US20050094241A1 - Electromechanical micromirror devices and methods of manufacturing the same - Google Patents

Electromechanical micromirror devices and methods of manufacturing the same Download PDF

Info

Publication number
US20050094241A1
US20050094241A1 US10/698,620 US69862003A US2005094241A1 US 20050094241 A1 US20050094241 A1 US 20050094241A1 US 69862003 A US69862003 A US 69862003A US 2005094241 A1 US2005094241 A1 US 2005094241A1
Authority
US
United States
Prior art keywords
micromirror
substrate
circuits
forming
array
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/698,620
Inventor
Fusao Ishii
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US10/698,620 priority Critical patent/US20050094241A1/en
Priority to PCT/US2004/035974 priority patent/WO2005046206A2/en
Priority to JP2006538296A priority patent/JP4586146B2/en
Priority to US11/121,543 priority patent/US7268932B2/en
Publication of US20050094241A1 publication Critical patent/US20050094241A1/en
Priority to US11/136,041 priority patent/US7304783B2/en
Priority to US11/183,216 priority patent/US7215460B2/en
Priority to US11/187,248 priority patent/US7375872B2/en
Priority to US11/600,625 priority patent/US7782523B2/en
Priority to US11/728,553 priority patent/US7646527B2/en
Priority to US11/821,955 priority patent/US7573633B2/en
Priority to US11/823,947 priority patent/US7595927B2/en
Priority to US11/823,942 priority patent/US20080007576A1/en
Priority to US11/827,552 priority patent/US7542197B2/en
Priority to US11/827,902 priority patent/US7880736B2/en
Priority to US11/893,696 priority patent/US7492378B2/en
Priority to US11/893,660 priority patent/US7948505B2/en
Priority to US11/894,246 priority patent/US7605971B2/en
Priority to US11/894,232 priority patent/US20080074562A1/en
Priority to US11/900,540 priority patent/US20080088651A1/en
Priority to US12/004,641 priority patent/US7956319B2/en
Priority to US12/069,837 priority patent/US7746538B2/en
Priority to US12/156,261 priority patent/US7796321B2/en
Priority to US12/220,526 priority patent/US7643195B2/en
Priority to US12/228,728 priority patent/US8282221B2/en
Priority to US12/231,768 priority patent/US8061854B2/en
Priority to US12/231,909 priority patent/US8619352B2/en
Priority to US12/231,908 priority patent/US7787172B2/en
Priority to US12/231,922 priority patent/US8194305B2/en
Priority to US12/231,911 priority patent/US8238019B2/en
Priority to US12/231,962 priority patent/US7826126B2/en
Priority to US12/286,800 priority patent/US8157389B2/en
Priority to US12/286,585 priority patent/US8061856B2/en
Priority to US12/286,804 priority patent/US8462421B2/en
Priority to US12/286,590 priority patent/US20090033878A1/en
Priority to US12/286,801 priority patent/US8270061B2/en
Priority to US12/286,816 priority patent/US8228593B2/en
Priority to US12/286,806 priority patent/US20090103054A1/en
Priority to US12/286,807 priority patent/US7817330B2/en
Priority to US12/286,838 priority patent/US8064125B2/en
Priority to US12/286,805 priority patent/US7869115B2/en
Priority to US12/291,921 priority patent/US7973994B2/en
Priority to US12/291,915 priority patent/US8179591B2/en
Priority to US12/315,794 priority patent/US7969640B2/en
Priority to US12/316,402 priority patent/US7706048B2/en
Priority to US12/378,656 priority patent/US7933060B2/en
Priority to US12/378,655 priority patent/US7755830B2/en
Priority to US12/378,658 priority patent/US7760415B2/en
Priority to US12/378,938 priority patent/US7911680B2/en
Priority to US12/381,434 priority patent/US20090195858A1/en
Priority to US12/381,446 priority patent/US20090207324A1/en
Priority to US12/381,484 priority patent/US20090207164A1/en
Priority to US12/381,581 priority patent/US20090207325A1/en
Priority to US12/381,586 priority patent/US8238013B2/en
Priority to US12/381,580 priority patent/US20090180038A1/en
Priority to US12/381,587 priority patent/US8858811B2/en
Priority to US12/381,635 priority patent/US8350790B2/en
Priority to US12/381,591 priority patent/US8493298B2/en
Priority to US12/381,563 priority patent/US20090174810A1/en
Priority to US12/381,590 priority patent/US8432341B2/en
Priority to US12/381,812 priority patent/US7916381B2/en
Priority to US12/383,701 priority patent/US7876488B2/en
Priority to US12/383,619 priority patent/US20090225071A1/en
Priority to US12/383,621 priority patent/US8154474B2/en
Priority to US12/383,620 priority patent/US7733558B2/en
Priority to US12/383,711 priority patent/US7944605B2/en
Priority to US12/383,676 priority patent/US20090231496A1/en
Priority to US12/384,021 priority patent/US7969395B2/en
Priority to US12/586,268 priority patent/US8081371B2/en
Priority to US12/587,626 priority patent/US20100079685A1/en
Priority to US12/587,663 priority patent/US8228594B2/en
Priority to US12/587,628 priority patent/US8351107B2/en
Priority to US12/589,907 priority patent/US20100046061A1/en
Priority to US12/590,053 priority patent/US8064123B2/en
Priority to US12/590,372 priority patent/US8228595B2/en
Priority to US12/590,754 priority patent/US8045254B2/en
Priority to US12/590,913 priority patent/US7957050B2/en
Priority to US12/804,112 priority patent/US8199394B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • G02B26/0833Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD
    • G02B26/0841Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD the reflecting element being moved or deformed by electrostatic means

Definitions

  • This invention relates to electromechanical micromirror devices and methods of manufacturing the same. When fabricated in an array, such devices can be used as a spatial light modulator.
  • Electromechanical micromirror devices have drawn considerable interest because of their application as spatial light modulators (SLMs).
  • SLMs spatial light modulators
  • a spatial light modulator requires an array of a relatively large number of such micromirror devices. In general, the number of devices required ranges from 60,000 to several million for each SLM.
  • SLMs spatial light modulators
  • U.S. Pat. No. 4,592,628 An example of an early generation prior art device is disclosed in U.S. Pat. No. 4,592,628.
  • U.S. Pat. No. 4,592,628 describes an array of light reflecting devices on a substrate. Each device comprises a hollow post and a deflectable polygonal mirror attached thereto. Each mirror acts as a deflectable cantilever beam. The mirrors are deflected by a beam of electrons from a cathode ray tube. As a result, the substrate does not contain any addressing circuits.
  • a 1st generation Texas Instruments, Inc. (TI) device is described in U.S. Pat. No. 4,662,746.
  • a micromirror is suspended by 1 or 2 hinges. If suspended by 1 hinge, the micromirror deflects like a cantilever beam. If suspended by 2 hinges, the micromirror deflects like a torsion beam.
  • Addressing electrodes are located below the micromirrors and addressing circuits are located at the same level in the substrate as the addressing electrodes.
  • each mirror is provided with 2 addressing electrodes and 2 landing electrodes.
  • the landing electrodes soften the landing of the mirrors and are also used to reset the mirrors by a suitable voltage sequence. The use of these landing electrodes allows the mirrors to function as a bistable device.
  • a 2nd generation TI device is described in U.S. Pat. No. 5,583,688.
  • a 2nd generation TI device is one in which the torsion hinge is at a different level than the reflective mirror. As described more fully in U.S. Pat. No. 5,583,688, the mirror is supported by a mirror support post, which is attached to the torsion hinge by a yoke. In U.S. Pat. No. 5,583,688, the mirrors are actuated by electrostatic forces between the mirror and address electrodes.
  • Micromirrors that are described in U.S. Pat. No. 4,662,746, U.S. Pat. No. 5,061,049, U.S. Pat. No. 5,583,688, and U.S. Pat. No. 5,535,047 are fabricated on top of CMOS circuits. There may be manufacturing problems associated with the fabrication of micromirrors on top of CMOS circuits. This issue is discussed in U.S. Pat. No. 5,216,537. In this patent, it is discussed that the surface of the CMOS chip has certain manufacturing artifacts, namely aluminum hillocks, pinholes, nonplanar surfaces, and steep sidewalls in the protective oxide at edges of aluminum leads. In response to these problems, U.S. Pat. No.
  • 5,216,537 discloses an improved architecture in which an air gap is provided between the top surface of the CMOS chip and the mirror addressing electrodes.
  • a further advantage of this approach is that because of the low dielectric constant of air, parasitic coupling between the CMOS and the micromirror is reduced.
  • CMOS circuits directly under the micromirrors is also responsible for problems of photosensitivity. As discussed in U.S. Pat. No. 6,344,672, it was found that the CMOS memory cells are unstable in a high-intensity light environment.
  • the patent provided an active collector region in which photogenerated carriers could recombine before reaching the addressing electrode.
  • Reflectivity, Inc. (Sunnyvale, Calif.) is also known to be developing micromirror devices.
  • U.S. Pat. No. 5,835,256 the aforementioned problems associated with placing CMOS and micromirrors on the same substrate are solved by placing the micromirrors and CMOS on different substrates.
  • a hinge and a micromirror are fabricated on an optically transparent substrate, such that the optically reflective surface of the micromirror is proximate the optically transparent substrate.
  • Addressing circuits including mirror addressing electrodes are fabricated on a 2nd substrate (typically silicon) and the 2 substrates are bonded together with a predetermined gap between the micromirror and the addressing electrodes.
  • the hinges are placed on the side of the mirror opposite to the side that is proximate the optically transparent substrate.
  • U.S. Pat. No. 6,538,800 also discusses the use of amorphous silicon as a sacrificial layer. It is shown that amorphous silicon can be deposited for this purpose by LPCVD in a quartz tube of a Tylan furnace. It is also shown that a xenon difluoride etch process can be used to etch amorphous silicon with a selectivity of 100 to 1. Therefore, amorphous silicon can be used successfully as a sacrificial layer in addition to photoresists, silicon oxide, silicon nitride, and silicon oxynitride.
  • an electromechanical micromirror device comprises a device substrate with a 1st surface and a 2nd surface, control circuitry disposed on said 1st surface, and a micromirror disposed on said 2nd surface.
  • the present invention also relates to arrays of such micromirror devices.
  • Such arrays may be used as a spatial light modulators (SLMs).
  • SLMs spatial light modulators
  • the arrays may be 1-dimensional (linear) or 2-dimensional.
  • methods of fabricating micromirror devices and arrays of such devices generally involve providing a device substrate with a 1st surface and a 2nd surface, fabricating control circuitry on the 1st surface, and fabricating micromirror(s) on the 2nd surface.
  • control circuits are fabricated using CMOS technology.
  • the control circuits on the 1st surface are protected by a protective layer during the fabrication of micromirrors on the 2nd surface.
  • the device substrate is a silicon-on-insulator (SOI) substrate.
  • a 1st advantage of the present invention is that it provides improved dielectric isolation between the control circuit and the micromirror.
  • a 2nd advantage of the present invention is that provides improved optical isolation of the control circuit area. This is particularly advantageous when the micromirror array is used as a spatial light modulator (SLM) and the 1st surface (the micromirror side) is exposed to high intensity radiation.
  • a 3rd advantage of the present invention is that it provides improved manufacturing yields because the control circuit manufacturing processes and micromirror manufacturing processes can be substantially isolated from each other. In other words, manufacturing artifacts arising from the control circuit process will not damage the micromirror because the micromirror is not built on top of the control circuit.
  • FIG. 2 is a schematic cross sectional view of a micromirror device in accordance with the present invention.
  • FIG. 3A is a schematic plan view of a micromirror device in accordance with a 1st embodiment of the present invention.
  • FIG. 3B is a schematic cross sectional view along line a-b of FIG. 3A .
  • FIG. 4A is a schematic plan view of a micromirror device in accordance with a 2nd embodiment of the present invention.
  • FIG. 4B is a schematic cross sectional view along line c-d of FIG. 4A .
  • FIG. 5A is a schematic plan view of a micromirror device in accordance with a 3rd embodiment of the present invention.
  • FIG. 5B is a schematic cross sectional view along line e-f of FIG. 5A .
  • FIGS. 6A through 6D are schematic plan views of a micromirror device according to a 4th embodiment of the present invention, at varying levels of elevation.
  • FIGS. 7A through 7D are cross sectional views illustrating the fabrication steps on a 1st device substrate surface, in accordance with a 4th embodiment of the present invention.
  • FIGS. 8A through 8M are cross sectional views illustrating the fabrication steps on a 2nd device substrate surface, in accordance with a 4th embodiment of the present invention.
  • FIG. 9 is a schematic plan view illustrating a micromirror array of rectangular micromirrors according to a 5th embodiment of the present invention.
  • FIG. 10 is a schematic plan view illustrating an array of hexagonal micromirrors in accordance with a 6th embodiment of the present invention.
  • FIG. 11A is a schematic plan view of a micromirror device in accordance with a 7th embodiment of the present invention.
  • FIG. 11B is a schematic cross sectional view along line i-i of FIG. 11A .
  • FIG. 11C is a schematic plan view of a micromirror device in accordance with an 8th embodiment of the present invention.
  • the present invention relates to electromechanical micromirror devices and arrays of such devices.
  • Shown schematically in FIG. 1 is an array 100 comprising vertical data lines ( 101 and 102 ) and horizontal addressing lines ( 103 and 104 ), with each intersection of these data and addressing lines forming an electromechanical micromirror device ( 105 , 106 , 107 , and 108 ).
  • Each micromirror device comprises a micromirror ( 109 , 110 , 111 , and 112 ), an addressing electrode ( 113 , 114 , 115 , and 116 ), and an NMOS transistor ( 117 , 118 , 119 , and 120 ).
  • Micromirror 109 is shown to be in a deflected state while the other micromirrors are in their undeflected states.
  • a possible scheme for addressing the micromirrors is as follows: The micromirrors ( 109 , 110 , 111 , and 112 ) are electrically connected to ground. The deflection of a micromirror is determined by the bias voltage between the micromirror and its addressing electrode. The desired bias voltage is set by the voltages on the vertical data lines ( 101 and 102 ). The NMOS transistors are turned on by sending a low-high-low pulse on the addressing lines ( 103 and 104 ), which results in the bias voltages being stored between the micromirrors and addressing electrodes.
  • array 100 has been shown to consist of 4 micromirror devices, an array may typically consist of greater than 60,000 micromirror devices and may be used as a spatial light modulator (SLM). Furthermore, while FIG. 1 shows a plurality of micromirror devices disposed in a 2-dimensional array, 1-dimensional (linear) array are also possible.
  • the circuitry as shown in FIG. 1 comprises the following:
  • a device substrate 201 has a bottom surface on which control circuitry 202 is fabricated.
  • Micromirror 203 and addressing electrodes 204 and 205 are fabricated on the top surface of substrate 201 .
  • support structures for supporting micromirror 203 are not shown.
  • Electrical connections between the addressing electrodes ( 203 and 204 ) and control circuitry 202 are provided by electrical routing lines 206 and 207 .
  • the electrical routing lines 206 and 207 may be in the form of vias in the device substrate 201 with metallization in these vias.
  • the device substrate may be selected from among the following: silicon-on-insulator (SOI), silicon, polycrystalline silicon, glass, plastic, ceramic, germanium, SiGe, SiC, sapphire, quartz, GaAs, and InP.
  • SOI silicon-on-insulator
  • silicon-on-insulator substrate may be suitable for CMOS circuits
  • a glass substrate may be suitable for amorphous silicon thin film transistor circuits.
  • FIG. 3A is a schematic plan view of a portion of a micromirror device 300 in accordance with a 1st embodiment of the present invention.
  • Micromirror 301 is shown with its reflective side facing towards the reader.
  • the reflective side of micromirror 301 is substantially planar, with neither recessions nor protrusions.
  • Micromirror 301 is supported by a torsion hinge 302 .
  • arrow 303 indicates the projection of the incident light propagation direction on the device substrate plane.
  • FIG. 3B is a schematic cross sectional view along line a-b through torsion hinge 302 .
  • Micromirror 301 and torsion hinge 302 are supported by support structures 304 and 305 , which are disposed on device substrate 306 . Since the micromirror deflects by torsion, the axis of rotation of the micromirror is approximately perpendicular to arrow 303 .
  • FIG. 4A is a schematic plan view of a portion of a micromirror device 400 in accordance with a 2nd embodiment of the present invention.
  • Micromirror 401 is shown with its reflective side facing towards the reader.
  • the reflective side of micromirror 401 is substantially planar, with neither recessions nor protrusions.
  • Micromirror 401 is supported by a beam 402 .
  • arrow 403 indicates the projection of the incident light propagation direction on the device substrate plane.
  • micromirror 401 has 4 edges and no edge is perpendicular to arrow 403 .
  • FIG. 4B is a schematic cross sectional view along line c-d through beam 402 .
  • Beam 402 is supported by support structure 404 , which is disposed on device substrate 406 .
  • the axis of rotation of micromirror 401 is approximately parallel to arrow 403 .
  • FIG. 5A is a schematic plan view of a portion of a micromirror device 500 in accordance with a 3rd embodiment of the present invention.
  • Micromirror 501 is shown with its reflective side facing towards the reader.
  • the reflective side of micromirror 501 is substantially planar, with neither recessions nor protrusions.
  • arrow 503 indicates the projection of the incident light propagation direction on the device substrate plane.
  • FIG. 5B is a schematic cross sectional view along line e-f.
  • Micromirror 501 is supported by a support structure 504 , which is disposed on device substrate 506 .
  • the axis of rotation of micromirror 501 is approximately parallel to arrow 503 .
  • micromirror device 400 FIGS. 4A and 4B
  • micromirror device 500 FIGS. 5A and 5B
  • device 400 there is a beam 402 which supports the micromirror 401 on the support structure 404
  • device 500 the micromirror is positioned directly on support structure 504 . Therefore, in FIG. 5A , the top side 502 of support structure 504 is visible in the plan view.
  • FIGS. 6A through 6D are schematic plan views of a micromirror device 600 accoding to a 4th embodiment of the present invention, at varying levels of elevation.
  • FIG. 6A shows the reflective side (top side) of a micromirror 601 .
  • arrow 602 indicates the projection of the incident light propagation vector on the device substrate plane.
  • Arrow 602 is not perpendicular to any of the 4 sides of micromirror 601 .
  • Arrow 602 is shown to be approximately 45 degrees from the leading edges of micromirror 601 .
  • the reflective side of micromirror 601 is is substantially flat, with neither recesses nor protrusions. As a result, there are no diffraction effects that would be caused by recesses or protrusions in the micromirror.
  • FIG. 6B shows a plan view that is analogous to FIG. 6A except that micromirror 601 has been removed. Addressing electrodes 603 and 604 , micromirror support structure 605 , and torsion hinge 606 are visible. Torsion hinge 606 supports micromirror support structure 605 . Addressing electrodes 603 and 604 are electrically connected to control circuitry which is not shown. Micromirror 601 is actuated by electrostatic forces between it and one or both of the addressing electrodes 603 and 604 .
  • FIG. 6C shows the result of removing the mirror support structure 605 .
  • FIG. 6D shows the result of removing torsion hinge 606 .
  • Torsion hinge support structures 607 and 608 are shown.
  • FIGS. 7A through 7D and 8 A through 8 M show a fabrication sequence of a micromirror device using a cross sectional view along the line g-h. In many cases, the micromirror device would be fabricated in an array for use as a spatial light modulator. Therefore, although FIGS. 7A through 7D and 8 A through 8 M illustrate the fabrication of a single micromirror device, it should be understood that the teachings can be extended to the fabrication of an array of micromirror devices.
  • FIGS. 7A through 7D illustrate a fabrication sequence on the control circuitry side.
  • FIG. 7A shows a silicon-on-insulator (SOI) substrate 700 comprising an epitaxial top silicon layer 703 with a thickness typically ranging from 50 nm to 600 nm, an intermediate insulator layer 702 with a thickness typically ranging from 50 nm to 2 ⁇ m, and a bottom silicon layer 701 with a thickness of around 775 ⁇ m.
  • SOI silicon-on-insulator
  • the SOI substrate is used to improve the dielectric isolation of the control circuitry and micromirror portion.
  • FIG. 7B shows the formation of control circuitry 704 on epitaxial layer 703 of the SOI substrate 700 .
  • any integrated circuit technology can be considered for fabricating the control circuitry.
  • CMOS circuitry may be used.
  • BiCMOS or DMOS circuitry may be used for applications requiring high frequency or high voltages.
  • FIG. 7C shows the step of forming a trench 705 through the top epitaxial silicon layer 703 and insulator layer 702 , using standard patterning and an anisotropic etch.
  • the anisotropic etch is stopped before the trench 705 reaches the bottom silicon layer 701 .
  • This is followed by a metal deposition and patterning step ( FIG. 7D ) which forms an electrical connection 706 between the control circuitry and the trench.
  • this metal could be any metal that is used in semiconductor fabrication, such as Al alloy, and methods of metal deposition include sputtering, thermal evaporation, and CVD.
  • FIGS. 8A through 8M illustrate a fabrication sequence on the micromirror side.
  • the control circuitry side is mounted on a carrier to securely hold the substrate for the subsequent step ( FIG. 8A ) of backgrinding and chemical mechanical polishing (CMP) of the back silicon layer 701 to expose the intermediate insulator layer 702 .
  • CMP chemical mechanical polishing
  • insulator layer 702 is pattered to form a trench 801 , thereby completing the via that had been started in the step of FIG. 7C .
  • Another metallization (deposition and patterning) step forms addressing electrodes 802 that are electrically connected, through via 801 , to control circuitry 704 .
  • FIGS. 8D through 8H An embodiment of this process is illustrated in FIGS. 8D through 8H .
  • An amorphous silicon sacrificial layer 803 is deposited by LPCVD ( FIG. 8D ).
  • Other suitable methods of depositing amorphous silicon are PECVD, catalytic CVD (also known as hot wire CVD), and sputtering.
  • xenon difluoride can be used to etch amorphous silicon with a selectivity of 100 to 1.
  • Other possible sacrificial layers are photoresists, silicon oxide, silicon nitride, and silicon oxynitride. As shown in FIG.
  • a photolithographic patterning and anisotropic etching step is carried out to form a recess 804 where the torsion hinge will be formed.
  • another photolithographic patterning and anisotropic etching step ( FIG. 8F ) is carried out to form holes 805 and 806 where the torsion hinge support structures will be formed.
  • the holes 805 and 806 for the torsion hinge support structures reach the intermediate insulator layer.
  • a layer 807 of structural material is deposited.
  • the structural material may be an Al alloy comprising 0.2% Ti, 1% Si, and the remainder Al.
  • a preferred method of depositing this Al alloy is sputter deposition.
  • a metal is chosen for the structural material because the micromirror is typically held at ground potential.
  • structural material layer 807 is patterned to form a torsion hinge 808 and torsion hinge support structures 809 and 810 . Torsion hinge 808 and torsion hinge support structures 809 and 810 are at least partially embedded in sacrificial layer 803 .
  • a micromirror support structure is placed between the torsion beam and the micromirror.
  • a metal layer is deposited and then patterned to provide a micromirror support structure 811 on torsion beam 808 .
  • the metal may be an Al alloy comprising 0.2% Ti, 1% Si, and the remainder Al.
  • a preferred method of depositing this Al alloy is sputter deposition.
  • Another layer of sacrificial amorphous silicon is deposited ( FIG. 8J ) such that the micromirror support structure 811 is fully covered by sacrificial layer 803 .
  • a chemical mechanical polishing (CMP) process is carried out to planarize the surface such that the following requirements are satisfied:
  • a metallic layer is deposited and patterned to form a micromirror 812 as shown in FIG. 8L .
  • the metal may be an Al alloy comprising 0.2% Ti, 1% Si, and the remainder Al.
  • a preferred method of depositing this Al alloy is sputter deposition.
  • the micromirror 812 is connected to the micromirror support structure 811 .
  • a xenon difluoride etch is carried out to remove the amorphous silicon sacrificial layer ( FIG. 8M ).
  • the preferred micromirror comprised a metallic coating.
  • FIG. 9 shows a 2-dimensional array 900 of rectangular micromirrors ( 901 , 902 , 903 , and 904 ), according to a 5th embodiment of the present invention.
  • Arrow 906 indicates the projection of the incident light propagation vector on the mirror plane (device substrate plane).
  • the reflective side of the micromirror has no edges that are perpendicular to arrow 906 . This is a configuration that reduces diffraction into the acceptance cone of the optical system.
  • Another possible shape for a micromirror is a hexagon, shown being disposed in an array 1000 in FIG. 10 , according to a 6th embodiment of the present invention.
  • micromirrors 1001 , 1002 , 1003 , 1004 , and 1005 There are micromirrors 1001 , 1002 , 1003 , 1004 , and 1005 .
  • Arrow 1006 indicates the projection of the incident light propagation vector on the mirror plane (device substrate plane).
  • the reflective side of the micromirrors has no edges that are perpendicular to arrow 1006 .
  • FIG. 11A is a schematic plane view of a micromirror device 1100 , comprising a micromirror 1101 and a micromirror support structure 1104 .
  • Arrow 1103 indicates the projection of the incident light propagation vector on the micromirror plane (device substrate plane).
  • the reflective side of the micromirror has no edges that are perpendicular to arrow 1103 .
  • the reflective side of micromirror 1101 is substantially planar, with neither recessions nor protrusions.
  • FIG. 11B is a schematic cross sectional view along line i-j of FIG. 11A .
  • An addressing electrode 1108 is located under micromirror 1101 and on top of device substrate 1106 . Furthermore, a stopper 1107 has been provided. The purpose of stopper 1107 is to prevent micromirror 1101 from contacting addressing electrode 1108 under deflection. This may cause an electrical short. Instead, micromirror 1101 contacts stopper 1107 . In cases where a micromirror deflects in 2 directions from its undeflected state, it is possible to provide 2 stoppers with 1 stopper for each direction of deflection.
  • FIG. 11C illustrates a modification to micromirror device 1100 in accordance with an 8th embodiment of the present invention.
  • FIG. 11C is a plan view of a micromirror device 1100 comprising a micromirror 1101 , a support structure 1104 , and a stopper 1107 .
  • the reflective side of micromirror 1101 has no edges that are perpendicular to arrow 1103 .
  • the region 1108 of micromirror 1101 that is adjacent to support structure 1104 gets deflected. Therefore, an edge that is perpendicular to arrow 1103 may appear in region 1108 .
  • a preferred light absorbing material is a black dye.

Abstract

An electromechanical micromirror device comprises a device substrate with a 1st surface and a 2nd surface, control circuitry disposed on said 1st surface, and a micromirror disposed on said 2nd surface. Arrays of such micromirror devices are also described and may be used as a spatial light modulators (SLMs). The arrays may be 1 dimensional (linear) or 2 dimensional. Methods of fabricating micromirror devices and arrays of such devices are also disclosed. Such methods generally involve providing a device substrate with a 1st surface and a 2nd surface, fabricating control circuitry on the 1st surface, and fabricating micromirror(s) on the 2nd surface.

Description

    TECHNICAL FIELD
  • This invention relates to electromechanical micromirror devices and methods of manufacturing the same. When fabricated in an array, such devices can be used as a spatial light modulator.
  • BACKGROUND ART
  • Electromechanical micromirror devices have drawn considerable interest because of their application as spatial light modulators (SLMs). A spatial light modulator requires an array of a relatively large number of such micromirror devices. In general, the number of devices required ranges from 60,000 to several million for each SLM. Despite significant advances that have been made in recent years, there is still a need for improvement in the performance and manufacturing yields of electromechanical micromirror devices.
  • An example of an early generation prior art device is disclosed in U.S. Pat. No. 4,592,628. U.S. Pat. No. 4,592,628 describes an array of light reflecting devices on a substrate. Each device comprises a hollow post and a deflectable polygonal mirror attached thereto. Each mirror acts as a deflectable cantilever beam. The mirrors are deflected by a beam of electrons from a cathode ray tube. As a result, the substrate does not contain any addressing circuits.
  • Another early generation device is disclosed in U.S. Pat. No. 4,229,732. In this case, addressing circuits using MOSFETs were fabricated on the surface of the substrate. Deflectable metallic mirrors were also fabricated on the surface of the substrate. Since the MOSFET circuits and mirrors could not overlap, the fill factor of the array was not as high as if the mirrors could cover the entire surface area.
  • As an alternative to mirrors that operate by deflection of cantilever beams, those that operate by torsion were proposed. U.S. Pat. No. 4,317,611 describes an early generation micromirror with a torsional structure. Note that this patent does not describe any methods or architectures for placing addressing circuits on the substrate.
  • A 1st generation Texas Instruments, Inc. (TI) device is described in U.S. Pat. No. 4,662,746. A micromirror is suspended by 1 or 2 hinges. If suspended by 1 hinge, the micromirror deflects like a cantilever beam. If suspended by 2 hinges, the micromirror deflects like a torsion beam. Addressing electrodes are located below the micromirrors and addressing circuits are located at the same level in the substrate as the addressing electrodes.
  • An improved 1st generation TI device is described in U.S. Pat. No. 5,061,049. In this patent, each mirror is provided with 2 addressing electrodes and 2 landing electrodes. The landing electrodes soften the landing of the mirrors and are also used to reset the mirrors by a suitable voltage sequence. The use of these landing electrodes allows the mirrors to function as a bistable device.
  • A 2nd generation TI device is described in U.S. Pat. No. 5,583,688. A 2nd generation TI device is one in which the torsion hinge is at a different level than the reflective mirror. As described more fully in U.S. Pat. No. 5,583,688, the mirror is supported by a mirror support post, which is attached to the torsion hinge by a yoke. In U.S. Pat. No. 5,583,688, the mirrors are actuated by electrostatic forces between the mirror and address electrodes.
  • An improved 2nd generation TI device is described in U.S. Pat. No. 5,535,047. In this case, the mirrors are actuated by 2 sets of electrostatic forces. As a result the forces are greater and actuation performance is improved. The 1st force is between the mirror and the elevated address electrode. The 2nd force is between the yoke and substrate-level address electrode.
  • Micromirrors that are described in U.S. Pat. No. 4,662,746, U.S. Pat. No. 5,061,049, U.S. Pat. No. 5,583,688, and U.S. Pat. No. 5,535,047 are fabricated on top of CMOS circuits. There may be manufacturing problems associated with the fabrication of micromirrors on top of CMOS circuits. This issue is discussed in U.S. Pat. No. 5,216,537. In this patent, it is discussed that the surface of the CMOS chip has certain manufacturing artifacts, namely aluminum hillocks, pinholes, nonplanar surfaces, and steep sidewalls in the protective oxide at edges of aluminum leads. In response to these problems, U.S. Pat. No. 5,216,537 discloses an improved architecture in which an air gap is provided between the top surface of the CMOS chip and the mirror addressing electrodes. A further advantage of this approach is that because of the low dielectric constant of air, parasitic coupling between the CMOS and the micromirror is reduced.
  • The placement of CMOS circuits directly under the micromirrors is also responsible for problems of photosensitivity. As discussed in U.S. Pat. No. 6,344,672, it was found that the CMOS memory cells are unstable in a high-intensity light environment. The patent provided an active collector region in which photogenerated carriers could recombine before reaching the addressing electrode.
  • Reflectivity, Inc. (Sunnyvale, Calif.) is also known to be developing micromirror devices. As disclosed in U.S. Pat. No. 5,835,256, the aforementioned problems associated with placing CMOS and micromirrors on the same substrate are solved by placing the micromirrors and CMOS on different substrates. In other words, a hinge and a micromirror are fabricated on an optically transparent substrate, such that the optically reflective surface of the micromirror is proximate the optically transparent substrate. Addressing circuits including mirror addressing electrodes are fabricated on a 2nd substrate (typically silicon) and the 2 substrates are bonded together with a predetermined gap between the micromirror and the addressing electrodes.
  • In order to reduce scattering by non-lanar surfaces and increase the fill factor, it was necessary to provide a light shield on the optically transparent substrate in the hinge areas. In an improved device, the hinges are placed on the side of the mirror opposite to the side that is proximate the optically transparent substrate.
  • However, another difficulty with the architecture of U.S. Pat. No. 5,835,256 is that the gap between the mirror and mirror addressing electrodes is difficult to control. Since the actuation force is superlinearly dependent on this gap, it is imperative to achieve uniform gap over the entire array to obtain uniform performance characteristics. As discussed in U.S. Ser. No. 2003/0,134,449, 2nd and higher order adjustments in the gap may be needed in the manufacturing process.
  • U.S. Pat. No. 6,538,800 also discusses the use of amorphous silicon as a sacrificial layer. It is shown that amorphous silicon can be deposited for this purpose by LPCVD in a quartz tube of a Tylan furnace. It is also shown that a xenon difluoride etch process can be used to etch amorphous silicon with a selectivity of 100 to 1. Therefore, amorphous silicon can be used successfully as a sacrificial layer in addition to photoresists, silicon oxide, silicon nitride, and silicon oxynitride.
  • SUMMARY OF THE INVENTION
  • The present invention provides micromirror devices, arrays of micromirror devices, and fabrication methods for said devices and arrays that overcome some of the limitations of the prior art. According to the present invention, an electromechanical micromirror device comprises a device substrate with a 1st surface and a 2nd surface, control circuitry disposed on said 1st surface, and a micromirror disposed on said 2nd surface. The present invention also relates to arrays of such micromirror devices. Such arrays may be used as a spatial light modulators (SLMs). The arrays may be 1-dimensional (linear) or 2-dimensional. According to the present invention, methods of fabricating micromirror devices and arrays of such devices generally involve providing a device substrate with a 1st surface and a 2nd surface, fabricating control circuitry on the 1st surface, and fabricating micromirror(s) on the 2nd surface. In a preferred embodiment, control circuits are fabricated using CMOS technology. In another preferred embodiment, the control circuits on the 1st surface are protected by a protective layer during the fabrication of micromirrors on the 2nd surface. In yet another preferred embodiment, the device substrate is a silicon-on-insulator (SOI) substrate.
  • A 1st advantage of the present invention is that it provides improved dielectric isolation between the control circuit and the micromirror. A 2nd advantage of the present invention is that provides improved optical isolation of the control circuit area. This is particularly advantageous when the micromirror array is used as a spatial light modulator (SLM) and the 1st surface (the micromirror side) is exposed to high intensity radiation. A 3rd advantage of the present invention is that it provides improved manufacturing yields because the control circuit manufacturing processes and micromirror manufacturing processes can be substantially isolated from each other. In other words, manufacturing artifacts arising from the control circuit process will not damage the micromirror because the micromirror is not built on top of the control circuit. These and other advantages of the present invention will become apparent from the detailed description and the claims below.
  • BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 is a schematic diagram of a 4-pixel array of micromirror devices, comprising control circuits, addressing electrodes, and micromirrors.
  • FIG. 2 is a schematic cross sectional view of a micromirror device in accordance with the present invention.
  • FIG. 3A is a schematic plan view of a micromirror device in accordance with a 1st embodiment of the present invention.
  • FIG. 3B is a schematic cross sectional view along line a-b of FIG. 3A.
  • FIG. 4A is a schematic plan view of a micromirror device in accordance with a 2nd embodiment of the present invention.
  • FIG. 4B is a schematic cross sectional view along line c-d of FIG. 4A.
  • FIG. 5A is a schematic plan view of a micromirror device in accordance with a 3rd embodiment of the present invention.
  • FIG. 5B is a schematic cross sectional view along line e-f of FIG. 5A.
  • FIGS. 6A through 6D are schematic plan views of a micromirror device according to a 4th embodiment of the present invention, at varying levels of elevation.
  • FIGS. 7A through 7D are cross sectional views illustrating the fabrication steps on a 1st device substrate surface, in accordance with a 4th embodiment of the present invention.
  • FIGS. 8A through 8M are cross sectional views illustrating the fabrication steps on a 2nd device substrate surface, in accordance with a 4th embodiment of the present invention.
  • FIG. 9 is a schematic plan view illustrating a micromirror array of rectangular micromirrors according to a 5th embodiment of the present invention.
  • FIG. 10 is a schematic plan view illustrating an array of hexagonal micromirrors in accordance with a 6th embodiment of the present invention.
  • FIG. 11A is a schematic plan view of a micromirror device in accordance with a 7th embodiment of the present invention.
  • FIG. 11B is a schematic cross sectional view along line i-i of FIG. 11A.
  • FIG. 11C is a schematic plan view of a micromirror device in accordance with an 8th embodiment of the present invention.
  • DETAILED DESCRIPTION OF THE INVENTION
  • The present invention relates to electromechanical micromirror devices and arrays of such devices. Shown schematically in FIG. 1 is an array 100 comprising vertical data lines (101 and 102) and horizontal addressing lines (103 and 104), with each intersection of these data and addressing lines forming an electromechanical micromirror device (105, 106, 107, and 108). Each micromirror device comprises a micromirror (109, 110, 111, and 112), an addressing electrode (113, 114, 115, and 116), and an NMOS transistor (117, 118, 119, and 120). Micromirror 109 is shown to be in a deflected state while the other micromirrors are in their undeflected states. A possible scheme for addressing the micromirrors is as follows: The micromirrors (109, 110, 111, and 112) are electrically connected to ground. The deflection of a micromirror is determined by the bias voltage between the micromirror and its addressing electrode. The desired bias voltage is set by the voltages on the vertical data lines (101 and 102). The NMOS transistors are turned on by sending a low-high-low pulse on the addressing lines (103 and 104), which results in the bias voltages being stored between the micromirrors and addressing electrodes.
  • While array 100 (FIG. 1) has been shown to consist of 4 micromirror devices, an array may typically consist of greater than 60,000 micromirror devices and may be used as a spatial light modulator (SLM). Furthermore, while FIG. 1 shows a plurality of micromirror devices disposed in a 2-dimensional array, 1-dimensional (linear) array are also possible.
  • The circuitry as shown in FIG. 1 comprises the following:
      • 1) micromirrors;
      • 2) micromirror addressing electrodes; and
      • 3) control circuitry.
        In the particular case of FIG. 1, control circuitry consists of the vertical data lines (101 and 102), horizontal addressing lines (103 and 104), NMOS transistors (117, 118, 119, and 120), and electrical connections among them. In general, control circuitry is understood to mean any circuitry that is provided to control the application of bias voltages between a micromirror and its addressing electrode. As shown in FIG. 1, the control circuitry comprised NMOS transistors. However, it should be understood that the control circuitry could comprise other types of circuits, including CMOS circuits, PMOS circuits, bipolar transistor circuits, BiCMOS circuits, DMOS circuits, HEMT circuits, amorphous silicon thin film transistor circuits, polysilicon thin film transistor circuits, SiGe transistor circuits, SiC transistor circuits, GaN transistor circuits, GaAs transistor circuits, InP transistor circuits, CdSe transistor circuits, organic transistor circuits, and conjugated polymer transistor circuits.
  • Some of the important concepts of the present invention are illustrated schematically in FIG. 2. A device substrate 201 has a bottom surface on which control circuitry 202 is fabricated. Micromirror 203 and addressing electrodes 204 and 205 are fabricated on the top surface of substrate 201. For simplicity, support structures for supporting micromirror 203 are not shown. Electrical connections between the addressing electrodes (203 and 204) and control circuitry 202 are provided by electrical routing lines 206 and 207. The electrical routing lines 206 and 207 may be in the form of vias in the device substrate 201 with metallization in these vias. The device substrate may be selected from among the following: silicon-on-insulator (SOI), silicon, polycrystalline silicon, glass, plastic, ceramic, germanium, SiGe, SiC, sapphire, quartz, GaAs, and InP. In general, the choice of device substrate should be consistent with the choice of control circuit technology. For example, a silicon-on-insulator substrate may be suitable for CMOS circuits, and a glass substrate may be suitable for amorphous silicon thin film transistor circuits.
  • As discussed with reference to FIG. 1, a micromirror device comprises a control circuitry, a micromirror, and addressing electrodes. FIG. 3A is a schematic plan view of a portion of a micromirror device 300 in accordance with a 1st embodiment of the present invention. Micromirror 301 is shown with its reflective side facing towards the reader. The reflective side of micromirror 301 is substantially planar, with neither recessions nor protrusions. Micromirror 301 is supported by a torsion hinge 302. In the case that micromirror portion 300 is disposed in an array for a spatial light modulator (SLM), arrow 303 indicates the projection of the incident light propagation direction on the device substrate plane. Note that micromirror 301 has 4 edges and no edge is perpendicular to arrow 303. FIG. 3B is a schematic cross sectional view along line a-b through torsion hinge 302. Micromirror 301 and torsion hinge 302 are supported by support structures 304 and 305, which are disposed on device substrate 306. Since the micromirror deflects by torsion, the axis of rotation of the micromirror is approximately perpendicular to arrow 303.
  • FIG. 4A is a schematic plan view of a portion of a micromirror device 400 in accordance with a 2nd embodiment of the present invention. Micromirror 401 is shown with its reflective side facing towards the reader. The reflective side of micromirror 401 is substantially planar, with neither recessions nor protrusions. Micromirror 401 is supported by a beam 402. In the case that micromirror device 400 is disposed in an array for a spatial light modulator (SLM), arrow 403 indicates the projection of the incident light propagation direction on the device substrate plane. Note that micromirror 401 has 4 edges and no edge is perpendicular to arrow 403. FIG. 4B is a schematic cross sectional view along line c-d through beam 402. Beam 402 is supported by support structure 404, which is disposed on device substrate 406. In contrast to micromirror 301 (FIGS. 3A and 3B), the axis of rotation of micromirror 401 is approximately parallel to arrow 403.
  • FIG. 5A is a schematic plan view of a portion of a micromirror device 500 in accordance with a 3rd embodiment of the present invention. Micromirror 501 is shown with its reflective side facing towards the reader. The reflective side of micromirror 501 is substantially planar, with neither recessions nor protrusions. In the case that micromirror device 500 is disposed in an array for a spatial light modulator (SLM), arrow 503 indicates the projection of the incident light propagation direction on the device substrate plane. FIG. 5B is a schematic cross sectional view along line e-f. Micromirror 501 is supported by a support structure 504, which is disposed on device substrate 506. The axis of rotation of micromirror 501 is approximately parallel to arrow 503.
  • An important difference between between micromirror device 400 (FIGS. 4A and 4B) and micromirror device 500 (FIGS. 5A and 5B) is that in device 400, there is a beam 402 which supports the micromirror 401 on the support structure 404, whereas in device 500, the micromirror is positioned directly on support structure 504. Therefore, in FIG. 5A, the top side 502 of support structure 504 is visible in the plan view.
  • FIGS. 6A through 6D are schematic plan views of a micromirror device 600 accoding to a 4th embodiment of the present invention, at varying levels of elevation. FIG. 6A shows the reflective side (top side) of a micromirror 601. In the case that micromirror device 600 is disposed in an array for a spatial light modulator (SLM), arrow 602 indicates the projection of the incident light propagation vector on the device substrate plane. Arrow 602 is not perpendicular to any of the 4 sides of micromirror 601. Arrow 602 is shown to be approximately 45 degrees from the leading edges of micromirror 601. The reflective side of micromirror 601 is is substantially flat, with neither recesses nor protrusions. As a result, there are no diffraction effects that would be caused by recesses or protrusions in the micromirror.
  • FIG. 6B shows a plan view that is analogous to FIG. 6A except that micromirror 601 has been removed. Addressing electrodes 603 and 604, micromirror support structure 605, and torsion hinge 606 are visible. Torsion hinge 606 supports micromirror support structure 605. Addressing electrodes 603 and 604 are electrically connected to control circuitry which is not shown. Micromirror 601 is actuated by electrostatic forces between it and one or both of the addressing electrodes 603 and 604. FIG. 6C shows the result of removing the mirror support structure 605.
  • FIG. 6D shows the result of removing torsion hinge 606. Torsion hinge support structures 607 and 608 are shown. FIGS. 7A through 7D and 8A through 8M show a fabrication sequence of a micromirror device using a cross sectional view along the line g-h. In many cases, the micromirror device would be fabricated in an array for use as a spatial light modulator. Therefore, although FIGS. 7A through 7D and 8A through 8M illustrate the fabrication of a single micromirror device, it should be understood that the teachings can be extended to the fabrication of an array of micromirror devices.
  • FIGS. 7A through 7D illustrate a fabrication sequence on the control circuitry side. FIG. 7A shows a silicon-on-insulator (SOI) substrate 700 comprising an epitaxial top silicon layer 703 with a thickness typically ranging from 50 nm to 600 nm, an intermediate insulator layer 702 with a thickness typically ranging from 50 nm to 2 μm, and a bottom silicon layer 701 with a thickness of around 775 μm. One of the advantages of SOI over silicon substrates is the improved dielectric isolation. In the case of the present invention, the SOI substrate is used to improve the dielectric isolation of the control circuitry and micromirror portion.
  • FIG. 7B shows the formation of control circuitry 704 on epitaxial layer 703 of the SOI substrate 700. In general, any integrated circuit technology can be considered for fabricating the control circuitry. For example, CMOS circuitry may be used. However, for applications requiring high frequency or high voltages, BiCMOS or DMOS circuitry may be used.
  • FIG. 7C shows the step of forming a trench 705 through the top epitaxial silicon layer 703 and insulator layer 702, using standard patterning and an anisotropic etch. The anisotropic etch is stopped before the trench 705 reaches the bottom silicon layer 701. This is followed by a metal deposition and patterning step (FIG. 7D) which forms an electrical connection 706 between the control circuitry and the trench. It should be understood that this metal could be any metal that is used in semiconductor fabrication, such as Al alloy, and methods of metal deposition include sputtering, thermal evaporation, and CVD.
  • At this point the process steps on the control circuitry side are complete. It may be preferable to form a protective layer on the control circuitry side. FIGS. 8A through 8M illustrate a fabrication sequence on the micromirror side. The control circuitry side is mounted on a carrier to securely hold the substrate for the subsequent step (FIG. 8A) of backgrinding and chemical mechanical polishing (CMP) of the back silicon layer 701 to expose the intermediate insulator layer 702.
  • As shown in FIG. 8B, insulator layer 702 is pattered to form a trench 801, thereby completing the via that had been started in the step of FIG. 7C. Another metallization (deposition and patterning) step (FIG. 8C) forms addressing electrodes 802 that are electrically connected, through via 801, to control circuitry 704.
  • After the formation of the addressing electrodes 802, the torsion hinge and its support structures are formed. An embodiment of this process is illustrated in FIGS. 8D through 8H. An amorphous silicon sacrificial layer 803 is deposited by LPCVD (FIG. 8D). Other suitable methods of depositing amorphous silicon are PECVD, catalytic CVD (also known as hot wire CVD), and sputtering. As discussed in the Background Art section, xenon difluoride can be used to etch amorphous silicon with a selectivity of 100 to 1. Other possible sacrificial layers are photoresists, silicon oxide, silicon nitride, and silicon oxynitride. As shown in FIG. 8E, a photolithographic patterning and anisotropic etching step is carried out to form a recess 804 where the torsion hinge will be formed. Then, another photolithographic patterning and anisotropic etching step (FIG. 8F) is carried out to form holes 805 and 806 where the torsion hinge support structures will be formed. The holes 805 and 806 for the torsion hinge support structures reach the intermediate insulator layer.
  • As shown in FIG. 8G, a layer 807 of structural material is deposited. For example, the structural material may be an Al alloy comprising 0.2% Ti, 1% Si, and the remainder Al. A preferred method of depositing this Al alloy is sputter deposition. A metal is chosen for the structural material because the micromirror is typically held at ground potential. As shown in FIG. 8H, structural material layer 807 is patterned to form a torsion hinge 808 and torsion hinge support structures 809 and 810. Torsion hinge 808 and torsion hinge support structures 809 and 810 are at least partially embedded in sacrificial layer 803.
  • A micromirror support structure is placed between the torsion beam and the micromirror. As shown in FIG. 81, a metal layer is deposited and then patterned to provide a micromirror support structure 811 on torsion beam 808. The metal may be an Al alloy comprising 0.2% Ti, 1% Si, and the remainder Al. A preferred method of depositing this Al alloy is sputter deposition. Another layer of sacrificial amorphous silicon is deposited (FIG. 8J) such that the micromirror support structure 811 is fully covered by sacrificial layer 803. A chemical mechanical polishing (CMP) process is carried out to planarize the surface such that the following requirements are satisfied:
    • 1) the top of the micromirror support structure 811 is exposed and planar;
    • 2) the sacrificial layer 803 is planar; and
    • 3) the top of the micromirror support structure 811 and the top of the sacrificial layer 803 are at the same level.
      In this description, top is understood to mean bottom on the drawing page. The result of the planarization step is shown schematically in FIG. 8K.
  • A metallic layer is deposited and patterned to form a micromirror 812 as shown in FIG. 8L. The metal may be an Al alloy comprising 0.2% Ti, 1% Si, and the remainder Al. A preferred method of depositing this Al alloy is sputter deposition. The micromirror 812 is connected to the micromirror support structure 811. A xenon difluoride etch is carried out to remove the amorphous silicon sacrificial layer (FIG. 8M).
  • In the foregoing discussion the preferred micromirror comprised a metallic coating. However, it is also possible to construct a micromirror out of multiple alternating layers of higher refractive index and lower refractive index dielectrics. This may be accomplished by using silicon oxide and silicon nitride. Therefore, if an Al mirror has a reflectivity of 92%, the reflectivity can be increased to over 95% by first depositing 68 nm of silicon nitride (n=2.0) and then depositing 96 nm of silicon dioxide (n=1.46).
  • In the foregoing discussion of FIGS. 8G to 8M, all of the structural members (torsion hinge, torsion hinge support structures, micromirror, micromirror support structures) were metallic. Alternatively, it is possible to use a dielectric (e.g. hardened photoresist, silicon oxide, silicon nitride, silicon oxynitride) that has been covered with a metallic sheath as a structural member, as described more fully in U.S. Pat. No. 5631782.
  • Typically, micromirror devices are incorporated into an array. FIG. 9 shows a 2-dimensional array 900 of rectangular micromirrors (901, 902, 903, and 904), according to a 5th embodiment of the present invention. Arrow 906 indicates the projection of the incident light propagation vector on the mirror plane (device substrate plane). The reflective side of the micromirror has no edges that are perpendicular to arrow 906. This is a configuration that reduces diffraction into the acceptance cone of the optical system. Another possible shape for a micromirror is a hexagon, shown being disposed in an array 1000 in FIG. 10, according to a 6th embodiment of the present invention. There are micromirrors 1001, 1002, 1003,1004, and 1005. Arrow 1006 indicates the projection of the incident light propagation vector on the mirror plane (device substrate plane). The reflective side of the micromirrors has no edges that are perpendicular to arrow 1006.
  • A 7th embodiment of the present invention is explained with reference to FIGS. 11A and 11B. FIG. 11A is a schematic plane view of a micromirror device 1100, comprising a micromirror 1101 and a micromirror support structure 1104. Arrow 1103 indicates the projection of the incident light propagation vector on the micromirror plane (device substrate plane). The reflective side of the micromirror has no edges that are perpendicular to arrow 1103. The reflective side of micromirror 1101 is substantially planar, with neither recessions nor protrusions. FIG. 11B is a schematic cross sectional view along line i-j of FIG. 11A. An addressing electrode 1108 is located under micromirror 1101 and on top of device substrate 1106. Furthermore, a stopper 1107 has been provided. The purpose of stopper 1107 is to prevent micromirror 1101 from contacting addressing electrode 1108 under deflection. This may cause an electrical short. Instead, micromirror 1101 contacts stopper 1107. In cases where a micromirror deflects in 2 directions from its undeflected state, it is possible to provide 2 stoppers with 1 stopper for each direction of deflection.
  • FIG. 11C illustrates a modification to micromirror device 1100 in accordance with an 8th embodiment of the present invention. FIG. 11C is a plan view of a micromirror device 1100 comprising a micromirror 1101, a support structure 1104, and a stopper 1107. In its undeflected state, the reflective side of micromirror 1101 has no edges that are perpendicular to arrow 1103. When the micromirror 1101 is actuated, the region 1108 of micromirror 1101 that is adjacent to support structure 1104 gets deflected. Therefore, an edge that is perpendicular to arrow 1103 may appear in region 1108. In order to reduce diffraction effects from this edge, it is possible to coat region 1108 with a light absorbing material. A preferred light absorbing material is a black dye.

Claims (60)

1. An electromechanical micromirror device, comprising:
a single substrate with a 1st surface and a 2nd surface;
a control circuitry disposed on said 1st surface of said single substrate; and
a micromirror section disposed on said 2nd surface of said single substrate;
wherein said micromirror section comprises:
a micromirror; and
at least one support structure for supporting said micromirror.
2. The device of claim 1, wherein:
said control circuitry comprising a circuit selected from the group consisting of: CMOS circuits, NMOS circuits, PMOS circuits, bipolar circuits, BiCMOS circuits, DMOS circuits, HEMT circuits, amorphous silicon thin film transistor circuits, polysilicon thin film transistor circuits, SiGe transistor circuits, SiC transistor circuits, GaN transistor circuits, GaAs transistor circuits, InP transistor circuits, CdSe transistor circuits, organic transistor circuits, and conjugated polymer transistor circuits.
3. The device of claim 1, wherein:
said single substrate comprising a substrate selected from the group consisting of a silicon-on-insulator (SOI) substrate, a silicon substrate, a polycrystalline silicon substrate, a glass substrate, a plastic substrate, a ceramic substrate, a germanium substrate, a SiGe substrate a SiC substrate, a sapphire substrate a quartz substrate, a GaAs substrate, and an InP substrate.
4. The device of claim 1, wherein:
said micromirror section additionally comprises at least one addressing electrode for actuating said micromirror.
5. The device of claim 4, additionally comprising:
at least one electrically conductive routing line integral with said single substrate that connects said control circuitry to said at least one addressing electrode.
6. The device of claim 5, wherein:
said at least one electrically conductive routing line comprises a via through said single substrate and a metallization in said via.
7. The device of claim 1, wherein:
said single substrate additionally comprises an insulating layer between said first surface and said second surface.
8. The device of claim 1, wherein:
said micromirror further comprising a metallic mirror.
9. The device of claim 1, wherein:
said micromirror further comprising a multilayer dielectric mirror.
10. The device of claim 1, wherein:
said micromirror further comprising a substantially planar reflective side with neither recesses nor protrusions.
11. The device of claim 1, wherein:
said micromirror further comprising a reflective surface having no edges perpendicular to a projection direction of an incident light propagation vector onto said single substrate.
12. The device of claim 11, wherein:
said reflective surface of said micromirror further comprising a polygon-shaped reflective surface.
13. The device of claim 12, wherein:
said polygon-shaped reflective surface is selected from the group consisting of a rectangle-shaped reflective surface and a hexagon-shaped reflective surface.
14. The device of claim 1, wherein:
said micromirror section additionally comprises a torsion hinge disposed underneath and supporting said micromirror support structure; and
said torsion hinge further comprising a pair of supporting structures for supporting said torsion hinge on said substrate.
15. The device of claim 1, wherein:
said micromirror section additionally comprises at least one stopping member for limiting a rotation of said micromirror.
16. The device of claim 15, wherein:
said at least one stopping member comprises a 1st stopping member for limiting the rotation of said micromirror in a 1st direction; and
a 2nd stopping member for limiting the rotation of said micromirror in a direction opposite to said 1st direction.
17. An array of electromechanical micromirror devices comprising:
single substrate with a 1st surface and a 2nd surface;
a control circuitry disposed on said 1st surface of said substrate; and an array of micromirror sections disposed on said 2nd surface of said single substrate wherein each said micromirror section comprises a micromirror; and
a support structure for supporting said micromirror.
18. The array of claim 17, wherein:
said control circuitry comprising a circuit selected from the group consisting of: CMOS circuits, NMOS circuits, PMOS circuits, bipolar circuits, BiCMOS circuits, DMOS circuits, HEMT circuits, amorphous silicon thin film transistor circuits, polysilicon thin film transistor circuits, SiGe transistor circuits, SiC transistor circuits, GaN transistor circuits, GaAs transistor circuits, InP transistor circuits, CdSe transistor circuits, organic transistor circuits, and conjugated polymer transistor circuits.
19. The array of claim 17, wherein:
said single substrate comprising a substrate selected from the group consisting of a silicon-on-insulator (SOI) substrate, a silicon substrate, a polycrystalline silicon substrate a glass substrate, a plastic substrate a ceramic substrate, a germanium substrate, a SiGe substrate, a SiC substrate, a sapphire substrate, a quartz substrate, a GaAs substrate and an InP substrate.
20. The array of claim 17, wherein:
said micromirror section additionally comprises at least one addressing electrode for actuating said micromirror.
21. The array of claim 20, additionally comprising:
at least one electrically conductive routing line integral with said single substrate that connects said control circuitry to said at least one addressing electrode of at least one of said micromirror sections.
22. The array of claim 21, wherein:
said at least one electrically conductive routing line comprises a via through said single substrate and a metallization in said via.
23. The array of claim 17, wherein:
said single substrate additionally comprises an insulating layer between said first surface and said second surface.
24. The array of claim 17, wherein:
said micromirror further comprising a metallic mirror.
25. The array of claim 17, wherein:
said micromirror further comprising a multilayer dielectric mirror.
26. The array of claim 17, wherein:
said micromirror further comprising a substantially planar reflective side with neither recesses nor protrusions.
27. The array of claim 17, wherein:
said micromirror further comprising a reflective surface of having no edges perpendicular to a projection direction of an incident light propagation vector onto said single substrate.
28. The array of claim 27, wherein:
said reflective surface of said micromirror further comprising a polygon-shaped reflective surface.
29. The array of claim 28, wherein:
said polygon-shaped reflective surface is selected from the group consisting of a rectangle-shaped reflective surface and a hexagon-shaped reflective surface.
30. The array of claim 17, wherein:
said micromirror section additionally comprises a torsion hinge disposed underneath and supporting said micromirror support structure; and
said torsion hinge further comprising a pair of supporting structures for supporting said torsion hinge on said substrate.
31. The array of claim 17, wherein:
said micromirror section additionally comprises at least one stopping member for limiting a rotation of said micromirror.
32. The array of claim 17, wherein:
said at least one stopping member comprises a 1st stopping member for limiting the rotation of said micromirror in a 1st direction; and
a 2nd stopping member for limiting the rotation of said micromirror in a direction opposite to said 1st direction.
33. A spatial light modulator (SLM) comprising an array of electromechanical micromirror devices wherein said micro-mirror devices further comprising:
a single substrate with a 1st surface and a 2nd surface;
a control circuitry disposed on said 1st surface of said single substrate; and
an array of micromirror sections disposed on said 2nd surface of said single substrate wherein each said micromirror section comprises a micromirror; and
a support structure for supporting said micromirror.
34. A method of fabricating an array of electromechanical micromirrors comprising the steps of:
providing a single substrate with a 1st surface and a 2nd surface;
forming control circuitry on said 1st surface of said single substrate; and
forming a plurality of support structures on said second surface of said single substrate and forming a plurality of micromirrors on top of and supported by said support structures.
35. The method of claim 34, wherein:
said step of forming said control circuitry comprises a step of fabricating said control circuits selected from the group consisting of: CMOS circuits, NMOS circuits, PMOS circuits, bipolar transistor circuits, BiCMOS circuits, DMOS circuits, HEMT circuits, amorphous silicon thin film transistor circuits, polysilicon thin film transistor circuits, SiGe transistor circuits, SiC transistor circuits, GaN transistor circuits, GaAs transistor circuits, InP transistor circuits, CdSe transistor circuits, organic transistor circuits, and conjugated polymer transistor circuits.
36. The method of claim 34, wherein:
said step of providing said single substrate further comprising a step of providing said single substrate is selected from a group consisting of a silicon-on-insulator (SOI) substrate, a silicon substrate, a polycrystalline silicon substrate, a glass substrate, a plastic substrate, a ceramic substrate, a germanium substrate, a SiGe substrate, a SiC substrate, a sapphire substrate, a quartz substrate, a GaAs substrate, and an InP substrate.
37. The method of claim 34, wherein:
said step of forming said micromirrors additionally comprises a step of forming a plurality of addressing electrodes for actuating said micromirrors.
38. The method of claim 37, additionally comprising a step of:
forming a plurality of electrically conductive routing lines integrated with said single substrate for connecting said control circuitry to said plurality of addressing electrodes.
39. The method of claim 38, wherein said step of:
forming said plurality of electrically conductive routing lines comprises the steps of:
forming at least one via through said substrate; and
forming a metallization in said at least one via.
40. The method of claim 34, wherein:
said step of providing said single substrate further comprising a step of providing a single substrate comprises an insulating layer between said 1st surface and said 2nd surface.
41. The method of claim 34, wherein:
said step of forming a plurality of micromirrors comprises a step of forming a reflective metallic coating on said micromirrors.
42. The method of claim 34, wherein:
said step of forming a plurality of micromirrors comprises a step of forming a reflective multilayer dielectric coating on said micromirrors.
43. The method of claim 34, wherein said step of forming said micromirrors comprises the steps of:
forming said plurality of micromirror support structures embedded in a sacrificial layer;
planarizing a top surface of said sacrificial layer and said micromirror support structures
depositing a micromirror material on said top-surface;
patterning said micromirror material to form a plurality of micromirrors; and
removing said sacrificial layer by an etching process.
44. The method of claim 43, wherein:
said step of forming said microstructures in said sacrificial layer further comprising a step of forming said microstructures in a layer composed of a material is selected from the group consisting of a photoresist polymer, a silicon oxide, a silicon nitride, a silicon oxynitride, and an amorphous silicon.
45. The method of claim 43, wherein:
said step of planarizing said top surface further comprising a step of applying a chemical mechanical polishing (CMP) process.
46. The method of claim 34, wherein said step of forming a plurality of micromirrors comprises a step of:
patterning said micromirrors to have no edges perpendicular to a projection direction of an incident light propagation vector onto a plane of said single substrate.
47. The method of claim 46, wherein:
said step of forming said micromirrors further comprising a step of patterning at least one of said micromirror as a polygon-shaped micromirror.
48. The method of claim 47, wherein:
said step of forming said polygon-shaped micromirror is a step of forming said micromirror either as a rectangle-shaped micromirror or a hexagon-shaped micromirror.
49. The method of claim 34, additionally comprising a step of:
forming a torsion hinge for supporting said support structures by forming a hinge support followed by forming a torsion hinge on top of and supported by said hinge support.
50. The method of claim 34, additionally comprising the step of:
forming at least one stopping member for limiting a rotation of said micromirror.
51. The method of claim 50, wherein said step of forming at least one stopping member comprises:
forming a 1st stopping member for limiting a rotation of said micromirror in a 1st direction; and
forming a 2nd stopping member for limiting a rotation of said micromirror in a direction opposite to said 1st direction.
52. A method of fabricating an array of electromechanical micromirrors, comprising the steps of:
providing a single silicon-on-insulator substrate with an epitaxial top silicon layer above an insulator layer, supported by a bottom silicon layer;
forming control circuitry on said epitaxial top silicon layer;
removing said bottom silicon layer, thereby exposing the insulator layer;
forming a plurality of support structures followed by forming a plurality of micromirrors on top of and supported by said support structures.
53. The method of claim 52, wherein:
said step of forming said control circuitry comprises a step of fabricating said control circuits selected from a group consisting of: CMOS circuits, NMOS circuits, PMOS circuits, bipolar transistor circuits, BiCMOS circuits, and DMOS circuits.
54. The method of claim 52, wherein:
said step of removing said bottom silicon layer comprises a step of applying a backgrinding step to remove said bottom silicon layer.
55. The method of claim 52, wherein:
said step of removing said bottom silicon layer comprises a step of applying a chemical mechanical polishing (CMP) step to remove said bottom silicon layer.
56. The method of claim 52, additionally comprises a step of:
forming a plurality of addressing electrodes for actuating said plurality of micromirrors.
57. The method of claim 56, additionally comprising a step of:
forming a plurality of electrically conductive routing lines integrated with said single substrate for connecting said control circuitry to said plurality of addressing electrodes.
58. The method of claim 57, wherein said step of forming said plurality of electrically conductive routing lines comprises the steps of:
forming at least one via through said substrate; and
forming a metallization in said via.
59. The method of claim 52, wherein said step of forming said micromirrors the steps of:
forming said plurality of micromirror support structures embedded in a sacrificial layer;
planarizing a top surface of said sacrificial layer and said micromirror support structures;
depositing a micromirror material on said top-surface;
patterning said micromirror material to form a plurality of micromirrors; and
removing said sacrificial layer by an etching process.
60. The method of claim 59, wherein:
said step of planarizing said top surface further comprising a step of applying a chemical mechanical polishing (CMP) process.
US10/698,620 2003-07-29 2003-11-01 Electromechanical micromirror devices and methods of manufacturing the same Abandoned US20050094241A1 (en)

Priority Applications (77)

Application Number Priority Date Filing Date Title
US10/698,620 US20050094241A1 (en) 2003-11-01 2003-11-01 Electromechanical micromirror devices and methods of manufacturing the same
PCT/US2004/035974 WO2005046206A2 (en) 2003-11-01 2004-10-29 Electromechanical micromirror devices and methods of manufacturing the same
JP2006538296A JP4586146B2 (en) 2003-11-01 2004-10-29 Electrodynamic micromirror device and method for manufacturing the same
US11/121,543 US7268932B2 (en) 2003-11-01 2005-05-04 Micromirrors with lower driving voltages
US11/136,041 US7304783B2 (en) 2003-11-01 2005-05-23 Control of micromirrors with intermediate states
US11/183,216 US7215460B2 (en) 2003-11-01 2005-07-16 Sequence and timing control of writing and rewriting pixel memories for achieving higher number of gray scales
US11/187,248 US7375872B2 (en) 2003-11-01 2005-07-23 Methods and configurations for manufacturing hinges for micro-mirror devices
US11/600,625 US7782523B2 (en) 2003-11-01 2006-11-16 Analog micromirror devices with continuous intermediate states
US11/728,553 US7646527B2 (en) 2003-11-01 2007-03-18 Intensity distribution of incident light flux
US11/821,955 US7573633B2 (en) 2003-11-01 2007-06-25 Increase gray scales of projection system by reflecting light from mirror elements with non-uniform intensity distribution
US11/823,947 US7595927B2 (en) 2003-11-01 2007-06-29 Spatial light modulator with sub-wavelength structure
US11/823,942 US20080007576A1 (en) 2003-11-01 2007-06-29 Image display device with gray scales controlled by oscillating and positioning states
US11/827,552 US7542197B2 (en) 2003-11-01 2007-07-11 Spatial light modulator featured with an anti-reflective structure
US11/827,902 US7880736B2 (en) 2003-11-01 2007-07-12 Display control system for micromirror device
US11/893,696 US7492378B2 (en) 2003-11-01 2007-08-16 Image display system implements a light source with a controllable schedule to emit light of adjustable intensities
US11/893,660 US7948505B2 (en) 2003-11-01 2007-08-16 Method for reducing temporal artifacts in digital video systems
US11/894,246 US7605971B2 (en) 2003-11-01 2007-08-18 Plurality of hidden hinges for mircromirror device
US11/894,232 US20080074562A1 (en) 2003-11-01 2007-08-18 Display system comprising a mirror device with oscillation state
US11/900,540 US20080088651A1 (en) 2003-11-01 2007-09-11 Divided mirror pixels for deformable mirror device
US12/004,641 US7956319B2 (en) 2003-11-01 2007-12-24 Deformable mirror device with oscillating states for providing smaller controllable adjustment of light intensity
US12/069,837 US7746538B2 (en) 2003-11-01 2008-02-12 Methods and configurations for manufacturing hinges for micro-mirror devices
US12/156,261 US7796321B2 (en) 2003-11-01 2008-05-31 Mirror device
US12/220,526 US7643195B2 (en) 2003-11-01 2008-07-25 Mirror device
US12/228,728 US8282221B2 (en) 2003-11-01 2008-08-14 Projection apparatus using variable light source
US12/231,768 US8061854B2 (en) 2003-11-01 2008-09-04 Projection display system with varying light source
US12/231,909 US8619352B2 (en) 2003-07-29 2008-09-05 Projection display system using laser light source
US12/231,908 US7787172B2 (en) 2003-11-01 2008-09-05 Gamma correction for adjustable light source
US12/231,922 US8194305B2 (en) 2003-11-01 2008-09-05 Package for micromirror device
US12/231,911 US8238019B2 (en) 2003-11-01 2008-09-05 Projection apparatus with coherent light source
US12/231,962 US7826126B2 (en) 2003-11-01 2008-09-05 Gamma correction for adjustable light source
US12/286,800 US8157389B2 (en) 2003-11-01 2008-10-01 Synchronous control system for light source and spatial light modulator employed in projection apparatus
US12/286,585 US8061856B2 (en) 2003-11-01 2008-10-01 Projection apparatus and image projection changeover method
US12/286,804 US8462421B2 (en) 2003-11-01 2008-10-01 System configurations and methods for controlling image projection apparatuses
US12/286,590 US20090033878A1 (en) 2003-11-01 2008-10-01 System configurations and methods for controlling image projection apparatuses and mirror device
US12/286,801 US8270061B2 (en) 2003-11-01 2008-10-01 Display apparatus using pulsed light source
US12/286,816 US8228593B2 (en) 2003-11-01 2008-10-01 System configurations and method for controlling image projection apparatuses
US12/286,806 US20090103054A1 (en) 2003-11-01 2008-10-01 Projection apparatus comprising spatial light modulator
US12/286,807 US7817330B2 (en) 2003-11-01 2008-10-01 Projection apparatus with adjustable light source
US12/286,838 US8064125B2 (en) 2003-11-01 2008-10-01 Color sequential illumination for spatial light modulator
US12/286,805 US7869115B2 (en) 2003-11-01 2008-10-01 Display apparatus using pulsed light source
US12/291,921 US7973994B2 (en) 2003-11-01 2008-11-13 Spatial light modulator
US12/291,915 US8179591B2 (en) 2003-11-01 2008-11-13 Spatial light modulator and mirror array device
US12/315,794 US7969640B2 (en) 2003-11-01 2008-12-05 Color display system
US12/316,402 US7706048B2 (en) 2003-11-01 2008-12-11 Speckle reduction method
US12/378,656 US7933060B2 (en) 2003-11-01 2009-02-18 Three states of micro mirror device
US12/378,655 US7755830B2 (en) 2003-11-01 2009-02-18 Micro mirror device
US12/378,658 US7760415B2 (en) 2003-11-01 2009-02-18 Micro mirror device
US12/378,938 US7911680B2 (en) 2003-11-01 2009-02-20 Micromirror device having a vertical hinge
US12/381,434 US20090195858A1 (en) 2003-11-01 2009-03-11 Changing an electrode function
US12/381,446 US20090207324A1 (en) 2003-11-01 2009-03-11 Circuit for SLM's pixel
US12/381,484 US20090207164A1 (en) 2003-11-01 2009-03-11 Mirror control within time slot for SLM
US12/381,581 US20090207325A1 (en) 2003-11-01 2009-03-12 Algorithm for SLM of single hinge type
US12/381,586 US8238013B2 (en) 2003-11-01 2009-03-12 Projection apparatus using micromirror device
US12/381,580 US20090180038A1 (en) 2003-11-01 2009-03-12 Mirror control within time slot for SLM
US12/381,587 US8858811B2 (en) 2003-11-01 2009-03-12 Method for manufacturing a mirror device by means of a plurality of sacrificial layers
US12/381,635 US8350790B2 (en) 2003-11-01 2009-03-13 Video display system
US12/381,591 US8493298B2 (en) 2003-11-01 2009-03-13 Video display system
US12/381,563 US20090174810A1 (en) 2003-11-01 2009-03-13 Video display system
US12/381,590 US8432341B2 (en) 2003-11-01 2009-03-13 Color sequence control for video display apparatus
US12/381,812 US7916381B2 (en) 2003-11-01 2009-03-16 Spatial light modulator including drive lines
US12/383,701 US7876488B2 (en) 2003-11-01 2009-03-25 Mirror device having vertical hinge
US12/383,619 US20090225071A1 (en) 2003-11-01 2009-03-25 Image display system with light source controlled by non-binary data
US12/383,621 US8154474B2 (en) 2003-11-01 2009-03-25 Driving method of memory access
US12/383,620 US7733558B2 (en) 2003-11-01 2009-03-25 Display device with an addressable movable electrode
US12/383,711 US7944605B2 (en) 2003-11-01 2009-03-26 Color display apparatus
US12/383,676 US20090231496A1 (en) 2003-11-01 2009-03-27 Display control system for spatial light modulators
US12/384,021 US7969395B2 (en) 2003-11-01 2009-03-30 Spatial light modulator and mirror device
US12/586,268 US8081371B2 (en) 2003-11-01 2009-09-18 Spatial light modulator and display apparatus
US12/587,626 US20100079685A1 (en) 2003-11-01 2009-10-09 Spatial light modulator performing a gamma correction
US12/587,663 US8228594B2 (en) 2003-11-01 2009-10-09 Spatial light modulator with metal layers
US12/587,628 US8351107B2 (en) 2003-11-01 2009-10-09 Spatial light modulator having capacitor
US12/589,907 US20100046061A1 (en) 2003-11-01 2009-10-29 Mems package having inclined surface
US12/590,053 US8064123B2 (en) 2003-11-01 2009-10-30 Mirror device and MEMS device comprising layered electrode
US12/590,372 US8228595B2 (en) 2003-11-01 2009-11-06 Sequence and timing control of writing and rewriting pixel memories with substantially lower data rate
US12/590,754 US8045254B2 (en) 2003-11-01 2009-11-13 Structure body electrically connected via semiconductor material layer
US12/590,913 US7957050B2 (en) 2003-11-01 2009-11-16 Mirror device comprising layered electrode
US12/804,112 US8199394B2 (en) 2003-11-01 2010-07-14 Mircromirror device having a vertical hinge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/698,620 US20050094241A1 (en) 2003-11-01 2003-11-01 Electromechanical micromirror devices and methods of manufacturing the same

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
US10/699,140 Continuation-In-Part US6862127B1 (en) 2003-07-29 2003-11-01 High performance micromirror arrays and methods of manufacturing the same
US10/918,677 Continuation-In-Part US7183618B2 (en) 2003-11-01 2004-08-14 Hinge for micro-mirror devices

Related Child Applications (6)

Application Number Title Priority Date Filing Date
US10/699,140 Continuation-In-Part US6862127B1 (en) 2003-07-29 2003-11-01 High performance micromirror arrays and methods of manufacturing the same
US10/918,677 Continuation-In-Part US7183618B2 (en) 2003-11-01 2004-08-14 Hinge for micro-mirror devices
US11/121,543 Continuation-In-Part US7268932B2 (en) 2003-07-29 2005-05-04 Micromirrors with lower driving voltages
US11/136,041 Continuation-In-Part US7304783B2 (en) 2003-11-01 2005-05-23 Control of micromirrors with intermediate states
US11/183,216 Continuation-In-Part US7215460B2 (en) 2003-11-01 2005-07-16 Sequence and timing control of writing and rewriting pixel memories for achieving higher number of gray scales
US11/187,248 Continuation-In-Part US7375872B2 (en) 2003-11-01 2005-07-23 Methods and configurations for manufacturing hinges for micro-mirror devices

Publications (1)

Publication Number Publication Date
US20050094241A1 true US20050094241A1 (en) 2005-05-05

Family

ID=34550697

Family Applications (3)

Application Number Title Priority Date Filing Date
US10/698,620 Abandoned US20050094241A1 (en) 2003-07-29 2003-11-01 Electromechanical micromirror devices and methods of manufacturing the same
US11/187,248 Active 2024-07-07 US7375872B2 (en) 2003-11-01 2005-07-23 Methods and configurations for manufacturing hinges for micro-mirror devices
US12/069,837 Expired - Fee Related US7746538B2 (en) 2003-11-01 2008-02-12 Methods and configurations for manufacturing hinges for micro-mirror devices

Family Applications After (2)

Application Number Title Priority Date Filing Date
US11/187,248 Active 2024-07-07 US7375872B2 (en) 2003-11-01 2005-07-23 Methods and configurations for manufacturing hinges for micro-mirror devices
US12/069,837 Expired - Fee Related US7746538B2 (en) 2003-11-01 2008-02-12 Methods and configurations for manufacturing hinges for micro-mirror devices

Country Status (3)

Country Link
US (3) US20050094241A1 (en)
JP (1) JP4586146B2 (en)
WO (1) WO2005046206A2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060245067A1 (en) * 2004-05-27 2006-11-02 Stereo Display, Inc. Micromirror array lens with fixed focal length
US20070259017A1 (en) * 2006-05-05 2007-11-08 Medtronic Vascular, Inc. Medical Device Having Coating With Zeolite Drug Reservoirs
US20110105185A1 (en) * 2009-10-29 2011-05-05 Qualcomm Mems Technologies, Inc. Interferometric modulation devices having triangular subpixels
CN111491144A (en) * 2019-01-28 2020-08-04 深圳光峰科技股份有限公司 Display method, display system and computer storage medium
CN113448078A (en) * 2020-03-25 2021-09-28 来达科技股份有限公司 MEMS micromirror device with stoppers and method of fabricating the same

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7643195B2 (en) * 2003-11-01 2010-01-05 Silicon Quest Kabushiki-Kaisha Mirror device
US7864394B1 (en) * 2005-08-31 2011-01-04 The United States Of America As Represented By The Secretary Of The Navy Dynamically variable metamaterial lens and method
US7652813B2 (en) * 2006-08-30 2010-01-26 Silicon Quest Kabushiki-Kaisha Mirror device
US8023172B2 (en) * 2006-08-30 2011-09-20 Silicon Quest Kabushiki-Kaisha Mirror device
US7863752B2 (en) * 2009-02-25 2011-01-04 Capella Photonics, Inc. MEMS device with integrated via and spacer
JP2013530418A (en) 2010-04-28 2013-07-25 レモプティックス ソシエテ アノニム Microprojection device with anti-speckle imaging mode
US8654435B2 (en) * 2010-10-06 2014-02-18 Fusao Ishii Microwindow device
EP2447755B1 (en) 2010-10-26 2019-05-01 Lumentum Operations LLC A pivotable MEMS device
WO2014168658A1 (en) * 2013-04-09 2014-10-16 Fusao Ishii Mirror device with flat and smooth mirror surface without protrusion or dip
US9429760B2 (en) * 2014-10-07 2016-08-30 Christie Digital Systems Usa, Inc. Spatial color mixing in a cascade imaging system
CN112771428A (en) * 2018-09-29 2021-05-07 依格耐特有限公司 MEMS display device with vertical hinge

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4229782A (en) * 1977-12-20 1980-10-21 Mcgraw-Edison Company High efficiency lighting units with beam cut-off angle
US4317611A (en) * 1980-05-19 1982-03-02 International Business Machines Corporation Optical ray deflection apparatus
US4592628A (en) * 1981-07-01 1986-06-03 International Business Machines Mirror array light valve
US4662746A (en) * 1985-10-30 1987-05-05 Texas Instruments Incorporated Spatial light modulator and method
US5061049A (en) * 1984-08-31 1991-10-29 Texas Instruments Incorporated Spatial light modulator and method
US5216537A (en) * 1990-06-29 1993-06-01 Texas Instruments Incorporated Architecture and process for integrating DMD with control circuit substrates
US5535047A (en) * 1995-04-18 1996-07-09 Texas Instruments Incorporated Active yoke hidden hinge digital micromirror device
US5583688A (en) * 1993-12-21 1996-12-10 Texas Instruments Incorporated Multi-level digital micromirror device
US5835256A (en) * 1995-06-19 1998-11-10 Reflectivity, Inc. Reflective spatial light modulator with encapsulated micro-mechanical elements
US6344672B2 (en) * 1998-12-28 2002-02-05 Texas Instruments Incorporated Guardring DRAM cell
US6538800B2 (en) * 1995-06-19 2003-03-25 Reflectivity, Inc. Reflective spatial light modulator with deflectable elements formed on a light transmissive substrate
US6576496B1 (en) * 2000-08-21 2003-06-10 Micron Technology, Inc. Method and apparatus for encapsulating a multi-chip substrate array
US20030134449A1 (en) * 2002-01-11 2003-07-17 Reflectivity, Inc., A California Corporation Method for adjusting a micro-mechanical device
US6639713B2 (en) * 2000-04-25 2003-10-28 Umachines, Inc. Silicon micromachined optical device
US20040008402A1 (en) * 2000-08-11 2004-01-15 Patel Satyadev R. Micromirrors with mechanisms for enhancing coupling of the micromirrors with electrostatic fields
US20040125347A1 (en) * 2003-01-29 2004-07-01 Patel Satyadev R. Micromirrors and off-diagonal hinge structures for micromirror arrays in projection displays
US6903860B2 (en) * 2003-11-01 2005-06-07 Fusao Ishii Vacuum packaged micromirror arrays and methods of manufacturing the same
US6935023B2 (en) * 2000-03-08 2005-08-30 Hewlett-Packard Development Company, L.P. Method of forming electrical connection for fluid ejection device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100243190B1 (en) * 1996-06-10 2000-02-01 윤종용 Movable mirror array and its fabrication method
DE69834847T2 (en) * 1998-09-24 2007-02-15 Reflectivity Inc., Santa Clara REFLECTIVE SPATIAL LIGHT MODULATOR WITH DOUBLE SUBSTRATE AND SELF-RESTRICTING MICROMECHANICAL ELEMENTS
US6323834B1 (en) * 1998-10-08 2001-11-27 International Business Machines Corporation Micromechanical displays and fabrication method
JP4360582B2 (en) * 2000-10-31 2009-11-11 京セラ株式会社 Package for storing digital micromirror devices
FR2820833B1 (en) * 2001-02-15 2004-05-28 Teem Photonics PIVOT OPTICAL MICRO-MIRROR, MATRIX OF SUCH MICRO-MIRRORS AND METHOD FOR PRODUCING THE SAME
US6922499B2 (en) * 2001-07-24 2005-07-26 Lucent Technologies Inc. MEMS driver circuit arrangement
JP2004130507A (en) * 2002-09-19 2004-04-30 Nippon Telegr & Teleph Corp <Ntt> Electronic component device
US6914711B2 (en) * 2003-03-22 2005-07-05 Active Optical Networks, Inc. Spatial light modulator with hidden comb actuator
US7183618B2 (en) * 2004-08-14 2007-02-27 Fusao Ishii Hinge for micro-mirror devices

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4229782A (en) * 1977-12-20 1980-10-21 Mcgraw-Edison Company High efficiency lighting units with beam cut-off angle
US4317611A (en) * 1980-05-19 1982-03-02 International Business Machines Corporation Optical ray deflection apparatus
US4592628A (en) * 1981-07-01 1986-06-03 International Business Machines Mirror array light valve
US5061049A (en) * 1984-08-31 1991-10-29 Texas Instruments Incorporated Spatial light modulator and method
US4662746A (en) * 1985-10-30 1987-05-05 Texas Instruments Incorporated Spatial light modulator and method
US5216537A (en) * 1990-06-29 1993-06-01 Texas Instruments Incorporated Architecture and process for integrating DMD with control circuit substrates
US5583688A (en) * 1993-12-21 1996-12-10 Texas Instruments Incorporated Multi-level digital micromirror device
US5535047A (en) * 1995-04-18 1996-07-09 Texas Instruments Incorporated Active yoke hidden hinge digital micromirror device
US5835256A (en) * 1995-06-19 1998-11-10 Reflectivity, Inc. Reflective spatial light modulator with encapsulated micro-mechanical elements
US6538800B2 (en) * 1995-06-19 2003-03-25 Reflectivity, Inc. Reflective spatial light modulator with deflectable elements formed on a light transmissive substrate
US6344672B2 (en) * 1998-12-28 2002-02-05 Texas Instruments Incorporated Guardring DRAM cell
US6935023B2 (en) * 2000-03-08 2005-08-30 Hewlett-Packard Development Company, L.P. Method of forming electrical connection for fluid ejection device
US6639713B2 (en) * 2000-04-25 2003-10-28 Umachines, Inc. Silicon micromachined optical device
US20040008402A1 (en) * 2000-08-11 2004-01-15 Patel Satyadev R. Micromirrors with mechanisms for enhancing coupling of the micromirrors with electrostatic fields
US6576496B1 (en) * 2000-08-21 2003-06-10 Micron Technology, Inc. Method and apparatus for encapsulating a multi-chip substrate array
US20030134449A1 (en) * 2002-01-11 2003-07-17 Reflectivity, Inc., A California Corporation Method for adjusting a micro-mechanical device
US20040125347A1 (en) * 2003-01-29 2004-07-01 Patel Satyadev R. Micromirrors and off-diagonal hinge structures for micromirror arrays in projection displays
US6903860B2 (en) * 2003-11-01 2005-06-07 Fusao Ishii Vacuum packaged micromirror arrays and methods of manufacturing the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060245067A1 (en) * 2004-05-27 2006-11-02 Stereo Display, Inc. Micromirror array lens with fixed focal length
US7777959B2 (en) * 2004-05-27 2010-08-17 Angstrom, Inc. Micromirror array lens with fixed focal length
US20070259017A1 (en) * 2006-05-05 2007-11-08 Medtronic Vascular, Inc. Medical Device Having Coating With Zeolite Drug Reservoirs
US20110105185A1 (en) * 2009-10-29 2011-05-05 Qualcomm Mems Technologies, Inc. Interferometric modulation devices having triangular subpixels
US8040590B2 (en) * 2009-10-29 2011-10-18 Qualcomm Mems Technologies, Inc. Interferometric modulation devices having triangular subpixels
CN111491144A (en) * 2019-01-28 2020-08-04 深圳光峰科技股份有限公司 Display method, display system and computer storage medium
CN113448078A (en) * 2020-03-25 2021-09-28 来达科技股份有限公司 MEMS micromirror device with stoppers and method of fabricating the same

Also Published As

Publication number Publication date
US20060018005A1 (en) 2006-01-26
US7746538B2 (en) 2010-06-29
WO2005046206A3 (en) 2006-05-18
US7375872B2 (en) 2008-05-20
WO2005046206A2 (en) 2005-05-19
JP2007510954A (en) 2007-04-26
US20080180778A1 (en) 2008-07-31
JP4586146B2 (en) 2010-11-24

Similar Documents

Publication Publication Date Title
US6862127B1 (en) High performance micromirror arrays and methods of manufacturing the same
US6903860B2 (en) Vacuum packaged micromirror arrays and methods of manufacturing the same
US20050094241A1 (en) Electromechanical micromirror devices and methods of manufacturing the same
US20020167072A1 (en) Electrostatically actuated micro-electro-mechanical devices and method of manufacture
US20060082250A1 (en) Biaxial actuator and method of manufacturing the same
US20020037128A1 (en) Micro electromechanical system and method for transmissively switching optical signals
US6686639B1 (en) High performance MEMS device fabricatable with high yield
US20030117679A1 (en) Methods of forming integrated optoelectronic devices
KR100374486B1 (en) Thin film micromirror array for free-space optical switching using Micro Electro Mechanical System and method for manufacturing the same, and multidimensional optical switching mode therefrom
WO2001094253A2 (en) Bulk silicon structures with thin film flexible elements
KR100276663B1 (en) Manufacturing method of thin film type optical path control device
KR100276664B1 (en) Thin film type optical path control device and its manufacturing method
KR100276665B1 (en) Thin film type optical path control device and its manufacturing method_
KR100251110B1 (en) Manufacturing method of ama
KR100248490B1 (en) Tma and manufacturing method
KR100276667B1 (en) Thin film type optical path control device and its manufacturing method_
KR100257605B1 (en) Method for manufacturing thin film actuated mirror array
KR20000032305A (en) Fabrication method of thin film actuated mirror array
KR20000044211A (en) Thin film micromirror array-actuated device and manufacturing method
KR20000044205A (en) Manufacturing method for thin film micromirror array-actuated device
KR20000044208A (en) Thin film micromirror array-actuated device and manufacturing method thereof
KR20000024882A (en) Method for manufacturing thin film type actuated mirror arrays
EP2211223A1 (en) Method for generating a deflectable mirror structure and a micromirror device
KR20000032303A (en) Fabrication method of thin film actuated mirror array
KR20000044201A (en) Manufacturing method of thin-film type optical path adjustor

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION