US20050063844A1 - Package-type fluidic apparatus - Google Patents

Package-type fluidic apparatus Download PDF

Info

Publication number
US20050063844A1
US20050063844A1 US10/941,574 US94157404A US2005063844A1 US 20050063844 A1 US20050063844 A1 US 20050063844A1 US 94157404 A US94157404 A US 94157404A US 2005063844 A1 US2005063844 A1 US 2005063844A1
Authority
US
United States
Prior art keywords
housings
package
sucking
fluidic apparatus
type fluidic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/941,574
Inventor
Kazuaki Sato
Atsushi Fukui
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anest Iwata Corp
Original Assignee
Anest Iwata Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anest Iwata Corp filed Critical Anest Iwata Corp
Assigned to ANEST IWATA CORPORATION reassignment ANEST IWATA CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: FUKUI, ATSUSHI, SATO, KAZUAKI
Publication of US20050063844A1 publication Critical patent/US20050063844A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B23/00Pumping installations or systems
    • F04B23/04Combinations of two or more pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/007General arrangements of parts; Frames and supporting elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/04Heating; Cooling; Heat insulation

Definitions

  • the present invention relates to a package-type fluidic apparatus in which a fluid machine such as a scroll compressor, a vacuum pump, an expander or a blower is connected to a drive source.
  • a fluid machine such as a scroll compressor, a vacuum pump, an expander or a blower is connected to a drive source.
  • a single high-output compressor is included within the package, or a plurality of low-output compressors are piled up to form a high-output compressor in a package.
  • a plurality of compressors such as four are piled up to constitute a single package compressor. When it operates with about 100% of compression air, all the four compressors operate.
  • One of the four stops with about 70% of air consumption; two stop with less than 50%; three stop with further decrease; and all stop with further decrease.
  • electric power consumption is corresponding to the compression air consumption.
  • Electric power consumption decreases compared with a single high-output compressor. If the compressor stops owing to any cause, capability for producing compression air becomes null immediately in the single high-output compressor to result in stop of all machines in which compression air is used, thereby increasing damage in the factory.
  • a plurality of compressors even if one stops, it will avoid the risk that operation completely stops, as the others continue to operate.
  • a plurality of compressors may preferably be employed.
  • a compressor and its drive source form a set of subsidiary unit.
  • a required area increases to unable its location.
  • a plurality of subsidiary units are vertically piled.
  • a package type fluidic apparatus having two housings each with a chamber that has a fluid-machine unit in which a fluid machine is connected to a drive source. Between the two housings is a sucking path. To allow each of the housings to communicate with the sucking path a sucking hole is formed in an inner side wall of each of the housings. The rear wall of each of the housings has an exhaust duct with an exhaust fan.
  • FIG. 1 is a front perspective view of a best-mode embodiment of a package-type fluidic apparatus according to the present invention
  • FIG. 2 is a front elevational view of FIG. 1 , removing right and left front closing plates of a housing, electric wires to a motor and conduits to the fluid machine;
  • FIG. 3 is a front upper perspective view of FIG. 1 , removing a top plate, the closing plates and an inspection door;
  • FIG. 4 is a top plan view in which the top plate is removed.
  • FIG. 5 is a vertical sectional view taken along the line V-V in FIG. 2 .
  • Two housings 2 , 2 each of which has four chambers 1 piled up are disposed with a space which is a sucking path 3 .
  • the housings 2 , 2 have the same shape and size, and the four chambers 1 have the same shape and size.
  • the sucking path 3 is closed by a removable inspection door 5 between front walls 4 , 4 over the housings 2 , 2 .
  • the upper part of the sucking path 3 is closed by an operation-display plate 5 b .
  • the rear end of the sucking path 3 opens, and external air is taken in through the rear opening.
  • the side ends of the operation-display plate 5 b are mounted with screws to the opposing ends of the housings 2 , 2 , and the operation-display plate 5 b can be removed, if required.
  • the inspection door 5 is removable by pushing down a slide latch 5 a with a finger to open, so that sucking filters of fluid machines 8 in the housings 2 , 2 are inspected for maintenance.
  • a motor 7 and the fluid machine 8 such as a compressor or a decompression device behind the motor 7 are connected to pulleys 9 , 10 and a belt 11 to form a fluid machine unit 12 .
  • a sucking hole 14 is formed through the inner side wall 13 to allow each of the housings 2 , 2 to communicate with the sucking path 3 .
  • an exhaust hole 16 is formed in a rear wall 15 .
  • a tall exhaust duct 17 is provided along the four exhaust holes 16 vertically arranged behind the housing 2 .
  • An electric exhaust fan 18 is provided in the top wall of the exhaust duct 17 .
  • the motor 7 and fluid machine 8 in the chamber 1 are cooled with external air, thereby avoiding overheat generated with continuous long-time operation and preventing damage to sliding parts.
  • the motor 7 and fluid machine 8 in the chamber 1 can be inspected and maintained by removing a closing plate at the rear end of the sucking path 3 and then removing the inner side wall 13 facing the sucking path.

Abstract

A package type fluidic apparatus having two housings. Each of two housings has a plurality of chambers. A drive source and a fluid machine constitute a fluid machine unit which is included in each of the chambers. Between the housings, there is a sucking path, and a sucking hole through the inner side wall of the housing is formed to allow the housing to communicate with the sucking path. An exhaust duct having an exhaust fan is connected to the rear wall of each of the housings. The structure facilitates inspection and maintenance of the fluid machine unit.

Description

    BACKGROUND OF THE INVENTION
  • The present invention relates to a package-type fluidic apparatus in which a fluid machine such as a scroll compressor, a vacuum pump, an expander or a blower is connected to a drive source.
  • To reduce noise from a compressor and a drive source for driving it, they are often disposed within a package. A single high-output compressor is included within the package, or a plurality of low-output compressors are piled up to form a high-output compressor in a package.
  • In particular, when a compressor is used in a factory, in view of the maximum air consumption, a single high-output compressor for producing it is used within a package.
  • However, when air produced by a high-output compressor is used in a factory, the rate of operation is about 100% all day long, while it decreases to less than 50% depending on time in a day. According to a season in a year, compressed air consumption is variable and power source for driving a compressor cannot frequently be switched on and off when a high-output compressor is used.
  • In a medium-sized or large machine in which a large air tank is difficult to put, as frequency of starting and stopping increases, it becomes likely to generate heat during starting of a motor, to decrease life of an electromagnetic switch and to cause mechanical problem of a compressor, and a motor starting current of a compressor becomes five to six times as that of rated operation to involve decrease in power source. In a large machine, voltage of power source decreases owing to the starting current and adverse effects to transforming and distribution installation so as not to enable on/off of the power source frequently.
  • To solve such problems, for example, when output of the compressor is 15 kW, four compressors having output of 3.7 kW are included in a package. The compressors start with staggered time and the first, second, third and fourth compressors start in order to avoid the problem.
  • Depending on air consumption, it is possible to determine the optimum number of operation. Specifically, a plurality of compressors such as four are piled up to constitute a single package compressor. When it operates with about 100% of compression air, all the four compressors operate. One of the four stops with about 70% of air consumption; two stop with less than 50%; three stop with further decrease; and all stop with further decrease.
  • Thus, electric power consumption is corresponding to the compression air consumption. Electric power consumption decreases compared with a single high-output compressor. If the compressor stops owing to any cause, capability for producing compression air becomes null immediately in the single high-output compressor to result in stop of all machines in which compression air is used, thereby increasing damage in the factory.
  • On the contrary, in a plurality of compressors, even if one stops, it will avoid the risk that operation completely stops, as the others continue to operate. A plurality of compressors may preferably be employed.
  • In a plurality of compressors, a compressor and its drive source form a set of subsidiary unit. However, when a plurality of the subsidiary units are disposed horizontally or stepwise, a required area increases to unable its location. To decrease the area, a plurality of subsidiary units are vertically piled.
  • It is possible to pile them up, but is limited by height of a room and by how to transport. For maintenance of the taller compressor, a ladder must be used thereby increasing work of maintenance and involving danger.
  • In view of the disadvantages, it is an object of the invention to provide a package-type fluidic apparatus that can be maintained without ladders or without increase in area thereby facilitating inspection and maintenance of the fluid machine, for example, in case of a scroll compressor, enabling a fixed scroll to be disassembled, tip seals of fixed and orbiting scrolls to be replaced, a bearing to be greased up and a subsidiary unit to be exchanged easily.
  • The above and other features and advantages of the invention will become more apparent from the following description with respect to an embodiment as shown in appended drawings.
  • SUMMARY OF THE INVENTION
  • A package type fluidic apparatus having two housings each with a chamber that has a fluid-machine unit in which a fluid machine is connected to a drive source. Between the two housings is a sucking path. To allow each of the housings to communicate with the sucking path a sucking hole is formed in an inner side wall of each of the housings. The rear wall of each of the housings has an exhaust duct with an exhaust fan.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a front perspective view of a best-mode embodiment of a package-type fluidic apparatus according to the present invention;
  • FIG. 2 is a front elevational view of FIG. 1, removing right and left front closing plates of a housing, electric wires to a motor and conduits to the fluid machine;
  • FIG. 3 is a front upper perspective view of FIG. 1, removing a top plate, the closing plates and an inspection door;
  • FIG. 4 is a top plan view in which the top plate is removed; and
  • FIG. 5 is a vertical sectional view taken along the line V-V in FIG. 2.
  • DETAILED DESCRIPTION OF PREFERRED EMBODIMENT
  • Two housings 2,2 each of which has four chambers 1 piled up are disposed with a space which is a sucking path 3. The housings 2,2 have the same shape and size, and the four chambers 1 have the same shape and size.
  • The sucking path 3 is closed by a removable inspection door 5 between front walls 4,4 over the housings 2,2. The upper part of the sucking path 3 is closed by an operation-display plate 5 b. The rear end of the sucking path 3 opens, and external air is taken in through the rear opening.
  • The side ends of the operation-display plate 5 b are mounted with screws to the opposing ends of the housings 2,2, and the operation-display plate 5 b can be removed, if required. The inspection door 5 is removable by pushing down a slide latch 5 a with a finger to open, so that sucking filters of fluid machines 8 in the housings 2,2 are inspected for maintenance.
  • On a bottom plate 6 of each of the chambers 1, a motor 7 and the fluid machine 8 such as a compressor or a decompression device behind the motor 7 are connected to pulleys 9,10 and a belt 11 to form a fluid machine unit 12.
  • In the chamber 1 of each of the housings 2,2, a sucking hole 14 is formed through the inner side wall 13 to allow each of the housings 2,2 to communicate with the sucking path 3. In the chamber 1 of each of the housings 2,2, an exhaust hole 16 is formed in a rear wall 15. A tall exhaust duct 17 is provided along the four exhaust holes 16 vertically arranged behind the housing 2. An electric exhaust fan 18 is provided in the top wall of the exhaust duct 17.
  • By driving the exhaust fans 18,18 and actuating the fluid machine units 12 positioned depending on gas volume to be pressurized or depressurized, a place where the gas is utilized and reaching time to a predetermined pressure, external air flows into the chamber 1 through the sucking path 3 and the sucking opening 14 and moves rearward. The air is discharged from the exhaust fan 18 through the exhaust duct 17.
  • Thus, the motor 7 and fluid machine 8 in the chamber 1 are cooled with external air, thereby avoiding overheat generated with continuous long-time operation and preventing damage to sliding parts.
  • The motor 7 and fluid machine 8 in the chamber 1 can be inspected and maintained by removing a closing plate at the rear end of the sucking path 3 and then removing the inner side wall 13 facing the sucking path.
  • The foregoing merely relates to an embodiment of the invention. Various changes and modifications may be made by a person skilled in the art without departing from the scope of claims wherein:

Claims (5)

1. A package-type fluidic apparatus comprising: two housings each comprising a chamber that has a fluid-machine unit in which a fluid machine is connected to a drive source;
a sucking path between the two housings;
a sucking hole formed in an inner side wall of each of the housings to allow each of the housings to communicate with the sucking path; and
an exhaust duct at a rear wall of each of the housings, said exhaust duct having an exhaust fan.
2. A package-type fluidic apparatus as claimed in claim 1 wherein the two housings have substantially the same shape and size.
3. A package-type fluidic apparatus as claimed in claim 1 wherein a plurality of chambers are piled up in each of the housings, the exhaust duct being connected to rear walls of said plurality of chambers.
4. A package-type fluidic apparatus as claimed in claim 1 wherein the sucking path opens at a rear end between the housings.
5. A package-type fluidic apparatus as claimed in claim 1 wherein a front end of the sucking path is closed by an operation display plate and a removable inspection door between the housings.
US10/941,574 2003-09-22 2004-09-15 Package-type fluidic apparatus Abandoned US20050063844A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-330494 2003-09-22
JP2003330494A JP3946678B2 (en) 2003-09-22 2003-09-22 Package type fluid machinery

Publications (1)

Publication Number Publication Date
US20050063844A1 true US20050063844A1 (en) 2005-03-24

Family

ID=34191432

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/941,574 Abandoned US20050063844A1 (en) 2003-09-22 2004-09-15 Package-type fluidic apparatus

Country Status (6)

Country Link
US (1) US20050063844A1 (en)
EP (1) EP1517043B1 (en)
JP (1) JP3946678B2 (en)
KR (1) KR100584653B1 (en)
CN (1) CN100371594C (en)
DE (1) DE602004017945D1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160032943A1 (en) * 2014-08-04 2016-02-04 The Scott Fetzer Company/Powerex Division Compressor system
US20180187684A1 (en) * 2015-07-03 2018-07-05 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Package-type air-cooled screw compressor
US10227981B2 (en) 2013-04-19 2019-03-12 Hitachi Industrial Equipment Systems Co., Ltd. Package type fluid machine
US10704552B2 (en) * 2016-02-02 2020-07-07 Powerex/Iwata Air Technology Inc. Vacuum system
USD899463S1 (en) * 2018-09-12 2020-10-20 Sulzer Management Ag Compressor
US20210215147A1 (en) * 2018-09-13 2021-07-15 Hitachi Industrial Equipment Systems Co., Ltd. Package Type Fluid Machine

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5119558B2 (en) * 2005-10-03 2013-01-16 オリオン機械株式会社 Pneumatic equipment station and storage box for pneumatic equipment
JP5041849B2 (en) * 2007-04-02 2012-10-03 オリオン機械株式会社 Exhaust temperature control system for pneumatic equipment station
JP4864798B2 (en) * 2007-04-02 2012-02-01 オリオン機械株式会社 Shelf structure and pneumatic device storage box
CN101776060A (en) * 2010-01-20 2010-07-14 常州亿晶光电科技有限公司 Cooling device for vacuum pump of solar-cell automatic welding machine
JP5707280B2 (en) * 2011-08-24 2015-04-22 株式会社日立産機システム Package type compressor.
JP5728738B2 (en) * 2014-01-08 2015-06-03 オリオン機械株式会社 Package type rotary pump unit
JP2016145557A (en) * 2015-02-09 2016-08-12 アネスト岩田株式会社 Package type fluid machinery
CN107636307B (en) * 2015-05-29 2020-12-29 纳博特斯克有限公司 Air compressor
KR102283382B1 (en) * 2017-06-26 2021-07-29 세메스 주식회사 Vehicle maintenance lift
GB2610876A (en) * 2021-09-21 2023-03-22 Scantech Offshore Ltd Air compressor

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5688169A (en) * 1996-03-06 1997-11-18 Lucent Technologies Inc. Electrical equipment cabinet cooling
US6000623A (en) * 1998-01-15 1999-12-14 International Business Machines Corporation System packaging for high performance computer applications
US20030050003A1 (en) * 2001-09-07 2003-03-13 International Business Machines Corporation Air flow management system for an internet data center
US6594148B1 (en) * 2002-01-16 2003-07-15 Cisco Technology, Inc. Airflow system
US6597571B2 (en) * 2001-03-30 2003-07-22 Nec Corporation Electric system with safety device against spread of fire occurred inside casing
US6611428B1 (en) * 2002-08-12 2003-08-26 Motorola, Inc. Cabinet for cooling electronic modules
US20060172685A1 (en) * 2004-08-26 2006-08-03 O'brien Paul Internal environmental control system and uses thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1078545A (en) * 1953-03-30 1954-11-18 Fabrications Ind Pour Le Chauf Fan device intended in particular for the air conditioning of premises and heating installation made using this device
US3242686A (en) * 1964-10-20 1966-03-29 Clark Equipment Co Unitary machine room
US4007874A (en) * 1975-08-14 1977-02-15 Wilbert Laudner Heating system
JPH0249458A (en) * 1988-08-11 1990-02-19 Hitachi Ltd Cooling water supply device for lsi
JPH07113359B2 (en) * 1989-08-19 1995-12-06 トキコ株式会社 Compressor
JP4077921B2 (en) 1998-02-19 2008-04-23 株式会社日立製作所 air compressor
JP4014128B2 (en) 2001-07-26 2007-11-28 デンヨー株式会社 air compressor
KR100508140B1 (en) * 2002-06-28 2005-08-10 가부시끼가이샤 히다치 세이사꾸쇼 Packaged compressor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5688169A (en) * 1996-03-06 1997-11-18 Lucent Technologies Inc. Electrical equipment cabinet cooling
US6000623A (en) * 1998-01-15 1999-12-14 International Business Machines Corporation System packaging for high performance computer applications
US6597571B2 (en) * 2001-03-30 2003-07-22 Nec Corporation Electric system with safety device against spread of fire occurred inside casing
US20030050003A1 (en) * 2001-09-07 2003-03-13 International Business Machines Corporation Air flow management system for an internet data center
US6594148B1 (en) * 2002-01-16 2003-07-15 Cisco Technology, Inc. Airflow system
US6611428B1 (en) * 2002-08-12 2003-08-26 Motorola, Inc. Cabinet for cooling electronic modules
US20060172685A1 (en) * 2004-08-26 2006-08-03 O'brien Paul Internal environmental control system and uses thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10227981B2 (en) 2013-04-19 2019-03-12 Hitachi Industrial Equipment Systems Co., Ltd. Package type fluid machine
US20160032943A1 (en) * 2014-08-04 2016-02-04 The Scott Fetzer Company/Powerex Division Compressor system
US10072673B2 (en) * 2014-08-04 2018-09-11 Powerex-Iwata Air Technology, Inc. Compressor system
US20180187684A1 (en) * 2015-07-03 2018-07-05 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Package-type air-cooled screw compressor
US10920779B2 (en) * 2015-07-03 2021-02-16 Kobe Steel, Ltd. Package-type air-cooled screw compressor having a cooling air exhaust opening in the package with a duct extended downward with a lower-end inlet placed not viewable from the center position of the compressor
US10704552B2 (en) * 2016-02-02 2020-07-07 Powerex/Iwata Air Technology Inc. Vacuum system
USD899463S1 (en) * 2018-09-12 2020-10-20 Sulzer Management Ag Compressor
US20210215147A1 (en) * 2018-09-13 2021-07-15 Hitachi Industrial Equipment Systems Co., Ltd. Package Type Fluid Machine
US11898544B2 (en) * 2018-09-13 2024-02-13 Hitachi Industrial Equipment Systems Co., Ltd. Package type fluid machine

Also Published As

Publication number Publication date
CN100371594C (en) 2008-02-27
EP1517043A2 (en) 2005-03-23
EP1517043B1 (en) 2008-11-26
EP1517043A3 (en) 2006-05-03
KR100584653B1 (en) 2006-05-30
DE602004017945D1 (en) 2009-01-08
CN1601082A (en) 2005-03-30
JP3946678B2 (en) 2007-07-18
KR20050029691A (en) 2005-03-28
JP2005098147A (en) 2005-04-14

Similar Documents

Publication Publication Date Title
EP1517043B1 (en) Package-type fluidic apparatus
JP5899150B2 (en) Package type fluid machinery
US6364642B1 (en) Rotary piston machine with three-blade rotors
EP1865200A4 (en) Hybrid compressor
JP2008255799A (en) Rotary compressor and its operation control method
TW200801347A (en) Axial-flow fan
KR100837143B1 (en) Packaged compressor
JP4255765B2 (en) Package type compressor
US20040115063A1 (en) Scroll compressor
JP2008111417A (en) Air compression device
JP2008088845A (en) Compressor
JP4996142B2 (en) Package type compressor
KR100757444B1 (en) Refrigerator
KR102592232B1 (en) Air cooling system for fluidic machine
JP2012184702A (en) Package type compressor
JP6986638B2 (en) Package type fluid machine
JP2011099386A (en) Booster compressor
AIR Reciprocating Compressors
JP5345719B2 (en) Package type compressor with air dryer
CN112292529B (en) Box type fluid machinery
JPH0571472A (en) Gas compressor
WO2011125681A1 (en) Booster compressor integral with motor
KR100414122B1 (en) Noise decrease case for compressor
JPH04148088A (en) Closed type compressor
JP2013167251A (en) Booster compressor

Legal Events

Date Code Title Description
AS Assignment

Owner name: ANEST IWATA CORPORATION, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SATO, KAZUAKI;FUKUI, ATSUSHI;REEL/FRAME:015353/0897

Effective date: 20040830

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION