller than with the rigid rod so that the rod will be flexible.
  • the metallic materials may be in the form of a wire, cable, chain or have some other appropriate configuration.
  • suitable materials include non-metallic, polymeric materials, such as polyaryletherketone, polymethylmethacrylate, polycarbonate, polyurethane, silicone, polyolefins, including polytetrafluoroethylene, and combinations thereof; non-metallic, fiber or fabric materials, including cellulose, polyester, polyvinyl alcohol, polyacrylonitrile, polyamide, polytetrafluoroethylene, polyparaphenylene terephthalamide, polyolefins such as polyethylene, or from combinations of these materials.
  • the polymeric materials may be braided, in the form of a cord, cable, or may have some other appropriate configuration, and combinations thereof.
  • elongated anchoring bodies described herein, as well as other portions of the anchoring component may also be formed from a combination of flexible and rigid components.
  • bracket 23 or 23 ′ of an elongated anchoring body may be formed from a non-flexible material whereas the remainder of the body may be formed from a flexible material.
  • Other combinations are possible as one skilled in the art would be aware after reviewing the description herein.
  • the securing members may be either integral with the anchoring rod or may be otherwise attached thereto.
  • securing members 30 and 40 are disposed on anchoring rod 20 and include an inner surface 31 and 41 , respectively, for contacting and securing a spinal implant, as well as an outer surface 32 and 42 , respectively.
  • securing members 30 and 40 define a region R along anchoring rod 20 wherein a spinal implant may be disposed and secured.
  • inner surfaces 31 and 41 of securing members 30 and 40 respectively, preferably abut the outer surface of an implant.
  • the securing members may be attached to anchoring rod 20 in a variety of ways.
  • securing member 40 may include threads so that securing member 40 may be screwed onto an end 22 of anchoring rod 20 that is threaded.
  • the securing members may be attached with an adhesive, or other non-resorbable, biocompatible securing materials, including cyanoacrylate adhesive and epoxy glue.
  • securing members may be secured by other means, including clamps, pins, knots, by friction fit, mechanical interlocking or combinations thereof.
  • Securing members 30 , 40 , 70 and 80 may, for example, be formed from the same materials as described above for the elongated anchoring body, or rod.
  • the securing members may also be formed from fabric.
  • securing member 70 may be formed from a fabric that has been formed into a knot and secured to the anchoring rod and end 62 may be formed into, and otherwise define, a knot to form securing member 80 .
  • the elongated body, or rod, of the anchoring device described herein may include at least one securing member, and may include two, three, four or more securing members disposed thereon or attached thereto.
  • the securing members may be variously-shaped and may be configured to internally secure, externally secure, or both internally and externally secure an implant, including the implants described herein.
  • Anchoring components that may be used to internally secure implants are shown, for example, in FIGS. 7A-7T.
  • anchoring devices ( 200 , 220 , 240 , and 260 ) including elongated bodies, or anchoring rods ( 201 , 221 , 241 , and 261 , respectively) having a second end ( 203 , 223 , 243 , and 263 , respectively) defining at least one securing member ( 210 , 230 , 250 and 270 , respectively), shaped in the form of one or more hooks are shown.
  • FIG. 7E depicts an anchoring device 280 having a securing member 290 that includes at least one, preferably two or more, such as four, rod extending radially from second end 293 of anchoring rod 291 .
  • anchoring device 300 includes a single rod defining securing member 310 that has a longitudinal axis aligned transverse, in this case perpendicular, to the longitudinal axis of anchoring rod 301 , although two or more of these extending rods 310 and 310 ′, preferably separated along the length of elongated body 301 from each other, may be present as seen in FIGS.
  • an adhesive or other similar agent that bonds, or otherwise secures the implant to the anchoring device may be disposed along the length of the elongated body that will be in contact with the implant to further secure the implant.
  • the adhesive may further be used without any other securing member being present and may thus act as a securing member itself.
  • Suitable adhesives include, for example, cyanoacrylate adhesives, epoxy adhesives and silicone adhesives.
  • second end 323 or 323 ′ of elongated body 321 or 321 ′ of anchoring component 320 or 320 ′ may further define a spherical-shaped body 324 or a rectangular-shaped body 324 ′ as seen in FIGS. 7J and 7L, respectively.
  • a single spherical-shaped securing member may be present, or more than one member may be present wherein each securing member is preferably spaced apart along the length of the elongated body as seen, for example, in FIGS. 7K and 7M (anchoring devices 340 and 360 ). These configurations of the securing members may provide mechanical locking for increased fixation.
  • anchoring components having securing members that may provide for mechanical locking include anchoring components 380 and 390 in FIGS. 7Q and 7R, respectively.
  • the second ends of the securing members of the anchoring components may further define sinusoidal or other wave shapes as seen in FIG. 7N (anchoring component 400 ) or may be a coiled, or spring element, (anchoring component 420 ) as seen in FIG. 7O.
  • a multi-lobed securing member 430 is also encompassed as seen with anchoring component 440 in FIG. 7S.
  • securing member 470 may be defined by a tapered second end 463 of anchoring rod 461 of anchoring device 460 as seen in FIG. 7P.
  • An anchoring device such as anchoring device 480
  • securing members 490 such as fibers or other flexible elements, extending radially from anchoring rod 481 , preferably from second end 483 of the anchoring rod as seen in FIG. 7T.
  • anchoring device 300 may externally secure an implant as shown in FIG. 8A.
  • Anchoring device 500 may be used to both internally and externally secure an implant as seen in FIG. 8B with appropriate adjustment in the spacing of the securing members and/or the size of the implant.
  • repositioning the implant on many of the anchoring devices described herein with internal securing members may provide for both internal and external securement of an implant.
  • Anchoring device 560 includes an anchoring rod 561 that is bent at end 562 and is attached, or otherwise connected, to securing member 40 , or other similar securing member as described herein.
  • anchoring device 580 includes an elongated anchoring body, or rod, 581 that connects, or otherwise attaches, to a connecting rod 585 preferably at a point equidistant from the ends 586 of the rod.
  • Securing members such as securing members 40
  • rod 585 may be attached, or otherwise connected, to rod 585 .
  • anchoring device 600 that includes an anchoring body 601 having opposing securing members, such as securing members 30 and 40 , spaced along the length of the implant and defining a region R for disposing an implant therebetween is depicted.
  • a connecting member, or bar 605 is attached to the anchoring rod in region R, preferably at a point equidistant from ends 606 of the bar and preferably extends radially from the anchoring body. Ends 606 of bar 605 are preferably connected to two other securing members, such as securing members 40 .
  • FIG. 8F depicts a variation of anchoring device 500 wherein securing members 630 and 640 of anchoring device 620 are wave-shaped and are therefore configured to extend through the implant they will secure.
  • FIG. 8G depicts an anchoring device 640 that includes a combination of the mechanical locking features 650 similar to those previously described herein as well as an external securing element 651 .
  • anchoring device 660 helps to reinforce an implant to prevent the implant from undergoing excessive creep under high load.
  • anchoring device 660 includes internal securing member 670 that is rectangular-shaped and is sized to prevent the implant from undergoing excessive creep under high load. It is noted in all of FIGS. 7 and 8 that implant I is shown in outline to denote how the anchoring bodies may be positioned therein and it is realized that I may represent any of the implants described herein.
  • spinal implant system 90 includes a spinal implant 100 and a spinal implant anchoring device 10 as described in reference to FIGS. 1 and 2. Inner surface 31 and 41 of securing members 30 and 40 , respectively, abut outer surface 105 of implant 100 .
  • anchoring rod 20 extends through aperture, or other defect, 104 in annulus fibrosis 115 so that the first end 21 of anchoring device 10 may be anchored to upper vertebra 107 with a bone screw 108 .
  • First end 21 may, of course, be anchored to lower vertebra 109 , or may be secured to both vertebrae 107 and 109 if first end 21 is appropriately configured as discussed above.
  • the longitudinal axis X of the rod may extend parallel to the longitudinal axis Y of the implant, but may extend through the implant in a wide variety of directions, as long as the rod functions to anchor the implant in the disc space.
  • the anchoring rod preferably extends at least partially through the implant, but may extend completely through the implant, entering one location, such as an end, and exiting another location, such as another end, including an opposing end.
  • implant 100 may include a peripheral supporting band 101 as further described below to provide further lateral support for the implant, as well as to improve the strength of the implant.
  • band 101 may have apertures, or other openings therethrough, on opposing sides of the band which are in contact with the securing member to allow the anchoring rod of the anchoring component, or device, to be placed therethrough.
  • implant 100 further includes a channel 103 extending therethrough through which the anchoring rod may be disposed.
  • the implant is preferably molded such that the channel is formed during the molding process.
  • the channel may be formed after formation of the implant in a variety of ways, including drilling to form a channel having a desired shape with an appropriate drill bit.
  • a spinal implant system 120 which includes spinal implant 100 and spinal implant anchoring device 50 .
  • Anchoring rod 60 extends through aperture, or defect, 104 of annulus fibrosis 115 .
  • first end 61 of anchoring rod 60 of the anchoring device is secured to upper vertebra 107 , but may be secured to lower vertebra 109 , or both upper and lower vertebrae, with an interference screw 110 as more fully described below and as shown in FIG. 14.
  • one end of the anchoring rod is wedged between the screw and the bone.
  • first end 61 of anchoring device 50 may be secured to both vertebra 107 and 109 for added stability if first end 61 is appropriately configured as discussed above.
  • the interference screws described herein can be non-resorbable, resorbable and made form a wide variety of materials, including metals, ceramics, polymers and combinations thereof.
  • Non-resorbable metallic materials include stainless steels, cobalt chrome alloys, titanium, titanium alloys, shape memory materials as described above, especially those exhibiting superelastic behavior and including metals, and alloys thereof.
  • Resorbable materials include polylactide, polyglycolide, tyrosine-derived polycarbonate, polyanhydride, polyorthoester, polyphosphazene, bioactive glass, calcium phosphate, such as hydroxyapatite, and combinations thereof.
  • the anchoring devices may also be anchored with other soft tissue anchors known in the art, including suture anchors commonly used in arthroscopy or sports medicine surgeries, for example.
  • suture anchors commonly used in arthroscopy or sports medicine surgeries, for example.
  • the end of the elongated body of the anchoring device is attached to the end of the anchor, which is embedded and anchored in an adjacent vertebral body.
  • implants for serving differing functions may be anchored with the anchoring devices described herein, including implants sized and configured for nucleus pulposus replacements, sized and configured for partial or full disc replacements or other disc reconstruction or augmentation purposes.
  • Elastic, or otherwise resilient, implants are most preferred.
  • implants may be formed from hydrophilic materials, such as hydrogels, or may be formed from biocompatible elastomeric materials known in the art, including silicone, polyurethane, polyolefins such as polyisobutylene and polyisoprene, copolymers of silicone and polyurethane, neoprene, nitrile, vulcanized rubber and combinations thereof.
  • the vulcanized rubber is produced by a vulcanization process utilizing a copolymer produced, for example, as in U.S. Pat. No. 5,245,098 to Summers et al., from 1-hexene and 5-methyl-1,4-hexadiene.
  • Preferred hydrophilic materials are hydrogels.
  • Suitable hydrogels include natural hydrogels, and those formed from polyvinyl alcohol, acrylamides such as polyacrylic acid and poly (acrylonitrile-acrylic acid), polyurethanes, polyethylene glycol, poly(N-vinyl-2-pyrrolidone), acrylates such as poly(2-hydroxy ethyl methacrylate) and copolymers of acrylates with N-vinyl pyrolidone, N-vinyl lactams, acrylamide, polyurethanes and polyacrylonitrile or may be formed from other similar materials that form a hydrogel.
  • the hydrogel materials may further be cross-linked to provide further strength to the implant.
  • polyurethanes examples include thermoplastic polyurethanes, aliphatic polyurethanes, segmented polyurethanes, hydrophilic polyurethanes, polyetherurethane, polycarbonate-urethane and silicone polyether-urethane.
  • suitable hydrophilic polymers include naturally-occurring materials such as glucomannan gel, hyaluronic acid, polysaccharides, such as cross-linked carboxyl-containing polysaccharides, and combinations thereof.
  • the nature of the materials employed to form the elastic body should be selected so the formed implants have sufficient load bearing capacity. In preferred embodiments, a compressive strength of at least about 0.1 MPa is desired, although compressive strengths in the range of about 1 MPa to about 20 MPa are more preferred.
  • the implants can be shaped as desired.
  • the nucleus pulposus implants may take the form of a cylinder, a rectangle, or other polygonal shape or may be substantially oval.
  • the implants may include elastic bodies 750 that are tapered, such as at one end, as seen in FIGS. 15A and 15B, in order to create or maintain lordosis.
  • the implants generally conform to the shape of the nuclear disc space.
  • implants can be sized to fit within an intervertebral disc space, preferably surrounded by an annulus fibrosis, or at least partially surrounded by an annulus fibrosis.
  • the implants preferably are of a height and have a diameter that approximates the height and diameter of an intervertebral disc space.
  • a spinal implant may be a nucleus pulposus implant and may thus be sized to fit within the natural intervertebral disc space.
  • the spinal implants may be disc replacements as described herein, and may be sized to fit within the intervertebral disc space that includes the space resulting when the inner annulus fibrosis layer, or a portion thereof, is removed.
  • Such a spinal implant would therefore be sized to fit within the larger intervertebral disc space that includes the space resulting from removal of a portion of the annulus fibrosis, and would thus typically have a width or diameter that is substantially larger than the natural nucleus pulposus.
  • implant 120 includes a load bearing elastic body 121 with an upper surface 122 and a lower surface 123 .
  • Implant 120 includes a preferably flexible, supporting member, such as peripheral supporting band 130 disposed circumferentially about body 121 .
  • Band 130 is similar to band 100 discussed above, with the exception that band 130 does not have openings therethrough on opposing sides of the band.
  • the implant including the elastic body and supporting band, advantageously may replace all or a portion of the natural nucleus pulposus, while retaining the annulus fibrosis or a portion thereof, the implant may be sized to fit within the intervertebral disc space defined by the annulus fibrosis or a portion thereof.
  • elastic body 121 includes upper and lower surfaces 122 and 123 , respectively, portions of which are exposed to directly contact adjacent vertebral endplates. This exposure allows the lubricated upper and lower surfaces of elastic body 121 to articulate against the endplates to minimize abrasive wear of supporting band 130 and the endplates.
  • the amount of the upper and lower surfaces of elastic body 121 that are exposed may vary, typically at least about 50%, preferably at least about 70%, more preferably at least about 80% and most preferably at least about 90% of the surfaces are exposed.
  • the elastic body core may function as a nucleus pulposus, and thus functions as a load bearing component with stress transfer capabilities.
  • Peripheral supporting band 130 helps restrict excessive horizontal deformation of elastic body 121 upon loading conditions, as seen progressively in FIG. 18A, thereby helping to restore and maintain disc height.
  • the hoop stress in the band increases exponentially after some small, initial deformation as seen in FIG. 18B.
  • Band 130 preferably decreases lateral deformation, compared to deformation of an implant without the circumferential reinforcing band, as desired.
  • Band 130 may, for example, decrease lateral deformation by at least about 20%, preferably at least about 40%, further preferably at least about 60%, more preferably at least about 80% and most preferably at least about 90%.
  • An implant such as one that includes an elastic body, having such a flexible supporting band, will be flexible and otherwise resilient to allow the natural movements of the disc and provides shock absorption capability at low to moderate applied stress, but will resist excessive deformation for disc height maintenance under high loading conditions.
  • low applied stress includes a force of about 100 Newtons to about 250 Newtons
  • moderate stress includes a force of about 250 Newtons to about 700 Newtons
  • high loading conditions, or high stress includes a force of about above 700 Newtons.
  • Such a reinforced implant may be advantageously anchored with the anchoring devices described herein.
  • other outer covers, or jackets as described in U.S. Pat. No.
  • the bands, jackets, or other outer covers or similar supporting members are flexible in that they may be folded or otherwise deformed, but are substantially inelastic so that the implant is more fully reinforced or otherwise supported.
  • Peripheral supporting band 130 may be made from a wide variety of biocompatible polymers, metallic materials, or combination of materials that form a strong but flexible support to prevent excessive lateral (horizontal) deformation of the core under increasing compressive loading.
  • Suitable materials include non-woven, woven, braided, or fabric materials made from polymeric fibers including cellulose, polyethylene, polyester, polyvinyl alcohol, polyacrylonitrile, polyamide, polytetrafluoroethylene, polyparaphenylene terephthalamide, and combinations thereof.
  • suitable materials include non-reinforced or fiber-reinforced elastomers such as silicone, polyolefins such as polyisobutylene and polyisoprene, polyurethane, copolymers of silicone and polyurethane, neoprene, nitrile, vulcanized rubber and combinations thereof.
  • elastomers such as silicone, polyolefins such as polyisobutylene and polyisoprene, polyurethane, copolymers of silicone and polyurethane, neoprene, nitrile, vulcanized rubber and combinations thereof.
  • silicone silicone
  • polyolefins such as polyisobutylene and polyisoprene
  • polyurethane polyurethane
  • copolymers of silicone and polyurethane neoprene
  • nitrile vulcanized rubber and combinations thereof.
  • vulcanized rubber is preferably produced as described above for the spinal implants.
  • Supporting band 130 is advantageously made from materials described herein that allow it to be porous, which, in the case of an elastic body made from a hydrogel, or other hydrophilic material, allows fluid circulation through the elastic core body to enhance pumping actions of the intervertebral disc.
  • Supporting members may further be formed from carbon fiber ceramic, ceramic fibers, metallic fibers, or other similar fibers described, for example, in U.S. Pat. No. 5,674,295, or from metallic materials that include shape memory materials as described above, especially those exhibiting superelastic behavior, titanium, titanium alloys, stainless steel, cobalt chrome alloys and combinations thereof.
  • FIGS. 19A-19D show supporting bands of various patterns, including braided patterns (bands 140 , 145 and 150 ) or porous patterns (band 155 ). It is realized that the braided materials may also be porous.
  • spinal implants 100 such as those formed from a hydrogel material, that are advantageously anchored with the anchoring devices described herein may be reinforced by forming the implant by molding hydrogels of different stiffness together and by annealing methods that include dipping the hydrogel in a hot oil bath, as described in U.S. Pat. No. 5,534,028.
  • Other suitable reinforced spinal implants, such as nucleus pulposus implants, that may advantageously be used in the system of the present invention include those described in U.S. Pat. No. 5,336,551, as well as the novel implants described herein.
  • the implant may be advantageously shaped to conform to the intervertebral disc space, or shaped as otherwise desired, as long as the implant has load bearing capability.
  • the amount of load the implant is required to bear may vary depending on several factors, including the particular location in which the implant will be positioned, as well as the general health of the surrounding intervertebral discs, it is preferred that the implant be able to bear a load of at least about 20 Newtons for cervical discs, at least about 50 Newtons for thoracic discs and at least about 100 Newtons for lumbar discs.
  • an implant reinforced with a peripheral supporting band as described above is provided that is further reinforced with one or more straps.
  • the straps may be advantageous in preventing the peripheral supporting band described herein from slipping, or otherwise sliding off the implant.
  • at least one strap 134 extends along upper surface 122 and at least one strap 135 extends along lower surface 123 of elastic body 121 of implant 140 .
  • Ends 136 of strap 134 and ends 137 of strap 135 are each preferably connected, or otherwise attached, to peripheral supporting band 130 ′.
  • the point of attachment may be any location that will secure the strap, including at the upper margins 138 of the band, lower margins 139 of the band or any region between the upper and lower margins.
  • straps 134 and 135 are shown extending along upper surface 122 and lower surface 123 , respectively, in FIGS. 20 and 21, one continuous strap may be utilized that extends completely around the implant, or the strap utilized may be in multiple pieces, as long as the combination of straps are sufficient to prevent excessive slipping and or sliding of the supporting band. Furthermore, more than one strap may extend along upper surface 122 and more than one strap may extend along lower surface 123 .
  • straps 820 , 830 , 840 and 850 of implant 150 are attached to strap 130 ′′. Straps 820 and 830 are also attached to strap 134 ′ and straps 840 and 850 are also attached to strap 135 ′.
  • the spinal implant with the flexible peripheral supporting band may be anchored utilizing the anchoring devices described herein.
  • implants as described herein may be anchored with an outer, preferably resorbable, shell as described in U.S. patent application Ser. No. 09/650,525 to Trieu, filed Aug. 30, 2000.
  • the implant may further include various outer surface features that may further restrain movement of the implant in the intervertebral disc space, with or without the outer shell. Such surface features are also more fully described in U.S. patent application Ser. No. 09/650,525 to Trieu, filed Aug. 30, 2000.
  • a tension band 700 may be secured to the anchoring device and to an adjacent vertebra to, for example, provide further stabilization of the device, especially wherein the annulus and/or the ligament surrounding the annulus at the defect site are compromised.
  • one end 701 of band 700 may be attached to an anchoring device, such as anchoring device 10 ′′ (similar to anchoring device 10 except that bracket 123 ′′ is utilized), at, for example, bracket 123 ′′, and the other end 702 may be secured to a plate 710 , such as a metal plate, that is secured to the adjacent vertebra utilizing screws 108 as described herein.
  • Band 700 may be attached to the anchoring device in a variety of ways, including crimping, tying, mechanical locking or may be secured with the same screws used to secure the anchoring device to the vertebral bodies. If two anchoring devices are utilized as described below, or if a single anchoring device is used that is secured to both adjacent vertebrae, one end 701 of tension band 700 may be attached to one of the brackets, or other areas, of the first anchoring device and the other end 702 of band 700 may be attached to the other bracket, or other area, of the second anchoring device.
  • the tension band is preferably flexible to allow some degree of motion, but is substantially inelastic to prevent excessive extension.
  • the tension band may be formed from a wide variety of natural or synthetic tissue biocompatible materials. Natural materials include autograft, allograft and xenograft tissues. Synthetic materials include metallic materials and polymers.
  • the metallic materials can be formed from shape memory alloy, including shape memory materials made from, for example, the nickel-titanium alloy known as Nitinol as described above. The shape memory materials may exhibit shape memory as described above, but preferably exhibit superelastic behavior. Other metallic materials include titanium alloy, titanium, stainless steel, and cobalt chrome alloy.
  • Suitable polymeric materials include, for example, polyethylene, polyester, polyvinyl alcohol, polyacrylonitrile, polyamide, polytetrafluoroethylene, poly-paraphenylene, terephthalamide and combinations thereof.
  • the materials used to form the tension band can be in a variety of forms, including the form of a fiber, woven, or non-woven fabric, braided, bulk solid and combinations thereof.
  • the tension band may further be treated, such as by coating and/or impregnating, with bioactive materials that may enhance tissue ingrowth and/or attachment, including hydroxyapatite, bioglass, and growth factors.
  • Suitable growth factors include transforming growth factors, insulin-like growth factors, platelet-derived growth factors, fibroblast growth factors, bone morphogenetic proteins as further described herein and combinations thereof.
  • a method includes providing an elastic spinal implant and an anchoring component as described herein.
  • the elongated body, or anchoring rod, component of the anchoring component is at least partially extended, or otherwise disposed, through the implant.
  • the implant may include a pre-formed channel therethrough, preferably formed during formation of the implant, through which the anchoring rod may be extended.
  • the implant may be formed around internal securing members as discussed above.
  • the longitudinal axis of the anchoring rod may also extend parallel to the longitudinal axis of the implant, or any other direction as mentioned above that will allow the anchoring rod to anchor, secure, restrain or otherwise hold the implant in the disc space.
  • the anchoring rod may take a tortuous path through the implant, especially when the anchoring bodies have ends defining variously-shaped securing members, as more fully described above, with reference to, for example, FIGS. 7N, & 7 O and 7 T.
  • the securing member may be attached after the elongated body component is extended through the implant.
  • securing member 40 may be attached to end 22 of elongated body 20 after anchoring rod 20 is extended through channel 103 of implant 100 .
  • the securing member may also be formed after rod 20 is extended through channel 103 , as in the case where securing member 40 is defined by a knot structure.
  • the channel may be formed after the implant is formed by forming a channel with an appropriate tool, such as a drill with an appropriately sized and shaped drill bit. One of the ends of the anchoring component are then secured to an adjacent vertebra.
  • a method includes disposing a flexible peripheral supporting band as described above circumferentially about the implant.
  • the implants formed from a hydrogel, or other similar hydrophilic material described herein, including the supporting band of the reinforced implants, may advantageously deliver desired pharmacological agents.
  • the pharmacological agent may include a growth factor that may advantageously repair a damaged annulus fibrosis, endplates or may have some other beneficial effect.
  • a wide variety of growth factors may advantageously be employed in the present invention.
  • the growth factor may include a bone morphogenetic protein, transforming growth factors, such as transforming growth factor- ⁇ (TGF- ⁇ ), insulin-like growth factors, platelet-derived growth factors, fibroblast growth factors, or other similar growth factor having the ability to repair the endplates, annulus fibrosis and/or nucleus pulposus of an intervertebral disc, or the ability to have some other beneficial effect.
  • TGF- ⁇ transforming growth factor- ⁇
  • insulin-like growth factors insulin-like growth factors
  • platelet-derived growth factors fibroblast growth factors
  • fibroblast growth factors or other similar growth factor having the ability to repair the endplates, annulus fibrosis and/or nucleus pulposus of an intervertebral disc, or the ability to have some other beneficial effect.
  • the growth factors, or other pharmacological agents are typically included in the implant in therapeutically effective amounts.
  • the growth factors may be included in the implants in amounts effective in repairing an intervertebral disc, including repairing the endplates,
  • the implants may typically include no more than about five weight percent of the growth factors, and preferably no more than about one weight percent of the growth factors.
  • the growth factor is a bone morphogenetic protein.
  • Recombinant human bone morphogenetic proteins (rhBMPs) are further preferred because they are available in large quantities and do not transmit infectious diseases.
  • the bone morphogenetic protein is a rhBMP-2, rhBMP-4 or heterodimers thereof.
  • any bone morphogenetic protein is contemplated, including bone morphogenetic proteins designated as BMP-1 through BMP-18.
  • BMPs are available from Genetics Institute, Inc., Cambridge, Mass. and may also be prepared by one skilled in the art as described in U.S. Pat. No. 5,187,076 to Wozney et al.; U.S. Pat. No. 5,366,875 to Wozney et al.; U.S. Pat. No. 4,877,864 to Wang et al.; U.S. Pat. No. 5,108,922 to Wang et al.; U.S. Pat. No. 5,116,738 to Wang et al.; U.S. Pat. No. 5,013,649 to Wang et al.; U.S. Pat. No.
  • the pharmacological agent may be one that is used for treating various spinal conditions, including infected spinal cords, cancerous spinal cords and osteoporosis.
  • Such agents include antibiotics, analgesics and anti-inflammatory drugs, including steroids.
  • Other such agents are well know to the skilled artisan.
  • These agents are also used in therapeutically effective amounts that will treat the various conditions and the symptoms they cause. Such amounts may be determined by the skilled artisan depending on the specific case.
  • the pharmacological agents are preferably dispersed within the hydrogel, or other hydrophilic, implant for in vivo release, and/or, with respect to implants with an elastomeric resorbable outer shell or those with a flexible supporting band, may be dispersed in either the band, the outer shell, or both.
  • the hydrogel can be cross-linked chemically, physically, or by a combination thereof, in order to achieve the appropriate level of porosity to release the pharmacological agents at a desired rate.
  • the agents may be released upon cyclic loading, and, in the case of implants including a resorbable outer shell, upon resorption of the shell.
  • the pharmacological agents may be dispersed in the implants by adding the agents to the solution used to form the implant, as long as the processing conditions will not adversely affect the agent.
  • the implants may be soaked in an appropriate solution containing the agent, or by other appropriate methods known to the skilled artisan.
  • anchoring rod 920 ′ is arcuate.
  • anchoring rod 920 ′′ has a bend adjacent to securing member 40 .
  • Other bent or angled anchoring components may be understood by those of ordinary skill in the art, and such embodiments are encompassed by this invention.
  • the devices described herein may be inserted and anchored via a wide variety of approaches, including posterior, lateral, oblique and anterior as shown in FIGS. 28-31, respectively.
  • the nucleus pulposus implant systems may include one or more implants disposed on the anchoring rods of the anchoring devices described herein. As seen in FIG. 32, two implants 100 ′ are disposed on anchoring rod 20 of anchoring device 10 . Thus, typically at least one implant is included in the implant systems described herein.
  • the spinal implant systems may include one or more elastic bodies and one or more anchoring devices.
  • two anchoring devices are included in the system along with two elastic bodies, each elastic body disposed on a different anchoring device 950 or 960 .
  • Each anchoring device may be independently anchored to an adjacent vertebra.
  • first ends 951 and 961 of anchoring rods 953 and 963 respectively, may be connected, or otherwise attached to each other to form a single extension, or end, of the anchoring rods, which may in turn be attached to an adjacent vertebra or bracket as described herein. The latter case is shown in FIG.
  • first ends 951 and 961 of elongated bodies 953 and 963 , respectively, of anchoring devices 950 and 960 are integral with each other.
  • implants having different heights may be used to create or maintain lordosis. For example, if a cylindrical implant is desired, anterior implant I A may have a larger diameter, and thus a larger height, than posterior implant I P .

Abstract

Devices for anchoring spinal implants in an intervertebral disc space are provided. Spinal implants are also provided that are resistant to lateral deformation. The implants may include a flexible peripheral supporting band disposed circumferentially about an elastic body. Methods for anchoring spinal implants and methods for reducing deformation of spinal implants are also provided.

Description

    BACKGROUND OF THE INVENTION
  • The present invention relates to spinal implants, devices for anchoring, and methods for implantation of, such implants in an intervertebral disc space. [0001]
  • The intervertebral disc functions to stabilize the spine and to distribute forces between vertebral bodies. A normal disc includes a gelatinous nucleus pulposus, an annulus fibrosis and two vertebral end plates. The nucleus pulposus is surrounded and confined by the annulus fibrosis. [0002]
  • Intervertebral discs may be displaced or damaged due to trauma or disease. Disruption of the annulus fibrosis allows the nucleus pulposus to protrude into the spinal canal, a condition commonly referred to as a herniated or ruptured disc. The extruded nucleus pulposus may press on the spinal nerve, which may result in nerve damage, pain, numbness, muscle weakness and paralysis. Intervertebral discs may also deteriorate due to the normal aging process. As a disc dehydrates and hardens, the disc space height will be reduced, leading to instability of the spine, decreased mobility and pain. [0003]
  • One way to relieve the symptoms of these conditions is by surgical removal of a portion or all of the intervertebral disc. The removal of the damaged or unhealthy disc may allow the disc space to collapse, which could lead to instability of the spine, abnormal joint mechanics, nerve damage, as well as severe pain. Therefore, after removal of the disc, adjacent vertebrae are typically fused to preserve the disc space. [0004]
  • Several devices exist to fill an intervertebral space following removal of all or part of the intervertebral disc in order to prevent disc space collapse and to promote fusion of adjacent vertebrae surrounding the disc space. Even though a certain degree of success with these devices has been achieved, full motion is typically never regained after such intervertebral fusions. Attempts to overcome these problems has led to the development of disc replacements. Many of these devices are complicated, bulky and made of a combination of metallic and elastomeric components and thus never fully return the full range of motion desired. More recently, efforts have been directed to replacing the nucleus pulposus of the disc with a similar gelatinous material, such as a hydrogel. However, once positioned in the disc space, many hydrogel implants may migrate in the disc space and/or may be expelled from the disc space through an annular defect. Closure of the annular defect, or other opening, using surgical sutures or staples following implantion is typically difficult and, in some cases, ineffective. Moreover, such hydrogel implants may be subject to extensive deformation. Additionally, such hydrogel implants typically lack mechanical strength at high water content and are therefore more prone to excessive deformation, creep, cracking, tearing or other damage under fatigue loading conditions. [0005]
  • A need therefore exists for more durable nucleus pulposus or other spinal implants, including implants that are less resistant to deformation, as well as devices and methods that anchor the implants so that the implants are more resistant to migration and/or expulsion through an opening in the annulus fibrosis. The present invention addresses these needs. [0006]
  • SUMMARY OF THE INVENTION
  • Devices for anchoring a spinal implant in an intervertebral disc space are provided. In one form of the invention, a device includes an elongated anchoring body, such as an anchoring rod, and at least one securing member attached to the anchoring rod. The anchoring body or rod is configured to anchor, hold, or otherwise retain a spinal implant. In certain forms of the invention wherein more than one securing member is included, the securing members are spaced apart along the length of the anchoring rod and may define a region for disposing an implant therebetween. The anchoring rod has a first end and a second end, wherein the first end is securable to an adjacent vertebra. The anchoring devices may be made from metallic materials, non-metallic materials and combinations thereof. [0007]
  • Spinal implant systems are also provided that include the anchoring device described above and an elastic spinal implant. In certain forms of the invention, the anchoring devices include an anchoring rod and at least one securing member attached to the anchoring rod. The anchoring rod includes a first end, a second end, a longitudinal axis and extends at least partially through the implant. The anchoring component is securable to an adjacent vertebra. In one form of the invention, the securing members may be external to the implant, while in other forms of the invention the securing members may be internal to the implant or may be both internal and external to the implant. [0008]
  • Spinal implants are also provided that are resistant to lateral deformation as they are restrained, or otherwise reinforced, by a flexible, peripheral supporting band. In one form of the invention, the implant includes an elastic body sized for introduction into the intervertebral disc space. The elastic body includes an upper surface and a lower surface for contacting adjacent vertebral endplates. A flexible peripheral supporting band is disposed circumferentially about the elastic body to reduce deformation of the body. At least a portion of the upper and lower surfaces of the elastic body are free of the supporting band. The implant, including the band, is sized to fit within an intervertebral disc space which is at least partially defined by an annulus fibrosis. [0009]
  • Methods of anchoring a spinal implant are also provided. A preferred method includes providing an elastic spinal implant and an anchoring component that includes the anchoring devices described above, extending the anchoring rod of the device at least partially through the implant, and securing the anchoring component to an adjacent vertebra. [0010]
  • Methods of reducing deformation of a spinal implant are also provided. In one embodiment, a method includes disposing a flexible peripheral supporting band circumferentially about the implants described above. [0011]
  • One object of the present invention is to provide devices for anchoring spinal implants so they will be resistant to excessive migration in, and/or expulsion from, the intervertebral disc space. [0012]
  • Yet another object of the invention is to provide spinal implant systems including an elastic spinal implant and an anchoring component for anchoring the implant. [0013]
  • A further object of the invention is to provide spinal implants that are more resistant to lateral deformation. [0014]
  • These and other objects and advantages of the present invention will be apparent from the descriptions herein. [0015]
  • BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 is a side view of a device for anchoring a spinal implant in an intervertebral disc space. [0016]
  • FIG. 2 is an end view of the device of FIG. 1, taken along line [0017] 2-2.
  • FIG. 3 is a side view of an alternative embodiment of a device for anchoring a spinal implant in an intervertebral disc space, having a ball-and-socket joint. [0018]
  • FIG. 4 is a perspective view of the device of FIG. 3. [0019]
  • FIG. 5 depicts a side view of an alternative embodiment of a device for anchoring a spinal implant in an intervertebral disc space. [0020]
  • FIG. 6 is an end view of the device of FIG. 5, taken along line [0021] 6-6.
  • FIGS. 7A-7T depict top views of alternative embodiments of securing members of the anchoring devices described herein. The anchoring members are shown with a superimposed outline of how an implant I may be disposed on the anchoring device. [0022]
  • FIGS. 8A-8H depict top views of further alternative embodiments of securing members of the anchoring devices described herein. The anchoring members are shown with a superimposed outline of how an implant I may be disposed on the anchoring device. [0023]
  • FIG. 9 is a side view of a spinal implant system. [0024]
  • FIG. 10 depicts an end view of the system of FIG. 9, taken along line [0025] 10-10.
  • FIG. 11 depicts a side view of the spinal implant system of FIG. 9, implanted in an intervertebral disc space, that includes an [0026] anchoring component 10, an elastic body 100 and, optionally, a peripheral supporting band 101.
  • FIG. 12 depicts a side view of an alternative embodiment of a spinal implant system. [0027]
  • FIG. 13 depicts an end view of the system of FIG. 12, taken along line [0028] 13-13.
  • FIG. 14 depicts a side view of the system of FIG. 12 implanted in an intervertebral disc space. [0029]
  • FIG. 15A depicts a perspective view of a spinal implant that may be anchored with the anchoring devices described herein. [0030]
  • FIG. 15B depicts a side view of the implant of FIG. 15A. [0031]
  • FIG. 16 is a side view of a spinal implant reinforced with a flexible peripheral supporting band. [0032]
  • FIG. 17 depicts a top view of the implant of FIG. 16. [0033]
  • FIG. 18A shows the effect of imposing a load, represented by the darkened arrows, on the deformation of a spinal implant reinforced with a flexible supporting band. Top to bottom: no load; low load, moderate load; high load. [0034]
  • FIG. 18B is a graphical representation of the effect of imposing a load on the deformation of a spinal implant of FIG. 18A. [0035]
  • FIGS. 19A-19D depict alternative embodiments of a flexible peripheral supporting band of the present invention. [0036]
  • FIG. 20 depicts a side view of a spinal implant of the present invention that is reinforced, and otherwise supported, by peripheral supporting [0037] band 130′ and straps 134 and 135.
  • FIG. 21 shows a top view of the implant of FIG. 20. [0038]
  • FIG. 22 depicts a side view of an alternative embodiment of a spinal implant of the present invention, that includes a peripheral supporting [0039] band 130″ and securing straps 134′, 135′, 820, 830, 840 and 850.
  • FIG. 23 depicts a top view of the implant of FIG. 22. [0040]
  • FIG. 24 shows a cut-away view of an alternative embodiment of an anchoring device implanted in an intervertebral disc space for anchoring [0041] implant 100 with a tension band 700 extending between vertebrae 107 and 109.
  • FIG. 25 depicts a side view of the device of FIG. 24. [0042]
  • FIG. 26 depicts a top, cut-away view of an alternative embodiment of a device for anchoring a spinal implant that is implanted in an intervertebral disc space. [0043]
  • FIG. 27 shows a top, cut-away view of an alternative embodiment of a device for anchoring a spinal implant that is implanted in an intervertebral disc space. [0044]
  • FIGS. 28-31 depicts cut-away, top views of anchoring devices, along with anchored implants, inserted via posterior, lateral, oblique and anterior approaches, respectively. [0045]
  • FIG. 32 depicts a top, cut-away view of a device for anchoring a spinal implant that is implanted in an intervertebral disc space, wherein two implants are advantageously anchored. [0046]
  • FIG. 33 depicts a top, cut-away view of an alternative embodiment of a device for anchoring a spinal implant, wherein two devices are used to anchor two spinal implants. [0047]
  • DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • For the purposes of promoting an understanding of the principles of the invention, reference will now be made to preferred embodiments and specific language will be used to describe the same. It will nevertheless be understood that no limitation of the scope of the invention is thereby intended, such alterations and further modifications of the invention, and such further applications of the principles of the invention as illustrated herein, being contemplated as would normally occur to one skilled in the art to which the invention relates. [0048]
  • The present invention relates to devices for anchoring a spinal implant in an intervertebral disc space to prevent excessive migration in and/or expulsion from the disc space, as well as novel spinal implants. Spinal implant systems are also described that include the anchoring device as well as an anchored elastic spinal implant. The spinal implants described herein include those that may be useful as nucleus pulposus replacements, partial or complete disc replacements, and those that may be useful in other disc reconstruction or augmentation procedures. [0049]
  • In other aspects of the invention, spinal implants are provided that include an elastic body that is constrained and supported by a flexible supporting member, such as a peripheral supporting band. The band may advantageously have high resistance to hoop stress, and may thus function in a similar manner as the annulus fibrosis. More particularly, the hoop stress in the band preferably increases exponentially after some small, allowable initial deformation. Such implants may advantageously be used where the integrity of the annulus fibrosis has been negatively affected, or in other circumstances wherein increased support of an implant is needed. [0050]
  • In one aspect of the invention, a device for anchoring a spinal implant in an intervertebral disc space is provided. The device may include an elongated anchoring body, such as an anchoring rod, having at least one securing member attached thereto, or otherwise disposed thereon. Referring now to FIGS. 1 and 2, anchoring [0051] device 10 may include an elongated anchoring body, or rod, 20, first securing member 30 and second securing member 40. Securing members 30 and 40 may oppose each other, may be spaced apart along the length of anchoring rod 20 and may define a region R for disposing a spinal implant therebetween. Moreover, the longitudinal axes A of the securing members preferably extend transverse with respect to the longitudinal axis X of the anchoring rod. The device may advantageously be secured to an adjacent vertebra.
  • For example, in one form of the invention, anchoring [0052] device 10 includes a first end 21 and a second end 22, wherein first end 21 is securable to an adjacent vertebra. First end 21 may define a bracket 23, or other similar structure, for securing first end 21 to an adjacent vertebra. Bracket 23 includes a vertebra-contacting surface 24 and at least one aperture 25 through which a bone screw, or other similar securing device, may be placed to secure the elongated body to an adjacent vertebra as more fully described below. Moreover, a screw securing mechanism, such as a lock screw or other known mechanism, may be used to further secure the screw so it will not back out, or otherwise loosen. Bracket 23 is shown as generally V-shaped in FIG. 2, although a wide variety of other shapes are contemplated, as long as first end 21 is securable in some form to an adjacent vertebra. As seen in FIG. 2, bracket 23 includes arm 23 a and arm 23 b. Arms 23 a and 23 b may be formed from one piece, or may be formed of more than one piece that are attached, or otherwise connected, to each other by methods known to the skilled artisan. Moreover, first end 21 may define a bracket that extends along the length of two adjacent vertebrae, so that the bracket may be secured both to an upper adjacent vertebra and to a lower adjacent vertebra in order to more stably secure anchoring rod 20, and ultimately to more stably secure a spinal implant.
  • In another form of the invention, the bracket described herein may be mounted on, or otherwise connected to, [0053] first end 21. For example, as shown in FIGS. 3 and 4, first end 21′ of anchoring rod 20′ may define a ball or other spherical-shaped end that fits in a socket 26 on bracket 23′ to form a ball-and-socket joint, or ball joint. The ball joint advantageously allows further movement of the attached elongated body of anchoring device 10′, which may reduce or eliminate stress that may otherwise exist near end E′ of the elongated body.
  • Anchoring [0054] rod 20 may be formed from rigid, or otherwise non-flexible materials, including carbon fiber reinforced composite, such as carbon fiber/epoxy composites or carbon fiber/polyaryletherketone composites. Anchoring rod 20 may further be formed from a wide variety of metallic materials, including, for example, shape memory materials, stainless steel, titanium, titanium alloys, cobalt chrome alloys, and combinations thereof. The shape memory materials may be made from, for example, the nickel-titanium alloy known as Nitinol. The response of the shape memory material to deformation generally has two triggers as known in the art to induce the material to partially or fully recover its memorized shape. The first trigger is a thermal trigger where the deformed state is initially at a temperature such that the deformed state is stable. Upon heating, the temperature rises until the deformed state is no longer stable and begins to change to the memorized state. The second trigger is a stress-actuated trigger and may take advantage of superelasticity. The undeformed state is at a temperature such that at least some of the material is in the austenitic state. That is, the temperature may be such that the material is within the hysterisis loop responsible for the superelastic phenomenon or behavior. Under the influence of sufficient stress, the austenitic material will transform into the martensitic state. Upon the release of some or all of the stress, the temperature is such that the martensitic state is unstable and will automatically attempt to revert to the austenitic state with consequent shape reformation. It should also be understood that the shape memory material may attempt to recover the memorized shape by using some combination of thermal and stress actuation. Preferred shape memory materials will exhibit superelastic behavior. In devices formed from such rigid materials, anchoring rod 20 preferably includes an end E having an arcuate shape, as seen in FIG. 1, so that elongated body 20 may be secured to an adjacent vertebra.
  • The anchoring rod component of the device may also, in other forms of the invention, be formed of flexible materials so that the anchoring rod acts as a tether, or other flexible anchor. Such a flexible, anchoring rod component of an [0055] anchoring device 50 is shown in FIGS. 5 and 6. Flexible, anchoring rod 60 also includes a first securing member 70 and a second securing member 80. Anchoring rod 60 further includes a first end 61 and a second end 62, wherein the first end is securable to an adjacent vertebra. First end 61 may also define a bracket, such as bracket 23 as described above. First end 61 of anchoring rod 60 may also be mounted, or otherwise attached, to bracket 23′ through a ball-and-socket joint as described above by modifying first end 61 appropriately. In preferred forms of the invention, first end 61 may be secured to an adjacent vertebra with an interference screw, especially when the device is implanted via a posterior approach as discussed below. Securing members 70 and 80 also define a region R′ for disposing a spinal implant therebetween. Moreover, although rod 20 is shown as being cylindrical herein, it is realized that the rods described herein may assume a wide variety of shapes as known in the art, including pyramidal, square and other polygonal shapes. The shapes of the rods may be advantageously chosen so that the rods are effective in anchoring the implants described herein.
  • A wide variety of materials may be used to form [0056] flexible anchoring rod 60, including the same materials that may be used to form a rigid anchoring rod described above, although the thickness or diameter of the rod will be smaller than with the rigid rod so that the rod will be flexible. The metallic materials may be in the form of a wire, cable, chain or have some other appropriate configuration. Other suitable materials include non-metallic, polymeric materials, such as polyaryletherketone, polymethylmethacrylate, polycarbonate, polyurethane, silicone, polyolefins, including polytetrafluoroethylene, and combinations thereof; non-metallic, fiber or fabric materials, including cellulose, polyester, polyvinyl alcohol, polyacrylonitrile, polyamide, polytetrafluoroethylene, polyparaphenylene terephthalamide, polyolefins such as polyethylene, or from combinations of these materials. The polymeric materials may be braided, in the form of a cord, cable, or may have some other appropriate configuration, and combinations thereof. The elongated anchoring bodies described herein, as well as other portions of the anchoring component, may also be formed from a combination of flexible and rigid components. For example, bracket 23 or 23′ of an elongated anchoring body may be formed from a non-flexible material whereas the remainder of the body may be formed from a flexible material. Other combinations are possible as one skilled in the art would be aware after reviewing the description herein.
  • The securing members may be either integral with the anchoring rod or may be otherwise attached thereto. Referring again to FIGS. 1 and 2, securing [0057] members 30 and 40 are disposed on anchoring rod 20 and include an inner surface 31 and 41, respectively, for contacting and securing a spinal implant, as well as an outer surface 32 and 42, respectively. As mentioned above, securing members 30 and 40 define a region R along anchoring rod 20 wherein a spinal implant may be disposed and secured. Thus, inner surfaces 31 and 41 of securing members 30 and 40, respectively, preferably abut the outer surface of an implant. The securing members may be attached to anchoring rod 20 in a variety of ways. For example, securing member 40 may include threads so that securing member 40 may be screwed onto an end 22 of anchoring rod 20 that is threaded. Moreover, the securing members may be attached with an adhesive, or other non-resorbable, biocompatible securing materials, including cyanoacrylate adhesive and epoxy glue. Furthermore, securing members may be secured by other means, including clamps, pins, knots, by friction fit, mechanical interlocking or combinations thereof.
  • Securing [0058] members 30, 40, 70 and 80 may, for example, be formed from the same materials as described above for the elongated anchoring body, or rod. In one preferred form of the invention, wherein the anchoring rod is formed from a flexible, non-rigid material, such as a braided fabric, the securing members may also be formed from fabric. For example, securing member 70 may be formed from a fabric that has been formed into a knot and secured to the anchoring rod and end 62 may be formed into, and otherwise define, a knot to form securing member 80.
  • As briefly mentioned above, the elongated body, or rod, of the anchoring device described herein may include at least one securing member, and may include two, three, four or more securing members disposed thereon or attached thereto. Furthermore, the securing members may be variously-shaped and may be configured to internally secure, externally secure, or both internally and externally secure an implant, including the implants described herein. Anchoring components that may be used to internally secure implants are shown, for example, in FIGS. 7A-7T. [0059]
  • Referring now to FIGS. 7A-7D, anchoring devices ([0060] 200, 220, 240, and 260) including elongated bodies, or anchoring rods (201, 221, 241, and 261, respectively) having a second end (203, 223, 243, and 263, respectively) defining at least one securing member (210, 230, 250 and 270, respectively), shaped in the form of one or more hooks are shown. FIG. 7E depicts an anchoring device 280 having a securing member 290 that includes at least one, preferably two or more, such as four, rod extending radially from second end 293 of anchoring rod 291. A multiplicity of such a set of four projecting rods, such as securing members 290′ and 295′, may be present, and may be spaced apart along the length of elongated member 291′ of anchoring device 280′ as seen in FIG. 7F. In alternative forms of the invention as seen in FIG. 7G, anchoring device 300 includes a single rod defining securing member 310 that has a longitudinal axis aligned transverse, in this case perpendicular, to the longitudinal axis of anchoring rod 301, although two or more of these extending rods 310 and 310′, preferably separated along the length of elongated body 301 from each other, may be present as seen in FIGS. 7H and 7I (anchoring components 500 and 520, respectively). In these, as well as other forms of the invention, an adhesive or other similar agent that bonds, or otherwise secures the implant to the anchoring device may be disposed along the length of the elongated body that will be in contact with the implant to further secure the implant. The adhesive may further be used without any other securing member being present and may thus act as a securing member itself. Suitable adhesives include, for example, cyanoacrylate adhesives, epoxy adhesives and silicone adhesives.
  • In other embodiments of the invention, [0061] second end 323 or 323′ of elongated body 321 or 321′ of anchoring component 320 or 320′ may further define a spherical-shaped body 324 or a rectangular-shaped body 324′ as seen in FIGS. 7J and 7L, respectively. A single spherical-shaped securing member may be present, or more than one member may be present wherein each securing member is preferably spaced apart along the length of the elongated body as seen, for example, in FIGS. 7K and 7M (anchoring devices 340 and 360). These configurations of the securing members may provide mechanical locking for increased fixation. Other anchoring components having securing members that may provide for mechanical locking include anchoring components 380 and 390 in FIGS. 7Q and 7R, respectively. In other forms of the invention, the second ends of the securing members of the anchoring components may further define sinusoidal or other wave shapes as seen in FIG. 7N (anchoring component 400) or may be a coiled, or spring element, (anchoring component 420) as seen in FIG. 7O. A multi-lobed securing member 430 is also encompassed as seen with anchoring component 440 in FIG. 7S. Moreover, securing member 470 may be defined by a tapered second end 463 of anchoring rod 461 of anchoring device 460 as seen in FIG. 7P.
  • An anchoring device, such as [0062] anchoring device 480, may include securing members 490, such as fibers or other flexible elements, extending radially from anchoring rod 481, preferably from second end 483 of the anchoring rod as seen in FIG. 7T. It is realized that the anchoring devices described above having securing members that internally secure an implant may, if the implant is appropriately positioned on the anchoring device, act to externally secure, or both externally and internally secure, the implant.
  • For example, anchoring [0063] device 300 may externally secure an implant as shown in FIG. 8A. Anchoring device 500 may be used to both internally and externally secure an implant as seen in FIG. 8B with appropriate adjustment in the spacing of the securing members and/or the size of the implant. Similarly, one skilled in the art would be aware that repositioning the implant on many of the anchoring devices described herein with internal securing members may provide for both internal and external securement of an implant.
  • In yet other embodiments shown in FIGS. 8C-8E, anchoring devices with external securing members are shown, but may aid in internally securing an implant due to their construction. Anchoring [0064] device 560 includes an anchoring rod 561 that is bent at end 562 and is attached, or otherwise connected, to securing member 40, or other similar securing member as described herein. In a further form of the invention shown in FIG. 8D, anchoring device 580 includes an elongated anchoring body, or rod, 581 that connects, or otherwise attaches, to a connecting rod 585 preferably at a point equidistant from the ends 586 of the rod. Securing members, such as securing members 40, may be attached, or otherwise connected, to rod 585. Referring now to FIG. 8E, anchoring device 600 that includes an anchoring body 601 having opposing securing members, such as securing members 30 and 40, spaced along the length of the implant and defining a region R for disposing an implant therebetween is depicted. A connecting member, or bar 605 is attached to the anchoring rod in region R, preferably at a point equidistant from ends 606 of the bar and preferably extends radially from the anchoring body. Ends 606 of bar 605 are preferably connected to two other securing members, such as securing members 40. FIG. 8F depicts a variation of anchoring device 500 wherein securing members 630 and 640 of anchoring device 620 are wave-shaped and are therefore configured to extend through the implant they will secure. FIG. 8G depicts an anchoring device 640 that includes a combination of the mechanical locking features 650 similar to those previously described herein as well as an external securing element 651.
  • In other forms of the invention, an anchoring device is provided that helps to reinforce an implant to prevent the implant from undergoing excessive creep under high load. Referring now to FIG. 8H, anchoring [0065] device 660 includes internal securing member 670 that is rectangular-shaped and is sized to prevent the implant from undergoing excessive creep under high load. It is noted in all of FIGS. 7 and 8 that implant I is shown in outline to denote how the anchoring bodies may be positioned therein and it is realized that I may represent any of the implants described herein.
  • The devices described herein are advantageously utilized with a spinal implant, thus forming a spinal implant system. Referring now to FIGS. 9-11, [0066] spinal implant system 90 includes a spinal implant 100 and a spinal implant anchoring device 10 as described in reference to FIGS. 1 and 2. Inner surface 31 and 41 of securing members 30 and 40, respectively, abut outer surface 105 of implant 100. As seen in FIG. 11, anchoring rod 20 extends through aperture, or other defect, 104 in annulus fibrosis 115 so that the first end 21 of anchoring device 10 may be anchored to upper vertebra 107 with a bone screw 108. First end 21 may, of course, be anchored to lower vertebra 109, or may be secured to both vertebrae 107 and 109 if first end 21 is appropriately configured as discussed above. The longitudinal axis X of the rod may extend parallel to the longitudinal axis Y of the implant, but may extend through the implant in a wide variety of directions, as long as the rod functions to anchor the implant in the disc space. Furthermore, the anchoring rod preferably extends at least partially through the implant, but may extend completely through the implant, entering one location, such as an end, and exiting another location, such as another end, including an opposing end. In preferred forms of the invention, implant 100 may include a peripheral supporting band 101 as further described below to provide further lateral support for the implant, as well as to improve the strength of the implant. In one form of the invention, band 101 may have apertures, or other openings therethrough, on opposing sides of the band which are in contact with the securing member to allow the anchoring rod of the anchoring component, or device, to be placed therethrough. Moreover, implant 100 further includes a channel 103 extending therethrough through which the anchoring rod may be disposed. The implant is preferably molded such that the channel is formed during the molding process. However, the channel may be formed after formation of the implant in a variety of ways, including drilling to form a channel having a desired shape with an appropriate drill bit.
  • Referring now to FIGS. 12-14 in another form of the invention, a [0067] spinal implant system 120 is shown which includes spinal implant 100 and spinal implant anchoring device 50. Anchoring rod 60 extends through aperture, or defect, 104 of annulus fibrosis 115. Furthermore, first end 61 of anchoring rod 60 of the anchoring device is secured to upper vertebra 107, but may be secured to lower vertebra 109, or both upper and lower vertebrae, with an interference screw 110 as more fully described below and as shown in FIG. 14. As seen in FIG. 14, one end of the anchoring rod is wedged between the screw and the bone. Furthermore, first end 61 of anchoring device 50 may be secured to both vertebra 107 and 109 for added stability if first end 61 is appropriately configured as discussed above.
  • The interference screws described herein can be non-resorbable, resorbable and made form a wide variety of materials, including metals, ceramics, polymers and combinations thereof. Non-resorbable metallic materials include stainless steels, cobalt chrome alloys, titanium, titanium alloys, shape memory materials as described above, especially those exhibiting superelastic behavior and including metals, and alloys thereof. Resorbable materials include polylactide, polyglycolide, tyrosine-derived polycarbonate, polyanhydride, polyorthoester, polyphosphazene, bioactive glass, calcium phosphate, such as hydroxyapatite, and combinations thereof. The anchoring devices may also be anchored with other soft tissue anchors known in the art, including suture anchors commonly used in arthroscopy or sports medicine surgeries, for example. In the case of a soft tissue or suture anchor, the end of the elongated body of the anchoring device is attached to the end of the anchor, which is embedded and anchored in an adjacent vertebral body. [0068]
  • A wide variety of spinal implants for serving differing functions may be anchored with the anchoring devices described herein, including implants sized and configured for nucleus pulposus replacements, sized and configured for partial or full disc replacements or other disc reconstruction or augmentation purposes. Elastic, or otherwise resilient, implants are most preferred. For example, implants may be formed from hydrophilic materials, such as hydrogels, or may be formed from biocompatible elastomeric materials known in the art, including silicone, polyurethane, polyolefins such as polyisobutylene and polyisoprene, copolymers of silicone and polyurethane, neoprene, nitrile, vulcanized rubber and combinations thereof. In a preferred embodiment, the vulcanized rubber is produced by a vulcanization process utilizing a copolymer produced, for example, as in U.S. Pat. No. 5,245,098 to Summers et al., from 1-hexene and 5-methyl-1,4-hexadiene. Preferred hydrophilic materials are hydrogels. Suitable hydrogels include natural hydrogels, and those formed from polyvinyl alcohol, acrylamides such as polyacrylic acid and poly (acrylonitrile-acrylic acid), polyurethanes, polyethylene glycol, poly(N-vinyl-2-pyrrolidone), acrylates such as poly(2-hydroxy ethyl methacrylate) and copolymers of acrylates with N-vinyl pyrolidone, N-vinyl lactams, acrylamide, polyurethanes and polyacrylonitrile or may be formed from other similar materials that form a hydrogel. The hydrogel materials may further be cross-linked to provide further strength to the implant. Examples of polyurethanes include thermoplastic polyurethanes, aliphatic polyurethanes, segmented polyurethanes, hydrophilic polyurethanes, polyetherurethane, polycarbonate-urethane and silicone polyether-urethane. Other suitable hydrophilic polymers include naturally-occurring materials such as glucomannan gel, hyaluronic acid, polysaccharides, such as cross-linked carboxyl-containing polysaccharides, and combinations thereof. The nature of the materials employed to form the elastic body should be selected so the formed implants have sufficient load bearing capacity. In preferred embodiments, a compressive strength of at least about 0.1 MPa is desired, although compressive strengths in the range of about 1 MPa to about 20 MPa are more preferred. [0069]
  • The implants can be shaped as desired. For example, the nucleus pulposus implants may take the form of a cylinder, a rectangle, or other polygonal shape or may be substantially oval. The implants may include [0070] elastic bodies 750 that are tapered, such as at one end, as seen in FIGS. 15A and 15B, in order to create or maintain lordosis. Furthermore, in certain forms of the invention, the implants generally conform to the shape of the nuclear disc space. Additionally, implants can be sized to fit within an intervertebral disc space, preferably surrounded by an annulus fibrosis, or at least partially surrounded by an annulus fibrosis. That is, the implants preferably are of a height and have a diameter that approximates the height and diameter of an intervertebral disc space. In certain forms of the invention, a spinal implant may be a nucleus pulposus implant and may thus be sized to fit within the natural intervertebral disc space. In other embodiments, the spinal implants may be disc replacements as described herein, and may be sized to fit within the intervertebral disc space that includes the space resulting when the inner annulus fibrosis layer, or a portion thereof, is removed. Such a spinal implant would therefore be sized to fit within the larger intervertebral disc space that includes the space resulting from removal of a portion of the annulus fibrosis, and would thus typically have a width or diameter that is substantially larger than the natural nucleus pulposus.
  • As mentioned above, the implant to be anchored preferably is reinforced for increased strength and to decrease lateral deformation of the implant. Accordingly, in yet another aspect of the invention, a reinforced spinal implant is provided. Referring now to FIGS. 16 and 17, [0071] implant 120 includes a load bearing elastic body 121 with an upper surface 122 and a lower surface 123. Implant 120 includes a preferably flexible, supporting member, such as peripheral supporting band 130 disposed circumferentially about body 121. Band 130 is similar to band 100 discussed above, with the exception that band 130 does not have openings therethrough on opposing sides of the band. As the implant, including the elastic body and supporting band, advantageously may replace all or a portion of the natural nucleus pulposus, while retaining the annulus fibrosis or a portion thereof, the implant may be sized to fit within the intervertebral disc space defined by the annulus fibrosis or a portion thereof.
  • As seen in FIG. 16, [0072] elastic body 121 includes upper and lower surfaces 122 and 123, respectively, portions of which are exposed to directly contact adjacent vertebral endplates. This exposure allows the lubricated upper and lower surfaces of elastic body 121 to articulate against the endplates to minimize abrasive wear of supporting band 130 and the endplates. Although the amount of the upper and lower surfaces of elastic body 121 that are exposed may vary, typically at least about 50%, preferably at least about 70%, more preferably at least about 80% and most preferably at least about 90% of the surfaces are exposed. In certain forms of the invention, the elastic body core may function as a nucleus pulposus, and thus functions as a load bearing component with stress transfer capabilities.
  • Peripheral supporting [0073] band 130 helps restrict excessive horizontal deformation of elastic body 121 upon loading conditions, as seen progressively in FIG. 18A, thereby helping to restore and maintain disc height. The hoop stress in the band increases exponentially after some small, initial deformation as seen in FIG. 18B. Band 130 preferably decreases lateral deformation, compared to deformation of an implant without the circumferential reinforcing band, as desired. Band 130 may, for example, decrease lateral deformation by at least about 20%, preferably at least about 40%, further preferably at least about 60%, more preferably at least about 80% and most preferably at least about 90%. An implant, such as one that includes an elastic body, having such a flexible supporting band, will be flexible and otherwise resilient to allow the natural movements of the disc and provides shock absorption capability at low to moderate applied stress, but will resist excessive deformation for disc height maintenance under high loading conditions. As described herein in the case of a lumbar disc, for example, low applied stress includes a force of about 100 Newtons to about 250 Newtons, moderate stress includes a force of about 250 Newtons to about 700 Newtons, and high loading conditions, or high stress, includes a force of about above 700 Newtons. Such a reinforced implant may be advantageously anchored with the anchoring devices described herein. Moreover, other outer covers, or jackets, as described in U.S. Pat. No. 5,674,295 may be utilized to reinforce implants to be anchored with the devices described herein. In preferred forms of the invention, the bands, jackets, or other outer covers or similar supporting members are flexible in that they may be folded or otherwise deformed, but are substantially inelastic so that the implant is more fully reinforced or otherwise supported.
  • Peripheral supporting [0074] band 130, as well as other outer covers, or jackets, may be made from a wide variety of biocompatible polymers, metallic materials, or combination of materials that form a strong but flexible support to prevent excessive lateral (horizontal) deformation of the core under increasing compressive loading. Suitable materials include non-woven, woven, braided, or fabric materials made from polymeric fibers including cellulose, polyethylene, polyester, polyvinyl alcohol, polyacrylonitrile, polyamide, polytetrafluoroethylene, polyparaphenylene terephthalamide, and combinations thereof. Other suitable materials include non-reinforced or fiber-reinforced elastomers such as silicone, polyolefins such as polyisobutylene and polyisoprene, polyurethane, copolymers of silicone and polyurethane, neoprene, nitrile, vulcanized rubber and combinations thereof. In a preferred form of the invention, a combination, or blend, of silicone and polyurethane is used. Furthermore, the vulcanized rubber is preferably produced as described above for the spinal implants. Supporting band 130 is advantageously made from materials described herein that allow it to be porous, which, in the case of an elastic body made from a hydrogel, or other hydrophilic material, allows fluid circulation through the elastic core body to enhance pumping actions of the intervertebral disc. Supporting members may further be formed from carbon fiber ceramic, ceramic fibers, metallic fibers, or other similar fibers described, for example, in U.S. Pat. No. 5,674,295, or from metallic materials that include shape memory materials as described above, especially those exhibiting superelastic behavior, titanium, titanium alloys, stainless steel, cobalt chrome alloys and combinations thereof. FIGS. 19A-19D show supporting bands of various patterns, including braided patterns ( bands 140, 145 and 150) or porous patterns (band 155). It is realized that the braided materials may also be porous.
  • In addition to reinforcing the implants described herein with an outer cover, jacket or supporting band as described above, [0075] spinal implants 100, such as those formed from a hydrogel material, that are advantageously anchored with the anchoring devices described herein may be reinforced by forming the implant by molding hydrogels of different stiffness together and by annealing methods that include dipping the hydrogel in a hot oil bath, as described in U.S. Pat. No. 5,534,028. Other suitable reinforced spinal implants, such as nucleus pulposus implants, that may advantageously be used in the system of the present invention include those described in U.S. Pat. No. 5,336,551, as well as the novel implants described herein. As discussed above, the implant may be advantageously shaped to conform to the intervertebral disc space, or shaped as otherwise desired, as long as the implant has load bearing capability. Although the amount of load the implant is required to bear may vary depending on several factors, including the particular location in which the implant will be positioned, as well as the general health of the surrounding intervertebral discs, it is preferred that the implant be able to bear a load of at least about 20 Newtons for cervical discs, at least about 50 Newtons for thoracic discs and at least about 100 Newtons for lumbar discs.
  • In yet other forms of the invention, an implant reinforced with a peripheral supporting band as described above is provided that is further reinforced with one or more straps. The straps may be advantageous in preventing the peripheral supporting band described herein from slipping, or otherwise sliding off the implant. Referring now to FIGS. 20 and 21, at least one [0076] strap 134 extends along upper surface 122 and at least one strap 135 extends along lower surface 123 of elastic body 121 of implant 140. Ends 136 of strap 134 and ends 137 of strap 135 are each preferably connected, or otherwise attached, to peripheral supporting band 130′. The point of attachment may be any location that will secure the strap, including at the upper margins 138 of the band, lower margins 139 of the band or any region between the upper and lower margins. Although two straps 134 and 135 are shown extending along upper surface 122 and lower surface 123, respectively, in FIGS. 20 and 21, one continuous strap may be utilized that extends completely around the implant, or the strap utilized may be in multiple pieces, as long as the combination of straps are sufficient to prevent excessive slipping and or sliding of the supporting band. Furthermore, more than one strap may extend along upper surface 122 and more than one strap may extend along lower surface 123. For example, as seen in FIGS. 22 and 23, straps 820, 830, 840 and 850 of implant 150 are attached to strap 130″. Straps 820 and 830 are also attached to strap 134′ and straps 840 and 850 are also attached to strap 135′.
  • As mentioned above, the spinal implant with the flexible peripheral supporting band may be anchored utilizing the anchoring devices described herein. In other forms of the invention, implants as described herein may be anchored with an outer, preferably resorbable, shell as described in U.S. patent application Ser. No. 09/650,525 to Trieu, filed Aug. 30, 2000. In further forms of the invention, the implant may further include various outer surface features that may further restrain movement of the implant in the intervertebral disc space, with or without the outer shell. Such surface features are also more fully described in U.S. patent application Ser. No. 09/650,525 to Trieu, filed Aug. 30, 2000. [0077]
  • In yet other forms of the invention, a [0078] tension band 700 may be secured to the anchoring device and to an adjacent vertebra to, for example, provide further stabilization of the device, especially wherein the annulus and/or the ligament surrounding the annulus at the defect site are compromised. Referring now to FIGS. 24 and 25, one end 701 of band 700 may be attached to an anchoring device, such as anchoring device 10″ (similar to anchoring device 10 except that bracket 123″ is utilized), at, for example, bracket 123″, and the other end 702 may be secured to a plate 710, such as a metal plate, that is secured to the adjacent vertebra utilizing screws 108 as described herein. Band 700 may be attached to the anchoring device in a variety of ways, including crimping, tying, mechanical locking or may be secured with the same screws used to secure the anchoring device to the vertebral bodies. If two anchoring devices are utilized as described below, or if a single anchoring device is used that is secured to both adjacent vertebrae, one end 701 of tension band 700 may be attached to one of the brackets, or other areas, of the first anchoring device and the other end 702 of band 700 may be attached to the other bracket, or other area, of the second anchoring device. The tension band is preferably flexible to allow some degree of motion, but is substantially inelastic to prevent excessive extension.
  • The tension band may be formed from a wide variety of natural or synthetic tissue biocompatible materials. Natural materials include autograft, allograft and xenograft tissues. Synthetic materials include metallic materials and polymers. The metallic materials can be formed from shape memory alloy, including shape memory materials made from, for example, the nickel-titanium alloy known as Nitinol as described above. The shape memory materials may exhibit shape memory as described above, but preferably exhibit superelastic behavior. Other metallic materials include titanium alloy, titanium, stainless steel, and cobalt chrome alloy. Suitable polymeric materials include, for example, polyethylene, polyester, polyvinyl alcohol, polyacrylonitrile, polyamide, polytetrafluoroethylene, poly-paraphenylene, terephthalamide and combinations thereof. The materials used to form the tension band can be in a variety of forms, including the form of a fiber, woven, or non-woven fabric, braided, bulk solid and combinations thereof. The tension band may further be treated, such as by coating and/or impregnating, with bioactive materials that may enhance tissue ingrowth and/or attachment, including hydroxyapatite, bioglass, and growth factors. Suitable growth factors include transforming growth factors, insulin-like growth factors, platelet-derived growth factors, fibroblast growth factors, bone morphogenetic proteins as further described herein and combinations thereof. [0079]
  • In yet another aspect of the invention, methods of anchoring a spinal implant are provided. In one form of the invention, a method includes providing an elastic spinal implant and an anchoring component as described herein. The elongated body, or anchoring rod, component of the anchoring component is at least partially extended, or otherwise disposed, through the implant. The implant may include a pre-formed channel therethrough, preferably formed during formation of the implant, through which the anchoring rod may be extended. In alternative embodiments, the implant may be formed around internal securing members as discussed above. The longitudinal axis of the anchoring rod may also extend parallel to the longitudinal axis of the implant, or any other direction as mentioned above that will allow the anchoring rod to anchor, secure, restrain or otherwise hold the implant in the disc space. As an example, the anchoring rod, as well as the securing members, may take a tortuous path through the implant, especially when the anchoring bodies have ends defining variously-shaped securing members, as more fully described above, with reference to, for example, FIGS. 7N, & [0080] 7O and 7T.
  • As further discussed above, in those forms of the invention wherein a securing member is at an end of the implant, the securing member may be attached after the elongated body component is extended through the implant. For example, with reference to FIGS. 1 and 7, securing [0081] member 40 may be attached to end 22 of elongated body 20 after anchoring rod 20 is extended through channel 103 of implant 100. Moreover, the securing member may also be formed after rod 20 is extended through channel 103, as in the case where securing member 40 is defined by a knot structure. In other forms of the invention, the channel may be formed after the implant is formed by forming a channel with an appropriate tool, such as a drill with an appropriately sized and shaped drill bit. One of the ends of the anchoring component are then secured to an adjacent vertebra.
  • In further aspects of the invention, methods of reducing deformation of a spinal implant are provided. In one embodiment, a method includes disposing a flexible peripheral supporting band as described above circumferentially about the implant. [0082]
  • The implants formed from a hydrogel, or other similar hydrophilic material described herein, including the supporting band of the reinforced implants, may advantageously deliver desired pharmacological agents. The pharmacological agent may include a growth factor that may advantageously repair a damaged annulus fibrosis, endplates or may have some other beneficial effect. A wide variety of growth factors may advantageously be employed in the present invention. For example, the growth factor may include a bone morphogenetic protein, transforming growth factors, such as transforming growth factor-β (TGF-β), insulin-like growth factors, platelet-derived growth factors, fibroblast growth factors, or other similar growth factor having the ability to repair the endplates, annulus fibrosis and/or nucleus pulposus of an intervertebral disc, or the ability to have some other beneficial effect. The growth factors, or other pharmacological agents, are typically included in the implant in therapeutically effective amounts. For example, the growth factors may be included in the implants in amounts effective in repairing an intervertebral disc, including repairing the endplates, annulus fibrosis and nucleus pulposus. Although these amounts will depend on the specific case, the implants may typically include no more than about five weight percent of the growth factors, and preferably no more than about one weight percent of the growth factors. In a preferred form of the invention, the growth factor is a bone morphogenetic protein. Recombinant human bone morphogenetic proteins (rhBMPs) are further preferred because they are available in large quantities and do not transmit infectious diseases. Most preferably, the bone morphogenetic protein is a rhBMP-2, rhBMP-4 or heterodimers thereof. However, any bone morphogenetic protein is contemplated, including bone morphogenetic proteins designated as BMP-1 through BMP-18. [0083]
  • BMPs are available from Genetics Institute, Inc., Cambridge, Mass. and may also be prepared by one skilled in the art as described in U.S. Pat. No. 5,187,076 to Wozney et al.; U.S. Pat. No. 5,366,875 to Wozney et al.; U.S. Pat. No. 4,877,864 to Wang et al.; U.S. Pat. No. 5,108,922 to Wang et al.; U.S. Pat. No. 5,116,738 to Wang et al.; U.S. Pat. No. 5,013,649 to Wang et al.; U.S. Pat. No. 5,106,748 to Wozney et al.; and PCT Patent Nos. WO93/00432 to Wozney et al.; WO94/26893 to Celeste et al.; and WO94/26892 to Celeste et al. All bone morphogenic proteins are contemplated whether obtained as above or isolated from bone. Methods for isolating bone morphogenetic protein from bone are described, for example, in U.S. Pat. No. 4,294,753 to Urist and Urist et al., 81 PNAS 371, 1984. [0084]
  • In other forms of the invention, the pharmacological agent may be one that is used for treating various spinal conditions, including infected spinal cords, cancerous spinal cords and osteoporosis. Such agents include antibiotics, analgesics and anti-inflammatory drugs, including steroids. Other such agents are well know to the skilled artisan. These agents are also used in therapeutically effective amounts that will treat the various conditions and the symptoms they cause. Such amounts may be determined by the skilled artisan depending on the specific case. [0085]
  • The pharmacological agents are preferably dispersed within the hydrogel, or other hydrophilic, implant for in vivo release, and/or, with respect to implants with an elastomeric resorbable outer shell or those with a flexible supporting band, may be dispersed in either the band, the outer shell, or both. The hydrogel can be cross-linked chemically, physically, or by a combination thereof, in order to achieve the appropriate level of porosity to release the pharmacological agents at a desired rate. The agents may be released upon cyclic loading, and, in the case of implants including a resorbable outer shell, upon resorption of the shell. The pharmacological agents may be dispersed in the implants by adding the agents to the solution used to form the implant, as long as the processing conditions will not adversely affect the agent. Alternatively, the implants may be soaked in an appropriate solution containing the agent, or by other appropriate methods known to the skilled artisan. [0086]
  • While the invention has been illustrated and described in detail in the drawings and foregoing description, the same is to be considered as illustrative and not restrictive in character, it being understood that only the preferred embodiment has been shown and described and that all changes and modifications that come within the spirit of the invention are desired to be protected. For example, in addition to being straight, the elongated bodies of the anchoring device may exhibit other advantageous shapes as shown in FIGS. 26 and 27. As seen in FIG. 26, anchoring [0087] rod 920′ is arcuate. As seen in FIG. 27, anchoring rod 920″ has a bend adjacent to securing member 40. Other bent or angled anchoring components may be understood by those of ordinary skill in the art, and such embodiments are encompassed by this invention. Furthermore, the devices described herein may be inserted and anchored via a wide variety of approaches, including posterior, lateral, oblique and anterior as shown in FIGS. 28-31, respectively. Moreover, the nucleus pulposus implant systems may include one or more implants disposed on the anchoring rods of the anchoring devices described herein. As seen in FIG. 32, two implants 100′ are disposed on anchoring rod 20 of anchoring device 10. Thus, typically at least one implant is included in the implant systems described herein.
  • Additionally, in other forms of the invention, the spinal implant systems may include one or more elastic bodies and one or more anchoring devices. Referring now to FIG. 33, two anchoring devices are included in the system along with two elastic bodies, each elastic body disposed on a [0088] different anchoring device 950 or 960. Each anchoring device may be independently anchored to an adjacent vertebra. In alternative embodiments, first ends 951 and 961 of anchoring rods 953 and 963, respectively, may be connected, or otherwise attached to each other to form a single extension, or end, of the anchoring rods, which may in turn be attached to an adjacent vertebra or bracket as described herein. The latter case is shown in FIG. 33, wherein first ends 951 and 961 of elongated bodies 953 and 963, respectively, of anchoring devices 950 and 960 are integral with each other. Utilizing such a system with anterior and posterior implants IA and IP, respectively, implants having different heights may be used to create or maintain lordosis. For example, if a cylindrical implant is desired, anterior implant IA may have a larger diameter, and thus a larger height, than posterior implant IP.
  • All references cited herein are indicative of the level of skill in the art and are hereby incorporated by reference in their entirety. [0089]

Claims (14)

1. A device for anchoring a spinal implant in an intervertebral disc space, comprising:
(a) an anchoring rod having a first end and a second end, said rod configured to anchor said implant;
(b) at least one securing member attached to said rod, said device securable to an adjacent vertebra.
2. The device of claim 1, wherein said first end of said anchoring rod is securable to said adjacent vertebra.
3. The device of claim 1, wherein two opposing securing members are attached to said anchoring rod, said members spaced apart along the length of said rod and defining a region for disposing said implant therebetween, said device securable to an adjacent vertebra.
4. The device of claim 1, wherein said securing member is formed of material selected from shape memory material, titanium alloy, titanium, stainless steel, cobalt chrome alloy, carbon fiber reinforced composite, polyolefins, polyaryletherketone, polymethylmethacrylate, polycarbonate, polyurethane, silicone and combinations thereof.
5. The device of claim 4, wherein said shape memory material is a shape memory alloy that exhibits superelastic behavior.
6. The device of claim 1, wherein said device is comprised of a metallic material, a non-metallic material, or a combination thereof.
7. The device of claim 6, wherein said metallic material is selected from a shape memory material, titanium alloy, titanium, stainless steel, cobalt chrome alloy, and combinations thereof.
8. The device of claim 8, wherein said non-metallic material is selected from polyethylene, polyparaphenylene terephthalamide, cellulose, carbon fiber reinforced composite, polyester, polyvinyl alcohol and combinations thereof.
9. The device of claim 1, wherein said first end of said anchoring rod is securable to an adjacent vertebra with a bone screw or a soft tissue anchor.
10. The device of claim 9, wherein said bone screw is an interference screw and said soft tissue anchor is a suture anchor.
11. The device of claim 1, wherein said anchoring rod is securable to an adjacent vertebra.
12. The device of claim 1, wherein said first end of said anchoring rod is securable to an adjacent vertebra.
13. The device of claim 1, wherein said device further includes a bracket, said first end of said rod securable to said bracket.
14.-62. (cancelled)
US10/842,103 2000-10-20 2004-05-10 Anchoring devices and implants for intervertebral disc augmentation Abandoned US20040210226A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/842,103 US20040210226A1 (en) 2000-10-20 2004-05-10 Anchoring devices and implants for intervertebral disc augmentation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/693,880 US6733531B1 (en) 2000-10-20 2000-10-20 Anchoring devices and implants for intervertebral disc augmentation
US10/842,103 US20040210226A1 (en) 2000-10-20 2004-05-10 Anchoring devices and implants for intervertebral disc augmentation

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/693,880 Division US6733531B1 (en) 2000-10-20 2000-10-20 Anchoring devices and implants for intervertebral disc augmentation

Publications (1)

Publication Number Publication Date
US20040210226A1 true US20040210226A1 (en) 2004-10-21

Family

ID=24786496

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/693,880 Expired - Fee Related US6733531B1 (en) 2000-10-20 2000-10-20 Anchoring devices and implants for intervertebral disc augmentation
US10/842,103 Abandoned US20040210226A1 (en) 2000-10-20 2004-05-10 Anchoring devices and implants for intervertebral disc augmentation

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/693,880 Expired - Fee Related US6733531B1 (en) 2000-10-20 2000-10-20 Anchoring devices and implants for intervertebral disc augmentation

Country Status (6)

Country Link
US (2) US6733531B1 (en)
EP (1) EP1328218A2 (en)
JP (2) JP2004512095A (en)
AU (2) AU2002213257B2 (en)
CA (1) CA2425973A1 (en)
WO (1) WO2002034169A2 (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070055274A1 (en) * 2005-06-20 2007-03-08 Andreas Appenzeller Apparatus and methods for treating bone
US20070100449A1 (en) * 2005-10-31 2007-05-03 O'neil Michael Injectable soft tissue fixation technique
US20070191957A1 (en) * 2006-02-07 2007-08-16 Spinemedica Corporation Spinal implants with cooperating suture anchors
US20080004702A1 (en) * 2006-06-29 2008-01-03 Spinemedica Corporation Spinal implants with cooperating anchoring sutures
US20080154263A1 (en) * 2006-12-22 2008-06-26 Janowski Brian P Implant Retention Device and Method
WO2008116192A3 (en) * 2007-03-21 2008-11-13 Magellan Spine Technologies In Spinal implants and methods of providing dynamic stability to the spine
US20100063550A1 (en) * 2008-09-11 2010-03-11 Innovasis, Inc, Radiolucent screw with radiopaque marker
US20100114107A1 (en) * 2000-08-30 2010-05-06 Warsaw Orthopedic, Inc. Intervertebral Disc Nucleus Implants and Methods
US20110054535A1 (en) * 2009-08-28 2011-03-03 Gephart Matthew P Size Transition Spinal Rod
US20110060365A1 (en) * 2009-09-10 2011-03-10 Innovasis, Inc. Radiolucent stabilizing rod with radiopaque marker
US20110079341A1 (en) * 2009-10-01 2011-04-07 Tyco Healthcare Group Lp Welded Knot End Effector
US7963991B2 (en) 2005-08-26 2011-06-21 Magellan Spine Technologies, Inc. Spinal implants and methods of providing dynamic stability to the spine
US20110218570A1 (en) * 2010-03-08 2011-09-08 Innovasis, Inc. Radiolucent bone plate with radiopaque marker
US20110230919A1 (en) * 2009-12-16 2011-09-22 Neville Alleyne Implant for promoting stability of the canine stifle joint
US8066750B2 (en) 2006-10-06 2011-11-29 Warsaw Orthopedic, Inc Port structures for non-rigid bone plates
US20120150303A1 (en) * 2007-11-19 2012-06-14 Linares Medical Devices, Llc Spine support implant including inter vertebral insertable fluid ballastable insert and inter-vertebral web retaining harnesses
US8454694B2 (en) 2011-03-03 2013-06-04 Warsaw Orthopedic, Inc. Interbody device and plate for spinal stabilization and instruments for positioning same
US8480747B2 (en) 2010-08-11 2013-07-09 Warsaw Orthopedic, Inc. Interbody spinal implants with extravertebral support plates
US20140012325A1 (en) * 2006-05-09 2014-01-09 Centinel Spine, Inc. Systems and methods for stabilizing a functional spinal unit
US20150080952A1 (en) * 2013-09-16 2015-03-19 Neuraxis, Llc Methods and devices for applying localized thermal therapy
US9289240B2 (en) 2005-12-23 2016-03-22 DePuy Synthes Products, Inc. Flexible elongated chain implant and method of supporting body tissue with same
US10179065B2 (en) 2013-09-16 2019-01-15 Neuraxis Llc Implantable devices for thermal therapy and related methods
USD907771S1 (en) 2017-10-09 2021-01-12 Pioneer Surgical Technology, Inc. Intervertebral implant
US11147682B2 (en) 2017-09-08 2021-10-19 Pioneer Surgical Technology, Inc. Intervertebral implants, instruments, and methods

Families Citing this family (234)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080086212A1 (en) 1997-01-02 2008-04-10 St. Francis Medical Technologies, Inc. Spine distraction implant
US20080215058A1 (en) 1997-01-02 2008-09-04 Zucherman James F Spine distraction implant and method
US7959652B2 (en) * 2005-04-18 2011-06-14 Kyphon Sarl Interspinous process implant having deployable wings and method of implantation
US6068630A (en) 1997-01-02 2000-05-30 St. Francis Medical Technologies, Inc. Spine distraction implant
US6045551A (en) 1998-02-06 2000-04-04 Bonutti; Peter M. Bone suture
FR2897259B1 (en) * 2006-02-15 2008-05-09 Ldr Medical Soc Par Actions Si INTERSOMATIC TRANSFORAMINAL CAGE WITH INTERBREBAL FUSION GRAFT AND CAGE IMPLANTATION INSTRUMENT
US6447516B1 (en) 1999-08-09 2002-09-10 Peter M. Bonutti Method of securing tissue
US6368343B1 (en) 2000-03-13 2002-04-09 Peter M. Bonutti Method of using ultrasonic vibration to secure body tissue
JP4247519B2 (en) * 1999-08-18 2009-04-02 イントリンジック セラピューティックス インコーポレイテッド Apparatus and method for nucleus augmentation and retention
US7972337B2 (en) 2005-12-28 2011-07-05 Intrinsic Therapeutics, Inc. Devices and methods for bone anchoring
WO2004100841A1 (en) 1999-08-18 2004-11-25 Intrinsic Therapeutics, Inc. Devices and method for augmenting a vertebral disc nucleus
US8323341B2 (en) 2007-09-07 2012-12-04 Intrinsic Therapeutics, Inc. Impaction grafting for vertebral fusion
US7220281B2 (en) * 1999-08-18 2007-05-22 Intrinsic Therapeutics, Inc. Implant for reinforcing and annulus fibrosis
US7998213B2 (en) 1999-08-18 2011-08-16 Intrinsic Therapeutics, Inc. Intervertebral disc herniation repair
US7717961B2 (en) 1999-08-18 2010-05-18 Intrinsic Therapeutics, Inc. Apparatus delivery in an intervertebral disc
US20030040796A1 (en) * 1999-10-08 2003-02-27 Ferree Bret A. Devices used to treat disc herniation and attachment mechanisms therefore
US8679180B2 (en) * 1999-10-08 2014-03-25 Anova Corporation Devices used to treat disc herniation and attachment mechanisms therefore
US7951201B2 (en) 1999-10-20 2011-05-31 Anulex Technologies, Inc. Method and apparatus for the treatment of the intervertebral disc annulus
US7615076B2 (en) 1999-10-20 2009-11-10 Anulex Technologies, Inc. Method and apparatus for the treatment of the intervertebral disc annulus
US7935147B2 (en) 1999-10-20 2011-05-03 Anulex Technologies, Inc. Method and apparatus for enhanced delivery of treatment device to the intervertebral disc annulus
US7052516B2 (en) 1999-10-20 2006-05-30 Anulex Technologies, Inc. Spinal disc annulus reconstruction method and deformable spinal disc annulus stent
US6592625B2 (en) 1999-10-20 2003-07-15 Anulex Technologies, Inc. Spinal disc annulus reconstruction method and spinal disc annulus stent
US7004970B2 (en) 1999-10-20 2006-02-28 Anulex Technologies, Inc. Methods and devices for spinal disc annulus reconstruction and repair
US8632590B2 (en) 1999-10-20 2014-01-21 Anulex Technologies, Inc. Apparatus and methods for the treatment of the intervertebral disc
US6635073B2 (en) 2000-05-03 2003-10-21 Peter M. Bonutti Method of securing body tissue
US7094251B2 (en) 2002-08-27 2006-08-22 Marctec, Llc. Apparatus and method for securing a suture
US9138222B2 (en) 2000-03-13 2015-09-22 P Tech, Llc Method and device for securing body tissue
US6805695B2 (en) 2000-04-04 2004-10-19 Spinalabs, Llc Devices and methods for annular repair of intervertebral discs
FR2808995B1 (en) 2000-05-18 2003-02-21 Aesculap Sa INTERSOMATIC CAGE WITH UNIFIED GRAFT
US7204851B2 (en) 2000-08-30 2007-04-17 Sdgi Holdings, Inc. Method and apparatus for delivering an intervertebral disc implant
US7503936B2 (en) 2000-08-30 2009-03-17 Warsaw Orthopedic, Inc. Methods for forming and retaining intervertebral disc implants
US20090234457A1 (en) * 2001-06-29 2009-09-17 The Regents Of The University Of California Systems, devices and methods for treatment of intervertebral disorders
FR2827156B1 (en) * 2001-07-13 2003-11-14 Ldr Medical VERTEBRAL CAGE DEVICE WITH MODULAR FASTENING
US6719765B2 (en) 2001-12-03 2004-04-13 Bonutti 2003 Trust-A Magnetic suturing system and method
US20060129242A1 (en) * 2001-12-28 2006-06-15 Brian Bergeron Pseudo arthrosis device
US9155544B2 (en) 2002-03-20 2015-10-13 P Tech, Llc Robotic systems and methods
US7338525B2 (en) * 2002-04-30 2008-03-04 Ferree Bret A Methods and apparatus for preventing the migration of intradiscal devices
AU2003268480A1 (en) * 2002-09-06 2004-03-29 Neville D. Alleyne Seal for posterior lateral vertebral disk cavity
KR101095771B1 (en) 2002-09-18 2011-12-21 워쏘우 오르쏘페딕 인코포레이티드 Natural tissue devices and methods of implantation
US8147548B2 (en) 2005-03-21 2012-04-03 Kyphon Sarl Interspinous process implant having a thread-shaped wing and method of implantation
US7549999B2 (en) 2003-05-22 2009-06-23 Kyphon Sarl Interspinous process distraction implant and method of implantation
US20080021468A1 (en) * 2002-10-29 2008-01-24 Zucherman James F Interspinous process implants and methods of use
CA2504591C (en) * 2002-11-05 2011-09-13 Spineology Inc. A semi-biological intervertebral disc replacement system
NL1022023C2 (en) * 2002-11-29 2004-06-03 Dsm Nv Artificial intervertebral disc.
US6974479B2 (en) * 2002-12-10 2005-12-13 Sdgi Holdings, Inc. System and method for blocking and/or retaining a prosthetic spinal implant
FR2851158A1 (en) * 2003-02-14 2004-08-20 Alain Ventimiglia Inter-vertebral prosthesis for replacing inter-vertebral disc, has two elastic plates, each including perpendicular extension to fix plate to vertebral, and two stainless steel plates to push extensions to vertebra
US7771478B2 (en) * 2003-04-04 2010-08-10 Theken Spine, Llc Artificial disc prosthesis
WO2004089257A1 (en) * 2003-04-14 2004-10-21 Mathys Medizinaltechnik Ag Intervertebral implant
US7497864B2 (en) 2003-04-30 2009-03-03 Marctec, Llc. Tissue fastener and methods for using same
DK1638485T3 (en) 2003-06-20 2011-05-02 Intrinsic Therapeutics Inc Device for delivery of an implant through an annular defect in an intervertebral disc
US7153325B2 (en) * 2003-08-01 2006-12-26 Ultra-Kinetics, Inc. Prosthetic intervertebral disc and methods for using the same
US7753958B2 (en) 2003-08-05 2010-07-13 Gordon Charles R Expandable intervertebral implant
US7785351B2 (en) 2003-08-05 2010-08-31 Flexuspine, Inc. Artificial functional spinal implant unit system and method for use
US7909869B2 (en) 2003-08-05 2011-03-22 Flexuspine, Inc. Artificial spinal unit assemblies
US20050055099A1 (en) * 2003-09-09 2005-03-10 Ku David N. Flexible spinal disc
JP2007505710A (en) * 2003-09-19 2007-03-15 サインコア,リミテッド・ライアビリティ・カンパニー Method and apparatus for treating diseased or broken bone
DE10348329B3 (en) 2003-10-17 2005-02-17 Biedermann Motech Gmbh Rod-shaped element used in spinal column and accident surgery for connecting two bone-anchoring elements comprises a rigid section and an elastic section that are made in one piece
EP1523963B1 (en) * 2003-10-17 2007-12-12 Co-Ligne AG Fusion implant
US8632570B2 (en) 2003-11-07 2014-01-21 Biedermann Technologies Gmbh & Co. Kg Stabilization device for bones comprising a spring element and manufacturing method for said spring element
US20050187631A1 (en) * 2004-01-27 2005-08-25 Sdgi Holdings, Inc. Prosthetic device
US20080039873A1 (en) 2004-03-09 2008-02-14 Marctec, Llc. Method and device for securing body tissue
US20050222683A1 (en) * 2004-03-31 2005-10-06 Sdgi Holdings Shape memory alloy disc replacement device
US20050244451A1 (en) * 2004-05-03 2005-11-03 Robert Diaz Method and device for reducing susceptibility to fractures in vertebral bodies
US20050244499A1 (en) * 2004-05-03 2005-11-03 Robert Diaz Method and device for reducing susceptibility to fractures in long bones
US7744635B2 (en) * 2004-06-09 2010-06-29 Spinal Generations, Llc Spinal fixation system
US20060041261A1 (en) * 2004-08-17 2006-02-23 Osypka Thomas P Apparatus and method for attaching connective tissue to bone
US7682393B2 (en) * 2004-10-14 2010-03-23 Warsaw Orthopedic, Inc. Implant system, method, and instrument for augmentation or reconstruction of intervertebral disc
US20060089719A1 (en) * 2004-10-21 2006-04-27 Trieu Hai H In situ formation of intervertebral disc implants
US9173647B2 (en) * 2004-10-26 2015-11-03 P Tech, Llc Tissue fixation system
US20060089646A1 (en) 2004-10-26 2006-04-27 Bonutti Peter M Devices and methods for stabilizing tissue and implants
US9271766B2 (en) 2004-10-26 2016-03-01 P Tech, Llc Devices and methods for stabilizing tissue and implants
US9463012B2 (en) 2004-10-26 2016-10-11 P Tech, Llc Apparatus for guiding and positioning an implant
US20060089642A1 (en) * 2004-10-27 2006-04-27 Diaz Robert L Prefracture spinal implant for osteoporotic unfractured bone
ATE524121T1 (en) 2004-11-24 2011-09-15 Abdou Samy DEVICES FOR PLACING AN ORTHOPEDIC INTERVERTEBRAL IMPLANT
JP2008521563A (en) * 2004-12-01 2008-06-26 ザ リージェンツ オブ ザ ユニヴァーシティ オブ ザ カリフォルニア Intervertebral disease treatment system, apparatus and method
KR100675379B1 (en) * 2005-01-25 2007-01-29 삼성전자주식회사 Printing system and printing method
US8034080B2 (en) 2005-02-17 2011-10-11 Kyphon Sarl Percutaneous spinal implants and methods
US8096994B2 (en) 2005-02-17 2012-01-17 Kyphon Sarl Percutaneous spinal implants and methods
US8157841B2 (en) 2005-02-17 2012-04-17 Kyphon Sarl Percutaneous spinal implants and methods
US8007521B2 (en) 2005-02-17 2011-08-30 Kyphon Sarl Percutaneous spinal implants and methods
US8100943B2 (en) * 2005-02-17 2012-01-24 Kyphon Sarl Percutaneous spinal implants and methods
US8097018B2 (en) 2005-02-17 2012-01-17 Kyphon Sarl Percutaneous spinal implants and methods
US20070276493A1 (en) 2005-02-17 2007-11-29 Malandain Hugues F Percutaneous spinal implants and methods
US9089323B2 (en) 2005-02-22 2015-07-28 P Tech, Llc Device and method for securing body tissue
US8696707B2 (en) * 2005-03-08 2014-04-15 Zyga Technology, Inc. Facet joint stabilization
WO2006099887A1 (en) * 2005-03-24 2006-09-28 Eska Implants Gmbh & Co. Vertebral column implant
US8083798B2 (en) 2005-04-04 2011-12-27 Warsaw Orthopedic, Inc. Non-circular stabilization sphere and method
US20060235416A1 (en) * 2005-04-15 2006-10-19 Sdgi Holdings, Inc. Intervertebral connecting elements
US8357200B2 (en) * 2005-04-19 2013-01-22 Ali Adl Hinged artificial spinal disk device
US20060235525A1 (en) * 2005-04-19 2006-10-19 Sdgi Holdings, Inc. Composite structure for biomedical implants
US20060235523A1 (en) * 2005-04-19 2006-10-19 Sdgi Holdings, Inc. Implant having a sheath with a motion-limiting attribute
US8702718B2 (en) 2005-04-29 2014-04-22 Jmea Corporation Implantation system for tissue repair
US7608108B2 (en) * 2005-04-29 2009-10-27 Jmea Corporation Tissue repair system
US7727233B2 (en) 2005-04-29 2010-06-01 Warsaw Orthopedic, Inc. Spinous process stabilization devices and methods
US7632313B2 (en) 2005-04-29 2009-12-15 Jmea Corporation Disc repair system
US7988735B2 (en) * 2005-06-15 2011-08-02 Matthew Yurek Mechanical apparatus and method for delivering materials into the inter-vertebral body space for nucleus replacement
DE602005007223D1 (en) * 2005-08-24 2008-07-10 Biedermann Motech Gmbh Rod-shaped element for use in spine or trauma surgery and stabilization device with such an element
US20070083210A1 (en) * 2005-09-16 2007-04-12 Zimmer Spine, Inc. Apparatus and method for minimally invasive spine surgery
EP1767161A1 (en) * 2005-09-22 2007-03-28 Zimmer Spine, Inc. Spinal fixation rod contouring system
FR2891135B1 (en) 2005-09-23 2008-09-12 Ldr Medical Sarl INTERVERTEBRAL DISC PROSTHESIS
GB0521585D0 (en) * 2005-10-22 2005-11-30 Depuy Int Ltd A spinal support rod
GB0521582D0 (en) * 2005-10-22 2005-11-30 Depuy Int Ltd An implant for supporting a spinal column
US20070093906A1 (en) * 2005-10-26 2007-04-26 Zimmer Spine, Inc. Nucleus implant and method
DE102005053819A1 (en) * 2005-11-11 2007-05-16 Khd Humboldt Wedag Gmbh Rotary kiln burner
US20070112427A1 (en) * 2005-11-16 2007-05-17 Aoi Medical, Inc. Intervertebral Spacer
EP1787604A1 (en) * 2005-11-16 2007-05-23 Tissupor AG Implant for sealing and/or healing a defect in an annulus of an intervertebral disc
GB0600662D0 (en) * 2006-01-13 2006-02-22 Depuy Int Ltd Spinal support rod kit
US8083795B2 (en) 2006-01-18 2011-12-27 Warsaw Orthopedic, Inc. Intervertebral prosthetic device for spinal stabilization and method of manufacturing same
US7799079B2 (en) 2006-01-18 2010-09-21 Zimmer Spine, Inc. Vertebral fusion device and method
US8348952B2 (en) * 2006-01-26 2013-01-08 Depuy International Ltd. System and method for cooling a spinal correction device comprising a shape memory material for corrective spinal surgery
US11278331B2 (en) 2006-02-07 2022-03-22 P Tech Llc Method and devices for intracorporeal bonding of implants with thermal energy
US11253296B2 (en) 2006-02-07 2022-02-22 P Tech, Llc Methods and devices for intracorporeal bonding of implants with thermal energy
US7967820B2 (en) 2006-02-07 2011-06-28 P Tech, Llc. Methods and devices for trauma welding
US8496657B2 (en) 2006-02-07 2013-07-30 P Tech, Llc. Methods for utilizing vibratory energy to weld, stake and/or remove implants
US20070191956A1 (en) * 2006-02-10 2007-08-16 Replication Medical, Inc. Radially extended support member for spinal nucleus implants and methods of use
US20070203580A1 (en) * 2006-02-24 2007-08-30 Paonan Biotech Co., Ltd. Intervertebral filling
US8118869B2 (en) 2006-03-08 2012-02-21 Flexuspine, Inc. Dynamic interbody device
US8262698B2 (en) 2006-03-16 2012-09-11 Warsaw Orthopedic, Inc. Expandable device for insertion between anatomical structures and a procedure utilizing same
FR2899788B1 (en) * 2006-04-13 2008-07-04 Jean Taylor TREATMENT EQUIPMENT FOR VERTEBRATES, COMPRISING AN INTEREPINOUS IMPLANT
US8118844B2 (en) * 2006-04-24 2012-02-21 Warsaw Orthopedic, Inc. Expandable device for insertion between anatomical structures and a procedure utilizing same
US8048118B2 (en) 2006-04-28 2011-11-01 Warsaw Orthopedic, Inc. Adjustable interspinous process brace
US20070270821A1 (en) * 2006-04-28 2007-11-22 Sdgi Holdings, Inc. Vertebral stabilizer
US11246638B2 (en) 2006-05-03 2022-02-15 P Tech, Llc Methods and devices for utilizing bondable materials
US8075619B2 (en) * 2006-06-13 2011-12-13 Anova Corporation Devices for disc herniation repair and methods of use
WO2010062971A1 (en) 2008-11-26 2010-06-03 Anova Corporation Methods and apparatus for anulus repair
US8834496B2 (en) 2006-06-13 2014-09-16 Bret A. Ferree Soft tissue repair methods and apparatus
US9232938B2 (en) 2006-06-13 2016-01-12 Anova Corp. Method and apparatus for closing fissures in the annulus fibrosus
US8764835B2 (en) * 2006-06-13 2014-07-01 Bret A. Ferree Intervertebral disc treatment methods and apparatus
US20080058932A1 (en) * 2006-07-26 2008-03-06 Warsaw Orthopedic Inc. Rigidization-on-command orthopedic devices and methods
US7766942B2 (en) * 2006-08-31 2010-08-03 Warsaw Orthopedic, Inc. Polymer rods for spinal applications
US8097019B2 (en) 2006-10-24 2012-01-17 Kyphon Sarl Systems and methods for in situ assembly of an interspinous process distraction implant
FR2908035B1 (en) 2006-11-08 2009-05-01 Jean Taylor INTEREPINE IMPLANT
US20080140202A1 (en) * 2006-12-08 2008-06-12 Randall Noel Allard Energy-Storing Spinal Implants and Methods of Use
US7905922B2 (en) 2006-12-20 2011-03-15 Zimmer Spine, Inc. Surgical implant suitable for replacement of an intervertebral disc
US9039768B2 (en) 2006-12-22 2015-05-26 Medos International Sarl Composite vertebral spacers and instrument
US7875059B2 (en) * 2007-01-18 2011-01-25 Warsaw Orthopedic, Inc. Variable stiffness support members
US7959677B2 (en) 2007-01-19 2011-06-14 Flexuspine, Inc. Artificial functional spinal unit system and method for use
BRPI0806432A2 (en) * 2007-01-23 2011-09-13 Bio Smart Co Ltd spacer to be used in a surgical operation for spinal processes
US8617185B2 (en) 2007-02-13 2013-12-31 P Tech, Llc. Fixation device
US8740944B2 (en) * 2007-02-28 2014-06-03 Warsaw Orthopedic, Inc. Vertebral stabilizer
US7648521B2 (en) * 2007-03-15 2010-01-19 Zimmer Spine, Inc. System and method for minimally invasive spinal surgery
US20080288074A1 (en) * 2007-05-15 2008-11-20 O'neil Michael J Internally reinforced elastomeric intervertebral disc implants
FR2916956B1 (en) 2007-06-08 2012-12-14 Ldr Medical INTERSOMATIC CAGE, INTERVERTEBRAL PROSTHESIS, ANCHORING DEVICE AND IMPLANTATION INSTRUMENTATION
WO2009006455A1 (en) * 2007-06-29 2009-01-08 Nuvasive, Inc. Facet joint implant and related methods
US8343189B2 (en) 2007-09-25 2013-01-01 Zyga Technology, Inc. Method and apparatus for facet joint stabilization
US8162994B2 (en) 2007-10-22 2012-04-24 Flexuspine, Inc. Posterior stabilization system with isolated, dual dampener systems
US8523912B2 (en) 2007-10-22 2013-09-03 Flexuspine, Inc. Posterior stabilization systems with shared, dual dampener systems
US8187330B2 (en) 2007-10-22 2012-05-29 Flexuspine, Inc. Dampener system for a posterior stabilization system with a variable length elongated member
US8157844B2 (en) * 2007-10-22 2012-04-17 Flexuspine, Inc. Dampener system for a posterior stabilization system with a variable length elongated member
US8182514B2 (en) 2007-10-22 2012-05-22 Flexuspine, Inc. Dampener system for a posterior stabilization system with a fixed length elongated member
US8267965B2 (en) 2007-10-22 2012-09-18 Flexuspine, Inc. Spinal stabilization systems with dynamic interbody devices
GB0720762D0 (en) 2007-10-24 2007-12-05 Depuy Spine Sorl Assembly for orthopaedic surgery
US20090138084A1 (en) * 2007-11-19 2009-05-28 Magellan Spine Technologies, Inc. Spinal implants and methods
US8105358B2 (en) 2008-02-04 2012-01-31 Kyphon Sarl Medical implants and methods
US8114136B2 (en) 2008-03-18 2012-02-14 Warsaw Orthopedic, Inc. Implants and methods for inter-spinous process dynamic stabilization of a spinal motion segment
US20090248092A1 (en) 2008-03-26 2009-10-01 Jonathan Bellas Posterior Intervertebral Disc Inserter and Expansion Techniques
US9168072B2 (en) * 2008-06-02 2015-10-27 DePuy Synthes Products, Inc. Inflatable interspinous spacer
US20110059149A1 (en) * 2008-06-16 2011-03-10 Little Marisa A Process for depositing calcium phosphate therapeutic coatings with different release rates and a prosthesis coated via the process
US8187333B2 (en) * 2008-09-18 2012-05-29 Mayer Peter L Intervertebral disc prosthesis and method for implanting and explanting
US8814937B2 (en) 2008-09-18 2014-08-26 Peter L. Mayer Intervertebral disc prosthesis, method for assembling, method for implanting prosthesis, and method for explanting
US8163022B2 (en) 2008-10-14 2012-04-24 Anulex Technologies, Inc. Method and apparatus for the treatment of the intervertebral disc annulus
US8114131B2 (en) 2008-11-05 2012-02-14 Kyphon Sarl Extension limiting devices and methods of use for the spine
US9011538B2 (en) 2009-01-21 2015-04-21 Warsaw Orthopedic, Inc. Methods of spinal nucleus replacemennt
US9011539B2 (en) * 2009-01-21 2015-04-21 Warsaw Orthopedic, Inc. Spinal nucleus replacement implant
EP2400899A4 (en) 2009-02-24 2015-03-18 P Tech Llc Methods and devices for utilizing bondable materials
US8292962B2 (en) * 2009-03-04 2012-10-23 Warsaw Orthopedic, Inc. Spinal nucleus replacement implants
US9526620B2 (en) 2009-03-30 2016-12-27 DePuy Synthes Products, Inc. Zero profile spinal fusion cage
US8372117B2 (en) * 2009-06-05 2013-02-12 Kyphon Sarl Multi-level interspinous implants and methods of use
US8394125B2 (en) 2009-07-24 2013-03-12 Zyga Technology, Inc. Systems and methods for facet joint treatment
US8591555B2 (en) * 2009-08-31 2013-11-26 Warsaw Orthopedic, Inc. System with integral locking mechanism
WO2011028306A1 (en) 2009-09-06 2011-03-10 Cowan Jr John A Locking spinal fusion device
US8617245B2 (en) 2009-09-17 2013-12-31 DePuy Synthes Products, LLC Intervertebral implant having extendable bone fixation members
US8211126B2 (en) * 2009-09-22 2012-07-03 Jmea Corporation Tissue repair system
US20110077655A1 (en) * 2009-09-25 2011-03-31 Fisher Michael A Vertebral Body Spool Device
US8764806B2 (en) 2009-12-07 2014-07-01 Samy Abdou Devices and methods for minimally invasive spinal stabilization and instrumentation
US9393129B2 (en) 2009-12-10 2016-07-19 DePuy Synthes Products, Inc. Bellows-like expandable interbody fusion cage
US9833331B2 (en) 2009-12-31 2017-12-05 Ldr Medical Anchoring device and system for an intervertebral implant, intervertebral implant and implantation instrument
US8460319B2 (en) 2010-01-11 2013-06-11 Anulex Technologies, Inc. Intervertebral disc annulus repair system and method
US20110172720A1 (en) * 2010-01-13 2011-07-14 Kyphon Sarl Articulating interspinous process clamp
US8317831B2 (en) 2010-01-13 2012-11-27 Kyphon Sarl Interspinous process spacer diagnostic balloon catheter and methods of use
US8114132B2 (en) 2010-01-13 2012-02-14 Kyphon Sarl Dynamic interspinous process device
US8221428B2 (en) * 2010-01-26 2012-07-17 Warsaw Orthopedic, Inc. Sacro-iliac joint implant system, method and instrument
US20110184520A1 (en) * 2010-01-27 2011-07-28 Warsaw Orthopedic, Inc. Sacro-iliac joint implant, method and apparatus
US8147526B2 (en) 2010-02-26 2012-04-03 Kyphon Sarl Interspinous process spacer diagnostic parallel balloon catheter and methods of use
US8945224B2 (en) * 2010-03-18 2015-02-03 Warsaw, Orthopedic, Inc. Sacro-iliac implant system, method and apparatus
US20110238181A1 (en) * 2010-03-29 2011-09-29 Warsaw Orthopedic, Inc., A Indiana Corporation Sacro-iliac joint implant system and method
EP2561834B1 (en) * 2010-04-21 2015-10-14 Yasuo Shikinami Standalone biomimetic artificial intervertebral disc
US8419796B2 (en) 2010-05-21 2013-04-16 Warsaw Orthopedic, Inc. Intervertebral prosthetic systems, devices, and associated methods
US8409287B2 (en) 2010-05-21 2013-04-02 Warsaw Orthopedic, Inc. Intervertebral prosthetic systems, devices, and associated methods
US9233006B2 (en) 2010-06-15 2016-01-12 Zyga Technology, Inc. Systems and methods for facet joint treatment
US8663293B2 (en) 2010-06-15 2014-03-04 Zyga Technology, Inc. Systems and methods for facet joint treatment
US20120078372A1 (en) 2010-09-23 2012-03-29 Thomas Gamache Novel implant inserter having a laterally-extending dovetail engagement feature
US11529241B2 (en) 2010-09-23 2022-12-20 DePuy Synthes Products, Inc. Fusion cage with in-line single piece fixation
US20120078373A1 (en) 2010-09-23 2012-03-29 Thomas Gamache Stand alone intervertebral fusion device
US9039765B2 (en) 2011-01-21 2015-05-26 Warsaw Orhtopedic, Inc. Implant system and method for stabilization of a sacro-iliac joint
US8388687B2 (en) 2011-03-25 2013-03-05 Flexuspine, Inc. Interbody device insertion systems and methods
US8591548B2 (en) 2011-03-31 2013-11-26 Warsaw Orthopedic, Inc. Spinous process fusion plate assembly
US8591549B2 (en) 2011-04-08 2013-11-26 Warsaw Orthopedic, Inc. Variable durometer lumbar-sacral implant
US9248028B2 (en) 2011-09-16 2016-02-02 DePuy Synthes Products, Inc. Removable, bone-securing cover plate for intervertebral fusion cage
US8845728B1 (en) 2011-09-23 2014-09-30 Samy Abdou Spinal fixation devices and methods of use
JP5798443B2 (en) * 2011-10-21 2015-10-21 HOYA Technosurgical株式会社 Spacer
US9526627B2 (en) 2011-11-17 2016-12-27 Exactech, Inc. Expandable interbody device system and method
US9113866B2 (en) 2011-12-15 2015-08-25 Ethicon Endo-Surgery, Inc. Devices and methods for endoluminal plication
US9113879B2 (en) 2011-12-15 2015-08-25 Ethicon Endo-Surgery, Inc. Devices and methods for endoluminal plication
US20130226240A1 (en) 2012-02-22 2013-08-29 Samy Abdou Spinous process fixation devices and methods of use
FR2987256B1 (en) 2012-02-24 2014-08-08 Ldr Medical ANCHORING DEVICE FOR INTERVERTEBRAL IMPLANT, INTERVERTEBRAL IMPLANT AND IMPLANTATION INSTRUMENTATION
US9271836B2 (en) 2012-03-06 2016-03-01 DePuy Synthes Products, Inc. Nubbed plate
US8992547B2 (en) 2012-03-21 2015-03-31 Ethicon Endo-Surgery, Inc. Methods and devices for creating tissue plications
US9393126B2 (en) 2012-04-20 2016-07-19 Peter L. Mayer Bilaterally placed disc prosthesis for spinal implant and method of bilateral placement
US9364339B2 (en) 2012-04-30 2016-06-14 Peter L. Mayer Unilaterally placed expansile spinal prosthesis
WO2014018802A1 (en) * 2012-07-25 2014-01-30 Spineology, Inc. Mesh spacer hybrid
US9198767B2 (en) 2012-08-28 2015-12-01 Samy Abdou Devices and methods for spinal stabilization and instrumentation
US9320617B2 (en) 2012-10-22 2016-04-26 Cogent Spine, LLC Devices and methods for spinal stabilization and instrumentation
US10786235B2 (en) 2012-10-31 2020-09-29 Anchor Innovation Medical, Inc. Method and apparatus for closing a fissure in the annulus of an intervertebral disc, and/or for effecting other anatomical repairs and/or fixations
US10182921B2 (en) 2012-11-09 2019-01-22 DePuy Synthes Products, Inc. Interbody device with opening to allow packing graft and other biologics
WO2014078541A1 (en) 2012-11-15 2014-05-22 Zyga Technology, Inc. Systems and methods for facet joint treatment
US10076377B2 (en) 2013-01-05 2018-09-18 P Tech, Llc Fixation systems and methods
US10070969B2 (en) 2013-01-17 2018-09-11 Stryker European Holdings I, Llc Annulus plug for intervertebral disc repair
US9737294B2 (en) 2013-01-28 2017-08-22 Cartiva, Inc. Method and system for orthopedic repair
AU2014209124A1 (en) 2013-01-28 2015-09-17 Cartiva, Inc. Systems and methods for orthopedic repair
US9492288B2 (en) 2013-02-20 2016-11-15 Flexuspine, Inc. Expandable fusion device for positioning between adjacent vertebral bodies
US9345577B2 (en) * 2013-03-14 2016-05-24 Microaire Surgical Instruments Llc Balloon implant device
EP2777628B1 (en) 2013-03-15 2018-02-28 Neos Surgery, S.L. Device for repairing an intervertebral disc
WO2015024013A2 (en) 2013-08-16 2015-02-19 Suture Concepts Inc. Method and apparatus for closing a fissure in the annulus of an intervertebral disc, and/or for effecting other anatomical repairs and/or fixations
US9517144B2 (en) 2014-04-24 2016-12-13 Exactech, Inc. Limited profile intervertebral implant with incorporated fastening mechanism
US10398565B2 (en) 2014-04-24 2019-09-03 Choice Spine, Llc Limited profile intervertebral implant with incorporated fastening and locking mechanism
US10857003B1 (en) 2015-10-14 2020-12-08 Samy Abdou Devices and methods for vertebral stabilization
US10058393B2 (en) 2015-10-21 2018-08-28 P Tech, Llc Systems and methods for navigation and visualization
JP6811498B2 (en) * 2016-09-08 2021-01-13 メダロック, エルエルシー Implants and methods for long bone fixation
US10744000B1 (en) 2016-10-25 2020-08-18 Samy Abdou Devices and methods for vertebral bone realignment
US10973648B1 (en) 2016-10-25 2021-04-13 Samy Abdou Devices and methods for vertebral bone realignment
US10940016B2 (en) 2017-07-05 2021-03-09 Medos International Sarl Expandable intervertebral fusion cage
US11179248B2 (en) 2018-10-02 2021-11-23 Samy Abdou Devices and methods for spinal implantation
US11185419B2 (en) 2019-02-01 2021-11-30 Central Michigan University Artificial intervertebral discs

Citations (76)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3463158A (en) * 1963-10-31 1969-08-26 American Cyanamid Co Polyglycolic acid prosthetic devices
US3710789A (en) * 1970-12-04 1973-01-16 Univ Minnesota Method of repairing bone fractures with expanded metal
US3867728A (en) * 1971-12-30 1975-02-25 Cutter Lab Prosthesis for spinal repair
US3875595A (en) * 1974-04-15 1975-04-08 Edward C Froning Intervertebral disc prosthesis and instruments for locating same
US4309777A (en) * 1980-11-13 1982-01-12 Patil Arun A Artificial intervertebral disc
US4349921A (en) * 1980-06-13 1982-09-21 Kuntz J David Intervertebral disc prosthesis
US4743260A (en) * 1985-06-10 1988-05-10 Burton Charles V Method for a flexible stabilization system for a vertebral column
US4759766A (en) * 1984-09-04 1988-07-26 Humboldt-Universitaet Zu Berlin Intervertebral disc endoprosthesis
US4759769A (en) * 1987-02-12 1988-07-26 Health & Research Services Inc. Artificial spinal disc
US4772287A (en) * 1987-08-20 1988-09-20 Cedar Surgical, Inc. Prosthetic disc and method of implanting
US4863477A (en) * 1987-05-12 1989-09-05 Monson Gary L Synthetic intervertebral disc prosthesis
US4874389A (en) * 1987-12-07 1989-10-17 Downey Ernest L Replacement disc
US4911718A (en) * 1988-06-10 1990-03-27 University Of Medicine & Dentistry Of N.J. Functional and biocompatible intervertebral disc spacer
US4917704A (en) * 1987-07-09 1990-04-17 Sulzer Brothers Limited Intervertebral prosthesis
US4932969A (en) * 1987-01-08 1990-06-12 Sulzer Brothers Limited Joint endoprosthesis
US4946378A (en) * 1987-11-24 1990-08-07 Asahi Kogaku Kogyo Kabushiki Kaisha Artificial intervertebral disc
US4955908A (en) * 1987-07-09 1990-09-11 Sulzer Brothers Limited Metallic intervertebral prosthesis
US4997432A (en) * 1988-03-23 1991-03-05 Waldemar Link Gmbh & Co. Surgical instrument set
US5002576A (en) * 1988-06-06 1991-03-26 Mecron Medizinische Produkte Gmbh Intervertebral disk endoprosthesis
US5047055A (en) * 1990-12-21 1991-09-10 Pfizer Hospital Products Group, Inc. Hydrogel intervertebral disc nucleus
US5071437A (en) * 1989-02-15 1991-12-10 Acromed Corporation Artificial disc
US5092866A (en) * 1989-02-03 1992-03-03 Breard Francis H Flexible inter-vertebral stabilizer as well as process and apparatus for determining or verifying its tension before installation on the spinal column
US5108395A (en) * 1989-09-18 1992-04-28 Societe De Fabrication De Materiel Orthopedique - Sofamor Implant for anterior dorsolumbar spinal osteosynthesis, intended for the correction of kyphoses
US5108438A (en) * 1989-03-02 1992-04-28 Regen Corporation Prosthetic intervertebral disc
US5171280A (en) * 1990-04-20 1992-12-15 Sulzer Brothers Limited Intervertebral prosthesis
US5192326A (en) * 1990-12-21 1993-03-09 Pfizer Hospital Products Group, Inc. Hydrogel bead intervertebral disc nucleus
US5306308A (en) * 1989-10-23 1994-04-26 Ulrich Gross Intervertebral implant
US5306307A (en) * 1991-07-22 1994-04-26 Calcitek, Inc. Spinal disk implant
US5346492A (en) * 1992-03-30 1994-09-13 Timesh, Inc. Perforated metallic panels and strips for internal fixation of bone fractures and for reconstructive surgery
US5370697A (en) * 1992-04-21 1994-12-06 Sulzer Medizinaltechnik Ag Artificial intervertebral disk member
US5380328A (en) * 1993-08-09 1995-01-10 Timesh, Inc. Composite perforated implant structures
US5401269A (en) * 1992-03-13 1995-03-28 Waldemar Link Gmbh & Co. Intervertebral disc endoprosthesis
US5423816A (en) * 1993-07-29 1995-06-13 Lin; Chih I. Intervertebral locking device
US5425773A (en) * 1992-01-06 1995-06-20 Danek Medical, Inc. Intervertebral disk arthroplasty device
US5443483A (en) * 1993-04-22 1995-08-22 Axel Kirsch Appliance for accelerating the healing of a bone surgery site
US5458642A (en) * 1994-01-18 1995-10-17 Beer; John C. Synthetic intervertebral disc
US5507816A (en) * 1991-12-04 1996-04-16 Customflex Limited Spinal vertebrae implants
US5531759A (en) * 1994-04-29 1996-07-02 Kensey Nash Corporation System for closing a percutaneous puncture formed by a trocar to prevent tissue at the puncture from herniating
US5534028A (en) * 1993-04-20 1996-07-09 Howmedica, Inc. Hydrogel intervertebral disc nucleus with diminished lateral bulging
US5534030A (en) * 1993-02-09 1996-07-09 Acromed Corporation Spine disc
US5545229A (en) * 1988-08-18 1996-08-13 University Of Medicine And Dentistry Of Nj Functional and biocompatible intervertebral disc spacer containing elastomeric material of varying hardness
US5549679A (en) * 1994-05-20 1996-08-27 Kuslich; Stephen D. Expandable fabric implant for stabilizing the spinal motion segment
US5556431A (en) * 1992-03-13 1996-09-17 B+E,Uml U+Ee Ttner-Janz; Karin Intervertebral disc endoprosthesis
US5645597A (en) * 1995-12-29 1997-07-08 Krapiva; Pavel I. Disc replacement method and apparatus
US5674295A (en) * 1994-10-17 1997-10-07 Raymedica, Inc. Prosthetic spinal disc nucleus
US5674294A (en) * 1993-09-14 1997-10-07 Commissariat A L'energie Atomique Intervertebral disk prosthesis
US5674296A (en) * 1994-11-14 1997-10-07 Spinal Dynamics Corporation Human spinal disc prosthesis
US5681310A (en) * 1994-07-20 1997-10-28 Yuan; Hansen A. Vertebral auxiliary fixation device having holding capability
US5681311A (en) * 1994-09-15 1997-10-28 Smith & Nephew, Inc. Osteosynthesis apparatus
US5683465A (en) * 1996-03-18 1997-11-04 Shinn; Gary Lee Artificial intervertebral disk prosthesis
US5683464A (en) * 1992-05-04 1997-11-04 Sulzer Calcitek Inc. Spinal disk implantation kit
US5693100A (en) * 1991-02-22 1997-12-02 Pisharodi; Madhavan Middle expandable intervertebral disk implant
US5702450A (en) * 1993-06-28 1997-12-30 Bisserie; Michel Intervertebral disk prosthesis
US5716416A (en) * 1996-09-10 1998-02-10 Lin; Chih-I Artificial intervertebral disk and method for implanting the same
US5755797A (en) * 1993-04-21 1998-05-26 Sulzer Medizinaltechnik Ag Intervertebral prosthesis and a process for implanting such a prosthesis
US5755796A (en) * 1996-06-06 1998-05-26 Ibo; Ivo Prosthesis of the cervical intervertebralis disk
US5824093A (en) * 1994-10-17 1998-10-20 Raymedica, Inc. Prosthetic spinal disc nucleus
US5824094A (en) * 1997-10-17 1998-10-20 Acromed Corporation Spinal disc
US5827328A (en) * 1996-11-22 1998-10-27 Buttermann; Glenn R. Intervertebral prosthetic device
US5888226A (en) * 1997-11-12 1999-03-30 Rogozinski; Chaim Intervertebral prosthetic disc
US5893889A (en) * 1997-06-20 1999-04-13 Harrington; Michael Artificial disc
US5895428A (en) * 1996-11-01 1999-04-20 Berry; Don Load bearing spinal joint implant
USRE36221E (en) * 1989-02-03 1999-06-01 Breard; Francis Henri Flexible inter-vertebral stabilizer as well as process and apparatus for determining or verifying its tension before installation on the spinal column
US5976186A (en) * 1994-09-08 1999-11-02 Stryker Technologies Corporation Hydrogel intervertebral disc nucleus
US6039762A (en) * 1995-06-07 2000-03-21 Sdgi Holdings, Inc. Reinforced bone graft substitutes
US6093205A (en) * 1997-06-25 2000-07-25 Bridport-Gundry Plc C/O Pearsalls Implants Surgical implant
US6113603A (en) * 1996-05-10 2000-09-05 Medoff; Robert J. Graft constraint device
US6120503A (en) * 1994-03-28 2000-09-19 Michelson; Gary Karlin Apparatus instrumentation, and method for spinal fixation
US6190413B1 (en) * 1998-04-16 2001-02-20 Ulrich Gmbh & Co. Kg Vertebral implant
US6206882B1 (en) * 1999-03-30 2001-03-27 Surgical Dynamics Inc. Plating system for the spine
US6221109B1 (en) * 1999-09-15 2001-04-24 Ed. Geistlich Söhne AG fur Chemische Industrie Method of protecting spinal area
US6248106B1 (en) * 2000-02-25 2001-06-19 Bret Ferree Cross-coupled vertebral stabilizers
US6296643B1 (en) * 1999-04-23 2001-10-02 Sdgi Holdings, Inc. Device for the correction of spinal deformities through vertebral body tethering without fusion
US6425919B1 (en) * 1999-08-18 2002-07-30 Intrinsic Orthopedics, Inc. Devices and methods of vertebral disc augmentation
US6440098B1 (en) * 1997-09-16 2002-08-27 Luescher Patrik Device for implanting filamentous materials
US6585769B1 (en) * 1999-04-05 2003-07-01 Howmedica Osteonics Corp. Artificial spinal ligament

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3911610A1 (en) 1989-04-08 1990-10-18 Bosch Gmbh Robert ARTIFICIAL DISC
US5059193A (en) * 1989-11-20 1991-10-22 Spine-Tech, Inc. Expandable spinal implant and surgical method
US5888220A (en) 1994-05-06 1999-03-30 Advanced Bio Surfaces, Inc. Articulating joint repair
AU2621295A (en) 1994-05-24 1995-12-18 Smith & Nephew Plc Intervertebral disc implant
GB9413855D0 (en) 1994-07-08 1994-08-24 Smith & Nephew Prosthetic devices
FR2747034B1 (en) 1996-04-03 1998-06-19 Scient X INTERSOMATIC CONTAINMENT AND MERGER SYSTEM
DE19630256A1 (en) 1996-07-26 1998-01-29 Heinrich Ulrich Implant for fusing two adjacent vertebrae of the spine
FR2769827B1 (en) 1997-10-17 2000-05-19 Sdm IMPLANT FOR INTERSOMATIC SPINAL ARTHRODESIS
EP1563808B1 (en) 2000-08-30 2008-04-02 Warsaw Orthopedic, Inc. Intervertebral disc nucleus implants

Patent Citations (82)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3463158A (en) * 1963-10-31 1969-08-26 American Cyanamid Co Polyglycolic acid prosthetic devices
US3710789A (en) * 1970-12-04 1973-01-16 Univ Minnesota Method of repairing bone fractures with expanded metal
US3867728A (en) * 1971-12-30 1975-02-25 Cutter Lab Prosthesis for spinal repair
US3875595A (en) * 1974-04-15 1975-04-08 Edward C Froning Intervertebral disc prosthesis and instruments for locating same
US4349921A (en) * 1980-06-13 1982-09-21 Kuntz J David Intervertebral disc prosthesis
US4309777A (en) * 1980-11-13 1982-01-12 Patil Arun A Artificial intervertebral disc
US4759766A (en) * 1984-09-04 1988-07-26 Humboldt-Universitaet Zu Berlin Intervertebral disc endoprosthesis
US4743260A (en) * 1985-06-10 1988-05-10 Burton Charles V Method for a flexible stabilization system for a vertebral column
US4932969A (en) * 1987-01-08 1990-06-12 Sulzer Brothers Limited Joint endoprosthesis
US4759769A (en) * 1987-02-12 1988-07-26 Health & Research Services Inc. Artificial spinal disc
US4863477A (en) * 1987-05-12 1989-09-05 Monson Gary L Synthetic intervertebral disc prosthesis
US4955908A (en) * 1987-07-09 1990-09-11 Sulzer Brothers Limited Metallic intervertebral prosthesis
US4917704A (en) * 1987-07-09 1990-04-17 Sulzer Brothers Limited Intervertebral prosthesis
US4772287A (en) * 1987-08-20 1988-09-20 Cedar Surgical, Inc. Prosthetic disc and method of implanting
US4904260A (en) * 1987-08-20 1990-02-27 Cedar Surgical, Inc. Prosthetic disc containing therapeutic material
US4946378A (en) * 1987-11-24 1990-08-07 Asahi Kogaku Kogyo Kabushiki Kaisha Artificial intervertebral disc
US5035716A (en) * 1987-12-07 1991-07-30 Downey Ernest L Replacement disc
US4874389A (en) * 1987-12-07 1989-10-17 Downey Ernest L Replacement disc
US4997432A (en) * 1988-03-23 1991-03-05 Waldemar Link Gmbh & Co. Surgical instrument set
US5002576A (en) * 1988-06-06 1991-03-26 Mecron Medizinische Produkte Gmbh Intervertebral disk endoprosthesis
US4911718A (en) * 1988-06-10 1990-03-27 University Of Medicine & Dentistry Of N.J. Functional and biocompatible intervertebral disc spacer
US5545229A (en) * 1988-08-18 1996-08-13 University Of Medicine And Dentistry Of Nj Functional and biocompatible intervertebral disc spacer containing elastomeric material of varying hardness
US5092866A (en) * 1989-02-03 1992-03-03 Breard Francis H Flexible inter-vertebral stabilizer as well as process and apparatus for determining or verifying its tension before installation on the spinal column
USRE36221E (en) * 1989-02-03 1999-06-01 Breard; Francis Henri Flexible inter-vertebral stabilizer as well as process and apparatus for determining or verifying its tension before installation on the spinal column
US5071437A (en) * 1989-02-15 1991-12-10 Acromed Corporation Artificial disc
US5108438A (en) * 1989-03-02 1992-04-28 Regen Corporation Prosthetic intervertebral disc
US5108395A (en) * 1989-09-18 1992-04-28 Societe De Fabrication De Materiel Orthopedique - Sofamor Implant for anterior dorsolumbar spinal osteosynthesis, intended for the correction of kyphoses
US5306308A (en) * 1989-10-23 1994-04-26 Ulrich Gross Intervertebral implant
US5171280A (en) * 1990-04-20 1992-12-15 Sulzer Brothers Limited Intervertebral prosthesis
US5192326A (en) * 1990-12-21 1993-03-09 Pfizer Hospital Products Group, Inc. Hydrogel bead intervertebral disc nucleus
US5047055A (en) * 1990-12-21 1991-09-10 Pfizer Hospital Products Group, Inc. Hydrogel intervertebral disc nucleus
US5693100A (en) * 1991-02-22 1997-12-02 Pisharodi; Madhavan Middle expandable intervertebral disk implant
US5306307A (en) * 1991-07-22 1994-04-26 Calcitek, Inc. Spinal disk implant
US5507816A (en) * 1991-12-04 1996-04-16 Customflex Limited Spinal vertebrae implants
US5425773A (en) * 1992-01-06 1995-06-20 Danek Medical, Inc. Intervertebral disk arthroplasty device
US5562738A (en) * 1992-01-06 1996-10-08 Danek Medical, Inc. Intervertebral disk arthroplasty device
US5401269A (en) * 1992-03-13 1995-03-28 Waldemar Link Gmbh & Co. Intervertebral disc endoprosthesis
US5556431A (en) * 1992-03-13 1996-09-17 B+E,Uml U+Ee Ttner-Janz; Karin Intervertebral disc endoprosthesis
US5346492A (en) * 1992-03-30 1994-09-13 Timesh, Inc. Perforated metallic panels and strips for internal fixation of bone fractures and for reconstructive surgery
US5370697A (en) * 1992-04-21 1994-12-06 Sulzer Medizinaltechnik Ag Artificial intervertebral disk member
US5683464A (en) * 1992-05-04 1997-11-04 Sulzer Calcitek Inc. Spinal disk implantation kit
US5534030A (en) * 1993-02-09 1996-07-09 Acromed Corporation Spine disc
US5534028A (en) * 1993-04-20 1996-07-09 Howmedica, Inc. Hydrogel intervertebral disc nucleus with diminished lateral bulging
US5755797A (en) * 1993-04-21 1998-05-26 Sulzer Medizinaltechnik Ag Intervertebral prosthesis and a process for implanting such a prosthesis
US5443483A (en) * 1993-04-22 1995-08-22 Axel Kirsch Appliance for accelerating the healing of a bone surgery site
US5702450A (en) * 1993-06-28 1997-12-30 Bisserie; Michel Intervertebral disk prosthesis
US5423816A (en) * 1993-07-29 1995-06-13 Lin; Chih I. Intervertebral locking device
US5380328A (en) * 1993-08-09 1995-01-10 Timesh, Inc. Composite perforated implant structures
US5674294A (en) * 1993-09-14 1997-10-07 Commissariat A L'energie Atomique Intervertebral disk prosthesis
US5458642A (en) * 1994-01-18 1995-10-17 Beer; John C. Synthetic intervertebral disc
US6120503A (en) * 1994-03-28 2000-09-19 Michelson; Gary Karlin Apparatus instrumentation, and method for spinal fixation
US5531759A (en) * 1994-04-29 1996-07-02 Kensey Nash Corporation System for closing a percutaneous puncture formed by a trocar to prevent tissue at the puncture from herniating
US5571189A (en) * 1994-05-20 1996-11-05 Kuslich; Stephen D. Expandable fabric implant for stabilizing the spinal motion segment
US5549679A (en) * 1994-05-20 1996-08-27 Kuslich; Stephen D. Expandable fabric implant for stabilizing the spinal motion segment
US5681310A (en) * 1994-07-20 1997-10-28 Yuan; Hansen A. Vertebral auxiliary fixation device having holding capability
US5976186A (en) * 1994-09-08 1999-11-02 Stryker Technologies Corporation Hydrogel intervertebral disc nucleus
US5681311A (en) * 1994-09-15 1997-10-28 Smith & Nephew, Inc. Osteosynthesis apparatus
US5674295A (en) * 1994-10-17 1997-10-07 Raymedica, Inc. Prosthetic spinal disc nucleus
US5824093A (en) * 1994-10-17 1998-10-20 Raymedica, Inc. Prosthetic spinal disc nucleus
US5674296A (en) * 1994-11-14 1997-10-07 Spinal Dynamics Corporation Human spinal disc prosthesis
US6001130A (en) * 1994-11-14 1999-12-14 Bryan; Vincent Human spinal disc prosthesis with hinges
US6039762A (en) * 1995-06-07 2000-03-21 Sdgi Holdings, Inc. Reinforced bone graft substitutes
US5645597A (en) * 1995-12-29 1997-07-08 Krapiva; Pavel I. Disc replacement method and apparatus
US5683465A (en) * 1996-03-18 1997-11-04 Shinn; Gary Lee Artificial intervertebral disk prosthesis
US6113603A (en) * 1996-05-10 2000-09-05 Medoff; Robert J. Graft constraint device
US5755796A (en) * 1996-06-06 1998-05-26 Ibo; Ivo Prosthesis of the cervical intervertebralis disk
US5716416A (en) * 1996-09-10 1998-02-10 Lin; Chih-I Artificial intervertebral disk and method for implanting the same
US5895428A (en) * 1996-11-01 1999-04-20 Berry; Don Load bearing spinal joint implant
US5827328A (en) * 1996-11-22 1998-10-27 Buttermann; Glenn R. Intervertebral prosthetic device
US5893889A (en) * 1997-06-20 1999-04-13 Harrington; Michael Artificial disc
US6093205A (en) * 1997-06-25 2000-07-25 Bridport-Gundry Plc C/O Pearsalls Implants Surgical implant
US6440098B1 (en) * 1997-09-16 2002-08-27 Luescher Patrik Device for implanting filamentous materials
US5824094A (en) * 1997-10-17 1998-10-20 Acromed Corporation Spinal disc
US5888226A (en) * 1997-11-12 1999-03-30 Rogozinski; Chaim Intervertebral prosthetic disc
US6190413B1 (en) * 1998-04-16 2001-02-20 Ulrich Gmbh & Co. Kg Vertebral implant
US6206882B1 (en) * 1999-03-30 2001-03-27 Surgical Dynamics Inc. Plating system for the spine
US6585769B1 (en) * 1999-04-05 2003-07-01 Howmedica Osteonics Corp. Artificial spinal ligament
US7115142B2 (en) * 1999-04-05 2006-10-03 Bone Runner Technologies, LLC Method of repairing a bone joint
US6296643B1 (en) * 1999-04-23 2001-10-02 Sdgi Holdings, Inc. Device for the correction of spinal deformities through vertebral body tethering without fusion
US6425919B1 (en) * 1999-08-18 2002-07-30 Intrinsic Orthopedics, Inc. Devices and methods of vertebral disc augmentation
US6221109B1 (en) * 1999-09-15 2001-04-24 Ed. Geistlich Söhne AG fur Chemische Industrie Method of protecting spinal area
US6248106B1 (en) * 2000-02-25 2001-06-19 Bret Ferree Cross-coupled vertebral stabilizers

Cited By (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100114107A1 (en) * 2000-08-30 2010-05-06 Warsaw Orthopedic, Inc. Intervertebral Disc Nucleus Implants and Methods
US20070055274A1 (en) * 2005-06-20 2007-03-08 Andreas Appenzeller Apparatus and methods for treating bone
US8080061B2 (en) * 2005-06-20 2011-12-20 Synthes Usa, Llc Apparatus and methods for treating bone
US7963991B2 (en) 2005-08-26 2011-06-21 Magellan Spine Technologies, Inc. Spinal implants and methods of providing dynamic stability to the spine
US20070100449A1 (en) * 2005-10-31 2007-05-03 O'neil Michael Injectable soft tissue fixation technique
US11406508B2 (en) 2005-12-23 2022-08-09 DePuy Synthes Products, Inc. Flexible elongated chain implant and method of supporting body tissue with same
US9956085B2 (en) 2005-12-23 2018-05-01 DePuy Synthes Products, Inc. Flexible elongated chain implant and method of supporting body tissue with same
US11701233B2 (en) 2005-12-23 2023-07-18 DePuy Synthes Products, Inc. Flexible elongated chain implant and method of supporting body tissue with same
US10881520B2 (en) 2005-12-23 2021-01-05 DePuy Synthes Products, Inc. Flexible elongated chain implant and method of supporting body tissue with same
US9289240B2 (en) 2005-12-23 2016-03-22 DePuy Synthes Products, Inc. Flexible elongated chain implant and method of supporting body tissue with same
US20070191957A1 (en) * 2006-02-07 2007-08-16 Spinemedica Corporation Spinal implants with cooperating suture anchors
US20140012325A1 (en) * 2006-05-09 2014-01-09 Centinel Spine, Inc. Systems and methods for stabilizing a functional spinal unit
US20080004702A1 (en) * 2006-06-29 2008-01-03 Spinemedica Corporation Spinal implants with cooperating anchoring sutures
US8066750B2 (en) 2006-10-06 2011-11-29 Warsaw Orthopedic, Inc Port structures for non-rigid bone plates
US20080154263A1 (en) * 2006-12-22 2008-06-26 Janowski Brian P Implant Retention Device and Method
US8114160B2 (en) * 2006-12-22 2012-02-14 Pioneer Surgical Technology, Inc. Implant retention device and method
US8808382B2 (en) * 2006-12-22 2014-08-19 Pioneer Surgical Technology, Inc. Implant retention device and method
US20080167721A1 (en) * 2006-12-22 2008-07-10 Qi-Bin Bao Implant retention device and method
WO2008116192A3 (en) * 2007-03-21 2008-11-13 Magellan Spine Technologies In Spinal implants and methods of providing dynamic stability to the spine
US8758439B2 (en) * 2007-11-19 2014-06-24 Linares Medical Devices, Llc Spine support implant including inter vertebral insertable fluid ballastable insert and inter-vertebral web retaining harnesses
US20120150303A1 (en) * 2007-11-19 2012-06-14 Linares Medical Devices, Llc Spine support implant including inter vertebral insertable fluid ballastable insert and inter-vertebral web retaining harnesses
US10194950B2 (en) 2008-09-11 2019-02-05 Innovasis, Inc. Radiolucent screw with radiopaque marker
US20100063550A1 (en) * 2008-09-11 2010-03-11 Innovasis, Inc, Radiolucent screw with radiopaque marker
US9408649B2 (en) 2008-09-11 2016-08-09 Innovasis, Inc. Radiolucent screw with radiopaque marker
US20110172718A1 (en) * 2008-09-11 2011-07-14 Innovasis, Inc. Radiolucent screw with radiopaque marker
US8657856B2 (en) 2009-08-28 2014-02-25 Pioneer Surgical Technology, Inc. Size transition spinal rod
US20110054535A1 (en) * 2009-08-28 2011-03-03 Gephart Matthew P Size Transition Spinal Rod
US20110060365A1 (en) * 2009-09-10 2011-03-10 Innovasis, Inc. Radiolucent stabilizing rod with radiopaque marker
US9433439B2 (en) * 2009-09-10 2016-09-06 Innovasis, Inc. Radiolucent stabilizing rod with radiopaque marker
US8709183B2 (en) 2009-10-01 2014-04-29 Covidien Lp Welded knot end effector
US20110079341A1 (en) * 2009-10-01 2011-04-07 Tyco Healthcare Group Lp Welded Knot End Effector
US8297330B2 (en) 2009-10-01 2012-10-30 Tyco Healthcare Group Lp Welded knot end effector
US8657859B2 (en) * 2009-12-16 2014-02-25 Advanced Veterinary Solutions Implant for promoting stability of the canine stifle joint
US20110230919A1 (en) * 2009-12-16 2011-09-22 Neville Alleyne Implant for promoting stability of the canine stifle joint
US9585704B2 (en) 2009-12-16 2017-03-07 Advanced Veterinary Solutions Implant for promoting stability of the canine stifle joint
US20110218570A1 (en) * 2010-03-08 2011-09-08 Innovasis, Inc. Radiolucent bone plate with radiopaque marker
US8801712B2 (en) 2010-03-08 2014-08-12 Innovasis, Inc. Radiolucent bone plate with radiopaque marker
US8845737B2 (en) 2010-08-11 2014-09-30 Warsaw Orthopedic, Inc. Interbody spinal implants with extravertebral support plates
US8480747B2 (en) 2010-08-11 2013-07-09 Warsaw Orthopedic, Inc. Interbody spinal implants with extravertebral support plates
US8454694B2 (en) 2011-03-03 2013-06-04 Warsaw Orthopedic, Inc. Interbody device and plate for spinal stabilization and instruments for positioning same
US9526532B2 (en) 2011-03-03 2016-12-27 Warsaw Orthopedic, Inc. Interbody device and plate for spinal stabilization and instruments for positioning same
US9615940B2 (en) 2011-03-03 2017-04-11 Warsaw Orthopedic, Inc. Interbody device and plate for spinal stabilization and instruments for positioning same
US9925063B2 (en) 2011-03-03 2018-03-27 Warsaw Orthopedic, Inc. Interbody device and plate for spinal stabilization and instruments for positioning same
US8690948B2 (en) 2011-03-03 2014-04-08 Warsaw Orthopedic, Inc. Interbody device and plate for spinal stabilization and instruments for positioning same
US9180019B2 (en) 2011-03-03 2015-11-10 Warsaw Orthopedic, Inc. Interbody device and plate for spinal stabilization and instruments for positioning same
US10179065B2 (en) 2013-09-16 2019-01-15 Neuraxis Llc Implantable devices for thermal therapy and related methods
US10772760B2 (en) 2013-09-16 2020-09-15 Neuraxis, Llc Implantable devices for thermal therapy and related methods
US11123222B2 (en) 2013-09-16 2021-09-21 Neuraxis, Llc Methods and devices for applying localized thermal therapy
US9308123B2 (en) * 2013-09-16 2016-04-12 Neuraxis, Llc Methods and devices for applying localized thermal therapy
US20150080952A1 (en) * 2013-09-16 2015-03-19 Neuraxis, Llc Methods and devices for applying localized thermal therapy
US11147682B2 (en) 2017-09-08 2021-10-19 Pioneer Surgical Technology, Inc. Intervertebral implants, instruments, and methods
USD907771S1 (en) 2017-10-09 2021-01-12 Pioneer Surgical Technology, Inc. Intervertebral implant
USD968613S1 (en) 2017-10-09 2022-11-01 Pioneer Surgical Technology, Inc. Intervertebral implant

Also Published As

Publication number Publication date
JP2007222655A (en) 2007-09-06
CA2425973A1 (en) 2002-05-02
EP1328218A2 (en) 2003-07-23
JP2004512095A (en) 2004-04-22
JP4194634B2 (en) 2008-12-10
US6733531B1 (en) 2004-05-11
WO2002034169A3 (en) 2002-07-11
AU2002213257B2 (en) 2005-06-16
AU1325702A (en) 2002-05-06
WO2002034169A2 (en) 2002-05-02

Similar Documents

Publication Publication Date Title
US6733531B1 (en) Anchoring devices and implants for intervertebral disc augmentation
AU2002213257A1 (en) Anchoring devices and implants for intervertebral disc augmentation
EP1563808B1 (en) Intervertebral disc nucleus implants
US20060058881A1 (en) Intervertebral disc nucleus implants and methods
US7520900B2 (en) Intervertebral disc nucleus implants and methods
US7066960B1 (en) Intervertebral disk replacement
US6620196B1 (en) Intervertebral disc nucleus implants and methods
AU767854B2 (en) Device for the stabilisation of two adjacent verterbral bodies of the spine
CN100584281C (en) Implants formed of shape memory polymeric material for spinal fixation
US7503936B2 (en) Methods for forming and retaining intervertebral disc implants
US20060089719A1 (en) In situ formation of intervertebral disc implants
US20050154463A1 (en) Spinal nucleus replacement implants and methods
AU2001285351A1 (en) Intervertebral disc nucleus implants and methods
US20050187631A1 (en) Prosthetic device
US20130131806A1 (en) Anatomic total disc replacement
AU2005203715A1 (en) Anchoring devices and implants for intervertebral disc augmentation
AU2005200342A1 (en) Intervertebral disc nucleus implants and methods

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION