US20050110124A1 - Wafer level package having a side package - Google Patents

Wafer level package having a side package Download PDF

Info

Publication number
US20050110124A1
US20050110124A1 US11/023,545 US2354504A US2005110124A1 US 20050110124 A1 US20050110124 A1 US 20050110124A1 US 2354504 A US2354504 A US 2354504A US 2005110124 A1 US2005110124 A1 US 2005110124A1
Authority
US
United States
Prior art keywords
package
wafer
wafer level
semiconductor chip
level package
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/023,545
Inventor
Young Song
Ming Son
Woong Ha
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US11/023,545 priority Critical patent/US20050110124A1/en
Publication of US20050110124A1 publication Critical patent/US20050110124A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a semiconductor chip packaging technology, and more particularly to a wafer level package having a side package.
  • the wafer level package is one type of semiconductor chip package.
  • the wafer level package is a package formed on a semiconductor wafer, rather than on a die (a “die” refers to a semiconductor chip that has been separated from the wafer).
  • Forming a wafer level package on a wafer has the advantages of providing more complete integration of the package functions and the semiconductor chip functions, improving the thermal and electrical characteristics of the semiconductor chips, and decreasing the size of the semiconductor chip package. Additionally, since the wafer level package is formed in a single process, the price to manufacture the semiconductor chip is reduced.
  • drawbacks do exist with wafer level packaging. Most notably, the inability of the process to package all sides of the semiconductor chip. For example, with wafer level packaging, sides of individual dies are left unpackaged. A semiconductor chip not having a package body surrounding all sides of the semiconductor chip is vulnerable to physical damage, for example, from physical contact with objects of the surrounding environment during the manufacturing process, or from the handling of the semiconductor chip. Of particular concern is the damage an exposed semiconductor chip may receive during the process for wafer back lapping, which is performed to decrease the thickness of the semiconductor chip.
  • one embodiment of the present invention provides a method of manufacturing a wafer level package including forming a semiconductor wafer which includes semiconductor chips, where each semiconductor chip includes a plurality of electrode pads, and forming a package body on each side of the semiconductor chip. Forming the package body includes forming a space between each semiconductor chip and providing a package material in the space, which can be a molded resin. The wafer is then separated into separate semiconductor chips by cutting through the package body.
  • a wafer level package in another embodiment, includes a semiconductor chip having a plurality of electrode pads on the active surface, and a package body formed on the sides of the semiconductor chip.
  • FIG. 1 is a cross sectional view taken along line I-I of FIG. 2 showing a wafer level package according to the present invention.
  • FIG. 2 is a plan view showing a wafer level package according to the present invention.
  • FIG. 3 illustrates the opening of electrode pads of a semiconductor chip in a method of manufacturing a wafer level package according to the present invention.
  • FIG. 4 illustrates the formation of an insulating layer on a surface of a semiconductor wafer in a method of manufacturing a wafer level package according to the present invention.
  • FIG. 5 illustrates the formation of a metal layer on the surface of the wafer provided with the insulating layer in a method of manufacturing a wafer level package according to the present invention.
  • FIG. 6 illustrates the formation of a connection area on the surface of the wafer provided with the metal layer in a method of manufacturing a wafer level package according to the present invention.
  • FIG. 7 illustrates the alignment of a solder ball on a semiconductor wafer in a method of manufacturing a wafer level package according to the present invention.
  • FIG. 8 illustrates the formation of a connection on the semiconductor wafer in a method of manufacturing a wafer level package according to the present invention.
  • FIG. 9 illustrates the sawing of the semiconductor wafer in a method of manufacturing a wafer level package according to the present invention.
  • FIG. 10 illustrates the separation of the semiconductor wafer into the individual chips by the first sawing step, spacing apart-predetermined spaces between them in a method of manufacturing a wafer level package according to the present invention.
  • FIG. 11 illustrates the formation of package bodies in side surfaces of the individual chips of the wafer state in a method of manufacturing a wafer level package according to the present invention.
  • FIG. 12 illustrates the separation of the semiconductor wafer into individual chips in a method of manufacturing a wafer level package according to the present invention.
  • FIG. 1 is a cross sectional view showing a wafer level package according to the present invention.
  • a wafer level package 100 includes a semiconductor chip 10 , a package pattern 30 , and a package body 50 which is formed on the side surface of semiconductor chip 10 .
  • Semiconductor chip 10 includes circuit elements (not shown) which are integrated on semiconductor chip 10 by the wafer fabrication process. These circuit elements are referred to as “on-chip circuits” and are selected based on the electrical characteristics and the functions of semiconductor chip 10 .
  • Metal electrode pads 20 formed on the active surface of semiconductor chip 10 (the top surface of semiconductor chip 10 as shown in FIG. 1 ) provide electrical connections to electrically connect the on-chip circuits to external devices (not shown).
  • Package pattern 30 formed on the active surface of semiconductor chip 10 includes an insulating layer 28 , metal wiring layer 34 , second insulating layer 36 , and connections 38 .
  • Insulating layer 28 is formed on the active surface of semiconductor chip 10 to expose electrode pads 20 .
  • Insulating layer 28 may be formed, for example, by applying a passivation layer 31 to the active surface of semiconductor chip 10 and then depositing first insulating layer 32 on passivation layer 31 , as illustrated in FIGS. 3 and 4 .
  • Metal wiring layer 34 is formed on insulating layer 28 to be connected to exposed electrode pads 20
  • a second insulating layer 36 is formed on metal wiring layer 34 .
  • Connections 38 are, for example, solder ball connections which are electrically connected with the metal wiring layer 34 .
  • Insulating layer 28 and second insulating layer 36 are formed, for example, from a polymer-based insulating material.
  • Metal wiring layer 34 is, for example, a Cu metal layer.
  • Metal wiring layer 34 can be formed by sputtering-depositing titanium metal on insulating layer 28 , then sputtering-depositing Cu metal, and then sputtering-depositing Cu and titanium metal again.
  • FIG. 1 shows metal wiring layer 34 as a single layer, although it is possible that metal wiring layer 34 include several layers, for example, signal transmissions wiring layers and power supply wiring layers.
  • additional layers on the wafer may include, for example, passivation layers (shown in FIG. 3 ) deposited on the wafer surface formed under insulating layer 28 during the general wafer fabrication process.
  • package body 50 does not increase the height of wafer level package 100 .
  • Package body 50 has a height which extends from the bottom surface 26 of semiconductor chip 10 to second insulating layer 36 of package pattern 30 .
  • Package body 50 is made from, for example, an epoxy molded resin used in the manufacturing of general plastic packages.
  • the thickness of the semiconductor chip 10 after undergoing the wafer back lapping process is about 100-150 ⁇ m.
  • FIG. 2 illustrates a top plan view of a package body according an embodiment of the present invention.
  • package body 50 is formed on all sides of semiconductor chip 10 , thus, protecting the side surfaces of semiconductor chip 10 .
  • FIG. 3 through FIG. 12 describe a method of manufacturing the wafer level package according an embodiment of the present invention. More specifically, figures FIG. 3 through FIG. 8 illustrate steps of forming the package patterns in the semiconductor chips as they exist in the wafer state, while figures FIG. 9 through FIG. 12 illustrate a die bonding process, according to an embodiment of the present invention.
  • a passivation layer 31 which is generally applied to the semiconductor chip during the fabrication process, is deposited on the active surface of semiconductor chip 10 to form opening 33 to electrode pads 20 .
  • Passivation layer 31 is formed by etching, for example, Photo-Silicate Glass (PSG) film or film including SiO2 and Si3N4 as the main components by chemical vapor deposition (CVD).
  • PSG Photo-Silicate Glass
  • CVD chemical vapor deposition
  • first insulating layer 32 is deposited on passivation layer 31 and etching is used to form opening 33 first insulating layer 32 .
  • First insulating layer 32 is, for example, a dielectric layer of polyimide-based.
  • FIG. 5 illustrates the formation of a metal layer in a method of manufacturing a wafer level according to an embodiment of the present invention.
  • the metal layer Cu for example, is deposited onto first insulating layer 32 and is photo-etched, thereby forming metal wiring layer 34 .
  • Metal wiring layer 34 contacts electrode pad 20 through opening 33 .
  • Wiring layer 34 may be formed, for example, by sputtering-depositing titanium metal on first insulating layer 32 , then sputtering-depositing Cu metal, and then sputtering-depositing titanium metal again.
  • wiring layer 34 may be formed, for example, by sputtering-depositing Cr metal on first insulating layer 32 , then sputtering-depositing Cu metal, and sputtering-depositing Ni metal.
  • Cr provides a strong attachment with first insulating layer 32 and provides barrier functions for electrode pads 20 .
  • Ni has solder barrier function for solder balls and prevents oxidization.
  • second insulating layer 36 is deposited on metal wiring layer 34 and opening 37 is formed by the etching process.
  • the steps of forming the first insulating layer, the metal wiring layer, and the second insulating layer are repeated as needed.
  • solder ball 38 a is positioned over opening 37 of semiconductor chip 10 and heated by reflow soldering. As solder ball 38 a is heated, solder ball 38 a melts and connects with metal wiring layer 34 to form electric connections 38 .
  • the electrical die sorting (EDS) process is performed. During the EDS process, chips which have failed the electrical tests and which are not repairable are marked by, for example, inking the surfaces of the chip that are impossible to repair. The unmarked chips are then separated from the wafer by the wafer sawing process and attached to the substrate of high-density mounting package. This process is referred to as die bonding.
  • FIG. 9 illustrates the sawing of a semiconductor wafer according to an embodiment of the present invention.
  • a tape 60 is attached to the bottom surface of semiconductor chip 10 .
  • Tape 60 is an expandable tape generally used in the wafer sawing process.
  • wafer sawing device 70 saws the wafer.
  • Wafer sawing device 70 is, for example, a rotating diamond wheel or a laser.
  • the wafer is fixed on a vacuum chuck (not shown) by applying suction from the vacuum chuck to the bottom surface of the wafer.
  • the wafer sawing equipment (not shown) is aligned with the wafer, the wafer is sawed into individual chips by wafer sawing device 70 .
  • Tape 60 is not sawed.
  • the wafer has been separated into individual semiconductor chips 10 .
  • the semiconductor chips remain in the shape of a wafer.
  • both sides of tape 60 attached to the bottom surface of the wafer extend beyond the sides of each individual semiconductor chip 10 and the individual chips are separated from one another by a distance designated by space 75 .
  • space 75 differs based on the type of the semiconductor IC device formed on the wafer, it is preferable to set it 600 ⁇ m or less depending on the size of the test socket used to test the semiconductor IC device.
  • FIG. 11 illustrates the formation of package bodies according to an embodiment of the present invention.
  • Package body 50 is formed by potting an epoxy molded resin in spaces 75 through, for example, a needle 80 .
  • the potted molded resin hardens thus forming package bodies 50 on the side surfaces of individual semiconductor chips 10 .
  • FIG. 12 illustrates the complete separation of the individual semiconductor chips 10 .
  • the individual semiconductor chips 10 still attached to tape 60 , are mounted to the sawing equipment as described with reference to FIG. 9 , and are separated by into individual semiconductor chips 10 by sawing through a portion of the package bodies 50 with sawing device 70 .
  • Sawing device 70 of this separation step is similar to sawing device 70 used in the first separation step.
  • sawing device 70 Because individual semiconductor chips 10 are separated by sawing through package bodies 50 with sawing device 70 , the damage to individual chips by sawing device 70 is reduced. Additionally, when sawing device is a rotating diamond wheel, the impact of the wheel is absorbed by package bodies 50 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Dicing (AREA)

Abstract

A method of manufacturing a wafer level package includes forming a semiconductor wafer including semiconductor chips, and forming a package body on the sides of each semiconductor chip. The package body is formed by forming a space between each semiconductor chip and potting a package material in the space, which can be a mold resin. The wafer is then separated into separate semiconductor chips by cutting through the package body.

Description

    BACKGROUND OF THE INVENTION
  • The present invention relates to a semiconductor chip packaging technology, and more particularly to a wafer level package having a side package.
  • Semiconductor chip packages provide input and output connections to a semiconductor chip for an external device, as well as physical protection for the semiconductor chip. The wafer level package is one type of semiconductor chip package. The wafer level package is a package formed on a semiconductor wafer, rather than on a die (a “die” refers to a semiconductor chip that has been separated from the wafer). Forming a wafer level package on a wafer has the advantages of providing more complete integration of the package functions and the semiconductor chip functions, improving the thermal and electrical characteristics of the semiconductor chips, and decreasing the size of the semiconductor chip package. Additionally, since the wafer level package is formed in a single process, the price to manufacture the semiconductor chip is reduced.
  • However, drawbacks do exist with wafer level packaging. Most notably, the inability of the process to package all sides of the semiconductor chip. For example, with wafer level packaging, sides of individual dies are left unpackaged. A semiconductor chip not having a package body surrounding all sides of the semiconductor chip is vulnerable to physical damage, for example, from physical contact with objects of the surrounding environment during the manufacturing process, or from the handling of the semiconductor chip. Of particular concern is the damage an exposed semiconductor chip may receive during the process for wafer back lapping, which is performed to decrease the thickness of the semiconductor chip.
  • SUMMARY OF THE INVENTION
  • For these reasons, it is desirable to provide a multi-chip package comprising plural chips of various types and sizes, and to provide for chips of varying sizes to be mounted above each other.
  • Accordingly, one embodiment of the present invention provides a method of manufacturing a wafer level package including forming a semiconductor wafer which includes semiconductor chips, where each semiconductor chip includes a plurality of electrode pads, and forming a package body on each side of the semiconductor chip. Forming the package body includes forming a space between each semiconductor chip and providing a package material in the space, which can be a molded resin. The wafer is then separated into separate semiconductor chips by cutting through the package body.
  • In another embodiment of the present invention, a wafer level package is disclosed. The wafer level package includes a semiconductor chip having a plurality of electrode pads on the active surface, and a package body formed on the sides of the semiconductor chip.
  • With the descriptions mentioned above along with other feature and advantages, the outline will be more clearly understood from the following detailed description taken in conjunction with the accompanying illustrations. It is important to point out that the illustrations may not necessarily be drawn to scale and there may be other embodiments to this invention that are not specifically illustrated.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The features and advantages of the present invention will become more apparent by describing in detail specific embodiments thereof with reference to the attached drawings in which:
  • FIG. 1 is a cross sectional view taken along line I-I of FIG. 2 showing a wafer level package according to the present invention.
  • FIG. 2 is a plan view showing a wafer level package according to the present invention.
  • FIG. 3 illustrates the opening of electrode pads of a semiconductor chip in a method of manufacturing a wafer level package according to the present invention.
  • FIG. 4 illustrates the formation of an insulating layer on a surface of a semiconductor wafer in a method of manufacturing a wafer level package according to the present invention.
  • FIG. 5 illustrates the formation of a metal layer on the surface of the wafer provided with the insulating layer in a method of manufacturing a wafer level package according to the present invention.
  • FIG. 6 illustrates the formation of a connection area on the surface of the wafer provided with the metal layer in a method of manufacturing a wafer level package according to the present invention.
  • FIG. 7 illustrates the alignment of a solder ball on a semiconductor wafer in a method of manufacturing a wafer level package according to the present invention.
  • FIG. 8 illustrates the formation of a connection on the semiconductor wafer in a method of manufacturing a wafer level package according to the present invention.
  • FIG. 9 illustrates the sawing of the semiconductor wafer in a method of manufacturing a wafer level package according to the present invention.
  • FIG. 10 illustrates the separation of the semiconductor wafer into the individual chips by the first sawing step, spacing apart-predetermined spaces between them in a method of manufacturing a wafer level package according to the present invention.
  • FIG. 11 illustrates the formation of package bodies in side surfaces of the individual chips of the wafer state in a method of manufacturing a wafer level package according to the present invention.
  • FIG. 12 illustrates the separation of the semiconductor wafer into individual chips in a method of manufacturing a wafer level package according to the present invention.
  • DETAILED DESCRIPTION OF THE INVENTION
  • Embodiments of the present invention are described below with reference to the accompanying drawings.
  • FIG. 1 is a cross sectional view showing a wafer level package according to the present invention.
  • A wafer level package 100 according to the present invention includes a semiconductor chip 10, a package pattern 30, and a package body 50 which is formed on the side surface of semiconductor chip 10. Semiconductor chip 10 includes circuit elements (not shown) which are integrated on semiconductor chip 10 by the wafer fabrication process. These circuit elements are referred to as “on-chip circuits” and are selected based on the electrical characteristics and the functions of semiconductor chip 10. Metal electrode pads 20 formed on the active surface of semiconductor chip 10 (the top surface of semiconductor chip 10 as shown in FIG. 1) provide electrical connections to electrically connect the on-chip circuits to external devices (not shown).
  • Package pattern 30 formed on the active surface of semiconductor chip 10 includes an insulating layer 28, metal wiring layer 34, second insulating layer 36, and connections 38. Insulating layer 28 is formed on the active surface of semiconductor chip 10 to expose electrode pads 20. Insulating layer 28 may be formed, for example, by applying a passivation layer 31 to the active surface of semiconductor chip 10 and then depositing first insulating layer 32 on passivation layer 31, as illustrated in FIGS. 3 and 4. Metal wiring layer 34 is formed on insulating layer 28 to be connected to exposed electrode pads 20, and a second insulating layer 36 is formed on metal wiring layer 34. Connections 38 are, for example, solder ball connections which are electrically connected with the metal wiring layer 34.
  • Insulating layer 28 and second insulating layer 36 are formed, for example, from a polymer-based insulating material. Metal wiring layer 34 is, for example, a Cu metal layer. Metal wiring layer 34 can be formed by sputtering-depositing titanium metal on insulating layer 28, then sputtering-depositing Cu metal, and then sputtering-depositing Cu and titanium metal again. FIG. 1 shows metal wiring layer 34 as a single layer, although it is possible that metal wiring layer 34 include several layers, for example, signal transmissions wiring layers and power supply wiring layers. As explained above, additional layers on the wafer may include, for example, passivation layers (shown in FIG. 3) deposited on the wafer surface formed under insulating layer 28 during the general wafer fabrication process.
  • As shown in FIG. 1, package body 50 does not increase the height of wafer level package 100. Package body 50 has a height which extends from the bottom surface 26 of semiconductor chip 10 to second insulating layer 36 of package pattern 30. Package body 50 is made from, for example, an epoxy molded resin used in the manufacturing of general plastic packages. The thickness of the semiconductor chip 10 after undergoing the wafer back lapping process is about 100-150 μm.
  • FIG. 2 illustrates a top plan view of a package body according an embodiment of the present invention. As shown in FIG. 2, package body 50 is formed on all sides of semiconductor chip 10, thus, protecting the side surfaces of semiconductor chip 10.
  • Figures FIG. 3 through FIG. 12 describe a method of manufacturing the wafer level package according an embodiment of the present invention. More specifically, figures FIG. 3 through FIG. 8 illustrate steps of forming the package patterns in the semiconductor chips as they exist in the wafer state, while figures FIG. 9 through FIG. 12 illustrate a die bonding process, according to an embodiment of the present invention.
  • Referring to FIG. 3, a passivation layer 31, which is generally applied to the semiconductor chip during the fabrication process, is deposited on the active surface of semiconductor chip 10 to form opening 33 to electrode pads 20. Passivation layer 31 is formed by etching, for example, Photo-Silicate Glass (PSG) film or film including SiO2 and Si3N4 as the main components by chemical vapor deposition (CVD).
  • Turning now to FIG. 4, first insulating layer 32 is deposited on passivation layer 31 and etching is used to form opening 33 first insulating layer 32. First insulating layer 32 is, for example, a dielectric layer of polyimide-based.
  • FIG. 5 illustrates the formation of a metal layer in a method of manufacturing a wafer level according to an embodiment of the present invention. The metal layer, Cu for example, is deposited onto first insulating layer 32 and is photo-etched, thereby forming metal wiring layer 34. Metal wiring layer 34 contacts electrode pad 20 through opening 33. Wiring layer 34 may be formed, for example, by sputtering-depositing titanium metal on first insulating layer 32, then sputtering-depositing Cu metal, and then sputtering-depositing titanium metal again. Alternatively, wiring layer 34 may be formed, for example, by sputtering-depositing Cr metal on first insulating layer 32, then sputtering-depositing Cu metal, and sputtering-depositing Ni metal. Cr provides a strong attachment with first insulating layer 32 and provides barrier functions for electrode pads 20. Additionally, Ni has solder barrier function for solder balls and prevents oxidization.
  • Referring now to FIG. 6, second insulating layer 36 is deposited on metal wiring layer 34 and opening 37 is formed by the etching process.
  • For wafer level packages in which the metal wiring layer includes several layers, the steps of forming the first insulating layer, the metal wiring layer, and the second insulating layer are repeated as needed.
  • As shown in figures FIG. 7 and FIG. 8, solder ball 38 a is positioned over opening 37 of semiconductor chip 10 and heated by reflow soldering. As solder ball 38 a is heated, solder ball 38 a melts and connects with metal wiring layer 34 to form electric connections 38.
  • Once the wafer fabrication process for forming package pattern 30 in each of the semiconductor chips 10 of the wafer is complete, the electrical characteristics of the semiconductor chips of the wafer are tested. Following these tests, the electrical die sorting (EDS) process is performed. During the EDS process, chips which have failed the electrical tests and which are not repairable are marked by, for example, inking the surfaces of the chip that are impossible to repair. The unmarked chips are then separated from the wafer by the wafer sawing process and attached to the substrate of high-density mounting package. This process is referred to as die bonding.
  • FIG. 9 illustrates the sawing of a semiconductor wafer according to an embodiment of the present invention. Initially, a tape 60 is attached to the bottom surface of semiconductor chip 10. Tape 60 is an expandable tape generally used in the wafer sawing process. Next, wafer sawing device 70 saws the wafer. Wafer sawing device 70 is, for example, a rotating diamond wheel or a laser. To support the wafer during this sawing process, the wafer is fixed on a vacuum chuck (not shown) by applying suction from the vacuum chuck to the bottom surface of the wafer. When the wafer sawing equipment (not shown) is aligned with the wafer, the wafer is sawed into individual chips by wafer sawing device 70. Tape 60 is not sawed.
  • Referring now to FIG. 10, once the first wafer sawing process is complete, the wafer has been separated into individual semiconductor chips 10. However, because each semiconductor chip 10 remains attached to tape 60, the semiconductor chips remain in the shape of a wafer. Additionally, both sides of tape 60 attached to the bottom surface of the wafer extend beyond the sides of each individual semiconductor chip 10 and the individual chips are separated from one another by a distance designated by space 75. Although the size of space 75 differs based on the type of the semiconductor IC device formed on the wafer, it is preferable to set it 600 μm or less depending on the size of the test socket used to test the semiconductor IC device.
  • FIG. 11 illustrates the formation of package bodies according to an embodiment of the present invention. Package body 50 is formed by potting an epoxy molded resin in spaces 75 through, for example, a needle 80. The potted molded resin hardens thus forming package bodies 50 on the side surfaces of individual semiconductor chips 10.
  • FIG. 12 illustrates the complete separation of the individual semiconductor chips 10. The individual semiconductor chips 10, still attached to tape 60, are mounted to the sawing equipment as described with reference to FIG. 9, and are separated by into individual semiconductor chips 10 by sawing through a portion of the package bodies 50 with sawing device 70. Sawing device 70 of this separation step is similar to sawing device 70 used in the first separation step.
  • Because individual semiconductor chips 10 are separated by sawing through package bodies 50 with sawing device 70, the damage to individual chips by sawing device 70 is reduced. Additionally, when sawing device is a rotating diamond wheel, the impact of the wheel is absorbed by package bodies 50.
  • Although the invention has been described with reference to particular embodiments, the description is only an example of the inventor's application and should not be taken as limiting. Various adaptations and combinations of features of the embodiments disclosed are within the scope of the invention as defined by the following claims.

Claims (11)

1. A wafer level package comprising:
a semiconductor chip, wherein the semiconductor chip includes a plurality of electrode pads on an active surface; and
a package body formed on the sides of the semiconductor chip.
2. The wafer level package of claim 1, further comprising:
an insulating layer formed on the active surface, wherein the plurality of electrode pads are exposed;
a metal wiring layer formed on the insulating layer and electrically connected with the plurality of electrode pads;
an insulating layer formed on the metal wiring layer including an opening to the metal wiring layer.
3. The wafer level package of claim 2, wherein the insulating layer formed on the active surface comprises:
a passivation layer formed on the active surface; and
a first insulating layer formed on the passivation layer.
4. The wafer level package of claim 2, wherein the metal wiring layer comprises:
a plurality of metal wiring layers.
5. The wafer level package of claim 2, wherein the metal wiring layer is a Cu metal layer.
6. The wafer level package of claim 2, wherein the height of the package body extends from a lower surface of the semiconductor chip to the top of the insulating layer formed on the metal wiring layer.
7. The wafer level package of claim 2, further comprising:
a connection formed on the metal wiring layer through the opening.
8. The wafer level package of claim 7, wherein the connection is a solder ball connection.
9. The wafer level package of claim 1, wherein the package body is contiguous about the semiconductor chip.
10. The wafer level package of claim 1, wherein the package body includes an epoxy molded resin.
11. A wafer level package comprising:
a wafer including a plurality of semiconductor chips;
a package body formed on all sides of each semiconductor chip of the plurality of semiconductor chips.
US11/023,545 2001-05-31 2004-12-29 Wafer level package having a side package Abandoned US20050110124A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/023,545 US20050110124A1 (en) 2001-05-31 2004-12-29 Wafer level package having a side package

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020010030372A KR20020091327A (en) 2001-05-31 2001-05-31 Wafer level package having a package body at its side surface and method for manufacturing the same
KR2001-30372 2001-05-31
US10/144,539 US6852607B2 (en) 2001-05-31 2002-05-10 Wafer level package having a side package
US11/023,545 US20050110124A1 (en) 2001-05-31 2004-12-29 Wafer level package having a side package

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/144,539 Division US6852607B2 (en) 2001-05-31 2002-05-10 Wafer level package having a side package

Publications (1)

Publication Number Publication Date
US20050110124A1 true US20050110124A1 (en) 2005-05-26

Family

ID=19710217

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/144,539 Expired - Lifetime US6852607B2 (en) 2001-05-31 2002-05-10 Wafer level package having a side package
US11/023,545 Abandoned US20050110124A1 (en) 2001-05-31 2004-12-29 Wafer level package having a side package

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/144,539 Expired - Lifetime US6852607B2 (en) 2001-05-31 2002-05-10 Wafer level package having a side package

Country Status (3)

Country Link
US (2) US6852607B2 (en)
JP (1) JP2002368160A (en)
KR (1) KR20020091327A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040227235A1 (en) * 2003-03-13 2004-11-18 Seiko Epson Corporation Electronic device and method of manufacturing the same, circuit board, and electronic instrument
US20070202680A1 (en) * 2006-02-28 2007-08-30 Aminuddin Ismail Semiconductor packaging method
US9627368B2 (en) 2012-11-20 2017-04-18 Amkor Technology, Inc. Semiconductor device using EMC wafer support system and fabricating method thereof

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005117151A (en) * 2003-10-03 2005-04-28 Murata Mfg Co Ltd Method of manufacturing surface acoustic wave device and surface acoustic wave device
JP4537702B2 (en) * 2003-12-26 2010-09-08 ルネサスエレクトロニクス株式会社 Semiconductor device and manufacturing method thereof
TWI303870B (en) * 2005-12-30 2008-12-01 Advanced Semiconductor Eng Structure and mtehod for packaging a chip
DE102006032251A1 (en) * 2006-07-12 2008-01-17 Infineon Technologies Ag Method for producing chip packages and chip package produced in this way
KR100871707B1 (en) * 2007-03-30 2008-12-05 삼성전자주식회사 Wafer level package preventing a chipping defect and manufacturing method thereof
US7829998B2 (en) 2007-05-04 2010-11-09 Stats Chippac, Ltd. Semiconductor wafer having through-hole vias on saw streets with backside redistribution layer
US7687318B2 (en) * 2007-05-04 2010-03-30 Stats Chippac, Ltd. Extended redistribution layers bumped wafer
US7723159B2 (en) * 2007-05-04 2010-05-25 Stats Chippac, Ltd. Package-on-package using through-hole via die on saw streets
US8445325B2 (en) 2007-05-04 2013-05-21 Stats Chippac, Ltd. Package-in-package using through-hole via die on saw streets
US7569421B2 (en) * 2007-05-04 2009-08-04 Stats Chippac, Ltd. Through-hole via on saw streets
US8129845B2 (en) * 2007-09-25 2012-03-06 Stats Chippac, Ltd. Semiconductor device and method of forming interconnect structure in non-active area of wafer
KR100924551B1 (en) * 2007-11-21 2009-11-02 주식회사 하이닉스반도체 Method for fabricating of wafer level chip size package
US7790576B2 (en) * 2007-11-29 2010-09-07 Stats Chippac, Ltd. Semiconductor device and method of forming through hole vias in die extension region around periphery of die
US7648911B2 (en) * 2008-05-27 2010-01-19 Stats Chippac, Ltd. Semiconductor device and method of forming embedded passive circuit elements interconnected to through hole vias
US7659145B2 (en) * 2008-07-14 2010-02-09 Stats Chippac, Ltd. Semiconductor device and method of forming stepped-down RDL and recessed THV in peripheral region of the device
US8193610B2 (en) * 2010-08-10 2012-06-05 Stats Chippac, Ltd. Semiconductor device and method of forming B-stage conductive polymer over contact pads of semiconductor die in Fo-WLCSP
US8692366B2 (en) 2010-09-30 2014-04-08 Analog Device, Inc. Apparatus and method for microelectromechanical systems device packaging
US8836132B2 (en) 2012-04-03 2014-09-16 Analog Devices, Inc. Vertical mount package and wafer level packaging therefor
US20130337614A1 (en) * 2012-06-14 2013-12-19 Infineon Technologies Ag Methods for manufacturing a chip package, a method for manufacturing a wafer level package, and a compression apparatus
US9475694B2 (en) 2013-01-14 2016-10-25 Analog Devices Global Two-axis vertical mount package assembly
US9018045B2 (en) 2013-07-15 2015-04-28 Freescale Semiconductor Inc. Microelectronic packages and methods for the fabrication thereof
US11647678B2 (en) 2016-08-23 2023-05-09 Analog Devices International Unlimited Company Compact integrated device packages
US10629574B2 (en) 2016-10-27 2020-04-21 Analog Devices, Inc. Compact integrated device packages
US10697800B2 (en) 2016-11-04 2020-06-30 Analog Devices Global Multi-dimensional measurement using magnetic sensors and related systems, methods, and integrated circuits
EP3795076B1 (en) 2018-01-31 2023-07-19 Analog Devices, Inc. Electronic devices
KR20220090664A (en) 2020-12-22 2022-06-30 삼성전자주식회사 Strip substrate and Semiconductor package

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5886415A (en) * 1996-01-19 1999-03-23 Shinko Electric Industries, Co., Ltd. Anisotropic conductive sheet and printed circuit board
US5905303A (en) * 1994-05-25 1999-05-18 Nec Corporation Method for manufacturing bump leaded film carrier type semiconductor device
US5989982A (en) * 1997-10-08 1999-11-23 Oki Electric Industry Co., Ltd. Semiconductor device and method of manufacturing the same
US5990546A (en) * 1994-12-29 1999-11-23 Nitto Denko Corporation Chip scale package type of semiconductor device
US6064114A (en) * 1997-12-01 2000-05-16 Motorola, Inc. Semiconductor device having a sub-chip-scale package structure and method for forming same
US6181569B1 (en) * 1999-06-07 2001-01-30 Kishore K. Chakravorty Low cost chip size package and method of fabricating the same
US6455920B2 (en) * 1998-02-27 2002-09-24 Fujitsu Limited Semiconductor device having a ball grid array and a fabrication process thereof

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1116959A (en) * 1997-06-25 1999-01-22 Hitachi Ltd Semiconductor device
JP3152180B2 (en) * 1997-10-03 2001-04-03 日本電気株式会社 Semiconductor device and manufacturing method thereof
JP3768817B2 (en) * 1997-10-30 2006-04-19 株式会社ルネサステクノロジ Semiconductor device and manufacturing method thereof
KR19990055277A (en) * 1997-12-27 1999-07-15 윤종용 Chip scale package
KR19990057571A (en) * 1997-12-30 1999-07-15 구본준 Flip chip package mounting structure and manufacturing method
JPH11345905A (en) * 1998-06-02 1999-12-14 Mitsubishi Electric Corp Semiconductor device
JP3516592B2 (en) * 1998-08-18 2004-04-05 沖電気工業株式会社 Semiconductor device and manufacturing method thereof
KR20000025861A (en) * 1998-10-15 2000-05-06 김영환 Semiconductor chip size package and method for manufacturing the same
JP2000228413A (en) * 1999-02-05 2000-08-15 Seiko Epson Corp Manufacture of semiconductor package
JP2001007252A (en) * 1999-06-25 2001-01-12 Matsushita Electronics Industry Corp Semiconductor device and its manufacture
KR100388288B1 (en) * 1999-08-24 2003-06-19 앰코 테크놀로지 코리아 주식회사 manufacturing method of semiconductor package
JP2001110828A (en) * 1999-10-13 2001-04-20 Sanyo Electric Co Ltd Manufacturing method of semiconductor device
JP3770007B2 (en) * 1999-11-01 2006-04-26 凸版印刷株式会社 Manufacturing method of semiconductor device
JP2001144213A (en) * 1999-11-16 2001-05-25 Hitachi Ltd Method for manufacturing semiconductor device and semiconductor device
TW451436B (en) * 2000-02-21 2001-08-21 Advanced Semiconductor Eng Manufacturing method for wafer-scale semiconductor packaging structure
JP4403631B2 (en) * 2000-04-24 2010-01-27 ソニー株式会社 Manufacturing method of chip-shaped electronic component and manufacturing method of pseudo wafer used for manufacturing the same
JP2001313350A (en) * 2000-04-28 2001-11-09 Sony Corp Chip-shaped electronic component and its manufacturing method, and pseudo-wafer used for manufacture of chip- shaped electronic component and its manufacturing method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5905303A (en) * 1994-05-25 1999-05-18 Nec Corporation Method for manufacturing bump leaded film carrier type semiconductor device
US5990546A (en) * 1994-12-29 1999-11-23 Nitto Denko Corporation Chip scale package type of semiconductor device
US5886415A (en) * 1996-01-19 1999-03-23 Shinko Electric Industries, Co., Ltd. Anisotropic conductive sheet and printed circuit board
US5989982A (en) * 1997-10-08 1999-11-23 Oki Electric Industry Co., Ltd. Semiconductor device and method of manufacturing the same
US6064114A (en) * 1997-12-01 2000-05-16 Motorola, Inc. Semiconductor device having a sub-chip-scale package structure and method for forming same
US6455920B2 (en) * 1998-02-27 2002-09-24 Fujitsu Limited Semiconductor device having a ball grid array and a fabrication process thereof
US6181569B1 (en) * 1999-06-07 2001-01-30 Kishore K. Chakravorty Low cost chip size package and method of fabricating the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040227235A1 (en) * 2003-03-13 2004-11-18 Seiko Epson Corporation Electronic device and method of manufacturing the same, circuit board, and electronic instrument
US7230341B2 (en) * 2003-03-13 2007-06-12 Seiko Epson Corporation Electronic device and method of manufacturing the same, circuit board, and electronic instrument
US20070155050A1 (en) * 2003-03-13 2007-07-05 Seiko Epson Corporation Electronic device and method of manufacturing the same, circuit board, and electronic instrument
US7564142B2 (en) 2003-03-13 2009-07-21 Seiko Epson Corporation Electronic device and method of manufacturing the same, circuit board, and electronic instrument
US20070202680A1 (en) * 2006-02-28 2007-08-30 Aminuddin Ismail Semiconductor packaging method
US9627368B2 (en) 2012-11-20 2017-04-18 Amkor Technology, Inc. Semiconductor device using EMC wafer support system and fabricating method thereof
US10388643B2 (en) 2012-11-20 2019-08-20 Amkor Technology, Inc. Semiconductor device using EMC wafer support system and fabricating method thereof
US11183493B2 (en) 2012-11-20 2021-11-23 Amkor Technology Singapore Holding Pte. Ltd. Semiconductor device using EMC wafer support system and fabricating method thereof

Also Published As

Publication number Publication date
US20020180017A1 (en) 2002-12-05
US6852607B2 (en) 2005-02-08
JP2002368160A (en) 2002-12-20
KR20020091327A (en) 2002-12-06

Similar Documents

Publication Publication Date Title
US6852607B2 (en) Wafer level package having a side package
US7115483B2 (en) Stacked chip package having upper chip provided with trenches and method of manufacturing the same
US7205674B2 (en) Semiconductor package with build-up layers formed on chip and fabrication method of the semiconductor package
US6519846B2 (en) Chip size package and method of fabricating the same
US7364944B2 (en) Method for fabricating thermally enhanced semiconductor package
US7218005B2 (en) Compact semiconductor device capable of mounting a plurality of semiconductor chips with high density and method of manufacturing the same
US7227243B2 (en) Semiconductor device
US20030164543A1 (en) Interposer configured to reduce the profiles of semiconductor device assemblies and packages including the same and methods
US20080093717A1 (en) Leadframe of a leadless flip-chip package and method for manufacturing the same
US7205181B1 (en) Method of forming hermetic wafer scale integrated circuit structure
KR20050021078A (en) Chip stack package and manufacturing method thereof
US6246124B1 (en) Encapsulated chip module and method of making same
US7518211B2 (en) Chip and package structure
US6979907B2 (en) Integrated circuit package
US20080142945A1 (en) Semiconductor package with redistribution layer of semiconductor chip directly contacted with substrate and method of fabricating the same
US7332430B2 (en) Method for improving the mechanical properties of BOC module arrangements
US7135779B2 (en) Method for packaging integrated circuit chips
US6630368B2 (en) Substrate for mounting a semiconductor chip and method for manufacturing a semiconductor device
KR100324602B1 (en) A manufacturing method of a semiconductor device capable of one-time package processing
US6822322B1 (en) Substrate for mounting a semiconductor chip and method for manufacturing a semiconductor device
KR100532948B1 (en) method for manufacturing ball grid array type package

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION