US20050142335A1 - Translating an aesthetically pleasing surface on an acoustic substrate to the edge of the finished acoustical product - Google Patents

Translating an aesthetically pleasing surface on an acoustic substrate to the edge of the finished acoustical product Download PDF

Info

Publication number
US20050142335A1
US20050142335A1 US10/749,087 US74908703A US2005142335A1 US 20050142335 A1 US20050142335 A1 US 20050142335A1 US 74908703 A US74908703 A US 74908703A US 2005142335 A1 US2005142335 A1 US 2005142335A1
Authority
US
United States
Prior art keywords
flange
acoustic
substrate
acoustical
acoustic panel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/749,087
Inventor
Clarke Berdan
Jerry Parks
Edward Martine
Philip Webster
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Owens Corning Intellectual Capital LLC
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US10/749,087 priority Critical patent/US20050142335A1/en
Priority to US10/936,082 priority patent/US7329456B2/en
Assigned to OWENS-CORNING FIBERGLAS TECHNOLOGY, INC. reassignment OWENS-CORNING FIBERGLAS TECHNOLOGY, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BERDAN, II, CLARKE, MARTINE, EDWARD A., PARKS, JERRY M., WEBSTER, PHILLIP M.
Priority to PCT/US2004/042517 priority patent/WO2005066430A1/en
Priority to MXPA06007490A priority patent/MXPA06007490A/en
Priority to CA002551830A priority patent/CA2551830A1/en
Publication of US20050142335A1 publication Critical patent/US20050142335A1/en
Assigned to OWENS CORNING INTELLECTUAL CAPITAL, LLC reassignment OWENS CORNING INTELLECTUAL CAPITAL, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: OWENS-CORNING FIBERGLAS TECHNOLOGY, INC.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47BTABLES; DESKS; OFFICE FURNITURE; CABINETS; DRAWERS; GENERAL DETAILS OF FURNITURE
    • A47B81/00Cabinets or racks specially adapted for other particular purposes, e.g. for storing guns or skis
    • A47B81/06Furniture aspects of radio, television, gramophone, or record cabinets
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/82Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to sound only
    • E04B1/84Sound-absorbing elements
    • E04B1/86Sound-absorbing elements slab-shaped
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/76Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
    • E04B2001/7687Crumble resistant fibrous blankets or panels using adhesives or meltable fibres
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B2103/00Material constitution of slabs, sheets or the like
    • E04B2103/04Material constitution of slabs, sheets or the like of plastics, fibrous material or wood
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24777Edge feature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree

Definitions

  • the present invention relates generally to acoustic panels and more particularly to a method for translating a decorative surface of an acoustic substrate to an edge of the finished acoustical product.
  • An aesthetically pleasing acoustic panel with reinforced sides is also provided.
  • Acoustical sound insulators such as acoustic panels
  • acoustic panels are commonly used in office buildings to attenuate sound generated from the workplace, such as from telephone conversations or from the operation of office equipment.
  • Acoustic panels are typically formed of a sound absorbing core material positioned within a frame and covered by a material, such as fabric or a painted surface, to make the front side of the panel aesthetically pleasing.
  • a material such as fabric or a painted surface
  • the edges of the core material are coated with an adhesive layer and hardened to give strength and rigidity to the acoustic panel.
  • the fabric material is wrapped around the sides of the core material and fastened to the back side of the panel by an adhesive or staples so that the sides of the panel are also aesthetically pleasing.
  • the fabric material may contain a decorative design or pattern.
  • acoustic panels are able to dampen sound over a wide sound/frequency spectrum and may be aesthetically pleasing, they are costly to manufacture and difficult to assemble.
  • the core material is first fabricated to the finished panel dimensions. The frame must then be properly sized so that the core material fits securely inside. Next, the fabric material is cut to the shape of the finished panel but with sufficient excess so that the fabric material can be wrapped around the edges and secured to the back side of the panel. This excess of fabric material leads to waste and excess cost.
  • the core material is placed into the frame, the fabric material is wrapped around the panel, and the fabric material is secured to the backside of the panel.
  • the fabric material In order to ensure that there are no sags in the fabric material, the fabric material must be pulled tightly across and around the panel before securing the fabric material to the panel.
  • the fabric if the fabric contains a design, the fabric must be placed in the proper orientation so that the finished assembly of acoustic panels achieves the desired design. Therefore, the assembly of the acoustic panel can be time consuming and tedious.
  • An object of the invention is to provide methods for translating a surface on a front side of an acoustical substrate to an edge of a finished acoustical product.
  • an acoustical substrate of uncompressed fibrous material having a first density is provided.
  • the acoustical substrate has at least a first surface containing a decorative design, a back surface opposing the first surface, a left edge, and a right edge.
  • the decorative design may be directly applied to the first surface or a decorative veil (e.g., a woven or non-woven fabric) may be applied to the first surface for aesthetic purposes.
  • At least one portion of the acoustical substrate is compressed to form at least one compressed region having a second density that is greater than the first density and at least one groove having a fold point.
  • the compressed region(s) is then rotated about the fold point toward the back surface until the groove is closed.
  • the rotation of the compressed region(s) moves at least a portion of the decorative surface to at least one side of the final acoustical product.
  • the decorative surface may be translated to any one or all four sides of the final acoustical product.
  • the rotation also places the compressed region at the edge(s) of the final acoustical product, which reinforces the side(s) of the final acoustical product.
  • the final acoustical product may be formed of reinforced edges having any linear or non-linear shape.
  • the acoustical substrate is scored along at least one score line to form at least one outer region and an inner region.
  • the outer region(s) is then compressed to form at least a first flange having a density that is higher than the density of the uncompressed inner region.
  • the flange(s) is then rotated toward the back side of the acoustical substrate until the flange(s) is flush with the inner region.
  • the rotation of the flange(s) moves at least a portion of the decorative surface to at least one side of the final acoustical product. This rotation also places the compressed region(s) at the edge(s) of the final acoustical product, which reinforces the side(s) of the final acoustical product.
  • the flange(s) may again be folded toward the back surface until the flange is flush with the back surface.
  • the second rotation of the flange(s) toward the back surface places at least a portion of the decorative design on the back surface of the final acoustical product.
  • At least one flange is formed of an inner portion and an outer portion.
  • the outer portion of the flange is then rotated toward the back surface until the outer portion of the flange is flush with the inner portion of the flange.
  • the folded flange is then folded toward the back surface until the folded flange is flush with the inner region, thereby placing the decorative surface on a side of the final acoustical product.
  • the folded flange contains two layers of compressed, densified material, the side of the final acoustical product that contains the folded flange is highly reinforced.
  • the acoustic panel includes a main body of uncompressed fibrous material that has a first density and at least one peripheral edge formed of compressed fibrous material having a second density that is greater than the first density.
  • the decorative surface extends across a major surface and at least one side of the acoustic panel.
  • the decorative surface may be integral with the acoustic panel or it may be a separate material, such as a decorative fabric or veil.
  • the acoustic panel may be formed of a self-molding thermoplastic acoustical material that is lightweight, permeable to air, and capable of being compressed or molded. Fiber systems that are heat moldable or which can be repositioned and held in place by ultrasonics, by an adhesive, or by other commonly used fixation technologies may be used as the acoustical material.
  • the acoustic panel may be formed of a matrix of staple and heat fusible fibers such as bicomponent fibers.
  • the acoustic panel is a matrix of polyester staple and copolyester/polyester bicomponent fibers where the sheath component fibers have a lower melting point than the core component fibers and the staple fibers.
  • the present invention further includes an acoustic panel that has reinforced sides formed of compressed acoustic material having a first density surrounding a central core formed of uncompressed acoustic material having a second density.
  • the reinforced sides of the acoustic panel extend beyond the central core.
  • the acoustic panel may be attached to a frame for mounting to a surface.
  • FIGS. 1 a - 1 d are schematic illustrations depicting a method of translating a decorative surface to the edges of a final acoustical product according to one exemplary embodiment of the present invention
  • FIGS. 2 a - 2 e are schematic illustrations depicting an alternative location for the grooves formed by the method depicted in FIGS. 1 a - 1 d;
  • FIGS. 3 a - 3 d are schematic illustrations depicting a second method for translating a decorative surface to the edges of final acoustical product according to one exemplary embodiment of the present invention
  • FIGS. 4 a - 4 b are schematic illustrations depicting an alternative embodiment of the method of FIGS. 3 a - 3 d in which notches are cut into the first and second flanges;
  • FIGS. 5 a - 5 e are schematic illustrations depicting an alternate embodiment of the method of FIGS. 3 a - 3 d in which the second flange is folded twice to provide a highly reinforced edge;
  • FIGS. 6 a - 6 c are schematic illustrations depicting an alternate embodiment of the method of FIGS. 3 a - 3 d in which the first and second flanges extend beyond the back surface of the final acoustical product;
  • FIGS. 7 a - 7 f are schematic illustrations depicting an alternate embodiment of the method of FIGS. 6 a - 6 c in which four flanges are formed and folded to form a box-like final acoustical product.
  • the present invention relates to methods for translating a decorative surface on a front side of an acoustical substrate to an edge of the finished acoustical product.
  • One exemplary inventive method is illustrated in FIGS. 1 a - 1 d.
  • an acoustical substrate 10 is provided which has a first surface 5 , a back surface 6 opposing the first surface 5 , a left edge 7 , and a right edge 8 .
  • the first surface 5 includes a left first surface 2 , a central first surface 3 , and a right first surface 4 .
  • the acoustical substrate 10 contains a decorative design (not shown) on the first surface 5 for aesthetic purposes. The decorative design may be directly applied to the first surface 5 .
  • a decorative veil may be positioned on the first surface 5 to provide a design.
  • the term “veil” is meant to include both woven and non-woven fabrics.
  • a decorative design may be located on the first surface 5
  • a decorative design or decorative veil may also optionally be located on the back surface 6 .
  • the material used to form the acoustical substrate 10 may be a self-molding thermoplastic acoustical material that is lightweight, permeable to air and capable of being compressed or molded, such as by a conventional compression or molding press.
  • the acoustical substrate 10 may be a matrix of polymer fibers, such as, but not limited to, polyethylene fibers, polypropylene fibers, polyester fibers, such as polyethylene terephthalate (PET) fibers, polyamide fibers, polyphenylene sulfide (PPS) fibers, polystyrene fibers, polycarbonate fibers, natural fibers (e.g., cotton and cellulose), inorganic fibers (e.g., glass fibers), or mixtures thereof.
  • polymer fibers such as, but not limited to, polyethylene fibers, polypropylene fibers, polyester fibers, such as polyethylene terephthalate (PET) fibers, polyamide fibers, polyphenylene sulfide (
  • the polymer fibers are a blend polyethylene terephthalate (PET).
  • PET polyethylene terephthalate
  • Other fiber systems that are heat moldable or which can be repositioned and held in place by ultrasonics, by an adhesive, or by other commonly used fixation technologies easily identifiable by one of skill in the art are considered to be within the purview of this invention.
  • the acoustical substrate 10 may have a thickness of from approximately 0.1 inch-4.0 inches and a density of from approximately 1 lb/ft 3 -10 lb/ft 3 .
  • the compressed regions preferably have a density of from approximately 7 lbs/ft 3 -30 /ft 3 .
  • the compressed regions have a density that is greater than the non-compressed regions.
  • the acoustical substrate 10 is formed of a matrix of staple and heat fusible fibers such as bicomponent fibers.
  • Bicomponent fibers may be formed of two polymers combined to form fibers having a core of one polymer and a surrounding sheath of the other polymer.
  • the bicomponent fibers may be present in an amount of from 10-100% of the total fibers.
  • the acoustical substrate is preferably a matrix of polyester staple and copolyester/polyester bicomponent fibers where the sheath component fibers have a lower melting point than the core component fibers and the staple fibers.
  • At least one region of the acoustical substrate 10 may be compressed in a manner such that at least a portion of the first surface 5 can be folded toward the back surface 6 to place the decorative design located on the first surface 5 on the edge of the finished product.
  • portions of the back surface 6 of the acoustical substrate 10 are compressed, such as by a heat “V” groove molding wheel, to form a first groove 20 and a second groove 21 .
  • the left portion 24 formed by first groove 20 contains the left first surface 2 , the left edge 7 , and a first inner surface 12 .
  • the right portion 25 contains the right first surface, the right edge 8 , and a second inner surface 13 .
  • the left and right portions 24 , 25 of the acoustical substrate 10 may then folded or rotated about first and second fold points 14 and 15 respectively, as shown from the phantom lines in FIG. 1 c, to collapse first and second grooves 21 , 22 .
  • FIG. 1d illustrates the final acoustical product 30 formed once the left portion 24 and the right portion 25 have been rotated and first and second grooves 20 , 21 have been completely collapsed.
  • the decorative design located on the left first surface 2 of the acoustical substrate 10 has been transferred to the left side of the final acoustical product 30 and the decorative design located on the right first surface 4 has been transferred to the right side of the final acoustical product 30 .
  • the left edge 7 and the right edge 8 are now positioned on the back side of the final acoustical product 30 contiguous with the back surface 6 .
  • the left and right portions 24 , 25 may be held in this rotated or folded position, and thus the shape of the final acoustical product 30 maintained, through heat molding.
  • the final acoustical product 30 may be heated to a temperature sufficient to soften the sheath but not the core of the fibers.
  • the softened sheath acts as a binder between adjacent fibers that cause the fibers to bond together in the shape of the final acoustical product 30 .
  • the final acoustical product 30 is then cooled to set the shape.
  • ultrasonics may be used to provide the bonding energy required to bond the bicomponent fibers located at the sheath interface together.
  • an adhesive material can be used to hold the left and right portions 24 , 25 in their rotated position and maintain the shape of the final acoustical product 30 .
  • Other conventional bonding methods may be used to hold the left and right portions 24 , 25 in their folded positions, and would be identifiable by one of ordinary skill in the art. Due to the compression of the fibers in the acoustical substrate 10 , portions of the acoustical substrate 10 adjacent to grooves 20 , 21 have an increased density. Thus, once the left portion 24 and the right portion 25 are rotated or folded as shown in FIG. 1 d, the edges or sides of the final acoustical product 30 are reinforced and have an increased strength and a density that is greater than the density of the inner portion of the final acoustical product 30 .
  • a first groove 31 having a first side 35 is formed on the left edge 7 of the acoustical substrate 10 and a second groove 32 having a second side 36 is formed on the right edge 8 of the acoustical substrate 10 by compression ( FIG. 2 b ).
  • the left portion 33 and the right portion 34 of the acoustical substrate 10 are folded toward the back surface 6 , as shown from the phantom lines in FIG. 2 c, until the first groove 31 and the second groove 32 are collapsed.
  • the intermediate product (not shown) resulting from this rotation of the left and right portions 33 , 34 has a non-rectangular shape.
  • an external forming device may be used to compress the fibers in the area of the left first surface 2 and the right first surface 4 and mold the intermediate product (not shown) to form substantially 90° corners.
  • Alternative shapes, such as, but not limited to, rounded corners (illustrated in FIG. 2 e ), may be formed by such an external forming device or mold by compressing the intermediate product into the desired shape.
  • the decorative design that was positioned on the left first surface 2 on the first surface 5 of the acoustical substrate 10 is now positioned on the left side of the final acoustical product 37 and the decorative design that was positioned on the right first surface 4 on the first surface 5 of the acoustical substrate 10 is now positioned on the right side of the final acoustical product 37 .
  • the compressed regions e.g., the areas surrounding first and second sides 35 , 36
  • the compressed regions are not located at the edges of the final acoustical product 37 . Instead, the compressed regions are positioned along the back surface 6 of the final acoustical product 37 . These compressed regions have a density that is greater than the density of the uncompressed regions, which results in greater strength and/or stiffness of the final acoustical product 37 .
  • the decorative design on the acoustical substrate 10 may be applied in a planar fashion to the first surface 5 of the acoustical substrate 10 , and may include colors, geometric or abstract designs or shapes, or other patterns or images. It is to be understood that the decorative design or the decorative veil may be added prior to or after the compression and densification of the acoustical substrate. In addition, the decorative design can be embossed, such as in a texturizing mold, to give a texture feel to the acoustical substrate 10 .
  • the texturing can be accomplished on a single plane with a single texturing roll or other similar texturing device known to those of skill in the art. Moreover, when the texturing is accomplished on a single plane, the image or design can be aligned with the texture so that the changes in shape match with the image changes. On the other hand, if the decorative design is embossed after the design has been translated to the edges of the finished acoustical product, each surface containing the design may be individually embossed.
  • the acoustical substrate 10 includes a first surface 5 having a decorative design to make the acoustical substrate 10 aesthetically pleasing, a back surface 6 opposing the first surface 5 , a left edge 7 , and a right edge 8 .
  • the first surface 5 is formed of a left first surface 2 , a central first surface 3 , and a right first surface 4 .
  • the acoustical substrate 10 is scored along first and second score lines 40 , 41 respectively to delineate a left outer region 42 , a right outer region 43 , and a central region 44 as is shown in FIG. 3 a.
  • the acoustical substrate 10 is scored to a depth sufficient to score to the decorative design or decorative veil located on the first surface 5 .
  • the radius of curvature of the folded edge may be reduced, thereby yielding a sharper edge detail in the final acoustical product.
  • a slitter blade or other similar blade or cutting technique known by those of skill in the art to score or sever a material can be used to score the acoustical substrate 10 .
  • the blade is less than or equal to ⁇ fraction (1/16) ⁇ of an inch in thickness.
  • the length of the left outer region 42 (e.g. the distance extending from left edge 7 to the first score line 40 ) and the length of the right outer region 43 (e.g. the distance extending from the right edge 8 to the second score line 41 ) may be equal to or greater than the width of the central region 44 (e.g. the distance from the first surface 5 to the back surface 6 ) to place the decorative design on the entire side of the final acoustical product 50 .
  • the length of the left outer region 42 and the right outer region 43 may be shorter than the width of the central region 44 .
  • the left outer region 42 and the right outer region 43 are then compressed, e.g., under heat, to form a first flange 45 and a second flange 46 .
  • the left and right outer regions 42 , 43 are compressed to a thickness of approximately ⁇ fraction (1/32) ⁇ of an inch to approximately 1 ⁇ 2 of an inch.
  • a heated and/or shaped tip may optionally be used to melt a portion of the fibers in the area where the first flange 45 and second flange 46 intersects with the central region 44 (not shown) to make room for the first and second flanges 45 , 46 once they are folded as described below.
  • the fibers in the central region 44 may be softened to provide a bonding region for the first and second flanges 45 , 46 after they are folded.
  • an adhesive may be applied to the central region 44 to bond the folded flanges to the central region 44 .
  • portions of the first and second flanges 45 , 46 may be removed or compressed to provide fold points about which the first and second flanges 45 , 46 can rotate or fold.
  • FIG. 4 a depicts a first notch 48 formed in the first flange 45 and second and third notches 49 , 49 a formed in the second flange 46 .
  • the first, second, and third notches 48 , 49 , 49 a may be formed by removing material from the first and second flanges 45 , 46 , such as by with a conventional blade or saw, heat melting the fibers in the first and second flanges 45 , 46 , or by compressing the portions of the first and second flanges 45 , 46 at the desired fold points.
  • the first notch 48 , the second notch 49 , and the third notch 49 a provide first, second, and third fold points 51 , 52 , 52 a respectively (shown in FIG. 4 a ) for the rotation of the first and second flanges 45 , 46 toward the back surface 6 (shown in FIG. 4 b ).
  • the first flange 45 may be rotated about the first fold point 51 and the second flange 46 may be rotated about the second and third fold points 52 , 52 a as shown in FIG. 4 b.
  • the first and second flanges 45 , 46 are then folded toward the back surface 6 (shown from the phantom lines depicted in FIG. 3 b ) until the first flange 45 and the second flange 46 are flush with the central region 44 (not shown). Once the second flange 46 is flush with the central region 44 , the second flange 46 may again be folded toward the back surface 6 , as shown from the phantom lines in FIG. 3 c, to form the final acoustical product 50 ( FIG. 3 d ).
  • the folded first and second flanges 45 , 46 may be bonded to the central region 44 by softening the sheath fibers through conventional bonding means such as heat transfer, hot air, or ultrasonics. Alternatively, the first and second flanges 45 , 46 may be affixed to the central region 44 by any conventional adhesive. A heated tip or other heating device may optionally be used to shape the folded flanges to provide a crisp edge to the final acoustical product 50 .
  • the decorative design located on the left first surface 2 is now positioned on the left side of the final acoustical product 50 and the design on the right first surface 4 is now positioned on the right side.
  • at least a portion of the decorative design located on the right first surface 4 is now positioned on the back side of the final acoustical product 50 .
  • the first and second flanges 45 , 46 contain compressed fibers, the first and second flanges 45 , 46 have an increased stiffness and/or superior strength. As a result, folding the first and second flanges 45 , 46 as shown in FIGS. 3 c and 3 d, the left and right sides and corners of the final acoustical product 50 are reinforced.
  • the acoustical substrate 10 is scored along the first score line 40 and the second score line 41 .
  • the left outer region 42 is compressed to form the first flange 45 and the right outer region 43 is compressed to form the second flange 46 (shown in FIG. 5 b ).
  • An outer portion 46 a of the second flange 46 is then folded as shown in FIG. 5 c until the outer portion 46 a is flush with an inner portion 46 b and the right edge 8 is facing the central region 44 (e.g., the outer portion 46 a is rotated approximately 180°).
  • the second flange 46 may have a portion of the fibrous material removed at the intersection of the outer portion 46 a and the inner portion 46 b so that the outer portion 46 a can be rotated or folded approximately 180° and be flush with the inner portion 46 b.
  • heat may be applied such as through a heated tip to soften the fibers at the intersection and facilitate bending the second flange 46 so that the flange can subsequently be molded to form a crisp corner.
  • the folded flange 53 is then folded (rotated) toward the back surface 6 ( FIG. 5 d ) until the folded flange 53 is flush with the central region 44 ( FIG. 5 e ).
  • the compressed fibrous material e.g., densified fibrous material
  • the first and second flanges 45 , 46 strengthens the edges and corners of the final acoustical product 55 .
  • the left side of the final acoustical product 55 is reinforced and the right side of the acoustical product is highly reinforced due to presence of the two layers of compressed (densified) fibrous material on the right side.
  • the decorative design on the first surface 5 is transferred to the sides of the final acoustical product 55 .
  • at least a portion of the decorative design may be transferred to the back side of the final acoustical product 55 .
  • the acoustical substrate 10 is scored with a tool, such as an abrasion wheel or other similar type cutting mechanism identifiable to those of skill in the art, that is at least ⁇ fraction (1/16) ⁇ of an inch in thickness.
  • a tool such as an abrasion wheel or other similar type cutting mechanism identifiable to those of skill in the art, that is at least ⁇ fraction (1/16) ⁇ of an inch in thickness.
  • Such a tool will remove fibers from the acoustical substrate 10 along the length of the score.
  • This method permits the first flange 45 and the second flange 46 to fold or nest into the areas removed in the central region 44 by the abrasion wheel (e.g., nesting areas).
  • this inventive embodiment uses the thicknesses of the first and second flanges 45 , 46 and the nesting areas to force the location of the fold point.
  • the abrasion wheel may also be used to score a fold point in the first and second flanges 45 , 46 .
  • the abrasion wheel may be used to remove some of the fibrous material on the left outer region 42 (e.g., fibrous material located at the left edge 7 and at the region of the intersection of the left outer region 42 and the central region 44 ) and some of the fibrous material located on the right outer region 43 (e.g., fibrous material located at the right edge 8 and at the intersection of the right outer region 43 and the central region 44 ) to compensate for the lateral expansion of the fibrous material when the left outer portion 42 and the right outer portion 43 are compressed to form the first and second flanges 45 , 46 .
  • the left outer region 42 e.g., fibrous material located at the left edge 7 and at the region of the intersection of the left outer region 42 and the central region 44
  • some of the fibrous material located on the right outer region 43 e.g., fibrous material located at the right edge 8 and at the intersection of the right outer region 43 and the central region 44
  • FIGS. 6 a - 6 c illustrate an inventive method whereby an acoustical product is formed that has varying thicknesses.
  • an acoustical substrate 10 that includes a first surface 5 having a decorative design thereon to make the acoustical substrate 10 aesthetically pleasing, a back surface 6 opposing the first surface 5 , a left edge 7 , and a right edge 8 is provided.
  • the first surface 5 is formed of a left first surface 2 , a central first surface 3 , and a right first surface 4 .
  • the acoustical substrate 10 is scored along the first score line 40 and the second score line 41 to form the left outer region 42 , the right outer region 43 , and the central region 44 .
  • the length of both the left outer region 42 (e.g., the distance from the left edge 7 to the first score line 40 ) and the right outer region 43 (e.g., the distance from the right edge 8 to the second score line 41 ) is greater than the width of the acoustical substrate 10 (e.g. the distance from the first surface 5 to the back surface 6 ).
  • the length of the left outer region 42 is preferably equal to the right outer region 43 .
  • the left outer region 42 and the right outer region 43 are then compressed, such as by heating the acoustical substrate 10 and concurrently applying pressure, to form the first flange 45 and the second flange 46 respectively.
  • the first flange 45 and the second flange 46 are folded or rotated toward the back surface 6 (shown in FIG. 6 b ) until they are flush with the central region 44 (shown in FIG. 6 c ). Because the length of the first and second flanges 45 , 46 is greater than the width of the acoustical substrate 10 , the sides of the final acoustical product 70 extend below the back surface 6 .
  • the distance (D) that the first and second flanges 45 , 46 extend beyond the back surface 6 of the acoustical substrate 10 represents the distance that the final acoustical product 70 will be spaced out from the surface upon which the acoustical panel is mounted.
  • the decorative surface on the left first surface 2 which was originally on the top surface of the acoustical substrate 10 , has been transferred to the left side of the final acoustical product 70 and the decorative surface on the right first surface 4 , which was originally on the top surface of the acoustical substrate 10 , has been transferred to the right side of the final acoustical product 70 .
  • the final acoustical product 70 shown in FIG. 6 c may also be used to form a tuned acoustical absorber.
  • the central region 44 is compressed to form a rigid pan.
  • the central region 44 may be compressed evenly across its length or it may be compressed to varying thicknesses.
  • Absorbing material may then be added and adhered to the pan, such as by an adhesive material, prior to mounting the tuned absorber onto a surface.
  • Suitable examples of the absorbing material include, but are not limited to, polymer fibers, glass fibers, and open cell foam plastics.
  • the type and amount of absorbing material that is added to the pan is dependent upon the desired acoustical properties of the tuned acoustical absorber. However, it is preferable that the amount of absorbing material that is added to the pan results in a thickness that is less than or equal to the depth of the compression in the pan.
  • the acoustical substrate may be compressed in only one region to place the decorative surface and the compressed region on one side of the final acoustical product. Additionally, the acoustical substrate may be compressed in more than two regions (e.g., three or more) to place the decorative surface and compressed regions on multiple sides of the final acoustical product. The placement of the compressed regions translates the decorative design to a desired side of the final acoustical product.
  • the decorative surface can be translated to any one or to all of the sides of the final acoustical product.
  • the compressed regions may be positioned on any one side or all of the sides of the final acoustical product to reinforce and strengthen the final acoustical product.
  • the final acoustical product may be formed of reinforced edges having any linear or non-linear shape.
  • the length of the compressed regions relative to the width of the acoustical substrate and how the compressed regions are folded are chosen depending on the desired shape and application of the final acoustical product.
  • FIGS. 7 a - 7 f One such example of translating the decorative surface to all of the sides of the final acoustical product is illustrated in FIGS. 7 a - 7 f.
  • the acoustical substrate 10 contains the first surface 5 , the bottom surface 6 opposing the first surface 5 , the right edge 8 , the left edge 7 , a front edge 1 , and a rear edge 9 opposing the front edge 1 .
  • Perimeter regions of the acoustical substrate 10 are compressed to form a region of compressed material 71 ( FIG. 2 b ) having a first density.
  • a core of uncompressed material 75 shown in phantom in FIG.
  • FIG. 7 c shows the acoustical substrate of FIG. 7 b in elevation.
  • Portions 76 , 77 , 78 , 79 of the compressed material 71 positioned around the perimeter are then removed to form the first flange 45 , the second flange 46 , a front flange 72 , and a rear flange 73 , as illustrated in FIG. 7 d.
  • the first, second, front, and rear flanges 45 , 46 , 72 , 73 are folded toward the back surface 6 as depicted in FIG. 7 d until the flanges 45 , 46 , 72 , 73 are flush with the core 75 , forming a box-like final acoustical product 90 ( FIG. 7 e ).
  • the edges of the flanges 45 , 46 , 72 , 73 may be beveled so that when the flanges 45 , 46 , 72 , 73 are folded and flush with the core 75 , they come together to form a clean corner.
  • the first, second, front, and rear flanges 45 , 46 , 72 , 73 extend beyond the core 75 when they are completely folded and form a void 80 that is open at the bottom and surrounded by the core 75 and the first, second, front, and rear flanges 45 , 46 , 72 , 73 .
  • the final acoustical product 90 may optionally be attached to a frame 95 having a base 96 and flanges 97 for mounting the final acoustical product 90 to a surface, such as a wall.
  • the frame 95 may be positioned such that the flanges 97 are placed into the void 80 .
  • the flanges 97 are then affixed to the first, second, front, and rear flanges 45 , 46 , 72 , 73 , and/or the back surface 6 such as by an adhesive or mechanical fastener.
  • the frame 95 may then be mounted on a surface by affixing the base 96 to the surface.
  • the frame 95 may also have an extended region (not shown) for attaching hardware or securing the frame to a larger structure.
  • a notch (not shown) is then cut into one or more of the first, second, front, and rear flanges 45 , 46 , 72 , 73 to accommodate the extended region.
  • the frame 95 is depicted for illustrative purposes and that any suitable frame may be used so long as the frame 95 is attached to at least one of the first, second, front, or rear flanges 45 , 46 , 72 , 73 or to the back surface 6 .
  • two acoustical products may be attached to a frame.
  • a first acoustical product may be placed over the frame at a first half so that one half of the frame is covered by the first acoustical product.
  • a second acoustical product may then be placed over the second half of the frame such that the two acoustical product abut each other.
  • the acoustical products may be attached to the frame by an adhesive or by mechanical fasteners. This embodiment forms a two-sided final acoustical substrate.
  • the sides or peripheral edges of the final acoustical products are reinforced, have increased strength and/or stiffness, and have densities that are greater than the non-compressed regions.
  • the final acoustical products do not have to have an adhesive applied to the edges or sides to strengthen and harden the edge; the compressed fibers provide the requisite strength and/or stiffness for each of the final acoustical products.
  • the inventive acoustical products do not need to be placed into a frame. The final acoustical products may be placed directly onto a mounting surface.
  • the final acoustical products may have varying densities throughout its structures due to the compression and folding of the various portion of the acoustical substrate.
  • the inventive methods described above form final acoustical products that have substantially square corners
  • other shapes may be molded by conventional methods from the final acoustical products, such as by heat molding.
  • the acoustical substrate 10 may be scored or cut in locations that result in edges that have a geometric shape other than square or rectangular. Such locations are easily determined by those of skill in the art and are considered to be within the purview of this invention.

Abstract

A method for translating a decorative surface of an acoustic substrate to an edge of the finished acoustical product is provided. A portion of an acoustical substrate having a decorative surface on a first side is compressed to form a void having at least one adjacent region of compressed material having an increased density. The acoustical substrate is then manipulated to close the void and place at least a portion of the decorative surface on a side of the substrate. The manipulation of the acoustical substrate also places the region of compressed material at the edges of the acoustical substrate, thereby reinforcing the edges of the acoustical product. A decorative non-woven acoustic panel that has at least one peripheral edge with a density greater than the density of the main body is also provided.

Description

    TECHNICAL FIELD AND INDUSTRIAL APPLICABILITY OF THE INVENTION
  • The present invention relates generally to acoustic panels and more particularly to a method for translating a decorative surface of an acoustic substrate to an edge of the finished acoustical product. An aesthetically pleasing acoustic panel with reinforced sides is also provided.
  • BACKGROUND OF THE INVENTION
  • Acoustical sound insulators, such as acoustic panels, are used in a variety of settings where it is desired to dampen noise from an external source. For example, acoustic panels are commonly used in office buildings to attenuate sound generated from the workplace, such as from telephone conversations or from the operation of office equipment. Acoustic panels are typically formed of a sound absorbing core material positioned within a frame and covered by a material, such as fabric or a painted surface, to make the front side of the panel aesthetically pleasing. In addition, when a frame is not used, the edges of the core material are coated with an adhesive layer and hardened to give strength and rigidity to the acoustic panel. Often, the fabric material is wrapped around the sides of the core material and fastened to the back side of the panel by an adhesive or staples so that the sides of the panel are also aesthetically pleasing. The fabric material may contain a decorative design or pattern.
  • Although conventional acoustic panels are able to dampen sound over a wide sound/frequency spectrum and may be aesthetically pleasing, they are costly to manufacture and difficult to assemble. To manufacture the acoustic panel, the core material is first fabricated to the finished panel dimensions. The frame must then be properly sized so that the core material fits securely inside. Next, the fabric material is cut to the shape of the finished panel but with sufficient excess so that the fabric material can be wrapped around the edges and secured to the back side of the panel. This excess of fabric material leads to waste and excess cost.
  • To assemble the acoustic panel, the core material is placed into the frame, the fabric material is wrapped around the panel, and the fabric material is secured to the backside of the panel. In order to ensure that there are no sags in the fabric material, the fabric material must be pulled tightly across and around the panel before securing the fabric material to the panel. In addition, if the fabric contains a design, the fabric must be placed in the proper orientation so that the finished assembly of acoustic panels achieves the desired design. Therefore, the assembly of the acoustic panel can be time consuming and tedious.
  • Thus, there exists a need in the art for an acoustic panel that contains a decorative surface on both the front of the panel and the sides of the panel that is easy to manufacture, easy to assemble, and is inexpensive.
  • SUMMARY OF THE INVENTION
  • An object of the invention is to provide methods for translating a surface on a front side of an acoustical substrate to an edge of a finished acoustical product. In one exemplary method, an acoustical substrate of uncompressed fibrous material having a first density is provided. The acoustical substrate has at least a first surface containing a decorative design, a back surface opposing the first surface, a left edge, and a right edge. The decorative design may be directly applied to the first surface or a decorative veil (e.g., a woven or non-woven fabric) may be applied to the first surface for aesthetic purposes. At least one portion of the acoustical substrate is compressed to form at least one compressed region having a second density that is greater than the first density and at least one groove having a fold point. The compressed region(s) is then rotated about the fold point toward the back surface until the groove is closed. The rotation of the compressed region(s) moves at least a portion of the decorative surface to at least one side of the final acoustical product. Thus, the decorative surface may be translated to any one or all four sides of the final acoustical product. The rotation also places the compressed region at the edge(s) of the final acoustical product, which reinforces the side(s) of the final acoustical product. The final acoustical product may be formed of reinforced edges having any linear or non-linear shape.
  • In another exemplary method, the acoustical substrate is scored along at least one score line to form at least one outer region and an inner region. The outer region(s) is then compressed to form at least a first flange having a density that is higher than the density of the uncompressed inner region. The flange(s) is then rotated toward the back side of the acoustical substrate until the flange(s) is flush with the inner region. The rotation of the flange(s) moves at least a portion of the decorative surface to at least one side of the final acoustical product. This rotation also places the compressed region(s) at the edge(s) of the final acoustical product, which reinforces the side(s) of the final acoustical product. If the flange(s) extends beyond the back surface, the flange(s) may again be folded toward the back surface until the flange is flush with the back surface. The second rotation of the flange(s) toward the back surface places at least a portion of the decorative design on the back surface of the final acoustical product.
  • In an alternative embodiment, at least one flange is formed of an inner portion and an outer portion. The outer portion of the flange is then rotated toward the back surface until the outer portion of the flange is flush with the inner portion of the flange. The folded flange is then folded toward the back surface until the folded flange is flush with the inner region, thereby placing the decorative surface on a side of the final acoustical product. In addition, because the folded flange contains two layers of compressed, densified material, the side of the final acoustical product that contains the folded flange is highly reinforced.
  • Another object of the invention is to provide a decorative non-woven acoustic panel. The acoustic panel includes a main body of uncompressed fibrous material that has a first density and at least one peripheral edge formed of compressed fibrous material having a second density that is greater than the first density. The decorative surface extends across a major surface and at least one side of the acoustic panel. The decorative surface may be integral with the acoustic panel or it may be a separate material, such as a decorative fabric or veil.
  • The acoustic panel may be formed of a self-molding thermoplastic acoustical material that is lightweight, permeable to air, and capable of being compressed or molded. Fiber systems that are heat moldable or which can be repositioned and held in place by ultrasonics, by an adhesive, or by other commonly used fixation technologies may be used as the acoustical material. In addition, the acoustic panel may be formed of a matrix of staple and heat fusible fibers such as bicomponent fibers. In a preferred embodiment, the acoustic panel is a matrix of polyester staple and copolyester/polyester bicomponent fibers where the sheath component fibers have a lower melting point than the core component fibers and the staple fibers.
  • The present invention further includes an acoustic panel that has reinforced sides formed of compressed acoustic material having a first density surrounding a central core formed of uncompressed acoustic material having a second density. The reinforced sides of the acoustic panel extend beyond the central core. The acoustic panel may be attached to a frame for mounting to a surface.
  • The foregoing and other objects, features, and advantages of the invention will appear more fully hereinafter from a consideration of the detailed description that follows, in conjunction with the accompanying sheets of drawings. It is to be expressly understood, however, that the drawings are for illustrative purposes and are not to be construed as defining the limits of the invention.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIGS. 1 a-1 d are schematic illustrations depicting a method of translating a decorative surface to the edges of a final acoustical product according to one exemplary embodiment of the present invention;
  • FIGS. 2 a-2 e are schematic illustrations depicting an alternative location for the grooves formed by the method depicted in FIGS. 1 a-1 d;
  • FIGS. 3 a-3 d are schematic illustrations depicting a second method for translating a decorative surface to the edges of final acoustical product according to one exemplary embodiment of the present invention;
  • FIGS. 4 a-4 b are schematic illustrations depicting an alternative embodiment of the method of FIGS. 3 a-3 d in which notches are cut into the first and second flanges;
  • FIGS. 5 a-5 e are schematic illustrations depicting an alternate embodiment of the method of FIGS. 3 a-3 d in which the second flange is folded twice to provide a highly reinforced edge;
  • FIGS. 6 a-6 c are schematic illustrations depicting an alternate embodiment of the method of FIGS. 3 a-3 d in which the first and second flanges extend beyond the back surface of the final acoustical product; and
  • FIGS. 7 a-7 f are schematic illustrations depicting an alternate embodiment of the method of FIGS. 6 a-6 c in which four flanges are formed and folded to form a box-like final acoustical product.
  • DETAILED DESCRIPTION AND PREFERRED EMBODIMENTS OF THE INVENTION
  • Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which the invention belongs. Although any methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, the preferred methods and materials are described herein. It is to be noted that like numbers found throughout the figures denote like elements.
  • The present invention relates to methods for translating a decorative surface on a front side of an acoustical substrate to an edge of the finished acoustical product. One exemplary inventive method is illustrated in FIGS. 1 a-1 d. As shown in FIG. 1 a, an acoustical substrate 10 is provided which has a first surface 5, a back surface 6 opposing the first surface 5, a left edge 7, and a right edge 8. The first surface 5 includes a left first surface 2, a central first surface 3, and a right first surface 4. The acoustical substrate 10 contains a decorative design (not shown) on the first surface 5 for aesthetic purposes. The decorative design may be directly applied to the first surface 5. Alternatively, a decorative veil (not shown) may be positioned on the first surface 5 to provide a design. As used herein, the term “veil” is meant to include both woven and non-woven fabrics. Although a decorative design may be located on the first surface 5, a decorative design or decorative veil may also optionally be located on the back surface 6.
  • The material used to form the acoustical substrate 10 may be a self-molding thermoplastic acoustical material that is lightweight, permeable to air and capable of being compressed or molded, such as by a conventional compression or molding press. For example, the acoustical substrate 10 may be a matrix of polymer fibers, such as, but not limited to, polyethylene fibers, polypropylene fibers, polyester fibers, such as polyethylene terephthalate (PET) fibers, polyamide fibers, polyphenylene sulfide (PPS) fibers, polystyrene fibers, polycarbonate fibers, natural fibers (e.g., cotton and cellulose), inorganic fibers (e.g., glass fibers), or mixtures thereof. Preferably, the polymer fibers are a blend polyethylene terephthalate (PET). Other fiber systems that are heat moldable or which can be repositioned and held in place by ultrasonics, by an adhesive, or by other commonly used fixation technologies easily identifiable by one of skill in the art are considered to be within the purview of this invention. In addition, the acoustical substrate 10 may have a thickness of from approximately 0.1 inch-4.0 inches and a density of from approximately 1 lb/ft3-10 lb/ft3. In the inventive methods discussed below, the compressed regions preferably have a density of from approximately 7 lbs/ft3-30 /ft3. In each of the inventive embodiments described below, the compressed regions have a density that is greater than the non-compressed regions.
  • In a preferred embodiment, the acoustical substrate 10 is formed of a matrix of staple and heat fusible fibers such as bicomponent fibers. Bicomponent fibers may be formed of two polymers combined to form fibers having a core of one polymer and a surrounding sheath of the other polymer. When bicomponent fibers are used as a component of the acoustic material, the bicomponent fibers may be present in an amount of from 10-100% of the total fibers. In the instant invention, the acoustical substrate is preferably a matrix of polyester staple and copolyester/polyester bicomponent fibers where the sheath component fibers have a lower melting point than the core component fibers and the staple fibers.
  • To translate the decorative design located on the first surface 5 to an edge of the finished acoustical product, at least one region of the acoustical substrate 10 may be compressed in a manner such that at least a portion of the first surface 5 can be folded toward the back surface 6 to place the decorative design located on the first surface 5 on the edge of the finished product. In the embodiment depicted in FIG. 1 b, portions of the back surface 6 of the acoustical substrate 10 are compressed, such as by a heat “V” groove molding wheel, to form a first groove 20 and a second groove 21. As depicted in FIG. 1 c, the left portion 24 formed by first groove 20 contains the left first surface 2, the left edge 7, and a first inner surface 12. The right portion 25 contains the right first surface, the right edge 8, and a second inner surface 13. The left and right portions 24, 25 of the acoustical substrate 10 may then folded or rotated about first and second fold points 14 and 15 respectively, as shown from the phantom lines in FIG. 1 c, to collapse first and second grooves 21, 22. FIG. 1d illustrates the final acoustical product 30 formed once the left portion 24 and the right portion 25 have been rotated and first and second grooves 20, 21 have been completely collapsed.
  • As shown in FIG. 1 d, in the final acoustical product 30, the decorative design located on the left first surface 2 of the acoustical substrate 10 has been transferred to the left side of the final acoustical product 30 and the decorative design located on the right first surface 4 has been transferred to the right side of the final acoustical product 30. In addition, the left edge 7 and the right edge 8 are now positioned on the back side of the final acoustical product 30 contiguous with the back surface 6.
  • The left and right portions 24, 25 may be held in this rotated or folded position, and thus the shape of the final acoustical product 30 maintained, through heat molding. For example, when bicomponent fibers having a core component and a sheath component with a melting point less than the melting point of the core component are used in the acoustical substrate 10, the final acoustical product 30 may be heated to a temperature sufficient to soften the sheath but not the core of the fibers. The softened sheath acts as a binder between adjacent fibers that cause the fibers to bond together in the shape of the final acoustical product 30. The final acoustical product 30 is then cooled to set the shape. In an alternate embodiment, ultrasonics may be used to provide the bonding energy required to bond the bicomponent fibers located at the sheath interface together. Alternatively, an adhesive material can be used to hold the left and right portions 24, 25 in their rotated position and maintain the shape of the final acoustical product 30. Other conventional bonding methods may be used to hold the left and right portions 24, 25 in their folded positions, and would be identifiable by one of ordinary skill in the art. Due to the compression of the fibers in the acoustical substrate 10, portions of the acoustical substrate 10 adjacent to grooves 20, 21 have an increased density. Thus, once the left portion 24 and the right portion 25 are rotated or folded as shown in FIG. 1 d, the edges or sides of the final acoustical product 30 are reinforced and have an increased strength and a density that is greater than the density of the inner portion of the final acoustical product 30.
  • Various other locations for compressing the acoustical substrate 10 and forming a groove or multiple grooves in the acoustical substrate 10 such that collapsing the groove(s) would place the decorative surface on at least a portion of a side of the final acoustical product would be easily identified by one of skill in the art, and are considered to be within the purview of this invention. For example, in an alternate embodiment shown in FIGS. 2 a-2 d, a first groove 31 having a first side 35 is formed on the left edge 7 of the acoustical substrate 10 and a second groove 32 having a second side 36 is formed on the right edge 8 of the acoustical substrate 10 by compression (FIG. 2 b). The left portion 33 and the right portion 34 of the acoustical substrate 10 are folded toward the back surface 6, as shown from the phantom lines in FIG. 2 c, until the first groove 31 and the second groove 32 are collapsed. The intermediate product (not shown) resulting from this rotation of the left and right portions 33, 34, has a non-rectangular shape. To form substantially 90° corners as illustrated in the final acoustical product 37 shown in FIG. 2 d, an external forming device may be used to compress the fibers in the area of the left first surface 2 and the right first surface 4 and mold the intermediate product (not shown) to form substantially 90° corners. Alternative shapes, such as, but not limited to, rounded corners (illustrated in FIG. 2 e), may be formed by such an external forming device or mold by compressing the intermediate product into the desired shape.
  • Once the first and second grooves 31, 32 are completely collapsed, the decorative design that was positioned on the left first surface 2 on the first surface 5 of the acoustical substrate 10 is now positioned on the left side of the final acoustical product 37 and the decorative design that was positioned on the right first surface 4 on the first surface 5 of the acoustical substrate 10 is now positioned on the right side of the final acoustical product 37. It is to be noted that in this embodiment, the compressed regions (e.g., the areas surrounding first and second sides 35, 36) are not located at the edges of the final acoustical product 37. Instead, the compressed regions are positioned along the back surface 6 of the final acoustical product 37. These compressed regions have a density that is greater than the density of the uncompressed regions, which results in greater strength and/or stiffness of the final acoustical product 37.
  • The decorative design on the acoustical substrate 10 may be applied in a planar fashion to the first surface 5 of the acoustical substrate 10, and may include colors, geometric or abstract designs or shapes, or other patterns or images. It is to be understood that the decorative design or the decorative veil may be added prior to or after the compression and densification of the acoustical substrate. In addition, the decorative design can be embossed, such as in a texturizing mold, to give a texture feel to the acoustical substrate 10. If the decorative design is embossed prior to the application of the decorative design or after the application of the design to the acoustical substrate 10 but before translating the decorative design to the edge of the final acoustical product, the texturing can be accomplished on a single plane with a single texturing roll or other similar texturing device known to those of skill in the art. Moreover, when the texturing is accomplished on a single plane, the image or design can be aligned with the texture so that the changes in shape match with the image changes. On the other hand, if the decorative design is embossed after the design has been translated to the edges of the finished acoustical product, each surface containing the design may be individually embossed.
  • Turning now to FIGS. 3 a-3 d, a second inventive method for translating a decorative surface of an acoustical substrate to an edge of the finished acoustical product can be seen. As in the embodiments discussed above, the acoustical substrate 10 includes a first surface 5 having a decorative design to make the acoustical substrate 10 aesthetically pleasing, a back surface 6 opposing the first surface 5, a left edge 7, and a right edge 8. In addition, the first surface 5 is formed of a left first surface 2, a central first surface 3, and a right first surface 4.
  • Initially, the acoustical substrate 10 is scored along first and second score lines 40, 41 respectively to delineate a left outer region 42, a right outer region 43, and a central region 44 as is shown in FIG. 3 a. Preferably, the acoustical substrate 10 is scored to a depth sufficient to score to the decorative design or decorative veil located on the first surface 5. However, it is possible to score a portion of the decorative design or decorative veil as long as a sufficient number of fibers remain to provide a strong fold point. By scoring the acoustical substrate 10 to a depth sufficient to reach the decorative design on the first surface 5, the radius of curvature of the folded edge may be reduced, thereby yielding a sharper edge detail in the final acoustical product. A slitter blade or other similar blade or cutting technique known by those of skill in the art to score or sever a material can be used to score the acoustical substrate 10. Preferably, the blade is less than or equal to {fraction (1/16)} of an inch in thickness.
  • The length of the left outer region 42 (e.g. the distance extending from left edge 7 to the first score line 40) and the length of the right outer region 43 (e.g. the distance extending from the right edge 8 to the second score line 41) may be equal to or greater than the width of the central region 44 (e.g. the distance from the first surface 5 to the back surface 6) to place the decorative design on the entire side of the final acoustical product 50. However, if only a portion of the side of the final acoustical product 50 is to contain the decorative design, then the length of the left outer region 42 and the right outer region 43 may be shorter than the width of the central region 44.
  • As illustrated in FIG. 3 b, the left outer region 42 and the right outer region 43 are then compressed, e.g., under heat, to form a first flange 45 and a second flange 46. Preferably, the left and right outer regions 42, 43 are compressed to a thickness of approximately {fraction (1/32)} of an inch to approximately ½ of an inch. Once the compression of the left outer region 42 and the right outer region 43 is complete, a heated and/or shaped tip may optionally be used to melt a portion of the fibers in the area where the first flange 45 and second flange 46 intersects with the central region 44 (not shown) to make room for the first and second flanges 45, 46 once they are folded as described below. Additionally, the fibers in the central region 44 may be softened to provide a bonding region for the first and second flanges 45, 46 after they are folded. Alternatively, an adhesive may be applied to the central region 44 to bond the folded flanges to the central region 44.
  • Alternatively, portions of the first and second flanges 45, 46 may be removed or compressed to provide fold points about which the first and second flanges 45, 46 can rotate or fold. Such an alternative embodiment is illustrated in FIG. 4 a, which depicts a first notch 48 formed in the first flange 45 and second and third notches 49, 49 a formed in the second flange 46. The first, second, and third notches 48, 49, 49 a may be formed by removing material from the first and second flanges 45, 46, such as by with a conventional blade or saw, heat melting the fibers in the first and second flanges 45, 46, or by compressing the portions of the first and second flanges 45, 46 at the desired fold points. The first notch 48, the second notch 49, and the third notch 49 a provide first, second, and third fold points 51, 52, 52 a respectively (shown in FIG. 4 a) for the rotation of the first and second flanges 45, 46 toward the back surface 6 (shown in FIG. 4 b). The first flange 45 may be rotated about the first fold point 51 and the second flange 46 may be rotated about the second and third fold points 52, 52 a as shown in FIG. 4 b.
  • Turning back to FIGS. 3 a-3 d, the first and second flanges 45, 46 are then folded toward the back surface 6 (shown from the phantom lines depicted in FIG. 3 b) until the first flange 45 and the second flange 46 are flush with the central region 44 (not shown). Once the second flange 46 is flush with the central region 44, the second flange 46 may again be folded toward the back surface 6, as shown from the phantom lines in FIG. 3 c, to form the final acoustical product 50 (FIG. 3 d). The folded first and second flanges 45, 46 may be bonded to the central region 44 by softening the sheath fibers through conventional bonding means such as heat transfer, hot air, or ultrasonics. Alternatively, the first and second flanges 45, 46 may be affixed to the central region 44 by any conventional adhesive. A heated tip or other heating device may optionally be used to shape the folded flanges to provide a crisp edge to the final acoustical product 50.
  • As illustrated in FIG. 3d, the decorative design located on the left first surface 2 is now positioned on the left side of the final acoustical product 50 and the design on the right first surface 4 is now positioned on the right side. In addition, at least a portion of the decorative design located on the right first surface 4 is now positioned on the back side of the final acoustical product 50. Additionally, because the first and second flanges 45, 46 contain compressed fibers, the first and second flanges 45, 46 have an increased stiffness and/or superior strength. As a result, folding the first and second flanges 45, 46 as shown in FIGS. 3 c and 3 d, the left and right sides and corners of the final acoustical product 50 are reinforced.
  • In an alternate embodiment illustrated in FIGS. 5 a-5 d, the acoustical substrate 10 is scored along the first score line 40 and the second score line 41. As in the embodiment described above with respect to FIGS. 3 a-3 d, the left outer region 42 is compressed to form the first flange 45 and the right outer region 43 is compressed to form the second flange 46 (shown in FIG. 5 b). An outer portion 46 a of the second flange 46 is then folded as shown in FIG. 5 c until the outer portion 46 a is flush with an inner portion 46 b and the right edge 8 is facing the central region 44 (e.g., the outer portion 46 a is rotated approximately 180°). The second flange 46 may have a portion of the fibrous material removed at the intersection of the outer portion 46 a and the inner portion 46 b so that the outer portion 46 a can be rotated or folded approximately 180° and be flush with the inner portion 46 b. Alternatively, heat may be applied such as through a heated tip to soften the fibers at the intersection and facilitate bending the second flange 46 so that the flange can subsequently be molded to form a crisp corner.
  • The folded flange 53 is then folded (rotated) toward the back surface 6 (FIG. 5 d) until the folded flange 53 is flush with the central region 44 (FIG. 5 e). As with the embodiment described above in FIGS. 3 a-3 d, the compressed fibrous material (e.g., densified fibrous material) in the first and second flanges 45, 46 strengthens the edges and corners of the final acoustical product 55. Thus, when the first and second flanges 45, 46 are folded as shown in FIGS. 5 d-e, the left side of the final acoustical product 55 is reinforced and the right side of the acoustical product is highly reinforced due to presence of the two layers of compressed (densified) fibrous material on the right side. Additionally, the decorative design on the first surface 5 is transferred to the sides of the final acoustical product 55. By notching the underside of the second flange 46, at least a portion of the decorative design may be transferred to the back side of the final acoustical product 55.
  • In a further alternative embodiment of the method described in FIGS. 3 a-3 d, the acoustical substrate 10 is scored with a tool, such as an abrasion wheel or other similar type cutting mechanism identifiable to those of skill in the art, that is at least {fraction (1/16)} of an inch in thickness. Such a tool will remove fibers from the acoustical substrate 10 along the length of the score. This method permits the first flange 45 and the second flange 46 to fold or nest into the areas removed in the central region 44 by the abrasion wheel (e.g., nesting areas).
  • Unlike the embodiment described above in which the backside of the decorative design may be scored to ensure a crisp folding of the first and second flanges 45, 46, this inventive embodiment uses the thicknesses of the first and second flanges 45, 46 and the nesting areas to force the location of the fold point. However, it is to be understood that the abrasion wheel may also be used to score a fold point in the first and second flanges 45, 46. In addition, the abrasion wheel may be used to remove some of the fibrous material on the left outer region 42 (e.g., fibrous material located at the left edge 7 and at the region of the intersection of the left outer region 42 and the central region 44) and some of the fibrous material located on the right outer region 43 (e.g., fibrous material located at the right edge 8 and at the intersection of the right outer region 43 and the central region 44) to compensate for the lateral expansion of the fibrous material when the left outer portion 42 and the right outer portion 43 are compressed to form the first and second flanges 45, 46.
  • It is sometimes desirable to form an acoustical product that does not have a decorated surface that ends flush with the back of the acoustical substrate or the acoustical panel. Acoustic panels of varying thicknesses ranging from approximately 0.25 inches to approximately 4.0 inches may be needed to meet the acoustical requirements, wall or ceiling thickness requirements, or both. In this regard, FIGS. 6 a-6 c illustrate an inventive method whereby an acoustical product is formed that has varying thicknesses.
  • Turning to FIG. 6 a, an acoustical substrate 10 that includes a first surface 5 having a decorative design thereon to make the acoustical substrate 10 aesthetically pleasing, a back surface 6 opposing the first surface 5, a left edge 7, and a right edge 8 is provided. In addition, the first surface 5 is formed of a left first surface 2, a central first surface 3, and a right first surface 4. The acoustical substrate 10 is scored along the first score line 40 and the second score line 41 to form the left outer region 42, the right outer region 43, and the central region 44. In this embodiment, the length of both the left outer region 42 (e.g., the distance from the left edge 7 to the first score line 40) and the right outer region 43 (e.g., the distance from the right edge 8 to the second score line 41) is greater than the width of the acoustical substrate 10 (e.g. the distance from the first surface 5 to the back surface 6). The length of the left outer region 42 is preferably equal to the right outer region 43.
  • The left outer region 42 and the right outer region 43 are then compressed, such as by heating the acoustical substrate 10 and concurrently applying pressure, to form the first flange 45 and the second flange 46 respectively. Next, the first flange 45 and the second flange 46 are folded or rotated toward the back surface 6 (shown in FIG. 6 b) until they are flush with the central region 44 (shown in FIG. 6 c). Because the length of the first and second flanges 45, 46 is greater than the width of the acoustical substrate 10, the sides of the final acoustical product 70 extend below the back surface 6. The distance (D) that the first and second flanges 45, 46 extend beyond the back surface 6 of the acoustical substrate 10 represents the distance that the final acoustical product 70 will be spaced out from the surface upon which the acoustical panel is mounted. As can be seen in FIG. 6 c, the decorative surface on the left first surface 2, which was originally on the top surface of the acoustical substrate 10, has been transferred to the left side of the final acoustical product 70 and the decorative surface on the right first surface 4, which was originally on the top surface of the acoustical substrate 10, has been transferred to the right side of the final acoustical product 70.
  • The final acoustical product 70 shown in FIG. 6 c may also be used to form a tuned acoustical absorber. In this exemplary embodiment (not shown), the central region 44 is compressed to form a rigid pan. The central region 44 may be compressed evenly across its length or it may be compressed to varying thicknesses. Absorbing material may then be added and adhered to the pan, such as by an adhesive material, prior to mounting the tuned absorber onto a surface. Suitable examples of the absorbing material include, but are not limited to, polymer fibers, glass fibers, and open cell foam plastics. The type and amount of absorbing material that is added to the pan is dependent upon the desired acoustical properties of the tuned acoustical absorber. However, it is preferable that the amount of absorbing material that is added to the pan results in a thickness that is less than or equal to the depth of the compression in the pan.
  • Although the methods depicted in FIGS. 1 a-6 c are described with respect to two regions of the acoustical substrate being compressed and folded to move the decorative surface to the left and right sides of the final acoustical product, the acoustical substrate may be compressed in only one region to place the decorative surface and the compressed region on one side of the final acoustical product. Additionally, the acoustical substrate may be compressed in more than two regions (e.g., three or more) to place the decorative surface and compressed regions on multiple sides of the final acoustical product. The placement of the compressed regions translates the decorative design to a desired side of the final acoustical product. Thus, according to the principles of the instant invention, the decorative surface can be translated to any one or to all of the sides of the final acoustical product. Similarly, the compressed regions may be positioned on any one side or all of the sides of the final acoustical product to reinforce and strengthen the final acoustical product. Further, the final acoustical product may be formed of reinforced edges having any linear or non-linear shape. In addition, the length of the compressed regions relative to the width of the acoustical substrate and how the compressed regions are folded (e.g., double folded, folded over to the back side of the acoustical substrate, etc.) to form the final acoustical product are chosen depending on the desired shape and application of the final acoustical product.
  • One such example of translating the decorative surface to all of the sides of the final acoustical product is illustrated in FIGS. 7 a-7 f. As shown in FIG. 7 a, the acoustical substrate 10 contains the first surface 5, the bottom surface 6 opposing the first surface 5, the right edge 8, the left edge 7, a front edge 1, and a rear edge 9 opposing the front edge 1. Perimeter regions of the acoustical substrate 10 are compressed to form a region of compressed material 71 (FIG. 2 b) having a first density. A core of uncompressed material 75 (shown in phantom in FIG. 7 b) having a second density that is less than the first density is positioned substantially at the center of the acoustical substrate 10 and extends below the compressed region 71. The orientation of the core 75 below compressed region 71 can best be seen in FIG. 7 c, which shows the acoustical substrate of FIG. 7 b in elevation.
  • Portions 76, 77, 78, 79 of the compressed material 71 positioned around the perimeter are then removed to form the first flange 45, the second flange 46, a front flange 72, and a rear flange 73, as illustrated in FIG. 7 d. The first, second, front, and rear flanges 45, 46, 72, 73 are folded toward the back surface 6 as depicted in FIG. 7 d until the flanges 45, 46, 72, 73 are flush with the core 75, forming a box-like final acoustical product 90 (FIG. 7 e). Optionally, the edges of the flanges 45, 46, 72, 73 may be beveled so that when the flanges 45, 46, 72, 73 are folded and flush with the core 75, they come together to form a clean corner. As shown in FIG. 7 e, the first, second, front, and rear flanges 45, 46, 72, 73 extend beyond the core 75 when they are completely folded and form a void 80 that is open at the bottom and surrounded by the core 75 and the first, second, front, and rear flanges 45, 46, 72, 73.
  • The final acoustical product 90 may optionally be attached to a frame 95 having a base 96 and flanges 97 for mounting the final acoustical product 90 to a surface, such as a wall. The frame 95 may be positioned such that the flanges 97 are placed into the void 80. The flanges 97 are then affixed to the first, second, front, and rear flanges 45, 46, 72, 73, and/or the back surface 6 such as by an adhesive or mechanical fastener. The frame 95 may then be mounted on a surface by affixing the base 96 to the surface. The frame 95 may also have an extended region (not shown) for attaching hardware or securing the frame to a larger structure. If the extended region is present on the frame 95, a notch (not shown) is then cut into one or more of the first, second, front, and rear flanges 45, 46, 72, 73 to accommodate the extended region. It is to be understood that the frame 95 is depicted for illustrative purposes and that any suitable frame may be used so long as the frame 95 is attached to at least one of the first, second, front, or rear flanges 45, 46, 72, 73 or to the back surface 6.
  • In an alternate embodiment (not shown), two acoustical products may be attached to a frame. In such an embodiment, a first acoustical product may be placed over the frame at a first half so that one half of the frame is covered by the first acoustical product. A second acoustical product may then be placed over the second half of the frame such that the two acoustical product abut each other. The acoustical products may be attached to the frame by an adhesive or by mechanical fasteners. This embodiment forms a two-sided final acoustical substrate.
  • Due to the compression and folding of the fibers in the acoustical substrate during the formation of sides of the final acoustical products, the sides or peripheral edges of the final acoustical products are reinforced, have increased strength and/or stiffness, and have densities that are greater than the non-compressed regions. As a result, the final acoustical products do not have to have an adhesive applied to the edges or sides to strengthen and harden the edge; the compressed fibers provide the requisite strength and/or stiffness for each of the final acoustical products. Additionally, unlike many conventional acoustic products, the inventive acoustical products do not need to be placed into a frame. The final acoustical products may be placed directly onto a mounting surface. Furthermore, the final acoustical products may have varying densities throughout its structures due to the compression and folding of the various portion of the acoustical substrate. In addition, by compressing the acoustical substrate and not excising material, thereby minimizing waste disposal.
  • Although the inventive methods described above form final acoustical products that have substantially square corners, other shapes may be molded by conventional methods from the final acoustical products, such as by heat molding. Alternatively, the acoustical substrate 10 may be scored or cut in locations that result in edges that have a geometric shape other than square or rectangular. Such locations are easily determined by those of skill in the art and are considered to be within the purview of this invention.
  • The invention of this application has been described above both generically and with regard to specific embodiments. Although the invention has been set forth in what is believed to be the preferred embodiments, a wide variety of alternatives known to those of skill in the art can be selected within the generic disclosure. The invention is not otherwise limited, except for the recitation of the claims set forth below.

Claims (46)

1. A decorative acoustic panel comprising:
a main body formed of a first material having a first density;
at least one peripheral edge formed of said first material and having a second density, said second density being greater than said first density; and
a decorative surface.
2. The acoustic panel according to claim 1, wherein said decorative surface is positioned on a top surface of said main body and said at least one peripheral edge.
3. The acoustic panel of claim 1, wherein said main body and said at least one peripheral edge are formed from an acoustic substrate formed of a thermoplastic acoustic material.
4. The acoustic panel according to claim 3, wherein said acoustic material is a matrix of polyester staple and copolyester/polyester bicomponent fibers.
5. The acoustic panel according to claim 3, wherein said at least one peripheral edge is formed by compressing portions of said acoustic substrate to form compressed regions and rotating said compressed regions.
6. The acoustic panel according to claim 5, wherein said decorative surface is formed on a second material and is affixed to said acoustic panel after forming said at least one peripheral edge.
7. The acoustic panel according to claim 5, wherein said decorative surface is formed on a second material and is affixed to said acoustic substrate prior to forming said at least one peripheral edge.
8. The acoustic panel according to claim 5, wherein said decorative surface is integral with a major surface of said acoustic substrate and is applied prior to forming said at least one peripheral edge.
9. The acoustic panel according to claim 5, wherein said decorative surface is integral with a major surface of said acoustic substrate and is applied after forming said at least one peripheral edge.
10. An acoustic panel comprising:
a main body; and
a reinforcing edge on at least one side of said main body formed by compressing an adjacent outer region to form a compressed region that is rotated against said main body to form said reinforcing edge.
11. The acoustic panel of claim 10, wherein said reinforcing edge is formed on opposing sides of said main body.
12. The acoustic panel of claim 10, wherein each said reinforcing edge has a first density and said main body has a second density that is less than said first density.
13. The acoustic panel of claim 12, wherein a side of said main body and each said reinforcing edge includes a decorative design.
14. The acoustic panel of claim 13, wherein each said reinforcing edge is bonded to said main body through an application of heat to soften and bond adjacent fibers located in said reinforcing edge and said main body.
15. The acoustic panel of claim 13, wherein at least one of said reinforcing edges is double folded against said main body.
16. The acoustic panel of claim 13, wherein each said reinforcing edge extends equidistantly beyond said main body.
17. The acoustic panel of claim 13, wherein at least one of said reinforcing edges is folded flush with a back surface of said main body.
18. The acoustic panel of claim 16, wherein said reinforcing edges are formed on all sides of said main body from corresponding compressed regions.
19. The acoustic panel of claim 13, wherein reinforcing edge has a non-linear shape.
20. A method of forming a decorative acoustic panel having a reinforced edge comprising:
compressing a portion of an acoustic substrate having at least a first side including a decorative surface and a back side opposing said first side to form a void with at least one adjacent region of compressed material; and
manipulating said at least one adjacent region of compressed material to close said void and place said compressed material at an edge of said acoustical substrate to form a reinforced edge, said manipulation placing at least a portion of said decorative surface on a side of said acoustic substrate and forming an acoustic panel.
21. The method of claim 20, wherein said void is a groove that includes a fold point and said manipulating step comprises rotating said region of compressed material about said fold point toward said back side until said groove is closed.
22. The method of claim 20, further comprising:
heating said acoustic panel to bond adjacent fibers in said acoustic substrate; and
cooling said acoustic panel to maintain a shape of said acoustic panel.
23. The method of claim 20, further comprising molding said acoustic panel into a desired shape.
24. The method of claim 20, wherein said acoustic substrate has a first density and said region of compressed material has a second density that is higher then said first density.
25. A method of forming a decorative acoustic panel having a reinforced edge comprising:
scoring an acoustical substrate having a decorative surface on at least a major side along a first score line to form a first outer region and an inner region, said acoustical substrate having a back side opposing said major side;
compressing said first outer region to form a first flange; and
rotating said first flange toward a back side of said acoustical substrate to form a reinforced edge, said rotation placing said decorative surface on said reinforced edge and forming an acoustic panel.
26. The method of claim 25, wherein said first flange is rotated until said first flange is flush with said inner region.
27. The method according to claim 26, further comprising removing a portion of said first flange at an intersection region of said first outer region and said inner region to facilitate rotation of said first flange toward said back side of said acoustical substrate.
28. The method according to claim 27, wherein said removed portion is a first notch having a first fold point.
29. The method according to claim 28, wherein said rotating step comprises rotating said first flange toward said back side about said first fold point.
30. The method according to claim 25, further comprising removing a portion of said inner region to form a nesting region to receive said first flange.
31. The method according to claim 25, wherein said first flange has a length dimension greater than a width dimension of said acoustical substrate, and wherein when said first flange is rotated flush with said inner region, a first portion of said first flange extends beyond said width dimension of said acoustical substrate.
32. The method according to claim 31, further comprising rotating said first portion of said first flange toward said back side until said first portion is flush with said back side.
33. The method according to claim 25, wherein said first flange has a length dimension that is equal to a width dimension of said acoustical substrate.
34. The method according to claim 33, further comprising scoring said acoustical substrate along a second score to form a second outer region and compressing said second outer region to form a second flange.
35. The method according to claim 34, further comprising rotating said second flange toward said back side of said acoustical substrate until said second flange is flush with said inner region and said decorative surface is placed on a second side of said acoustical substrate.
36. The method according to claim 35, wherein said second flange has a length dimension greater than a width dimension of said acoustical substrate, and wherein when said second flange is rotated flush with said inner region, a second portion of said second flange extends beyond said width dimension of said acoustical substrate.
37. The method according to claim 36, further comprising rotating said second portion of said second flange toward said back side until said second portion is flush with said back side.
38. The method according to claim 25, wherein said first flange includes an inner and an outer portion.
39. The method according to claim 38, wherein said rotating step comprises:
rotating said outer portion of said first flange toward said back side until said outer portion is flush with said inner portion to form a folded flange; and
rotating said folded flange toward said back side until said folded flange is flush with said inner region.
40. The method of claim 25, wherein said acoustic substrate has a first density and said compressed material has a second density that is higher then said first density.
41. A method of forming an acoustic panel from an acoustic substrate formed of acoustic material having an upper side including a decorative surface thereon comprising:
compressing a perimeter region of said acoustic substrate to form a central core of said acoustic material having a first density and a perimeter flange of said acoustic material having a second density greater than said first density, said central core including first, second, third and fourth sides;
sizing said perimeter flange such that said perimeter flange has a width dimension substantially equal to a corresponding one of said sides, said perimeter flange having said decorative surface on an upper side thereof; and
folding said perimeter flange relative to said central core so that said perimeter flange is positioned with said decorative surface oriented substantially perpendicularly to said upper side of said central core, said folded perimeter flange forming a reinforcing edge for said acoustic panel.
42. The method of claim 41, wherein said compressing step forms said perimeter flange extending substantially completely around said central core.
43. The method of claim 42, wherein said sizing step comprises:
removing a corner portion of said perimeter flange adjacent two of said sides; and
repeating said removing step until all corner portions of said perimeter flange have been removed, leaving perimeter flange members with a width dimension corresponding to corresponding said sides of said central core.
44. The method of claim 43, wherein each said perimeter flange member has a length dimension greater than said thickness of said central core such that after said folding step said perimeter flange members extend below said bottom surface of said central core.
45. The method of claim 44, wherein said perimeter flange members have identical length dimensions such that after said folding step said perimeter flange members terminate in a common plane oriented generally parallel to said bottom surface, said perimeter flange members defining an open cavity surrounded by said folded perimeter flange members and terminating against said bottom surface of said central core.
46. The method of claim 45, further comprising:
inserting a frame member into said open cavity for attachment to said folded perimeter flange members.
US10/749,087 2003-12-30 2003-12-30 Translating an aesthetically pleasing surface on an acoustic substrate to the edge of the finished acoustical product Abandoned US20050142335A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US10/749,087 US20050142335A1 (en) 2003-12-30 2003-12-30 Translating an aesthetically pleasing surface on an acoustic substrate to the edge of the finished acoustical product
US10/936,082 US7329456B2 (en) 2003-12-30 2004-09-08 Method of fabrication of an acoustical substrate into a three dimensional product
PCT/US2004/042517 WO2005066430A1 (en) 2003-12-30 2004-12-17 Method of forming a reinforced edge of an acoustic panel, and the panel
MXPA06007490A MXPA06007490A (en) 2003-12-30 2004-12-17 Method of forming a reinforced edge of an acoustic panel, and the panel.
CA002551830A CA2551830A1 (en) 2003-12-30 2004-12-17 Method of forming a reinforced edge of an acoustic panel, and the panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/749,087 US20050142335A1 (en) 2003-12-30 2003-12-30 Translating an aesthetically pleasing surface on an acoustic substrate to the edge of the finished acoustical product

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/936,082 Continuation-In-Part US7329456B2 (en) 2003-12-30 2004-09-08 Method of fabrication of an acoustical substrate into a three dimensional product

Publications (1)

Publication Number Publication Date
US20050142335A1 true US20050142335A1 (en) 2005-06-30

Family

ID=34701012

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/749,087 Abandoned US20050142335A1 (en) 2003-12-30 2003-12-30 Translating an aesthetically pleasing surface on an acoustic substrate to the edge of the finished acoustical product
US10/936,082 Active 2025-03-25 US7329456B2 (en) 2003-12-30 2004-09-08 Method of fabrication of an acoustical substrate into a three dimensional product

Family Applications After (1)

Application Number Title Priority Date Filing Date
US10/936,082 Active 2025-03-25 US7329456B2 (en) 2003-12-30 2004-09-08 Method of fabrication of an acoustical substrate into a three dimensional product

Country Status (4)

Country Link
US (2) US20050142335A1 (en)
CA (1) CA2551830A1 (en)
MX (1) MXPA06007490A (en)
WO (1) WO2005066430A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080003907A1 (en) * 2006-06-28 2008-01-03 Samuel Keith Black Facing Product for Vehicular Trim
US20200370294A1 (en) * 2019-05-23 2020-11-26 Armstrong World Industries, Inc. Fire resistant low density acoustic panel

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2441124B (en) * 2006-08-23 2010-07-14 Lyndon Powell Creasing method
US8028791B2 (en) * 2007-05-22 2011-10-04 Owens Corning Intellectual Capital, Llc Sound reflective acoustic panel
PL3128059T3 (en) 2011-09-30 2021-08-30 Owens Corning Intellectual Capital, Llc Method of forming a web from fibrous materials
US8739925B1 (en) * 2013-03-07 2014-06-03 Joab Jay Perdue Portable and storable device for acoustic modification
CN107709867A (en) 2015-05-19 2018-02-16 欧文斯科宁知识产权资产有限公司 For pipeline and the felt pad of container
IT201800006283A1 (en) * 2018-06-13 2019-12-13 WALL OR FALSE CEILING STRUCTURE, FOR IMPROVING THE ACOUSTIC PERFORMANCE OF AN INTERIOR ENVIRONMENT.
US11141948B1 (en) * 2018-08-10 2021-10-12 ThermoPod, LLC Robotic system for erecting a one-piece insulating container

Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3096879A (en) * 1957-12-12 1963-07-09 Stanley P Schumacher Packaging material and package
US3344973A (en) * 1966-04-21 1967-10-03 Charles E Studen Lined container
US3404748A (en) * 1967-12-06 1968-10-08 Griffolyn Company Inc Insulation laminate with reinforcing fibers and corrugated layer
US3581453A (en) * 1969-01-02 1971-06-01 Owens Corning Fiberglass Corp Fibrous ceiling surfacing system
US3835604A (en) * 1971-01-13 1974-09-17 Certain Teed Prod Corp Building insulation with decorative facing
US3907193A (en) * 1974-04-08 1975-09-23 Autoplex Corp Plastic folding containers and process and apparatus for making same
US4131664A (en) * 1977-09-28 1978-12-26 Allen Industries, Inc. Method of making a multiple-density fibrous acoustical panel
US4429454A (en) * 1982-03-29 1984-02-07 Western Electric Company, Inc. Connector terminal spreader
US4711685A (en) * 1982-07-06 1987-12-08 Usg Acoustical Products Company Soft textured reveal edge ceiling board and process for its manufacture
US4946738A (en) * 1987-05-22 1990-08-07 Guardian Industries Corp. Non-woven fibrous product
US5421133A (en) * 1993-05-20 1995-06-06 Berdan, Ii; Clarke Insulation batt with extended flange
US5451437A (en) * 1993-06-21 1995-09-19 Minnesota Mining And Manufacturing Company Method and article for protecting a container that holds a fluid
US5823611A (en) * 1995-09-18 1998-10-20 Prince Corporation Headliner with integral impact absorption panels
USRE36323E (en) * 1993-01-21 1999-10-05 Minnesota Mining And Manufacturing Company Acoustical insulating web
US6321871B1 (en) * 1999-03-19 2001-11-27 Robert Lindsay Russell Acoustic panels and the like
US20030082387A1 (en) * 2001-10-30 2003-05-01 Arndt William R. Insulation facing material z-fold area coating
US6669265B2 (en) * 2000-06-30 2003-12-30 Owens Corning Fiberglas Technology, Inc. Multidensity liner/insulator
US6756332B2 (en) * 1998-01-30 2004-06-29 Jason Incorporated Vehicle headliner and laminate therefor
US6770339B2 (en) * 2002-08-08 2004-08-03 Johns Manville International, Inc. Insulation package
US6875315B2 (en) * 2002-12-19 2005-04-05 Kimberly-Clark Worldwide, Inc. Non-woven through air dryer and transfer fabrics for tissue making
US6878427B2 (en) * 2002-12-20 2005-04-12 Kimberly Clark Worldwide, Inc. Encased insulation article
US6893711B2 (en) * 2002-08-05 2005-05-17 Kimberly-Clark Worldwide, Inc. Acoustical insulation material containing fine thermoplastic fibers
US6900147B2 (en) * 2001-11-28 2005-05-31 Kimberly-Clark Worldwide, Inc. Nonwoven webs having improved necking uniformity
US6925765B2 (en) * 2002-12-27 2005-08-09 Johns Manville Facing and faced insulation assembly

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3078880A (en) * 1953-05-11 1963-02-26 Gustin Bacon Mfg Co Folding insulated duct
US3092529A (en) * 1955-07-01 1963-06-04 Owens Corning Fiberglass Corp Duct or conduit blank
US3529516A (en) * 1966-04-04 1970-09-22 Union Oil Co Method and compositions for improving the bending quality of water resistant corrugated paperboard
US3605534A (en) * 1967-05-24 1971-09-20 William H Barr Board cutting machine
US3687170A (en) * 1970-10-26 1972-08-29 Ind Insulations Inc Heat insulating assembly
US3980005A (en) * 1974-11-20 1976-09-14 Buonaiuto Robert B Synthetic plastic foam carton liners
US4122911A (en) * 1976-07-01 1978-10-31 Acoustic Fiber Sound Systems, Inc. Loudspeaker assembly
US4428454A (en) * 1981-09-24 1984-01-31 Capaul Raymond W Acoustical panel construction
NL8902899A (en) * 1989-11-23 1991-06-17 Schreiner Luchtvaart METHOD FOR MANUFACTURING AN ARTICLE FROM A THERMOPLASTIC SANDWICH MATERIAL
CA2035602C (en) * 1990-02-05 2001-01-02 David L. Holland Composite rigid insulation materials containing v-grooves
US5783268A (en) * 1993-08-11 1998-07-21 Knauf Fiber Glass Gmbh High air velocity duct board having minimal turbulence
US5567504A (en) * 1994-05-31 1996-10-22 Schuller International, Inc. Glass fiber duct board with coated grooves and the method of making the same
US5707327A (en) * 1996-12-31 1998-01-13 Carbone; Martin R. Box making kit and method for using
US20010031336A1 (en) * 2000-01-14 2001-10-18 Born David W. Composite backerboard articles for construction
AU2001275295A1 (en) * 2000-06-07 2001-12-17 Pactiv Corporation Pre-formed honeycomb protector
US7245729B2 (en) * 2001-04-05 2007-07-17 New Transducers Limited Loudspeaker
US6797653B2 (en) * 2001-09-28 2004-09-28 Johns Manville International, Inc. Equipment and duct liner insulation and method

Patent Citations (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3096879A (en) * 1957-12-12 1963-07-09 Stanley P Schumacher Packaging material and package
US3344973A (en) * 1966-04-21 1967-10-03 Charles E Studen Lined container
US3404748A (en) * 1967-12-06 1968-10-08 Griffolyn Company Inc Insulation laminate with reinforcing fibers and corrugated layer
US3581453A (en) * 1969-01-02 1971-06-01 Owens Corning Fiberglass Corp Fibrous ceiling surfacing system
US3835604A (en) * 1971-01-13 1974-09-17 Certain Teed Prod Corp Building insulation with decorative facing
US3907193A (en) * 1974-04-08 1975-09-23 Autoplex Corp Plastic folding containers and process and apparatus for making same
US4131664A (en) * 1977-09-28 1978-12-26 Allen Industries, Inc. Method of making a multiple-density fibrous acoustical panel
US4429454A (en) * 1982-03-29 1984-02-07 Western Electric Company, Inc. Connector terminal spreader
US4711685A (en) * 1982-07-06 1987-12-08 Usg Acoustical Products Company Soft textured reveal edge ceiling board and process for its manufacture
US4946738A (en) * 1987-05-22 1990-08-07 Guardian Industries Corp. Non-woven fibrous product
USRE36323E (en) * 1993-01-21 1999-10-05 Minnesota Mining And Manufacturing Company Acoustical insulating web
US5421133A (en) * 1993-05-20 1995-06-06 Berdan, Ii; Clarke Insulation batt with extended flange
US5451437A (en) * 1993-06-21 1995-09-19 Minnesota Mining And Manufacturing Company Method and article for protecting a container that holds a fluid
US5823611A (en) * 1995-09-18 1998-10-20 Prince Corporation Headliner with integral impact absorption panels
US5833304A (en) * 1995-09-18 1998-11-10 Prince Corporation Headliner with integral impact absorption panels
US6756332B2 (en) * 1998-01-30 2004-06-29 Jason Incorporated Vehicle headliner and laminate therefor
US6321871B1 (en) * 1999-03-19 2001-11-27 Robert Lindsay Russell Acoustic panels and the like
US6669265B2 (en) * 2000-06-30 2003-12-30 Owens Corning Fiberglas Technology, Inc. Multidensity liner/insulator
US20030082387A1 (en) * 2001-10-30 2003-05-01 Arndt William R. Insulation facing material z-fold area coating
US6900147B2 (en) * 2001-11-28 2005-05-31 Kimberly-Clark Worldwide, Inc. Nonwoven webs having improved necking uniformity
US6893711B2 (en) * 2002-08-05 2005-05-17 Kimberly-Clark Worldwide, Inc. Acoustical insulation material containing fine thermoplastic fibers
US6770339B2 (en) * 2002-08-08 2004-08-03 Johns Manville International, Inc. Insulation package
US6875315B2 (en) * 2002-12-19 2005-04-05 Kimberly-Clark Worldwide, Inc. Non-woven through air dryer and transfer fabrics for tissue making
US6878427B2 (en) * 2002-12-20 2005-04-12 Kimberly Clark Worldwide, Inc. Encased insulation article
US6925765B2 (en) * 2002-12-27 2005-08-09 Johns Manville Facing and faced insulation assembly

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080003907A1 (en) * 2006-06-28 2008-01-03 Samuel Keith Black Facing Product for Vehicular Trim
US20200370294A1 (en) * 2019-05-23 2020-11-26 Armstrong World Industries, Inc. Fire resistant low density acoustic panel
US11731391B2 (en) * 2019-05-23 2023-08-22 Awi Licensing Llc Fire resistant low density acoustic panel

Also Published As

Publication number Publication date
US20050139415A1 (en) 2005-06-30
WO2005066430A1 (en) 2005-07-21
MXPA06007490A (en) 2006-08-31
CA2551830A1 (en) 2005-07-21
US7329456B2 (en) 2008-02-12

Similar Documents

Publication Publication Date Title
US5853843A (en) Recyclable headliner material
US6372322B1 (en) Shaped honeycomb structures and method and apparatus for making shaped honeycomb structures
US7137232B2 (en) Universal door skin blank and door produced therefrom
RU2296056C2 (en) Moldable decorative laminated material
US5866235A (en) All synthetic fiber interior trim substrate
WO2005081226A1 (en) Thermoformable acoustic product
JP2009520611A (en) Composite panel
US7329456B2 (en) Method of fabrication of an acoustical substrate into a three dimensional product
JP4602659B2 (en) Composite sheet material
WO2002062579A2 (en) Methods for manufacturing light transmitting panels and light transmitting panels
JP2003220652A (en) Sheet manufactured from flat core and curved component connected thereto and manufacturing method of the sheet
JP2010241196A (en) Folding type board, and automobile including the folding type board
JP2015508467A (en) Composite corner bead
US20030124271A1 (en) Vehicle trim panel/radiator element system
JP2006526124A (en) Foldable engine cover insulation element
JP2005169635A (en) Honeycomb panel material
KR101924479B1 (en) A ight weight pannel and a method for producing it
JP2854574B1 (en) Partition plate and manufacturing method thereof
JPH0848193A (en) Interior trim material for automobile
Pflug et al. Continuously produced honeycomb sandwich materials for automotive applications
JPH0537714Y2 (en)
JP2896656B2 (en) Shimada and fusuma
JPH01105730A (en) Board-like member having corrugating medium and manufacture thereof
JP2003343160A (en) Doorframe-shaped member
WO2009148851A1 (en) Office panel

Legal Events

Date Code Title Description
AS Assignment

Owner name: OWENS-CORNING FIBERGLAS TECHNOLOGY, INC., ILLINOIS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BERDAN, II, CLARKE;PARKS, JERRY M.;MARTINE, EDWARD A.;AND OTHERS;REEL/FRAME:017827/0273

Effective date: 20040510

AS Assignment

Owner name: OWENS CORNING INTELLECTUAL CAPITAL, LLC, OHIO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:OWENS-CORNING FIBERGLASS TECHNOLOGY, INC.;REEL/FRAME:019795/0433

Effective date: 20070803

Owner name: OWENS CORNING INTELLECTUAL CAPITAL, LLC,OHIO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:OWENS-CORNING FIBERGLASS TECHNOLOGY, INC.;REEL/FRAME:019795/0433

Effective date: 20070803

Owner name: OWENS CORNING INTELLECTUAL CAPITAL, LLC, OHIO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:OWENS-CORNING FIBERGLAS TECHNOLOGY, INC.;REEL/FRAME:019795/0433

Effective date: 20070803

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION