US20040236336A1 - Method and apparatus for attaching connective tissues to bone using a suture anchoring device - Google Patents

Method and apparatus for attaching connective tissues to bone using a suture anchoring device Download PDF

Info

Publication number
US20040236336A1
US20040236336A1 US10/690,351 US69035103A US2004236336A1 US 20040236336 A1 US20040236336 A1 US 20040236336A1 US 69035103 A US69035103 A US 69035103A US 2004236336 A1 US2004236336 A1 US 2004236336A1
Authority
US
United States
Prior art keywords
slits
bone
anchor
recited
adjacent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/690,351
Inventor
Seth Foerster
Minh Tran
Norman Gordon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arthrocare Corp
Original Assignee
Opus Medical Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Opus Medical Inc filed Critical Opus Medical Inc
Priority to US10/690,351 priority Critical patent/US20040236336A1/en
Publication of US20040236336A1 publication Critical patent/US20040236336A1/en
Assigned to ARTHROCARE CORPORATION reassignment ARTHROCARE CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: OPUS MEDICAL, INC.
Assigned to ARTHROCARE CORPORATION reassignment ARTHROCARE CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: OPUS MEDICAL, INC.
Assigned to BANK OF AMERICA, N.A. reassignment BANK OF AMERICA, N.A. PATENT SECURITY AGREEMENT Assignors: ARTHROCARE CORPORATION
Assigned to OPUS MEDICAL, INC. reassignment OPUS MEDICAL, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: FOERSTER, SETH A., GORDON, NORMAN S., TRAN, MINH
Assigned to ARTHROCARE CORPORATION reassignment ARTHROCARE CORPORATION RELEASE OF PATENT SECURITY AGREEMENT RECORDED AT REEL 017105 FRAME 0855 Assignors: BANK OF AMERICA, N.A.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/04Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
    • A61B17/0401Suture anchors, buttons or pledgets, i.e. means for attaching sutures to bone, cartilage or soft tissue; Instruments for applying or removing suture anchors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/08Muscles; Tendons; Ligaments
    • A61F2/0811Fixation devices for tendons or ligaments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00004(bio)absorbable, (bio)resorbable, resorptive
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/04Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
    • A61B17/0401Suture anchors, buttons or pledgets, i.e. means for attaching sutures to bone, cartilage or soft tissue; Instruments for applying or removing suture anchors
    • A61B2017/0412Suture anchors, buttons or pledgets, i.e. means for attaching sutures to bone, cartilage or soft tissue; Instruments for applying or removing suture anchors having anchoring barbs or pins extending outwardly from suture anchor body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/04Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
    • A61B17/0401Suture anchors, buttons or pledgets, i.e. means for attaching sutures to bone, cartilage or soft tissue; Instruments for applying or removing suture anchors
    • A61B2017/0414Suture anchors, buttons or pledgets, i.e. means for attaching sutures to bone, cartilage or soft tissue; Instruments for applying or removing suture anchors having a suture-receiving opening, e.g. lateral opening
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/04Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
    • A61B17/0401Suture anchors, buttons or pledgets, i.e. means for attaching sutures to bone, cartilage or soft tissue; Instruments for applying or removing suture anchors
    • A61B2017/042Suture anchors, buttons or pledgets, i.e. means for attaching sutures to bone, cartilage or soft tissue; Instruments for applying or removing suture anchors plastically deformed during insertion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/04Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
    • A61B17/0401Suture anchors, buttons or pledgets, i.e. means for attaching sutures to bone, cartilage or soft tissue; Instruments for applying or removing suture anchors
    • A61B2017/0438Suture anchors, buttons or pledgets, i.e. means for attaching sutures to bone, cartilage or soft tissue; Instruments for applying or removing suture anchors slotted, i.e. having a longitudinal slot for enhancing their elasticity
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/04Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
    • A61B17/0401Suture anchors, buttons or pledgets, i.e. means for attaching sutures to bone, cartilage or soft tissue; Instruments for applying or removing suture anchors
    • A61B2017/0446Means for attaching and blocking the suture in the suture anchor
    • A61B2017/0458Longitudinal through hole, e.g. suture blocked by a distal suture knot
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/03Automatic limiting or abutting means, e.g. for safety
    • A61B2090/037Automatic limiting or abutting means, e.g. for safety with a frangible part, e.g. by reduced diameter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/08Muscles; Tendons; Ligaments
    • A61F2/0811Fixation devices for tendons or ligaments
    • A61F2002/0876Position of anchor in respect to the bone
    • A61F2002/0888Anchor in or on a blind hole or on the bone surface without formation of a tunnel

Definitions

  • This invention relates generally to methods and apparatus for attaching soft tissue to bone, and more particularly to anchors and methods for securing connective tissue, such as ligaments or tendons, to bone.
  • the invention has particular application to arthroscopic surgical techniques for reattaching the rotator cuff to the humeral head, in order to repair the rotator cuff.
  • tendons and other soft, connective tissues tear or to detach from associated bone.
  • tear or detachment is a “rotator cuff” tear, wherein the supraspinatus tendon separates from the humerus, causing pain and loss of ability to elevate and externally rotate the arm. Complete separation can occur if the shoulder is subjected to gross trauma, but typically, the tear begins as a small lesion, especially in older patients.
  • the humeral head is abraded or notched at the proposed soft tissue to bone reattachment point, as healing is enhanced on a raw bone surface.
  • a series of small diameter holes referred to as “transosseous tunnels”, are “punched” through the bone laterally from the abraded or notched surface to a point on the outside surface of the greater tuberosity, commonly a distance of 2 to 3 cm.
  • the cuff is sutured and secured to the bone by pulling the suture ends through the transosseous tunnels and tying them together using the bone between two successive tunnels as a bridge, after which the deltoid muscle must be surgically reattached to the acromion. Because of this maneuver, the deltoid requires postoperative protection, thus retarding rehabilitation and possibly resulting in residual weakness. Complete rehabilitation takes approximately 9 to 12 months.
  • the mini-open technique which represents the current growing trend and the majority of all surgical repair procedures, differs from the classic approach by gaining access through a smaller incision and splitting rather than detaching the deltoid. Additionally, this procedure is typically performed in conjunction with arthroscopic acromial decompression.
  • the deltoid is split, it is retracted to expose the rotator cuff tear. As before, the cuff is debrided, the humeral head is abraded, and the so-called “transosseous tunnels”, are “punched” through the bone or suture anchors are inserted. Following the suturing of the rotator cuff to the humeral head, the split deltoid is surgically repaired.
  • Another approach is to utilize the difference in density in the cortical bone (the tough, dense outer layer of bone) and the cancellous bone (the less dense, airy and somewhat vascular interior of the bone).
  • the cortical bone presents a kind of hard shell over the less dense cancellous bone.
  • the anchor is designed so that it has a longer axis and a shorter axis and is usually pre-threaded with suture. These designs use a hole in the cortical bone through which an anchor is inserted.
  • the hole is drilled such that the shorter axis of the anchor will fit through the diameter of the hole, with the longer axis of the anchor being parallel to the axis of the drilled hole.
  • the anchor is rotated 90° so that the long axis is aligned perpendicularly to the axis of the hole.
  • the suture is pulled, and the anchor is seated up against the inside surface of the cortical layer of bone. Due to the mismatch in the dimensions of the long axis of the anchor and the hole diameter, the anchor cannot be retracted proximally from the hole, thus providing resistance to pull-out.
  • the Li patents describe an anchor that incorporates two cylindrical halves with fingers that are interdigitated. When a force is imposed on the two halves, the interlocked fingers cause the deflection and deployment of the concomitant adjacent fingers on the opposite half, creating the expanded areas that resists pullout.
  • the expanding mechanism is adapted to resist axial loading, but there is no disclosure that they are capable of rotational fixation.
  • a screw anchor which includes a four-legged compressible shank whose normal shape is diamond-like, the front legs of the shank being joined together by a front apex hinge and the rear legs being joined to the front legs by side apex hinges.
  • the rear legs terminate in feet whose adjacent soles normally assume the form of an inverted V-inlet.
  • a socket whose bore lies in axial registration with a hole in the front apex of the shank is secured by a pair of normally outstretched resilient webs to the respective rear legs.
  • the anchor To install the anchor, its side apex hinges are manually compressed to collapse the shank into a tongue which is then inserted through a hole drilled in the wall until the socket is seated therein and the shank which is now behind the wall resumes its diamond-like shape. Then a screw for holding the fixture against the wall is inserted in the socket bore and turned therein until its tip is intercepted by the inlet which is dilated thereby to admit the screw. As the turning screw continues to advance, its crests engage the soles of the feet to force the rear legs apart and in doing so compels the shank to assume a triangular shape.
  • U.S. Pat. No. 5,893,850 to Cachia describes a fixation device of a type useful for connecting two or more bone segments during the healing process.
  • the device comprises an elongate pin having a distal anchor thereon.
  • This distal anchor is essentially an umbrella-shaped end to the pin that may be selectively collapsed for pushing through a hole drilled through the bone segments, and then deployed at the distal end of the hole to prevent the elongate pin from retracting back through the hole.
  • a proximal anchor is co-axially and slidably disposed with respect to the pin, and fixable to accommodate different bone dimensions and permit appropriate tensioning of the fixation device.
  • An additional embodiment may be used when the preferred embodiment is not possible to deploy.
  • This situation may occur, for example, when there is not a distal bone surface to allow for the deployment of the umbrella-shaped pin end.
  • This embodiment describes a construction with multiple, axially expanding strips that are configured to engage the cancellous bone to resist axial withdrawal of the main body of the anchor.
  • the patent describes two or more sets of strips, as the disclosed function of the anchor is to fixate at least two bone segments together to promote healing of the bone. There is no mention of providing an anchor point to which a suture may be secured, nor is one contemplated.
  • FIG. 1 Still another bone fixation device of interest is disclosed in U.S. Pat. No. 5,501,695 to Anspach, Jr. et al.
  • a bone anchor apparatus which comprises a rivet body having a lower annular portion 12 and an upper annular portion 100 .
  • the lower annular portion includes an outer surface formed as an extension of the outer surface of the upper annular portion. Because the thickness of the lower annular portion is less than that of the upper annular portion, the upper annular portion acts as an annular step or stop.
  • a plurality of longitudinal slots are formed on the outer surface of the lower annular portion, and lengthwise ribs are formed between the slots.
  • the apparatus comprises multiple components, including, additionally, a separate puller, including a head and a puller rod, which extends upwardly through the inner diameter of the lower and upper parts of the rivet's annular portions.
  • a separate puller including a head and a puller rod, which extends upwardly through the inner diameter of the lower and upper parts of the rivet's annular portions.
  • the puller is actuated upwardly until it strikes the annular step, thereby axially compressing the lower annular portion so that the ribs are expanded radially outwardly.
  • FIG. 8 of the '695 patent a disk 38 which includes apertures 40 for accommodating attachment of a suture 42 thereto.
  • This disk remains above the surface of the bone once the anchor is in place. While the '695 patent discloses an apparently functional device, it is complicated and difficult to use in the close quarters attendant to arthroscopic procedures.
  • the present invention solves the problems outlined above by providing an innovative bone anchor and connective techniques which permit a suture attachment which lies entirely beneath the cortical bone surface.
  • the anchor design permits easy and facile insertion into the bone, and simple and secure anchoring after deployment.
  • the inventive apparatus a means and method for attaching soft or connective tissue to bone, comprising a hollow cylinder having a longitudinal axis and a periphery which is adapted to be inserted into a hole pre-drilled into bone.
  • the cylinder is adapted to have a plurality of slits and ribs running parallel to or roughly along the longitudinal axis of the cylinder and equally distributed about the diameter of the cylinder. For example, there may be 4 slits defining 4 ribs, equally spaced at 90° intervals around the cylinder. These ribs are predisposed to bend in a direction radially outwardly from their resting position when an axial load is placed upon the cylinder.
  • the ribs bend in a characteristic fashion that has each end of the ribs bending outwardly, with the center of the rib bending at an angle approximately twice that of the ends, and in the opposite direction.
  • Such structure creates a “flower” or an expansion of the outside diameter of the cylinder.
  • the “flower” moniker is chosen because, as the ribs bend outwardly away from the body of the cylinder, they create “petals” around the periphery of the cylinder.
  • the structure of the bone in the humerus has a dense outer layer called the cortical bone, and a lacy, cellular inner structure called the cancellous bone.
  • the hole for the present invention When the hole for the present invention is drilled in the bone, the hole extends through the cortical layer and into the cancellous layer.
  • the anchor is placed such that the deployment of the ribs creating the flower is undertaken below the cortical layer and in the cancellous layer, it is not possible to remove the anchor proximally from the hole, as it is trapped underneath the cortical layer.
  • This provides an extremely secure anchoring point that distributes any load placed upon it over a relatively large surface area when compared to anchors known in the prior art.
  • This distribution of load is a significant advance in the art, and allows loads that typically would surpass the tensile strength of the sutures used to secure the tissues. In other words, because of the innovative design of the anchor, the sutures will break before the anchor is displaced.
  • the sutures which are passed through the tissues to be attached to bone typically are threaded through a small eyelet incorporated into the head of the anchor and then secured by tying knots in the sutures.
  • the anchor means herein described certainly are amenable to such attachment, if desired, an eyelet is by no means the only way that sutures may be secured to the bone anchor.
  • Other means of attachment which allow for adjustable, releasable suture fixation that does not require knot tying is contemplated.
  • the geometry created by the present invention may provide both axial and rotational means of fixation for the bone anchor.
  • the petals of the flower do prevent the anchor from being pulled axially out through the hole through which it was deployed. Also, because of the fact that the petals expand radially outward from the body of the anchor, they create anchor points within the cancellous bone that also resist rotational forces.
  • the inventors have refined the “flower” concept to incorporate a unique and advantageous modification to the pattern of slits and ribs.
  • a bias in other words, at an acute angle when viewed relative to the axis of the body of the anchor
  • a different deployment mechanism is effected.
  • the ribs fold up in their characteristic fashion as previously described, i.e. each end of the ribs bending outwardly, with the center of the rib bending at an angle twice that of the ends and in the opposite direction and ultimately the two ends of the ribs flattening against each other.
  • the ribs are formed on the aforementioned bias, they tend to bend in a semi circular fashion and stack on top of each other, forming overlapping petals that create a substantial bulge in the body of the anchor.
  • an apparatus for attaching connective tissue to bone which comprises a body having a longitudinal axis, a proximal end, and a distal end, which is adapted to be inserted into a bone.
  • the anchor body includes a plurality of spaced slits, preferably at least six, disposed about the periphery thereof, wherein each of the slits has a length, and a distance x between two adjacent slits at a first location along the length of each of the slits is smaller than a distance y between the two adjacent slits at a second location along the length of each of the slits.
  • the slits each comprise an end, wherein the first location is proximate to an end of each of the adjacent slits and the second location being in a middle region of each of the adjacent slits.
  • each of the slits further comprises an angled surface at at least one, and preferably both ends thereof, wherein each of the angled surfaces, or “notches”, extends depthwise into a wall forming the body.
  • the anchor body is a generally cylindrical body having an outer circumferential wall defining an inner lumen.
  • the plurality of spaced slits are generally parallel to the longitudinal axis. In other, presently preferred embodiments, the plurality of spaced slits each lie at an acute angle relative to the longitudinal axis. The acute angle is preferably between 0 and 45 degrees.
  • the anchoring apparatus should include a plurality of spaced slits that are sufficient in number such that when an axial length of the body is shortened, a plurality of ribs which are disposed between each of the plurality of slits are caused to each expand radially to form respective petals, each of the petals overlap adjacent ones thereof.
  • an apparatus for attaching connective tissue to bone comprising a body having a longitudinal axis, a proximal end, and a distal end, which is adapted to be inserted into a bone.
  • the anchoring body includes a plurality of spaced slits disposed about the periphery thereof, each of the slits having a length and an angled surface at an end thereof, extending depthwise into a wall forming the body.
  • each of the slits has an angled surface at each end thereof, extending depthwise into the body wall.
  • a distance x between two adjacent slits at a first location along the length of each one of the adjacent slits is smaller than a distance y between the same two adjacent slits at a second location along the length of each one of the adjacent slits.
  • a distance x between two adjacent slits at a first location along the length of each one of the adjacent slits is smaller than a distance y between the same two adjacent slits at a second location along the length of each one of the adjacent slits.
  • a method of fabricating an apparatus for attaching connective tissue to bone which comprises a step of making a pattern of a bone anchor using a bio-compatible material.
  • a plurality of spaced slits are disposed across a width of the pattern, such that adjacent ones of the slits are closer together at a first location along a length thereof and being farther apart at a second location along the length.
  • the pattern is then formed into an anchor body, which is preferably generally cylindrical.
  • the first location is preferably near an end of each of the respective adjacent slits and the second location is in a middle region of each of the respective adjacent slits.
  • the method includes an additional step of forming an angled surface extending depthwise into the pattern at an end of each of the spaced slits, and, more preferably, at each end of each of the spaced slits.
  • a cutting wheel be used to form the spaced slits.
  • a method of fabricating an apparatus for attaching connective tissue to bone which comprises steps of making a pattern of a bone anchor using a bio-compatible material, and forming a plurality of spaced slits across a width of the pattern, such that an end of each of the slits includes an angled surface extending depthwise into the pattern.
  • the pattern is then fabricated into an anchor body.
  • FIG. 1 illustrates a humerus and a tendon to be attached thereto in cross-section
  • FIG. 2A is a plan view of a flat pattern to be formed into a bone anchor of the present invention.
  • FIG. 2B is a perspective view of the flat pattern illustrated in FIG. 2A which has been roll formed into a cylinder;
  • FIG. 3 is a perspective view of the structure illustrated in FIG. 2B, coined into a bone anchor of the present invention
  • FIG. 4 is a perspective view of the bone anchor of FIG. 3 after deployment in accordance with a method of the present invention
  • FIG. 5 is a cross-sectional view showing the bone anchor of FIG. 3 inserted into a hole drilled into the humerus of FIG. 1, according to a method of the present invention
  • FIG. 6 is a cross-sectional view of the bone anchor of FIG. 5 after it has been deployed
  • FIG. 6A is a perspective view of an alternative application for the bone anchor of the present invention.
  • FIG. 7 is a perspective view of an alternative embodiment of the bone anchor of the present invention.
  • FIG. 8 is a perspective view of the bone anchor of FIG. 7 in a deployed state
  • FIG. 9 is a cross-sectional plan view of a humerus and tendon showing the anchor of FIG. 7 inserted into the humerus of FIG. 1, in accordance with a method of the present invention
  • FIG. 10 is a cross-sectional plan view similar to FIG. 9, showing the anchor in a deployed state and the tendon sutured to the humeral bone;
  • FIG. 11 is a perspective view of an alternative embodiment of the bone anchor shown in FIG. 7;
  • FIG. 12 is an enlarged detail view of a portion of the bone anchor shown in FIG. 11.
  • FIG. 1 a partial cross-sectional view of a humeral head 10 which includes an outer surface of cortical bone 12 and inner cancellous bone 14 .
  • a rotator cuff tendon 16 is disposed across the surface of the cortical bone 12 .
  • a blind hole 18 has been made, preferably by drilling, through a desired location on the cortical bone 12 and into the cancellous bone 14 .
  • This illustration is intended to provide a simple overview of the physiological elements and structure involved in a typical situation wherein reattachment of connective tissue such as the tendon 16 to the cortical bone 12 is desired.
  • FIG. 2A there is illustrated a flat pattern 22 of a bone anchor constructed in accordance with an embodiment of the present invention, including slits 24 and ribs 26 which are formed by the pattern of slits 24 , together with a hole 28 and half holes 30 a , 30 b , aligned across the width of the pattern 22 at one end thereof.
  • Such flat pattern 22 may be fabricated from any material suitable for implantation into the body as is known in the art, such as stainless steel 316L, and may be formed by flat stamping or photochemical machining or the like.
  • the flat pattern 22 has been roll formed into a cylindrical body 32 , which includes the slits 24 and ribs 26 seen in FIG. 2A, as well as the hole 28 , and the half holes 30 which are now formed into a single hole 34 , as a result of the roll forming process.
  • the flat form of the anchor has been shown for informational purposes as to one possible method of fabrication, and is not to be deemed limiting.
  • many other methods of manufacture such as laser cutting drawn hypodermic tubing, or deep draw progressive die stamping, may be employed.
  • One particularly preferred method of manufacture, wherein a cutting wheel is employed to create the slits is discussed below in connection with FIGS. 11 and 12.
  • FIG. 3 shows the cylindrical body 32 of FIG. 2B, but it has now been coined to form a neck 36 at a proximal end 38 , such that the hole 28 and the single hole 34 are aligned with each other to form a conduit 40 for suture to be passed through, to thereby provide an anchor point for the suture. How this anchor point is used will be more fully described below in connection with subsequent drawing figures.
  • the bone anchor of FIG. 3 is shown in its undeployed state, with the cylindrical body 32 further having a distal end 42 .
  • FIG. 4 it may be seen that the geometry of the ribs 26 has now been changed such that the ribs 26 have been bent to form one petal 44 that includes roots 46 a, b and an apex 48 .
  • the geometry and configuration of the anchor includes multiple petals, and that this description therefore is applicable to all of the petals. In fact, in preferred embodiments a minimum of five petals, comprising, of course, six ribs and six associated slits, are employed, for reasons to be discussed hereinbelow.
  • the deformation of the ribs 26 is accomplished by imposing a compressive force on the distal end 42 and the proximal end 38 of the cylindrical body 32 . Because each of the ribs 26 act as an independent column, when the compressive force is imposed, they eventually bend as a result of column buckling. After the onset of such buckling, the characteristic geometry has an angle of buckling at the apex 48 of the petal 44 which is equal to the sum of the angles at the roots 46 a, b. At the formation of the petals 44 , interstices 50 are created between the petals 44 .
  • the interstices 50 are important to the creation of a rotational fixation moment, in that edges 52 of the petals 44 are in direct contact with the cancellous bone as the flower is formed.
  • the apex 48 creates a channel in the cancellous bone that traps material in the interstices 50 of the flower. Any rotational moment imposed on the bone anchor is resisted by the petals 44 , and specifically by the edges 52 of the petals 44 .
  • FIG. 5 illustrates a bone anchor 54 of the type shown in FIGS. 2-4 that has been inserted into the drilled hole 18 in the humeral head 10 .
  • the bone anchor 54 includes slits 24 and ribs 26 on a cylindrical body 32 , as previously described.
  • a length of suture 56 has been passed through the conduit 40 at the proximal end 38 of the bone anchor 54 , and also stitched through the soft tissue represented by the rotator cuff tendon.
  • the stitching process may be accomplished by any known means, and any known suture stitch may be employed, the objective being to ensure a secure stitch so that the suture is not inadvertently separated from the tendon after completion of the repair procedure, necessitating re-entry to the surgical site.
  • the suture is attached to the soft tissue using a “mattress stitch”, which is well known in the art as being a particularly secure stitch which is unlikely to fail postoperatively.
  • a suturing instrument is inserted into the trocar to perform the aforementioned suturing step.
  • a preferred suturing approach is taught in co-pending application Ser. No. 09/668,055, entitled Linear Suturing Apparatus And Methods, filed on Sep. 21, 2000, expressly incorporated herein by reference and commonly assigned herewith.
  • the slits 24 and ribs 26 are in position in the cancellous bone 14 and below the surface of the cortical bone 12 .
  • the bone anchor 54 is illustrated in its deployed state.
  • the slits 24 and ribs 26 have been converted into petals 44 , and the apex 48 of each petal 44 has dug its way into the cancellous bone 14 .
  • the petals create a large surface area that bears against the underside of the cortical bone 12 , and prevents the bone anchor 24 from being retracted proximally out of the drilled hole 18 in the cortical bone 12 .
  • the suture 56 has been tied into a knot 58 , or otherwise tensioned, to thereby approximate the rotator cuff tendon 16 against the cortical bone 12 .
  • inventive bone anchoring system has been illustrated in conjunction with various suture anchoring systems, it may also be desirable in some applications to use the inventive system in connection with an entirely different suture anchoring approach, such as the approach illustrated, for example, in co-pending U.S. patent application Ser. No. 09/781,793, entitled Method & Apparatus for Attaching Connective Tissues to Bone Using a Knotless Suture Anchoring Device, filed on Feb. 12, 2001, commonly assigned herewith and expressly incorporated by reference herein.
  • the inventive anchor fixation structure may be used not only to provide axial fixation, but also rotational fixation.
  • FIG. 6A it can be seen how the petals 44 may create a rotational fixation structure.
  • the contents of commonly assigned U.S. patent application Ser. No. 09/475,495 have been incorporated in their entirety in the present application.
  • a unique bone anchoring system which utilizes an anchor structure that mimics a winch in order to create the fixation point and create tension in the sutures that are disposed through the tendon or soft tissue to be attached to bone.
  • This novel system has the additional structural requirement of rotational fixation, as the suture is wrapped around the anchor body to create the aforementioned fixation and tension.
  • FIG. 6A there is shown a bone anchor 60 which includes an anchor body 62 and petals 64 .
  • the bone anchor is inserted into a drilled hole 66 in the bone through cortical bone 68 and into cancellous bone 70 .
  • a suture 72 is passed through a tendon 74 , threaded through a slit 76 in the bone, and is wrapped around the anchor body 62 by rotation of the anchor body 62 .
  • the formation of the petals 64 create interstices 78 in the cancellous bone 70 , which in turn provides a rotational moment about the axis of the anchor body 62 .
  • the created rotational moment resists any rotational force imposed by the suture 72 on the anchor body 62 it is important to note that this anti-rotational structure is deliberately created by judicious selection of petal geometry, i.e. the number of petals, how far they extend from the body 62 , the breadth of their shoulders, and the thickness of the material from which they are fabricated. These factors affect the size and shape of the interstices that are formed between the petals, and, of course, the concomitant rotational moment that may be developed thereby.
  • a minimum of six ribs, forming six petals are preferably employed, in order to ensure that the interstices between expanded ribs are not too large to be effective in containing trapped cancellous bone material, which functions in resisting applied rotational forces.
  • a greater number of petals are also preferred to provide adequate expanded surface area to resist any applied rotational forces, as well as to provide a sufficiently strong expanded structure to adequately resist applied pullout forces.
  • too many ribs, and consequent petals will result in interstices which are too small to effectively trap an adequate amount of cancellous bone material.
  • FIG. 7 Another embodiment of the present invention may be seen by referring to FIG. 7, where there is illustrated a bone anchor 80 which includes a cylindrical body 82 , into which slits 84 have been formed, creating ribs 86 .
  • the bone anchor 80 also includes a proximal end 88 , a distal end 90 , and a suture conduit 92 .
  • the slits 84 have been formed at an acute angle (i.e. between 0 and 90 degrees, and preferably less than 45 degrees) to the axis of the cylindrical body 82 .
  • each petal has the same geometry and physical behavior, though the precise number of slits and ribs may vary in different embodiments, without deviating from the overall inventive concept. It may also be observed that the materials and construction of this embodiment of the bone anchor may be chosen using criteria similar to those described earlier with respect to alternate embodiments.
  • the ribs 86 buckle and deform into the characteristic shape shown. Because of the bias cut on the slits 84 , instead of buckling in a linear fashion like the ribs 26 of FIG. 6, the ribs 86 buckle such that they take on a semi-circular shape, and adjacent ribs overlap and support each other. The inventors have found that a minimum of six ribs should be employed to obtain this important overlapping feature, which feature is significant in the configuration of an anchor point for a suture, as will be described hereinbelow.
  • FIGS. 9-10 there may be seen a cross section of a humeral head 10 identical to that described in connection with previous FIGS. 1, 5 and 6 .
  • the bone anchor 80 has been disposed within the drilled hole 18 , with the proximal end entirely below the surface of the cortical bone 12 .
  • a length of suture 94 is shown threaded through the suture conduit 92 at the proximal end 88 of the bone anchor 80 .
  • the length of suture 94 is also shown threaded through the rotator cuff tendon 16 laying on top of the humeral head 10 . As shown particularly in FIG.
  • the bone anchor 80 has been deployed by the application of a compressive force to create the characteristic bending of the ribs 86 into their semi-circular state.
  • the creation of this semi-circular geometry in the ribs 86 increases the body diameter of the bone anchor 80 such that the aggregate outside diameter of the deformed ribs 86 is substantially larger than the nominal diameter of the cylindrical body 82 .
  • the anchor is prevented from passing proximally out of the drilled hole 18 in the hard cortical bone 12 , as it is retained up against the inner surface of the cortical bone 12 .
  • the structure is strengthened because of the overlapping expanded ribs 86 .
  • a knot 96 tied in the length of suture 94 , secures the rotator cuff tendon 16 to the humeral head 10 , or, alternatively, another method for tensioning the suture, to thereby approximate the tendon to the bone, may be utilized.
  • FIGS. 11 and 12 illustrate yet another alternative embodiment of the bone anchor shown in FIGS. 1-10, which is, at present, a preferred approach for fabricating any of the embodiments shown in FIGS. 1-10.
  • Applicants have discovered, through empirical research, that the cutting techniques used in creating the slits 24 , 84 in any of the embodiments of FIGS. 3 and 7, for example, are important in determining the functionality of the resultant anchor. More specifically, Applicants determined that laser-cutting the slits 24 , 84 , wherein the slits are cut on a helix (meaning that the laser beam is held stationary while the workpiece is rotated), results in a constant spacing between the slits at any point along the length thereof. In such an instance, Applicants have found that it takes a significant compressive force on the cylindrical body 32 , 82 to deploy the petals 44 , 64 .
  • FIGS. 11 and 12 there is shown a cylindrical body 132 , similar to cylindrical bodies 32 , 82 illustrated in FIGS. 1-10, and having a plurality of slits 124 formed therein, similar to slits 24 , 84 . All aspects of the embodiment shown in FIGS. 11 and 12 are the same as in prior embodiments, except for the specific configuration of the slits 24 , and the method by which they are fabricated. In the embodiment of FIGS. 11 and 12, it is preferred that a cutting wheel of a rotating saw is utilized to form the slits 124 . Two outcomes of this method of fabrication result in an anchor structure which is deployable upon the application of a substantially lower compressive force, than in the laser-cut embodiments.
  • each end of each slit 124 is formed with a “notch” or angled surface 136 .
  • the second outcome is that, because the cut is straight rather than on a helix, the distance (spacing) between adjacent slits 124 is less at the ends of the slits than in the middle of the slits. As shown in FIG. 11, this means that the distance x between adjacent slits 124 at their respective ends is less than the distance y between the same adjacent slits 124 at their respective middles.
  • An alternative to the method described in connection with FIGS. 11 and 12 is to continue to utilize a laser cutting method, but to adjust the fabrication process so that the spacing between the respective ends of adjacent ones of the slits 124 is reduced relative to the spacing between middle portions of the same adjacent slits.

Abstract

A bone anchor and methods for using same to secure connective tissue, such as tendons, to bone are disclosed which permit a suture attachment that lies entirely beneath the cortical bone surface. The bone anchor of the invention incorporates a deformable body that creates an increased anchor body diameter after it is inserted into the cancellous bone and deployed beneath the cortical surface of the bone. The increased body diameter, by virtue of its intrinsic geometry, creates both axial and rotational fixation of the bone anchor or suture fixation point.

Description

  • This application is related to application Ser. No. 09/616,802, entitled Method & Apparatus for Attaching Connective Tissues to Bone Using a Suture Anchoring Device, filed on Jul. 14, 2000, and commonly assigned herewith.[0001]
  • BACKGROUND OF THE INVENTION
  • This invention relates generally to methods and apparatus for attaching soft tissue to bone, and more particularly to anchors and methods for securing connective tissue, such as ligaments or tendons, to bone. The invention has particular application to arthroscopic surgical techniques for reattaching the rotator cuff to the humeral head, in order to repair the rotator cuff. [0002]
  • It is an increasingly common problem for tendons and other soft, connective tissues to tear or to detach from associated bone. One such type of tear or detachment is a “rotator cuff” tear, wherein the supraspinatus tendon separates from the humerus, causing pain and loss of ability to elevate and externally rotate the arm. Complete separation can occur if the shoulder is subjected to gross trauma, but typically, the tear begins as a small lesion, especially in older patients. [0003]
  • To repair a tom rotator cuff, the typical course today is to do so surgically, through a large incision. This approach is presently taken in almost 99% of rotator cuff repair cases. There are two types of open surgical approaches for repair of the rotator cuff, one known as the “classic open” and the other as the “mini-open”. The classic open approach requires a large incision and complete detachment of the deltoid muscle from the acromion to facilitate exposure. The cuff is debrided to ensure suture attachment to viable tissue and to create a reasonable edge approximation. In addition, the humeral head is abraded or notched at the proposed soft tissue to bone reattachment point, as healing is enhanced on a raw bone surface. A series of small diameter holes, referred to as “transosseous tunnels”, are “punched” through the bone laterally from the abraded or notched surface to a point on the outside surface of the greater tuberosity, commonly a distance of 2 to 3 cm. Finally, the cuff is sutured and secured to the bone by pulling the suture ends through the transosseous tunnels and tying them together using the bone between two successive tunnels as a bridge, after which the deltoid muscle must be surgically reattached to the acromion. Because of this maneuver, the deltoid requires postoperative protection, thus retarding rehabilitation and possibly resulting in residual weakness. Complete rehabilitation takes approximately 9 to 12 months. [0004]
  • The mini-open technique, which represents the current growing trend and the majority of all surgical repair procedures, differs from the classic approach by gaining access through a smaller incision and splitting rather than detaching the deltoid. Additionally, this procedure is typically performed in conjunction with arthroscopic acromial decompression. Once the deltoid is split, it is retracted to expose the rotator cuff tear. As before, the cuff is debrided, the humeral head is abraded, and the so-called “transosseous tunnels”, are “punched” through the bone or suture anchors are inserted. Following the suturing of the rotator cuff to the humeral head, the split deltoid is surgically repaired. [0005]
  • Although the above described surgical techniques are the current standard of care for rotator cuff repair, they are associated with a great deal of patient discomfort and a lengthy recovery time, ranging from at least four months to one year or more. It is the above described manipulation of the deltoid muscle together with the large skin incision that causes the majority of patient discomfort and an increased recovery time. [0006]
  • Less invasive arthroscopic techniques are beginning to be developed in an effort to address the shortcomings of open surgical repair. Working through small trocar portals that minimize disruption of the deltoid muscle, a few surgeons have been able to reattach the rotator cuff using various bone anchor and suture configurations. The rotator cuff is sutured intracorporeally and an anchor is driven into bone at a location appropriate for repair. Rather than thread the suture through transosseous tunnels which are difficult or impossible to create arthroscopically using current techniques, the repair is completed by tying the cuff down against bone using the anchor and suture. Early results of less invasive techniques are encouraging, with a substantial reduction in both patient recovery time and discomfort. The major stumbling block for many surgeons is the extreme difficulty in performing the procedure with the currently available tools and techniques. [0007]
  • There are various bone anchor designs available for use by an orthopedic surgeon for attachment of soft tissues to bone. The basic commonality between the designs is that they create an attachment point in the bone for a suture that may then be passed through the soft tissues and tied, thereby immobilizing the soft tissue. This attachment point may be accomplished by different means. Screws are known for creating such attachments, but suffer from a number of disadvantages, including their tendency to loosen over time, requiring a second procedure to later remove them, and their requirement for a relatively flat attachment geometry. [0008]
  • Another approach is to utilize the difference in density in the cortical bone (the tough, dense outer layer of bone) and the cancellous bone (the less dense, airy and somewhat vascular interior of the bone). There is a clear demarcation between the cortical bone and cancellous bone, where the cortical bone presents a kind of hard shell over the less dense cancellous bone. In one prior art approach that utilizes this physiological construct, the anchor is designed so that it has a longer axis and a shorter axis and is usually pre-threaded with suture. These designs use a hole in the cortical bone through which an anchor is inserted. The hole is drilled such that the shorter axis of the anchor will fit through the diameter of the hole, with the longer axis of the anchor being parallel to the axis of the drilled hole. After deployment in to the cancellous bone, the anchor is rotated 90° so that the long axis is aligned perpendicularly to the axis of the hole. The suture is pulled, and the anchor is seated up against the inside surface of the cortical layer of bone. Due to the mismatch in the dimensions of the long axis of the anchor and the hole diameter, the anchor cannot be retracted proximally from the hole, thus providing resistance to pull-out. [0009]
  • Examples of such an approach are seen in U.S. Pat. No. 5,879,372 to Bartlett and U.S. Pat. No. 6,007,4567 to Bonutti. Depending upon the density of the cancellous bone, these devices may be somewhat difficult to deploy. If the cancellous bone density is high, it is difficult to force the inserted anchor to rotated into a secured position. [0010]
  • It is possible to utilize other anchor geometry to take advantage of the cortical and cancellous bone interface. Various methods of creating an expanded or tortuous frontal area beneath the cortical surface have been described in the prior art. An example of this approach is seen is U.S. Pat. No. 5,797,963 to McDevitt. This patent describes a sub-cortical anchor that utilizes a tapered flaring tool which deploys fingers circumferentially disposed about the periphery of the anchor to engage the cancellous bone and to resist retraction through the limited diameter hole in the cortical bone. A similar approach is disclosed in U.S. Pat. Nos. 5,690,649 and 6,022,373, both to Li. The Li patents describe an anchor that incorporates two cylindrical halves with fingers that are interdigitated. When a force is imposed on the two halves, the interlocked fingers cause the deflection and deployment of the concomitant adjacent fingers on the opposite half, creating the expanded areas that resists pullout. In all of these designs, the expanding mechanism is adapted to resist axial loading, but there is no disclosure that they are capable of rotational fixation. [0011]
  • Still other prior art approaches have attempted to us a “pop rivet” approach. This type of design requires a hole in the cortical bone into which a split shaft is inserted. The split shaft is hollow, and has a tapered plug leading into its inner lumen. The tapered plug is extended out through the top of the shaft, and when the plug is retracted into the inner lumen, the tapered portion causes the split shaft to be flared outwardly, ostensibly locking the device into the bone. [0012]
  • Other methods of securing soft tissue to bone are known in the prior art, but are not presently considered to be feasible for shoulder repair procedures, because of physicians' reluctance to leave anything but a suture in the capsule area of the shoulder. The reason for this is that staples, tacks, and the like could possibly fall out and cause injury during movement. As a result of this constraint, the attachment point often must be located at a less than ideal position. Also, the tacks or staples require a substantial hole in the soft tissue, and make it difficult for the surgeon to precisely locate the soft tissue relative to the bone. [0013]
  • By now it should be clear that many existing fastener technologies have been adapted for use in creating an anchor point for sutures in bone. Screws, pop rivets, and the like are certainly adaptable to the wooden-like structure exhibited by bone. However, as previously discussed, bone also incorporates a structure that presents a hard, dense, outside surface and a softer, less dense core. Because of this structure, another type of fastener, commonly referred to as a “moly bolt” or “expandable bolt”, may be adapted for use in the bone. These types of fasteners were originally designed for creating attachment points in plaster board walls where the wall is analogous to the hard cortical bone surface and the airspace or insulation space is analogous to the softer cancellous bone. [0014]
  • One example of such a fastener is shown in U.S. Pat. No. 4,828,439, to Giannuzzi. A screw anchor is disclosed which includes a four-legged compressible shank whose normal shape is diamond-like, the front legs of the shank being joined together by a front apex hinge and the rear legs being joined to the front legs by side apex hinges. The rear legs terminate in feet whose adjacent soles normally assume the form of an inverted V-inlet. A socket whose bore lies in axial registration with a hole in the front apex of the shank is secured by a pair of normally outstretched resilient webs to the respective rear legs. To install the anchor, its side apex hinges are manually compressed to collapse the shank into a tongue which is then inserted through a hole drilled in the wall until the socket is seated therein and the shank which is now behind the wall resumes its diamond-like shape. Then a screw for holding the fixture against the wall is inserted in the socket bore and turned therein until its tip is intercepted by the inlet which is dilated thereby to admit the screw. As the turning screw continues to advance, its crests engage the soles of the feet to force the rear legs apart and in doing so compels the shank to assume a triangular shape. At the conclusion of the screw advance, its tip is threadedly received in the hole of the front apex to create behind the wall a triangular truss in which the screw forms a central strut. It is clear in reference to this patent that the principal fixation is axial, and that no provision for rotational fixation is provided. [0015]
  • U.S. Pat. No. 5,893,850 to Cachia describes a fixation device of a type useful for connecting two or more bone segments during the healing process. In the preferred embodiment, the device comprises an elongate pin having a distal anchor thereon. This distal anchor is essentially an umbrella-shaped end to the pin that may be selectively collapsed for pushing through a hole drilled through the bone segments, and then deployed at the distal end of the hole to prevent the elongate pin from retracting back through the hole. A proximal anchor is co-axially and slidably disposed with respect to the pin, and fixable to accommodate different bone dimensions and permit appropriate tensioning of the fixation device. An additional embodiment may be used when the preferred embodiment is not possible to deploy. This situation may occur, for example, when there is not a distal bone surface to allow for the deployment of the umbrella-shaped pin end. This embodiment describes a construction with multiple, axially expanding strips that are configured to engage the cancellous bone to resist axial withdrawal of the main body of the anchor. The patent describes two or more sets of strips, as the disclosed function of the anchor is to fixate at least two bone segments together to promote healing of the bone. There is no mention of providing an anchor point to which a suture may be secured, nor is one contemplated. [0016]
  • Still another bone fixation device of interest is disclosed in U.S. Pat. No. 5,501,695 to Anspach, Jr. et al. In this patent, there is disclosed a bone anchor apparatus which comprises a rivet body having a lower [0017] annular portion 12 and an upper annular portion 100. The lower annular portion includes an outer surface formed as an extension of the outer surface of the upper annular portion. Because the thickness of the lower annular portion is less than that of the upper annular portion, the upper annular portion acts as an annular step or stop. A plurality of longitudinal slots are formed on the outer surface of the lower annular portion, and lengthwise ribs are formed between the slots. The apparatus comprises multiple components, including, additionally, a separate puller, including a head and a puller rod, which extends upwardly through the inner diameter of the lower and upper parts of the rivet's annular portions. In operation, the puller is actuated upwardly until it strikes the annular step, thereby axially compressing the lower annular portion so that the ribs are expanded radially outwardly.
  • There is shown in FIG. 8 of the '695 patent a [0018] disk 38 which includes apertures 40 for accommodating attachment of a suture 42 thereto. This disk, however, remains above the surface of the bone once the anchor is in place. While the '695 patent discloses an apparently functional device, it is complicated and difficult to use in the close quarters attendant to arthroscopic procedures.
  • It may be seen, then, that as different fasteners have been adapted for use in providing an anchor point for a surgical suture in conjunction with attaching soft tissues to bone, various problems and challenges have appeared. Although some of those problems and challenges have been addressed, not all of the requirements for simple, secure fixation have been met, particularly for creating a simple and facile apparatus and method for soft tissue fixation that may be deployed arthroscopically. [0019]
  • What is needed, therefore, is a new arthroscopic approach for providing an anchor point in bone structure, wherein the anchor resides completely below the superficial cortical bone surface, provides both axial and rotational fixation, is better for the patient, is uncomplicated to use, thereby saving time during the repair procedure, and is easily mastered by properly skilled personnel. [0020]
  • SUMMARY OF THE INVENTION
  • The present invention solves the problems outlined above by providing an innovative bone anchor and connective techniques which permit a suture attachment which lies entirely beneath the cortical bone surface. The anchor design permits easy and facile insertion into the bone, and simple and secure anchoring after deployment. [0021]
  • More particularly, there is provided by the inventive apparatus a means and method for attaching soft or connective tissue to bone, comprising a hollow cylinder having a longitudinal axis and a periphery which is adapted to be inserted into a hole pre-drilled into bone. The cylinder is adapted to have a plurality of slits and ribs running parallel to or roughly along the longitudinal axis of the cylinder and equally distributed about the diameter of the cylinder. For example, there may be 4 slits defining 4 ribs, equally spaced at 90° intervals around the cylinder. These ribs are predisposed to bend in a direction radially outwardly from their resting position when an axial load is placed upon the cylinder. The ribs bend in a characteristic fashion that has each end of the ribs bending outwardly, with the center of the rib bending at an angle approximately twice that of the ends, and in the opposite direction. Such structure creates a “flower” or an expansion of the outside diameter of the cylinder. The “flower” moniker is chosen because, as the ribs bend outwardly away from the body of the cylinder, they create “petals” around the periphery of the cylinder. [0022]
  • As previously mentioned, the structure of the bone in the humerus, for example, has a dense outer layer called the cortical bone, and a lacy, cellular inner structure called the cancellous bone. When the hole for the present invention is drilled in the bone, the hole extends through the cortical layer and into the cancellous layer. As it may be seen, if the anchor is placed such that the deployment of the ribs creating the flower is undertaken below the cortical layer and in the cancellous layer, it is not possible to remove the anchor proximally from the hole, as it is trapped underneath the cortical layer. This provides an extremely secure anchoring point that distributes any load placed upon it over a relatively large surface area when compared to anchors known in the prior art. This distribution of load is a significant advance in the art, and allows loads that typically would surpass the tensile strength of the sutures used to secure the tissues. In other words, because of the innovative design of the anchor, the sutures will break before the anchor is displaced. [0023]
  • In the present state of the art, as discussed supra, the sutures which are passed through the tissues to be attached to bone typically are threaded through a small eyelet incorporated into the head of the anchor and then secured by tying knots in the sutures. Although the anchor means herein described certainly are amenable to such attachment, if desired, an eyelet is by no means the only way that sutures may be secured to the bone anchor. Other means of attachment which allow for adjustable, releasable suture fixation that does not require knot tying is contemplated. [0024]
  • It may be seen that the geometry created by the present invention may provide both axial and rotational means of fixation for the bone anchor. The petals of the flower, as previously discussed, do prevent the anchor from being pulled axially out through the hole through which it was deployed. Also, because of the fact that the petals expand radially outward from the body of the anchor, they create anchor points within the cancellous bone that also resist rotational forces. [0025]
  • Additionally, the inventors have refined the “flower” concept to incorporate a unique and advantageous modification to the pattern of slits and ribs. By creating, in one preferred embodiment, the slits and ribs on a bias (in other words, at an acute angle when viewed relative to the axis of the body of the anchor), a different deployment mechanism is effected. With substantially axial ribs and slits, the ribs fold up in their characteristic fashion as previously described, i.e. each end of the ribs bending outwardly, with the center of the rib bending at an angle twice that of the ends and in the opposite direction and ultimately the two ends of the ribs flattening against each other. Instead, when the ribs are formed on the aforementioned bias, they tend to bend in a semi circular fashion and stack on top of each other, forming overlapping petals that create a substantial bulge in the body of the anchor. [0026]
  • More particularly, there is provided an apparatus for attaching connective tissue to bone, which comprises a body having a longitudinal axis, a proximal end, and a distal end, which is adapted to be inserted into a bone. The anchor body includes a plurality of spaced slits, preferably at least six, disposed about the periphery thereof, wherein each of the slits has a length, and a distance x between two adjacent slits at a first location along the length of each of the slits is smaller than a distance y between the two adjacent slits at a second location along the length of each of the slits. Preferably, the slits each comprise an end, wherein the first location is proximate to an end of each of the adjacent slits and the second location being in a middle region of each of the adjacent slits. [0027]
  • More preferably, each of the slits further comprises an angled surface at at least one, and preferably both ends thereof, wherein each of the angled surfaces, or “notches”, extends depthwise into a wall forming the body. In preferred embodiments, the anchor body is a generally cylindrical body having an outer circumferential wall defining an inner lumen. [0028]
  • In some embodiments of the invention, the plurality of spaced slits are generally parallel to the longitudinal axis. In other, presently preferred embodiments, the plurality of spaced slits each lie at an acute angle relative to the longitudinal axis. The acute angle is preferably between 0 and 45 degrees. [0029]
  • The anchoring apparatus should include a plurality of spaced slits that are sufficient in number such that when an axial length of the body is shortened, a plurality of ribs which are disposed between each of the plurality of slits are caused to each expand radially to form respective petals, each of the petals overlap adjacent ones thereof. [0030]
  • In another aspect of the invention, there is provided an apparatus for attaching connective tissue to bone, comprising a body having a longitudinal axis, a proximal end, and a distal end, which is adapted to be inserted into a bone. The anchoring body includes a plurality of spaced slits disposed about the periphery thereof, each of the slits having a length and an angled surface at an end thereof, extending depthwise into a wall forming the body. Preferably, each of the slits has an angled surface at each end thereof, extending depthwise into the body wall. [0031]
  • In preferred embodiments, a distance x between two adjacent slits at a first location along the length of each one of the adjacent slits is smaller than a distance y between the same two adjacent slits at a second location along the length of each one of the adjacent slits. Such a configuration has been found to substantially reduce the axial forces required to deploy the anchor, once inserted into desired bone structure. Preferably, the first location is proximate to an end of each of the slits and the second location is in a middle region of each of the adjacent slits. [0032]
  • In yet another aspect of the invention, there is disclosed a method of fabricating an apparatus for attaching connective tissue to bone, which comprises a step of making a pattern of a bone anchor using a bio-compatible material. A plurality of spaced slits are disposed across a width of the pattern, such that adjacent ones of the slits are closer together at a first location along a length thereof and being farther apart at a second location along the length. The pattern is then formed into an anchor body, which is preferably generally cylindrical. The first location is preferably near an end of each of the respective adjacent slits and the second location is in a middle region of each of the respective adjacent slits. [0033]
  • Preferably, the method includes an additional step of forming an angled surface extending depthwise into the pattern at an end of each of the spaced slits, and, more preferably, at each end of each of the spaced slits. In order to form the slits in the aforementioned manner, it is preferred that a cutting wheel be used to form the spaced slits. [0034]
  • In still another aspect of the invention, there is disclosed a method of fabricating an apparatus for attaching connective tissue to bone, which comprises steps of making a pattern of a bone anchor using a bio-compatible material, and forming a plurality of spaced slits across a width of the pattern, such that an end of each of the slits includes an angled surface extending depthwise into the pattern. The pattern is then fabricated into an anchor body. [0035]
  • The invention, together with additional features and advantages thereof, may best be understood by reference to the following description taken in conjunction with the accompanying illustrative drawing.[0036]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 illustrates a humerus and a tendon to be attached thereto in cross-section; [0037]
  • FIG. 2A is a plan view of a flat pattern to be formed into a bone anchor of the present invention; [0038]
  • FIG. 2B is a perspective view of the flat pattern illustrated in FIG. 2A which has been roll formed into a cylinder; [0039]
  • FIG. 3 is a perspective view of the structure illustrated in FIG. 2B, coined into a bone anchor of the present invention; [0040]
  • FIG. 4 is a perspective view of the bone anchor of FIG. 3 after deployment in accordance with a method of the present invention; [0041]
  • FIG. 5 is a cross-sectional view showing the bone anchor of FIG. 3 inserted into a hole drilled into the humerus of FIG. 1, according to a method of the present invention; [0042]
  • FIG. 6 is a cross-sectional view of the bone anchor of FIG. 5 after it has been deployed; [0043]
  • FIG. 6A is a perspective view of an alternative application for the bone anchor of the present invention; [0044]
  • FIG. 7 is a perspective view of an alternative embodiment of the bone anchor of the present invention; [0045]
  • FIG. 8 is a perspective view of the bone anchor of FIG. 7 in a deployed state; [0046]
  • FIG. 9 is a cross-sectional plan view of a humerus and tendon showing the anchor of FIG. 7 inserted into the humerus of FIG. 1, in accordance with a method of the present invention; [0047]
  • FIG. 10 is a cross-sectional plan view similar to FIG. 9, showing the anchor in a deployed state and the tendon sutured to the humeral bone; [0048]
  • FIG. 11 is a perspective view of an alternative embodiment of the bone anchor shown in FIG. 7; and [0049]
  • FIG. 12 is an enlarged detail view of a portion of the bone anchor shown in FIG. 11. [0050]
  • DESCRIPTION OF THE PREFERRED EMBODIMENT
  • Referring now more particularly to the drawings, there is shown in FIG. 1 a partial cross-sectional view of a [0051] humeral head 10 which includes an outer surface of cortical bone 12 and inner cancellous bone 14. A rotator cuff tendon 16 is disposed across the surface of the cortical bone 12. A blind hole 18 has been made, preferably by drilling, through a desired location on the cortical bone 12 and into the cancellous bone 14. This illustration is intended to provide a simple overview of the physiological elements and structure involved in a typical situation wherein reattachment of connective tissue such as the tendon 16 to the cortical bone 12 is desired. It is to be understood that the proximity in the illustration of the rotator cuff tendon 16 to the cortical bone 12 is merely exemplary, and that the rotator cuff tendon 16 is not attached to the cortical bone 12 at the interface 20 between the two.
  • Referring now to FIG. 2A, there is illustrated a [0052] flat pattern 22 of a bone anchor constructed in accordance with an embodiment of the present invention, including slits 24 and ribs 26 which are formed by the pattern of slits 24, together with a hole 28 and half holes 30 a, 30 b, aligned across the width of the pattern 22 at one end thereof. Such flat pattern 22 may be fabricated from any material suitable for implantation into the body as is known in the art, such as stainless steel 316L, and may be formed by flat stamping or photochemical machining or the like.
  • Referring to FIG. 2B, the [0053] flat pattern 22 has been roll formed into a cylindrical body 32, which includes the slits 24 and ribs 26 seen in FIG. 2A, as well as the hole 28, and the half holes 30 which are now formed into a single hole 34, as a result of the roll forming process. It is to be understood, of course, that the flat form of the anchor has been shown for informational purposes as to one possible method of fabrication, and is not to be deemed limiting. Clearly, to those skilled in the art, many other methods of manufacture, such as laser cutting drawn hypodermic tubing, or deep draw progressive die stamping, may be employed. One particularly preferred method of manufacture, wherein a cutting wheel is employed to create the slits, is discussed below in connection with FIGS. 11 and 12.
  • FIG. 3 shows the [0054] cylindrical body 32 of FIG. 2B, but it has now been coined to form a neck 36 at a proximal end 38, such that the hole 28 and the single hole 34 are aligned with each other to form a conduit 40 for suture to be passed through, to thereby provide an anchor point for the suture. How this anchor point is used will be more fully described below in connection with subsequent drawing figures.
  • The bone anchor of FIG. 3 is shown in its undeployed state, with the [0055] cylindrical body 32 further having a distal end 42. Referring, however, to FIG. 4, it may be seen that the geometry of the ribs 26 has now been changed such that the ribs 26 have been bent to form one petal 44 that includes roots 46 a, b and an apex 48. It is to be understood that although this description of the petal 44 is singular, it is clear that the geometry and configuration of the anchor includes multiple petals, and that this description therefore is applicable to all of the petals. In fact, in preferred embodiments a minimum of five petals, comprising, of course, six ribs and six associated slits, are employed, for reasons to be discussed hereinbelow.
  • The deformation of the [0056] ribs 26 is accomplished by imposing a compressive force on the distal end 42 and the proximal end 38 of the cylindrical body 32. Because each of the ribs 26 act as an independent column, when the compressive force is imposed, they eventually bend as a result of column buckling. After the onset of such buckling, the characteristic geometry has an angle of buckling at the apex 48 of the petal 44 which is equal to the sum of the angles at the roots 46 a, b. At the formation of the petals 44, interstices 50 are created between the petals 44. The interstices 50 are important to the creation of a rotational fixation moment, in that edges 52 of the petals 44 are in direct contact with the cancellous bone as the flower is formed. The apex 48 creates a channel in the cancellous bone that traps material in the interstices 50 of the flower. Any rotational moment imposed on the bone anchor is resisted by the petals 44, and specifically by the edges 52 of the petals 44.
  • Referring to FIGS. 5 and 6, it can be seen how the inventive apparatus can be used as a bone anchor for attachment of soft tissues to bone. FIG. 5 illustrates a [0057] bone anchor 54 of the type shown in FIGS. 2-4 that has been inserted into the drilled hole 18 in the humeral head 10. The bone anchor 54 includes slits 24 and ribs 26 on a cylindrical body 32, as previously described. A length of suture 56 has been passed through the conduit 40 at the proximal end 38 of the bone anchor 54, and also stitched through the soft tissue represented by the rotator cuff tendon. The stitching process may be accomplished by any known means, and any known suture stitch may be employed, the objective being to ensure a secure stitch so that the suture is not inadvertently separated from the tendon after completion of the repair procedure, necessitating re-entry to the surgical site. In preferred approaches, the suture is attached to the soft tissue using a “mattress stitch”, which is well known in the art as being a particularly secure stitch which is unlikely to fail postoperatively. Preferably, a suturing instrument is inserted into the trocar to perform the aforementioned suturing step. A preferred suturing approach is taught in co-pending application Ser. No. 09/668,055, entitled Linear Suturing Apparatus And Methods, filed on Sep. 21, 2000, expressly incorporated herein by reference and commonly assigned herewith.
  • After insertion into the drilled [0058] hole 18, the slits 24 and ribs 26 are in position in the cancellous bone 14 and below the surface of the cortical bone 12.
  • Now referring particularly to FIG. 6, the [0059] bone anchor 54 is illustrated in its deployed state. The slits 24 and ribs 26 have been converted into petals 44, and the apex 48 of each petal 44 has dug its way into the cancellous bone 14. The petals create a large surface area that bears against the underside of the cortical bone 12, and prevents the bone anchor 24 from being retracted proximally out of the drilled hole 18 in the cortical bone 12. The suture 56 has been tied into a knot 58, or otherwise tensioned, to thereby approximate the rotator cuff tendon 16 against the cortical bone 12. In this respect, while the inventive bone anchoring system has been illustrated in conjunction with various suture anchoring systems, it may also be desirable in some applications to use the inventive system in connection with an entirely different suture anchoring approach, such as the approach illustrated, for example, in co-pending U.S. patent application Ser. No. 09/781,793, entitled Method & Apparatus for Attaching Connective Tissues to Bone Using a Knotless Suture Anchoring Device, filed on Feb. 12, 2001, commonly assigned herewith and expressly incorporated by reference herein.
  • As previously described, the inventive anchor fixation structure may be used not only to provide axial fixation, but also rotational fixation. Referring now to FIG. 6A, it can be seen how the [0060] petals 44 may create a rotational fixation structure. As previously noted, the contents of commonly assigned U.S. patent application Ser. No. 09/475,495 have been incorporated in their entirety in the present application. In that application, there is disclosed a unique bone anchoring system which utilizes an anchor structure that mimics a winch in order to create the fixation point and create tension in the sutures that are disposed through the tendon or soft tissue to be attached to bone. This novel system has the additional structural requirement of rotational fixation, as the suture is wrapped around the anchor body to create the aforementioned fixation and tension.
  • Accordingly, in FIG. 6A there is shown a [0061] bone anchor 60 which includes an anchor body 62 and petals 64. The bone anchor is inserted into a drilled hole 66 in the bone through cortical bone 68 and into cancellous bone 70. A suture 72 is passed through a tendon 74, threaded through a slit 76 in the bone, and is wrapped around the anchor body 62 by rotation of the anchor body 62. As previously discussed, the formation of the petals 64 create interstices 78 in the cancellous bone 70, which in turn provides a rotational moment about the axis of the anchor body 62. The created rotational moment resists any rotational force imposed by the suture 72 on the anchor body 62 it is important to note that this anti-rotational structure is deliberately created by judicious selection of petal geometry, i.e. the number of petals, how far they extend from the body 62, the breadth of their shoulders, and the thickness of the material from which they are fabricated. These factors affect the size and shape of the interstices that are formed between the petals, and, of course, the concomitant rotational moment that may be developed thereby.
  • More particularly, the inventors have found that a minimum of six ribs, forming six petals, are preferably employed, in order to ensure that the interstices between expanded ribs are not too large to be effective in containing trapped cancellous bone material, which functions in resisting applied rotational forces. A greater number of petals are also preferred to provide adequate expanded surface area to resist any applied rotational forces, as well as to provide a sufficiently strong expanded structure to adequately resist applied pullout forces. On the other hand, too many ribs, and consequent petals, will result in interstices which are too small to effectively trap an adequate amount of cancellous bone material. [0062]
  • Another embodiment of the present invention may be seen by referring to FIG. 7, where there is illustrated a [0063] bone anchor 80 which includes a cylindrical body 82, into which slits 84 have been formed, creating ribs 86. The bone anchor 80 also includes a proximal end 88, a distal end 90, and a suture conduit 92. As may be observed from FIG. 7, the slits 84 have been formed at an acute angle (i.e. between 0 and 90 degrees, and preferably less than 45 degrees) to the axis of the cylindrical body 82. As before, it is to be understood that in referring to a single slit 84 or rib 86, we are also referring to the multiplicity of slits 84 and ribs 86 that are formed in the cylindrical body 82, as a single slit 84 or rib 86 is representative of each of the slits 84 or ribs 86. In other words, each petal has the same geometry and physical behavior, though the precise number of slits and ribs may vary in different embodiments, without deviating from the overall inventive concept. It may also be observed that the materials and construction of this embodiment of the bone anchor may be chosen using criteria similar to those described earlier with respect to alternate embodiments.
  • As may be seen by referring now to FIG. 8, as a compressive force is impressed on the [0064] distal end 90 and the proximal end 88, the ribs 86 buckle and deform into the characteristic shape shown. Because of the bias cut on the slits 84, instead of buckling in a linear fashion like the ribs 26 of FIG. 6, the ribs 86 buckle such that they take on a semi-circular shape, and adjacent ribs overlap and support each other. The inventors have found that a minimum of six ribs should be employed to obtain this important overlapping feature, which feature is significant in the configuration of an anchor point for a suture, as will be described hereinbelow.
  • Referring now to FIGS. 9-10, there may be seen a cross section of a [0065] humeral head 10 identical to that described in connection with previous FIGS. 1, 5 and 6. The bone anchor 80 has been disposed within the drilled hole 18, with the proximal end entirely below the surface of the cortical bone 12. A length of suture 94 is shown threaded through the suture conduit 92 at the proximal end 88 of the bone anchor 80. The length of suture 94 is also shown threaded through the rotator cuff tendon 16 laying on top of the humeral head 10. As shown particularly in FIG. 10, the bone anchor 80 has been deployed by the application of a compressive force to create the characteristic bending of the ribs 86 into their semi-circular state. The creation of this semi-circular geometry in the ribs 86 increases the body diameter of the bone anchor 80 such that the aggregate outside diameter of the deformed ribs 86 is substantially larger than the nominal diameter of the cylindrical body 82. In this manner, the anchor is prevented from passing proximally out of the drilled hole 18 in the hard cortical bone 12, as it is retained up against the inner surface of the cortical bone 12. As discussed supra, the structure is strengthened because of the overlapping expanded ribs 86. A knot 96, tied in the length of suture 94, secures the rotator cuff tendon 16 to the humeral head 10, or, alternatively, another method for tensioning the suture, to thereby approximate the tendon to the bone, may be utilized.
  • FIGS. 11 and 12 illustrate yet another alternative embodiment of the bone anchor shown in FIGS. 1-10, which is, at present, a preferred approach for fabricating any of the embodiments shown in FIGS. 1-10. Applicants have discovered, through empirical research, that the cutting techniques used in creating the [0066] slits 24, 84 in any of the embodiments of FIGS. 3 and 7, for example, are important in determining the functionality of the resultant anchor. More specifically, Applicants determined that laser-cutting the slits 24, 84, wherein the slits are cut on a helix (meaning that the laser beam is held stationary while the workpiece is rotated), results in a constant spacing between the slits at any point along the length thereof. In such an instance, Applicants have found that it takes a significant compressive force on the cylindrical body 32, 82 to deploy the petals 44, 64.
  • In FIGS. 11 and 12, there is shown a [0067] cylindrical body 132, similar to cylindrical bodies 32, 82 illustrated in FIGS. 1-10, and having a plurality of slits 124 formed therein, similar to slits 24, 84. All aspects of the embodiment shown in FIGS. 11 and 12 are the same as in prior embodiments, except for the specific configuration of the slits 24, and the method by which they are fabricated. In the embodiment of FIGS. 11 and 12, it is preferred that a cutting wheel of a rotating saw is utilized to form the slits 124. Two outcomes of this method of fabrication result in an anchor structure which is deployable upon the application of a substantially lower compressive force, than in the laser-cut embodiments. The first outcome is that each end of each slit 124 is formed with a “notch” or angled surface 136. The second outcome is that, because the cut is straight rather than on a helix, the distance (spacing) between adjacent slits 124 is less at the ends of the slits than in the middle of the slits. As shown in FIG. 11, this means that the distance x between adjacent slits 124 at their respective ends is less than the distance y between the same adjacent slits 124 at their respective middles.
  • Applicants have determined that one or both of these two separate outcomes result in a configuration which is much easier to deploy than when the slits do not have end notches such as [0068] notches 136 and are equally spaced from one another along the entire length of the respective slits.
  • An alternative to the method described in connection with FIGS. 11 and 12 is to continue to utilize a laser cutting method, but to adjust the fabrication process so that the spacing between the respective ends of adjacent ones of the [0069] slits 124 is reduced relative to the spacing between middle portions of the same adjacent slits.
  • It is to be understood that the figures of the bone and anchors seen above are purely illustrative in nature, and are not intended to perfectly reproduce the physiologic and anatomic nature of the humeral head as expected to be seen in the human species, nor to limit the application of the inventive embodiments to repair of the rotator cuff. The invention is applicable to many different types of procedures involving, in particular, the attachment of connective or soft tissue to bone. [0070]
  • Accordingly, although an exemplary embodiment of the invention has been shown and described, it is to be understood that all the terms used herein are descriptive rather than limiting, and that many changes, modifications, and substitutions may be made by one having ordinary skill in the art without departing from the spirit and scope of the invention. [0071]

Claims (19)

1. Apparatus for attaching connective tissue to bone, comprising a body having a longitudinal axis, a proximal end, and a distal end, which is adapted to be inserted into a bone, said body having an outer peripheral wall extending substantially completely about said longitudinal axis and defining an inner lumen, said body including a plurality of spaced slits disposed about said outer peripheral wall, each of said slits having a length, wherein a distance x between two adjacent slits at a first location along the length of each of the slits is smaller than a distance y between said two adjacent slits at a second location along the length of each of the slits.
2. The apparatus as recited in claim 1, wherein said slits each comprise an end, said first location being proximate to an end of each of the adjacent slits and the second location being in a middle region of each of the adjacent slits.
3. The apparatus as recited in claim 1, wherein each of said slits further comprises an angled surface at an end thereof.
4. The apparatus as recited in claim 1, wherein each of said slits further comprises an angled surface at each end thereof, each of said angled surfaces extending depthwise into a wall forming said body.
5. The apparatus as recited in claim 1, wherein said body comprises a generally cylindrical body, and said peripheral wall comprises an outer circumferential wall.
6. The apparatus as recited in claim 1, wherein said plurality of spaced slits are generally parallel to said longitudinal axis.
7. The apparatus as recited in claim 1, wherein said plurality of spaced slits each lie at an acute angle relative to said longitudinal axis.
8. The apparatus as recited in claim 7, wherein said acute angle is between 0 and 45 degrees.
9. The apparatus as recited in claim 1, wherein said plurality of spaced slits comprises at least six slits.
10. (Canceled)
11. Apparatus for attaching connective tissue to bone, comprising a body having a longitudinal axis, a proximal end, and a distal end, which is adapted to be inserted into a bone, said body having an outer peripheral wall extending substantially completely about said longitudinal axis and defining an inner lumen, said body including a plurality of spaced slits disposed about said outer peripheral wall, each of said slits having a length and an angled surface at an end thereof, extending depthwise into a wall forming said body.
12. The apparatus as recited in claim 11, wherein each of said slits has an angled surface at each end thereof, extending depthwise into said wall.
13. (Canceled)
14. The apparatus as recited in claim 13, wherein said first location is proximate to an end of each of the slits and the second location is in a middle region of each of said adjacent slits.
15-20. (Canceled)
21. A method of fabricating an apparatus for attaching connective tissue to bone, comprising:
making a pattern of a bone anchor using a bio-compatible material;
forming a plurality of spaced slits across a width of said pattern, such that an end of each of said slits includes an angled surface extending depthwise into said pattern; and
fabricating said pattern into an anchor body.
22. The method as recited in claim 21, wherein said forming step further comprises forming an angled surface extending depthwise into said pattern at each end of each of said slits.
23. The method as recited in claim 21, wherein said forming step further comprises forming said slits such that adjacent ones of said slits are closer together at a first location along a length thereof and farther apart at a second location along said length.
24. The apparatus as recited in claim 1, wherein when said body is placed in compression, regions of said outer wall between adjacent ones of said spaced slits expand radially to extend into adjacent bone.
US10/690,351 2001-06-07 2003-10-21 Method and apparatus for attaching connective tissues to bone using a suture anchoring device Abandoned US20040236336A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/690,351 US20040236336A1 (en) 2001-06-07 2003-10-21 Method and apparatus for attaching connective tissues to bone using a suture anchoring device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/876,341 US6660008B1 (en) 2001-06-07 2001-06-07 Method and apparatus for attaching connective tissues to bone using a suture anchoring device
US10/690,351 US20040236336A1 (en) 2001-06-07 2003-10-21 Method and apparatus for attaching connective tissues to bone using a suture anchoring device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/876,341 Continuation US6660008B1 (en) 2000-07-14 2001-06-07 Method and apparatus for attaching connective tissues to bone using a suture anchoring device

Publications (1)

Publication Number Publication Date
US20040236336A1 true US20040236336A1 (en) 2004-11-25

Family

ID=29712673

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/876,341 Expired - Lifetime US6660008B1 (en) 2000-07-14 2001-06-07 Method and apparatus for attaching connective tissues to bone using a suture anchoring device
US10/690,351 Abandoned US20040236336A1 (en) 2001-06-07 2003-10-21 Method and apparatus for attaching connective tissues to bone using a suture anchoring device

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/876,341 Expired - Lifetime US6660008B1 (en) 2000-07-14 2001-06-07 Method and apparatus for attaching connective tissues to bone using a suture anchoring device

Country Status (1)

Country Link
US (2) US6660008B1 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060271060A1 (en) * 2005-05-26 2006-11-30 Arthrocare Corporation Threaded knotless suture anchoring device and method
US7674274B2 (en) 2001-06-06 2010-03-09 Arthrocare Corporation Method and apparatus for attaching connective tissues to bone using a cortical bone anchoring device
US7682374B2 (en) 2003-10-21 2010-03-23 Arthrocare Corporation Knotless suture lock and bone anchor implant method
US7695494B2 (en) 2001-02-12 2010-04-13 Arthrocare Corporation Method and apparatus for attaching connective tissues to bone using a knotless suture anchoring device
US7963972B2 (en) 2007-09-12 2011-06-21 Arthrocare Corporation Implant and delivery system for soft tissue repair
US20110313532A1 (en) * 2010-06-18 2011-12-22 Jessee Hunt Bone implant interface system and method
US8109966B2 (en) 1999-12-30 2012-02-07 Arthrocare Corporation Methods for attaching connective tissues to bone using a multi-component anchor
US8133258B2 (en) 2006-08-03 2012-03-13 Arthrocare Corporation Method and apparatus for attaching connective tissues to bone using a knotless suture anchoring device
US8137381B2 (en) 2007-04-25 2012-03-20 Arthrocare Corporation Knotless suture anchor having discrete polymer components and related methods
US8657854B2 (en) 2001-02-12 2014-02-25 Arthrocare Corporation Knotless suture anchoring device having deforming section to accommodate sutures of various diameters
US9023083B2 (en) 2012-01-27 2015-05-05 Arthrocare Corporation Method for soft tissue repair with free floating suture locking member
US9034014B2 (en) 2012-01-27 2015-05-19 Arthrocare Corporation Free floating wedge suture anchor for soft tissue repair
US9198649B2 (en) 2012-01-27 2015-12-01 Arthrocare Corporation Rotating locking member suture anchor and method for soft tissue repair
US9226742B2 (en) 2012-01-27 2016-01-05 Arthrocare Corporation Restricted wedge suture anchor and method for soft tissue repair
US9271845B2 (en) 2012-09-25 2016-03-01 4Web Programmable implants and methods of using programmable implants to repair bone structures
US9364210B2 (en) 2012-01-27 2016-06-14 Arthrocare Corporation Biased wedge suture anchor and method for soft tissue repair
US9421108B2 (en) 2008-12-18 2016-08-23 4Web, Inc. Implant system and method
US9636226B2 (en) 2013-03-15 2017-05-02 4Web, Inc. Traumatic bone fracture repair systems and methods
US9636101B2 (en) 2011-09-01 2017-05-02 Arthrocare Corporation Bone anchor having an integrated stress isolator
US9855028B2 (en) 2012-04-06 2018-01-02 Arthrocare Corporation Multi-suture knotless anchor for attaching tissue to bone and related method
JP2020198942A (en) * 2019-06-06 2020-12-17 株式会社プロメット anchor

Families Citing this family (517)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2452508C (en) * 1998-10-26 2010-09-14 Expanding Orthopedics Inc. Expandable orthopedic device
US9521999B2 (en) 2005-09-13 2016-12-20 Arthrex, Inc. Fully-threaded bioabsorbable suture anchor
US8343186B2 (en) 2004-04-06 2013-01-01 Arthrex, Inc. Fully threaded suture anchor with transverse anchor pin
US8821541B2 (en) 1999-02-02 2014-09-02 Arthrex, Inc. Suture anchor with insert-molded rigid member
US7993369B2 (en) 2000-06-22 2011-08-09 Arthrex, Inc. Graft fixation using a plug against suture
US6660008B1 (en) * 2001-06-07 2003-12-09 Opus Medical, Inc. Method and apparatus for attaching connective tissues to bone using a suture anchoring device
US6780198B1 (en) 2001-12-06 2004-08-24 Opus Medical, Inc. Bone anchor insertion device
US7280865B2 (en) * 2001-12-20 2007-10-09 Accuray Incorporated Anchored fiducial apparatus and method
SE0203787L (en) * 2002-12-19 2004-03-09 Exopro L A Fixture for anchoring in bone tissue
US20060052788A1 (en) * 2003-02-04 2006-03-09 Thelen Sarah L Expandable fixation devices for minimally invasive surgery
US9060770B2 (en) 2003-05-20 2015-06-23 Ethicon Endo-Surgery, Inc. Robotically-driven surgical instrument with E-beam driver
US20070084897A1 (en) 2003-05-20 2007-04-19 Shelton Frederick E Iv Articulating surgical stapling instrument incorporating a two-piece e-beam firing mechanism
US20080195178A1 (en) * 2003-12-30 2008-08-14 Kuzma Janusz A Fixation methods and systems for cochlear implant component or other implantable devices
US7828802B2 (en) 2004-01-16 2010-11-09 Expanding Orthopedics, Inc. Bone fracture treatment devices and methods of their use
US7608092B1 (en) 2004-02-20 2009-10-27 Biomet Sports Medicince, LLC Method and apparatus for performing meniscus repair
DE102004009429A1 (en) * 2004-02-24 2005-09-22 Biedermann Motech Gmbh Bone anchoring element
EP1740123A4 (en) * 2004-04-26 2008-09-03 Howmedica Osteonics Corp Stent for avascular meniscal repair and regeneration
AU2004319780A1 (en) * 2004-05-19 2005-11-24 Sintea Biotech S.P.A Intravertebral widening device, injection device, and kit and method for kyphoplasty
US8062334B2 (en) 2004-06-02 2011-11-22 Kfx Medical Corporation Suture anchor
RU2416371C2 (en) 2004-06-02 2011-04-20 КейЭфэкс МЕДИКАЛ КОРПОРЕЙШН System and method of fastening soft tissue to bone
US8215531B2 (en) 2004-07-28 2012-07-10 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having a medical substance dispenser
US11890012B2 (en) 2004-07-28 2024-02-06 Cilag Gmbh International Staple cartridge comprising cartridge body and attached support
US20080195096A1 (en) * 2004-10-15 2008-08-14 The University Of British Columbia Orthopaedic Helical Coil Fastener and Apparatus and Method for Implantation Thereof
US8118836B2 (en) 2004-11-05 2012-02-21 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US9801708B2 (en) 2004-11-05 2017-10-31 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US8088130B2 (en) 2006-02-03 2012-01-03 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US7909851B2 (en) 2006-02-03 2011-03-22 Biomet Sports Medicine, Llc Soft tissue repair device and associated methods
US7658751B2 (en) 2006-09-29 2010-02-09 Biomet Sports Medicine, Llc Method for implanting soft tissue
US20060189993A1 (en) 2004-11-09 2006-08-24 Arthrotek, Inc. Soft tissue conduit device
US8303604B2 (en) 2004-11-05 2012-11-06 Biomet Sports Medicine, Llc Soft tissue repair device and method
US7905903B2 (en) 2006-02-03 2011-03-15 Biomet Sports Medicine, Llc Method for tissue fixation
US7857830B2 (en) 2006-02-03 2010-12-28 Biomet Sports Medicine, Llc Soft tissue repair and conduit device
US7749250B2 (en) 2006-02-03 2010-07-06 Biomet Sports Medicine, Llc Soft tissue repair assembly and associated method
US8128658B2 (en) 2004-11-05 2012-03-06 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to bone
US9017381B2 (en) 2007-04-10 2015-04-28 Biomet Sports Medicine, Llc Adjustable knotless loops
US8840645B2 (en) 2004-11-05 2014-09-23 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US7905904B2 (en) 2006-02-03 2011-03-15 Biomet Sports Medicine, Llc Soft tissue repair device and associated methods
US8137382B2 (en) 2004-11-05 2012-03-20 Biomet Sports Medicine, Llc Method and apparatus for coupling anatomical features
US8361113B2 (en) 2006-02-03 2013-01-29 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US8298262B2 (en) 2006-02-03 2012-10-30 Biomet Sports Medicine, Llc Method for tissue fixation
US8998949B2 (en) 2004-11-09 2015-04-07 Biomet Sports Medicine, Llc Soft tissue conduit device
EP1814463A4 (en) * 2004-11-15 2013-10-02 Scandius Biomedical Inc Method and apparatus for the repair of a rotator cuff (rtc) tendon or ligament
US7144415B2 (en) 2004-11-16 2006-12-05 The Anspach Effort, Inc. Anchor/suture used for medical procedures
US7572275B2 (en) * 2004-12-08 2009-08-11 Stryker Endoscopy System and method for anchoring suture to bone
US8882787B2 (en) * 2005-03-02 2014-11-11 St. Jude Medical, Cardiology Division, Inc. Tissue anchor apparatus
US7645286B2 (en) 2005-05-20 2010-01-12 Neotract, Inc. Devices, systems and methods for retracting, lifting, compressing, supporting or repositioning tissues or anatomical structures
US9549739B2 (en) 2005-05-20 2017-01-24 Neotract, Inc. Devices, systems and methods for treating benign prostatic hyperplasia and other conditions
US8425535B2 (en) 2005-05-20 2013-04-23 Neotract, Inc. Multi-actuating trigger anchor delivery system
US8603106B2 (en) 2005-05-20 2013-12-10 Neotract, Inc. Integrated handle assembly for anchor delivery system
US10925587B2 (en) 2005-05-20 2021-02-23 Neotract, Inc. Anchor delivery system
US10195014B2 (en) 2005-05-20 2019-02-05 Neotract, Inc. Devices, systems and methods for treating benign prostatic hyperplasia and other conditions
US8945152B2 (en) 2005-05-20 2015-02-03 Neotract, Inc. Multi-actuating trigger anchor delivery system
US8668705B2 (en) 2005-05-20 2014-03-11 Neotract, Inc. Latching anchor device
US9504461B2 (en) 2005-05-20 2016-11-29 Neotract, Inc. Anchor delivery system
US7758594B2 (en) 2005-05-20 2010-07-20 Neotract, Inc. Devices, systems and methods for treating benign prostatic hyperplasia and other conditions
US9149266B2 (en) * 2005-05-20 2015-10-06 Neotract, Inc. Deforming anchor device
US8628542B2 (en) 2005-05-20 2014-01-14 Neotract, Inc. Median lobe destruction apparatus and method
KR101145415B1 (en) * 2005-07-08 2012-05-15 비이더만 모테크 게엠베하 & 코. 카게 Bone Anchoring Element
DE602005005664T2 (en) * 2005-07-08 2008-06-26 Biedermann Motech Gmbh Bone anchoring element
ES2318391T3 (en) * 2005-08-05 2009-05-01 Biedermann Motech Gmbh OSEO ANCHORAGE ELEMENT.
US10159482B2 (en) 2005-08-31 2018-12-25 Ethicon Llc Fastener cartridge assembly comprising a fixed anvil and different staple heights
US11246590B2 (en) 2005-08-31 2022-02-15 Cilag Gmbh International Staple cartridge including staple drivers having different unfired heights
US7934630B2 (en) 2005-08-31 2011-05-03 Ethicon Endo-Surgery, Inc. Staple cartridges for forming staples having differing formed staple heights
US7669746B2 (en) 2005-08-31 2010-03-02 Ethicon Endo-Surgery, Inc. Staple cartridges for forming staples having differing formed staple heights
US9237891B2 (en) 2005-08-31 2016-01-19 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical stapling devices that produce formed staples having different lengths
US11484312B2 (en) 2005-08-31 2022-11-01 Cilag Gmbh International Staple cartridge comprising a staple driver arrangement
US20070106317A1 (en) 2005-11-09 2007-05-10 Shelton Frederick E Iv Hydraulically and electrically actuated articulation joints for surgical instruments
US8186555B2 (en) 2006-01-31 2012-05-29 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting and fastening instrument with mechanical closure system
US11278279B2 (en) 2006-01-31 2022-03-22 Cilag Gmbh International Surgical instrument assembly
US20110024477A1 (en) 2009-02-06 2011-02-03 Hall Steven G Driven Surgical Stapler Improvements
US7753904B2 (en) 2006-01-31 2010-07-13 Ethicon Endo-Surgery, Inc. Endoscopic surgical instrument with a handle that can articulate with respect to the shaft
US8820603B2 (en) 2006-01-31 2014-09-02 Ethicon Endo-Surgery, Inc. Accessing data stored in a memory of a surgical instrument
US7845537B2 (en) 2006-01-31 2010-12-07 Ethicon Endo-Surgery, Inc. Surgical instrument having recording capabilities
US20110290856A1 (en) 2006-01-31 2011-12-01 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical instrument with force-feedback capabilities
US11224427B2 (en) 2006-01-31 2022-01-18 Cilag Gmbh International Surgical stapling system including a console and retraction assembly
US20120292367A1 (en) 2006-01-31 2012-11-22 Ethicon Endo-Surgery, Inc. Robotically-controlled end effector
US11793518B2 (en) 2006-01-31 2023-10-24 Cilag Gmbh International Powered surgical instruments with firing system lockout arrangements
US8708213B2 (en) 2006-01-31 2014-04-29 Ethicon Endo-Surgery, Inc. Surgical instrument having a feedback system
US10517587B2 (en) 2006-02-03 2019-12-31 Biomet Sports Medicine, Llc Method and apparatus for forming a self-locking adjustable loop
US11311287B2 (en) 2006-02-03 2022-04-26 Biomet Sports Medicine, Llc Method for tissue fixation
US8936621B2 (en) 2006-02-03 2015-01-20 Biomet Sports Medicine, Llc Method and apparatus for forming a self-locking adjustable loop
US8801783B2 (en) 2006-09-29 2014-08-12 Biomet Sports Medicine, Llc Prosthetic ligament system for knee joint
US8562647B2 (en) 2006-09-29 2013-10-22 Biomet Sports Medicine, Llc Method and apparatus for securing soft tissue to bone
US9271713B2 (en) 2006-02-03 2016-03-01 Biomet Sports Medicine, Llc Method and apparatus for tensioning a suture
US11259792B2 (en) 2006-02-03 2022-03-01 Biomet Sports Medicine, Llc Method and apparatus for coupling anatomical features
US7959650B2 (en) 2006-09-29 2011-06-14 Biomet Sports Medicine, Llc Adjustable knotless loops
US9149267B2 (en) 2006-02-03 2015-10-06 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US8574235B2 (en) 2006-02-03 2013-11-05 Biomet Sports Medicine, Llc Method for trochanteric reattachment
US9538998B2 (en) 2006-02-03 2017-01-10 Biomet Sports Medicine, Llc Method and apparatus for fracture fixation
US9078644B2 (en) 2006-09-29 2015-07-14 Biomet Sports Medicine, Llc Fracture fixation device
US8562645B2 (en) 2006-09-29 2013-10-22 Biomet Sports Medicine, Llc Method and apparatus for forming a self-locking adjustable loop
US8251998B2 (en) 2006-08-16 2012-08-28 Biomet Sports Medicine, Llc Chondral defect repair
US8652171B2 (en) 2006-02-03 2014-02-18 Biomet Sports Medicine, Llc Method and apparatus for soft tissue fixation
US8597327B2 (en) 2006-02-03 2013-12-03 Biomet Manufacturing, Llc Method and apparatus for sternal closure
US8771352B2 (en) 2011-05-17 2014-07-08 Biomet Sports Medicine, Llc Method and apparatus for tibial fixation of an ACL graft
US8506597B2 (en) 2011-10-25 2013-08-13 Biomet Sports Medicine, Llc Method and apparatus for interosseous membrane reconstruction
US8968364B2 (en) 2006-02-03 2015-03-03 Biomet Sports Medicine, Llc Method and apparatus for fixation of an ACL graft
US8652172B2 (en) 2006-02-03 2014-02-18 Biomet Sports Medicine, Llc Flexible anchors for tissue fixation
US8992422B2 (en) 2006-03-23 2015-03-31 Ethicon Endo-Surgery, Inc. Robotically-controlled endoscopic accessory channel
US8322455B2 (en) 2006-06-27 2012-12-04 Ethicon Endo-Surgery, Inc. Manually driven surgical cutting and fastening instrument
EP2051646A4 (en) * 2006-08-07 2014-06-11 Howmedica Osteonics Corp Insertion system for implanting a medical device and surgical methods
US20080033487A1 (en) * 2006-08-07 2008-02-07 Bioduct, Llc Medical device for repair of tissue and method for implantation and fixation
US7943218B2 (en) * 2006-08-14 2011-05-17 Frito-Lay North America, Inc. Environmentally-friendly multi-layer flexible film having barrier properties
US20100221560A1 (en) * 2006-08-14 2010-09-02 Frito-Lay North America, Inc. Bio-Based In-Line High Barrier Metalized Film and Process for its Production
US20090061126A1 (en) * 2007-08-31 2009-03-05 Anthony Robert Knoerzer Package and Multi-Layer Flexible Film Having Paper Containing Post Consumer Recycled Fiber
US7951436B2 (en) * 2006-08-14 2011-05-31 Frito-Lay North America, Inc. Environmentally-friendly multi-layer flexible film having barrier properties
US11259794B2 (en) 2006-09-29 2022-03-01 Biomet Sports Medicine, Llc Method for implanting soft tissue
US10568652B2 (en) 2006-09-29 2020-02-25 Ethicon Llc Surgical staples having attached drivers of different heights and stapling instruments for deploying the same
US8672969B2 (en) 2006-09-29 2014-03-18 Biomet Sports Medicine, Llc Fracture fixation device
US8500818B2 (en) 2006-09-29 2013-08-06 Biomet Manufacturing, Llc Knee prosthesis assembly with ligament link
US9918826B2 (en) 2006-09-29 2018-03-20 Biomet Sports Medicine, Llc Scaffold for spring ligament repair
US8361130B2 (en) 2006-10-06 2013-01-29 Depuy Spine, Inc. Bone screw fixation
US11291441B2 (en) 2007-01-10 2022-04-05 Cilag Gmbh International Surgical instrument with wireless communication between control unit and remote sensor
US8684253B2 (en) 2007-01-10 2014-04-01 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between a control unit of a robotic system and remote sensor
US8652120B2 (en) 2007-01-10 2014-02-18 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between control unit and sensor transponders
US8540128B2 (en) 2007-01-11 2013-09-24 Ethicon Endo-Surgery, Inc. Surgical stapling device with a curved end effector
US11039836B2 (en) 2007-01-11 2021-06-22 Cilag Gmbh International Staple cartridge for use with a surgical stapling instrument
US8727197B2 (en) 2007-03-15 2014-05-20 Ethicon Endo-Surgery, Inc. Staple cartridge cavity configuration with cooperative surgical staple
US11857181B2 (en) 2007-06-04 2024-01-02 Cilag Gmbh International Robotically-controlled shaft based rotary drive systems for surgical instruments
US8931682B2 (en) 2007-06-04 2015-01-13 Ethicon Endo-Surgery, Inc. Robotically-controlled shaft based rotary drive systems for surgical instruments
US7753245B2 (en) 2007-06-22 2010-07-13 Ethicon Endo-Surgery, Inc. Surgical stapling instruments
US11849941B2 (en) 2007-06-29 2023-12-26 Cilag Gmbh International Staple cartridge having staple cavities extending at a transverse angle relative to a longitudinal cartridge axis
WO2009011824A1 (en) * 2007-07-13 2009-01-22 The Brigham And Women's Hospital, Inc. System and method for hernia mesh fixation
US8523901B2 (en) 2007-08-14 2013-09-03 Illuminoss Medical, Inc. Apparatus and methods for attaching soft tissue to bone
WO2009039513A1 (en) * 2007-09-20 2009-03-26 Pivot Medical, Inc. Method and apparatus for re-attaching the labrum of a hip joint
US8282675B2 (en) 2008-01-25 2012-10-09 Depuy Spine, Inc. Anti-backout mechanism
US8636736B2 (en) 2008-02-14 2014-01-28 Ethicon Endo-Surgery, Inc. Motorized surgical cutting and fastening instrument
US8573465B2 (en) 2008-02-14 2013-11-05 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical end effector system with rotary actuated closure systems
BRPI0901282A2 (en) 2008-02-14 2009-11-17 Ethicon Endo Surgery Inc surgical cutting and fixation instrument with rf electrodes
US7866527B2 (en) 2008-02-14 2011-01-11 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with interlockable firing system
US9179912B2 (en) 2008-02-14 2015-11-10 Ethicon Endo-Surgery, Inc. Robotically-controlled motorized surgical cutting and fastening instrument
US8758391B2 (en) 2008-02-14 2014-06-24 Ethicon Endo-Surgery, Inc. Interchangeable tools for surgical instruments
US7819298B2 (en) 2008-02-14 2010-10-26 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with control features operable with one hand
US9770245B2 (en) 2008-02-15 2017-09-26 Ethicon Llc Layer arrangements for surgical staple cartridges
US9314237B2 (en) * 2008-05-20 2016-04-19 DePuy Synthes Products, Inc. Knotless suture anchor and receptacle combination
WO2009155577A2 (en) * 2008-06-19 2009-12-23 Synthes Usa, Llc Bone screw purchase augmentation implants, systems and techniques
US8828029B2 (en) 2008-06-30 2014-09-09 Arthrocare Corporation Independent suture tensioning and snaring apparatus
GB2463043B (en) * 2008-08-29 2013-01-30 Avdel Uk Ltd Blind fastener
US9005230B2 (en) 2008-09-23 2015-04-14 Ethicon Endo-Surgery, Inc. Motorized surgical instrument
US9386983B2 (en) 2008-09-23 2016-07-12 Ethicon Endo-Surgery, Llc Robotically-controlled motorized surgical instrument
US11648005B2 (en) 2008-09-23 2023-05-16 Cilag Gmbh International Robotically-controlled motorized surgical instrument with an end effector
US8210411B2 (en) 2008-09-23 2012-07-03 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting instrument
US8608045B2 (en) 2008-10-10 2013-12-17 Ethicon Endo-Sugery, Inc. Powered surgical cutting and stapling apparatus with manually retractable firing system
US20100121355A1 (en) 2008-10-24 2010-05-13 The Foundry, Llc Methods and devices for suture anchor delivery
US8517239B2 (en) 2009-02-05 2013-08-27 Ethicon Endo-Surgery, Inc. Surgical stapling instrument comprising a magnetic element driver
CN102341048A (en) 2009-02-06 2012-02-01 伊西康内外科公司 Driven surgical stapler improvements
US20100211174A1 (en) * 2009-02-19 2010-08-19 Tyco Healthcare Group Lp Method For Repairing A Rotator Cuff
US20100217330A1 (en) * 2009-02-24 2010-08-26 Phan Christopher U Bone fixation devices and methods
US20100292731A1 (en) 2009-05-12 2010-11-18 Foundry Newco Xl, Inc. Methods and devices to treat diseased or injured musculoskeletal tissue
WO2010132309A1 (en) 2009-05-12 2010-11-18 Foundry Newco Xi, Inc. Knotless suture anchor and methods of use
US8343227B2 (en) 2009-05-28 2013-01-01 Biomet Manufacturing Corp. Knee prosthesis assembly with ligament link
US10058319B2 (en) 2009-07-17 2018-08-28 Pivot Medical, Inc. Method and apparatus for attaching tissue to bone, including the provision and use of a novel knotless suture anchor system, including a novel locking element
US11197663B2 (en) 2009-07-17 2021-12-14 Stryker Puerto Rico Limited Method and apparatus for attaching tissue to bone, including the provision and use of a novel knotless suture anchor system
US9149268B2 (en) 2009-07-17 2015-10-06 Pivot Medical, Inc. Method and apparatus for attaching tissue to bone, including the provision and use of a novel knotless suture anchor system
US9101355B2 (en) 2009-07-17 2015-08-11 Pivot Medical, Inc. Method and apparatus for re-attaching the labrum to the acetabulum, including the provision and use of a novel suture anchor system
US11246585B2 (en) 2009-07-17 2022-02-15 Stryker Puerto Rico Limited Method and apparatus for attaching tissue to bone, including the provision and use of a novel knotless suture anchor system
US10426456B2 (en) 2009-07-17 2019-10-01 Pivot Medical, Inc. Method and apparatus for re-attaching the labrum to the acetabulum, including the provision and use of a novel suture anchor system
US10136884B2 (en) 2009-07-17 2018-11-27 Pivot Medical, Inc. Method and apparatus for attaching tissue to bone, including the provision and use of a novel knotless suture anchor system, including a retractable sheath
US10238379B2 (en) 2009-07-17 2019-03-26 Pivot Medical, Inc. Method and apparatus for attaching tissue to bone, including the provision and use of a novel knotless suture anchor system
US9179905B2 (en) 2009-07-17 2015-11-10 Pivot Medical, Inc. Method and apparatus for re-attaching the labrum to the acetabulum, including the provision and use of a novel suture anchor system
US8851354B2 (en) 2009-12-24 2014-10-07 Ethicon Endo-Surgery, Inc. Surgical cutting instrument that analyzes tissue thickness
US8220688B2 (en) 2009-12-24 2012-07-17 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting instrument with electric actuator directional control assembly
US20110200844A1 (en) * 2010-02-17 2011-08-18 Frito-Lay North America, Inc. Composition for facilitating environmental degradation of a film
WO2011150180A2 (en) 2010-05-26 2011-12-01 Orbis Medical Group Llc Implantable prostheses
US8783543B2 (en) 2010-07-30 2014-07-22 Ethicon Endo-Surgery, Inc. Tissue acquisition arrangements and methods for surgical stapling devices
US11849952B2 (en) 2010-09-30 2023-12-26 Cilag Gmbh International Staple cartridge comprising staples positioned within a compressible portion thereof
US11812965B2 (en) 2010-09-30 2023-11-14 Cilag Gmbh International Layer of material for a surgical end effector
US9629814B2 (en) 2010-09-30 2017-04-25 Ethicon Endo-Surgery, Llc Tissue thickness compensator configured to redistribute compressive forces
US9016542B2 (en) 2010-09-30 2015-04-28 Ethicon Endo-Surgery, Inc. Staple cartridge comprising compressible distortion resistant components
US9282962B2 (en) 2010-09-30 2016-03-15 Ethicon Endo-Surgery, Llc Adhesive film laminate
US10945731B2 (en) 2010-09-30 2021-03-16 Ethicon Llc Tissue thickness compensator comprising controlled release and expansion
US9211120B2 (en) 2011-04-29 2015-12-15 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising a plurality of medicaments
US11298125B2 (en) 2010-09-30 2022-04-12 Cilag Gmbh International Tissue stapler having a thickness compensator
US9386988B2 (en) 2010-09-30 2016-07-12 Ethicon End-Surgery, LLC Retainer assembly including a tissue thickness compensator
US8695866B2 (en) 2010-10-01 2014-04-15 Ethicon Endo-Surgery, Inc. Surgical instrument having a power control circuit
US9138219B2 (en) 2010-12-29 2015-09-22 Tarsus Medical Inc. Methods and devices for treating a syndesmosis injury
US20140128983A1 (en) * 2011-03-14 2014-05-08 Topsfield Medical Gmbh Implantable glenoid prostheses
US9161749B2 (en) 2011-04-14 2015-10-20 Neotract, Inc. Method and apparatus for treating sexual dysfunction
CA2834649C (en) 2011-04-29 2021-02-16 Ethicon Endo-Surgery, Inc. Staple cartridge comprising staples positioned within a compressible portion thereof
US11207064B2 (en) 2011-05-27 2021-12-28 Cilag Gmbh International Automated end effector component reloading system for use with a robotic system
US9072535B2 (en) 2011-05-27 2015-07-07 Ethicon Endo-Surgery, Inc. Surgical stapling instruments with rotatable staple deployment arrangements
US9040120B2 (en) 2011-08-05 2015-05-26 Frito-Lay North America, Inc. Inorganic nanocoating primed organic film
US9188142B2 (en) * 2011-08-18 2015-11-17 Empire Technology Development Hinged arm mechanically activated fastener
US9357991B2 (en) 2011-11-03 2016-06-07 Biomet Sports Medicine, Llc Method and apparatus for stitching tendons
US9381013B2 (en) 2011-11-10 2016-07-05 Biomet Sports Medicine, Llc Method for coupling soft tissue to a bone
US9357992B2 (en) 2011-11-10 2016-06-07 Biomet Sports Medicine, Llc Method for coupling soft tissue to a bone
US9370350B2 (en) 2011-11-10 2016-06-21 Biomet Sports Medicine, Llc Apparatus for coupling soft tissue to a bone
US9554914B2 (en) * 2011-12-12 2017-01-31 Wright Medical Technology, Inc. Fusion implant
US9259217B2 (en) 2012-01-03 2016-02-16 Biomet Manufacturing, Llc Suture Button
US9044230B2 (en) 2012-02-13 2015-06-02 Ethicon Endo-Surgery, Inc. Surgical cutting and fastening instrument with apparatus for determining cartridge and firing motion status
US9717603B2 (en) * 2012-02-17 2017-08-01 Timothy T. DAVIS Implantable facet fusion devices
US9084597B2 (en) 2012-03-09 2015-07-21 Smith & Nephew, Inc. Suture-based knotless repair
US9267011B2 (en) 2012-03-20 2016-02-23 Frito-Lay North America, Inc. Composition and method for making a cavitated bio-based film
CN104379068B (en) 2012-03-28 2017-09-22 伊西康内外科公司 Holding device assembly including tissue thickness compensation part
BR112014024098B1 (en) 2012-03-28 2021-05-25 Ethicon Endo-Surgery, Inc. staple cartridge
BR112014024102B1 (en) 2012-03-28 2022-03-03 Ethicon Endo-Surgery, Inc CLAMP CARTRIDGE ASSEMBLY FOR A SURGICAL INSTRUMENT AND END ACTUATOR ASSEMBLY FOR A SURGICAL INSTRUMENT
US10292801B2 (en) 2012-03-29 2019-05-21 Neotract, Inc. System for delivering anchors for treating incontinence
US9162421B2 (en) 2012-04-25 2015-10-20 Frito-Lay North America, Inc. Film with compostable heat seal layer
US9101358B2 (en) 2012-06-15 2015-08-11 Ethicon Endo-Surgery, Inc. Articulatable surgical instrument comprising a firing drive
BR112014029751A2 (en) 2012-06-23 2017-06-27 Frito Lay North America Inc deposition of ultrafine inorganic oxide coatings in packaging
US20140001231A1 (en) 2012-06-28 2014-01-02 Ethicon Endo-Surgery, Inc. Firing system lockout arrangements for surgical instruments
US9289256B2 (en) 2012-06-28 2016-03-22 Ethicon Endo-Surgery, Llc Surgical end effectors having angled tissue-contacting surfaces
US11278284B2 (en) 2012-06-28 2022-03-22 Cilag Gmbh International Rotary drive arrangements for surgical instruments
US9204879B2 (en) 2012-06-28 2015-12-08 Ethicon Endo-Surgery, Inc. Flexible drive member
BR112014032776B1 (en) 2012-06-28 2021-09-08 Ethicon Endo-Surgery, Inc SURGICAL INSTRUMENT SYSTEM AND SURGICAL KIT FOR USE WITH A SURGICAL INSTRUMENT SYSTEM
US9226751B2 (en) 2012-06-28 2016-01-05 Ethicon Endo-Surgery, Inc. Surgical instrument system including replaceable end effectors
JP6290201B2 (en) 2012-06-28 2018-03-07 エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. Lockout for empty clip cartridge
US9282974B2 (en) 2012-06-28 2016-03-15 Ethicon Endo-Surgery, Llc Empty clip cartridge lockout
US10130353B2 (en) 2012-06-29 2018-11-20 Neotract, Inc. Flexible system for delivering an anchor
US9149980B2 (en) 2012-08-02 2015-10-06 Frito-Lay North America, Inc. Ultrasonic sealing of packages
US9090021B2 (en) 2012-08-02 2015-07-28 Frito-Lay North America, Inc. Ultrasonic sealing of packages
WO2014134102A2 (en) * 2013-02-26 2014-09-04 Smith & Nephew, Inc. Flexible deformable suture anchor
JP6345707B2 (en) 2013-03-01 2018-06-20 エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. Surgical instrument with soft stop
JP6382235B2 (en) 2013-03-01 2018-08-29 エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. Articulatable surgical instrument with a conductive path for signal communication
US9757119B2 (en) 2013-03-08 2017-09-12 Biomet Sports Medicine, Llc Visual aid for identifying suture limbs arthroscopically
US9332987B2 (en) 2013-03-14 2016-05-10 Ethicon Endo-Surgery, Llc Control arrangements for a drive member of a surgical instrument
US9629629B2 (en) 2013-03-14 2017-04-25 Ethicon Endo-Surgey, LLC Control systems for surgical instruments
US9918827B2 (en) 2013-03-14 2018-03-20 Biomet Sports Medicine, Llc Scaffold for spring ligament repair
US20140371786A1 (en) * 2013-04-14 2014-12-18 Calore Medical Ltd. Expandable medical anchor device formed of cut metal tube
BR112015026109B1 (en) 2013-04-16 2022-02-22 Ethicon Endo-Surgery, Inc surgical instrument
US9844368B2 (en) 2013-04-16 2017-12-19 Ethicon Llc Surgical system comprising first and second drive systems
US10292694B2 (en) 2013-04-22 2019-05-21 Pivot Medical, Inc. Method and apparatus for attaching tissue to bone
US9936940B2 (en) 2013-06-07 2018-04-10 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to bone
JP6416260B2 (en) 2013-08-23 2018-10-31 エシコン エルエルシー Firing member retractor for a powered surgical instrument
US20150053746A1 (en) 2013-08-23 2015-02-26 Ethicon Endo-Surgery, Inc. Torque optimization for surgical instruments
KR101516357B1 (en) * 2013-11-14 2015-05-04 충북대학교 산학협력단 Self piercing rivet
AU2014362199B2 (en) 2013-12-12 2019-07-11 Stryker Puerto Rico Limited Method and apparatus for attaching tissue to bone, including the provision and use of a novel knotless suture anchor system
US10136886B2 (en) 2013-12-20 2018-11-27 Biomet Sports Medicine, Llc Knotless soft tissue devices and techniques
US9980715B2 (en) * 2014-02-05 2018-05-29 Trinity Orthopedics, Llc Anchor devices and methods of use
US9962161B2 (en) 2014-02-12 2018-05-08 Ethicon Llc Deliverable surgical instrument
US10004497B2 (en) 2014-03-26 2018-06-26 Ethicon Llc Interface systems for use with surgical instruments
BR112016021943B1 (en) 2014-03-26 2022-06-14 Ethicon Endo-Surgery, Llc SURGICAL INSTRUMENT FOR USE BY AN OPERATOR IN A SURGICAL PROCEDURE
US9733663B2 (en) 2014-03-26 2017-08-15 Ethicon Llc Power management through segmented circuit and variable voltage protection
US10327764B2 (en) 2014-09-26 2019-06-25 Ethicon Llc Method for creating a flexible staple line
US10561422B2 (en) 2014-04-16 2020-02-18 Ethicon Llc Fastener cartridge comprising deployable tissue engaging members
BR112016023825B1 (en) 2014-04-16 2022-08-02 Ethicon Endo-Surgery, Llc STAPLE CARTRIDGE FOR USE WITH A SURGICAL STAPLER AND STAPLE CARTRIDGE FOR USE WITH A SURGICAL INSTRUMENT
US20150297223A1 (en) 2014-04-16 2015-10-22 Ethicon Endo-Surgery, Inc. Fastener cartridges including extensions having different configurations
JP6636452B2 (en) 2014-04-16 2020-01-29 エシコン エルエルシーEthicon LLC Fastener cartridge including extension having different configurations
JP6532889B2 (en) 2014-04-16 2019-06-19 エシコン エルエルシーEthicon LLC Fastener cartridge assembly and staple holder cover arrangement
US9615822B2 (en) 2014-05-30 2017-04-11 Biomet Sports Medicine, Llc Insertion tools and method for soft anchor
US9700291B2 (en) 2014-06-03 2017-07-11 Biomet Sports Medicine, Llc Capsule retractor
US10039543B2 (en) 2014-08-22 2018-08-07 Biomet Sports Medicine, Llc Non-sliding soft anchor
BR112017004361B1 (en) 2014-09-05 2023-04-11 Ethicon Llc ELECTRONIC SYSTEM FOR A SURGICAL INSTRUMENT
US10111679B2 (en) 2014-09-05 2018-10-30 Ethicon Llc Circuitry and sensors for powered medical device
US11311294B2 (en) 2014-09-05 2022-04-26 Cilag Gmbh International Powered medical device including measurement of closure state of jaws
US10105142B2 (en) 2014-09-18 2018-10-23 Ethicon Llc Surgical stapler with plurality of cutting elements
JP6648119B2 (en) 2014-09-26 2020-02-14 エシコン エルエルシーEthicon LLC Surgical stapling buttress and accessory materials
US11523821B2 (en) 2014-09-26 2022-12-13 Cilag Gmbh International Method for creating a flexible staple line
US10076325B2 (en) 2014-10-13 2018-09-18 Ethicon Llc Surgical stapling apparatus comprising a tissue stop
US9924944B2 (en) 2014-10-16 2018-03-27 Ethicon Llc Staple cartridge comprising an adjunct material
US10517594B2 (en) 2014-10-29 2019-12-31 Ethicon Llc Cartridge assemblies for surgical staplers
US11141153B2 (en) 2014-10-29 2021-10-12 Cilag Gmbh International Staple cartridges comprising driver arrangements
US9844376B2 (en) 2014-11-06 2017-12-19 Ethicon Llc Staple cartridge comprising a releasable adjunct material
US10736636B2 (en) 2014-12-10 2020-08-11 Ethicon Llc Articulatable surgical instrument system
MX2017008108A (en) 2014-12-18 2018-03-06 Ethicon Llc Surgical instrument with an anvil that is selectively movable about a discrete non-movable axis relative to a staple cartridge.
US10004501B2 (en) 2014-12-18 2018-06-26 Ethicon Llc Surgical instruments with improved closure arrangements
US9987000B2 (en) 2014-12-18 2018-06-05 Ethicon Llc Surgical instrument assembly comprising a flexible articulation system
US9844374B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Surgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member
US10085748B2 (en) 2014-12-18 2018-10-02 Ethicon Llc Locking arrangements for detachable shaft assemblies with articulatable surgical end effectors
US9844375B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Drive arrangements for articulatable surgical instruments
US9955980B2 (en) 2015-02-24 2018-05-01 Biomet Sports Medicine, Llc Anatomic soft tissue repair
US11154301B2 (en) 2015-02-27 2021-10-26 Cilag Gmbh International Modular stapling assembly
US10245033B2 (en) 2015-03-06 2019-04-02 Ethicon Llc Surgical instrument comprising a lockable battery housing
US10687806B2 (en) 2015-03-06 2020-06-23 Ethicon Llc Adaptive tissue compression techniques to adjust closure rates for multiple tissue types
US10617412B2 (en) 2015-03-06 2020-04-14 Ethicon Llc System for detecting the mis-insertion of a staple cartridge into a surgical stapler
US10441279B2 (en) 2015-03-06 2019-10-15 Ethicon Llc Multiple level thresholds to modify operation of powered surgical instruments
JP2020121162A (en) 2015-03-06 2020-08-13 エシコン エルエルシーEthicon LLC Time dependent evaluation of sensor data to determine stability element, creep element and viscoelastic element of measurement
US9924961B2 (en) 2015-03-06 2018-03-27 Ethicon Endo-Surgery, Llc Interactive feedback system for powered surgical instruments
US9993248B2 (en) 2015-03-06 2018-06-12 Ethicon Endo-Surgery, Llc Smart sensors with local signal processing
US9901342B2 (en) 2015-03-06 2018-02-27 Ethicon Endo-Surgery, Llc Signal and power communication system positioned on a rotatable shaft
US10548504B2 (en) 2015-03-06 2020-02-04 Ethicon Llc Overlaid multi sensor radio frequency (RF) electrode system to measure tissue compression
WO2016160445A1 (en) * 2015-03-23 2016-10-06 Conmed Corporation Securing graft tissue in a bone tunnel and implementations thereof
US10213201B2 (en) 2015-03-31 2019-02-26 Ethicon Llc Stapling end effector configured to compensate for an uneven gap between a first jaw and a second jaw
US9974534B2 (en) 2015-03-31 2018-05-22 Biomet Sports Medicine, Llc Suture anchor with soft anchor of electrospun fibers
US11058425B2 (en) 2015-08-17 2021-07-13 Ethicon Llc Implantable layers for a surgical instrument
US10238386B2 (en) 2015-09-23 2019-03-26 Ethicon Llc Surgical stapler having motor control based on an electrical parameter related to a motor current
US10105139B2 (en) 2015-09-23 2018-10-23 Ethicon Llc Surgical stapler having downstream current-based motor control
US10299878B2 (en) 2015-09-25 2019-05-28 Ethicon Llc Implantable adjunct systems for determining adjunct skew
US10980539B2 (en) 2015-09-30 2021-04-20 Ethicon Llc Implantable adjunct comprising bonded layers
US10327777B2 (en) 2015-09-30 2019-06-25 Ethicon Llc Implantable layer comprising plastically deformed fibers
US10285699B2 (en) 2015-09-30 2019-05-14 Ethicon Llc Compressible adjunct
US11890015B2 (en) 2015-09-30 2024-02-06 Cilag Gmbh International Compressible adjunct with crossing spacer fibers
US10292704B2 (en) 2015-12-30 2019-05-21 Ethicon Llc Mechanisms for compensating for battery pack failure in powered surgical instruments
US10368865B2 (en) 2015-12-30 2019-08-06 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10265068B2 (en) 2015-12-30 2019-04-23 Ethicon Llc Surgical instruments with separable motors and motor control circuits
BR112018016098B1 (en) 2016-02-09 2023-02-23 Ethicon Llc SURGICAL INSTRUMENT
US11213293B2 (en) 2016-02-09 2022-01-04 Cilag Gmbh International Articulatable surgical instruments with single articulation link arrangements
US20170224332A1 (en) 2016-02-09 2017-08-10 Ethicon Endo-Surgery, Llc Surgical instruments with non-symmetrical articulation arrangements
US11224426B2 (en) 2016-02-12 2022-01-18 Cilag Gmbh International Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10448948B2 (en) 2016-02-12 2019-10-22 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10617413B2 (en) 2016-04-01 2020-04-14 Ethicon Llc Closure system arrangements for surgical cutting and stapling devices with separate and distinct firing shafts
US10828028B2 (en) 2016-04-15 2020-11-10 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US10456137B2 (en) 2016-04-15 2019-10-29 Ethicon Llc Staple formation detection mechanisms
US10492783B2 (en) 2016-04-15 2019-12-03 Ethicon, Llc Surgical instrument with improved stop/start control during a firing motion
US10357247B2 (en) 2016-04-15 2019-07-23 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US11607239B2 (en) 2016-04-15 2023-03-21 Cilag Gmbh International Systems and methods for controlling a surgical stapling and cutting instrument
US11179150B2 (en) 2016-04-15 2021-11-23 Cilag Gmbh International Systems and methods for controlling a surgical stapling and cutting instrument
US10335145B2 (en) 2016-04-15 2019-07-02 Ethicon Llc Modular surgical instrument with configurable operating mode
US10426467B2 (en) 2016-04-15 2019-10-01 Ethicon Llc Surgical instrument with detection sensors
US20170296173A1 (en) 2016-04-18 2017-10-19 Ethicon Endo-Surgery, Llc Method for operating a surgical instrument
US10368867B2 (en) 2016-04-18 2019-08-06 Ethicon Llc Surgical instrument comprising a lockout
US11317917B2 (en) 2016-04-18 2022-05-03 Cilag Gmbh International Surgical stapling system comprising a lockable firing assembly
US10959727B2 (en) 2016-12-21 2021-03-30 Ethicon Llc Articulatable surgical end effector with asymmetric shaft arrangement
CN110099619B (en) 2016-12-21 2022-07-15 爱惜康有限责任公司 Lockout device for surgical end effector and replaceable tool assembly
US10888322B2 (en) 2016-12-21 2021-01-12 Ethicon Llc Surgical instrument comprising a cutting member
MX2019007311A (en) 2016-12-21 2019-11-18 Ethicon Llc Surgical stapling systems.
US11090048B2 (en) 2016-12-21 2021-08-17 Cilag Gmbh International Method for resetting a fuse of a surgical instrument shaft
US10856868B2 (en) 2016-12-21 2020-12-08 Ethicon Llc Firing member pin configurations
US10682138B2 (en) 2016-12-21 2020-06-16 Ethicon Llc Bilaterally asymmetric staple forming pocket pairs
US10568624B2 (en) 2016-12-21 2020-02-25 Ethicon Llc Surgical instruments with jaws that are pivotable about a fixed axis and include separate and distinct closure and firing systems
US20180168615A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Method of deforming staples from two different types of staple cartridges with the same surgical stapling instrument
US10695055B2 (en) 2016-12-21 2020-06-30 Ethicon Llc Firing assembly comprising a lockout
US11419606B2 (en) 2016-12-21 2022-08-23 Cilag Gmbh International Shaft assembly comprising a clutch configured to adapt the output of a rotary firing member to two different systems
JP7010956B2 (en) 2016-12-21 2022-01-26 エシコン エルエルシー How to staple tissue
US10918385B2 (en) 2016-12-21 2021-02-16 Ethicon Llc Surgical system comprising a firing member rotatable into an articulation state to articulate an end effector of the surgical system
US20180168625A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Surgical stapling instruments with smart staple cartridges
US20180168633A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Surgical stapling instruments and staple-forming anvils
US10588631B2 (en) 2016-12-21 2020-03-17 Ethicon Llc Surgical instruments with positive jaw opening features
US10973516B2 (en) 2016-12-21 2021-04-13 Ethicon Llc Surgical end effectors and adaptable firing members therefor
US11134942B2 (en) 2016-12-21 2021-10-05 Cilag Gmbh International Surgical stapling instruments and staple-forming anvils
US10881399B2 (en) 2017-06-20 2021-01-05 Ethicon Llc Techniques for adaptive control of motor velocity of a surgical stapling and cutting instrument
US11517325B2 (en) 2017-06-20 2022-12-06 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured displacement distance traveled over a specified time interval
USD879809S1 (en) 2017-06-20 2020-03-31 Ethicon Llc Display panel with changeable graphical user interface
US11090046B2 (en) 2017-06-20 2021-08-17 Cilag Gmbh International Systems and methods for controlling displacement member motion of a surgical stapling and cutting instrument
US10624633B2 (en) 2017-06-20 2020-04-21 Ethicon Llc Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument
US10888321B2 (en) 2017-06-20 2021-01-12 Ethicon Llc Systems and methods for controlling velocity of a displacement member of a surgical stapling and cutting instrument
US10813639B2 (en) 2017-06-20 2020-10-27 Ethicon Llc Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on system conditions
USD890784S1 (en) 2017-06-20 2020-07-21 Ethicon Llc Display panel with changeable graphical user interface
US10646220B2 (en) 2017-06-20 2020-05-12 Ethicon Llc Systems and methods for controlling displacement member velocity for a surgical instrument
US10980537B2 (en) 2017-06-20 2021-04-20 Ethicon Llc Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified number of shaft rotations
US11382638B2 (en) 2017-06-20 2022-07-12 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified displacement distance
US10881396B2 (en) 2017-06-20 2021-01-05 Ethicon Llc Surgical instrument with variable duration trigger arrangement
USD879808S1 (en) 2017-06-20 2020-03-31 Ethicon Llc Display panel with graphical user interface
US11653914B2 (en) 2017-06-20 2023-05-23 Cilag Gmbh International Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument according to articulation angle of end effector
US10307170B2 (en) 2017-06-20 2019-06-04 Ethicon Llc Method for closed loop control of motor velocity of a surgical stapling and cutting instrument
US11071554B2 (en) 2017-06-20 2021-07-27 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on magnitude of velocity error measurements
US10779820B2 (en) 2017-06-20 2020-09-22 Ethicon Llc Systems and methods for controlling motor speed according to user input for a surgical instrument
US11324503B2 (en) 2017-06-27 2022-05-10 Cilag Gmbh International Surgical firing member arrangements
US10993716B2 (en) 2017-06-27 2021-05-04 Ethicon Llc Surgical anvil arrangements
US10772629B2 (en) 2017-06-27 2020-09-15 Ethicon Llc Surgical anvil arrangements
US20180368844A1 (en) 2017-06-27 2018-12-27 Ethicon Llc Staple forming pocket arrangements
US11266405B2 (en) 2017-06-27 2022-03-08 Cilag Gmbh International Surgical anvil manufacturing methods
US10856869B2 (en) 2017-06-27 2020-12-08 Ethicon Llc Surgical anvil arrangements
US11259805B2 (en) 2017-06-28 2022-03-01 Cilag Gmbh International Surgical instrument comprising firing member supports
EP3420947B1 (en) 2017-06-28 2022-05-25 Cilag GmbH International Surgical instrument comprising selectively actuatable rotatable couplers
USD906355S1 (en) 2017-06-28 2020-12-29 Ethicon Llc Display screen or portion thereof with a graphical user interface for a surgical instrument
US10765427B2 (en) 2017-06-28 2020-09-08 Ethicon Llc Method for articulating a surgical instrument
US10716614B2 (en) 2017-06-28 2020-07-21 Ethicon Llc Surgical shaft assemblies with slip ring assemblies with increased contact pressure
US11564686B2 (en) 2017-06-28 2023-01-31 Cilag Gmbh International Surgical shaft assemblies with flexible interfaces
US11246592B2 (en) 2017-06-28 2022-02-15 Cilag Gmbh International Surgical instrument comprising an articulation system lockable to a frame
US10903685B2 (en) 2017-06-28 2021-01-26 Ethicon Llc Surgical shaft assemblies with slip ring assemblies forming capacitive channels
US11478242B2 (en) 2017-06-28 2022-10-25 Cilag Gmbh International Jaw retainer arrangement for retaining a pivotable surgical instrument jaw in pivotable retaining engagement with a second surgical instrument jaw
US11484310B2 (en) 2017-06-28 2022-11-01 Cilag Gmbh International Surgical instrument comprising a shaft including a closure tube profile
US10932772B2 (en) 2017-06-29 2021-03-02 Ethicon Llc Methods for closed loop velocity control for robotic surgical instrument
US10898183B2 (en) 2017-06-29 2021-01-26 Ethicon Llc Robotic surgical instrument with closed loop feedback techniques for advancement of closure member during firing
US11007022B2 (en) 2017-06-29 2021-05-18 Ethicon Llc Closed loop velocity control techniques based on sensed tissue parameters for robotic surgical instrument
US11944300B2 (en) 2017-08-03 2024-04-02 Cilag Gmbh International Method for operating a surgical system bailout
US11304695B2 (en) 2017-08-03 2022-04-19 Cilag Gmbh International Surgical system shaft interconnection
US11471155B2 (en) 2017-08-03 2022-10-18 Cilag Gmbh International Surgical system bailout
US10172656B1 (en) * 2017-09-15 2019-01-08 Alphatec Spine, Inc. Surgical screw
USD907647S1 (en) 2017-09-29 2021-01-12 Ethicon Llc Display screen or portion thereof with animated graphical user interface
US10765429B2 (en) 2017-09-29 2020-09-08 Ethicon Llc Systems and methods for providing alerts according to the operational state of a surgical instrument
US11399829B2 (en) 2017-09-29 2022-08-02 Cilag Gmbh International Systems and methods of initiating a power shutdown mode for a surgical instrument
USD907648S1 (en) 2017-09-29 2021-01-12 Ethicon Llc Display screen or portion thereof with animated graphical user interface
US10743872B2 (en) 2017-09-29 2020-08-18 Ethicon Llc System and methods for controlling a display of a surgical instrument
US10729501B2 (en) 2017-09-29 2020-08-04 Ethicon Llc Systems and methods for language selection of a surgical instrument
USD917500S1 (en) 2017-09-29 2021-04-27 Ethicon Llc Display screen or portion thereof with graphical user interface
US11134944B2 (en) 2017-10-30 2021-10-05 Cilag Gmbh International Surgical stapler knife motion controls
US11090075B2 (en) 2017-10-30 2021-08-17 Cilag Gmbh International Articulation features for surgical end effector
US10842490B2 (en) 2017-10-31 2020-11-24 Ethicon Llc Cartridge body design with force reduction based on firing completion
US10779903B2 (en) 2017-10-31 2020-09-22 Ethicon Llc Positive shaft rotation lock activated by jaw closure
US11033267B2 (en) 2017-12-15 2021-06-15 Ethicon Llc Systems and methods of controlling a clamping member firing rate of a surgical instrument
US10779825B2 (en) 2017-12-15 2020-09-22 Ethicon Llc Adapters with end effector position sensing and control arrangements for use in connection with electromechanical surgical instruments
US10869666B2 (en) 2017-12-15 2020-12-22 Ethicon Llc Adapters with control systems for controlling multiple motors of an electromechanical surgical instrument
US10966718B2 (en) 2017-12-15 2021-04-06 Ethicon Llc Dynamic clamping assemblies with improved wear characteristics for use in connection with electromechanical surgical instruments
US11071543B2 (en) 2017-12-15 2021-07-27 Cilag Gmbh International Surgical end effectors with clamping assemblies configured to increase jaw aperture ranges
US11006955B2 (en) 2017-12-15 2021-05-18 Ethicon Llc End effectors with positive jaw opening features for use with adapters for electromechanical surgical instruments
US10743874B2 (en) 2017-12-15 2020-08-18 Ethicon Llc Sealed adapters for use with electromechanical surgical instruments
US10687813B2 (en) 2017-12-15 2020-06-23 Ethicon Llc Adapters with firing stroke sensing arrangements for use in connection with electromechanical surgical instruments
US10828033B2 (en) 2017-12-15 2020-11-10 Ethicon Llc Handheld electromechanical surgical instruments with improved motor control arrangements for positioning components of an adapter coupled thereto
US10779826B2 (en) 2017-12-15 2020-09-22 Ethicon Llc Methods of operating surgical end effectors
US10743875B2 (en) 2017-12-15 2020-08-18 Ethicon Llc Surgical end effectors with jaw stiffener arrangements configured to permit monitoring of firing member
US11197670B2 (en) 2017-12-15 2021-12-14 Cilag Gmbh International Surgical end effectors with pivotal jaws configured to touch at their respective distal ends when fully closed
US11045270B2 (en) 2017-12-19 2021-06-29 Cilag Gmbh International Robotic attachment comprising exterior drive actuator
US11020112B2 (en) 2017-12-19 2021-06-01 Ethicon Llc Surgical tools configured for interchangeable use with different controller interfaces
US10716565B2 (en) 2017-12-19 2020-07-21 Ethicon Llc Surgical instruments with dual articulation drivers
US10835330B2 (en) 2017-12-19 2020-11-17 Ethicon Llc Method for determining the position of a rotatable jaw of a surgical instrument attachment assembly
US10729509B2 (en) 2017-12-19 2020-08-04 Ethicon Llc Surgical instrument comprising closure and firing locking mechanism
USD910847S1 (en) 2017-12-19 2021-02-16 Ethicon Llc Surgical instrument assembly
US11129680B2 (en) 2017-12-21 2021-09-28 Cilag Gmbh International Surgical instrument comprising a projector
US11179152B2 (en) 2017-12-21 2021-11-23 Cilag Gmbh International Surgical instrument comprising a tissue grasping system
US11076853B2 (en) 2017-12-21 2021-08-03 Cilag Gmbh International Systems and methods of displaying a knife position during transection for a surgical instrument
US11311290B2 (en) 2017-12-21 2022-04-26 Cilag Gmbh International Surgical instrument comprising an end effector dampener
WO2019126718A1 (en) 2017-12-23 2019-06-27 Neotract, Inc. Expandable tissue engagement apparatus and method
US11253256B2 (en) 2018-08-20 2022-02-22 Cilag Gmbh International Articulatable motor powered surgical instruments with dedicated articulation motor arrangements
US10842492B2 (en) 2018-08-20 2020-11-24 Ethicon Llc Powered articulatable surgical instruments with clutching and locking arrangements for linking an articulation drive system to a firing drive system
US11324501B2 (en) 2018-08-20 2022-05-10 Cilag Gmbh International Surgical stapling devices with improved closure members
USD914878S1 (en) 2018-08-20 2021-03-30 Ethicon Llc Surgical instrument anvil
US11083458B2 (en) 2018-08-20 2021-08-10 Cilag Gmbh International Powered surgical instruments with clutching arrangements to convert linear drive motions to rotary drive motions
US11039834B2 (en) 2018-08-20 2021-06-22 Cilag Gmbh International Surgical stapler anvils with staple directing protrusions and tissue stability features
US10779821B2 (en) 2018-08-20 2020-09-22 Ethicon Llc Surgical stapler anvils with tissue stop features configured to avoid tissue pinch
US10912559B2 (en) 2018-08-20 2021-02-09 Ethicon Llc Reinforced deformable anvil tip for surgical stapler anvil
US11291440B2 (en) 2018-08-20 2022-04-05 Cilag Gmbh International Method for operating a powered articulatable surgical instrument
US10856870B2 (en) 2018-08-20 2020-12-08 Ethicon Llc Switching arrangements for motor powered articulatable surgical instruments
US11045192B2 (en) 2018-08-20 2021-06-29 Cilag Gmbh International Fabricating techniques for surgical stapler anvils
US11207065B2 (en) 2018-08-20 2021-12-28 Cilag Gmbh International Method for fabricating surgical stapler anvils
US11147551B2 (en) 2019-03-25 2021-10-19 Cilag Gmbh International Firing drive arrangements for surgical systems
US11172929B2 (en) 2019-03-25 2021-11-16 Cilag Gmbh International Articulation drive arrangements for surgical systems
US11696761B2 (en) 2019-03-25 2023-07-11 Cilag Gmbh International Firing drive arrangements for surgical systems
US11147553B2 (en) 2019-03-25 2021-10-19 Cilag Gmbh International Firing drive arrangements for surgical systems
US11903581B2 (en) 2019-04-30 2024-02-20 Cilag Gmbh International Methods for stapling tissue using a surgical instrument
US11432816B2 (en) 2019-04-30 2022-09-06 Cilag Gmbh International Articulation pin for a surgical instrument
US11452528B2 (en) 2019-04-30 2022-09-27 Cilag Gmbh International Articulation actuators for a surgical instrument
US11253254B2 (en) 2019-04-30 2022-02-22 Cilag Gmbh International Shaft rotation actuator on a surgical instrument
US11426251B2 (en) 2019-04-30 2022-08-30 Cilag Gmbh International Articulation directional lights on a surgical instrument
US11471157B2 (en) 2019-04-30 2022-10-18 Cilag Gmbh International Articulation control mapping for a surgical instrument
US11648009B2 (en) 2019-04-30 2023-05-16 Cilag Gmbh International Rotatable jaw tip for a surgical instrument
US11660163B2 (en) 2019-06-28 2023-05-30 Cilag Gmbh International Surgical system with RFID tags for updating motor assembly parameters
US11224497B2 (en) 2019-06-28 2022-01-18 Cilag Gmbh International Surgical systems with multiple RFID tags
US11638587B2 (en) 2019-06-28 2023-05-02 Cilag Gmbh International RFID identification systems for surgical instruments
US11684434B2 (en) 2019-06-28 2023-06-27 Cilag Gmbh International Surgical RFID assemblies for instrument operational setting control
US11627959B2 (en) 2019-06-28 2023-04-18 Cilag Gmbh International Surgical instruments including manual and powered system lockouts
US11553971B2 (en) 2019-06-28 2023-01-17 Cilag Gmbh International Surgical RFID assemblies for display and communication
US11478241B2 (en) 2019-06-28 2022-10-25 Cilag Gmbh International Staple cartridge including projections
US11350938B2 (en) 2019-06-28 2022-06-07 Cilag Gmbh International Surgical instrument comprising an aligned rfid sensor
US11399837B2 (en) 2019-06-28 2022-08-02 Cilag Gmbh International Mechanisms for motor control adjustments of a motorized surgical instrument
US11771419B2 (en) 2019-06-28 2023-10-03 Cilag Gmbh International Packaging for a replaceable component of a surgical stapling system
US11298132B2 (en) 2019-06-28 2022-04-12 Cilag GmbH Inlernational Staple cartridge including a honeycomb extension
US11464601B2 (en) 2019-06-28 2022-10-11 Cilag Gmbh International Surgical instrument comprising an RFID system for tracking a movable component
US11051807B2 (en) 2019-06-28 2021-07-06 Cilag Gmbh International Packaging assembly including a particulate trap
US11291451B2 (en) 2019-06-28 2022-04-05 Cilag Gmbh International Surgical instrument with battery compatibility verification functionality
US11246678B2 (en) 2019-06-28 2022-02-15 Cilag Gmbh International Surgical stapling system having a frangible RFID tag
US11497492B2 (en) 2019-06-28 2022-11-15 Cilag Gmbh International Surgical instrument including an articulation lock
US11259803B2 (en) 2019-06-28 2022-03-01 Cilag Gmbh International Surgical stapling system having an information encryption protocol
US11376098B2 (en) 2019-06-28 2022-07-05 Cilag Gmbh International Surgical instrument system comprising an RFID system
US11219455B2 (en) 2019-06-28 2022-01-11 Cilag Gmbh International Surgical instrument including a lockout key
US11523822B2 (en) 2019-06-28 2022-12-13 Cilag Gmbh International Battery pack including a circuit interrupter
US11426167B2 (en) 2019-06-28 2022-08-30 Cilag Gmbh International Mechanisms for proper anvil attachment surgical stapling head assembly
US11298127B2 (en) 2019-06-28 2022-04-12 Cilag GmbH Interational Surgical stapling system having a lockout mechanism for an incompatible cartridge
US11304696B2 (en) 2019-12-19 2022-04-19 Cilag Gmbh International Surgical instrument comprising a powered articulation system
US11291447B2 (en) 2019-12-19 2022-04-05 Cilag Gmbh International Stapling instrument comprising independent jaw closing and staple firing systems
US11234698B2 (en) 2019-12-19 2022-02-01 Cilag Gmbh International Stapling system comprising a clamp lockout and a firing lockout
US11529139B2 (en) 2019-12-19 2022-12-20 Cilag Gmbh International Motor driven surgical instrument
US11931033B2 (en) 2019-12-19 2024-03-19 Cilag Gmbh International Staple cartridge comprising a latch lockout
US11844520B2 (en) 2019-12-19 2023-12-19 Cilag Gmbh International Staple cartridge comprising driver retention members
US11446029B2 (en) 2019-12-19 2022-09-20 Cilag Gmbh International Staple cartridge comprising projections extending from a curved deck surface
US11701111B2 (en) 2019-12-19 2023-07-18 Cilag Gmbh International Method for operating a surgical stapling instrument
US11504122B2 (en) 2019-12-19 2022-11-22 Cilag Gmbh International Surgical instrument comprising a nested firing member
US11529137B2 (en) 2019-12-19 2022-12-20 Cilag Gmbh International Staple cartridge comprising driver retention members
US11607219B2 (en) 2019-12-19 2023-03-21 Cilag Gmbh International Staple cartridge comprising a detachable tissue cutting knife
US11464512B2 (en) 2019-12-19 2022-10-11 Cilag Gmbh International Staple cartridge comprising a curved deck surface
US11559304B2 (en) 2019-12-19 2023-01-24 Cilag Gmbh International Surgical instrument comprising a rapid closure mechanism
US11576672B2 (en) 2019-12-19 2023-02-14 Cilag Gmbh International Surgical instrument comprising a closure system including a closure member and an opening member driven by a drive screw
US11911032B2 (en) 2019-12-19 2024-02-27 Cilag Gmbh International Staple cartridge comprising a seating cam
USD975278S1 (en) 2020-06-02 2023-01-10 Cilag Gmbh International Staple cartridge
USD976401S1 (en) 2020-06-02 2023-01-24 Cilag Gmbh International Staple cartridge
USD975850S1 (en) 2020-06-02 2023-01-17 Cilag Gmbh International Staple cartridge
USD967421S1 (en) 2020-06-02 2022-10-18 Cilag Gmbh International Staple cartridge
USD966512S1 (en) 2020-06-02 2022-10-11 Cilag Gmbh International Staple cartridge
USD974560S1 (en) 2020-06-02 2023-01-03 Cilag Gmbh International Staple cartridge
USD975851S1 (en) 2020-06-02 2023-01-17 Cilag Gmbh International Staple cartridge
US20220031320A1 (en) 2020-07-28 2022-02-03 Cilag Gmbh International Surgical instruments with flexible firing member actuator constraint arrangements
US20220031358A1 (en) 2020-08-03 2022-02-03 Neotract, Inc. Handle and cartridge system for medical interventions
USD1013170S1 (en) 2020-10-29 2024-01-30 Cilag Gmbh International Surgical instrument assembly
US11896217B2 (en) 2020-10-29 2024-02-13 Cilag Gmbh International Surgical instrument comprising an articulation lock
US11452526B2 (en) 2020-10-29 2022-09-27 Cilag Gmbh International Surgical instrument comprising a staged voltage regulation start-up system
US11779330B2 (en) 2020-10-29 2023-10-10 Cilag Gmbh International Surgical instrument comprising a jaw alignment system
US11534259B2 (en) 2020-10-29 2022-12-27 Cilag Gmbh International Surgical instrument comprising an articulation indicator
US11931025B2 (en) 2020-10-29 2024-03-19 Cilag Gmbh International Surgical instrument comprising a releasable closure drive lock
USD980425S1 (en) 2020-10-29 2023-03-07 Cilag Gmbh International Surgical instrument assembly
US11844518B2 (en) 2020-10-29 2023-12-19 Cilag Gmbh International Method for operating a surgical instrument
US11617577B2 (en) 2020-10-29 2023-04-04 Cilag Gmbh International Surgical instrument comprising a sensor configured to sense whether an articulation drive of the surgical instrument is actuatable
US11717289B2 (en) 2020-10-29 2023-08-08 Cilag Gmbh International Surgical instrument comprising an indicator which indicates that an articulation drive is actuatable
US11517390B2 (en) 2020-10-29 2022-12-06 Cilag Gmbh International Surgical instrument comprising a limited travel switch
US11744581B2 (en) 2020-12-02 2023-09-05 Cilag Gmbh International Powered surgical instruments with multi-phase tissue treatment
US11890010B2 (en) 2020-12-02 2024-02-06 Cllag GmbH International Dual-sided reinforced reload for surgical instruments
US11627960B2 (en) 2020-12-02 2023-04-18 Cilag Gmbh International Powered surgical instruments with smart reload with separately attachable exteriorly mounted wiring connections
US11653915B2 (en) 2020-12-02 2023-05-23 Cilag Gmbh International Surgical instruments with sled location detection and adjustment features
US11737751B2 (en) 2020-12-02 2023-08-29 Cilag Gmbh International Devices and methods of managing energy dissipated within sterile barriers of surgical instrument housings
US11944296B2 (en) 2020-12-02 2024-04-02 Cilag Gmbh International Powered surgical instruments with external connectors
US11653920B2 (en) 2020-12-02 2023-05-23 Cilag Gmbh International Powered surgical instruments with communication interfaces through sterile barrier
US11849943B2 (en) 2020-12-02 2023-12-26 Cilag Gmbh International Surgical instrument with cartridge release mechanisms
US11678882B2 (en) 2020-12-02 2023-06-20 Cilag Gmbh International Surgical instruments with interactive features to remedy incidental sled movements
US11749877B2 (en) 2021-02-26 2023-09-05 Cilag Gmbh International Stapling instrument comprising a signal antenna
US11723657B2 (en) 2021-02-26 2023-08-15 Cilag Gmbh International Adjustable communication based on available bandwidth and power capacity
US11950777B2 (en) 2021-02-26 2024-04-09 Cilag Gmbh International Staple cartridge comprising an information access control system
US11701113B2 (en) 2021-02-26 2023-07-18 Cilag Gmbh International Stapling instrument comprising a separate power antenna and a data transfer antenna
US11744583B2 (en) 2021-02-26 2023-09-05 Cilag Gmbh International Distal communication array to tune frequency of RF systems
US11793514B2 (en) 2021-02-26 2023-10-24 Cilag Gmbh International Staple cartridge comprising sensor array which may be embedded in cartridge body
US11950779B2 (en) 2021-02-26 2024-04-09 Cilag Gmbh International Method of powering and communicating with a staple cartridge
US11812964B2 (en) 2021-02-26 2023-11-14 Cilag Gmbh International Staple cartridge comprising a power management circuit
US11751869B2 (en) 2021-02-26 2023-09-12 Cilag Gmbh International Monitoring of multiple sensors over time to detect moving characteristics of tissue
US11730473B2 (en) 2021-02-26 2023-08-22 Cilag Gmbh International Monitoring of manufacturing life-cycle
US11925349B2 (en) 2021-02-26 2024-03-12 Cilag Gmbh International Adjustment to transfer parameters to improve available power
US11696757B2 (en) 2021-02-26 2023-07-11 Cilag Gmbh International Monitoring of internal systems to detect and track cartridge motion status
US11737749B2 (en) 2021-03-22 2023-08-29 Cilag Gmbh International Surgical stapling instrument comprising a retraction system
US11806011B2 (en) 2021-03-22 2023-11-07 Cilag Gmbh International Stapling instrument comprising tissue compression systems
US11826042B2 (en) 2021-03-22 2023-11-28 Cilag Gmbh International Surgical instrument comprising a firing drive including a selectable leverage mechanism
US11826012B2 (en) 2021-03-22 2023-11-28 Cilag Gmbh International Stapling instrument comprising a pulsed motor-driven firing rack
US11723658B2 (en) 2021-03-22 2023-08-15 Cilag Gmbh International Staple cartridge comprising a firing lockout
US11759202B2 (en) 2021-03-22 2023-09-19 Cilag Gmbh International Staple cartridge comprising an implantable layer
US11717291B2 (en) 2021-03-22 2023-08-08 Cilag Gmbh International Staple cartridge comprising staples configured to apply different tissue compression
US11793516B2 (en) 2021-03-24 2023-10-24 Cilag Gmbh International Surgical staple cartridge comprising longitudinal support beam
US11896219B2 (en) 2021-03-24 2024-02-13 Cilag Gmbh International Mating features between drivers and underside of a cartridge deck
US11849944B2 (en) 2021-03-24 2023-12-26 Cilag Gmbh International Drivers for fastener cartridge assemblies having rotary drive screws
US11903582B2 (en) 2021-03-24 2024-02-20 Cilag Gmbh International Leveraging surfaces for cartridge installation
US11944336B2 (en) 2021-03-24 2024-04-02 Cilag Gmbh International Joint arrangements for multi-planar alignment and support of operational drive shafts in articulatable surgical instruments
US11849945B2 (en) 2021-03-24 2023-12-26 Cilag Gmbh International Rotary-driven surgical stapling assembly comprising eccentrically driven firing member
US11896218B2 (en) 2021-03-24 2024-02-13 Cilag Gmbh International Method of using a powered stapling device
US11786239B2 (en) 2021-03-24 2023-10-17 Cilag Gmbh International Surgical instrument articulation joint arrangements comprising multiple moving linkage features
US11786243B2 (en) 2021-03-24 2023-10-17 Cilag Gmbh International Firing members having flexible portions for adapting to a load during a surgical firing stroke
US11744603B2 (en) 2021-03-24 2023-09-05 Cilag Gmbh International Multi-axis pivot joints for surgical instruments and methods for manufacturing same
US11857183B2 (en) 2021-03-24 2024-01-02 Cilag Gmbh International Stapling assembly components having metal substrates and plastic bodies
US11832816B2 (en) 2021-03-24 2023-12-05 Cilag Gmbh International Surgical stapling assembly comprising nonplanar staples and planar staples
US11826047B2 (en) 2021-05-28 2023-11-28 Cilag Gmbh International Stapling instrument comprising jaw mounts
US11877745B2 (en) 2021-10-18 2024-01-23 Cilag Gmbh International Surgical stapling assembly having longitudinally-repeating staple leg clusters
US11937816B2 (en) 2021-10-28 2024-03-26 Cilag Gmbh International Electrical lead arrangements for surgical instruments

Citations (88)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US385352A (en) * 1888-07-03 Geokge hayes
US3143916A (en) * 1962-04-03 1964-08-11 A A Rice Inc Collapsible self-anchoring device
US3994521A (en) * 1975-09-03 1976-11-30 Brammall, Inc. Portable cable lock with ball detents
US4301551A (en) * 1979-05-24 1981-11-24 Ecole Polythechnique Deformable high energy storage tension spring
US4467478A (en) * 1982-09-20 1984-08-28 Jurgutis John A Human ligament replacement
US4483023A (en) * 1981-08-21 1984-11-20 Meadox Medicals, Inc. High-strength ligament prosthesis
US4493323A (en) * 1982-12-13 1985-01-15 University Of Iowa Research Foundation Suturing device and method for using same
US4580936A (en) * 1983-03-07 1986-04-08 Advel Limited Blind rivet assembly
US4590928A (en) * 1980-09-25 1986-05-27 South African Invention Development Corporation Surgical implant
US4597776A (en) * 1982-10-01 1986-07-01 Rockwell International Corporation Hydropyrolysis process
US4605414A (en) * 1984-06-06 1986-08-12 John Czajka Reconstruction of a cruciate ligament
US4672957A (en) * 1983-10-04 1987-06-16 South African Inventions Development Corporation Surgical device
US4712542A (en) * 1986-06-30 1987-12-15 Medmetric Corporation System for establishing ligament graft orientation and isometry
US4750492A (en) * 1985-02-27 1988-06-14 Richards Medical Company Absorbable suture apparatus, method and installer
US4772286A (en) * 1987-02-17 1988-09-20 E. Marlowe Goble Ligament attachment method and apparatus
US4823780A (en) * 1984-03-14 1989-04-25 Odensten Magnus G Drill guiding and aligning device
US4828439A (en) * 1987-05-15 1989-05-09 Giannuzzi Louis Screw anchor
US4968315A (en) * 1987-12-15 1990-11-06 Mitek Surgical Products, Inc. Suture anchor and suture anchor installation tool
US5195542A (en) * 1989-04-27 1993-03-23 Dominique Gazielly Reinforcement and supporting device for the rotator cuff of a shoulder joint of a person
US5275176A (en) * 1991-12-30 1994-01-04 Chandler Eugene J Stabilization device and method for shoulder arthroscopy
US5326205A (en) * 1992-05-27 1994-07-05 Anspach Jr William E Expandable rivet assembly
US5330468A (en) * 1993-10-12 1994-07-19 Burkhart Stephen S Drill guide device for arthroscopic surgery
US5364407A (en) * 1994-03-21 1994-11-15 Poll Wayne L Laparoscopic suturing system
US5413579A (en) * 1992-05-03 1995-05-09 Technology Finance Corporation (Proprietary) Limited Surgical saw guide and drill guide
US5441508A (en) * 1989-04-27 1995-08-15 Gazielly; Dominique Reinforcement and supporting device for the rotator cuff of a shoulder joint of a person
US5472452A (en) * 1994-08-30 1995-12-05 Linvatec Corporation Rectilinear anchor for soft tissue fixation
US5501695A (en) * 1992-05-27 1996-03-26 The Anspach Effort, Inc. Fastener for attaching objects to bones
US5531763A (en) * 1994-10-07 1996-07-02 United States Surgical Corporation Suture cinching apparatus
US5531792A (en) * 1994-06-14 1996-07-02 Huene; Donald R. Bone plug fixation assembly, expansible plug assembly therefor, and method of fixation
US5571120A (en) * 1992-08-17 1996-11-05 Yoon; Inbae Ligating instrument and methods of ligating tissue in endoscopic operative procedures
US5571104A (en) * 1993-06-10 1996-11-05 Mitek Surgical Products, Inc. Surgical anchor and method for using the same
US5573540A (en) * 1994-07-18 1996-11-12 Yoon; Inbae Apparatus and method for suturing an opening in anatomical tissue
US5573548A (en) * 1994-06-09 1996-11-12 Zimmer, Inc. Suture anchor
US5575801A (en) * 1994-02-17 1996-11-19 Arthrex, Inc. Method and apparatus for arthroscopic rotator cuff repair
US5584860A (en) * 1995-02-15 1996-12-17 Mitek Surgical Products, Inc. Suture anchor loader and driver
US5584839A (en) * 1994-12-12 1996-12-17 Gieringer; Robert E. Intraarticular drill guide and arthroscopic methods
US5591207A (en) * 1995-03-30 1997-01-07 Linvatec Corporation Driving system for inserting threaded suture anchors
US5645589A (en) * 1994-08-22 1997-07-08 Li Medical Technologies, Inc. Anchor and method for securement into a bore
US5681333A (en) * 1995-11-08 1997-10-28 Arthrex, Inc. Method and apparatus for arthroscopic rotator cuff repair utilizing bone tunnels for suture attachment
US5683419A (en) * 1995-06-06 1997-11-04 Thal; Raymond Knotless suture anchor assembly
US5690649A (en) * 1995-12-05 1997-11-25 Li Medical Technologies, Inc. Anchor and anchor installation tool and method
US5697950A (en) * 1996-02-07 1997-12-16 Linvatec Corporation Pre-loaded suture anchor
US5702397A (en) * 1996-02-20 1997-12-30 Medicinelodge, Inc. Ligament bone anchor and method for its use
US5707394A (en) * 1996-02-07 1998-01-13 Bristol-Myers Squibb Company Pre-loaded suture anchor with rigid extension
US5725541A (en) * 1996-01-22 1998-03-10 The Anspach Effort, Inc. Soft tissue fastener device
US5741282A (en) * 1996-01-22 1998-04-21 The Anspach Effort, Inc. Soft tissue fastener device
US5782865A (en) * 1995-08-25 1998-07-21 Grotz; Robert Thomas Stabilizer for human joints
US5797963A (en) * 1994-11-10 1998-08-25 Innovasive Devices, Inc. Suture anchor assembly and methods
US5810854A (en) * 1997-01-24 1998-09-22 Beach; William R. Method and apparatus for attaching connective tissue to each other or underlying bone
US5843111A (en) * 1995-06-19 1998-12-01 Ophthalmic Research Center International Bv Vitreous removing apparatus
US5860978A (en) * 1990-09-25 1999-01-19 Innovasive Devices, Inc. Methods and apparatus for preventing migration of sutures through transosseous tunnels
US5868789A (en) * 1997-02-03 1999-02-09 Huebner; Randall J. Removable suture anchor apparatus
US5879372A (en) * 1993-09-20 1999-03-09 Bartlett; Edwin C. Apparatus and method for anchoring sutures
US5893850A (en) * 1996-11-12 1999-04-13 Cachia; Victor V. Bone fixation device
US5935107A (en) * 1996-10-07 1999-08-10 Applied Medical Resources Corporation Apparatus and method for surgically accessing a body cavity
US5941900A (en) * 1993-05-14 1999-08-24 Bonutti; Peter M. Method and apparatus for anchoring a suture
US5944739A (en) * 1998-03-12 1999-08-31 Surgical Dynamics, Inc. Suture anchor installation system
US6007567A (en) * 1996-08-19 1999-12-28 Bonutti; Peter M. Suture anchor
US6013083A (en) * 1997-05-02 2000-01-11 Bennett; William F. Arthroscopic rotator cuff repair apparatus and method
US6022373A (en) * 1996-09-10 2000-02-08 Li Medical Technologies, Inc. Surgical anchor and package and cartridge for surgical anchor
US6045572A (en) * 1998-10-16 2000-04-04 Cardiac Assist Technologies, Inc. System, method and apparatus for sternal closure
US6156056A (en) * 1998-01-09 2000-12-05 Ethicon, Inc. Suture buttress
US6171317B1 (en) * 1999-09-14 2001-01-09 Perclose, Inc. Knot tying device and method
US6355053B1 (en) * 1998-06-02 2002-03-12 Li Medical Technologies, Inc. Anchor, tool and method and apparatus for emplacing anchor in a borehole
US6491714B1 (en) * 1996-05-03 2002-12-10 William F. Bennett Surgical tissue repair and attachment apparatus and method
US6520980B1 (en) * 2000-11-02 2003-02-18 Opus Medical, Inc. Method and apparatus for attaching connective tissues to bone using a self-locking knotless suture anchoring device
US6524317B1 (en) * 1999-12-30 2003-02-25 Opus Medical, Inc. Method and apparatus for attaching connective tissues to bone using a knotless suture anchoring device
US6582453B1 (en) * 2000-07-14 2003-06-24 Opus Medical, Inc. Method and apparatus for attaching connective tissues to bone using a suture anchoring device
US20030191498A1 (en) * 2001-06-06 2003-10-09 Opus Medical, Inc. Method and apparatus for attaching connective tissues to bone using a cortical bone anchoring device
US20030195563A1 (en) * 2000-08-30 2003-10-16 Opus Medical, Inc. Method and apparatus for attaching connective tissues to bone using a knotless suture anchoring device
US6635073B2 (en) * 2000-05-03 2003-10-21 Peter M. Bonutti Method of securing body tissue
US6648903B1 (en) * 1998-09-08 2003-11-18 Pierson, Iii Raymond H. Medical tensioning system
US6656183B2 (en) * 2001-11-08 2003-12-02 Smith & Nephew, Inc. Tissue repair system
US6660008B1 (en) * 2001-06-07 2003-12-09 Opus Medical, Inc. Method and apparatus for attaching connective tissues to bone using a suture anchoring device
US6679896B2 (en) * 1998-11-02 2004-01-20 Scimed Life Systems, Inc. Transvaginal suture spacer devices and methods of use
US20040243179A1 (en) * 2001-02-12 2004-12-02 Opus Medical, Inc. Method and apparatus for attaching connective tissues to bone using a knotless suture anchoring device
US20050240226A1 (en) * 2002-02-04 2005-10-27 Arthrocare Corporation Method and apparatus for attaching connective tissues to bone using a knotless suture anchoring device
US6972027B2 (en) * 2002-06-26 2005-12-06 Stryker Endoscopy Soft tissue repair system
US20060079904A1 (en) * 2004-10-13 2006-04-13 Raymond Thal Multirow knotless suture anchor assembly
US7083638B2 (en) * 2001-02-12 2006-08-01 Arthrocare Corporation Method and apparatus for attaching connective tissues to bone using a knotless suture anchoring device
US7090690B2 (en) * 2002-11-19 2006-08-15 Arthrocare Corporation Devices and methods for repairing soft tissue
US7150757B2 (en) * 2003-06-11 2006-12-19 Fallin T Wade Adjustable line locks and methods
US20070142838A1 (en) * 2005-12-19 2007-06-21 Christopher Jordan Surgical suture staple and attachment device for securing a soft tissue to a bone
US20070203508A1 (en) * 2006-02-28 2007-08-30 Arthrocare Corporation Bone anchor suture-loading system, method and apparatus
US7329272B2 (en) * 2000-06-22 2008-02-12 Arthrex, Inc. Graft fixation using a plug against suture
US20080051836A1 (en) * 2006-08-03 2008-02-28 Seth Foerster Method and apparatus for attaching connective tissues to bone using a knotless suture anchoring device
US20080319478A1 (en) * 2007-04-25 2008-12-25 Foerster Seth A Knotless suture anchor having discrete polymer components and related methods
US20090069823A1 (en) * 2007-09-12 2009-03-12 Foerster Seth A Implant and delivery system for soft tissue repair

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US34293A (en) 1862-02-04 Improved chimney for lamps
USRE34293F1 (en) 1987-02-17 1998-04-07 Globe Marlowe E Ligament attachment method and apparatus
US5380334A (en) 1993-02-17 1995-01-10 Smith & Nephew Dyonics, Inc. Soft tissue anchors and systems for implantation
USD385352S (en) 1994-05-02 1997-10-21 Zimmer, Inc. Suture anchor screw
FR2777442B1 (en) 1998-04-21 2000-07-28 Tornier Sa REVERSIBLE EXPANSION SUTURE ANCHOR
FR2777447B1 (en) 1998-04-21 2000-07-28 Tornier Sa REVERSIBLE FIXATION DEVICE FOR PLACING AN IMPLANT IN THE BONE

Patent Citations (94)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US385352A (en) * 1888-07-03 Geokge hayes
US3143916A (en) * 1962-04-03 1964-08-11 A A Rice Inc Collapsible self-anchoring device
US3994521A (en) * 1975-09-03 1976-11-30 Brammall, Inc. Portable cable lock with ball detents
US4301551A (en) * 1979-05-24 1981-11-24 Ecole Polythechnique Deformable high energy storage tension spring
US4851005A (en) * 1980-09-25 1989-07-25 South African Invention Development Corporation Surgical implant
US4590928A (en) * 1980-09-25 1986-05-27 South African Invention Development Corporation Surgical implant
US4483023A (en) * 1981-08-21 1984-11-20 Meadox Medicals, Inc. High-strength ligament prosthesis
US4467478A (en) * 1982-09-20 1984-08-28 Jurgutis John A Human ligament replacement
US4597776A (en) * 1982-10-01 1986-07-01 Rockwell International Corporation Hydropyrolysis process
US4493323A (en) * 1982-12-13 1985-01-15 University Of Iowa Research Foundation Suturing device and method for using same
US4580936A (en) * 1983-03-07 1986-04-08 Advel Limited Blind rivet assembly
US4672957A (en) * 1983-10-04 1987-06-16 South African Inventions Development Corporation Surgical device
US4823780A (en) * 1984-03-14 1989-04-25 Odensten Magnus G Drill guiding and aligning device
US4605414A (en) * 1984-06-06 1986-08-12 John Czajka Reconstruction of a cruciate ligament
US4750492A (en) * 1985-02-27 1988-06-14 Richards Medical Company Absorbable suture apparatus, method and installer
US4712542A (en) * 1986-06-30 1987-12-15 Medmetric Corporation System for establishing ligament graft orientation and isometry
US4772286A (en) * 1987-02-17 1988-09-20 E. Marlowe Goble Ligament attachment method and apparatus
US4828439A (en) * 1987-05-15 1989-05-09 Giannuzzi Louis Screw anchor
US4968315A (en) * 1987-12-15 1990-11-06 Mitek Surgical Products, Inc. Suture anchor and suture anchor installation tool
US5441508A (en) * 1989-04-27 1995-08-15 Gazielly; Dominique Reinforcement and supporting device for the rotator cuff of a shoulder joint of a person
US5195542A (en) * 1989-04-27 1993-03-23 Dominique Gazielly Reinforcement and supporting device for the rotator cuff of a shoulder joint of a person
US5860978A (en) * 1990-09-25 1999-01-19 Innovasive Devices, Inc. Methods and apparatus for preventing migration of sutures through transosseous tunnels
US5275176A (en) * 1991-12-30 1994-01-04 Chandler Eugene J Stabilization device and method for shoulder arthroscopy
US5413579A (en) * 1992-05-03 1995-05-09 Technology Finance Corporation (Proprietary) Limited Surgical saw guide and drill guide
US5470335A (en) * 1992-05-03 1995-11-28 Technology Finance Corporation (Proprietary) Limited Method for carrying out an osteotomy procedure
US5326205A (en) * 1992-05-27 1994-07-05 Anspach Jr William E Expandable rivet assembly
US5501695A (en) * 1992-05-27 1996-03-26 The Anspach Effort, Inc. Fastener for attaching objects to bones
US5571120A (en) * 1992-08-17 1996-11-05 Yoon; Inbae Ligating instrument and methods of ligating tissue in endoscopic operative procedures
US5941900A (en) * 1993-05-14 1999-08-24 Bonutti; Peter M. Method and apparatus for anchoring a suture
US5571104A (en) * 1993-06-10 1996-11-05 Mitek Surgical Products, Inc. Surgical anchor and method for using the same
US5879372A (en) * 1993-09-20 1999-03-09 Bartlett; Edwin C. Apparatus and method for anchoring sutures
US5330468A (en) * 1993-10-12 1994-07-19 Burkhart Stephen S Drill guide device for arthroscopic surgery
US5575801A (en) * 1994-02-17 1996-11-19 Arthrex, Inc. Method and apparatus for arthroscopic rotator cuff repair
US5364407A (en) * 1994-03-21 1994-11-15 Poll Wayne L Laparoscopic suturing system
US5573548A (en) * 1994-06-09 1996-11-12 Zimmer, Inc. Suture anchor
US5531792A (en) * 1994-06-14 1996-07-02 Huene; Donald R. Bone plug fixation assembly, expansible plug assembly therefor, and method of fixation
US5573540A (en) * 1994-07-18 1996-11-12 Yoon; Inbae Apparatus and method for suturing an opening in anatomical tissue
US5645589A (en) * 1994-08-22 1997-07-08 Li Medical Technologies, Inc. Anchor and method for securement into a bore
US5472452A (en) * 1994-08-30 1995-12-05 Linvatec Corporation Rectilinear anchor for soft tissue fixation
US5531763A (en) * 1994-10-07 1996-07-02 United States Surgical Corporation Suture cinching apparatus
US5797963A (en) * 1994-11-10 1998-08-25 Innovasive Devices, Inc. Suture anchor assembly and methods
US5584839A (en) * 1994-12-12 1996-12-17 Gieringer; Robert E. Intraarticular drill guide and arthroscopic methods
US5584860A (en) * 1995-02-15 1996-12-17 Mitek Surgical Products, Inc. Suture anchor loader and driver
US5591207A (en) * 1995-03-30 1997-01-07 Linvatec Corporation Driving system for inserting threaded suture anchors
US5683419A (en) * 1995-06-06 1997-11-04 Thal; Raymond Knotless suture anchor assembly
US5843111A (en) * 1995-06-19 1998-12-01 Ophthalmic Research Center International Bv Vitreous removing apparatus
US5782865A (en) * 1995-08-25 1998-07-21 Grotz; Robert Thomas Stabilizer for human joints
US5681333A (en) * 1995-11-08 1997-10-28 Arthrex, Inc. Method and apparatus for arthroscopic rotator cuff repair utilizing bone tunnels for suture attachment
US5690649A (en) * 1995-12-05 1997-11-25 Li Medical Technologies, Inc. Anchor and anchor installation tool and method
US5741282A (en) * 1996-01-22 1998-04-21 The Anspach Effort, Inc. Soft tissue fastener device
US5725541A (en) * 1996-01-22 1998-03-10 The Anspach Effort, Inc. Soft tissue fastener device
US5697950A (en) * 1996-02-07 1997-12-16 Linvatec Corporation Pre-loaded suture anchor
US5707394A (en) * 1996-02-07 1998-01-13 Bristol-Myers Squibb Company Pre-loaded suture anchor with rigid extension
US5702397A (en) * 1996-02-20 1997-12-30 Medicinelodge, Inc. Ligament bone anchor and method for its use
US6491714B1 (en) * 1996-05-03 2002-12-10 William F. Bennett Surgical tissue repair and attachment apparatus and method
US6007567A (en) * 1996-08-19 1999-12-28 Bonutti; Peter M. Suture anchor
US6022373A (en) * 1996-09-10 2000-02-08 Li Medical Technologies, Inc. Surgical anchor and package and cartridge for surgical anchor
US5935107A (en) * 1996-10-07 1999-08-10 Applied Medical Resources Corporation Apparatus and method for surgically accessing a body cavity
US5893850A (en) * 1996-11-12 1999-04-13 Cachia; Victor V. Bone fixation device
US5810854A (en) * 1997-01-24 1998-09-22 Beach; William R. Method and apparatus for attaching connective tissue to each other or underlying bone
US5868789A (en) * 1997-02-03 1999-02-09 Huebner; Randall J. Removable suture anchor apparatus
US6013083A (en) * 1997-05-02 2000-01-11 Bennett; William F. Arthroscopic rotator cuff repair apparatus and method
US6156056A (en) * 1998-01-09 2000-12-05 Ethicon, Inc. Suture buttress
US5944739A (en) * 1998-03-12 1999-08-31 Surgical Dynamics, Inc. Suture anchor installation system
US6355053B1 (en) * 1998-06-02 2002-03-12 Li Medical Technologies, Inc. Anchor, tool and method and apparatus for emplacing anchor in a borehole
US6648903B1 (en) * 1998-09-08 2003-11-18 Pierson, Iii Raymond H. Medical tensioning system
US6045572A (en) * 1998-10-16 2000-04-04 Cardiac Assist Technologies, Inc. System, method and apparatus for sternal closure
US6679896B2 (en) * 1998-11-02 2004-01-20 Scimed Life Systems, Inc. Transvaginal suture spacer devices and methods of use
US6171317B1 (en) * 1999-09-14 2001-01-09 Perclose, Inc. Knot tying device and method
US6524317B1 (en) * 1999-12-30 2003-02-25 Opus Medical, Inc. Method and apparatus for attaching connective tissues to bone using a knotless suture anchoring device
US20080015594A1 (en) * 1999-12-30 2008-01-17 Arthrocare Corporation Methods for attaching connective tissues to bone using a multi-component anchor
US7247164B1 (en) * 1999-12-30 2007-07-24 Arthrocare Corporation Methods for attaching connective tissues to bone using a multi-component bone anchor
US6635073B2 (en) * 2000-05-03 2003-10-21 Peter M. Bonutti Method of securing body tissue
US7329272B2 (en) * 2000-06-22 2008-02-12 Arthrex, Inc. Graft fixation using a plug against suture
US6582453B1 (en) * 2000-07-14 2003-06-24 Opus Medical, Inc. Method and apparatus for attaching connective tissues to bone using a suture anchoring device
US20030195564A1 (en) * 2000-07-14 2003-10-16 Opus Medical, Inc. Method and apparatus for attaching connective tissues to bone using a suture anchoring device
US20030195563A1 (en) * 2000-08-30 2003-10-16 Opus Medical, Inc. Method and apparatus for attaching connective tissues to bone using a knotless suture anchoring device
US6520980B1 (en) * 2000-11-02 2003-02-18 Opus Medical, Inc. Method and apparatus for attaching connective tissues to bone using a self-locking knotless suture anchoring device
US20040243179A1 (en) * 2001-02-12 2004-12-02 Opus Medical, Inc. Method and apparatus for attaching connective tissues to bone using a knotless suture anchoring device
US20040260345A1 (en) * 2001-02-12 2004-12-23 Opus Medical, Inc. Method and apparatus for attaching connective tissues to bone using a knotless suture anchoring device
US7083638B2 (en) * 2001-02-12 2006-08-01 Arthrocare Corporation Method and apparatus for attaching connective tissues to bone using a knotless suture anchoring device
US20030191498A1 (en) * 2001-06-06 2003-10-09 Opus Medical, Inc. Method and apparatus for attaching connective tissues to bone using a cortical bone anchoring device
US6660008B1 (en) * 2001-06-07 2003-12-09 Opus Medical, Inc. Method and apparatus for attaching connective tissues to bone using a suture anchoring device
US6656183B2 (en) * 2001-11-08 2003-12-02 Smith & Nephew, Inc. Tissue repair system
US20050240226A1 (en) * 2002-02-04 2005-10-27 Arthrocare Corporation Method and apparatus for attaching connective tissues to bone using a knotless suture anchoring device
US6972027B2 (en) * 2002-06-26 2005-12-06 Stryker Endoscopy Soft tissue repair system
US7090690B2 (en) * 2002-11-19 2006-08-15 Arthrocare Corporation Devices and methods for repairing soft tissue
US7150757B2 (en) * 2003-06-11 2006-12-19 Fallin T Wade Adjustable line locks and methods
US20060079904A1 (en) * 2004-10-13 2006-04-13 Raymond Thal Multirow knotless suture anchor assembly
US20070142838A1 (en) * 2005-12-19 2007-06-21 Christopher Jordan Surgical suture staple and attachment device for securing a soft tissue to a bone
US20070203508A1 (en) * 2006-02-28 2007-08-30 Arthrocare Corporation Bone anchor suture-loading system, method and apparatus
US20080051836A1 (en) * 2006-08-03 2008-02-28 Seth Foerster Method and apparatus for attaching connective tissues to bone using a knotless suture anchoring device
US20080319478A1 (en) * 2007-04-25 2008-12-25 Foerster Seth A Knotless suture anchor having discrete polymer components and related methods
US20090069823A1 (en) * 2007-09-12 2009-03-12 Foerster Seth A Implant and delivery system for soft tissue repair

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8109966B2 (en) 1999-12-30 2012-02-07 Arthrocare Corporation Methods for attaching connective tissues to bone using a multi-component anchor
US7695494B2 (en) 2001-02-12 2010-04-13 Arthrocare Corporation Method and apparatus for attaching connective tissues to bone using a knotless suture anchoring device
US8685060B2 (en) 2001-02-12 2014-04-01 Arthrocare Corporation Methods and devices for attaching connective tissues to bone using a knotless suture anchoring device
US8444672B2 (en) 2001-02-12 2013-05-21 Arthrocare Corporation Methods and devices for attaching connective tissues to bone using a knotless suture anchoring device
US8657854B2 (en) 2001-02-12 2014-02-25 Arthrocare Corporation Knotless suture anchoring device having deforming section to accommodate sutures of various diameters
US7674274B2 (en) 2001-06-06 2010-03-09 Arthrocare Corporation Method and apparatus for attaching connective tissues to bone using a cortical bone anchoring device
US7682374B2 (en) 2003-10-21 2010-03-23 Arthrocare Corporation Knotless suture lock and bone anchor implant method
US20060271060A1 (en) * 2005-05-26 2006-11-30 Arthrocare Corporation Threaded knotless suture anchoring device and method
US8133258B2 (en) 2006-08-03 2012-03-13 Arthrocare Corporation Method and apparatus for attaching connective tissues to bone using a knotless suture anchoring device
US8317829B2 (en) 2006-08-03 2012-11-27 Arthrocare Corporation Method and apparatus for attaching connective tissues to bone using a knotless suture anchoring device
US8137381B2 (en) 2007-04-25 2012-03-20 Arthrocare Corporation Knotless suture anchor having discrete polymer components and related methods
US7963972B2 (en) 2007-09-12 2011-06-21 Arthrocare Corporation Implant and delivery system for soft tissue repair
US8425536B2 (en) 2007-09-12 2013-04-23 Arthrocare Corporation Implant and delivery system for soft tissue repair
US11510787B2 (en) 2008-12-18 2022-11-29 4-Web Spine, Inc. Implant having a shaft coated with a web structure
US9421108B2 (en) 2008-12-18 2016-08-23 4Web, Inc. Implant system and method
US11278421B2 (en) 2008-12-18 2022-03-22 4Web, Inc. Implant device having curved or arced struts
US9999516B2 (en) 2008-12-18 2018-06-19 4Web, Inc. Implant device having a non-planar surface
US9545317B2 (en) 2008-12-18 2017-01-17 4Web, Inc. Implant interface system and device
AU2011267941B2 (en) * 2010-06-18 2015-04-02 4-Web, Inc. Bone implant interface system and method
US20110313532A1 (en) * 2010-06-18 2011-12-22 Jessee Hunt Bone implant interface system and method
US9636101B2 (en) 2011-09-01 2017-05-02 Arthrocare Corporation Bone anchor having an integrated stress isolator
US9034014B2 (en) 2012-01-27 2015-05-19 Arthrocare Corporation Free floating wedge suture anchor for soft tissue repair
US9023083B2 (en) 2012-01-27 2015-05-05 Arthrocare Corporation Method for soft tissue repair with free floating suture locking member
US9198649B2 (en) 2012-01-27 2015-12-01 Arthrocare Corporation Rotating locking member suture anchor and method for soft tissue repair
US9364210B2 (en) 2012-01-27 2016-06-14 Arthrocare Corporation Biased wedge suture anchor and method for soft tissue repair
US9226742B2 (en) 2012-01-27 2016-01-05 Arthrocare Corporation Restricted wedge suture anchor and method for soft tissue repair
US9855028B2 (en) 2012-04-06 2018-01-02 Arthrocare Corporation Multi-suture knotless anchor for attaching tissue to bone and related method
US10849756B2 (en) 2012-09-25 2020-12-01 4Web Medical Programmable implant
US9757235B2 (en) 2012-09-25 2017-09-12 4Web, Inc. Spinal programmable implant
US9987137B2 (en) 2012-09-25 2018-06-05 4Web, Inc. Programmable implant having curved or arced struts
US9271845B2 (en) 2012-09-25 2016-03-01 4Web Programmable implants and methods of using programmable implants to repair bone structures
US9572669B2 (en) 2012-09-25 2017-02-21 4-Web, Inc. Programmable implant having an angled exterior surface
US9549823B2 (en) 2012-09-25 2017-01-24 4-Web, Inc. Programmable implant having curved or arced struts
US9636226B2 (en) 2013-03-15 2017-05-02 4Web, Inc. Traumatic bone fracture repair systems and methods
JP2020198942A (en) * 2019-06-06 2020-12-17 株式会社プロメット anchor

Also Published As

Publication number Publication date
US6660008B1 (en) 2003-12-09

Similar Documents

Publication Publication Date Title
US6660008B1 (en) Method and apparatus for attaching connective tissues to bone using a suture anchoring device
US6582453B1 (en) Method and apparatus for attaching connective tissues to bone using a suture anchoring device
US6547800B2 (en) Method and apparatus for attaching connective tissues to bone using a cortical bone anchoring device
US9357993B2 (en) Knotless suture anchoring device having deforming section to accommodate sutures of various diameters
AU2002306478B2 (en) Methods and devices for attaching connective tissues to bone using a knotless suture anchoring device
EP2095776B1 (en) Devices for attaching connective tissues to bone using a knotless suture anchoring device
US7682374B2 (en) Knotless suture lock and bone anchor implant method
US7090690B2 (en) Devices and methods for repairing soft tissue
AU2002306478A1 (en) Methods and devices for attaching connective tissues to bone using a knotless suture anchoring device
JP2002177286A (en) System and method for anchoring knotless bio-absorbable suture
WO2002005718A2 (en) Suture anchor for attaching a suture to a bone part
AU2002305799A1 (en) Method and apparatus for attaching connective tissues to bone using a cortical bone anchoring device

Legal Events

Date Code Title Description
AS Assignment

Owner name: ARTHROCARE CORPORATION, TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:OPUS MEDICAL, INC.;REEL/FRAME:015509/0008

Effective date: 20041221

Owner name: ARTHROCARE CORPORATION,TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:OPUS MEDICAL, INC.;REEL/FRAME:015509/0008

Effective date: 20041221

AS Assignment

Owner name: ARTHROCARE CORPORATION, TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:OPUS MEDICAL, INC.;REEL/FRAME:015931/0782

Effective date: 20041221

Owner name: ARTHROCARE CORPORATION,TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:OPUS MEDICAL, INC.;REEL/FRAME:015931/0782

Effective date: 20041221

AS Assignment

Owner name: BANK OF AMERICA, N.A.,WASHINGTON

Free format text: PATENT SECURITY AGREEMENT;ASSIGNOR:ARTHROCARE CORPORATION;REEL/FRAME:017105/0855

Effective date: 20060113

Owner name: BANK OF AMERICA, N.A., WASHINGTON

Free format text: PATENT SECURITY AGREEMENT;ASSIGNOR:ARTHROCARE CORPORATION;REEL/FRAME:017105/0855

Effective date: 20060113

AS Assignment

Owner name: OPUS MEDICAL, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:FOERSTER, SETH A.;TRAN, MINH;GORDON, NORMAN S.;REEL/FRAME:021272/0058

Effective date: 20010605

AS Assignment

Owner name: ARTHROCARE CORPORATION, TEXAS

Free format text: RELEASE OF PATENT SECURITY AGREEMENT RECORDED AT REEL 017105 FRAME 0855;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:023180/0892

Effective date: 20060113

Owner name: ARTHROCARE CORPORATION,TEXAS

Free format text: RELEASE OF PATENT SECURITY AGREEMENT RECORDED AT REEL 017105 FRAME 0855;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:023180/0892

Effective date: 20060113

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION