US20050127613A1 - Sealing device - Google Patents

Sealing device Download PDF

Info

Publication number
US20050127613A1
US20050127613A1 US10/504,326 US50432604A US2005127613A1 US 20050127613 A1 US20050127613 A1 US 20050127613A1 US 50432604 A US50432604 A US 50432604A US 2005127613 A1 US2005127613 A1 US 2005127613A1
Authority
US
United States
Prior art keywords
screw
sliding face
circumference
sealing device
atmospheric side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/504,326
Inventor
Hideyuki Furuyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nok Corp
Original Assignee
Nok Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nok Corp filed Critical Nok Corp
Assigned to NOK CORPORATION reassignment NOK CORPORATION CORRECTIVE TO THE COVERSHEET Assignors: FURUYAMA, HIDEYUKI
Publication of US20050127613A1 publication Critical patent/US20050127613A1/en
Priority to US11/711,105 priority Critical patent/US7645412B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/32Sealings between relatively-moving surfaces with elastic sealings, e.g. O-rings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/32Sealings between relatively-moving surfaces with elastic sealings, e.g. O-rings
    • F16J15/3244Sealings between relatively-moving surfaces with elastic sealings, e.g. O-rings with hydrodynamic pumping action
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T407/00Cutters, for shaping
    • Y10T407/21Arc segment tool

Definitions

  • the present invention relates to a sealing device such as an oil seal to be used in the shaft sealing portions of various devices and, more particularly, to a structure having screw ridges on the atmospheric side slope of a seal lip.
  • a sealing device of this kind has been known in the related art and disclosed in JP-A-9-42463, for example, as shown in FIG. 7 .
  • This sealing device 100 is mounted in the annular clearance between a housing 102 and a shaft 103 , i.e., two members to be assembled to rotate relative to each other, so that it seals up that annular clearance thereby to prevent a sealed object such as oil from leaking out.
  • the sealing device 100 is constructed to include: an annular seal body 105 to be fitted on the inner circumference of a shaft bore formed in the housing 102 ; and a reinforcing ring 104 to be fitted in the seal body 105 for giving it rigidity.
  • the seal body 105 is provided with a seal lip 107 , which extends radially inward from an atmospheric side A toward an sealed object side O. Moreover, the seal lip 107 is provided at its leading end portion with a lip leading end 110 having a wedge-shaped section. This lip leading end 110 has a predetermined interference with the circumference of the shaft 103 so that it is slidably brought into sealing contact with the circumference of the shaft 103 by its elastic restoring force thereby to prevent the sealed object from leaking out.
  • screw ridges 112 On an atmospheric side slope 111 of the seal lip 107 , on the other hand, there are formed screw ridges 112 .
  • Each of these screw ridges 112 is shaped by combining a bilge-shaped portion 112 a, which is larger in height and width toward the axially intermediate portion, and a straight portion 102 b having substantially constant height and width.
  • the straight portion 102 b merges into the end portion of the bilge-shaped portion 112 a on the side of the lip leading end 110 and extends to the lip leading end 110 .
  • the sealing device made of elastomer is prepared by pouring elastic material into a molding die and by vulcanizing and shaping it. In order to form the screw ridges on the seal lip, therefore, recesses conforming to the screw shape have to be formed in advance in the molding die.
  • FIGS. 8A and 8B two steps shown in FIGS. 8A and 8B are required for manufacturing the molding die.
  • a cutter 114 having a straight blade edge is pushed onto a molding die 116 , as shown in FIG. 8A , to form a recess (depression) 117 corresponding to the straight portion.
  • a cutter 115 having an arcuate blade edge is pushed onto the recess 117 to form a recess 118 corresponding to the bilge-shaped portion.
  • the sealing device of the conventional construction invites complexity and complicatedness in the processing step of the molding die 116 and is demanded for a high working precision.
  • the lip leading end 110 of the seal lip 107 of the related art is a sharp edge. Therefore, the fastening pressure (or the facial pressure) at the initial action time is raised to cause a problem that the proceeding of the wear of the lip leading end 110 is accelerated.
  • the invention has been conceived in view of the background thus far described, and has an object to provide a sealing device which has an easy manufacturing and a slow proceeding of wear so that satisfactory sealing properties can be exhibited initially and endurably for a long time.
  • a sealing device for sealing an annular clearance between two members assembled to rotate relative to each other, the sealing device comprising a seal lip for sliding on the circumference of one of the two members, wherein the seal lip includes: a sliding face extending along the circumference; an atmospheric side slope inclined to enlarge the clearance gradually between the slope and the circumference from the atmospheric side end edge of the sliding face; and a screw ridge formed from said atmospheric side slope to said sliding face.
  • the sliding portion between the seal lip and the member circumference is made of a face (or a sliding face) so that the facial pressure at the initial action time can be lowered unlike the wedge-shaped lip of the related art, to retard the proceeding of the wear of the sliding portion of the seal lip thereby to elongate the lifetime of the sealing device.
  • the screw ridge is formed to extend from the atmospheric side slope to the sliding face so that it makes proper contacts with the member circumference both at the long action time (or when the wear proceeds) and at the initial action time.
  • a screw portion arranged on the sliding face makes contacts with the member circumference to exhibit the screw pump effect thereby to retain the initial sealing properties.
  • a screw portion arranged on the atmospheric side slope makes contacts with the member circumference to keep/improve the screw pump effect thereby to prevent the deterioration of the sealing properties when the wear proceeds. Therefore, the satisfactory sealing properties can be exhibited initially and endurably for a long time.
  • the molding die has to be worked in the related art by using two kinds of working jigs (or cutters) corresponding to the individual screw portions. This is partly because the joint portion of the two kinds of screw portions is discontinuous and partly because the internal angle of the joint portion is made reentrant (i.e., an angle larger than 180 degrees). This is further because it is generally extremely difficult to manufacture such a cutter as can work the recess corresponding to that reentrant angle by a single cutting operation.
  • the screw actions of two stages for the initial action time and the wear proceeding time are realized at first by arranging the screw ridge across the two faces, i.e., the sliding face and the atmospheric side slope and then by making the screw portion arranged on the sliding face dominant at the initial action time and the screw portion arranged on the atmospheric side slope dominant at the wear proceeding time.
  • the atmospheric side slope is inclined to make the clearance gradually wider between the atmospheric side end edge of the sliding face and the member circumference, so that the internal angle between the sliding face and the atmospheric side slope is made salient. Then, the internal angle of the joint between the screw portion for the initial action time and the screw portion for the wear proceeding time can also be made salient.
  • the internal angle of the joint of the two screw portions is salient although discontinuous, it is relatively easy to manufacture the blade edge of the cutter in a manner to correspond to such screw shape. If the cutter matching that screw shape is used on the basis of the aforementioned construction, therefore, it is possible to simplify and facilitate the process of manufacturing the molding die of the sealing device.
  • the screw ridge is formed along the atmospheric side slope and to have such a shape that its end portion on the side of the sliding face is cut off along the sliding face.
  • the recess corresponding to that screw shape can be manufactured by a single cutting operation using a cutter cut off at the end portion of its blade edge.
  • the shape of this cutoff portion may be either a taper straight one or a rounded curve one.
  • the manufacturing of the cutter itself is easy.
  • the cutter is more or less offset in the axial direction when pushed onto the molding die, moreover, the dispersion in the sealing performance due to the working precision can be suppressed without hardly affecting the screw height (from the sliding face) of the cutoff portions of the screw ridge adversely.
  • second screw ridge is formed only on the sliding face.
  • the sliding face, the screw ridge and the second screw ridge make contacts with the member circumference so that the screw pump effect by the screw ridges can be enhanced to improve the initial sealing properties better.
  • FIG. 1 is a schematic section of a sealing device according to a first embodiment of the invention
  • FIG. 2 is a section of an essential portion of the sealing device according to the same embodiment
  • FIGS. 3A and 3B are diagrams showing a cutter for forming a recess corresponding to a screw ridge
  • FIG. 4 is a schematic diagram showing the behavior, in which a recess corresponding to the screw ridge is formed in a molding die
  • FIG. 5 is a schematic section of a sealing device according to a second embodiment of the invention.
  • FIGS. 6A and 6B are schematic sections of sealing devices according to other embodiments of the invention.
  • FIG. 7 is a schematic section of a sealing device of the related art.
  • FIGS. 8A and 8B are schematic diagrams showing the behavior, in which a recess corresponding to the screw ridge of the related art is formed in a molding die.
  • a sealing device according to a first embodiment of the invention will be described with reference to FIG. 1 and FIG. 2 .
  • FIG. 1 is a schematic section of a sealing device 1 of the embodiment
  • FIG. 2 is a section of an essential portion of the sealing device 1 .
  • This sealing device 1 is mounted in an annular clearance between a housing 2 and a shaft 3 acting as two members, which are assembled to rotate concentrically of and relative to each other, so that it may seal up the annular clearance thereby to prevent a sealed object such as oil from leaking out.
  • the sealing device 1 is constructed to include: an annular seal body 5 to be fitted on the inner circumference of a shaft bore formed in the housing 2 ; and a reinforcing ring 4 to be fitted in the seal body 5 for giving it rigidity.
  • the reinforcing ring 4 is an annular member of a metal having an L-shaped section and includes: a cylindrical portion 4 a disposed along the inner circumference of the shaft bore; and an inward flange portion 4 b extending radially inward from the end portion of the cylindrical portion 4 a on an atmospheric side A.
  • the seal body 5 is made of elastomer, which is integrally baked and fixed over from the outer circumference of the cylindrical portion 4 a of the reinforcing ring 4 to the end face of the inward flange portion 4 b on the atmospheric side A and to the end face of the same on a sealed object side O.
  • an outer circumference seal portion 6 fixed on the outer circumference of the cylindrical portion 4 a of the reinforcing ring 4 has a predetermined interference with the inner circumference of the shaft bore of the housing 2 .
  • the outer circumference seal portion 6 is firmly fixed on the inner circumference of the shaft bore while receiving a fitting rigidity from the cylindrical portion 4 a of the reinforcing ring 4 thereby to prevent the sealed object from leaking out from the inner circumference of the shaft bore.
  • the outer circumference seal portion 6 is not an essential component but may be replaced by a construction (of a metal fitting type), in which the cylindrical portion 4 a of the reinforcing ring 4 is fitted directly on the inner circumference of the shaft bore.
  • a seal lip 7 which extends radially inward toward the sealed object side O from the inner end of the inward flange portion 4 b of the reinforcing ring 4 ; and a dust lip 8 which extends radially inward oppositely toward the atmospheric side A.
  • the dust lip 8 has such a plate-shaped section that its leading end may come into sealing contact slidably with the circumference of the shaft 3 . This sealing contact prevents dust from invading from the atmospheric side A.
  • the seal lip 7 includes: a sealed object side slope 9 confronting the sealed object side O; an atmospheric side slope 11 confronting the atmospheric side A; and a sliding face 10 arranged between those sealed object side slope 9 and atmospheric side slope 11 .
  • the sealed object side slope 9 of the seal lip 7 is inclined to enlarge the clearance from the circumference of the shaft 3 gradually from the end edge of the sliding face 10 on the sealed object side O toward the sealed object side O. It is preferred that an angle of slope ⁇ 1 ( FIG. 2 ) of the sealed object side slope 9 with respect to the circumference of the shaft 3 is set within a range of 45 degrees ⁇ 10 degrees.
  • the atmospheric side slope 11 of the seal lip 7 is inclined to enlarge the clearance from the circumference of the shaft 3 gradually from the end edge of the sliding face 10 on the atmospheric side A toward the atmospheric side A. It is preferred that an angle of slope ⁇ 2 of the atmospheric side slope 11 with respect to the circumference of the shaft 3 is set within a range of 25 degrees ⁇ 10 degrees.
  • the sliding face 10 along the circumference of the shaft 3 .
  • the leading end of the seal lip 7 is so continuously formed, from the sealed object side O to the atmospheric side A, of the sealed object side slope 9 , the sliding face 10 and the atmospheric side slope 11 , that it constructs a flat type sliding portion having a generally trapezoidal section.
  • an angle of slope ⁇ 3 of the sliding face 10 with respect to the circumference of the shaft 3 is set within a range of 10 degrees ⁇ 10 degrees. Specifically, it is preferred that the sliding face 10 is so inclined although substantially along the circumference of the shaft 3 that the clearance from the circumference of the shaft 3 is slightly enlarged gradually toward the atmospheric side A. However, it is necessary that the relation of ⁇ 3 ⁇ 2 be satisfied.
  • the seal lip 7 is provided with screw ridges (or pumping ridges or pumping ribs) 12 from the atmospheric side slope 11 to the sliding face 10 .
  • Each screw ridge 12 has a basic shape of a bilge-shaped screw formed along the atmospheric side slope 11 , but its end portion (i.e., a cutoff portion 12 a ) on the side of the sliding face 10 is formed into such a shape that it is cut off along the sliding face 10 (or the circumference of the shaft 3 ). Moreover, the cutoff portion 12 a has a leading end 12 b reaching so far as the sliding face 10 .
  • an angle of slope ⁇ 4 of the cutoff portion 12 a with respect to the circumference of the shaft 3 is set within a range of 0 degrees to 45 degrees.
  • the cutoff portion 12 a is formed generally in parallel with the circumference of the shaft 3 or inclined to enlarge the clearance from the circumference of the shaft 3 gradually toward the sealed object side O.
  • the internal angle of the joint portion between the screw portion (i.e., the bilge-shaped portion) of the screw ridge 12 arranged on the atmospheric side slope 11 and the screw portion (i.e., the cutoff portion 12 a ) arranged on the sliding face 10 is salient (i.e., an angle smaller than 180 degrees).
  • the lip leading portion having the aforementioned construction has a predetermined interference with the circumference of the shaft 3 , as shown in FIG. 1 .
  • the sealing device 1 When the sealing device 1 is mounted on the shaft 3 , therefore, it is so subject to an elastic deformation that the seal lip 7 is radially enlarged.
  • the sealing device 1 By the elastic restoring force of the seal lip 7 , the sealing device 1 is slidably brought into sealing contact with the circumference of the shaft 3 .
  • a garter spring 13 for giving the lip leading end portion a tensing force to tense it onto the shaft 3 .
  • the sliding face 10 and the cutoff portion 12 a of the screw ridge 12 comes at first of the initial action time into contact with the circumference of the shaft 3 .
  • the suction effect of the sliding face 10 and the screw pump effect of the screw ridges 12 therefore, satisfactory sealing properties can be obtained to prevent the sealed object from leaking from the sealed object side O.
  • the “contact width” means the axial width of the contact face with the circumference of the shaft 3 .
  • the screw pump effect by the screw ridge 12 is determined by the ratio between the contact width of the sliding face 10 and the contact width of the screw ridge 12 . According to the construction of the embodiment, the contact width of the screw ridge 12 becomes larger as the wear proceeds. Even after the operation for the long term, therefore, the satisfactory sealing properties can be kept without any deterioration.
  • the screw ridges 12 are thus formed along the atmospheric side slope 11 and the sliding face 10 so that the initial sealing properties can be retained by the cutoff portions 12 a. At the same time, the sealing properties can also be prevented from degrading when the wear proceeds, so that the satisfactory sealing properties can be exhibited initially and durably for a long time.
  • the sliding portions of the lip leading end portions are facial (or the sliding face 10 ) so that the fastening pressure at the initial stage of operation can be made lower than that of the wedge-shaped lip of the related art.
  • the wear of the lip leading end portions can be retarded to elongate the lifetime of the sealing device 1 .
  • the adoption of the construction thus far described can facilitate the manufacturing of the molding die and the sealing device itself, as will be described in detail.
  • the sealing device made of elastomer is prepared by pouring elastic material into a molding die and by vulcanizing and shaping it. In order to form the screw ridges on the seal lip, therefore, it is necessary to form recesses conforming to the screw shape in advance in the molding die.
  • the recess corresponding to the straight portion and the recess corresponding to the bilge-shaped portion have had to be individually formed by using the different cutters. This is because the joint portion between the straight portion and the bilge-shaped portion is discontinuous and has a reentrant internal angle so that it is extremely difficult to manufacture a cutter capable of working the recess corresponding to the reentrant angle by a single cutting operation.
  • the sliding face 10 extends along the circumference of the shaft 3 , and the screw ridge 12 extends from the atmospheric side slope 11 to the sliding face 10 . Therefore, it is possible to make salient the internal angle of the joint portion between the cutoff portion 12 a, which is the portion for mainly keeping the initial sealing properties, and the bilge-shaped portion, which is the portion for mainly keeping the sealing properties when the wear proceeds.
  • the recess corresponding to such screw shape can be formed by the single working operation using the cutter, which is cut off at the end portion of its blade edge.
  • the screw ridges for the actions and effects like those obtained by combining the straight screws and the bilge-shaped screws can be realized more easily.
  • FIGS. 3A and 3B and FIG. 4 A specific method for manufacturing the molding die will be described with reference to FIGS. 3A and 3B and FIG. 4 .
  • FIGS. 3A and 3B showing the cutter for forming the recesses corresponding to the screw ridges
  • FIG. 3A presents a side elevation
  • FIG. 3B presents a perspective view
  • FIG. 4 is an explanatory diagram showing the behavior when the recess corresponding to the screw ridge is formed in the molding die.
  • a cutter 14 to be used in this embodiment is provided with not only an arcuate blade edge 15 corresponding to the bilge-shaped portion but also a cutoff blade edge 15 a, which is cut off straight from one end portion of that blade edge 15 .
  • the manufacture of such blade edge shape is relatively easy.
  • a recess 17 corresponding to the screw shape can be formed by the single working operation.
  • the two kinds of screw portions of different shapes can be cut in the molding die by the single operation so that the working process of the molding die can be simplified and facilitated.
  • the screw shape of the portion for retaining the initial sealing properties is cut off straight so that the working operation of the cutter 14 is made easy.
  • the offset does not adversely affect the screw height (from the sliding face 10 ) of the cutoff portion 12 a of the screw ridge 12 so that the dispersion in the sealing performance due to the working precision can be suppressed.
  • the lip leading end portion is formed by the sliding face 10 so that the knife-cutting step can be eliminated. Therefore, the seal body can be manufactured only by the molding operation so that the working process of the sealing device itself can be simplified and facilitated.
  • FIG. 5 shows a second embodiment of the invention.
  • the foregoing first embodiment has the construction, in which the screw ridges are formed from the atmospheric side slope to the sliding face. In this embodiment, however, second screw ridges are additionally formed on the sliding face.
  • the seal lip 7 of this embodiment is provided on its sliding face 10 with parallel screw ridges 18 as the second screw ridges. These parallel screw ridges 18 are formed to extend from the end edge of the sliding face 10 on the atmospheric side A to the end edge on the sealed object side O and to have substantially predetermined sizes in both height and width.
  • the sliding face 10 , the parallel screw ridges 18 and the cutoff portions 12 a of the screw ridges 12 make contacts with the circumference of the shaft 3 . Therefore, the screw pump effect by the screw ridges can be enhanced to improve the initial sealing properties better.
  • screw ridges 19 of a parallel screw shape are formed from the atmospheric side slope 11 to the sliding face 10 of the seal lip 7 .
  • the screw ridges 19 are based by a parallel screw shape having substantially predetermined sizes in both height and width. In this shape, the end portions (or cutoff portions 19 a ) on the side of the sliding face 10 are cut off along the circumference of the shaft.
  • screw ridges 20 of a taper shape are formed from the atmospheric side slope 11 to the sliding face 10 of the seal lip 7 .
  • the screw ridges 20 are based by such a taper shape as is made larger in height and width toward the atmospheric side. In this shape, the end portions (or cutoff portions 20 a ) on the side of the sliding face 10 are cut off along the circumference of the shaft.
  • the sliding portion between the seal lip and the member circumference is made of a face (or a sliding face) so that the facial pressure at the initial action time can be lowered to suppress the proceeding of the wear of the seal lip thereby to elongate the lifetime of the sealing device.
  • both the sliding face and the atmospheric side slope are provided with the screw ridges so that the satisfactory sealing properties can be exhibited initially and endurably for a long time by the screw pump effect of the screw ridges.
  • the internal angle of the joint portions between the screw portions arranged on the atmospheric side slope and the screw portions arranged on the sliding face is made salient so that the step of working the recesses corresponding in the screw ridges in the molding die for the sealing device can be made simple and easy.
  • the screw ridges are formed along the atmospheric side slope and to have a cut-off shape at their end portions on the side of the sliding face along the sliding face, the working can be more facilitated.
  • the screw ridges are formed to have the straight cut-off shape, moreover, the working by the cutter itself can be facilitated, and the dispersion in the sealing performances due to the working precision can be suppressed to improve the reliability of the sealing device.

Abstract

A sliding portion between a seal lip (7) and the circumference of a shaft (3) is made of a sliding face (10) so that the facial pressure at the initial action time can be lowered to suppress the proceeding of the wear of the seal lip (7) thereby to elongate the lifetime of a sealing device (1). Moreover, screw ridges (12) are formed from an atmospheric side slope (11) to a sliding face (10) so that satisfactory sealing properties can be exhibited initially and endurably for a long time.

Description

    TECHNICAL FIELD
  • The present invention relates to a sealing device such as an oil seal to be used in the shaft sealing portions of various devices and, more particularly, to a structure having screw ridges on the atmospheric side slope of a seal lip.
  • BACKGROUND ART
  • A sealing device of this kind has been known in the related art and disclosed in JP-A-9-42463, for example, as shown in FIG. 7.
  • This sealing device 100 is mounted in the annular clearance between a housing 102 and a shaft 103, i.e., two members to be assembled to rotate relative to each other, so that it seals up that annular clearance thereby to prevent a sealed object such as oil from leaking out.
  • The sealing device 100 is constructed to include: an annular seal body 105 to be fitted on the inner circumference of a shaft bore formed in the housing 102; and a reinforcing ring 104 to be fitted in the seal body 105 for giving it rigidity.
  • The seal body 105 is provided with a seal lip 107, which extends radially inward from an atmospheric side A toward an sealed object side O. Moreover, the seal lip 107 is provided at its leading end portion with a lip leading end 110 having a wedge-shaped section. This lip leading end 110 has a predetermined interference with the circumference of the shaft 103 so that it is slidably brought into sealing contact with the circumference of the shaft 103 by its elastic restoring force thereby to prevent the sealed object from leaking out.
  • On an atmospheric side slope 111 of the seal lip 107, on the other hand, there are formed screw ridges 112. Each of these screw ridges 112 is shaped by combining a bilge-shaped portion 112 a, which is larger in height and width toward the axially intermediate portion, and a straight portion 102 b having substantially constant height and width. The straight portion 102 b merges into the end portion of the bilge-shaped portion 112 a on the side of the lip leading end 110 and extends to the lip leading end 110.
  • By thus providing the screw ridge 112 in which the bilge-shaped portion 112 a and the straight portion 112 b are continuously combined with the atmospheric side slope 111 of the seal lip 107, the initial sealing properties are retained by the straight portion 112 b, and the deterioration in the sealing properties of the seal lip 107 while the wear is proceeding is prevented by the bilge-shaped portion 112 a.
  • However, the case of the related art thus far described has the following problems.
  • Generally, the sealing device made of elastomer is prepared by pouring elastic material into a molding die and by vulcanizing and shaping it. In order to form the screw ridges on the seal lip, therefore, recesses conforming to the screw shape have to be formed in advance in the molding die.
  • In order to obtain the screw ridge 112 having the aforementioned two different shapes combined, two steps shown in FIGS. 8A and 8B are required for manufacturing the molding die. At first, a cutter 114 having a straight blade edge is pushed onto a molding die 116, as shown in FIG. 8A, to form a recess (depression) 117 corresponding to the straight portion. Next, as shown in FIG. 8B a cutter 115 having an arcuate blade edge is pushed onto the recess 117 to form a recess 118 corresponding to the bilge-shaped portion. Thus, the sealing device of the conventional construction invites complexity and complicatedness in the processing step of the molding die 116 and is demanded for a high working precision.
  • On the other hand, the lip leading end 110 of the seal lip 107 of the related art is a sharp edge. Therefore, the fastening pressure (or the facial pressure) at the initial action time is raised to cause a problem that the proceeding of the wear of the lip leading end 110 is accelerated.
  • In the wedge-shaped lip of the related art, moreover, it is necessary that the unnecessary portion of the lip leading end is cut off with a knife after the vulcanized and shaped seal body was taken out from the molding die 116. This necessity complicates the working process of the sealing device itself and raises the cost. Another problem is that this knife-cutting step easily causes dispersion in the cutting position.
  • The invention has been conceived in view of the background thus far described, and has an object to provide a sealing device which has an easy manufacturing and a slow proceeding of wear so that satisfactory sealing properties can be exhibited initially and endurably for a long time.
  • DISCLOSURE OF THE INVENTION
  • In order to achieve the above-specified object, according to the invention, there is provided a sealing device for sealing an annular clearance between two members assembled to rotate relative to each other, the sealing device comprising a seal lip for sliding on the circumference of one of the two members, wherein the seal lip includes: a sliding face extending along the circumference; an atmospheric side slope inclined to enlarge the clearance gradually between the slope and the circumference from the atmospheric side end edge of the sliding face; and a screw ridge formed from said atmospheric side slope to said sliding face.
  • The sliding portion between the seal lip and the member circumference is made of a face (or a sliding face) so that the facial pressure at the initial action time can be lowered unlike the wedge-shaped lip of the related art, to retard the proceeding of the wear of the sliding portion of the seal lip thereby to elongate the lifetime of the sealing device.
  • Moreover, the screw ridge is formed to extend from the atmospheric side slope to the sliding face so that it makes proper contacts with the member circumference both at the long action time (or when the wear proceeds) and at the initial action time. Specifically, at the initial action time, a screw portion arranged on the sliding face makes contacts with the member circumference to exhibit the screw pump effect thereby to retain the initial sealing properties. In case the wear of the screw portion proceeds, on the other hand, a screw portion arranged on the atmospheric side slope makes contacts with the member circumference to keep/improve the screw pump effect thereby to prevent the deterioration of the sealing properties when the wear proceeds. Therefore, the satisfactory sealing properties can be exhibited initially and endurably for a long time.
  • In case the screw ridge having two kinds of screw portions combined for the initial action time and the wear proceeding time are to be manufactured, the molding die has to be worked in the related art by using two kinds of working jigs (or cutters) corresponding to the individual screw portions. This is partly because the joint portion of the two kinds of screw portions is discontinuous and partly because the internal angle of the joint portion is made reentrant (i.e., an angle larger than 180 degrees). This is further because it is generally extremely difficult to manufacture such a cutter as can work the recess corresponding to that reentrant angle by a single cutting operation.
  • In the invention, therefore, this problem is solved by adopting a construction, in which the internal angle of the joint between the screw portion for the initial action time and the screw portion for the wear proceeding time is made salient.
  • For example, the screw actions of two stages for the initial action time and the wear proceeding time are realized at first by arranging the screw ridge across the two faces, i.e., the sliding face and the atmospheric side slope and then by making the screw portion arranged on the sliding face dominant at the initial action time and the screw portion arranged on the atmospheric side slope dominant at the wear proceeding time.
  • Here, the atmospheric side slope is inclined to make the clearance gradually wider between the atmospheric side end edge of the sliding face and the member circumference, so that the internal angle between the sliding face and the atmospheric side slope is made salient. Then, the internal angle of the joint between the screw portion for the initial action time and the screw portion for the wear proceeding time can also be made salient.
  • If the internal angle of the joint of the two screw portions is salient although discontinuous, it is relatively easy to manufacture the blade edge of the cutter in a manner to correspond to such screw shape. If the cutter matching that screw shape is used on the basis of the aforementioned construction, therefore, it is possible to simplify and facilitate the process of manufacturing the molding die of the sealing device.
  • Moreover, it is preferable that the screw ridge is formed along the atmospheric side slope and to have such a shape that its end portion on the side of the sliding face is cut off along the sliding face.
  • The recess corresponding to that screw shape can be manufactured by a single cutting operation using a cutter cut off at the end portion of its blade edge. Here, the shape of this cutoff portion may be either a taper straight one or a rounded curve one. In the case of the straight cutoff shape, however, the manufacturing of the cutter itself is easy. In case the cutter is more or less offset in the axial direction when pushed onto the molding die, moreover, the dispersion in the sealing performance due to the working precision can be suppressed without hardly affecting the screw height (from the sliding face) of the cutoff portions of the screw ridge adversely.
  • In addition to the aforementioned construction of the sealing device, moreover, it is preferable that second screw ridge is formed only on the sliding face.
  • At the initial action time, therefore, the sliding face, the screw ridge and the second screw ridge make contacts with the member circumference so that the screw pump effect by the screw ridges can be enhanced to improve the initial sealing properties better.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a schematic section of a sealing device according to a first embodiment of the invention;
  • FIG. 2 is a section of an essential portion of the sealing device according to the same embodiment;
  • FIGS. 3A and 3B are diagrams showing a cutter for forming a recess corresponding to a screw ridge;
  • FIG. 4 is a schematic diagram showing the behavior, in which a recess corresponding to the screw ridge is formed in a molding die;
  • FIG. 5 is a schematic section of a sealing device according to a second embodiment of the invention;
  • FIGS. 6A and 6B are schematic sections of sealing devices according to other embodiments of the invention;
  • FIG. 7 is a schematic section of a sealing device of the related art; and
  • FIGS. 8A and 8B are schematic diagrams showing the behavior, in which a recess corresponding to the screw ridge of the related art is formed in a molding die.
  • BEST MODE FOR CARRYING OUT THE INVENTION
  • Preferred embodiments of the invention will be described illustratively in detail with reference to the accompanying drawings. However, the sizes, materials, shapes and relative arrangements of the components described in the embodiments are not intended to limit the scope of the invention to the described ones so long as they are not specifically described so.
  • First Embodiment
  • A sealing device according to a first embodiment of the invention will be described with reference to FIG. 1 and FIG. 2.
  • FIG. 1 is a schematic section of a sealing device 1 of the embodiment, and FIG. 2 is a section of an essential portion of the sealing device 1.
  • This sealing device 1 is mounted in an annular clearance between a housing 2 and a shaft 3 acting as two members, which are assembled to rotate concentrically of and relative to each other, so that it may seal up the annular clearance thereby to prevent a sealed object such as oil from leaking out.
  • The sealing device 1 is constructed to include: an annular seal body 5 to be fitted on the inner circumference of a shaft bore formed in the housing 2; and a reinforcing ring 4 to be fitted in the seal body 5 for giving it rigidity.
  • The reinforcing ring 4 is an annular member of a metal having an L-shaped section and includes: a cylindrical portion 4 a disposed along the inner circumference of the shaft bore; and an inward flange portion 4 b extending radially inward from the end portion of the cylindrical portion 4 a on an atmospheric side A.
  • The seal body 5 is made of elastomer, which is integrally baked and fixed over from the outer circumference of the cylindrical portion 4 a of the reinforcing ring 4 to the end face of the inward flange portion 4 b on the atmospheric side A and to the end face of the same on a sealed object side O.
  • In the seal body 5, an outer circumference seal portion 6 fixed on the outer circumference of the cylindrical portion 4 a of the reinforcing ring 4 has a predetermined interference with the inner circumference of the shaft bore of the housing 2. The outer circumference seal portion 6 is firmly fixed on the inner circumference of the shaft bore while receiving a fitting rigidity from the cylindrical portion 4 a of the reinforcing ring 4 thereby to prevent the sealed object from leaking out from the inner circumference of the shaft bore. Here, the outer circumference seal portion 6 is not an essential component but may be replaced by a construction (of a metal fitting type), in which the cylindrical portion 4 a of the reinforcing ring 4 is fitted directly on the inner circumference of the shaft bore.
  • At the seal body 5 on the side of the shaft 3, on the other hand, there are formed: a seal lip 7 which extends radially inward toward the sealed object side O from the inner end of the inward flange portion 4 b of the reinforcing ring 4; and a dust lip 8 which extends radially inward oppositely toward the atmospheric side A.
  • The dust lip 8 has such a plate-shaped section that its leading end may come into sealing contact slidably with the circumference of the shaft 3. This sealing contact prevents dust from invading from the atmospheric side A.
  • The seal lip 7 includes: a sealed object side slope 9 confronting the sealed object side O; an atmospheric side slope 11 confronting the atmospheric side A; and a sliding face 10 arranged between those sealed object side slope 9 and atmospheric side slope 11.
  • The sealed object side slope 9 of the seal lip 7 is inclined to enlarge the clearance from the circumference of the shaft 3 gradually from the end edge of the sliding face 10 on the sealed object side O toward the sealed object side O. It is preferred that an angle of slope θ1 (FIG. 2) of the sealed object side slope 9 with respect to the circumference of the shaft 3 is set within a range of 45 degrees±10 degrees.
  • On the other hand, the atmospheric side slope 11 of the seal lip 7 is inclined to enlarge the clearance from the circumference of the shaft 3 gradually from the end edge of the sliding face 10 on the atmospheric side A toward the atmospheric side A. It is preferred that an angle of slope θ2 of the atmospheric side slope 11 with respect to the circumference of the shaft 3 is set within a range of 25 degrees±10 degrees.
  • Between the sealed object side slope 9 and the atmospheric side slope 11, moreover, there is formed the sliding face 10 along the circumference of the shaft 3. Specifically, the leading end of the seal lip 7 is so continuously formed, from the sealed object side O to the atmospheric side A, of the sealed object side slope 9, the sliding face 10 and the atmospheric side slope 11, that it constructs a flat type sliding portion having a generally trapezoidal section.
  • Here, it is preferred that an angle of slope θ3 of the sliding face 10 with respect to the circumference of the shaft 3 is set within a range of 10 degrees±10 degrees. Specifically, it is preferred that the sliding face 10 is so inclined although substantially along the circumference of the shaft 3 that the clearance from the circumference of the shaft 3 is slightly enlarged gradually toward the atmospheric side A. However, it is necessary that the relation of θ32 be satisfied.
  • In this embodiment, moreover, the seal lip 7 is provided with screw ridges (or pumping ridges or pumping ribs) 12 from the atmospheric side slope 11 to the sliding face 10.
  • Each screw ridge 12 has a basic shape of a bilge-shaped screw formed along the atmospheric side slope 11, but its end portion (i.e., a cutoff portion 12 a) on the side of the sliding face 10 is formed into such a shape that it is cut off along the sliding face 10 (or the circumference of the shaft 3). Moreover, the cutoff portion 12 a has a leading end 12 b reaching so far as the sliding face 10.
  • It is preferred that an angle of slope θ4 of the cutoff portion 12 a with respect to the circumference of the shaft 3 is set within a range of 0 degrees to 45 degrees. Specifically, it is preferred that the cutoff portion 12 a is formed generally in parallel with the circumference of the shaft 3 or inclined to enlarge the clearance from the circumference of the shaft 3 gradually toward the sealed object side O.
  • Of the screw ridge 12, therefore, the internal angle of the joint portion between the screw portion (i.e., the bilge-shaped portion) of the screw ridge 12 arranged on the atmospheric side slope 11 and the screw portion (i.e., the cutoff portion 12 a) arranged on the sliding face 10 is salient (i.e., an angle smaller than 180 degrees).
  • The lip leading portion having the aforementioned construction has a predetermined interference with the circumference of the shaft 3, as shown in FIG. 1. When the sealing device 1 is mounted on the shaft 3, therefore, it is so subject to an elastic deformation that the seal lip 7 is radially enlarged. By the elastic restoring force of the seal lip 7, the sealing device 1 is slidably brought into sealing contact with the circumference of the shaft 3. Here, on the outer circumference side of the seal lip 7, as located just on the back of the sliding face 10, there is mounted a garter spring 13 for giving the lip leading end portion a tensing force to tense it onto the shaft 3.
  • In the sealing device 1 thus constructed, the sliding face 10 and the cutoff portion 12 a of the screw ridge 12 comes at first of the initial action time into contact with the circumference of the shaft 3. By the suction effect of the sliding face 10 and the screw pump effect of the screw ridges 12, therefore, satisfactory sealing properties can be obtained to prevent the sealed object from leaking from the sealed object side O.
  • As the wear of the screw leading end portion proceeds in the operation for a long term, moreover, the width of contact of the sliding face 10 becomes larger. Accordingly, the bilge-shaped portion of the screw ridge 12 comes into contact with the circumference of the shaft 3 so that the contact width of the screw ridge 12 becomes larger. Here, the “contact width” means the axial width of the contact face with the circumference of the shaft 3.
  • The screw pump effect by the screw ridge 12 is determined by the ratio between the contact width of the sliding face 10 and the contact width of the screw ridge 12. According to the construction of the embodiment, the contact width of the screw ridge 12 becomes larger as the wear proceeds. Even after the operation for the long term, therefore, the satisfactory sealing properties can be kept without any deterioration.
  • The screw ridges 12 are thus formed along the atmospheric side slope 11 and the sliding face 10 so that the initial sealing properties can be retained by the cutoff portions 12 a. At the same time, the sealing properties can also be prevented from degrading when the wear proceeds, so that the satisfactory sealing properties can be exhibited initially and durably for a long time.
  • In this embodiment, moreover, the sliding portions of the lip leading end portions are facial (or the sliding face 10) so that the fastening pressure at the initial stage of operation can be made lower than that of the wedge-shaped lip of the related art. As a result, the wear of the lip leading end portions can be retarded to elongate the lifetime of the sealing device 1.
  • According to the sealing device 1 of this embodiment, moreover, the adoption of the construction thus far described can facilitate the manufacturing of the molding die and the sealing device itself, as will be described in detail.
  • Generally, the sealing device made of elastomer is prepared by pouring elastic material into a molding die and by vulcanizing and shaping it. In order to form the screw ridges on the seal lip, therefore, it is necessary to form recesses conforming to the screw shape in advance in the molding die.
  • In the case of the screw ridge having two kinds screw shapes combined, as described in the example of the related art, the recess corresponding to the straight portion and the recess corresponding to the bilge-shaped portion have had to be individually formed by using the different cutters. This is because the joint portion between the straight portion and the bilge-shaped portion is discontinuous and has a reentrant internal angle so that it is extremely difficult to manufacture a cutter capable of working the recess corresponding to the reentrant angle by a single cutting operation.
  • According to the construction of this embodiment, on the contrary, the sliding face 10 extends along the circumference of the shaft 3, and the screw ridge 12 extends from the atmospheric side slope 11 to the sliding face 10. Therefore, it is possible to make salient the internal angle of the joint portion between the cutoff portion 12 a, which is the portion for mainly keeping the initial sealing properties, and the bilge-shaped portion, which is the portion for mainly keeping the sealing properties when the wear proceeds.
  • The recess corresponding to such screw shape can be formed by the single working operation using the cutter, which is cut off at the end portion of its blade edge. In short, the screw ridges for the actions and effects like those obtained by combining the straight screws and the bilge-shaped screws can be realized more easily.
  • A specific method for manufacturing the molding die will be described with reference to FIGS. 3A and 3B and FIG. 4. Of FIGS. 3A and 3B showing the cutter for forming the recesses corresponding to the screw ridges, FIG. 3A presents a side elevation, and FIG. 3B presents a perspective view. FIG. 4 is an explanatory diagram showing the behavior when the recess corresponding to the screw ridge is formed in the molding die.
  • As shown in FIGS. 3A and 3B, a cutter 14 to be used in this embodiment is provided with not only an arcuate blade edge 15 corresponding to the bilge-shaped portion but also a cutoff blade edge 15 a, which is cut off straight from one end portion of that blade edge 15. The manufacture of such blade edge shape is relatively easy. When the cutter 14 is pushed onto a molding die 16, as shown in FIG. 4, a recess 17 corresponding to the screw shape can be formed by the single working operation.
  • Thus, according to the construction of this embodiment, the two kinds of screw portions of different shapes can be cut in the molding die by the single operation so that the working process of the molding die can be simplified and facilitated.
  • Moreover, the screw shape of the portion for retaining the initial sealing properties is cut off straight so that the working operation of the cutter 14 is made easy. In addition, even if the cutter 14 is more or less offset in the axial direction when it is pushed onto the molding die 16, the offset does not adversely affect the screw height (from the sliding face 10) of the cutoff portion 12 a of the screw ridge 12 so that the dispersion in the sealing performance due to the working precision can be suppressed.
  • Moreover, the lip leading end portion is formed by the sliding face 10 so that the knife-cutting step can be eliminated. Therefore, the seal body can be manufactured only by the molding operation so that the working process of the sealing device itself can be simplified and facilitated.
  • Second Embodiment
  • FIG. 5 shows a second embodiment of the invention. The foregoing first embodiment has the construction, in which the screw ridges are formed from the atmospheric side slope to the sliding face. In this embodiment, however, second screw ridges are additionally formed on the sliding face.
  • The remaining constructions and actions are identical to those of the first embodiment. Hence, the description of the common construction portions will be omitted by designating the portions by the common reference numerals.
  • The seal lip 7 of this embodiment is provided on its sliding face 10 with parallel screw ridges 18 as the second screw ridges. These parallel screw ridges 18 are formed to extend from the end edge of the sliding face 10 on the atmospheric side A to the end edge on the sealed object side O and to have substantially predetermined sizes in both height and width.
  • With the parallel screw ridges 18 formed on the sliding face 10, at the initial action time, the sliding face 10, the parallel screw ridges 18 and the cutoff portions 12 a of the screw ridges 12 make contacts with the circumference of the shaft 3. Therefore, the screw pump effect by the screw ridges can be enhanced to improve the initial sealing properties better.
  • In order to form the parallel screw ridges 18 of that shape, it is sufficient to push a cutter having a straight blade edge onto the corresponding portion of the molding die thereby to cut the recesses corresponding to the screw shapes. Therefore, little difficult is encountered when the molding die or the sealing device itself is worked.
  • Other Embodiments
  • In the individual embodiments thus far described, there are adopted the bilge-shaped screw ridges, to which the screw ridges should not be limited in shape. However, a variety of screw shapes can be adopted, as exemplified in FIGS. 6A and 6B.
  • In FIG. 6A, screw ridges 19 of a parallel screw shape are formed from the atmospheric side slope 11 to the sliding face 10 of the seal lip 7. The screw ridges 19 are based by a parallel screw shape having substantially predetermined sizes in both height and width. In this shape, the end portions (or cutoff portions 19 a) on the side of the sliding face 10 are cut off along the circumference of the shaft.
  • In FIG. 6B, moreover, screw ridges 20 of a taper shape are formed from the atmospheric side slope 11 to the sliding face 10 of the seal lip 7. The screw ridges 20 are based by such a taper shape as is made larger in height and width toward the atmospheric side. In this shape, the end portions (or cutoff portions 20 a) on the side of the sliding face 10 are cut off along the circumference of the shaft.
  • These cases of the screw ridges 19 and 20 can also attain the actions and effects like those of the foregoing first embodiment.
  • Industrial Applicability
  • According to the invention, the sliding portion between the seal lip and the member circumference is made of a face (or a sliding face) so that the facial pressure at the initial action time can be lowered to suppress the proceeding of the wear of the seal lip thereby to elongate the lifetime of the sealing device.
  • Moreover, both the sliding face and the atmospheric side slope are provided with the screw ridges so that the satisfactory sealing properties can be exhibited initially and endurably for a long time by the screw pump effect of the screw ridges.
  • Moreover, the internal angle of the joint portions between the screw portions arranged on the atmospheric side slope and the screw portions arranged on the sliding face is made salient so that the step of working the recesses corresponding in the screw ridges in the molding die for the sealing device can be made simple and easy.
  • If the screw ridges are formed along the atmospheric side slope and to have a cut-off shape at their end portions on the side of the sliding face along the sliding face, the working can be more facilitated. In case the screw ridges are formed to have the straight cut-off shape, moreover, the working by the cutter itself can be facilitated, and the dispersion in the sealing performances due to the working precision can be suppressed to improve the reliability of the sealing device.
  • If the second screw ridges are formed on the sliding face, moreover, the sealing properties at the initial action time can be better improved.

Claims (4)

1-4. (canceled)
5. A sealing device for sealing an annular clearance between two members assembled to rotate relative to each other, said sealing device comprising a seal lip for sliding on the circumference of one of said two members,
wherein said seal lip includes:
a sliding face extending along said circumference;
an atmospheric side slope inclined to enlarge the clearance gradually between the slope and said circumference from the atmospheric side end edge of said sliding face; and
a screw ridge formed from said atmospheric side slope to said sliding face, and
wherein said screw ridge is formed along said atmospheric side slope and to have such a shape that its end portion on the side of said sliding face is cut off along said sliding face.
6. A sealing device according to claim 5, wherein the internal angle of a joint between two portions of said screw ridge, the one portion being arranged on said atmospheric side slope and the another portion being arranged on said sliding face, is a salient angle.
7. A sealing device according to claim 5, wherein second screw ridge is formed only on said sliding face.
US10/504,326 2002-02-28 2003-01-31 Sealing device Abandoned US20050127613A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/711,105 US7645412B2 (en) 2002-02-28 2007-02-27 Sealing device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002-53742 2002-02-28
JP2002053742A JP4366897B2 (en) 2002-02-28 2002-02-28 Mold processing method
PCT/JP2003/001007 WO2003072983A1 (en) 2002-02-28 2003-01-31 Sealing device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/711,105 Continuation US7645412B2 (en) 2002-02-28 2007-02-27 Sealing device

Publications (1)

Publication Number Publication Date
US20050127613A1 true US20050127613A1 (en) 2005-06-16

Family

ID=27764369

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/504,326 Abandoned US20050127613A1 (en) 2002-02-28 2003-01-31 Sealing device
US11/711,105 Expired - Lifetime US7645412B2 (en) 2002-02-28 2007-02-27 Sealing device

Family Applications After (1)

Application Number Title Priority Date Filing Date
US11/711,105 Expired - Lifetime US7645412B2 (en) 2002-02-28 2007-02-27 Sealing device

Country Status (8)

Country Link
US (2) US20050127613A1 (en)
EP (1) EP1479949B1 (en)
JP (1) JP4366897B2 (en)
KR (1) KR100958980B1 (en)
CN (1) CN1311177C (en)
AU (1) AU2003208089A1 (en)
DE (1) DE60309292T2 (en)
WO (1) WO2003072983A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160116067A1 (en) * 2013-05-14 2016-04-28 Nok Corporation Sealing device
US10641395B2 (en) 2015-03-31 2020-05-05 Nok Corporation Sealing apparatus
US20240026977A1 (en) * 2020-09-15 2024-01-25 Nok Corporation Sealing device

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005172061A (en) * 2003-12-09 2005-06-30 Nok Corp Sealing device
JP5045870B2 (en) * 2005-12-08 2012-10-10 Nok株式会社 Sealing device
WO2008126478A1 (en) 2007-04-11 2008-10-23 Nok Corporation Oil seal
EP2189689B1 (en) * 2007-09-04 2014-11-12 Arai Seisakusho Co., Ltd Hermetic sealing device
JP5812271B2 (en) * 2011-09-14 2015-11-11 Nok株式会社 Oil seal
JP5637172B2 (en) * 2012-04-27 2014-12-10 Nok株式会社 Sealing device
CN103056396B (en) * 2013-01-07 2015-02-04 青岛开世密封工业有限公司 Device and method for machining and assembling large outside framework oil seals
JP6204987B2 (en) * 2013-10-10 2017-09-27 Nok株式会社 Sealing device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4964647A (en) * 1987-12-23 1990-10-23 Goetze Ag Shaft sealing ring
US5511886A (en) * 1994-05-23 1996-04-30 Brenco Incorporated Bearing seal with oil deflectors
US5678829A (en) * 1996-06-07 1997-10-21 Kalsi Engineering, Inc. Hydrodynamically lubricated rotary shaft seal with environmental side groove
US5759466A (en) * 1995-05-25 1998-06-02 Nok Corporation Method of making lip-type oil seals having improved sealing edge
US6276791B1 (en) * 1998-12-18 2001-08-21 Eastman Kodak Company Ink jet printing process

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1219272A (en) * 1967-05-30 1971-01-13 Dunlop Co Ltd Improvements in sealing rings
US3739662A (en) * 1971-01-15 1973-06-19 Matthews J & Co Retread tire marking method and apparatus
US4094519A (en) 1972-02-14 1978-06-13 Chicago Rawhide Manufacturing Company Shaft seal with helical pumping element
DE2556992C2 (en) 1975-12-18 1980-04-24 Goetze Ag, 5093 Burscheid Shaft seal
JP2637478B2 (en) 1988-06-23 1997-08-06 株式会社アマダ Cutting axis control method for V-shaped grooving machine
JPH02274410A (en) 1989-04-12 1990-11-08 Satake Eng Co Ltd Dresser for milling roll
JP2845711B2 (en) 1993-03-04 1999-01-13 株式会社牧野フライス製作所 Machining method of work with character line
JP3148038B2 (en) 1993-03-04 2001-03-19 株式会社牧野フライス製作所 Hale processing method and apparatus
US5362183A (en) * 1993-10-05 1994-11-08 Joseph Alario Single point cutting tool
CN1035786C (en) * 1994-05-18 1997-09-03 武汉成功密封件公司 Bidirectional jet delivery type rotary shaft oil seal
CN2219400Y (en) * 1995-01-06 1996-02-07 黄德厚 Axial oil seal
JP3278349B2 (en) 1995-05-25 2002-04-30 エヌオーケー株式会社 Sealing device
US6401322B1 (en) * 1996-03-25 2002-06-11 Nok Corporation Method of manufacturing a sealing apparatus
JPH11311338A (en) 1998-02-27 1999-11-09 Nok Corp Oil seal
EP0939257A3 (en) 1998-02-27 2000-05-31 NOK Corporation Oil seal
JP2000065216A (en) * 1998-08-12 2000-03-03 Nok Corp Sealing device
CN2388421Y (en) * 1998-08-14 2000-07-19 十堰东森汽车密封件有限公司 Dynamic rotation axis grease seal with two-way oil return line
JP4494551B2 (en) 1999-04-23 2010-06-30 Nok株式会社 Sealing device
JP2005172061A (en) * 2003-12-09 2005-06-30 Nok Corp Sealing device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4964647A (en) * 1987-12-23 1990-10-23 Goetze Ag Shaft sealing ring
US5511886A (en) * 1994-05-23 1996-04-30 Brenco Incorporated Bearing seal with oil deflectors
US5759466A (en) * 1995-05-25 1998-06-02 Nok Corporation Method of making lip-type oil seals having improved sealing edge
US5678829A (en) * 1996-06-07 1997-10-21 Kalsi Engineering, Inc. Hydrodynamically lubricated rotary shaft seal with environmental side groove
US6276791B1 (en) * 1998-12-18 2001-08-21 Eastman Kodak Company Ink jet printing process

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160116067A1 (en) * 2013-05-14 2016-04-28 Nok Corporation Sealing device
US9822882B2 (en) * 2013-05-14 2017-11-21 Nok Corporation Sealing device
US10641395B2 (en) 2015-03-31 2020-05-05 Nok Corporation Sealing apparatus
US20240026977A1 (en) * 2020-09-15 2024-01-25 Nok Corporation Sealing device

Also Published As

Publication number Publication date
EP1479949A4 (en) 2005-05-18
JP2003254439A (en) 2003-09-10
EP1479949B1 (en) 2006-10-25
US7645412B2 (en) 2010-01-12
EP1479949A1 (en) 2004-11-24
CN1311177C (en) 2007-04-18
DE60309292T2 (en) 2007-05-16
WO2003072983A1 (en) 2003-09-04
JP4366897B2 (en) 2009-11-18
CN1639489A (en) 2005-07-13
DE60309292D1 (en) 2006-12-07
KR100958980B1 (en) 2010-05-20
AU2003208089A1 (en) 2003-09-09
US20070152369A1 (en) 2007-07-05
KR20040089598A (en) 2004-10-21

Similar Documents

Publication Publication Date Title
US7645412B2 (en) Sealing device
JP6615833B2 (en) Seal ring
KR100898449B1 (en) Sealing device
JP4877460B2 (en) Lip type seal
US20070052181A1 (en) Backup ring
JPH0942463A (en) Sealing device
JP2008144784A (en) Packing and sealing system
JP2005249104A (en) Oil seal
JP2010242814A (en) Sealing device
US20220333689A1 (en) Gasket
JP3293075B2 (en) Lip type seal
JP2002206644A (en) Sealing device
WO2012017726A1 (en) Lip-type seal
JP2017101689A (en) Seal ring
JP2005240932A (en) Sealing device
JP4240217B2 (en) Sealing device
JP2017223258A (en) Seal
JP3533847B2 (en) Seal ring
EP3364079B1 (en) Seal ring
CN110431337A (en) Sealing ring
JP2001173798A (en) Oil seal with screw
JP2020041547A (en) Seal ring
JP2003014133A (en) Sealing device
JPH11294469A (en) Rolling bearing for preventing creep
JPH10103527A (en) Oil seal

Legal Events

Date Code Title Description
AS Assignment

Owner name: NOK CORPORATION, JAPAN

Free format text: CORRECTIVE TO THE COVERSHEET;ASSIGNOR:FURUYAMA, HIDEYUKI;REEL/FRAME:015940/0131

Effective date: 20040721

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION