US20040262273A1 - Method and apparatus for cutting a substrate into multiple pieces with a single irradiation of a laser beam - Google Patents

Method and apparatus for cutting a substrate into multiple pieces with a single irradiation of a laser beam Download PDF

Info

Publication number
US20040262273A1
US20040262273A1 US10/891,118 US89111804A US2004262273A1 US 20040262273 A1 US20040262273 A1 US 20040262273A1 US 89111804 A US89111804 A US 89111804A US 2004262273 A1 US2004262273 A1 US 2004262273A1
Authority
US
United States
Prior art keywords
light
reflectivity
substrate
transmittance control
cutting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/891,118
Inventor
Hyung-Woo Nam
Dae-ho Choo
Baek-Kyun Jeon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US10/891,118 priority Critical patent/US20040262273A1/en
Publication of US20040262273A1 publication Critical patent/US20040262273A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/09Severing cooled glass by thermal shock
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/067Dividing the beam into multiple beams, e.g. multifocusing
    • B23K26/0673Dividing the beam into multiple beams, e.g. multifocusing into independently operating sub-beams, e.g. beam multiplexing to provide laser beams for several stations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/067Dividing the beam into multiple beams, e.g. multifocusing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • B23K26/146Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor the fluid stream containing a liquid
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/09Severing cooled glass by thermal shock
    • C03B33/091Severing cooled glass by thermal shock using at least one focussed radiation beam, e.g. laser beam
    • C03B33/093Severing cooled glass by thermal shock using at least one focussed radiation beam, e.g. laser beam using two or more focussed radiation beams
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/10Glass-cutting tools, e.g. scoring tools
    • C03B33/102Glass-cutting tools, e.g. scoring tools involving a focussed radiation beam, e.g. lasers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133351Manufacturing of individual cells out of a plurality of cells, e.g. by dicing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Definitions

  • the present invention relates to a technique of cutting a substrate into multiple pieces using a heat stress, and more particularly, to method and apparatus for cutting a substrate into multiple pieces with irradiation of a laser beam in which a light beam, generated from a single light generating unit with a specific wavelength and power, is divided into multiple light beams having uniform power, the substrate is locally and rapidly heated by the respective divided beams and then rapidly cooled by a coolant, and thereby the substrate is concurrently cut along plural cutting lines to give multiple pieces.
  • glass substrate has been widely used for industrial, commercial, and residence applications, to name a few. These glass substrates are made from silicon that is a main component. Also, these glass substrates have a non-crystalline structure that is an inherent characteristic of glass. When a minute groove is formed at an edge of the glass substrate, the non-crystalline structure acts to trigger an occurrence of minute cracks by a small impact or a small external force.
  • a diamond cutter is mainly used only as a cutting tool for cutting a commercial glass substrate, a household glass substrate, etc., but is subject to many limitations in a technical field such as a liquid crystal display (LCD) requiring precise cutting.
  • LCD liquid crystal display
  • an apparatus for multiple-cutting a substrate into multiple pieces using a single scanning of a light comprises: a light splitting unit for splitting a light generated from a light generating unit using at least two light reflectivity/transmittance control plates of which light reflectivity/transmittance varies depending on an angle between the generated light and the plates, and for scanning the split lights onto at least two scanning surface portions to locally heat the scanning surface portions; and a crack generating unit for generating a crack at the locally heated scanning surface portions.
  • FIG. 1 is a schematic view of a light splitting apparatus in accordance with a preferred embodiment of the present invention.
  • FIG. 2 is a perspective view of a light reflectivity/transmittance control plate in accordance with another preferred embodiment of the present invention.
  • FIG. 3 is a graph showing that the light reflectivity is varied depending on an angle between the light reflectivity/transmittance control plate and a light.
  • FIG. 6 is a schematic view explaining the structure and functions of the substrate cutting apparatus in accordance with one embodiment of the present invention.
  • FIGS. 7 and 8 are schematic views for describing a method of cutting a substrate along an X-axis in accordance with one embodiment of the present invention.
  • FIGS. 9 and 10 are schematic views for describing a method of cutting a substrate along a Y-axis in accordance with one embodiment of the present invention.
  • FIGS. 1 to 3 show a constitution of a light multiple-splitting device in accordance with a preferred embodiment of the present invention.
  • the light reflectivity/transmittance control plates 510 , 520 , 530 , 540 are manufactured to have functions in which when a light 590 , having a certain wavelength and intensity, arrives on reflection/transmission surfaces of respective light reflectivity/transmittance control plates 510 , 520 , 530 , 540 , the light reflectivity/transmittance control plates 510 , 520 , 530 , 540 reflect a part of the light and transmit the remainder of the light.
  • the reference numeral 580 in FIG. 1 is a light generating unit for generating a light necessary for cutting a workpiece substrate.
  • a laser beam having a predetermined wavelength and intensity may be used as the necessary light.
  • angles ⁇ 1, ⁇ 2, ⁇ 3, ⁇ 4 between the light generated from the light generating unit 560 and the reflection/transmission surfaces largely affect transmittance and reflectivity in the light.
  • FIG. 3 is a graph showing a variation in the reflectivity of a light reflected from the light reflectivity/transmittance control plates 510 , 620 , 630 , 540 when the angles ⁇ 1, ⁇ 2, ⁇ 3, ⁇ 4, between the light generated from the light generating unit 580 and the reflection/transmission surfaces, are varied.
  • the light to reflectivity/transmittance control plates 510 , 520 , 530 , 540 are made of ZnSe and the necessary light has a wavelength of 10.6 ⁇ m.
  • the reflectivity of the light reflectivity/transmittance control plates 510 , 520 , 530 , 540 is 0%.
  • the reflectivity of 0% means that the light reflectivity/transmittance control plates 510 , 520 , 530 , 540 do not reflect the light 500 at all but transmit the light 500 completely.
  • the reflectivity in the reflection/transmission surfaces of the light reflectivity/transmittance control plates 510 , 520 , 530 , 540 increases from 0% to about 100% in proportion to the inclination of the light reflectivity/transmittance control plates 510 , 520 , 530 , 540 .
  • the light reflectivity/transmittance control plates 510 , 520 , 530 , 540 in which the reflectivity and transmittance are varied, are used for splitting a single light beam into multiple light beams such that the multiple light beams are scanned onto a plurality of places. In that case, it is preferable that the split light beams have an equivalent intensity.
  • the light reflectivity/transmittance control plates 510 , 520 , 530 , 540 are arranged in series such that the light 590 of 400 watts generated from the light generating unit 580 transmits the reflection/transmission surfaces of the light reflectivity/transmittance control plates 510 , 520 , 530 , 540 arranged on an advancing path of the light.
  • the light reflectivity/transmittance control plates 510 , 520 , 530 , 540 are respectively defined as a first light reflectivity/transmittance control plate 540 , a second light reflectivity/transmittance control plate 530 , a third light reflectivity/transmittance control plate 520 , and a fourth light reflectivity/transmittance control plate 510 .
  • the light generating unit 580 is disposed adjacent to the first light reflectivity/transmittance control plate 540 while it faces the first light reflectivity/transmittance control plate 540 .
  • the light generating unit 580 generates a light 590 having a power of 400 watts and the light reflectivity/transmittance control plate is comprised of four plates 510 , 520 , 530 , 540 of first, second, third and fourth light reflectivity/transmittance control plates.
  • the first light reflectivity/transmittance control plate 540 reflects one-fourth (25%),of a total amount of the incident light 590 having the power of 400 watts and transmits the remaining three-fourths (75%) of the total amount of the light 590 .
  • the reflectivity of the first light reflectivity/transmittance control plate 540 is controlled depending on the relationship shown in the graph of FIG. 3, thereby having a slope angle of ⁇ 1.
  • the angle of ⁇ 1 is obtained from the graph in FIG. 3. In other words, in FIG. 3, a point where the reflectivity of about 25% meets the curve corresponds to ⁇ 1.
  • the second light reflectivity/transmittance control plate 530 should be inclined by an angle of ⁇ 2 in the counterclockwise direction with respect to the horizontal plane. Like that of ⁇ 1, the angle of ⁇ 2 is obtained from the graph of FIG. 3. Specifically in the graph of FIG. 3, a point where the reflectivity of about 33.3% meets the curve corresponds to ⁇ 2.
  • the third right reflectivity/transmittance control plate 520 scans the light of 100 watts at the point B among the total incident light amount of 200 watts, it should have a reflectivity of 50% and a transmittance of 50%.
  • the third light reflectivity/transmittance control plate 520 be inclined by an angle of ⁇ 3 in the counterclockwise direction with respect to the horizontal plane.
  • the angle of ⁇ 3 is also obtained from the graph of FIG. 3. Specifically, in FIG. 3, a point where the reflectivity of 50% meets the curve corresponds to ⁇ 3.
  • the fourth light reflectivity/transmittance control plate 510 has the reflectivity of 100%. This is because all of the incident light amount of 100 watts has to be reflected by the fourth light reflectivity/transmittance control plate 510 such that the light amount of 100 watts arrives at the point A.
  • the light reflectivity/transmittance control plates 510 , 520 , 530 , 540 are constituted to include light multiple division lenses 510 a, 520 a, 530 a, 540 a and a light incident angle control unit 555 coupled to the light multiple division lenses 510 a, 520 a, 530 a, 540 a, as shown in FIG. 2.
  • a substrate multiple-cutting apparatus 900 includes a light generating unit 100 , a first light multiple-splitting unit 300 , a crack generating unit 400 , a second light multiple-splitting unit 600 and a mother substrate-transferring unit 750 .
  • the light generating unit 100 irradiates two light beams 810 and 803 toward the coolant supplying unit 200 from two portions thereof as shown in FIG. 6.
  • one of the two light beams as irradiated is defined as a first light beam 803 and the other is defined as a second light beam 801 .
  • first light multiple-splitting unit 300 On a path through which the first light beam 803 passes, there is disposed a first light multiple-splitting unit 300 , and on a path through which the second light beam 801 , there is disposed a second light multiple-splitting unit 600 .
  • the second light multiples-splitting unit 600 includes plural light reflectivity/transmittance control plates 610 , 620 , 630 , 640 , plural plate rotating units 612 , 622 , 632 , 642 and a plate fixing case 680 as shown in FIGS. 5 and 6.
  • the plate fixing case 680 has a through hole formed along its length direction and it is disposed between the light generating unit 100 and the coolant supplying unit 200 .
  • the second light beam 801 passes through the through hole of the plate fixing case 680 .
  • the crack generating unit 400 includes a coolant supply pipe 410 for transferring a coolant from the coolant supplying unit 200 to a position at which the coolant is being sprayed, and a coolant spraying nozzle 412 , 422 , 432 , 442 for spraying the coolant transferred from the coolant supply pipe 410 onto the locally heated position.
  • the first light multiple-splitting unit 300 , the crack generating unit 400 and the second light multiple-splitting unit 600 are aligned with at least two positions on a one-sided surface of the assembled workpiece mother substrate 700 .
  • the first light beam 803 is supplied into the first light multiple-splitting unit 300 .
  • the first light multiple-splitting unit 300 splits the first light beam 803 into uniform multiple light beams each having the same intensity and scans the split light beams onto the positions which are being cut so that the scanned portions are rapidly heated.
  • the rapidly heated portions are rapidly cooled by a coolant 802 sprayed from the crack generating unit 400 , which is established to the rear of the first light multiple-splitting unit 300 , so that a scribe crack is generated to a predetermined depth from the upper surface of the rapidly heated portion.
  • the second light beam 801 split by the second light multiple-splitting unit 600 , is irradiated onto the scribe crack to heat-expand the scribe crack portion locally, rapidly, so that the scribe crack portion is completely separated by the heat expansion.
  • the x-directional prescribed lines 701 of the LCD unit cells 710 in the assembled workpiece mother substrate 700 are all cut.
  • the LCD panel is transferred into an LCD panel assembly manufacturing process and thus an LCD panel assembly is manufactured.
  • plural LCD unit cells formed in a single large-size mother glass substrate are concurrently cut by splitting a single incident light into plural light beams, so that time necessary for the singulation of the LCD unit from the mother glass substrate is substantially shortened.
  • a single incident light is split into plural light beams to perform a cutting process at plural places, so that an apparatus for cutting LCD unit cells from the mother substrate is simplified.

Abstract

A method and apparatus for multiple-cutting a substrate into a plurality of pieces with a single irradiation of a laser beam are disclosed. At least two light reflectivity/transmittance control plates are placed on a path through which the light passes such that light reflectivity/transmittance is varied depending on an angle between the generated light and the plates. Plural surface portions of the substrate are heated simultaneously and are then cooled by a sprayed coolant so that the substrate is cut into a plurality of pieces simultaneously. Resultantly, a cutting time is substantially shortened and the productivity is enhanced.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention [0001]
  • The present invention relates to a technique of cutting a substrate into multiple pieces using a heat stress, and more particularly, to method and apparatus for cutting a substrate into multiple pieces with irradiation of a laser beam in which a light beam, generated from a single light generating unit with a specific wavelength and power, is divided into multiple light beams having uniform power, the substrate is locally and rapidly heated by the respective divided beams and then rapidly cooled by a coolant, and thereby the substrate is concurrently cut along plural cutting lines to give multiple pieces. [0002]
  • 2. Description of the Related Art [0003]
  • Generally, glass substrate has been widely used for industrial, commercial, and residence applications, to name a few. These glass substrates are made from silicon that is a main component. Also, these glass substrates have a non-crystalline structure that is an inherent characteristic of glass. When a minute groove is formed at an edge of the glass substrate, the non-crystalline structure acts to trigger an occurrence of minute cracks by a small impact or a small external force. [0004]
  • When an external impact or force is applied to the minute cracks, the cracks are propagated along unpredictable directions and therefore an undesired separation occurs in the glass substrate. Thus, there is a problem in that it is nearly impossible to forecast the direction of the generated crack and a portion of the substrate is cut that needs not be cut. [0005]
  • This problem frequently occurs when a diamond cutter is used for the cutting of a workpiece glass substrate in which a fine groove is formed at the surface of the workpiece glass substrate and then some external force is applied. This is because the fine groove formed by the diamond cutter is very rough. [0006]
  • Thus, in the case that the cut groove of the workpiece glass substrate is not smooth, undesired cracks occur additively and the crack propagates along an undesired direction, which causes a fatal failure. [0007]
  • Because of these problems, a diamond cutter is mainly used only as a cutting tool for cutting a commercial glass substrate, a household glass substrate, etc., but is subject to many limitations in a technical field such as a liquid crystal display (LCD) requiring precise cutting. [0008]
  • In spite of these limitations, and since methods and apparatuses for use in the LCD technical field requiring a precise cutting of glass substrates are not yet developed, the use of the diamond cutter is inevitable. [0009]
  • Due to the use of the diamond cutter, there is a problem of unpredictable cracks and the cracks progating when separating a completed LCD mother panel into unit panels. [0010]
  • SUMMARY OF THE INVENTION
  • Accordingly, it is an object of the present invention to provide a method for multiple-cutting a substrate in which a substrate is cut by a heat stress such that an occurrence of cracks is restrained at an edge of the substrate and therefore crack propagation along an undesired direction does not occur. [0011]
  • It is another object of this invention to provide a method for multiple-cutting a substrate in which plural places of the substrate are concurrently and rapidly heated and then rapidly cooled using a single laser beam for heating the substrate, so that the plural places of the substrate are concurrently separated. [0012]
  • It is still another object to provide an apparatus for multiple-cutting a substrate in which a single laser beam for heating the substrate is uniformly divided into at least two beams, the divided beams concurrently heat at least one prescribed cutting line, the heated prescribed cutting line is concurrently cooled, so that plural places of the substrate are concurrently cut. [0013]
  • To achieve the aforementioned objects, there is provided a method of multiple-cutting a substrate. In the above method, a part of an incident light in a first advancing direction is reflected into a second advancing direction and the remaining part of the incident light advances along the first advancing direction to split the incident light into two light beams. The split lights are scanned onto plural selected paths of the substrate to locally heat the selected paths of the substrate. Thereby, cracks are generated at the heated paths. [0014]
  • According to another aspect of this invention, there is provided an apparatus for multiple-cutting a substrate into multiple pieces using a single scanning of a light. The apparatus comprises: a light splitting unit for splitting a light generated from a light generating unit using at least two light reflectivity/transmittance control plates of which light reflectivity/transmittance varies depending on an angle between the generated light and the plates, and for scanning the split lights onto at least two scanning surface portions to locally heat the scanning surface portions; and a crack generating unit for generating a crack at the locally heated scanning surface portions.[0015]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The above objects and other advantages of the present invention will become more apparent by describing in detail the preferred embodiments thereof with reference to the accompanying drawings. [0016]
  • FIG. 1 is a schematic view of a light splitting apparatus in accordance with a preferred embodiment of the present invention. [0017]
  • FIG. 2 is a perspective view of a light reflectivity/transmittance control plate in accordance with another preferred embodiment of the present invention. [0018]
  • FIG. 3 is a graph showing that the light reflectivity is varied depending on an angle between the light reflectivity/transmittance control plate and a light. [0019]
  • FIG. 4 is a schematic view of a substrate cutting apparatus using a light splitting unit in accordance with another preferred embodiment of the present invention. [0020]
  • FIG. 5 is a perspective view of a substrate cutting apparatus in accordance with another preferred embodiment of the present invention. [0021]
  • FIG. 6 is a schematic view explaining the structure and functions of the substrate cutting apparatus in accordance with one embodiment of the present invention. [0022]
  • FIGS. 7 and 8 are schematic views for describing a method of cutting a substrate along an X-axis in accordance with one embodiment of the present invention. [0023]
  • FIGS. 9 and 10 are schematic views for describing a method of cutting a substrate along a Y-axis in accordance with one embodiment of the present invention.[0024]
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • Now, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. [0025]
  • FIGS. [0026] 1 to 3 show a constitution of a light multiple-splitting device in accordance with a preferred embodiment of the present invention.
  • As a whole, a light multiple-[0027] splitting device 500 includes at least one light reflectivity/ transmittance control plates 510, 520, 530, 540, a light incident angle control unit 555 and a base body (not shown) provided with the light reflectivity/ transmittance control plate 510, 520, 530, 540 and the light incident angle control unit 555.
  • Four light reflectivity/[0028] transmittance control plates 510, 520, 530, 540 are used in the present embodiment.
  • Particularly, the light reflectivity/[0029] transmittance control plates 510, 520, 530, 540 are manufactured to have functions in which when a light 590, having a certain wavelength and intensity, arrives on reflection/transmission surfaces of respective light reflectivity/ transmittance control plates 510, 520, 530, 540, the light reflectivity/ transmittance control plates 510, 520, 530, 540 reflect a part of the light and transmit the remainder of the light.
  • As one embodiment, the light [0030] reflectivity control plates 510, 520, 530, 540 are made of ZnSe to reflect and/or transmit light.
  • The [0031] reference numeral 580 in FIG. 1 is a light generating unit for generating a light necessary for cutting a workpiece substrate. A laser beam having a predetermined wavelength and intensity may be used as the necessary light.
  • At this time, angles θ1, θ2, θ3, θ4 between the light generated from the light generating unit [0032] 560 and the reflection/transmission surfaces largely affect transmittance and reflectivity in the light.
  • FIG. 3 is a graph showing a variation in the reflectivity of a light reflected from the light reflectivity/[0033] transmittance control plates 510, 620, 630, 540 when the angles θ1, θ2, θ3, θ4, between the light generated from the light generating unit 580 and the reflection/transmission surfaces, are varied.
  • In order to obtain results as shown in the graph of FIG. 3, the light to reflectivity/[0034] transmittance control plates 510, 520, 530, 540 are made of ZnSe and the necessary light has a wavelength of 10.6 μm.
  • Referring to the graph of FIG. 3, in a state that the light is horizontally scanned, when the reflection/transmission surfaces of the light reflectivity/[0035] transmittance control plates 510, 520, 530, 540 are inclined 70 degrees in the clockwise direction with respect to the horizontal plane, the reflectivity of the light reflectivity/ transmittance control plates 510, 520, 530, 540 is 0%. At this position, the reflectivity of 0% means that the light reflectivity/ transmittance control plates 510, 520, 530, 540 do not reflect the light 500 at all but transmit the light 500 completely.
  • Meanwhile, when the inclination of the light reflectivity/[0036] transmittance control plates 510, 520, 530, 540 increase from 70 degrees to 90 degrees in the clockwise direction with respect to the horizontal plane, the reflectivity in the reflection/transmission surfaces of the light reflectivity/ transmittance control plates 510, 520, 530, 540 increases from 0% to about 100% in proportion to the inclination of the light reflectivity/ transmittance control plates 510, 520, 530, 540. At this point, the reflectivity of 100% means that the light reflectivity/ transmittance control plates 510, 520, 530, 540 reflect the light 500 fully, so that the light does not transmit through the light reflectivity/ transmittance control plates 510, 520, 530, 540 at all.
  • Resultantly, the graph in FIG. 3 shows that the reflectivity and transmittance of the light are abruptly varied by controlling only the angles between the light and the light reflectivity/[0037] transmittance control plates 510, 520, 530, 640 in such a state in that the same kind of at least two of the light reflectivity/transmittance control plates are positioned on the light path.
  • Thus, in the case that the angles are varied; the light reflectivity/[0038] transmittance control plates 510, 520, 530, 540, in which the reflectivity and transmittance are varied, are used for splitting a single light beam into multiple light beams such that the multiple light beams are scanned onto a plurality of places. In that case, it is preferable that the split light beams have an equivalent intensity.
  • Hereinafter, there is described in more detail an operation mechanism for splitting the [0039] light 500 into multiple light beams having a uniform intensity using the light reflectivity/ transmittance control plates 510, 620, 530, 640 and the light incident angle control unit 555 with reference to FIGS. 1, 2, and 3.
  • As one embodiment, there is described a mechanism for splitting the [0040] light 590 having a power of 400 watts generated from the light generating unit 580 into four light beams each having an intensity of 100 watts uniformly at designated places, A, B, C and D using the light reflectivity/ transmittance control plates 510, 520, 530, 540 and the plate rotating unit 550.
  • To realize this, the light reflectivity/[0041] transmittance control plates 510, 520, 530, 540 are arranged in series such that the light 590 of 400 watts generated from the light generating unit 580 transmits the reflection/transmission surfaces of the light reflectivity/ transmittance control plates 510, 520, 530, 540 arranged on an advancing path of the light.
  • Hereinafter, the light reflectivity/[0042] transmittance control plates 510, 520, 530, 540 are respectively defined as a first light reflectivity/transmittance control plate 540, a second light reflectivity/transmittance control plate 530, a third light reflectivity/transmittance control plate 520, and a fourth light reflectivity/transmittance control plate 510.
  • At this time, as one embodiment of the present invention, the [0043] light generating unit 580 is disposed adjacent to the first light reflectivity/transmittance control plate 540 while it faces the first light reflectivity/transmittance control plate 540.
  • Such positions of the light reflectivity/[0044] transmittance control plates 510, 520, 530, 540 allow the incident light 590 to subsequently pass the first light reflectivity/transmittance control plate 540, the second light reflectivity/transmittance control plate 530, and the third light reflectivity/transmittance control plate 520, and to arrive at the fourth light reflectivity/transmittance control plate 510.
  • Hereinafter, there is described a mechanism in which the [0045] incident light 590 is uniformly split through the first light reflectivity/transmittance control plate 540, the second light reflectivity/transmittance control plate 530, the third light reflectivity/transmittance control plate 520, and the fourth light reflectivity/transmittance control plate 510.
  • As one embodiment, the [0046] light generating unit 580 generates a light 590 having a power of 400 watts and the light reflectivity/transmittance control plate is comprised of four plates 510, 520, 530, 540 of first, second, third and fourth light reflectivity/transmittance control plates.
  • First, with reference to FIG. 1, in order for a light having a power of 100 watts to be irradiated at the point D from the first light reflectivity/[0047] transmittance control plate 540, it is required that the incident light of 100 watts be reflected by the first light reflectivity/transmittance control plate 540 and, further that the remaining light of 300 watts be transmitted to the first light reflectivity/transmittance control plate 540. In other words, this means that the first light reflectivity/transmittance control plate 540 reflects one-fourth (25%),of a total amount of the incident light 590 having the power of 400 watts and transmits the remaining three-fourths (75%) of the total amount of the light 590.
  • To realize this, the reflectivity of the first light reflectivity/[0048] transmittance control plate 540 is controlled depending on the relationship shown in the graph of FIG. 3, thereby having a slope angle of θ1. The angle of θ1 is obtained from the graph in FIG. 3. In other words, in FIG. 3, a point where the reflectivity of about 25% meets the curve corresponds to θ1.
  • Similarly, the remaining light of 300 watts in the light [0049] 690 of 400 watts generated from the light generating unit 580 is incident into the second reflectivity/transmittance control plate 530. At that point, the second light reflectivity/transmittance control plate 530 reflects only one-third (33.3%) of a total amount of the incident light 590 of 300 watts and transmits the remaining two-thirds (66.7%) of 200 watts, so that the reflected light of 100 watts is scanned at the point C.
  • To realize this, it is required that the second light reflectivity/[0050] transmittance control plate 530 should have a reflectivity of one-third (about 33.3%) and a transmittance of two-thirds (about 66.7%).
  • Similarly, the second light reflectivity/[0051] transmittance control plate 530 should be inclined by an angle of θ2 in the counterclockwise direction with respect to the horizontal plane. Like that of θ1, the angle of θ2 is obtained from the graph of FIG. 3. Specifically in the graph of FIG. 3, a point where the reflectivity of about 33.3% meets the curve corresponds to θ2.
  • While the light of 100 watts is scanned at the point C through the second light reflectivity/[0052] transmittance control plate 530, the remaining light of 200 watts is incident into the third light reflectivity/transmittance control plate 520.
  • Again, since the third right reflectivity/[0053] transmittance control plate 520 scans the light of 100 watts at the point B among the total incident light amount of 200 watts, it should have a reflectivity of 50% and a transmittance of 50%.
  • To realize this, it is required that the third light reflectivity/[0054] transmittance control plate 520 be inclined by an angle of θ3 in the counterclockwise direction with respect to the horizontal plane. Like the angles of θ1 and θ2, the angle of θ3 is also obtained from the graph of FIG. 3. Specifically, in FIG. 3, a point where the reflectivity of 50% meets the curve corresponds to θ3.
  • While the light of 100 watts is scanned at the point B through the third light reflectivity/[0055] transmittance control plate 520, the remaining light of 100 watts is incident into the fourth light reflectivity/transmittance control plate 510.
  • Similarly, the fourth light reflectivity/[0056] transmittance control plate 510 has the reflectivity of 100%. This is because all of the incident light amount of 100 watts has to be reflected by the fourth light reflectivity/transmittance control plate 510 such that the light amount of 100 watts arrives at the point A.
  • To realize this, it is required that the fourth light reflectivity/[0057] transmittance control plate 510 be inclined by an angle of 64 in the counterclockwise direction with respect to the horizontal plane. As in the angles of θ1, θ2 and θ3, the angle of θ4 is also obtained from the graph of FIG. 3. Specifically, in the graph of FIG. 3, a point where the reflectivity of 100% meets the curve corresponds to θ4.
  • Thus, in order to allow plural light beams having the same power to be scanned at plural places by controlling the reflectivity of the [0058] incident light 590, which is incident into the reflection/transmission surface of the light reflectivity/ transmittance control plates 510, 520, 530, 540, as one embodiment, the light reflectivity/ transmittance control plates 510, 520, 530, 540 are constituted to include light multiple division lenses 510 a, 520 a, 530 a, 540 a and a light incident angle control unit 555 coupled to the light multiple division lenses 510 a, 520 a, 530 a, 540 a, as shown in FIG. 2.
  • The light incident [0059] angle control unit 555 comprises a rotational shaft 512, 522, 532, 542, fixedly coupled to a selected portion of the circumference of the light multiple division lenses 510 a, 520 a, 530 a, 540 a, and a rotational motor 550, coupled to the rotational shaft 512, 522, 532, 542, for rotating the coupled rotational shaft 512, 522, 532, 542 in the clockwise or counterclockwise direction.
  • Hereinafter, described is a detailed constitution of the workpiece substrate multiple cutting apparatus to which the light multiple-splitting [0060] apparatus 500 having the aforementioned constitution and operation mechanism is applied with reference to the accompanying drawings of FIGS. 4, 5 and 6.
  • Referring to FIGS. 4 and 5, a substrate multiple-cutting [0061] apparatus 900 includes a light generating unit 100, a first light multiple-splitting unit 300, a crack generating unit 400, a second light multiple-splitting unit 600 and a mother substrate-transferring unit 750.
  • Specifically, the mother substrate-transferring [0062] unit 750 includes a transferring body 754 and a transferring body driving unit 762. More specifically, the transferring body 754 has a sufficient planar area to mount an assembled workpiece substrate 700 thereon. On the transferring body 754, the transferring body driving unit 752 is established to transfer the transferring body 754 along the x-axis direction of x-y-z coordinates.
  • Meanwhile, at places spaced apart by a certain distance outwardly along the z-axis direction from the mother [0063] substrate transferring unit 750, there are disposed the light generating unit 100 and a coolant supplying unit 200 for supplying a coolant to the crack generating unit 400. The light generating unit 100 and the coolant supplying unit 200 are coupled to their respective transferring units 110 and 255.
  • The transferring [0064] units 110 and 255 function to reciprocate the light generating unit 100 and the coolant supplying unit 200 at the same velocity in a direction parallel to the x-axis.
  • Meanwhile, the [0065] light generating unit 100 irradiates two light beams 810 and 803 toward the coolant supplying unit 200 from two portions thereof as shown in FIG. 6. Hereinafter, one of the two light beams as irradiated is defined as a first light beam 803 and the other is defined as a second light beam 801.
  • On a path through which the [0066] first light beam 803 passes, there is disposed a first light multiple-splitting unit 300, and on a path through which the second light beam 801, there is disposed a second light multiple-splitting unit 600.
  • Particularly, the first light multiple-splitting [0067] unit 300 includes plural light reflectivity/ transmittance control plates 310, 320, 330, 340, plural plate rotating units 312, 322, 332, 342 and a plate fixing case 380 as shown in FIG. 5.
  • First, the [0068] plate fixing case 380 has a through hole formed along its length direction and it is disposed between the light generating unit 100 and the coolant supplying unit 200. The first light beam 803 passes through the through hole of the plate fixing case 380.
  • Inside the [0069] plate fixing case 380, at least two light reflectivity/transmittance control plates are established. As one embodiment, FIG. 6 shows that four light reflectivity/ transmittance control plates 310, 320, 330, 340 are established.
  • The light reflectivity/[0070] transmittance control plates 310, 320, 330, 340 have a close relationship with the position of an LCD unit cell 710 formed in the assembled workpiece mother substrate 700. Particularly, the LCD unit cell 710 has two edges in the x-axis direction and two edges in the y-axis direction. Thus, in order to separate the LCD unit cell 710 from the assembled workpiece mother substrate 700, it is necessary to cut two x-directional lines and two y-directional lines.
  • At that point, in order to cut the two x-directional lines or the two y-directional lines using a single light beam at the same time, it is necessary to use two light reflectivity/transmittance control plates. [0071]
  • Thus, in order to cut four x-directional prescribed lines or four y-directional prescribed lines of four [0072] LCD unit cells 710 in a matrix configuration of 2 by 2 from the assembled workpiece mother substrate 700 using a single light beam at the same time, it is necessary to use four light reflectivity/transmittance control plates.
  • Similarly, an interval between the light reflectivity/[0073] transmittance control plates 310, 320, 330, 340 is precisely controlled such that the split light beams correspond to the four x-directional prescribed lines or four y-directional prescribed lines precisely
  • Meanwhile, the second light multiples-splitting [0074] unit 600 includes plural light reflectivity/ transmittance control plates 610, 620, 630, 640, plural plate rotating units 612, 622, 632, 642 and a plate fixing case 680 as shown in FIGS. 5 and 6.
  • First, the [0075] plate fixing case 680 has a through hole formed along its length direction and it is disposed between the light generating unit 100 and the coolant supplying unit 200. The second light beam 801 passes through the through hole of the plate fixing case 680.
  • Inside the [0076] plate fixing case 680, at least two light reflectivity/transmittance control plates are established. As one embodiment, FIG. 6 shows that four light reflectivity/ transmittance control plates 610, 620, 630, 640 are established.
  • In the same manner as in the first light reflectivity/[0077] transmittance control plates 310, 320, 330, 340, the second light reflectivity/ transmittance control plates 610, 620, 630, 640 are established to have a number sufficient to cut either four x-directional prescribed lines or four y-directional prescribed lines at the same time.
  • Meanwhile, between the first light multiple-splitting [0078] unit 300 and the second light multiple light-splitting unit 600, there is disposed the crack generating unit 400 The crack generating unit 400 functions to inject coolant onto locally heated prescribed lines of the assembled workpiece mother substrate 700.
  • To realize this, the [0079] crack generating unit 400 includes a coolant supply pipe 410 for transferring a coolant from the coolant supplying unit 200 to a position at which the coolant is being sprayed, and a coolant spraying nozzle 412, 422, 432, 442 for spraying the coolant transferred from the coolant supply pipe 410 onto the locally heated position.
  • Hereinafter, there is described a singulation method of the LCD unit cell from the assembled [0080] workpiece mother substrate 700 using the substrate multiple-splitting apparatus 900 in accordance with one embodiment of the present invention with reference to the accompanying drawings of FIGS. 7, 8, 9, and 10.
  • First, as shown in FIG. 7, in a state that a first large-sized [0081] mother glass substrate 720 for a thin film transistor (TFT) substrate and a second large-sized mother glass substrate 730 for a color filter substrate are aligned and attached with facing each other, and then a liquid crystal injecting process is completed, the attached workpiece mother substrate 700 is mounted on the transferring body 754 of the mother substrate transferring unit 750 (see FIG. 5) by a mother board transfer (not shown).
  • After that, the first light multiple-splitting [0082] unit 300, the crack generating unit 400 and the second light multiple-splitting unit 600 are aligned with at least two positions on a one-sided surface of the assembled workpiece mother substrate 700.
  • Afterwards, as shown in FIG. 7, the [0083] first light beam 803 is supplied into the first light multiple-splitting unit 300. The first light multiple-splitting unit 300 splits the first light beam 803 into uniform multiple light beams each having the same intensity and scans the split light beams onto the positions which are being cut so that the scanned portions are rapidly heated.
  • Thereafter, the rapidly heated portions are rapidly cooled by a [0084] coolant 802 sprayed from the crack generating unit 400, which is established to the rear of the first light multiple-splitting unit 300, so that a scribe crack is generated to a predetermined depth from the upper surface of the rapidly heated portion.
  • After that, the second [0085] light beam 801, split by the second light multiple-splitting unit 600, is irradiated onto the scribe crack to heat-expand the scribe crack portion locally, rapidly, so that the scribe crack portion is completely separated by the heat expansion. Thus, the x-directional prescribed lines 701 of the LCD unit cells 710 in the assembled workpiece mother substrate 700 are all cut.
  • Thereafter, as shown in FIGS. 9 and 10, in a state that the once split workpiece mother substrate is rotated horizontally by 90 degrees, y-directional [0086] prescribed lines 702 are cut by the first split light beam 803, the coolant 802 and the second split light beam 801, so that an LCD panel is manufactured.
  • Afterwards, the LCD panel is transferred into an LCD panel assembly manufacturing process and thus an LCD panel assembly is manufactured. [0087]
  • As described previously in detail according to the present invention, plural LCD unit cells formed in a single large-size mother glass substrate are concurrently cut by splitting a single incident light into plural light beams, so that time necessary for the singulation of the LCD unit from the mother glass substrate is substantially shortened. [0088]
  • Further, a single incident light is split into plural light beams to perform a cutting process at plural places, so that an apparatus for cutting LCD unit cells from the mother substrate is simplified. [0089]
  • While the present invention has been described in detail, it should be understood that various changes, substitutions and alterations can be made hereto without departing from the spirit and scope of the invention as defined by the appended claims. [0090]

Claims (3)

1-8. (Cancelled)
9. A cutting device comprising:
means for generating a first incident light in a first direction;
means for splitting the first incident light into a plurality of lights and directing the plurality of lights toward a target object; and
means for moving the means for splitting in a second direction different form the first direction such that the plurality of lights are scanned along a plurality of predetermined paths on the target object.
10. The cutting device of claim 9, wherein the second direction is perpendicular to the first direction.
US10/891,118 2001-06-21 2004-07-15 Method and apparatus for cutting a substrate into multiple pieces with a single irradiation of a laser beam Abandoned US20040262273A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/891,118 US20040262273A1 (en) 2001-06-21 2004-07-15 Method and apparatus for cutting a substrate into multiple pieces with a single irradiation of a laser beam

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020010035479A KR100700997B1 (en) 2001-06-21 2001-06-21 Method for cutting multiple substrate and apparatus for cutting multiple substrate
KR2001-35479 2001-06-21
US10/176,041 US6770842B2 (en) 2001-06-21 2002-06-21 Method and apparatus for cutting a substrate into multiple pieces with a single irradiation of a laser beam
US10/891,118 US20040262273A1 (en) 2001-06-21 2004-07-15 Method and apparatus for cutting a substrate into multiple pieces with a single irradiation of a laser beam

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/176,041 Continuation US6770842B2 (en) 2001-06-21 2002-06-21 Method and apparatus for cutting a substrate into multiple pieces with a single irradiation of a laser beam

Publications (1)

Publication Number Publication Date
US20040262273A1 true US20040262273A1 (en) 2004-12-30

Family

ID=19711187

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/176,041 Expired - Fee Related US6770842B2 (en) 2001-06-21 2002-06-21 Method and apparatus for cutting a substrate into multiple pieces with a single irradiation of a laser beam
US10/891,118 Abandoned US20040262273A1 (en) 2001-06-21 2004-07-15 Method and apparatus for cutting a substrate into multiple pieces with a single irradiation of a laser beam

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/176,041 Expired - Fee Related US6770842B2 (en) 2001-06-21 2002-06-21 Method and apparatus for cutting a substrate into multiple pieces with a single irradiation of a laser beam

Country Status (5)

Country Link
US (2) US6770842B2 (en)
JP (1) JP2003020237A (en)
KR (1) KR100700997B1 (en)
CN (1) CN100421860C (en)
TW (1) TW558551B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070211323A1 (en) * 2006-03-08 2007-09-13 Byoung-Hyun Jung Laser irradiation apparatus
US20100078417A1 (en) * 2008-09-29 2010-04-01 Anatoli Anatolyevich Abramov Laser separation of glass sheets

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030090325A (en) * 2002-05-23 2003-11-28 주식회사에스엘디 Method for cutting glass using laser beam and an apparatus therefor
CN100389485C (en) * 2003-12-27 2008-05-21 上海华虹(集团)有限公司 Method for producing integrated circuit sample section using laser
DE102004014276A1 (en) * 2004-03-22 2005-10-13 Grenzebach Maschinenbau Gmbh Longitudinal cutting of moving flat glass strips from float glass plates with warming of the plates by a laser beam followed by breakage of the strips off the plates
JP4977391B2 (en) * 2006-03-27 2012-07-18 日本電気株式会社 Laser cutting method, display device manufacturing method, and display device
KR100817276B1 (en) * 2006-11-03 2008-03-27 삼성전기주식회사 Dicing device and dicing method thereof
JP2008200694A (en) * 2007-02-19 2008-09-04 Disco Abrasive Syst Ltd Method for machining wafer, and laser beam machining apparatus
JP5727518B2 (en) * 2011-01-05 2015-06-03 清之 近藤 Beam processing equipment
CN102627396A (en) * 2011-06-14 2012-08-08 胡伟 Glass/ceramic deep processing molding method and molding equipment
CN105234560B (en) * 2015-09-30 2017-10-27 厦门市三安光电科技有限公司 A kind of cutting method of semiconductor chip
EP3470936B1 (en) * 2017-10-16 2020-06-03 The Swatch Group Research and Development Ltd Method for cutting timepiece glass
JP6763044B2 (en) * 2019-03-06 2020-09-30 川崎重工業株式会社 Light guide device
CN111940892B (en) * 2019-05-14 2023-06-02 雷科股份有限公司 Fast switching optical path architecture for dicing low dielectric value material wafers

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3932726A (en) * 1972-10-12 1976-01-13 Glaverbel-Mecaniver S.A. Glass cutting
US4403134A (en) * 1981-03-17 1983-09-06 Trumpf Gmbh & Co. Method and apparatus for cutting by means of a laser beam
US5254833A (en) * 1991-01-11 1993-10-19 Soei Tsusho Company, Ltd. Brittle material cleavage-cutting apparatus
US5798867A (en) * 1997-02-04 1998-08-25 Miyachi Technos Corporation Laser beam-splitting apparatus
US5948291A (en) * 1997-04-29 1999-09-07 General Scanning, Inc. Laser beam distributor and computer program for controlling the same
US6130401A (en) * 1998-07-29 2000-10-10 Lg Electronics Inc. Device and method for machining transparent medium by laser
US6211488B1 (en) * 1998-12-01 2001-04-03 Accudyne Display And Semiconductor Systems, Inc. Method and apparatus for separating non-metallic substrates utilizing a laser initiated scribe
US6252197B1 (en) * 1998-12-01 2001-06-26 Accudyne Display And Semiconductor Systems, Inc. Method and apparatus for separating non-metallic substrates utilizing a supplemental mechanical force applicator
US6259058B1 (en) * 1998-12-01 2001-07-10 Accudyne Display And Semiconductor Systems, Inc. Apparatus for separating non-metallic substrates
US6300593B1 (en) * 1999-12-07 2001-10-09 First Solar, Llc Apparatus and method for laser scribing a coated substrate
US6660963B2 (en) * 1999-11-24 2003-12-09 Applied Photonics, Inc. Method and apparatus for separating non-metallic materials

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02263590A (en) * 1989-04-04 1990-10-26 Matsushita Electric Ind Co Ltd Laser beam machine
JPH091369A (en) * 1995-04-14 1997-01-07 Hitachi Cable Ltd Method and device for splitting substrate
WO1997029509A1 (en) * 1996-02-09 1997-08-14 Philips Electronics N.V. Laser separation of semiconductor elements formed in a wafer of semiconductor material
JPH10323779A (en) * 1997-03-25 1998-12-08 Hitachi Cable Ltd Method for cutting si substrate
WO2000075983A1 (en) * 1999-06-08 2000-12-14 Kulicke & Soffa Investments, Inc. A method for dicing wafers with laser scribing
JP4390937B2 (en) * 1999-11-25 2009-12-24 三星ダイヤモンド工業株式会社 Glass plate dividing method and apparatus
KR20010049021A (en) * 1999-11-30 2001-06-15 윤종용 Apparatus for cutting glass substrate and method for cutting thereof
KR100347955B1 (en) * 1999-12-29 2002-08-09 엘지전자주식회사 A apparatus for cut-off of glass
JP2002172479A (en) * 2000-09-20 2002-06-18 Seiko Epson Corp Laser parting method, laser parting device, manufacturing method for liquid crystal device, and manufacturing device for liquid crystal

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3932726A (en) * 1972-10-12 1976-01-13 Glaverbel-Mecaniver S.A. Glass cutting
US4403134A (en) * 1981-03-17 1983-09-06 Trumpf Gmbh & Co. Method and apparatus for cutting by means of a laser beam
US5254833A (en) * 1991-01-11 1993-10-19 Soei Tsusho Company, Ltd. Brittle material cleavage-cutting apparatus
US5798867A (en) * 1997-02-04 1998-08-25 Miyachi Technos Corporation Laser beam-splitting apparatus
US5948291A (en) * 1997-04-29 1999-09-07 General Scanning, Inc. Laser beam distributor and computer program for controlling the same
US6130401A (en) * 1998-07-29 2000-10-10 Lg Electronics Inc. Device and method for machining transparent medium by laser
US6211488B1 (en) * 1998-12-01 2001-04-03 Accudyne Display And Semiconductor Systems, Inc. Method and apparatus for separating non-metallic substrates utilizing a laser initiated scribe
US6252197B1 (en) * 1998-12-01 2001-06-26 Accudyne Display And Semiconductor Systems, Inc. Method and apparatus for separating non-metallic substrates utilizing a supplemental mechanical force applicator
US6259058B1 (en) * 1998-12-01 2001-07-10 Accudyne Display And Semiconductor Systems, Inc. Apparatus for separating non-metallic substrates
US6660963B2 (en) * 1999-11-24 2003-12-09 Applied Photonics, Inc. Method and apparatus for separating non-metallic materials
US6300593B1 (en) * 1999-12-07 2001-10-09 First Solar, Llc Apparatus and method for laser scribing a coated substrate

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070211323A1 (en) * 2006-03-08 2007-09-13 Byoung-Hyun Jung Laser irradiation apparatus
US7875828B2 (en) 2006-03-08 2011-01-25 Samsung Mobile Display Co., Ltd. Laser irradiation apparatus
US20100078417A1 (en) * 2008-09-29 2010-04-01 Anatoli Anatolyevich Abramov Laser separation of glass sheets
US8051679B2 (en) 2008-09-29 2011-11-08 Corning Incorporated Laser separation of glass sheets

Also Published As

Publication number Publication date
US20020195434A1 (en) 2002-12-26
JP2003020237A (en) 2003-01-24
CN100421860C (en) 2008-10-01
KR100700997B1 (en) 2007-03-28
TW558551B (en) 2003-10-21
US6770842B2 (en) 2004-08-03
KR20020096673A (en) 2002-12-31
CN1393317A (en) 2003-01-29

Similar Documents

Publication Publication Date Title
US6770842B2 (en) Method and apparatus for cutting a substrate into multiple pieces with a single irradiation of a laser beam
US6563082B2 (en) Laser cutting method, laser cutting apparatus, and method and apparatus for manufacturing liquid crystal device
US7772522B2 (en) Method for scribing substrate of brittle material and scriber
KR102165804B1 (en) Method and device for laser-based machining of flat substrates
US6713720B2 (en) Method for cutting a non-metallic substrate
JP2003154517A (en) Method and equipment for fracturing fragile material and manufacturing method for electronic component
CN101844275A (en) Method for dividing substrate
JP2003002677A (en) Support table for laser cutting, apparatus and method for laser cutting, and method for producing liquid crystal panel
KR20140138456A (en) Laser glass cutting system and method for cutting glass using the same
JP2007015169A (en) Scribing formation method, scribing formation apparatus, and multilayer substrate
KR20010017690A (en) Apparatus for cutting glass with laser and method for cutting glass using the same
KR100631304B1 (en) Apparatus and method for cutting glass plate using laser beam
KR100576089B1 (en) Method for cutting LCD unit cell
KR20000038520A (en) Device and method for cutting using laser
CN110277332B (en) Laser processing apparatus
KR20150056399A (en) Device for glass cutting
KR100514075B1 (en) Cutting device for substrate and liquid crystal display panel using laser beam
JP3925092B2 (en) Substrate cleaving method, substrate cleaving apparatus, and liquid crystal panel manufacturing method
KR100634750B1 (en) Laser cutting equipment
JP2007090760A (en) Method for splitting substrate and method for producing electro-optical device
JP2003137578A (en) Method and device for splitting brittle material and method of manufacturing electronic component
KR100603210B1 (en) apparatus for cutting glass using laser and method for cutting glass using the same
JP2002255581A5 (en)

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION