US20050119999A1 - Automatic learning optimizer - Google Patents

Automatic learning optimizer Download PDF

Info

Publication number
US20050119999A1
US20050119999A1 US10/935,906 US93590604A US2005119999A1 US 20050119999 A1 US20050119999 A1 US 20050119999A1 US 93590604 A US93590604 A US 93590604A US 2005119999 A1 US2005119999 A1 US 2005119999A1
Authority
US
United States
Prior art keywords
statement
auto
load
sql
tuning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/935,906
Inventor
Mohamed Zait
Benoit Dageville
Dinesh Das
Khaled Yagoub
Mohamed Ziauddin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oracle International Corp
Original Assignee
Oracle International Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oracle International Corp filed Critical Oracle International Corp
Priority to US10/935,906 priority Critical patent/US20050119999A1/en
Assigned to ORACLE INTERNATIONAL CORPORATION reassignment ORACLE INTERNATIONAL CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DAGEVILLE, BENOIT, ZIAUDDIN, MOHAMED, DAS, DINESH, YAGOUB, KHALED, ZAIT, MOHAMED
Publication of US20050119999A1 publication Critical patent/US20050119999A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/24Querying
    • G06F16/245Query processing
    • G06F16/2453Query optimisation
    • G06F16/24534Query rewriting; Transformation
    • G06F16/24549Run-time optimisation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/21Design, administration or maintenance of databases
    • G06F16/217Database tuning
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S707/00Data processing: database and file management or data structures
    • Y10S707/99931Database or file accessing
    • Y10S707/99932Access augmentation or optimizing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S707/00Data processing: database and file management or data structures
    • Y10S707/99931Database or file accessing
    • Y10S707/99933Query processing, i.e. searching
    • Y10S707/99934Query formulation, input preparation, or translation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S707/00Data processing: database and file management or data structures
    • Y10S707/99941Database schema or data structure
    • Y10S707/99944Object-oriented database structure

Definitions

  • This invention is related to the field of electronic database management systems.
  • SQL tuning is a critical aspect of database performance tuning. It is an inherently complex activity requiring a high level of expertise in several domains: query optimization, to improve the execution plan selected by the query optimizer; access design, to identify missing access structures; and SQL design, to restructure and simplify the text of a badly written SQL statement. Furthermore, SQL tuning is a time consuming task due to the large volume and evolving nature of the SQL workload and its underlying data.
  • the database system vendors deal with this increased complexity by enhancing the optimizer capabilities to deal with new SQL constructs, add better searching techniques, or a richer cost model. While this conventional approach can solve some problems, it is not capable to deal with the dynamic nature of the database application, e.g., dynamic changes in the application workload. Indeed the conventional optimizer will always face situations where mistakes are unavoidable. For example, the optimizer can lack of information about the objects accessed by a SQL statement. The optimizer logic may also not be prepared to deal with certain kinds of problems.
  • An automatic learning optimizer is able to automatically tune a database query language statement by automatically identifying high load or top database query language statements that are responsible for a large share of the application workload and system resources based on the past database query language statement execution history available in the system, automatically generating ways to improve execution plans produced by a compiler for these statements, and automatically performing corrective actions to generate better execution plans for poorly performing statements.
  • FIG. 1 shows an example of the Automatic Learning Optimizer architecture.
  • FIG. 2 shows an example of the process flow of the auto-learning process.
  • FIG. 3 represents another exemplary illustration of the automatic learning optimizer device.
  • FIG. 4 shows another example of a system to perform the auto-learning process for database system management.
  • FIG. 5 is a block diagram of a computer system suitable for implementing an embodiment of coverage computation for verification.
  • An automatic learning optimizer has learning capabilities that make it able to learn from past execution history of SQL statements which can be repeated in the future. For example, a database application is often repetitive, i.e., the same SQL statements are submitted over and over, some more frequently than others. Information about these statements can be collected from various sources, e.g., execution statistics for some or all operations of the query execution plan (number of output rows, amount of memory, number of disk reads), or the caching ratio of the database objects.
  • An auto-learning capability for the auto-tuning optimizer provides a component of a fully self-managed database system.
  • the auto-learning optimizer can execute a background task which identifies potential optimizer mistakes made for a target SQL statement, and automatically produce optimizer corrective actions. Hence, the auto-learning optimizer can gradually repair the suboptimal executions plans run by the database system.
  • the auto-learning process starts by identifying a small subset of SQL statements which are potential candidates for auto-learning. For example, this subset may correspond to all SQL statements which are known to have a suboptimal execution plan and a high impact on the overall performance of the system.
  • the auto-learning detection mechanism may focus on the subset of high-load SQL statements.
  • the auto-learning optimizer can uncover its mistakes by analyzing each SQL statement in the set. Based on this analysis, if optimizer related problems are then found, corrective actions are produced and stored in a computer readable medium, such as a disk. Because the corrective actions are permanently stored, the auto-learning optimizer can perform an iterative learning process which accumulates, over time, more and more knowledge on problematic queries, and also prevents the corrected problems from recurring.
  • the auto-learning optimizer performs the auto-tuning function to generate the corrective actions and store them in SQL Profiles. Hence, corrective actions are automatically placed in one or more profiles, which are stored in the tuning base.
  • the auto-learning process may be on-line, with the auto-learning process running almost continuously as a background task. In this mode, high-load SQL statements stored in the cursor cache are targeted. Hence, the on-line mode can address critical SQL tuning issues while having a very low overhead on the system performance.
  • the auto-learning optimizer performs learning off-line.
  • the auto-learning process is executed during the maintenance window as an automated manageability task.
  • This off-line mode can have more time and system resources to perform the auto-tuning functions.
  • the auto-learning optimizer can have time to refresh corrective actions produced in the past, and auto tune less critical SQL statements.
  • FIG. 1 shows an example of the auto-learning optimizer feedback loop process for the on-line auto-learning optimizer.
  • the on-line auto-learning background process is performed by the auto-learning optimizer 110 , which identifies the set of high-load SQL statements from the cursor cache 120 . This can be achieved by keeping, for each cursor in the cache, a record of the total elapsed time accumulated since the last auto-learning cycle. When an auto-learning cycle starts, cursors in the cache can be ranked based on this cumulative elapsed time metric. The auto tune process is then applied to each cursor in their ranking order. For example, in one embodiment, cursors which account for more than 1% of the total cumulated elapsed time are considered by the auto-learning optimizer 110 .
  • the auto-learning optimizer 110 can also auto tune recurring cursors with a long average elapsed time, even when their cumulated elapsed time is not necessarily high, because these cursors could negatively affect the response time of individual end users even if their overall impact on the system performance is limited.
  • a ranking procedure can be used for these cursors by ranking them based on the average elapsed time (instead of the cumulative elapsed time).
  • the auto-tuning process may skip cursors which have not been executed more than once since they have been first loaded in the cursor cache, in order to prevent the auto-learning process from spending time on non recurring cursors (e.g. ad-hoc queries). Also, cursors with hintsets or outlines already defined on them may be skipped, since these cursors have been tuned already.
  • the auto-learning optimizer starts the learning process. This process can run continuously in the background, up to the beginning of the next auto-learning cycle, which reduces the overall impact on the system.
  • This background task may be accomplished by pacing each auto tune execution based on the total load of the system. Profiles produced for each auto-tuned statement may be stored in the Tuning base, even if no corrective actions have been produced. In that case, a VOID profile may be generated to keep track of statements which have been auto tuned.
  • the learned corrective actions i.e. a profile
  • the learned corrective actions are permanently stored in the Tuning base 130 .
  • the next execution of that statement will automatically trigger a hard parse, except when the associated hintset is ‘VOID’.
  • the query optimizer 140 takes into account the extra knowledge carried by the profile to generate an improved execution plan.
  • the execution plan produced by optimizer 130 is sent to the cursor cache 120 , which closes the auto-learning feedback loop.
  • the statements that have been improved by the auto-learning optimizer then have execution plans that are no longer high-load. They drop out of the set of high-load SQL identified by the auto-learning optimizer 110 , because they are no longer high-load, or because a tuning profile now exists for them.
  • the formerly lesser high-load statements will grow in rank to the point that they now become targets for auto-learning optimization process. With a stable SQL workload, the system can rapidly converge with all high-load statements auto-tuned.
  • FIG. 2 An example of a method of performing the on-line auto-learning process is shown in FIG. 2 .
  • High load SQL statements are identified, 210 .
  • the high load statements are ranked based on a performance metric, such as execution time, 220 .
  • Each high load statement is tuned by the automatic tuning optimizer based on its rank, 230 .
  • a profile of tuning actions is created for the high load statement, 240 , which is stored in a tuning base, 250 .
  • a query optimizer generates an execution plan for the statement using the profile from the tuning base, 260 .
  • the off-line auto-learning process can be performed by the auto-learning optimizer system as shown in FIG. 3 .
  • Workload information is automatically captured at regular interval, by default once every 30 minutes, from the cursor cache 310 by snapshot collector 320 , and placed in the workload repository 330 .
  • the off-line functions of the auto-learning process can be executed as an automated manageability task, scheduled to be performed within the maintenance window.
  • a database administrator can define that automatic manageability actions (e.g. index rebuild, space coalesce, auto analyze, auto learn) are to be executed at night from 10 pm to 6 am.
  • the snapshot collection of the cursor cache can be performed by collector 310 at regular intervals, such as every 30 minutes, to snapshot performance statistics, and save them in the workload repository 330 , to capture information on high-load SQL.
  • the information on SQL that can be saved in the repository can include data to auto-tune the statement at a later time.
  • the high load SQL statements can be tuned within the maintenance window by the auto-learning optimizer 390 .
  • the high load extractor 340 identifies high load statements and retrieves the information on the high-load SQL statements captured in the workload repository 330 since the last off-line auto-learning session.
  • a SQL Tuning Set (STS) 350 is created to store the set of high-load SQL statements. These statements can be ranked using their cumulative elapsed time, and/or high average elapse time. Each statement in the STS is auto-tuned in ranked order by the auto-tuning optimizer 360 . If a statement has been recently auto-tuned, it can be skipped.
  • the learned corrective actions i.e. a profile
  • the query optimizer 380 to generate a well tuned execution plan for the statement.
  • the auto-learning optimizer can optimize and execute an ad-hoc SQL statement the first time it comes into the system.
  • the auto-learning optimizer can do this by learning about important properties of SQL statements such that the information learned from one statement can be used for another statement. For example, by analyzing the set of high-load SQL statements, the auto-learning optimizer can detect data skew between two columns and use this information to generate appropriate statistics such as either a multi-column histogram or a multi-dimensional histogram. Because the information learned from the ad-hoc SQL can become excessively large, making it impractical to collect the corresponding statistics, the past SQL execution history is used to identify and weed out many of the SQL properties that offer either one-time or insignificant performance gains.
  • FIG. 4 shows an example of the auto-learning optimizer system with a feedback loop for automatically learning tuning information on an ad hoc SQL statement basis.
  • the cursor cache 410 is examined by the snapshot collector 420 to gather information that is stored in the workload repository 430 .
  • the extractor 450 identifies high load statements and places them in a STS 460 .
  • the auto-learning optimizer 440 determines the appropriate set of complex statistics (like multi-column and multi-table histograms, predicate statistics, . . . ) to collect and refresh.
  • the refreshed statistics 470 are added to the complex data statistics 480 , which are then used by the query optimizer 490 to generate an execution plan for a SQL statement.
  • the ad-hoc auto-learning process is therefore able to increase the number of statements in the SQL workload whose execution plans would benefit from these extra statistics while limiting the cost (time to collect and time to refresh) for these extra statistics.
  • computer system 500 performs specific operations by processor 504 executing one or more sequences of one or more instructions contained in system memory 506 .
  • Such instructions may be read into system memory 506 from another computer readable medium, such as static storage device 508 or disk drive 510 .
  • static storage device 508 or disk drive 510 may be used in place of or in combination with software instructions to implement the invention.
  • Non-volatile media includes, for example, optical or magnetic disks, such as disk drive 510 .
  • Volatile media includes dynamic memory, such as system memory 506 .
  • Transmission media includes coaxial cables, copper wire, and fiber optics, including wires that comprise bus 502 . Transmission media can also take the form of acoustic or light waves, such as those generated during radio wave and infrared data communications.
  • Computer readable media includes, for example, floppy disk, flexible disk, hard disk, magnetic tape, any other magnetic medium, CD-ROM, any other optical medium, punch cards, paper tape, any other physical medium with patterns of holes, RAM, PROM, EPROM, FLASH-EPROM, any other memory chip or cartridge, carrier wave, or any other medium from which a computer can read.
  • execution of the sequences of instructions to practice the invention is performed by a single computer system 500 .
  • two or more computer systems 500 coupled by communication link 520 may perform the sequence of instructions to practice the invention in coordination with one another.
  • Computer system 500 may transmit and receive messages, data, and instructions, including program, i.e., application code, through communication link 520 and communication interface 512 .
  • Received program code may be executed by processor 504 as it is received, and/or stored in disk drive 510 , or other non-volatile storage for later execution.

Abstract

A method of gathering performance information about a workload, and automatically identifying a set of high-load database query language statements from the workload based on the performance information, is disclosed.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application claims the benefit of U.S. Provisional Application No. 60/500,490, filed Sep. 6, 2003, which is incorporated herein by reference in its entirety. This application is related to co-pending applications “SQL TUNING SETS,” Ser. No. ______ Attorney Docket No. OI7036272001; “AUTO-TUNING SQL STATEMENTS,” Ser. No. ______ Attorney Docket No. OI7037042001; “SQL PROFILE,” Ser. No. ______ Attorney Docket No. OI7037052001; “GLOBAL HINTS,” Ser. No. ______ Attorney Docket No. OI7037062001; “SQL TUNING BASE,” Ser. No. ______ Attorney Docket No. OI7037072001; “AUTOMATIC PREVENTION OF RUN-AWAY QUERY EXECUTION,” Ser. No. ______ Attorney Docket No. OI7037092001; “METHOD FOR INDEX TUNING OF A SQL STATEMENT, AND INDEX MERGING FOR A MULTI-STATEMENT SQL WORKLOAD, USING A COST-BASED RELATIONAL QUERY OPTIMIZER,” Ser. No. ______ Attorney Docket No. OI7037102001; “SQL STRUCTURE ANALYZER,” Ser. No. ______ Attorney Docket No. OI7037112001; “HIGH-LOAD SQL DRIVEN STATISTICS COLLECTION,” Ser. No. ______ Attorney Docket No. OI7037122001; “AUTOMATIC SQL TUNING ADVISOR,” Ser. No. ______ Attorney Docket No. OI7037132001, all of which are filed Sep. 7, 2004 and are incorporated herein by reference in their entirety.
  • FIELD OF THE INVENTION
  • This invention is related to the field of electronic database management systems.
  • BACKGROUND
  • SQL tuning is a critical aspect of database performance tuning. It is an inherently complex activity requiring a high level of expertise in several domains: query optimization, to improve the execution plan selected by the query optimizer; access design, to identify missing access structures; and SQL design, to restructure and simplify the text of a badly written SQL statement. Furthermore, SQL tuning is a time consuming task due to the large volume and evolving nature of the SQL workload and its underlying data.
  • Over the past decade two clear trends have occurred: (a) the database systems have been deployed in new areas, such as electronic commerce, bringing a new set of database requirements, and, (b) the database applications have become increasingly complex with support for very large numbers of concurrent users. As a result, the performance of database systems has become highly visible and thus critical to the success of the businesses running these applications. For example, database systems continue to be deployed in new areas, such as electronic commerce, and the database applications have increasingly become sophisticated to support more users and provide more functionalities, making the query optimization task more complex.
  • The database system vendors deal with this increased complexity by enhancing the optimizer capabilities to deal with new SQL constructs, add better searching techniques, or a richer cost model. While this conventional approach can solve some problems, it is not capable to deal with the dynamic nature of the database application, e.g., dynamic changes in the application workload. Indeed the conventional optimizer will always face situations where mistakes are unavoidable. For example, the optimizer can lack of information about the objects accessed by a SQL statement. The optimizer logic may also not be prepared to deal with certain kinds of problems.
  • SUMMARY
  • An automatic learning optimizer is able to automatically tune a database query language statement by automatically identifying high load or top database query language statements that are responsible for a large share of the application workload and system resources based on the past database query language statement execution history available in the system, automatically generating ways to improve execution plans produced by a compiler for these statements, and automatically performing corrective actions to generate better execution plans for poorly performing statements.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 shows an example of the Automatic Learning Optimizer architecture.
  • FIG. 2 shows an example of the process flow of the auto-learning process.
  • FIG. 3 represents another exemplary illustration of the automatic learning optimizer device.
  • FIG. 4 shows another example of a system to perform the auto-learning process for database system management.
  • FIG. 5 is a block diagram of a computer system suitable for implementing an embodiment of coverage computation for verification.
  • DETAILED DESCRIPTION
  • Overview
  • The embodiments of the invention are described using the term “SQL”, however, the invention is not limited to just this exact database query language, and indeed may be used in conjunction with other database query languages and constructs.
  • An automatic learning optimizer has learning capabilities that make it able to learn from past execution history of SQL statements which can be repeated in the future. For example, a database application is often repetitive, i.e., the same SQL statements are submitted over and over, some more frequently than others. Information about these statements can be collected from various sources, e.g., execution statistics for some or all operations of the query execution plan (number of output rows, amount of memory, number of disk reads), or the caching ratio of the database objects.
  • An auto-learning capability for the auto-tuning optimizer provides a component of a fully self-managed database system. The auto-learning optimizer can execute a background task which identifies potential optimizer mistakes made for a target SQL statement, and automatically produce optimizer corrective actions. Hence, the auto-learning optimizer can gradually repair the suboptimal executions plans run by the database system.
  • The auto-learning process starts by identifying a small subset of SQL statements which are potential candidates for auto-learning. For example, this subset may correspond to all SQL statements which are known to have a suboptimal execution plan and a high impact on the overall performance of the system. Alternatively, the auto-learning detection mechanism may focus on the subset of high-load SQL statements. Once the set of high-load SQL statements has been identified, the auto-learning optimizer can uncover its mistakes by analyzing each SQL statement in the set. Based on this analysis, if optimizer related problems are then found, corrective actions are produced and stored in a computer readable medium, such as a disk. Because the corrective actions are permanently stored, the auto-learning optimizer can perform an iterative learning process which accumulates, over time, more and more knowledge on problematic queries, and also prevents the corrected problems from recurring.
  • In one embodiment, the auto-learning optimizer performs the auto-tuning function to generate the corrective actions and store them in SQL Profiles. Hence, corrective actions are automatically placed in one or more profiles, which are stored in the tuning base. The auto-learning process may be on-line, with the auto-learning process running almost continuously as a background task. In this mode, high-load SQL statements stored in the cursor cache are targeted. Hence, the on-line mode can address critical SQL tuning issues while having a very low overhead on the system performance.
  • In another embodiment, the auto-learning optimizer performs learning off-line. In this mode, the auto-learning process is executed during the maintenance window as an automated manageability task. This off-line mode can have more time and system resources to perform the auto-tuning functions. Hence, the auto-learning optimizer can have time to refresh corrective actions produced in the past, and auto tune less critical SQL statements.
  • FIG. 1 shows an example of the auto-learning optimizer feedback loop process for the on-line auto-learning optimizer. The on-line auto-learning background process is performed by the auto-learning optimizer 110, which identifies the set of high-load SQL statements from the cursor cache 120. This can be achieved by keeping, for each cursor in the cache, a record of the total elapsed time accumulated since the last auto-learning cycle. When an auto-learning cycle starts, cursors in the cache can be ranked based on this cumulative elapsed time metric. The auto tune process is then applied to each cursor in their ranking order. For example, in one embodiment, cursors which account for more than 1% of the total cumulated elapsed time are considered by the auto-learning optimizer 110.
  • The auto-learning optimizer 110 can also auto tune recurring cursors with a long average elapsed time, even when their cumulated elapsed time is not necessarily high, because these cursors could negatively affect the response time of individual end users even if their overall impact on the system performance is limited. A ranking procedure can be used for these cursors by ranking them based on the average elapsed time (instead of the cumulative elapsed time).
  • The auto-tuning process may skip cursors which have not been executed more than once since they have been first loaded in the cursor cache, in order to prevent the auto-learning process from spending time on non recurring cursors (e.g. ad-hoc queries). Also, cursors with hintsets or outlines already defined on them may be skipped, since these cursors have been tuned already.
  • Once the set of cursors to auto tune is identified, the auto-learning optimizer starts the learning process. This process can run continuously in the background, up to the beginning of the next auto-learning cycle, which reduces the overall impact on the system. This background task may be accomplished by pacing each auto tune execution based on the total load of the system. Profiles produced for each auto-tuned statement may be stored in the Tuning base, even if no corrective actions have been produced. In that case, a VOID profile may be generated to keep track of statements which have been auto tuned.
  • Once a SQL statement is auto tuned, the learned corrective actions (i.e. a profile) are permanently stored in the Tuning base 130. The next execution of that statement will automatically trigger a hard parse, except when the associated hintset is ‘VOID’. When the statement is recompiled, the query optimizer 140 takes into account the extra knowledge carried by the profile to generate an improved execution plan.
  • The execution plan produced by optimizer 130 is sent to the cursor cache 120, which closes the auto-learning feedback loop. The statements that have been improved by the auto-learning optimizer then have execution plans that are no longer high-load. They drop out of the set of high-load SQL identified by the auto-learning optimizer 110, because they are no longer high-load, or because a tuning profile now exists for them. As the automatic learning process continues, the formerly lesser high-load statements will grow in rank to the point that they now become targets for auto-learning optimization process. With a stable SQL workload, the system can rapidly converge with all high-load statements auto-tuned.
  • An example of a method of performing the on-line auto-learning process is shown in FIG. 2. High load SQL statements are identified, 210. The high load statements are ranked based on a performance metric, such as execution time, 220. Each high load statement is tuned by the automatic tuning optimizer based on its rank, 230. A profile of tuning actions is created for the high load statement, 240, which is stored in a tuning base, 250. A query optimizer generates an execution plan for the statement using the profile from the tuning base, 260.
  • The off-line auto-learning process can be performed by the auto-learning optimizer system as shown in FIG. 3. Workload information is automatically captured at regular interval, by default once every 30 minutes, from the cursor cache 310 by snapshot collector 320, and placed in the workload repository 330. The off-line functions of the auto-learning process can be executed as an automated manageability task, scheduled to be performed within the maintenance window. For example, a database administrator (DBA) can define that automatic manageability actions (e.g. index rebuild, space coalesce, auto analyze, auto learn) are to be executed at night from 10 pm to 6 am.
  • The snapshot collection of the cursor cache can be performed by collector 310 at regular intervals, such as every 30 minutes, to snapshot performance statistics, and save them in the workload repository 330, to capture information on high-load SQL. For example, the information on SQL that can be saved in the repository can include data to auto-tune the statement at a later time.
  • The high load SQL statements can be tuned within the maintenance window by the auto-learning optimizer 390. The high load extractor 340 identifies high load statements and retrieves the information on the high-load SQL statements captured in the workload repository 330 since the last off-line auto-learning session. A SQL Tuning Set (STS) 350 is created to store the set of high-load SQL statements. These statements can be ranked using their cumulative elapsed time, and/or high average elapse time. Each statement in the STS is auto-tuned in ranked order by the auto-tuning optimizer 360. If a statement has been recently auto-tuned, it can be skipped. Once a SQL statement is auto tuned, the learned corrective actions (i.e. a profile) are permanently stored in the Tuning base 370, and retrieved by the query optimizer 380 to generate a well tuned execution plan for the statement.
  • The auto-learning optimizer can optimize and execute an ad-hoc SQL statement the first time it comes into the system. The auto-learning optimizer can do this by learning about important properties of SQL statements such that the information learned from one statement can be used for another statement. For example, by analyzing the set of high-load SQL statements, the auto-learning optimizer can detect data skew between two columns and use this information to generate appropriate statistics such as either a multi-column histogram or a multi-dimensional histogram. Because the information learned from the ad-hoc SQL can become excessively large, making it impractical to collect the corresponding statistics, the past SQL execution history is used to identify and weed out many of the SQL properties that offer either one-time or insignificant performance gains.
  • FIG. 4 shows an example of the auto-learning optimizer system with a feedback loop for automatically learning tuning information on an ad hoc SQL statement basis. The cursor cache 410 is examined by the snapshot collector 420 to gather information that is stored in the workload repository 430. Using SQL information collected in the workload repository, the extractor 450 identifies high load statements and places them in a STS 460. The auto-learning optimizer 440 determines the appropriate set of complex statistics (like multi-column and multi-table histograms, predicate statistics, . . . ) to collect and refresh. The refreshed statistics 470 are added to the complex data statistics 480, which are then used by the query optimizer 490 to generate an execution plan for a SQL statement. The ad-hoc auto-learning process is therefore able to increase the number of statements in the SQL workload whose execution plans would benefit from these extra statistics while limiting the cost (time to collect and time to refresh) for these extra statistics.
  • According to one embodiment of the invention, computer system 500 performs specific operations by processor 504 executing one or more sequences of one or more instructions contained in system memory 506. Such instructions may be read into system memory 506 from another computer readable medium, such as static storage device 508 or disk drive 510. In alternative embodiments, hard-wired circuitry may be used in place of or in combination with software instructions to implement the invention.
  • The term “computer readable medium” as used herein refers to any medium that participates in providing instructions to processor 504 for execution. Such a medium may take many forms, including but not limited to, non-volatile media, volatile media, and transmission media. Non-volatile media includes, for example, optical or magnetic disks, such as disk drive 510. Volatile media includes dynamic memory, such as system memory 506. Transmission media includes coaxial cables, copper wire, and fiber optics, including wires that comprise bus 502. Transmission media can also take the form of acoustic or light waves, such as those generated during radio wave and infrared data communications.
  • Common forms of computer readable media includes, for example, floppy disk, flexible disk, hard disk, magnetic tape, any other magnetic medium, CD-ROM, any other optical medium, punch cards, paper tape, any other physical medium with patterns of holes, RAM, PROM, EPROM, FLASH-EPROM, any other memory chip or cartridge, carrier wave, or any other medium from which a computer can read.
  • In an embodiment of the invention, execution of the sequences of instructions to practice the invention is performed by a single computer system 500. According to other embodiments of the invention, two or more computer systems 500 coupled by communication link 520 (e.g., LAN, PTSN, or wireless network) may perform the sequence of instructions to practice the invention in coordination with one another. Computer system 500 may transmit and receive messages, data, and instructions, including program, i.e., application code, through communication link 520 and communication interface 512. Received program code may be executed by processor 504 as it is received, and/or stored in disk drive 510, or other non-volatile storage for later execution.
  • In the foregoing specification, the invention has been described with reference to specific embodiments thereof. It will, however, be evident that various modifications and changes may be made thereto without departing from the broader spirit and scope of the invention. The specification and drawings are, accordingly, to be regarded in an illustrative rather than restrictive sense.

Claims (18)

1. A method comprising:
gathering performance information about a workload; and
automatically identifying a set of high-load database query language statements from the workload based on the performance information.
2. The method of claim 1, further comprising:
automatically generating tuning actions for each high-load statement.
3. The method of claim 2, further comprising:
automatically storing the tuning actions for each high-load statement in a profile.
4. The method of claim 3, further comprising:
persistently storing each profile in a tuning base.
5. The method of claim 4, further comprising:
receiving one of the high-load statements at a compiler;
retrieving the profile for the received statement from the tuning base; and
generating an execution plan for the statement with the profile.
6. The method of claim 1, wherein the database query language statement is a SQL statement.
7. A method comprising:
gathering performance information about a workload; and
automatically identifying a set of high-load database query language statements from the workload based on the performance information.
8. The method of claim 7, further comprising:
automatically generating tuning actions for each high-load SQL statement.
9. The method of claim 8, further comprising:
automatically storing the tuning actions for each high-load statement in a profile.
10. The method of claim 9, further comprising:
persistently storing each profile in a tuning base.
11. The method of claim 10, further comprising:
receiving one of the high-load statements at a compiler;
retrieving the profile for the received statement from the tuning base; and
generating an execution plan for the statement with the profile.
12. The method of claim 7, wherein the database query language statement is a SQL statement.
13. A method comprising:
gathering performance information about a workload; and
automatically identifying a set of high-load database query language statements from the workload based on the performance information.
14. The method of claim 13, further comprising:
automatically generating tuning actions for each high-load statement.
15. The method of claim 14, further comprising:
automatically storing the tuning actions for each high-load statement in a profile.
16. The method of claim 15, further comprising:
persistently storing each profile in a tuning base.
17. The method of claim 16, further comprising:
receiving one of the high-load statements at a compiler;
retrieving the profile for the received statement from the tuning base; and
generating an execution plan for the statement with the profile.
18. The method of claim 13, wherein the database query language statement is a SQL statement.
US10/935,906 2003-09-06 2004-09-07 Automatic learning optimizer Abandoned US20050119999A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/935,906 US20050119999A1 (en) 2003-09-06 2004-09-07 Automatic learning optimizer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US50049003P 2003-09-06 2003-09-06
US10/935,906 US20050119999A1 (en) 2003-09-06 2004-09-07 Automatic learning optimizer

Publications (1)

Publication Number Publication Date
US20050119999A1 true US20050119999A1 (en) 2005-06-02

Family

ID=34555659

Family Applications (11)

Application Number Title Priority Date Filing Date
US10/936,449 Active 2025-07-08 US7664778B2 (en) 2003-09-06 2004-09-07 SQL tuning sets
US10/936,205 Active 2025-11-28 US7664730B2 (en) 2003-09-06 2004-09-07 Method and system for implementing a SQL profile
US10/936,426 Active 2025-11-01 US7634456B2 (en) 2003-09-06 2004-09-07 SQL structure analyzer
US10/936,468 Active 2025-11-22 US8983934B2 (en) 2003-09-06 2004-09-07 SQL tuning base
US10/936,781 Active 2025-08-08 US7739263B2 (en) 2003-09-06 2004-09-07 Global hints
US10/936,779 Abandoned US20050177557A1 (en) 2003-09-06 2004-09-07 Automatic prevention of run-away query execution
US10/935,908 Active 2026-03-29 US7805411B2 (en) 2003-09-06 2004-09-07 Auto-tuning SQL statements
US10/936,469 Active 2026-02-15 US8825629B2 (en) 2003-09-06 2004-09-07 Method for index tuning of a SQL statement, and index merging for a multi-statement SQL workload, using a cost-based relational query optimizer
US10/936,778 Active 2025-09-22 US7747606B2 (en) 2003-09-06 2004-09-07 Automatic SQL tuning advisor
US10/935,906 Abandoned US20050119999A1 (en) 2003-09-06 2004-09-07 Automatic learning optimizer
US10/936,427 Abandoned US20050138015A1 (en) 2003-09-06 2004-09-07 High load SQL driven statistics collection

Family Applications Before (9)

Application Number Title Priority Date Filing Date
US10/936,449 Active 2025-07-08 US7664778B2 (en) 2003-09-06 2004-09-07 SQL tuning sets
US10/936,205 Active 2025-11-28 US7664730B2 (en) 2003-09-06 2004-09-07 Method and system for implementing a SQL profile
US10/936,426 Active 2025-11-01 US7634456B2 (en) 2003-09-06 2004-09-07 SQL structure analyzer
US10/936,468 Active 2025-11-22 US8983934B2 (en) 2003-09-06 2004-09-07 SQL tuning base
US10/936,781 Active 2025-08-08 US7739263B2 (en) 2003-09-06 2004-09-07 Global hints
US10/936,779 Abandoned US20050177557A1 (en) 2003-09-06 2004-09-07 Automatic prevention of run-away query execution
US10/935,908 Active 2026-03-29 US7805411B2 (en) 2003-09-06 2004-09-07 Auto-tuning SQL statements
US10/936,469 Active 2026-02-15 US8825629B2 (en) 2003-09-06 2004-09-07 Method for index tuning of a SQL statement, and index merging for a multi-statement SQL workload, using a cost-based relational query optimizer
US10/936,778 Active 2025-09-22 US7747606B2 (en) 2003-09-06 2004-09-07 Automatic SQL tuning advisor

Family Applications After (1)

Application Number Title Priority Date Filing Date
US10/936,427 Abandoned US20050138015A1 (en) 2003-09-06 2004-09-07 High load SQL driven statistics collection

Country Status (1)

Country Link
US (11) US7664778B2 (en)

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050120000A1 (en) * 2003-09-06 2005-06-02 Oracle International Corporation Auto-tuning SQL statements
US20050210461A1 (en) * 2004-03-17 2005-09-22 Oracle International Corporation Method and mechanism for performing a rolling upgrade of distributed computer software
US20060080285A1 (en) * 2004-10-13 2006-04-13 Sybase, Inc. Database System with Methodology for Parallel Schedule Generation in a Query Optimizer
US20070208714A1 (en) * 2006-03-01 2007-09-06 Oracle International Corporation Method for Suggesting Web Links and Alternate Terms for Matching Search Queries
US20070208746A1 (en) * 2006-03-01 2007-09-06 Oracle International Corporation Secure Search Performance Improvement
US20070208713A1 (en) * 2006-03-01 2007-09-06 Oracle International Corporation Auto Generation of Suggested Links in a Search System
US20070209080A1 (en) * 2006-03-01 2007-09-06 Oracle International Corporation Search Hit URL Modification for Secure Application Integration
US20070208734A1 (en) * 2006-03-01 2007-09-06 Oracle International Corporation Link Analysis for Enterprise Environment
US20070208755A1 (en) * 2006-03-01 2007-09-06 Oracle International Corporation Suggested Content with Attribute Parameterization
US20070208745A1 (en) * 2006-03-01 2007-09-06 Oracle International Corporation Self-Service Sources for Secure Search
US20070208744A1 (en) * 2006-03-01 2007-09-06 Oracle International Corporation Flexible Authentication Framework
US20070214129A1 (en) * 2006-03-01 2007-09-13 Oracle International Corporation Flexible Authorization Model for Secure Search
US20070220268A1 (en) * 2006-03-01 2007-09-20 Oracle International Corporation Propagating User Identities In A Secure Federated Search System
US20070283425A1 (en) * 2006-03-01 2007-12-06 Oracle International Corporation Minimum Lifespan Credentials for Crawling Data Repositories
US20080196012A1 (en) * 2007-02-12 2008-08-14 Panaya Ltd. System and methods for static analysis of large computer programs and for presenting the results of the analysis to a user of a computer program
US20090006356A1 (en) * 2007-06-27 2009-01-01 Oracle International Corporation Changing ranking algorithms based on customer settings
US20090006359A1 (en) * 2007-06-28 2009-01-01 Oracle International Corporation Automatically finding acronyms and synonyms in a corpus
US20090018992A1 (en) * 2007-07-12 2009-01-15 Ibm Corporation Management of interesting database statistics
US20090037404A1 (en) * 2007-07-31 2009-02-05 Oracle International Corporation Extended cursor sharing
US20090037405A1 (en) * 2007-07-31 2009-02-05 Oracle International Corporation Adaptive cursor sharing
US20090248621A1 (en) * 2008-03-31 2009-10-01 Benoit Dageville Method and mechanism for out-of-the-box real-time sql monitoring
US7788285B2 (en) 2004-05-14 2010-08-31 Oracle International Corporation Finer grain dependency tracking for database objects
US7840556B1 (en) * 2007-07-31 2010-11-23 Hewlett-Packard Development Company, L.P. Managing performance of a database query
CN103164455A (en) * 2011-12-15 2013-06-19 百度在线网络技术(北京)有限公司 Optimization method and optimization device of data base
US8903805B2 (en) 2010-08-20 2014-12-02 Oracle International Corporation Method and system for performing query optimization using a hybrid execution plan
US20150039555A1 (en) * 2013-08-02 2015-02-05 International Business Machines Corporation Heuristically modifying dbms environments using performance analytics
US20150081669A1 (en) * 2007-09-14 2015-03-19 Oracle International Corporation Fully automated sql tuning
CN104615696A (en) * 2015-01-23 2015-05-13 国家电网公司 95598 knowledge base system and establishment method
US9886670B2 (en) 2014-06-30 2018-02-06 Amazon Technologies, Inc. Feature processing recipes for machine learning
US20180107711A1 (en) * 2016-10-17 2018-04-19 Salesforce.Com, Inc. Background processing to provide automated database query tuning
US10102480B2 (en) 2014-06-30 2018-10-16 Amazon Technologies, Inc. Machine learning service
US10169715B2 (en) 2014-06-30 2019-01-01 Amazon Technologies, Inc. Feature processing tradeoff management
US10257275B1 (en) 2015-10-26 2019-04-09 Amazon Technologies, Inc. Tuning software execution environments using Bayesian models
US10318882B2 (en) 2014-09-11 2019-06-11 Amazon Technologies, Inc. Optimized training of linear machine learning models
US10339465B2 (en) 2014-06-30 2019-07-02 Amazon Technologies, Inc. Optimized decision tree based models
US10540606B2 (en) 2014-06-30 2020-01-21 Amazon Technologies, Inc. Consistent filtering of machine learning data
US10621064B2 (en) * 2014-07-07 2020-04-14 Oracle International Corporation Proactive impact measurement of database changes on production systems
US10963810B2 (en) 2014-06-30 2021-03-30 Amazon Technologies, Inc. Efficient duplicate detection for machine learning data sets
US11100420B2 (en) 2014-06-30 2021-08-24 Amazon Technologies, Inc. Input processing for machine learning
US11182691B1 (en) 2014-08-14 2021-11-23 Amazon Technologies, Inc. Category-based sampling of machine learning data

Families Citing this family (283)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1350184B1 (en) * 2000-05-26 2014-11-19 CA, Inc. System and method for automatically generating database queries
US8374966B1 (en) 2002-08-01 2013-02-12 Oracle International Corporation In memory streaming with disk backup and recovery of messages captured from a database redo stream
US7130838B2 (en) * 2003-09-11 2006-10-31 International Business Machines Corporation Query optimization via a partitioned environment
US7321888B2 (en) * 2003-09-11 2008-01-22 International Business Machines Corporation Method and system for dynamic join reordering
US7401069B2 (en) * 2003-09-11 2008-07-15 International Business Machines Corporation Background index bitmapping for faster query performance
US7552110B2 (en) * 2003-09-22 2009-06-23 International Business Machines Corporation Method for performing a query in a computer system to retrieve data from a database
US7188098B2 (en) * 2003-09-24 2007-03-06 International Business Machines Corporation Query transformation for union all view join queries using join predicates for pruning and distribution
US7340448B2 (en) * 2003-11-13 2008-03-04 International Business Machines Corporation Method, apparatus, and computer program product for implementing enhanced query governor functions
US7562094B1 (en) * 2003-12-31 2009-07-14 Precise Software Solutions, Inc. Object-level database performance management
US7412439B2 (en) * 2004-01-07 2008-08-12 International Business Machines Corporation Method for statistics management
US8775412B2 (en) * 2004-01-08 2014-07-08 International Business Machines Corporation Method and system for a self-healing query access plan
US7454404B2 (en) * 2004-02-26 2008-11-18 International Business Machines Corporation Method of addressing query scheduling and system resource requirements
US20050192937A1 (en) * 2004-02-26 2005-09-01 International Business Machines Corporation Dynamic query optimization
US7606792B2 (en) * 2004-03-19 2009-10-20 Microsoft Corporation System and method for efficient evaluation of a query that invokes a table valued function
US7702627B2 (en) * 2004-06-22 2010-04-20 Oracle International Corporation Efficient interaction among cost-based transformations
US20050283471A1 (en) * 2004-06-22 2005-12-22 Oracle International Corporation Multi-tier query processing
US8346761B2 (en) * 2004-08-05 2013-01-01 International Business Machines Corporation Method and system for data mining for automatic query optimization
US7814042B2 (en) * 2004-08-17 2010-10-12 Oracle International Corporation Selecting candidate queries
US8046354B2 (en) * 2004-09-30 2011-10-25 International Business Machines Corporation Method and apparatus for re-evaluating execution strategy for a database query
US20060085375A1 (en) * 2004-10-14 2006-04-20 International Business Machines Corporation Method and system for access plan sampling
US20060085484A1 (en) * 2004-10-15 2006-04-20 Microsoft Corporation Database tuning advisor
US20060085378A1 (en) * 2004-10-15 2006-04-20 Microsoft Corporation Schema for physical database tuning
US7529729B2 (en) * 2004-10-21 2009-05-05 International Business Machines Corporation System and method for handling improper database table access
US7831592B2 (en) * 2004-10-29 2010-11-09 International Business Machines Corporation System and method for updating database statistics according to query feedback
US7536379B2 (en) * 2004-12-15 2009-05-19 International Business Machines Corporation Performing a multiple table join operating based on generated predicates from materialized results
US20060136358A1 (en) * 2004-12-21 2006-06-22 Microsoft Corporation Database tuning advisor graphical tool
US7814072B2 (en) * 2004-12-30 2010-10-12 International Business Machines Corporation Management of database statistics
US20060167845A1 (en) * 2005-01-25 2006-07-27 International Business Machines Corporation Selection of optimal plans for FIRST-N-ROW queries
US7567968B2 (en) * 2005-01-31 2009-07-28 Microsoft Corporation Integration of a non-relational query language with a relational data store
US7610264B2 (en) * 2005-02-28 2009-10-27 International Business Machines Corporation Method and system for providing a learning optimizer for federated database systems
US7392266B2 (en) * 2005-03-17 2008-06-24 International Business Machines Corporation Apparatus and method for monitoring usage of components in a database index
US7765200B2 (en) * 2005-03-25 2010-07-27 International Business Machines Corporation SQL query problem determination tool
US20060230016A1 (en) * 2005-03-29 2006-10-12 Microsoft Corporation Systems and methods for statistics over complex objects
US7640230B2 (en) * 2005-04-05 2009-12-29 Microsoft Corporation Query plan selection control using run-time association mechanism
US7337167B2 (en) * 2005-04-14 2008-02-26 International Business Machines Corporation Estimating a number of rows returned by a recursive query
US20060242102A1 (en) * 2005-04-21 2006-10-26 Microsoft Corporation Relaxation-based approach to automatic physical database tuning
US7567982B2 (en) * 2005-08-02 2009-07-28 Glynntech, Inc. Matrix-connected, artificially intelligent address book system
US8468152B2 (en) * 2005-08-04 2013-06-18 International Business Machines Corporation Autonomic refresh of a materialized query table in a computer database
US7475056B2 (en) 2005-08-11 2009-01-06 Oracle International Corporation Query processing in a parallel single cursor model on multi-instance configurations, using hints
US7814091B2 (en) * 2005-09-27 2010-10-12 Oracle International Corporation Multi-tiered query processing techniques for minus and intersect operators
US20070073761A1 (en) * 2005-09-29 2007-03-29 International Business Machines Corporation Continual generation of index advice
US7877379B2 (en) * 2005-09-30 2011-01-25 Oracle International Corporation Delaying evaluation of expensive expressions in a query
US7840032B2 (en) * 2005-10-04 2010-11-23 Microsoft Corporation Street-side maps and paths
US7475068B2 (en) * 2005-10-07 2009-01-06 Oracle International Corp. Globally optimal and greedy heuristics based approach to access structure selection
US7840553B2 (en) 2005-10-07 2010-11-23 Oracle International Corp. Recommending materialized views for queries with multiple instances of same table
US8073841B2 (en) 2005-10-07 2011-12-06 Oracle International Corporation Optimizing correlated XML extracts
US7634457B2 (en) * 2005-10-07 2009-12-15 Oracle International Corp. Function-based index tuning for queries with expressions
US20070115916A1 (en) * 2005-11-07 2007-05-24 Samsung Electronics Co., Ltd. Method and system for optimizing a network based on a performance knowledge base
US8069153B2 (en) * 2005-12-02 2011-11-29 Salesforce.Com, Inc. Systems and methods for securing customer data in a multi-tenant environment
CN101131695B (en) * 2006-08-25 2010-05-26 北京书生国际信息技术有限公司 Document file library system and its implementing method
US8180762B2 (en) * 2005-12-13 2012-05-15 International Business Machines Corporation Database tuning methods
US7882121B2 (en) * 2006-01-27 2011-02-01 Microsoft Corporation Generating queries using cardinality constraints
US7743052B2 (en) * 2006-02-14 2010-06-22 International Business Machines Corporation Method and apparatus for projecting the effect of maintaining an auxiliary database structure for use in executing database queries
US7644062B2 (en) * 2006-03-15 2010-01-05 Oracle International Corporation Join factorization of union/union all queries
US7809713B2 (en) * 2006-03-15 2010-10-05 Oracle International Corporation Efficient search space analysis for join factorization
US20070219973A1 (en) * 2006-03-15 2007-09-20 International Business Machines Corporation Dynamic statement processing in database systems
US7945562B2 (en) * 2006-03-15 2011-05-17 Oracle International Corporation Join predicate push-down optimizations
US7676450B2 (en) * 2006-03-15 2010-03-09 Oracle International Corporation Null aware anti-join
DE102006017076B4 (en) * 2006-04-10 2020-04-23 Lufthansa Systems Gmbh & Co. Kg Automatic optimization of query processing in database systems
US20070250517A1 (en) * 2006-04-20 2007-10-25 Bestgen Robert J Method and Apparatus for Autonomically Maintaining Latent Auxiliary Database Structures for Use in Executing Database Queries
US20070250470A1 (en) * 2006-04-24 2007-10-25 Microsoft Corporation Parallelization of language-integrated collection operations
US20070288489A1 (en) * 2006-06-09 2007-12-13 Mark John Anderson Apparatus and Method for Autonomic Index Creation, Modification and Deletion
US8838573B2 (en) * 2006-06-09 2014-09-16 International Business Machines Corporation Autonomic index creation
US8838574B2 (en) * 2006-06-09 2014-09-16 International Business Machines Corporation Autonomic index creation, modification and deletion
US7730080B2 (en) * 2006-06-23 2010-06-01 Oracle International Corporation Techniques of rewriting descendant and wildcard XPath using one or more of SQL OR, UNION ALL, and XMLConcat() construct
US7877373B2 (en) * 2006-06-30 2011-01-25 Oracle International Corporation Executing alternative plans for a SQL statement
US10007686B2 (en) * 2006-08-02 2018-06-26 Entit Software Llc Automatic vertical-database design
US8086598B1 (en) 2006-08-02 2011-12-27 Hewlett-Packard Development Company, L.P. Query optimizer with schema conversion
US20080046473A1 (en) * 2006-08-15 2008-02-21 Bingjie Miao Method and System For Using Index Lead Key Self-Join To Take Advantage of Selectivity of Non-Leading Key Columns of an Index
US8032522B2 (en) * 2006-08-25 2011-10-04 Microsoft Corporation Optimizing parameterized queries in a relational database management system
US7813948B2 (en) * 2006-08-25 2010-10-12 Sas Institute Inc. Computer-implemented systems and methods for reducing cost flow models
US20080065590A1 (en) * 2006-09-07 2008-03-13 Microsoft Corporation Lightweight query processing over in-memory data structures
US8527502B2 (en) * 2006-09-08 2013-09-03 Blade Makai Doyle Method, system and computer-readable media for software object relationship traversal for object-relational query binding
CN101162462A (en) * 2006-10-11 2008-04-16 国际商业机器公司 Tools and method for making prompt
US8285707B2 (en) * 2006-11-08 2012-10-09 International Business Machines Corporation Method of querying relational database management systems
US7516128B2 (en) * 2006-11-14 2009-04-07 International Business Machines Corporation Method for cleansing sequence-based data at query time
US20080126393A1 (en) * 2006-11-29 2008-05-29 Bossman Patrick D Computer program product and system for annotating a problem sql statement for improved understanding
US20080133493A1 (en) * 2006-12-04 2008-06-05 Michael Bender Method for maintaining database clustering when replacing tables with inserts
US7606827B2 (en) * 2006-12-14 2009-10-20 Ianywhere Solutions, Inc. Query optimization using materialized views in database management systems
US8214807B2 (en) * 2007-01-10 2012-07-03 International Business Machines Corporation Code path tracking
US20080178079A1 (en) * 2007-01-18 2008-07-24 International Business Machines Corporation Apparatus and method for a graphical user interface to facilitate tuning sql statements
US20080183764A1 (en) * 2007-01-31 2008-07-31 Microsoft Corporation Continuous physical design tuning
US8150790B2 (en) * 2007-01-31 2012-04-03 Microsoft Corporation Lightweight physical design alerter
US20080215564A1 (en) * 2007-03-02 2008-09-04 Jon Bratseth Query rewrite
US7860899B2 (en) * 2007-03-26 2010-12-28 Oracle International Corporation Automatically determining a database representation for an abstract datatype
US8037112B2 (en) * 2007-04-23 2011-10-11 Microsoft Corporation Efficient access of flash databases
US7870122B2 (en) * 2007-04-23 2011-01-11 Microsoft Corporation Self-tuning index for flash-based databases
US8024241B2 (en) * 2007-07-13 2011-09-20 Sas Institute Inc. Computer-implemented systems and methods for cost flow analysis
US7644063B2 (en) * 2007-08-17 2010-01-05 International Business Machines Corporation Apparatus, system, and method for ensuring query execution plan stability in a database management system
US8209322B2 (en) * 2007-08-21 2012-06-26 Oracle International Corporation Table elimination technique for group-by query optimization
WO2009032225A1 (en) * 2007-08-28 2009-03-12 Sugarcrm Inc. Crm system and method having drilldowns, acls, shared folders, a tracker and a module builder
US20090070300A1 (en) * 2007-09-07 2009-03-12 International Business Machines Corporation Method for Processing Data Queries
US8776062B2 (en) * 2007-09-10 2014-07-08 International Business Machines Corporation Determining desired job plan based on previous inquiries in a stream processing framework
US8341178B2 (en) * 2007-09-18 2012-12-25 Oracle International Corporation SQL performance analyzer
US8200645B2 (en) * 2007-09-21 2012-06-12 International Business Machines Corporation System and method for executing multiple concurrent index-driven table access operations
US7836036B2 (en) * 2007-09-21 2010-11-16 International Business Machines Corporation System and method for estimating distances between multiple index-driven scan operations
US20090094191A1 (en) * 2007-10-08 2009-04-09 Microsoft Corporation Exploiting execution feedback for optimizing choice of access methods
US9213740B2 (en) * 2007-10-11 2015-12-15 Sybase, Inc. System and methodology for automatic tuning of database query optimizer
US8600977B2 (en) * 2007-10-17 2013-12-03 Oracle International Corporation Automatic recognition and capture of SQL execution plans
US8438152B2 (en) * 2007-10-29 2013-05-07 Oracle International Corporation Techniques for bushy tree execution plans for snowstorm schema
US9740735B2 (en) 2007-11-07 2017-08-22 Microsoft Technology Licensing, Llc Programming language extensions in structured queries
US7996384B2 (en) * 2007-12-12 2011-08-09 International Business Machines Corporation Query based rule optimization through rule combination
US20090171936A1 (en) * 2007-12-28 2009-07-02 Sybase, Inc. System, Method, and Computer Program Product for Accelerating Like Conditions
US8818987B2 (en) * 2008-01-11 2014-08-26 International Business Machines Corporation Converting union commands to union all commands
US8200518B2 (en) 2008-02-25 2012-06-12 Sas Institute Inc. Computer-implemented systems and methods for partial contribution computation in ABC/M models
US8239369B2 (en) * 2008-03-20 2012-08-07 DBSophic, Ltd. Method and apparatus for enhancing performance of database and environment thereof
US8140538B2 (en) * 2008-04-17 2012-03-20 International Business Machines Corporation System and method of data caching for compliance storage systems with keyword query based access
US20090271360A1 (en) * 2008-04-25 2009-10-29 Bestgen Robert J Assigning Plan Volatility Scores to Control Reoptimization Frequency and Number of Stored Reoptimization Plans
US9189047B2 (en) 2008-05-08 2015-11-17 International Business Machines Corporation Organizing databases for energy efficiency
US8312007B2 (en) * 2008-05-08 2012-11-13 International Business Machines Corporation Generating database query plans
US20090287638A1 (en) * 2008-05-15 2009-11-19 Robert Joseph Bestgen Autonomic system-wide sql query performance advisor
US20090313211A1 (en) * 2008-06-17 2009-12-17 Ahmad Said Ghazal Pushing joins across a union
US10983998B2 (en) * 2008-06-25 2021-04-20 Microsoft Technology Licensing, Llc Query execution plans by compilation-time execution
US7966313B2 (en) * 2008-06-26 2011-06-21 Microsoft Corporation Configuration-parametric query optimization
US7970755B2 (en) * 2008-07-02 2011-06-28 Oracle Int'l. Corp. Test execution of user SQL in database server code
US7970776B1 (en) * 2008-08-06 2011-06-28 Precise Software Solutions Inc. Apparatus, method and computer readable medium for identifying and quantifying database disk-sort operations
US7958112B2 (en) 2008-08-08 2011-06-07 Oracle International Corporation Interleaving query transformations for XML indexes
US8667018B2 (en) * 2008-08-08 2014-03-04 Oracle International Corporation Method and system for optimizing row level security in database systems
US8140548B2 (en) * 2008-08-13 2012-03-20 Microsoft Corporation Constrained physical design tuning
US8060495B2 (en) * 2008-10-21 2011-11-15 International Business Machines Corporation Query execution plan efficiency in a database management system
US20100114976A1 (en) * 2008-10-21 2010-05-06 Castellanos Maria G Method For Database Design
US8135702B2 (en) * 2008-10-27 2012-03-13 Teradata Us, Inc. Eliminating unnecessary statistics collections for query optimization
US8041789B1 (en) * 2008-10-29 2011-10-18 Hewlett-Packard Development Company, L.P. System using management server for migration of profiles for device bays in between enclosures
US7668804B1 (en) 2008-11-04 2010-02-23 International Business Machines Corporation Recommending statistical views using cost/benefit metrics
US8510290B1 (en) * 2008-12-30 2013-08-13 Teradata Us, Inc. Index selection in a multi-system database management system
US8024286B2 (en) * 2009-01-08 2011-09-20 Teradata Us, Inc. Independent column detection in selectivity estimation
US8463806B2 (en) * 2009-01-30 2013-06-11 Lexisnexis Methods and systems for creating and using an adaptive thesaurus
US8805852B2 (en) * 2009-03-02 2014-08-12 International Business Machines Corporation Automatic query execution plan management and performance stabilization for workloads
US8458167B2 (en) * 2009-04-01 2013-06-04 International Business Machines Corporation Client-based index advisor
US8892544B2 (en) * 2009-04-01 2014-11-18 Sybase, Inc. Testing efficiency and stability of a database query engine
US8161017B2 (en) * 2009-04-03 2012-04-17 International Business Machines Corporation Enhanced identification of relevant database indices
US8229952B2 (en) * 2009-05-11 2012-07-24 Business Objects Software Limited Generation of logical database schema representation based on symbolic business intelligence query
US20100287015A1 (en) * 2009-05-11 2010-11-11 Grace Au Method for determining the cost of evaluating conditions
US8417690B2 (en) * 2009-05-15 2013-04-09 International Business Machines Corporation Automatically avoiding unconstrained cartesian product joins
US9836504B2 (en) * 2009-06-30 2017-12-05 Hewlett Packard Enterprise Development Lp Query progress estimation based on processed value packets
US9141664B2 (en) * 2009-08-31 2015-09-22 Hewlett-Packard Development Company, L.P. System and method for optimizing queries
US20110211738A1 (en) * 2009-12-23 2011-09-01 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Identifying a characteristic of an individual utilizing facial recognition and providing a display for the individual
US9665620B2 (en) * 2010-01-15 2017-05-30 Ab Initio Technology Llc Managing data queries
US8290931B2 (en) * 2010-02-22 2012-10-16 Hewlett-Packard Development Company, L.P. Database designer
US8396873B2 (en) * 2010-03-10 2013-03-12 Emc Corporation Index searching using a bloom filter
US8655894B2 (en) * 2010-04-26 2014-02-18 Nokia Corporation Method and apparatus for index generation and use
US8566307B2 (en) 2010-04-30 2013-10-22 International Business Machines Corporation Database query governor with tailored thresholds
US8332388B2 (en) 2010-06-18 2012-12-11 Microsoft Corporation Transformation rule profiling for a query optimizer
US8688689B2 (en) * 2010-06-30 2014-04-01 Oracle International Corporation Techniques for recommending alternative SQL execution plans
US9256642B2 (en) 2010-06-30 2016-02-09 Oracle International Corporation Techniques for recommending parallel execution of SQL statements
US20120066554A1 (en) * 2010-09-09 2012-03-15 Microsoft Corporation Application query control with cost prediction
US8402119B2 (en) 2010-09-30 2013-03-19 Microsoft Corporation Real-load tuning of database applications
US8938644B2 (en) * 2010-12-03 2015-01-20 Teradata Us, Inc. Query execution plan revision for error recovery
CN102541966A (en) * 2010-12-30 2012-07-04 国际商业机器公司 Method and device for verifying correctness of database system
US8666970B2 (en) * 2011-01-20 2014-03-04 Accenture Global Services Limited Query plan enhancement
US20120215764A1 (en) * 2011-02-17 2012-08-23 International Business Machines Corporation Energy usage and performance query governor
US9116955B2 (en) 2011-05-02 2015-08-25 Ab Initio Technology Llc Managing data queries
US9934280B2 (en) * 2011-05-13 2018-04-03 Entit Software Llc Join order restrictions
US20120303633A1 (en) * 2011-05-26 2012-11-29 International Business Machines Corporation Systems and methods for querying column oriented databases
US8595238B2 (en) * 2011-06-22 2013-11-26 International Business Machines Corporation Smart index creation and reconciliation in an interconnected network of systems
US9626434B2 (en) 2011-08-30 2017-04-18 Open Text Sa Ulc Systems and methods for generating and using aggregated search indices and non-aggregated value storage
US8868546B2 (en) * 2011-09-15 2014-10-21 Oracle International Corporation Query explain plan in a distributed data management system
US9773032B2 (en) * 2011-09-30 2017-09-26 Bmc Software, Inc. Provision of index recommendations for database access
US8983996B2 (en) * 2011-10-31 2015-03-17 Yahoo! Inc. Assisted searching
US9858313B2 (en) 2011-12-22 2018-01-02 Excalibur Ip, Llc Method and system for generating query-related suggestions
US9037552B2 (en) 2011-12-27 2015-05-19 Infosys Limited Methods for analyzing a database and devices thereof
US8990186B2 (en) * 2011-12-28 2015-03-24 Teradata Us, Inc. Techniques for updating join indexes
US8825631B2 (en) * 2012-03-27 2014-09-02 Wipro Limited System and method for improved processing of an SQL query made against a relational database
CN103365885B (en) 2012-03-30 2016-12-14 国际商业机器公司 Method and system for database inquiry optimization
US9158814B2 (en) * 2012-03-30 2015-10-13 International Business Machines Corporation Obtaining partial results from a database query
US9720967B2 (en) 2012-09-28 2017-08-01 Oracle International Corporation Adaptive query optimization
US8856102B2 (en) 2012-11-07 2014-10-07 International Business Machines Corporation Modifying structured query language statements
US9280583B2 (en) * 2012-11-30 2016-03-08 International Business Machines Corporation Scalable multi-query optimization for SPARQL
US9720966B2 (en) * 2012-12-20 2017-08-01 Teradata Us, Inc. Cardinality estimation for optimization of recursive or iterative database queries by databases
US9146960B2 (en) * 2012-12-20 2015-09-29 Teradata Us, Inc. Adaptive optimization of iterative or recursive query execution by database systems
US20140201192A1 (en) * 2013-01-15 2014-07-17 Syscom Computer Engineering Co. Automatic data index establishment method
US9336272B1 (en) 2013-02-13 2016-05-10 Amazon Technologies, Inc. Global query hint specification
US10592506B1 (en) * 2013-02-13 2020-03-17 Amazon Technologies, Inc. Query hint specification
US8935272B2 (en) 2013-03-17 2015-01-13 Alation, Inc. Curated answers community automatically populated through user query monitoring
US9367594B2 (en) 2013-03-29 2016-06-14 International Business Machines Corporation Determining statistics for cost-based optimization of a workflow
US9779137B2 (en) 2013-07-09 2017-10-03 Logicblox Inc. Salient sampling for query size estimation
US20150019584A1 (en) * 2013-07-15 2015-01-15 International Business Machines Corporation Self-learning java database connectivity (jdbc) driver
US9262457B2 (en) * 2013-08-13 2016-02-16 Sybase, Inc. On-demand hash index
US9588978B2 (en) 2013-09-30 2017-03-07 International Business Machines Corporation Merging metadata for database storage regions based on overlapping range values
CN103605848A (en) * 2013-11-19 2014-02-26 北京国双科技有限公司 Method and device for analyzing paths
US10824622B2 (en) * 2013-11-25 2020-11-03 Sap Se Data statistics in data management systems
US10268638B2 (en) * 2013-11-27 2019-04-23 Paraccel Llc Limiting plan choice for database queries using plan constraints
US10394807B2 (en) * 2013-11-27 2019-08-27 Paraccel Llc Rewrite constraints for database queries
WO2015085291A1 (en) 2013-12-06 2015-06-11 Ab Initio Technology Llc Source code translation
CN104714975A (en) * 2013-12-17 2015-06-17 航天信息股份有限公司 Dynamic query sentence processing method and device
US9672288B2 (en) 2013-12-30 2017-06-06 Yahoo! Inc. Query suggestions
US9910860B2 (en) * 2014-02-06 2018-03-06 International Business Machines Corporation Split elimination in MapReduce systems
US9678825B2 (en) * 2014-02-18 2017-06-13 International Business Machines Corporation Autonomous reconfiguration of a failed user action
US9870390B2 (en) 2014-02-18 2018-01-16 Oracle International Corporation Selecting from OR-expansion states of a query
US10275504B2 (en) * 2014-02-21 2019-04-30 International Business Machines Corporation Updating database statistics with dynamic profiles
US10114874B2 (en) * 2014-02-24 2018-10-30 Red Hat, Inc. Source query caching as fault prevention for federated queries
US10108649B2 (en) 2014-02-25 2018-10-23 Internatonal Business Machines Corporation Early exit from table scans of loosely ordered and/or grouped relations using nearly ordered maps
US10108622B2 (en) 2014-03-26 2018-10-23 International Business Machines Corporation Autonomic regulation of a volatile database table attribute
US9519687B2 (en) 2014-06-16 2016-12-13 International Business Machines Corporation Minimizing index maintenance costs for database storage regions using hybrid zone maps and indices
US10089377B2 (en) 2014-09-26 2018-10-02 Oracle International Corporation System and method for data transfer from JDBC to a data warehouse layer in a massively parallel or distributed database environment
US10078684B2 (en) * 2014-09-26 2018-09-18 Oracle International Corporation System and method for query processing with table-level predicate pushdown in a massively parallel or distributed database environment
US10089357B2 (en) 2014-09-26 2018-10-02 Oracle International Corporation System and method for generating partition-based splits in a massively parallel or distributed database environment
US10380114B2 (en) 2014-09-26 2019-08-13 Oracle International Corporation System and method for generating rowid range-based splits in a massively parallel or distributed database environment
US10387421B2 (en) 2014-09-26 2019-08-20 Oracle International Corporation System and method for generating size-based splits in a massively parallel or distributed database environment
US10394818B2 (en) 2014-09-26 2019-08-27 Oracle International Corporation System and method for dynamic database split generation in a massively parallel or distributed database environment
US10180973B2 (en) 2014-09-26 2019-01-15 Oracle International Corporation System and method for efficient connection management in a massively parallel or distributed database environment
US10528596B2 (en) 2014-09-26 2020-01-07 Oracle International Corporation System and method for consistent reads between tasks in a massively parallel or distributed database environment
US9779117B1 (en) * 2014-09-30 2017-10-03 EMC IP Holding Company LLC Database partitioning scheme evaluation and comparison
CN105574031B (en) 2014-10-16 2019-01-04 国际商业机器公司 method and system for database index
US10437819B2 (en) 2014-11-14 2019-10-08 Ab Initio Technology Llc Processing queries containing a union-type operation
US10019480B2 (en) * 2014-11-14 2018-07-10 International Business Machines Corporation Query tuning in the cloud
US9779133B2 (en) * 2014-11-25 2017-10-03 Sap Se Contextual debugging of SQL queries in database-accessing applications
US10042887B2 (en) * 2014-12-05 2018-08-07 International Business Machines Corporation Query optimization with zone map selectivity modeling
US10176157B2 (en) 2015-01-03 2019-01-08 International Business Machines Corporation Detect annotation error by segmenting unannotated document segments into smallest partition
US9990396B2 (en) * 2015-02-03 2018-06-05 International Business Machines Corporation Forecasting query access plan obsolescence
US10417281B2 (en) 2015-02-18 2019-09-17 Ab Initio Technology Llc Querying a data source on a network
US10817520B1 (en) * 2015-02-25 2020-10-27 EMC IP Holding Company LLC Methods, systems, and computer readable mediums for sharing user activity data
WO2016146057A2 (en) * 2015-03-16 2016-09-22 Huawei Technologies Co., Ltd. A method and a plan optimizing apparatus for optimizing query execution plan
US10585887B2 (en) 2015-03-30 2020-03-10 Oracle International Corporation Multi-system query execution plan
US9916353B2 (en) 2015-04-01 2018-03-13 International Business Machines Corporation Generating multiple query access plans for multiple computing environments
US10108664B2 (en) 2015-04-01 2018-10-23 International Business Machines Corporation Generating multiple query access plans for multiple computing environments
US9639570B2 (en) 2015-05-14 2017-05-02 Walleye Software, LLC Data store access permission system with interleaved application of deferred access control filters
CN104933190B (en) * 2015-07-10 2018-04-17 上海新炬网络信息技术股份有限公司 A kind of SQL statement performs frequency dynamic adjusting method
US10229358B2 (en) * 2015-08-07 2019-03-12 International Business Machines Corporation Optimizer problem determination
WO2017026988A1 (en) * 2015-08-07 2017-02-16 Hewlett Packard Enterprise Development Lp Annotated query generator
US10152509B2 (en) 2015-09-23 2018-12-11 International Business Machines Corporation Query hint learning in a database management system
US10216748B1 (en) 2015-09-30 2019-02-26 EMC IP Holding Company LLC Segment index access management in a de-duplication system
US10061801B2 (en) 2015-10-12 2018-08-28 International Business Machines Corporation Customize column sequence in projection list of select queries
US10599651B2 (en) 2015-10-21 2020-03-24 Oracle International Corporation Database system feature management
US10055459B2 (en) * 2015-11-09 2018-08-21 International Business Machines Corporation Query hint management for a database management system
US9971831B2 (en) * 2015-11-25 2018-05-15 International Business Machines Corporation Managing complex queries with predicates
CN108369590B (en) * 2015-12-11 2020-10-09 华为技术有限公司 Recommendation system, device and method for guiding self-service analysis
CN107102995B (en) * 2016-02-19 2020-02-21 华为技术有限公司 Method and device for determining SQL execution plan
CN107193813B (en) 2016-03-14 2021-05-14 阿里巴巴集团控股有限公司 Data table connection mode processing method and device
US11074254B2 (en) 2016-03-23 2021-07-27 International Business Machines Corporation Performance management using thresholds for queries of a service for a database as a service
JP6669571B2 (en) * 2016-04-19 2020-03-18 株式会社シスバンク Tuning apparatus and method for relational database
US10558458B2 (en) 2016-06-06 2020-02-11 Microsoft Technology Licensing, Llc Query optimizer for CPU utilization and code refactoring
US10248692B2 (en) 2016-06-15 2019-04-02 International Business Machines Corporation Cardinality estimation of a join predicate
US11281770B2 (en) 2016-08-11 2022-03-22 Salesforce.Com, Inc. Detection of structured query language (SQL) injection events using simple statistical analysis
US10409701B2 (en) 2016-08-11 2019-09-10 Salesforce.Com, Inc. Per-statement monitoring in a database environment
US10885027B2 (en) * 2016-08-24 2021-01-05 Nec Corporation Progressive processing for querying system behavior
US10817540B2 (en) * 2016-09-02 2020-10-27 Snowflake Inc. Incremental clustering maintenance of a table
WO2018053024A1 (en) * 2016-09-13 2018-03-22 The Bank Of New York Mellon Organizing datasets for adaptive responses to queries
US10452652B2 (en) 2016-09-15 2019-10-22 At&T Intellectual Property I, L.P. Recommendation platform for structured queries
US11151108B2 (en) 2016-11-21 2021-10-19 International Business Machines Corporation Indexing and archiving multiple statements using a single statement dictionary
CN109313639B (en) * 2016-12-06 2021-03-05 华为技术有限公司 System and method for executing query in DBMS
US10740332B2 (en) * 2017-01-20 2020-08-11 Futurewei Technologies, Inc. Memory-aware plan negotiation in query concurrency control
US10664473B2 (en) * 2017-01-30 2020-05-26 International Business Machines Corporation Database optimization based on forecasting hardware statistics using data mining techniques
CN107688589B (en) * 2017-02-20 2019-02-26 平安科技(深圳)有限公司 The method and device of Database System Optimization
US10565214B2 (en) 2017-03-22 2020-02-18 Bank Of America Corporation Intelligent database control systems with automated request assessments
CN106991174A (en) * 2017-04-05 2017-07-28 广东浪潮大数据研究有限公司 A kind of optimization method of Smart Rack system databases
US10242037B2 (en) 2017-04-20 2019-03-26 Servicenow, Inc. Index suggestion engine for relational databases
US11372858B2 (en) * 2017-05-18 2022-06-28 Oracle International Corporation Estimated query performance
US11157307B2 (en) * 2017-05-24 2021-10-26 International Business Machines Corporation Count and transaction identifier based transaction processing
US20190057133A1 (en) * 2017-08-15 2019-02-21 Salesforce.Com, Inc. Systems and methods of bounded scans on multi-column keys of a database
US10241965B1 (en) 2017-08-24 2019-03-26 Deephaven Data Labs Llc Computer data distribution architecture connecting an update propagation graph through multiple remote query processors
US11055285B2 (en) 2017-09-08 2021-07-06 International Business Machines Corporation Access path optimization
US11386058B2 (en) 2017-09-29 2022-07-12 Oracle International Corporation Rule-based autonomous database cloud service framework
US10838961B2 (en) 2017-09-29 2020-11-17 Oracle International Corporation Prefix compression
US11327932B2 (en) 2017-09-30 2022-05-10 Oracle International Corporation Autonomous multitenant database cloud service framework
CN108153808A (en) * 2017-11-22 2018-06-12 链家网(北京)科技有限公司 Big data data warehouse data access method and device
US11030195B2 (en) * 2018-01-18 2021-06-08 Fmr Llc Identifying and mitigating high-risk database queries through ranked variance analysis
US11010380B2 (en) 2018-02-13 2021-05-18 International Business Machines Corporation Minimizing processing using an index when non-leading columns match an aggregation key
US11080276B2 (en) * 2018-02-23 2021-08-03 Sap Se Optimal ranges for relational query execution plans
US10824624B2 (en) 2018-07-12 2020-11-03 Bank Of America Corporation System for analyzing, optimizing, and remediating a proposed data query prior to query implementation
US11068460B2 (en) 2018-08-06 2021-07-20 Oracle International Corporation Automated real-time index management
US11347740B2 (en) * 2018-10-11 2022-05-31 Varada Ltd. Managed query execution platform, and methods thereof
US11182360B2 (en) * 2019-01-14 2021-11-23 Microsoft Technology Licensing, Llc Database tuning and performance verification using cloned database
US11470176B2 (en) * 2019-01-29 2022-10-11 Cisco Technology, Inc. Efficient and flexible load-balancing for clusters of caches under latency constraint
US11138266B2 (en) 2019-02-21 2021-10-05 Microsoft Technology Licensing, Llc Leveraging query executions to improve index recommendations
EP3719663B1 (en) * 2019-04-03 2022-10-26 Hasso-Plattner-Institut für Digital Engineering gGmbH Iterative multi-attribute index selection for large database systems
US11100104B2 (en) * 2019-04-09 2021-08-24 Accenture Global Solutions Limited Query tuning utilizing optimizer hints
US11500755B1 (en) * 2019-05-01 2022-11-15 Amazon Technologies, Inc. Database performance degradation detection and prevention
US11334538B2 (en) * 2019-05-31 2022-05-17 Microsoft Technology Licensing, Llc System and method for cardinality estimation feedback loops in query processing
US11194805B2 (en) 2019-06-10 2021-12-07 International Business Machines Corporation Optimization of database execution planning
US11093223B2 (en) 2019-07-18 2021-08-17 Ab Initio Technology Llc Automatically converting a program written in a procedural programming language into a dataflow graph and related systems and methods
US11379410B2 (en) * 2019-09-13 2022-07-05 Oracle International Corporation Automated information lifecycle management of indexes
US11500837B1 (en) * 2019-12-11 2022-11-15 Amazon Technologies, Inc. Automating optimizations for items in a hierarchical data store
US11256694B2 (en) 2020-04-27 2022-02-22 Hewlett Packard Enterprise Development Lp Tolerance level-based tuning of query processing
US11372885B2 (en) * 2020-05-13 2022-06-28 Sap Se Replication of complex augmented views
CN111898371B (en) * 2020-07-10 2022-08-16 中国标准化研究院 Ontology construction method and device for rational design knowledge and computer storage medium
US20220043822A1 (en) * 2020-08-04 2022-02-10 International Business Machines Corporation Shadow experiments for serverless multi-tenant cloud services
US11615095B2 (en) 2020-10-30 2023-03-28 Snowflake Inc. Automatic pruning cutoff in a database system
CN113282574B (en) * 2021-07-26 2021-10-22 云和恩墨(北京)信息技术有限公司 SQL optimization-based database operation control method, system and storage medium
US11748352B2 (en) * 2021-08-26 2023-09-05 International Business Machines Corporation Dynamical database system resource balance
US11537613B1 (en) * 2021-10-29 2022-12-27 Snowflake Inc. Merge small file consolidation
US11593306B1 (en) 2021-10-29 2023-02-28 Snowflake Inc. File defragmentation service
US20230259337A1 (en) * 2022-02-11 2023-08-17 Bmc Software,Inc. Application development platform

Citations (85)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5140685A (en) * 1988-03-14 1992-08-18 Unisys Corporation Record lock processing for multiprocessing data system with majority voting
US5260697A (en) * 1990-11-13 1993-11-09 Wang Laboratories, Inc. Computer with separate display plane and user interface processor
US5398183A (en) * 1990-12-10 1995-03-14 Biomedical Systems Corporation Holter ECG report generating system
US5408653A (en) * 1992-04-15 1995-04-18 International Business Machines Corporation Efficient data base access using a shared electronic store in a multi-system environment with shared disks
US5481712A (en) * 1993-04-06 1996-01-02 Cognex Corporation Method and apparatus for interactively generating a computer program for machine vision analysis of an object
US5504917A (en) * 1986-04-14 1996-04-02 National Instruments Corporation Method and apparatus for providing picture generation and control features in a graphical data flow environment
US5544355A (en) * 1993-06-14 1996-08-06 Hewlett-Packard Company Method and apparatus for query optimization in a relational database system having foreign functions
US5577240A (en) * 1994-12-07 1996-11-19 Xerox Corporation Identification of stable writes in weakly consistent replicated databases while providing access to all writes in such a database
US5634134A (en) * 1991-06-19 1997-05-27 Hitachi, Ltd. Method and apparatus for determining character and character mode for multi-lingual keyboard based on input characters
US5737601A (en) * 1993-09-24 1998-04-07 Oracle Corporation Method and apparatus for peer-to-peer data replication including handling exceptional occurrences
US5765159A (en) * 1994-12-29 1998-06-09 International Business Machines Corporation System and method for generating an optimized set of relational queries for fetching data from a relational database management system in response to object queries received from an object oriented environment
US5781912A (en) * 1996-12-19 1998-07-14 Oracle Corporation Recoverable data replication between source site and destination site without distributed transactions
US5794229A (en) * 1993-04-16 1998-08-11 Sybase, Inc. Database system with methodology for storing a database table by vertically partitioning all columns of the table
US5806076A (en) * 1996-10-29 1998-09-08 Oracle Corporation Tracking dependencies between transactions in a database
US5860069A (en) * 1997-04-11 1999-01-12 Bmc Software, Inc. Method of efficient collection of SQL performance measures
US5870761A (en) * 1996-12-19 1999-02-09 Oracle Corporation Parallel queue propagation
US5870760A (en) * 1996-12-19 1999-02-09 Oracle Corporation Dequeuing using queue batch numbers
US5940826A (en) * 1997-01-07 1999-08-17 Unisys Corporation Dual XPCS for disaster recovery in multi-host computer complexes
US5991765A (en) * 1997-05-06 1999-11-23 Birdstep Technology As System and method for storing and manipulating data in an information handling system
US6052694A (en) * 1998-03-18 2000-04-18 Electronic Data Systems Corporation Method and apparatus for logging database performance characteristics
US6122640A (en) * 1998-09-22 2000-09-19 Platinum Technology Ip, Inc. Method and apparatus for reorganizing an active DBMS table
US6195653B1 (en) * 1997-10-14 2001-02-27 International Business Machines Corporation System and method for selectively preparing customized reports of query explain data
US6275818B1 (en) * 1997-11-06 2001-08-14 International Business Machines Corporation Cost based optimization of decision support queries using transient views
US6321218B1 (en) * 1999-02-24 2001-11-20 Oracle Corporation Automatically determining data that is best suited for index tuning
US6330552B1 (en) * 1998-09-28 2001-12-11 Compaq Database query cost model optimizer
US6349310B1 (en) * 1999-07-06 2002-02-19 Compaq Computer Corporation Database management system and method for accessing rows in a partitioned table
US6353818B1 (en) * 1998-08-19 2002-03-05 Ncr Corporation Plan-per-tuple optimizing of database queries with user-defined functions
US6356889B1 (en) * 1998-09-30 2002-03-12 International Business Machines Corporation Method for determining optimal database materializations using a query optimizer
US6374257B1 (en) * 1999-06-16 2002-04-16 Oracle Corporation Method and system for removing ambiguities in a shared database command
US6397227B1 (en) * 1999-07-06 2002-05-28 Compaq Computer Corporation Database management system and method for updating specified tuple fields upon transaction rollback
US6434545B1 (en) * 1998-12-16 2002-08-13 Microsoft Corporation Graphical query analyzer
US6434568B1 (en) * 1999-08-31 2002-08-13 Accenture Llp Information services patterns in a netcentric environment
US6442748B1 (en) * 1999-08-31 2002-08-27 Accenture Llp System, method and article of manufacture for a persistent state and persistent object separator in an information services patterns environment
US20020120617A1 (en) * 2001-02-28 2002-08-29 Fujitsu Limited Database retrieving method, apparatus and storage medium thereof
US6460027B1 (en) * 1998-09-14 2002-10-01 International Business Machines Corporation Automatic recognition and rerouting of queries for optimal performance
US6460043B1 (en) * 1998-02-04 2002-10-01 Microsoft Corporation Method and apparatus for operating on data with a conceptual data manipulation language
US6493701B2 (en) * 2000-11-22 2002-12-10 Sybase, Inc. Database system with methodogy providing faster N-ary nested loop joins
US6496850B1 (en) * 1999-08-31 2002-12-17 Accenture Llp Clean-up of orphaned server contexts
US20020198867A1 (en) * 2001-06-06 2002-12-26 International Business Machines Corporation Learning from empirical results in query optimization
US20030018618A1 (en) * 2001-03-15 2003-01-23 International Business Machines Corporation Representation for data used in query optimization
US6513029B1 (en) * 2000-04-20 2003-01-28 Microsoft Corporation Interesting table-subset selection for database workload materialized view selection
US6529901B1 (en) * 1999-06-29 2003-03-04 Microsoft Corporation Automating statistics management for query optimizers
US20030065648A1 (en) * 2001-10-03 2003-04-03 International Business Machines Corporation Reduce database monitor workload by employing predictive query threshold
US6560606B1 (en) * 1999-05-04 2003-05-06 Metratech Method and apparatus for processing data with multiple processing modules and associated counters
US20030088541A1 (en) * 2001-06-21 2003-05-08 Zilio Daniel C. Method for recommending indexes and materialized views for a database workload
US20030093408A1 (en) * 2001-10-12 2003-05-15 Brown Douglas P. Index selection in a database system
US20030110153A1 (en) * 2001-12-11 2003-06-12 Sprint Communications Company L.P. Database performance monitoring method and tool
US20030115183A1 (en) * 2001-12-13 2003-06-19 International Business Machines Corporation Estimation and use of access plan statistics
US20030126143A1 (en) * 2001-06-12 2003-07-03 Nicholas Roussopoulos Dwarf cube architecture for reducing storage sizes of multidimensional data
US20030130985A1 (en) * 2001-12-17 2003-07-10 Volker Driesen Systems, methods and articles of manufacture for upgrading a database with a shadow system
US20030135478A1 (en) * 2001-05-31 2003-07-17 Computer Associates Think, Inc. Method and system for online reorganization of databases
US20030154216A1 (en) * 2002-02-14 2003-08-14 International Business Machines Corporation Database optimization apparatus and method
US6615223B1 (en) * 2000-02-29 2003-09-02 Oracle International Corporation Method and system for data replication
US20030182276A1 (en) * 2002-03-19 2003-09-25 International Business Machines Corporation Method, system, and program for performance tuning a database query
US20030187831A1 (en) * 2002-03-29 2003-10-02 International Business Machines Corporation Database query optimizer framework with dynamic strategy dispatch
US20030200537A1 (en) * 2002-04-18 2003-10-23 International Business Machines Corporation Apparatus and method for using database knowledge to optimize a computer program
US20030229639A1 (en) * 2002-06-07 2003-12-11 International Business Machines Corporation Runtime query optimization for dynamically selecting from multiple plans in a query based upon runtime-evaluated performance criterion
US20030229621A1 (en) * 2002-06-07 2003-12-11 International Business Machines Corporation Apparatus and method for refreshing a database query
US20040003004A1 (en) * 2002-06-28 2004-01-01 Microsoft Corporation Time-bound database tuning
US20040002957A1 (en) * 2002-06-28 2004-01-01 Microsoft Corporation Linear programming approach to assigning benefit to database physical design structures
US20040019587A1 (en) * 2002-07-25 2004-01-29 You-Chin Fuh Method and device for processing a query in a database management system
US20040034643A1 (en) * 2002-08-19 2004-02-19 International Business Machines Corporation System and method for real time statistics collection for use in the automatic management of a database system
US6714943B1 (en) * 2001-01-31 2004-03-30 Oracle International Corporation Method and mechanism for tracking dependencies for referential integrity constrained tables
US6721724B1 (en) * 2000-03-31 2004-04-13 Microsoft Corporation Validating multiple execution plans for database queries
US6728719B1 (en) * 2001-01-31 2004-04-27 Oracle International Corporation Method and mechanism for dependency tracking for unique constraints
US6728720B1 (en) * 1999-07-02 2004-04-27 Robert Stephen Gerard Lenzie Identifying preferred indexes for databases
US6763353B2 (en) * 1998-12-07 2004-07-13 Vitria Technology, Inc. Real time business process analysis method and apparatus
US20040181521A1 (en) * 1999-12-22 2004-09-16 Simmen David E. Query optimization technique for obtaining improved cardinality estimates using statistics on pre-defined queries
US6804672B1 (en) * 2001-01-31 2004-10-12 Oracle International Corporation Method and mechanism for dependency tracking
US20040215626A1 (en) * 2003-04-09 2004-10-28 International Business Machines Corporation Method, system, and program for improving performance of database queries
US6816874B1 (en) * 1999-09-10 2004-11-09 International Business Machines Corporation Method, system, and program for accessing performance data
US6839713B1 (en) * 2001-07-12 2005-01-04 Advanced Micro Devices, Inc. System and software for database structure in semiconductor manufacturing and method thereof
US20050033734A1 (en) * 2003-08-05 2005-02-10 International Business Machines Corporation Performance prediction system with query mining
US6865567B1 (en) * 1999-07-30 2005-03-08 Basantkumar John Oommen Method of generating attribute cardinality maps
US20050097091A1 (en) * 2003-09-06 2005-05-05 Oracle International Corporation SQL tuning base
US20050097078A1 (en) * 2003-10-31 2005-05-05 Lohman Guy M. System, method, and computer program product for progressive query processing
US20050102305A1 (en) * 2002-06-26 2005-05-12 Microsoft Corporation Compressing database workloads
US6910109B2 (en) * 1998-09-30 2005-06-21 Intel Corporation Tracking memory page state
US6934701B1 (en) * 2000-01-04 2005-08-23 International Business Machines Corporation Using a stored procedure to access index configuration data in a remote database management system
US6947927B2 (en) * 2002-07-09 2005-09-20 Microsoft Corporation Method and apparatus for exploiting statistics on query expressions for optimization
US6961931B2 (en) * 2001-01-10 2005-11-01 International Business Machines Corporation Dependency specification using target patterns
US20050251523A1 (en) * 2004-05-07 2005-11-10 Oracle International Corporation Minimizing downtime for application changes in database systems
US20060004828A1 (en) * 2004-05-14 2006-01-05 Oracle International Corporation Finer grain dependency tracking for database objects
US7080062B1 (en) * 1999-05-18 2006-07-18 International Business Machines Corporation Optimizing database queries using query execution plans derived from automatic summary table determining cost based queries
US7617201B1 (en) * 2001-06-20 2009-11-10 Microstrategy, Incorporated System and method for analyzing statistics in a reporting system

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US691931A (en) * 1901-02-15 1902-01-28 Simpson S Bryan Bookkeeper's stool.
GB8929158D0 (en) * 1989-12-23 1990-02-28 Int Computers Ltd Database system
US5724569A (en) 1991-03-29 1998-03-03 Bull S.A. Apparatus for evaluating database query performance having libraries containing information for modeling the various system components of multiple systems
DK169356B1 (en) * 1993-03-19 1994-10-10 Kroyer K K K Apparatus for preparing a web-shaped fiber product by the dry method
US5794228A (en) * 1993-04-16 1998-08-11 Sybase, Inc. Database system with buffer manager providing per page native data compression and decompression
US5963933A (en) * 1997-06-25 1999-10-05 International Business Machines Corporation Efficient implementation of full outer join and anti-join
US5963934A (en) * 1997-06-30 1999-10-05 International Business Machines Corporation Intelligent compilation of scripting language for query processing systems
US6243703B1 (en) * 1997-10-14 2001-06-05 International Business Machines Corporation Method of accessing and displaying subsystem parameters including graphical plan table data
JP2002510088A (en) 1998-03-27 2002-04-02 インフォミックス ソフトウェア, インコーポレイテッド Processing precomputed views
US6212514B1 (en) * 1998-07-31 2001-04-03 International Business Machines Corporation Data base optimization method for estimating query and trigger procedure costs
US6813617B2 (en) * 1998-10-05 2004-11-02 Oracle International Corporation Dynamic generation of optimizer hints
US6366901B1 (en) 1998-12-16 2002-04-02 Microsoft Corporation Automatic database statistics maintenance and plan regeneration
US6334128B1 (en) * 1998-12-28 2001-12-25 Oracle Corporation Method and apparatus for efficiently refreshing sets of summary tables and materialized views in a database management system
US6496819B1 (en) * 1998-12-28 2002-12-17 Oracle Corporation Rewriting a query in terms of a summary based on functional dependencies and join backs, and based on join derivability
US6598038B1 (en) * 1999-09-17 2003-07-22 Oracle International Corporation Workload reduction mechanism for index tuning
US6701345B1 (en) * 2000-04-13 2004-03-02 Accenture Llp Providing a notification when a plurality of users are altering similar data in a health care solution environment
US6366903B1 (en) 2000-04-20 2002-04-02 Microsoft Corporation Index and materialized view selection for a given workload
US6266658B1 (en) * 2000-04-20 2001-07-24 Microsoft Corporation Index tuner for given workload
EP1350184B1 (en) 2000-05-26 2014-11-19 CA, Inc. System and method for automatically generating database queries
US6826564B2 (en) 2000-07-10 2004-11-30 Fastforward Networks Scalable and programmable query distribution and collection in a network of queryable devices
US7272589B1 (en) 2000-11-01 2007-09-18 Oracle International Corporation Database index validation mechanism
US6571233B2 (en) * 2000-12-06 2003-05-27 International Business Machines Corporation Optimization of SQL queries using filtering predicates
US6850925B2 (en) * 2001-05-15 2005-02-01 Microsoft Corporation Query optimization by sub-plan memoization
US7155426B2 (en) 2001-09-20 2006-12-26 International Business Machines Corporation SQL debugging using stored procedures
US6915290B2 (en) * 2001-12-11 2005-07-05 International Business Machines Corporation Database query optimization apparatus and method that represents queries as graphs
US7058622B1 (en) 2001-12-26 2006-06-06 Tedesco Michael A Method, apparatus and system for screening database queries prior to submission to a database
US7047231B2 (en) 2002-03-01 2006-05-16 Software Engineering Gmbh Getpage-workload based index optimizer
CA2382714A1 (en) 2002-04-19 2003-10-19 Ibm Canada Limited-Ibm Canada Limitee Substituting parameter markers for literals in a database query language statement to promote reuse of previously generated access plans
US7007013B2 (en) * 2002-07-26 2006-02-28 International Business Machines Corporation Fast computation of spatial queries in location-based services
JP2004110219A (en) * 2002-09-17 2004-04-08 Hitachi Ltd Data processing system and join processing method
USRE45806E1 (en) 2002-10-15 2015-11-17 Active-Base Ltd. System and method for the optimization of database access in data base networks
US7031958B2 (en) 2003-02-06 2006-04-18 International Business Machines Corporation Patterned based query optimization
US7447676B2 (en) * 2003-04-21 2008-11-04 Oracle International Corporation Method and system of collecting execution statistics of query statements
US7146363B2 (en) 2003-05-20 2006-12-05 Microsoft Corporation System and method for cardinality estimation based on query execution feedback
US7174328B2 (en) * 2003-09-02 2007-02-06 International Business Machines Corp. Selective path signatures for query processing over a hierarchical tagged data structure
US7302422B2 (en) * 2004-04-14 2007-11-27 International Business Machines Corporation Query workload statistics collection in a database management system
US7353219B2 (en) 2004-05-28 2008-04-01 International Business Machines Corporation Determining validity ranges of query plans based on suboptimality

Patent Citations (100)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5504917A (en) * 1986-04-14 1996-04-02 National Instruments Corporation Method and apparatus for providing picture generation and control features in a graphical data flow environment
US5140685A (en) * 1988-03-14 1992-08-18 Unisys Corporation Record lock processing for multiprocessing data system with majority voting
US5260697A (en) * 1990-11-13 1993-11-09 Wang Laboratories, Inc. Computer with separate display plane and user interface processor
US5398183A (en) * 1990-12-10 1995-03-14 Biomedical Systems Corporation Holter ECG report generating system
US5634134A (en) * 1991-06-19 1997-05-27 Hitachi, Ltd. Method and apparatus for determining character and character mode for multi-lingual keyboard based on input characters
US5761660A (en) * 1992-04-15 1998-06-02 International Business Machines Corporation Computer program product and program storage device for database access using a shared electronic store in a multi-system environment having shared disks
US5408653A (en) * 1992-04-15 1995-04-18 International Business Machines Corporation Efficient data base access using a shared electronic store in a multi-system environment with shared disks
US5481712A (en) * 1993-04-06 1996-01-02 Cognex Corporation Method and apparatus for interactively generating a computer program for machine vision analysis of an object
US5794229A (en) * 1993-04-16 1998-08-11 Sybase, Inc. Database system with methodology for storing a database table by vertically partitioning all columns of the table
US5544355A (en) * 1993-06-14 1996-08-06 Hewlett-Packard Company Method and apparatus for query optimization in a relational database system having foreign functions
US5737601A (en) * 1993-09-24 1998-04-07 Oracle Corporation Method and apparatus for peer-to-peer data replication including handling exceptional occurrences
US5577240A (en) * 1994-12-07 1996-11-19 Xerox Corporation Identification of stable writes in weakly consistent replicated databases while providing access to all writes in such a database
US5765159A (en) * 1994-12-29 1998-06-09 International Business Machines Corporation System and method for generating an optimized set of relational queries for fetching data from a relational database management system in response to object queries received from an object oriented environment
US5806076A (en) * 1996-10-29 1998-09-08 Oracle Corporation Tracking dependencies between transactions in a database
US5781912A (en) * 1996-12-19 1998-07-14 Oracle Corporation Recoverable data replication between source site and destination site without distributed transactions
US5870761A (en) * 1996-12-19 1999-02-09 Oracle Corporation Parallel queue propagation
US5870760A (en) * 1996-12-19 1999-02-09 Oracle Corporation Dequeuing using queue batch numbers
US5940826A (en) * 1997-01-07 1999-08-17 Unisys Corporation Dual XPCS for disaster recovery in multi-host computer complexes
US5860069A (en) * 1997-04-11 1999-01-12 Bmc Software, Inc. Method of efficient collection of SQL performance measures
US5991765A (en) * 1997-05-06 1999-11-23 Birdstep Technology As System and method for storing and manipulating data in an information handling system
US6397207B1 (en) * 1997-10-14 2002-05-28 International Business Machines Corp. System and method for selectively preparing customized reports of query explain data
US6195653B1 (en) * 1997-10-14 2001-02-27 International Business Machines Corporation System and method for selectively preparing customized reports of query explain data
US6275818B1 (en) * 1997-11-06 2001-08-14 International Business Machines Corporation Cost based optimization of decision support queries using transient views
US6460043B1 (en) * 1998-02-04 2002-10-01 Microsoft Corporation Method and apparatus for operating on data with a conceptual data manipulation language
US6052694A (en) * 1998-03-18 2000-04-18 Electronic Data Systems Corporation Method and apparatus for logging database performance characteristics
US6353818B1 (en) * 1998-08-19 2002-03-05 Ncr Corporation Plan-per-tuple optimizing of database queries with user-defined functions
US6460027B1 (en) * 1998-09-14 2002-10-01 International Business Machines Corporation Automatic recognition and rerouting of queries for optimal performance
US6122640A (en) * 1998-09-22 2000-09-19 Platinum Technology Ip, Inc. Method and apparatus for reorganizing an active DBMS table
US6330552B1 (en) * 1998-09-28 2001-12-11 Compaq Database query cost model optimizer
US6910109B2 (en) * 1998-09-30 2005-06-21 Intel Corporation Tracking memory page state
US6356889B1 (en) * 1998-09-30 2002-03-12 International Business Machines Corporation Method for determining optimal database materializations using a query optimizer
US6763353B2 (en) * 1998-12-07 2004-07-13 Vitria Technology, Inc. Real time business process analysis method and apparatus
US6744449B2 (en) * 1998-12-16 2004-06-01 Microsoft Corporation Graphical query analyzer
US6434545B1 (en) * 1998-12-16 2002-08-13 Microsoft Corporation Graphical query analyzer
US20030177137A1 (en) * 1998-12-16 2003-09-18 Microsoft Corporation Graphical query analyzer
US6321218B1 (en) * 1999-02-24 2001-11-20 Oracle Corporation Automatically determining data that is best suited for index tuning
US6560606B1 (en) * 1999-05-04 2003-05-06 Metratech Method and apparatus for processing data with multiple processing modules and associated counters
US7080062B1 (en) * 1999-05-18 2006-07-18 International Business Machines Corporation Optimizing database queries using query execution plans derived from automatic summary table determining cost based queries
US6374257B1 (en) * 1999-06-16 2002-04-16 Oracle Corporation Method and system for removing ambiguities in a shared database command
US6529901B1 (en) * 1999-06-29 2003-03-04 Microsoft Corporation Automating statistics management for query optimizers
US6728720B1 (en) * 1999-07-02 2004-04-27 Robert Stephen Gerard Lenzie Identifying preferred indexes for databases
US6397227B1 (en) * 1999-07-06 2002-05-28 Compaq Computer Corporation Database management system and method for updating specified tuple fields upon transaction rollback
US6349310B1 (en) * 1999-07-06 2002-02-19 Compaq Computer Corporation Database management system and method for accessing rows in a partitioned table
US6865567B1 (en) * 1999-07-30 2005-03-08 Basantkumar John Oommen Method of generating attribute cardinality maps
US6496850B1 (en) * 1999-08-31 2002-12-17 Accenture Llp Clean-up of orphaned server contexts
US6434568B1 (en) * 1999-08-31 2002-08-13 Accenture Llp Information services patterns in a netcentric environment
US6442748B1 (en) * 1999-08-31 2002-08-27 Accenture Llp System, method and article of manufacture for a persistent state and persistent object separator in an information services patterns environment
US6816874B1 (en) * 1999-09-10 2004-11-09 International Business Machines Corporation Method, system, and program for accessing performance data
US20040181521A1 (en) * 1999-12-22 2004-09-16 Simmen David E. Query optimization technique for obtaining improved cardinality estimates using statistics on pre-defined queries
US6934701B1 (en) * 2000-01-04 2005-08-23 International Business Machines Corporation Using a stored procedure to access index configuration data in a remote database management system
US6615223B1 (en) * 2000-02-29 2003-09-02 Oracle International Corporation Method and system for data replication
US6721724B1 (en) * 2000-03-31 2004-04-13 Microsoft Corporation Validating multiple execution plans for database queries
US6513029B1 (en) * 2000-04-20 2003-01-28 Microsoft Corporation Interesting table-subset selection for database workload materialized view selection
US6493701B2 (en) * 2000-11-22 2002-12-10 Sybase, Inc. Database system with methodogy providing faster N-ary nested loop joins
US6961931B2 (en) * 2001-01-10 2005-11-01 International Business Machines Corporation Dependency specification using target patterns
US6728719B1 (en) * 2001-01-31 2004-04-27 Oracle International Corporation Method and mechanism for dependency tracking for unique constraints
US6714943B1 (en) * 2001-01-31 2004-03-30 Oracle International Corporation Method and mechanism for tracking dependencies for referential integrity constrained tables
US6804672B1 (en) * 2001-01-31 2004-10-12 Oracle International Corporation Method and mechanism for dependency tracking
US20020120617A1 (en) * 2001-02-28 2002-08-29 Fujitsu Limited Database retrieving method, apparatus and storage medium thereof
US20030018618A1 (en) * 2001-03-15 2003-01-23 International Business Machines Corporation Representation for data used in query optimization
US20030135478A1 (en) * 2001-05-31 2003-07-17 Computer Associates Think, Inc. Method and system for online reorganization of databases
US20020198867A1 (en) * 2001-06-06 2002-12-26 International Business Machines Corporation Learning from empirical results in query optimization
US20030126143A1 (en) * 2001-06-12 2003-07-03 Nicholas Roussopoulos Dwarf cube architecture for reducing storage sizes of multidimensional data
US7617201B1 (en) * 2001-06-20 2009-11-10 Microstrategy, Incorporated System and method for analyzing statistics in a reporting system
US20030088541A1 (en) * 2001-06-21 2003-05-08 Zilio Daniel C. Method for recommending indexes and materialized views for a database workload
US6839713B1 (en) * 2001-07-12 2005-01-04 Advanced Micro Devices, Inc. System and software for database structure in semiconductor manufacturing and method thereof
US20030065648A1 (en) * 2001-10-03 2003-04-03 International Business Machines Corporation Reduce database monitor workload by employing predictive query threshold
US20030093408A1 (en) * 2001-10-12 2003-05-15 Brown Douglas P. Index selection in a database system
US20030110153A1 (en) * 2001-12-11 2003-06-12 Sprint Communications Company L.P. Database performance monitoring method and tool
US20030115183A1 (en) * 2001-12-13 2003-06-19 International Business Machines Corporation Estimation and use of access plan statistics
US20030130985A1 (en) * 2001-12-17 2003-07-10 Volker Driesen Systems, methods and articles of manufacture for upgrading a database with a shadow system
US20030154216A1 (en) * 2002-02-14 2003-08-14 International Business Machines Corporation Database optimization apparatus and method
US7139749B2 (en) * 2002-03-19 2006-11-21 International Business Machines Corporation Method, system, and program for performance tuning a database query
US20030182276A1 (en) * 2002-03-19 2003-09-25 International Business Machines Corporation Method, system, and program for performance tuning a database query
US20030187831A1 (en) * 2002-03-29 2003-10-02 International Business Machines Corporation Database query optimizer framework with dynamic strategy dispatch
US20030200537A1 (en) * 2002-04-18 2003-10-23 International Business Machines Corporation Apparatus and method for using database knowledge to optimize a computer program
US20030229639A1 (en) * 2002-06-07 2003-12-11 International Business Machines Corporation Runtime query optimization for dynamically selecting from multiple plans in a query based upon runtime-evaluated performance criterion
US20030229621A1 (en) * 2002-06-07 2003-12-11 International Business Machines Corporation Apparatus and method for refreshing a database query
US20050102305A1 (en) * 2002-06-26 2005-05-12 Microsoft Corporation Compressing database workloads
US6912547B2 (en) * 2002-06-26 2005-06-28 Microsoft Corporation Compressing database workloads
US20040003004A1 (en) * 2002-06-28 2004-01-01 Microsoft Corporation Time-bound database tuning
US20040002957A1 (en) * 2002-06-28 2004-01-01 Microsoft Corporation Linear programming approach to assigning benefit to database physical design structures
US6947927B2 (en) * 2002-07-09 2005-09-20 Microsoft Corporation Method and apparatus for exploiting statistics on query expressions for optimization
US20040019587A1 (en) * 2002-07-25 2004-01-29 You-Chin Fuh Method and device for processing a query in a database management system
US20040034643A1 (en) * 2002-08-19 2004-02-19 International Business Machines Corporation System and method for real time statistics collection for use in the automatic management of a database system
US20040215626A1 (en) * 2003-04-09 2004-10-28 International Business Machines Corporation Method, system, and program for improving performance of database queries
US20050033734A1 (en) * 2003-08-05 2005-02-10 International Business Machines Corporation Performance prediction system with query mining
US20050120001A1 (en) * 2003-09-06 2005-06-02 Oracle International Corporation SQL structure analyzer
US20050138015A1 (en) * 2003-09-06 2005-06-23 Oracle International Corporation High load SQL driven statistics collection
US20050125398A1 (en) * 2003-09-06 2005-06-09 Oracle International Corporation Global hints
US20050177557A1 (en) * 2003-09-06 2005-08-11 Oracle International Corporation Automatic prevention of run-away query execution
US20050125427A1 (en) * 2003-09-06 2005-06-09 Oracle International Corporation Automatic SQL tuning advisor
US20050187917A1 (en) * 2003-09-06 2005-08-25 Oracle International Corporation Method for index tuning of a SQL statement, and index merging for a multi-statement SQL workload, using a cost-based relational query optimizer
US20050125393A1 (en) * 2003-09-06 2005-06-09 Oracle International Corporation SQL tuning sets
US20050125452A1 (en) * 2003-09-06 2005-06-09 Oracle International Corporation SQL profile
US20050120000A1 (en) * 2003-09-06 2005-06-02 Oracle International Corporation Auto-tuning SQL statements
US20050097091A1 (en) * 2003-09-06 2005-05-05 Oracle International Corporation SQL tuning base
US20050097078A1 (en) * 2003-10-31 2005-05-05 Lohman Guy M. System, method, and computer program product for progressive query processing
US20050251523A1 (en) * 2004-05-07 2005-11-10 Oracle International Corporation Minimizing downtime for application changes in database systems
US20060004828A1 (en) * 2004-05-14 2006-01-05 Oracle International Corporation Finer grain dependency tracking for database objects

Cited By (88)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7739263B2 (en) 2003-09-06 2010-06-15 Oracle International Corporation Global hints
US20050177557A1 (en) * 2003-09-06 2005-08-11 Oracle International Corporation Automatic prevention of run-away query execution
US7664778B2 (en) 2003-09-06 2010-02-16 Oracle International Corporation SQL tuning sets
US7664730B2 (en) 2003-09-06 2010-02-16 Oracle International Corporation Method and system for implementing a SQL profile
US20050120000A1 (en) * 2003-09-06 2005-06-02 Oracle International Corporation Auto-tuning SQL statements
US8983934B2 (en) 2003-09-06 2015-03-17 Oracle International Corporation SQL tuning base
US8825629B2 (en) 2003-09-06 2014-09-02 Oracle International Corporation Method for index tuning of a SQL statement, and index merging for a multi-statement SQL workload, using a cost-based relational query optimizer
US7805411B2 (en) 2003-09-06 2010-09-28 Oracle International Corporation Auto-tuning SQL statements
US7757226B2 (en) 2004-03-17 2010-07-13 Oracle International Corporation Method and mechanism for performing a rolling upgrade of distributed computer software
US20050210461A1 (en) * 2004-03-17 2005-09-22 Oracle International Corporation Method and mechanism for performing a rolling upgrade of distributed computer software
US7788285B2 (en) 2004-05-14 2010-08-31 Oracle International Corporation Finer grain dependency tracking for database objects
US7574424B2 (en) * 2004-10-13 2009-08-11 Sybase, Inc. Database system with methodology for parallel schedule generation in a query optimizer
US20060080285A1 (en) * 2004-10-13 2006-04-13 Sybase, Inc. Database System with Methodology for Parallel Schedule Generation in a Query Optimizer
US9467437B2 (en) 2006-03-01 2016-10-11 Oracle International Corporation Flexible authentication framework
US8601028B2 (en) 2006-03-01 2013-12-03 Oracle International Corporation Crawling secure data sources
US20070283425A1 (en) * 2006-03-01 2007-12-06 Oracle International Corporation Minimum Lifespan Credentials for Crawling Data Repositories
US11038867B2 (en) 2006-03-01 2021-06-15 Oracle International Corporation Flexible framework for secure search
US10382421B2 (en) 2006-03-01 2019-08-13 Oracle International Corporation Flexible framework for secure search
US9853962B2 (en) 2006-03-01 2017-12-26 Oracle International Corporation Flexible authentication framework
US9479494B2 (en) 2006-03-01 2016-10-25 Oracle International Corporation Flexible authentication framework
US20070208714A1 (en) * 2006-03-01 2007-09-06 Oracle International Corporation Method for Suggesting Web Links and Alternate Terms for Matching Search Queries
US9251364B2 (en) 2006-03-01 2016-02-02 Oracle International Corporation Search hit URL modification for secure application integration
US20070220268A1 (en) * 2006-03-01 2007-09-20 Oracle International Corporation Propagating User Identities In A Secure Federated Search System
US9177124B2 (en) 2006-03-01 2015-11-03 Oracle International Corporation Flexible authentication framework
US20070214129A1 (en) * 2006-03-01 2007-09-13 Oracle International Corporation Flexible Authorization Model for Secure Search
US20070208744A1 (en) * 2006-03-01 2007-09-06 Oracle International Corporation Flexible Authentication Framework
US9081816B2 (en) 2006-03-01 2015-07-14 Oracle International Corporation Propagating user identities in a secure federated search system
US20070208746A1 (en) * 2006-03-01 2007-09-06 Oracle International Corporation Secure Search Performance Improvement
US7725465B2 (en) 2006-03-01 2010-05-25 Oracle International Corporation Document date as a ranking factor for crawling
US20070208745A1 (en) * 2006-03-01 2007-09-06 Oracle International Corporation Self-Service Sources for Secure Search
US20070208755A1 (en) * 2006-03-01 2007-09-06 Oracle International Corporation Suggested Content with Attribute Parameterization
US20100185611A1 (en) * 2006-03-01 2010-07-22 Oracle International Corporation Re-ranking search results from an enterprise system
US20070208734A1 (en) * 2006-03-01 2007-09-06 Oracle International Corporation Link Analysis for Enterprise Environment
US20070209080A1 (en) * 2006-03-01 2007-09-06 Oracle International Corporation Search Hit URL Modification for Secure Application Integration
US8875249B2 (en) 2006-03-01 2014-10-28 Oracle International Corporation Minimum lifespan credentials for crawling data repositories
US7941419B2 (en) 2006-03-01 2011-05-10 Oracle International Corporation Suggested content with attribute parameterization
US8868540B2 (en) 2006-03-01 2014-10-21 Oracle International Corporation Method for suggesting web links and alternate terms for matching search queries
US8005816B2 (en) 2006-03-01 2011-08-23 Oracle International Corporation Auto generation of suggested links in a search system
US8027982B2 (en) * 2006-03-01 2011-09-27 Oracle International Corporation Self-service sources for secure search
US20120072426A1 (en) * 2006-03-01 2012-03-22 Oracle International Corporation Self-service sources for secure search
US8214394B2 (en) 2006-03-01 2012-07-03 Oracle International Corporation Propagating user identities in a secure federated search system
US8239414B2 (en) 2006-03-01 2012-08-07 Oracle International Corporation Re-ranking search results from an enterprise system
US20070208713A1 (en) * 2006-03-01 2007-09-06 Oracle International Corporation Auto Generation of Suggested Links in a Search System
US8332430B2 (en) 2006-03-01 2012-12-11 Oracle International Corporation Secure search performance improvement
US8352475B2 (en) 2006-03-01 2013-01-08 Oracle International Corporation Suggested content with attribute parameterization
US8725770B2 (en) 2006-03-01 2014-05-13 Oracle International Corporation Secure search performance improvement
US8433712B2 (en) 2006-03-01 2013-04-30 Oracle International Corporation Link analysis for enterprise environment
US8707451B2 (en) 2006-03-01 2014-04-22 Oracle International Corporation Search hit URL modification for secure application integration
US8626794B2 (en) 2006-03-01 2014-01-07 Oracle International Corporation Indexing secure enterprise documents using generic references
US8595255B2 (en) 2006-03-01 2013-11-26 Oracle International Corporation Propagating user identities in a secure federated search system
US20070250486A1 (en) * 2006-03-01 2007-10-25 Oracle International Corporation Document date as a ranking factor for crawling
US20080196012A1 (en) * 2007-02-12 2008-08-14 Panaya Ltd. System and methods for static analysis of large computer programs and for presenting the results of the analysis to a user of a computer program
US8412717B2 (en) 2007-06-27 2013-04-02 Oracle International Corporation Changing ranking algorithms based on customer settings
US7996392B2 (en) 2007-06-27 2011-08-09 Oracle International Corporation Changing ranking algorithms based on customer settings
US20090006356A1 (en) * 2007-06-27 2009-01-01 Oracle International Corporation Changing ranking algorithms based on customer settings
US8316007B2 (en) 2007-06-28 2012-11-20 Oracle International Corporation Automatically finding acronyms and synonyms in a corpus
US20090006359A1 (en) * 2007-06-28 2009-01-01 Oracle International Corporation Automatically finding acronyms and synonyms in a corpus
US20090018992A1 (en) * 2007-07-12 2009-01-15 Ibm Corporation Management of interesting database statistics
US8812481B2 (en) * 2007-07-12 2014-08-19 International Business Machines Corporation Management of interesting database statistics
US7702623B2 (en) * 2007-07-31 2010-04-20 Oracle International Corporation Extended cursor sharing
US7840556B1 (en) * 2007-07-31 2010-11-23 Hewlett-Packard Development Company, L.P. Managing performance of a database query
US7689550B2 (en) * 2007-07-31 2010-03-30 Oracle International Corporation Adaptive cursor sharing
US20090037405A1 (en) * 2007-07-31 2009-02-05 Oracle International Corporation Adaptive cursor sharing
US20090037404A1 (en) * 2007-07-31 2009-02-05 Oracle International Corporation Extended cursor sharing
US20150081669A1 (en) * 2007-09-14 2015-03-19 Oracle International Corporation Fully automated sql tuning
US9720941B2 (en) * 2007-09-14 2017-08-01 Oracle International Corporation Fully automated SQL tuning
US20090248621A1 (en) * 2008-03-31 2009-10-01 Benoit Dageville Method and mechanism for out-of-the-box real-time sql monitoring
US8577871B2 (en) 2008-03-31 2013-11-05 Oracle International Corporation Method and mechanism for out-of-the-box real-time SQL monitoring
US8903805B2 (en) 2010-08-20 2014-12-02 Oracle International Corporation Method and system for performing query optimization using a hybrid execution plan
CN103164455A (en) * 2011-12-15 2013-06-19 百度在线网络技术(北京)有限公司 Optimization method and optimization device of data base
US20150039555A1 (en) * 2013-08-02 2015-02-05 International Business Machines Corporation Heuristically modifying dbms environments using performance analytics
US11100420B2 (en) 2014-06-30 2021-08-24 Amazon Technologies, Inc. Input processing for machine learning
US10102480B2 (en) 2014-06-30 2018-10-16 Amazon Technologies, Inc. Machine learning service
US10169715B2 (en) 2014-06-30 2019-01-01 Amazon Technologies, Inc. Feature processing tradeoff management
US11544623B2 (en) 2014-06-30 2023-01-03 Amazon Technologies, Inc. Consistent filtering of machine learning data
US11386351B2 (en) 2014-06-30 2022-07-12 Amazon Technologies, Inc. Machine learning service
US10339465B2 (en) 2014-06-30 2019-07-02 Amazon Technologies, Inc. Optimized decision tree based models
US9886670B2 (en) 2014-06-30 2018-02-06 Amazon Technologies, Inc. Feature processing recipes for machine learning
US10540606B2 (en) 2014-06-30 2020-01-21 Amazon Technologies, Inc. Consistent filtering of machine learning data
US10963810B2 (en) 2014-06-30 2021-03-30 Amazon Technologies, Inc. Efficient duplicate detection for machine learning data sets
US11379755B2 (en) 2014-06-30 2022-07-05 Amazon Technologies, Inc. Feature processing tradeoff management
US10621064B2 (en) * 2014-07-07 2020-04-14 Oracle International Corporation Proactive impact measurement of database changes on production systems
US11182691B1 (en) 2014-08-14 2021-11-23 Amazon Technologies, Inc. Category-based sampling of machine learning data
US10318882B2 (en) 2014-09-11 2019-06-11 Amazon Technologies, Inc. Optimized training of linear machine learning models
CN104615696A (en) * 2015-01-23 2015-05-13 国家电网公司 95598 knowledge base system and establishment method
US10257275B1 (en) 2015-10-26 2019-04-09 Amazon Technologies, Inc. Tuning software execution environments using Bayesian models
US20180107711A1 (en) * 2016-10-17 2018-04-19 Salesforce.Com, Inc. Background processing to provide automated database query tuning
US11232102B2 (en) * 2016-10-17 2022-01-25 Salesforce.Com, Inc. Background processing to provide automated database query tuning

Also Published As

Publication number Publication date
US20050125393A1 (en) 2005-06-09
US20050187917A1 (en) 2005-08-25
US20050120000A1 (en) 2005-06-02
US7664778B2 (en) 2010-02-16
US20050120001A1 (en) 2005-06-02
US7747606B2 (en) 2010-06-29
US7634456B2 (en) 2009-12-15
US20050125427A1 (en) 2005-06-09
US20050125398A1 (en) 2005-06-09
US8825629B2 (en) 2014-09-02
US20050097091A1 (en) 2005-05-05
US7805411B2 (en) 2010-09-28
US20050125452A1 (en) 2005-06-09
US20050177557A1 (en) 2005-08-11
US8983934B2 (en) 2015-03-17
US7664730B2 (en) 2010-02-16
US20050138015A1 (en) 2005-06-23
US7739263B2 (en) 2010-06-15

Similar Documents

Publication Publication Date Title
US20050119999A1 (en) Automatic learning optimizer
US7493304B2 (en) Adjusting an amount of data logged for a query based on a change to an access plan
US10372706B2 (en) Tracking and maintaining expression statistics across database queries
US7552110B2 (en) Method for performing a query in a computer system to retrieve data from a database
Dageville et al. Automatic sql tuning in oracle 10g
US7593931B2 (en) Apparatus, system, and method for performing fast approximate computation of statistics on query expressions
US20030065648A1 (en) Reduce database monitor workload by employing predictive query threshold
US7272589B1 (en) Database index validation mechanism
US8682875B2 (en) Database statistics for optimization of database queries containing user-defined functions
US8140568B2 (en) Estimation and use of access plan statistics
US7698253B2 (en) Method and system for reducing host variable impact on access path selection
US10031942B2 (en) Query optimization with zone map selectivity modeling
US20040249810A1 (en) Small group sampling of data for use in query processing
US6910036B1 (en) Database performance monitoring method and tool
US20080052271A1 (en) Method To Converge A Plurality Of SQL Statements Into SQL Skeletons For Enhanced Database Performance Analysis And Tuning
US8005860B1 (en) Object-level database performance management
US11386086B2 (en) Permutation-based machine learning for database query optimization
CN104620239A (en) Adaptive query optimization
US8577871B2 (en) Method and mechanism for out-of-the-box real-time SQL monitoring
US20040002956A1 (en) Approximate query processing using multiple samples
EP3940547B1 (en) Workload aware data partitioning
US8515927B2 (en) Determining indexes for improving database system performance
US7325016B1 (en) Monitoring database performance by obtaining SQL addresses for SQL statements
Kipf et al. Estimating filtered group-by queries is hard: Deep learning to the rescue
US7873628B2 (en) Discovering functional dependencies by sampling relations

Legal Events

Date Code Title Description
AS Assignment

Owner name: ORACLE INTERNATIONAL CORPORATION, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ZAIT, MOHAMED;DAGEVILLE, BENOIT;DAS, DINESH;AND OTHERS;REEL/FRAME:015639/0629;SIGNING DATES FROM 20041227 TO 20050110

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION