US20050154462A1 - Laterally insertable artificial vertebral disk replacement implant with translating pivot point - Google Patents

Laterally insertable artificial vertebral disk replacement implant with translating pivot point Download PDF

Info

Publication number
US20050154462A1
US20050154462A1 US10/981,863 US98186304A US2005154462A1 US 20050154462 A1 US20050154462 A1 US 20050154462A1 US 98186304 A US98186304 A US 98186304A US 2005154462 A1 US2005154462 A1 US 2005154462A1
Authority
US
United States
Prior art keywords
implant
end plate
keel
spacer
articulating element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/981,863
Inventor
James Zucherman
Ken Hsu
Charles Winslow
Scott Yerby
Steven Mitchell
John Flynn
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Medtronic PLC
Original Assignee
Saint Francis Medical Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saint Francis Medical Technologies Inc filed Critical Saint Francis Medical Technologies Inc
Priority to US10/981,863 priority Critical patent/US20050154462A1/en
Assigned to ST. FRANCIS MEDICAL TECHNOLOGIES, INC. reassignment ST. FRANCIS MEDICAL TECHNOLOGIES, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HSU, KEN Y., ZUCHERMAN, JAMES F., FLYNN, JOHN J., YERBY, SCOTT A., MITCHELL, STEVEN T., WINSLOW, CHARLES J.
Publication of US20050154462A1 publication Critical patent/US20050154462A1/en
Assigned to BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT reassignment BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT SECURITY AGREEMENT Assignors: ST. FRANCIS MEDICAL TECHNOLOGIES, INC.
Assigned to KYPHON INC. reassignment KYPHON INC. MERGER (SEE DOCUMENT FOR DETAILS). Assignors: ST. FRANCIS MEDICAL TECHNOLOGIES, INC.
Assigned to KYPHON, INC. reassignment KYPHON, INC. TERMINATION/RELEASE OF SECURITY INTEREST Assignors: BANK OF AMERICA, N.A.
Assigned to MEDTRONIC SPINE LLC reassignment MEDTRONIC SPINE LLC CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: KYPHON INC
Assigned to KYPHON SARL reassignment KYPHON SARL ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MEDTRONIC SPINE LLC
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/44Joints for the spine, e.g. vertebrae, spinal discs
    • A61F2/442Intervertebral or spinal discs, e.g. resilient
    • A61F2/4425Intervertebral or spinal discs, e.g. resilient made of articulated components
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/16Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans
    • A61B17/1662Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans for particular parts of the body
    • A61B17/1671Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans for particular parts of the body for the spine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/16Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans
    • A61B17/1604Chisels; Rongeurs; Punches; Stamps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30108Shapes
    • A61F2002/30199Three-dimensional shapes
    • A61F2002/30224Three-dimensional shapes cylindrical
    • A61F2002/30232Half-cylinders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30535Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30604Special structural features of bone or joint prostheses not otherwise provided for modular
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30535Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30604Special structural features of bone or joint prostheses not otherwise provided for modular
    • A61F2002/30616Sets comprising a plurality of prosthetic parts of different sizes or orientations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30621Features concerning the anatomical functioning or articulation of the prosthetic joint
    • A61F2002/30649Ball-and-socket joints
    • A61F2002/3065Details of the ball-shaped head
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30621Features concerning the anatomical functioning or articulation of the prosthetic joint
    • A61F2002/30649Ball-and-socket joints
    • A61F2002/30654Details of the concave socket
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30621Features concerning the anatomical functioning or articulation of the prosthetic joint
    • A61F2002/30649Ball-and-socket joints
    • A61F2002/30662Ball-and-socket joints with rotation-limiting means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30621Features concerning the anatomical functioning or articulation of the prosthetic joint
    • A61F2002/30649Ball-and-socket joints
    • A61F2002/30665Dual arrangement of two adjacent ball-and-socket joints
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2/30771Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
    • A61F2002/30772Apertures or holes, e.g. of circular cross section
    • A61F2002/30784Plurality of holes
    • A61F2002/30785Plurality of holes parallel
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2/30771Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
    • A61F2002/30841Sharp anchoring protrusions for impaction into the bone, e.g. sharp pins, spikes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2/30771Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
    • A61F2002/30878Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves with non-sharp protrusions, for instance contacting the bone for anchoring, e.g. keels, pegs, pins, posts, shanks, stems, struts
    • A61F2002/30884Fins or wings, e.g. longitudinal wings for preventing rotation within the bone cavity
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2/30771Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
    • A61F2002/30904Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves serrated profile, i.e. saw-toothed
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/44Joints for the spine, e.g. vertebrae, spinal discs
    • A61F2002/448Joints for the spine, e.g. vertebrae, spinal discs comprising multiple adjacent spinal implants within the same intervertebral space or within the same vertebra, e.g. comprising two adjacent spinal implants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0063Three-dimensional shapes
    • A61F2230/0069Three-dimensional shapes cylindrical
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00005The prosthesis being constructed from a particular material
    • A61F2310/00011Metals or alloys
    • A61F2310/00017Iron- or Fe-based alloys, e.g. stainless steel
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00005The prosthesis being constructed from a particular material
    • A61F2310/00011Metals or alloys
    • A61F2310/00023Titanium or titanium-based alloys, e.g. Ti-Ni alloys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00005The prosthesis being constructed from a particular material
    • A61F2310/00011Metals or alloys
    • A61F2310/00029Cobalt-based alloys, e.g. Co-Cr alloys or Vitallium
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00389The prosthesis being coated or covered with a particular material
    • A61F2310/00976Coating or prosthesis-covering structure made of proteins or of polypeptides, e.g. of bone morphogenic proteins BMP or of transforming growth factors TGF

Definitions

  • This field of art of this disclosure is directed to an artificial vertebral disk replacement and method.
  • the spinal column is a biomechanical structure composed primarily of ligaments, muscles, vertebrae and intervertebral disks.
  • the biomechanical functions of the spine include: (1) support of the body, which involves the transfer of the weight and the bending movements of the head, trunk and arms to the pelvis and legs, (2) complex physiological motion between these parts, and (3) protection of the spinal cord and nerve roots.
  • spinal stenosis including, but not limited to, central canal and lateral stenosis
  • facet joint degeneration typically results from the thickening of the bones that make up the spinal column and is characterized by a reduction in the available space for the passage of blood vessels and nerves.
  • Facet joint degeneration results from the constant load borne by the facet joints, and the eventual wear that results. Pain associated with both conditions can be relieved by medication and/or surgery.
  • the primary purpose of the intervertebral disk is to act as a shock absorber.
  • the disk is constructed of an inner gel-like structure, the nucleus pulposus (the nucleus), and an outer rigid structure comprised of collagen fibers, the annulus fibrosus (the annulus).
  • the disk At birth, the disk is 80% water, and then gradually diminishes with time, becoming stiff. With age, disks may degenerate, and bulge, thin, herniate, or ossify. Additionally, damage to disks may occur as a result disease, trauma or injury to the spine.
  • the damage to disks may call for a range of restorative procedures. If the damage is not extensive, repair may be indicated, while extensive damage may indicate full replacement. Regarding the evolution of restoration of damage to intervertebral disks, rigid fixation procedures resulting in fusion are still the most commonly performed surgical intervention. However, trends suggest a move away from such procedures.
  • areas evolving to address the shortcomings of fusion for remediation of disk damage include technologies and procedures that preserve or repair the annulus, that replace or repair the nucleus, and that advance implants for total disk replacement.
  • the trend away from fusion is driven both by issues concerning the quality of life for those suffering from damaged intervertebral disks, as well as responsible health care management. These issues drive the desire for procedures that are minimally invasive, can be tolerated by patients of all ages, especially seniors, and can be performed preferably on an out patient basis.
  • FIG. 1A is a posterior view of an embodiment of the assembled implant of the invention.
  • FIG. 1B is a cross-section of the device shown in FIG. 1A .
  • FIG. 1C is a posterior view of two bottom plates of the implant of the embodiment of the invention.
  • FIGS. 1D and 1E are posterior views of the embodiment of the implant of the invention shown in FIG. 1A illustrating the operation of the device in bending to the left and bending to the right, respectively.
  • FIG. 2A is a side view of the implant of FIG. 1A showing the implant in flexion.
  • FIG. 2B is a side view of the implant showing the implant in extension.
  • FIG. 2C is a partial cross-sectional view of a side view of the implant of an embodiment of the invention.
  • FIG. 2D is a partial cross-sectional view of an alternative embodiment of the implant of the invention having a protuberance adjacent the socket.
  • FIG. 3A is a top view of a portion of an embodiment of the assembled implant of the invention.
  • FIG. 3B is a top view of an embodiment of the implant of the invention showing a rotation to the right.
  • FIG. 3C is a top view of an embodiment of the implant of the invention showing a rotation to the left.
  • FIG. 4A and FIG. 4B show perspective views of the first and second inner surfaces of the first end plate and the second end plate of an embodiment of implant 100 .
  • FIG. 5A is a posterior view of the embodiment of the implant of the invention after being implanted between two vertebral bodies.
  • FIG. 5B is a side view of the embodiment of the implant of the invention after being implanted between two vertebral bodies.
  • FIG. 6A is a rear view of an alternate embodiment of the invention having two plates.
  • FIG. 6B and FIG. 6C show perspective views of the first and second inner surfaces of the first end plate and the second end plate of an alternative embodiment of implant 600 .
  • FIG. 6D is a cross sectional view of the embodiment shown in FIG. 6A .
  • FIG. 7A is a top view of an embodiment of a cutting tool of the invention used to prepare the vertebral bodies for the implant.
  • FIG. 7B is a side view of the embodiment of the cutting tool of the invention from the distal end.
  • FIG. 7C is a distal end view of an embodiment of the cutting tool of the invention.
  • FIG. 8A is a side view of an embodiment of the implant lateral insertion tool of the invention.
  • FIG. 8B is a top view of the embodiment of the implant lateral insertion tool of the invention.
  • FIG. 8C is a distal end view of the embodiment of the implant lateral insertion tool of the invention.
  • FIG. 8D is a top view of an embodiment of the implant lateral insertion tool holding an embodiment of the implant.
  • FIG. 9 is a block diagram illustrating the steps of a method for inserting the implant between vertebral bodies.
  • FIG. 1A shows an embodiment of the implant 100 having a four-piece configuration.
  • the designations, “A” for anterior, “P” for posterior, “RL” for right lateral, and “LL” for left lateral are given in the drawings for spatial orientation. These designations give the relationship of all faces of embodiments of the disclosed intervertebral implant from the superior perspective; i.e. looking down the axis of the spine.
  • the implant 100 has a pair 131 of first end plates, or upper end plates 110 that are configured to mate with a first vertebra.
  • the upper end plate 110 of implant 100 has a first outer surface 112 from which a first keel 114 extends with a first set of teeth 115 .
  • the implant 100 has a pair 133 of second end plates, or lower end plates 120 that are configured to mate with a second vertebra.
  • the lower end plate 120 has a second outer surface 122 from which a keel 124 extends with a second set of teeth 125 .
  • a pair of pivoting or articulating elements or spacers 130 that are part of the pair 133 of lower end plates 120 acts as an articulating element, or spacer between the first end plate 110 and the second end plate 120 and facilitates pivotal or rotational and also twisting movement of the first end plate 110 and the second end plate 120 , relative to each other.
  • the pair of articulating elements, or spacers 130 is curved or convex, as will be discussed in more detail below.
  • FIG. 6A illustrates a posterior view of an alternate embodiment of the implant shown in FIG. 1A .
  • the implant 600 of FIG. 6A is in the form of a two-piece implant 600 having a first end plate 610 and a second end plate 620 .
  • the first end plate, or upper end plate 610 is configured to mate with a first vertebra
  • a second end plate, or lower end plate 620 is configured to mate with a second vertebra.
  • the first inner surface 616 of the upper end plate 610 has a socket or first cavity 636 formed therein.
  • a pivoting or articulation element, or spacer 630 is formed on second end plate 620 .
  • the spacer 630 at least partially engages the first socket 636 , and facilitates pivotal or rotational and also twisting movement of the first end plate 610 and the second end plate 620 , relative to each other.
  • the spacer 630 and corresponding socket 636 are dimensioned so that they are hemi-cylindrical ( FIG. 6D ), while in another embodiment shown in FIG. 6B and FIG. 6C , the articulating element, or spacer 630 and corresponding socket 636 are hemispherical.
  • the upper end plate 610 of implant 600 has a first outer surface 612 from which a first keel 614 extends with a first set of teeth 615 .
  • first keel 614 when implant 600 is inserted between vertebrae, the first keel 614 extends longitudinally across the first outer surface 612 , about perpendicular to the sagittal plane of the spine. In another embodiment, the first keel 614 extends longitudinally only partially across the first outer surface 612 , about perpendicular to the sagittal plane of the spine.
  • the teeth 615 in the two embodiments with complete or partial extension of the keel 614 across the first outer surface 612 of the upper end plate 610 point towards the left lateral face of implant 600 when the embodiment is meant to be put into a slot in a vertebral body from the left lateral approach to the spine.
  • This orientation is shown in the figures, and is particularly evident where the keel 614 is fully displayed, as in FIG. 1A and FIG. 6A , for example.
  • the teeth 615 point towards the right lateral face of implant 600 when the embodiments are meant to be put into a slot in a vertebral body from the right lateral approach to the spine.
  • the first outer surface 612 abuts the vertebral body when the implant 600 is implanted.
  • the first keel 614 extends into the vertebral body to anchor implant 600 into position, and is perpendicular to the median sagittal plane of the spine, in which extension and flexion occur.
  • the first keel 614 in this orientation offers substantial stability during extension and flexion for the implant 600 inserted between the vertebrae of a patient.
  • the first keel 614 in this embodiment is preferably aligned with and supports the articulation of implant 600 .
  • the first inner surface 616 with socket 636 at least partially engages the spacer 630 of the implant and opposes the second end plate 620 .
  • the first inner surface 616 can form a planar surface that is parallel to the first outer surface 612 , or can form a planar surface that is not parallel to the first outer surface 612 .
  • the lower end plate 620 has a second outer surface 622 from which a keel 624 extends with a second set of teeth 625 .
  • the second keel 624 when implant 600 is inserted between vertebrae, is about perpendicular to the sagittal plane of the spine.
  • the second keel 624 extends longitudinally across the second outer surface 622
  • the second keel 624 extends longitudinally partially across the second outer surface 622 .
  • the teeth 625 in the two embodiments with complete or partial extension of the second keel 624 across the second outer surface 622 of the lower end plate 620 point towards the left lateral face of implant 600 when the embodiment is meant to be put into a slot in a vertebral body from the left lateral approach to the spine.
  • This orientation is shown in the figures, and is particularly evident where the second keel 624 is fully displayed, as in FIG. 1A and FIG. 6A , for example.
  • the teeth 625 point towards the right lateral face of implant 600 when the embodiments are meant to be put into a slot in a vertebral body from the right lateral approach to the spine.
  • the second outer surface 622 abuts the vertebral body when the implant 600 is implanted.
  • the second keel 624 extends into the vertebral body to anchor implant 600 into position, and is perpendicular to the median sagittal plane of the spine, in which extension and flexion occur.
  • the second keel 624 in this orientation offers substantial stability during extension and flexion for the implant 600 inserted between the vertebrae of a patient.
  • the second keel 624 in this embodiment is aligned with and supports the articulation of implant 600 .
  • the second end plate 620 with second inner surface 626 having the spacer 630 opposes the first end plate 610 with first inner surface 616 having socket 636 .
  • the spacer 630 of second inner surface 626 at least partially engages socket 636 of first upper surface.
  • the second inner surface 626 can form a planar surface that is parallel to the second outer surface 622 , or can form a planar surface that is not parallel to the second outer surface 622 .
  • the first inner surface 616 of the first end plate 610 can be parallel to the second inner surface 626 of the second end plate 620 when the implant 600 is assembled and is in a neutral position (i.e., the position where the first end plate 610 has not rotated relative to the second end plate 620 ).
  • the first inner surface 616 of the first end plate 610 can be non-parallel to the planar surface of the second inner surface 626 of the second end plate 620 when the implant 600 is assembled and in a neutral position. This non-parallel orientation of the first end plate 610 and the second end plate 620 allows the plates to pivot to a greater degree with respect to each other.
  • factors such as the height and position of the spacer 630 , and the, can also be adjusted in order to increase the degree that the first end plate 610 and the second end plate 620 can pivot relative to each other. Other factors that effect the degree of movement of the first end plates 110 or 610 relative to the second end plates 120 or 620 for implant 100 or implant 600 will discussed below.
  • the planar surfaces corresponding to the first and second outer surfaces 612 , 622 and the first and second inner surfaces 616 , 626 of the first and second end plates 610 , 620 lie within, or substantially within, the axial plane of the body.
  • the first and second keels 614 , 624 are aligned in the axial plane, or perpendicular to the sagittal plane of the vertebrae.
  • the first and second keels 614 , 624 extend into the vertebral bodies to anchor implant 600 into position, and are perpendicular to the median sagittal plane of the spine, in which extension and flexion occur.
  • the first and second keels 614 , 624 in this orientation offer substantial stability during extension and flexion for implant 600 inserted between the vertebrae of a patient. Additionally, the first and second keels 614 , 624 in this embodiment are aligned with and support the axis of articulation of implant 600 defined by an RL to LL orientation.
  • the lateral orientation of the keels allow the implants to be inserted into the spine using a lateral approach as opposed to an anterior or posterior approach.
  • the lateral approach is advantageous, because the spinal nerves in the spinal cavity are minimally undisturbed when the implants are inserted laterally into the spine. In comparison to a posterior insertion approach in which the spinal nerves can be substantially disturbed, the spinal nerves are bypassed and relatively undisturbed when the implant is inserted laterally between the vertebral bodies from the side of the spine.
  • an anterior insertion approach has its benefits
  • the lateral insertion approach can allow the present implant and associated implantation tools, to be inserted into the spine with less disturbance of the patient's internal organs. This can translate into less time and risk associated with preparing the spine for insertion as well as inserting the implant itself into the spine.
  • the laterally oriented keels offer substantial stability to the vertebral bodies during extension, flexion and lateral bending of the spine.
  • the first and second keels 114 , 124 and 614 , 624 include ports 148 , 152 and 648 , 652 , respectively, that facilitate bone ingrowth.
  • bone from the vertebral bodies can grow thorough the ports 148 , 152 and 648 , 652 , and aid in securing the first and second keels 114 , 124 and 614 , 624 , and thereby for securing implants 100 and 600 once inserted between vertebral bodies.
  • surfaces defined by the first and second keels 114 , 124 and 614 , 624 and the first and second outer surfaces 112 , 122 and 612 , 622 of implants 100 and 600 can be roughened in order to promote bone ingrowth into these defined surfaces of implants 100 and 600 .
  • the ports 148 , 152 and 648 , 652 , the first and second keels 114 , 124 and 614 , 624 , and the first and second outer surfaces 112 , 122 and 612 , 622 of implant 600 can be coated with materials that promote bone growth such as for example bone morphogenic protein, BMP, or structural materials such as hyaluronic acid, HA, or other substance which promotes growth of bone relative to and into the keels 614 , 624 , keel ports 648 , 652 , and other external surfaces of the implant 600 .
  • materials that promote bone growth such as for example bone morphogenic protein, BMP, or structural materials such as hyaluronic acid, HA, or other substance which promotes growth of bone relative to and into the keels 614 , 624 , keel ports 648 , 652 , and other external surfaces of the implant 600 .
  • FIG. 1A and FIG. 6A can be used to create a three-piece implant as will also be appreciated by those of ordinary skill in the art.
  • the first end plate 610 of FIG. 6A with its socket 636 from a two-piece embodiment can be combined with two second end plates 120 of FIG. 1A from a four-piece embodiment to form an implant.
  • the second end plate 620 with spacer 630 of a two piece embodiment, such as FIG. 6A can be combined with two first end plates 110 from a four-piece design, such as FIG. 1A , to achieve an implant.
  • the features described herein for an interspinous implant for lateral insertion between adjacent vertebrae are applicable to two-, three-, or four-piece embodiments. None of these configurations depart from the scope of the invention.
  • FIG. 1B depicts the pair 131 of first or upper end plates 110 and the pair 133 of second or lower end plates 120 in cross-section.
  • Each upper and lower end plate 110 , 120 has a keel 114 , 124 with a set of teeth 115 , 125 .
  • different embodiments of implant 100 may have complete or partial extension of the first and second keels 114 , 124 across the first and second outer surfaces 112 , 122 of the upper and lower end plates 110 , 120 .
  • the teeth 115 , 125 point towards the left lateral face of implant 100 when the embodiment is meant to be put into a slot in a vertebral body from the left lateral approach to the spine, and alternatively, the teeth 115 , 125 point towards the right lateral face of implant 100 when the embodiments are meant to be put into a slot in a vertebral body from the right lateral approach to the spine.
  • the socket 136 formed in the first inner surface 116 of first end plate 110 has a first elongated sidewall 150 , a corresponding second elongated sidewall 152 (shown in FIG. 3B ), an end wall 154 , and an open end 156 .
  • the open ends 156 of each of the first end plates 110 are oriented so that the open ends 156 face each other.
  • Each of the first and second end plates 110 , 120 has a first end 138 , 141 and a second end 139 , 143 .
  • the ends 139 of the first end plate 110 face each other, as do the ends 143 of the second end plate 120 .
  • the lower plates 120 each have an articulating element, or spacer 130 , which is convex and hemi-cylindrical, that engage the socket 136 .
  • the concave hemi-cylindrical inner surface 135 of the socket 136 is sloped to allow the pair 131 of first or upper end plates 110 to easily slide, or rock, side-to-side on the articulating element, or spacer 130 and slide, or ride, forward and backward with enough looseness of fit to allow for some twisting in order to emulate the motion of the vertebral bone and intervertebral disk tissue.
  • This arrangement thus, has a sliding or translating pivot point. It is evident from FIG.
  • first and second keels 114 , 124 are aligned with and support the axis of articulation of the upper end plate 110 about the spacer 130 for this embodiment.
  • This axis of articulation is longitudinally oriented with respect to the vertebrae, or about perpendicular to the sagittal plane of the spine.
  • the alignment of the first and second keels 114 , 124 with the axis of articulation offers substantial stability during flexion and extension when implant 100 is inserted between the vertebrae of a patient.
  • the articulating element, or spacer 130 has four sides: a first elongated sidewall 140 , a second elongated sidewall 142 , a third end wall 143 , and a fourth end wall 146 .
  • the third end wall 144 is flush with the end 143 of the lower end plate 120 of the implant.
  • the third end wall 144 has a profile height 160 and the fourth end wall 146 has a profile height 162 . Comparing the profile heights 160 , 162 to each other at the same point on the second inner surface 126 of the second end plate 120 , the overall profile height of the third end wall 144 is greater than the fourth end wall 146 (i.e., 160 >162).
  • socket 136 slopes downwardly from the end wall 144 to the end wall 146 .
  • spacers 130 comprise an articulating element that has a high surface where the third end walls 144 abut each other and slope to a lower surface adjacent to fourth end walls 146 .
  • the edges of the articulating element or spacer 130 are eased or rounded to allow for further range of motion of the pair 131 of upper end plates 110 relative to the pair 133 of lower end plates 120 .
  • the overall height of the third end wall 144 and the fourth end wall 146 can be equivalent while still having an effective third end wall height 160 that is greater than the effective fourth end wall height 162 due to the overall slope of the second inner surface 126 .
  • the overall height of the third end wall 144 and the fourth end wall 146 can be different with the third end wall 144 having a height greater than the fourth end wall 146 , thus eliminating the need for the second inner surface 126 to have a slope or further increasing the net difference between the height of the third end wall and the forth end wall.
  • the spacer 130 is depicted such that the third end wall 144 is flush with the second end 143 , those of skill in the art will appreciate that the spacer 130 could also be configured such that the third end wall 144 is recessed relative to the end 143 of the second end plate. In such a configuration, the third end wall 144 and the end 143 would not be flush.
  • FIGS. 1D and 1E illustrate posterior views of the implant 100 showing the clearance for left and right lateral bending.
  • left and right lateral bending ranges from 3-5°.
  • the length of the spacer 130 can be less than the length of the socket 136 .
  • the open ends 156 of the sockets facilitate movement of the articulating elements, or spacers 130 within the socket 136 to accommodate side-bending movement.
  • FIG. 2A and FIG. 2B are views of the intervertebral implant 100 , which depict the motion of the first end plate 110 relative to the second end plate 120 .
  • a side view of implant 100 is depicted, showing first end plate 110 with socket 136 and the second end plate 120 with the articulating element or spacer 130 .
  • the sloping of the first inner surface 116 of the first end plate 110 facilitates rotation of the spacer and socket in an anterior A direction and a posterior P direction.
  • the first inner surface 116 slopes from a high point at about where the socket is located to low points at the ends 111 and 113 of the upper end plate 110 .
  • the implant 100 is positioned to achieve flexion (i.e., forward bending) in a range up to about 15°, but more preferably 10°, while in FIG. 2B , the implant 100 is positioned to achieve extension (i.e., backward bending) in a preferable range of up to about 5°.
  • flexion i.e., forward bending
  • extension i.e., backward bending
  • FIG. 2C and FIG. 2D show cross sections of implant 100 through the sagittal plane of the vertebrae.
  • FIG. 2C is a cross-section of the side view of the intervertebral implant 100 showing the mating of the spacer 130 to the socket 136 .
  • FIG. 2D illustrates an alternate embodiment of the first end plate 110 wherein the socket 136 has ridges 268 , 269 forming a protuberance that extends into the channel 264 , 265 respectively on the second end plate 120 .
  • the protuberances 268 , 269 can extend partially into the channel, such as the configuration shown, or can have a channel conforming shape such that when the spacer and socket are moved to achieve flexion 272 or extension 274 the protuberance or ridge 268 , 269 extends into the channels 264 , 265 .
  • This embodiment allows the first inner surface 116 and second inner surface 126 of the first end plate 110 and the second end plate 120 to be flat and non-sloping as shown while still allowing for the implant to emulate forward and backward bending and allow for the blocking of the motion of the socket relative to the spacer.
  • first and second keels 114 , 124 are aligned with and support the articulation of first end plate 110 about the spacer 130 for this embodiment, and where the articulation is about perpendicular to the sagittal plane of the spine.
  • FIG. 3A a top view of one-half of the intervertebral implant 100 is shown.
  • Each of the top first end plate 110 and the bottom second end plate 120 have a bores 376 for receiving pins of an implant tool.
  • the first keel 114 on the first end plate 110 is positioned so that it is aligned in the same plane with the second keel 124 on the second end plate 120 .
  • the length of spacer 130 from the third end wall 144 to the fourth end wall 146 is shorter than the length of the socket 136 from the end wall 154 to the open end 156 , so that the fit of the spacer with the socket is somewhat loose.
  • implant 100 of this embodiment allows the spine to have movement in three orthogonal degrees of freedom, namely (1) forward and backward bending movement, (2) lateral side-to-side bending, and (3) twisting movement.
  • FIGS. 3B and 3C show the relative rotation of the first or upper end plate 110 to the second or lower end plate 120 to achieve rotation about a central axis 378 . This rotation results in about a 3°-6° rotation about the axis (i.e., 3° of torso twisting in each direction).
  • FIG. 4A and FIG. 4B show views of the first and second end plates, 110 , 120 .
  • FIG. 4A shows a perspective view of a second end plate 120 of the intervertebral implant 100 .
  • the second inner surface 126 of the second end plate 120 is shown with a hemi-cylindrical spacer 130 formed therefrom, and channels or grooves 264 , 265 extending about the spacer 130 .
  • the channels 264 , 265 are formed on two sides of the spacer 130 .
  • the channels 264 , 265 can alternatively surround the spacer 130 .
  • FIG. 4B shows a perspective view of the first end plate 110 , with a first inner surface 116 that opposes the second inner surface 126 .
  • the first inner surface 116 has a hemi-cylindrical socket 136 formed therein.
  • the socket 136 of FIG. 4B is configured to mate with the spacer 130 of FIG. 4A .
  • FIG. 4 c and FIG. 4 d show views of the first and second end plates, 110 , 120 for an alternative embodiment of implant 100 .
  • FIG. 4 c shows a perspective view of an embodiment of the second inner surface 126 of the second or lower end plate 120 of implant 100 .
  • the second inner surface 126 of the lower end plate 120 has a hemispherical spacer 130 formed therefrom.
  • FIG. 4 d shows a perspective view of an embodiment of the first inner surface 116 of the first or upper end plate 110 of implant 100 , which opposes the second inner surface 126 .
  • the first inner surface 116 of the upper end plate 110 has a socket or cavity 136 formed therein.
  • the socket 136 has a concave hemispherical surface.
  • the socket 136 allows the first end plate 110 to pivot or rotate on spacer 130 .
  • first and second keels 114 , 124 are aligned with and support the articulation of the first end plate 110 about the spacer 130 , relative to the second end plate 120 .
  • the first and second keels 114 , 124 in this orientation offer substantial stability during extension and flexion for implant 100 inserted between the vertebrae of a patient.
  • the first and second keels 114 , 124 in these embodiments are aligned with and support the lateral axis of articulation of implant 100 , which is perpendicular to the sagittal plane of the spine. Additionally, as evidenced from the perspective views of FIG. 4A and FIG.
  • the perimeter shape of the upper and lower end plates 110 , 120 can be configured to correspond to the perimeter shape of a vertebral disk. As will be appreciated by those of ordinary skill in the art, the perimeter shape of the upper end plate 110 and the lower end plate 120 can be the same.
  • FIG. 5A and FIG. 5B show the implant after insertion between the vertebrae of a patient.
  • FIG. 5A illustrates a posterior view of the implant shown in FIG. 1A implanted between vertebral bodies in a spine.
  • FIG. 5A illustrates the spinal column 500 and the cauda equina 504 (a collection of lumbar and sacral nerve roots that fill the caudal end of the spinal cord) with individual nerves 506 exiting the cord between lumbar vertebrae.
  • the implant 100 is positioned between two vertebral bodies 520 , 521 such that the first and second keels 114 , 124 lie in a plane parallel to coronal or frontal plane of the body, or perpendicular to the sagittal plane of the vertebrae.
  • FIG. 5B illustrates a side view of the implant inserted between vertebral bodies 520 , 521 , for embodiments of the implant as that shown in FIG. 1A , or FIG. 6A .
  • the gap between the first end plate 110 and the second end plate 120 at the anterior “A” face of implants 100 , 600 is greater than at the posterior “P” face of implants 100 , 600 .
  • the greater gap at the anterior face vs. the posterior face of implants 100 , 600 results in the flexion (forward bending) movement being facilitated to a greater degree than extension (backward bending) movement.
  • flexion forward bending
  • backward bending extension
  • These embodiments show implants 100 , 600 inserted between two vertebrae with two first keels 114 extending from the first end plate 110 , and two second keels 124 extending from the second end plate 120 .
  • the first and second keels 114 , 124 are about perpendicular to the sagittal plane of the spine, and support the articulation of the first end plate 110 relative to the second end plate 120 , about the spacer 130 .
  • implants 100 , 600 can be made of medical grade titanium, stainless steel or cobalt chrome. Other materials that have appropriate structural strength and that are suitable for implantation into a patient can also be used.
  • One class of materials contemplated for use in implant 100 is the class of biocompatible polymers. Copolymers, blends and composites of polymers are also contemplated for fabrication of parts of the disclosed device.
  • a copolymer is a polymer derived from more than one species of monomer.
  • a polymer composite is a heterogeneous combination of two or more materials, wherein the constituents are not miscible, and therefore exhibit an interface between one another.
  • a polymer blend is a macroscopically homogeneous mixture of two or more different species of polymer.
  • biocompatible polymers are the polyaryl ester ketones which has several members, which include polyetheretherketone (PEEK), and polyetherketoneketone (PEKK).
  • PEEK has proven as a durable material for implants, as well as meeting criteria of biocompatibility.
  • Medical grade PEEK is available from Victrex Corporation under the product name PEEK-OPTIMA.
  • Medical grade PEKK is available from Oxford Performance Materials under the name OXPEKK, and also from CoorsTek under the name BioPEKK.
  • Still another interesting group of biocompatible polymers are polyalkyl biocompatible polymers, such as polyethylenes, polypropylenes, and the like.
  • These medical grade biocompatible polymers are also available as reinforced polymer materials.
  • fillers are added to a polymer, copolymer, polymer blend, or polymer composite. Fillers are added to modify properties, such as mechanical, optical, and thermal properties. In this case, fillers, such as carbon fibers, are added to reinforce the polymers mechanically to enhance strength for certain uses, such as load bearing devices.
  • FIG. 7A through 7D show an embodiment of a tool for preparing vertebral bodies to receive implants 100 , 600
  • FIG. 8A through FIG. 8D show an embodiment of a tool for inserting embodiments of the disclosed intervertebral implants 100 , 600 .
  • FIG. 7A through FIG. 7C are the top view, the side view, and an end view of the cutting tool 700 .
  • the cutting tool 700 has a handle 710 at its proximal end for controlling the tool during operation.
  • the handle 710 can be removable or affixed to the cutting end.
  • the distal end 702 of the tool 700 is solid head has an upper surface 705 , and a lower surface 706 .
  • the upper surface 705 has a first blade 712 mounted thereon, and the lower surface 706 has a second blade 714 mounted thereon.
  • the first blade 712 is about centered with the upper surface 705
  • the second blade 714 is about centered with the lower surface 706 .
  • the first and second blades 712 , 714 are oriented to cut a space in a first and second intervertebral body for the first and second keels 114 , 124 of implants 100 , 600 .
  • the space is perpendicular to the sagittal plane of the vertebrae, and allows for the lateral insertion of the implants 100 , 600 .
  • FIG. 7C is a view of the distal end of the cutting tool 700 showing the beveled end 716 and the first and second blades 712 , 714 .
  • the height h of the head 702 of the cutting tool 700 approximates the distance between two vertebral bodies or the height of the disk space. In this embodiment of cutting tool 700 , the blades 712 , 714 extend above and below the head 702 .
  • the tool shown in FIG. 7A can be modified such that instead of cutting keel-receiving channels in the upper and lower vertebral bodies at the same time, two tools are provided so that only one vertebral body is cut for keel-receiving channels at a time.
  • an alternative embodiment of cutting tool 700 has a first tool with a single blade mounted on the head 702 .
  • a second tool could be provided having a single blade mounted on the head 702 , and additionally on the opposing surface, a guide. The guide on the surface opposite the surface with the blade is designed to engage with the first keel receiving channel cut the first vertebrae with the first tool to ensure that the second cut is optimally aligned with the first cut.
  • FIG. 8A through FIG. 8D depict an embodiment of the implanting tool used to insert the implant 600 of FIG. 6A between vertebral bodies.
  • FIG. 8A is a side view of the implantation tool 800 that has a handle 810 and an implant holder 820 .
  • the implant holder 820 has an implant conforming surface 824 and four pins 822 for holding the first end plate 610 and the second end plate 620 implant 600 .
  • the conforming surface 824 is curved to follow the convex outer LL edges of the first and second end plates 610 , 620 , respectively, for an implant inserted from the left lateral side of a patient.
  • the implant 600 nests within a conforming surface 824 and is held by pins 822 .
  • FIG. 8C shows the distal view of the end of the tool with four pins 822 for securing the first and second end plate of the implant.
  • kits can be assembled that include an implant 100 (or 600 ) sized for a particular patient.
  • the kit could also include several cutting tools 700 and several implanting tools 800 or a single handle that cooperates with cutting ends 702 and implantation ends 820 .
  • FIG. 9 is a block diagram showing the basic steps of the method for laterally inserting the embodiments of implants 100 , 600 .
  • a tool, such as the one depicted in FIG. 7A is inserted laterally between the vertebral bodies to create channels in the bodies to receive the keels of the implant.
  • the implant is then inserted laterally 930 between two vertebrae and the wound is closed 940 . This procedure can be followed for either a left lateral approach or right lateral approach.
  • the teeth 115 , 125 of upper and lower keels 114 , 124 would be pointed towards the left lateral face of the device in order to aid in retaining embodiments of implants 100 , 600 in place.
  • the teeth would point towards the right lateral face of the device.

Abstract

An implant that can be placed between two vertebrae using a lateral insertion method is described. The implant is characterized by having a first end plate and a second end plate with a hemi-cylindrical spacer extending from the second end plate. The hemi-cylindrical spacer fits within a socket on the first end plate and allows for pivotal or rotational motion and also for twisting motion.

Description

    CLAIM OF PRIORITY
  • This application claims priority under 35 USC 119 to U.S. Patent Application No. 60/526,724, filed on Dec. 2, 2003 and entitled “ARTIFICIAL VERTEBRAL DISK REPLACEMENT IMPLANT WITH TRANSLATING PIVOT POINT AND LATERAL IMPLANT METHOD,” which is hereby incorporated by reference.
  • CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is related to U.S. Provisional Application No. 60/422,039, filed Oct. 29, 2002, entitled “ARTIFICIAL VERTEBRAL DISK REPLACEMENT IMPLANT WITH TRANSLATING PIVOT POINT AND METHOD,” U.S. patent application Ser. No. 10/684,668, filed Oct. 14, 2003, entitled “ARTIFICIAL VERTEBRAL DISK REPLACEMENT IMPLANT WITH CROSSBAR SPACER AND METHOD,” U.S. patent application Ser. No. 10/684,669, filed Oct. 14, 2003, entitled “ARTIFICIAL VERTEBRAL DISK REPLACEMENT IMPLANT WITH TRANSLATING PIVOT POINT AND METHOD,” U.S. Provisional Application No. 60/422,011, filed Oct. 29, 2002, entitled “TOOLS FOR IMPLANTING AN ARTIFICIAL VERTEBRAL DISK AND METHOD,” U.S. patent application Ser. No. 10/685,134, filed Oct. 14, 2003, entitled “TOOLS FOR IMPLANTING AN ARTIFICIAL VERTEBRAL DISK AND METHOD,” U.S. Provisional Application No. 60/422,022, filed Oct. 29, 2002, entitled “ARTIFICIAL VERTEBRAL DISK REPLACEMENT IMPLANT WITH A SPACER AND METHOD,” U.S. Provisional Application No. 60/422,021, filed Oct. 29, 2002, entitled “ARTIFICIAL VERTEBRAL DISK REPLACEMENT IMPLANT WITH CROSSBAR SPACER AND METHOD,” U.S. patent application Ser. No. 10/685,011, filed Oct. 14, 2003, entitled “ARTIFICIAL VERTEBRAL DISK REPLACEMENT IMPLANT WITH SPACER AND METHOD,” U.S. patent application Ser. No. ______, filed ______, entitled “METHOD OF LATERALLY INSERTING AN ARTIFICIAL VERTEBRAL DISK REPLACEMENT IMPLANT WITH TRANSLATING PIVOT POINT,” (KLYCD-05007US6), U.S. patent application Ser. No. ______, filed ______, entitled “LATERALLY INSERTABLE ARTIFICIAL VERTEBRAL DISK REPLACEMENT IMPLANT WITH A CROSSBAR SPACER,” (KLYCD-05008US6), U.S. patent application Ser. No. ______, filed ______, entitled “METHOD OF LATERALLY INSERTING AN ARTIFICIAL VERTEBRAL DISK REPLACEMENT IMPLANT WITH A CROSSBAR SPACER,” (KLYCD-05008US7), U.S. patent application Ser. No. ______, filed ______, entitled “LATERALLY INSERTABLE ARTIFICIAL VERTEBRAL DISK REPLACEMENT IMPLANT WITH A SPACER,” (KLYCD-05010US4), U.S. patent application Ser. No. ______, filed ______, entitled “METHOD OF LATERALLY INSERTING AN ARTIFICIAL VERTEBRAL DISK REPLACEMENT IMPLANT WITH A SPACER,” (KLYCD-05010US5), all of which are incorporated herein by reference.
  • FIELD OF ART
  • This field of art of this disclosure is directed to an artificial vertebral disk replacement and method.
  • BACKGROUND
  • The spinal column is a biomechanical structure composed primarily of ligaments, muscles, vertebrae and intervertebral disks. The biomechanical functions of the spine include: (1) support of the body, which involves the transfer of the weight and the bending movements of the head, trunk and arms to the pelvis and legs, (2) complex physiological motion between these parts, and (3) protection of the spinal cord and nerve roots.
  • As the present society ages, it is anticipated that there will be an increase in adverse spinal conditions which are characteristic of aging. For example, with aging comes an increase in spinal stenosis (including, but not limited to, central canal and lateral stenosis), and facet joint degeneration. Spinal stenosis typically results from the thickening of the bones that make up the spinal column and is characterized by a reduction in the available space for the passage of blood vessels and nerves. Facet joint degeneration results from the constant load borne by the facet joints, and the eventual wear that results. Pain associated with both conditions can be relieved by medication and/or surgery.
  • In addition, to spinal stenosis, and facet joint degeneration, the incidence of damage to the intervertebral disks is also common. The primary purpose of the intervertebral disk is to act as a shock absorber. The disk is constructed of an inner gel-like structure, the nucleus pulposus (the nucleus), and an outer rigid structure comprised of collagen fibers, the annulus fibrosus (the annulus). At birth, the disk is 80% water, and then gradually diminishes with time, becoming stiff. With age, disks may degenerate, and bulge, thin, herniate, or ossify. Additionally, damage to disks may occur as a result disease, trauma or injury to the spine.
  • The damage to disks may call for a range of restorative procedures. If the damage is not extensive, repair may be indicated, while extensive damage may indicate full replacement. Regarding the evolution of restoration of damage to intervertebral disks, rigid fixation procedures resulting in fusion are still the most commonly performed surgical intervention. However, trends suggest a move away from such procedures. Currently, areas evolving to address the shortcomings of fusion for remediation of disk damage include technologies and procedures that preserve or repair the annulus, that replace or repair the nucleus, and that advance implants for total disk replacement. The trend away from fusion is driven both by issues concerning the quality of life for those suffering from damaged intervertebral disks, as well as responsible health care management. These issues drive the desire for procedures that are minimally invasive, can be tolerated by patients of all ages, especially seniors, and can be performed preferably on an out patient basis.
  • Most recently, there has been an increased interest in total disk replacement technology. A number of artificial disks are beginning to appear in the medical device marketplace. These artificial disks vary greatly in shape, design and functionality. With these devices go tools and methods for insertion between vertebrae thereof.
  • Accordingly, there is a need in the art for innovation in technologies and methods that advance the art in the area of minimally invasive intervertebral disk replacement. This not only enhances the quality of life for those suffering from the condition, but is responsive to the current needs of health care management.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1A is a posterior view of an embodiment of the assembled implant of the invention. FIG. 1B is a cross-section of the device shown in FIG. 1A. FIG. 1C is a posterior view of two bottom plates of the implant of the embodiment of the invention. FIGS. 1D and 1E are posterior views of the embodiment of the implant of the invention shown in FIG. 1A illustrating the operation of the device in bending to the left and bending to the right, respectively.
  • FIG. 2A is a side view of the implant of FIG. 1A showing the implant in flexion. FIG. 2B is a side view of the implant showing the implant in extension. FIG. 2C is a partial cross-sectional view of a side view of the implant of an embodiment of the invention. FIG. 2D is a partial cross-sectional view of an alternative embodiment of the implant of the invention having a protuberance adjacent the socket.
  • FIG. 3A is a top view of a portion of an embodiment of the assembled implant of the invention. FIG. 3B is a top view of an embodiment of the implant of the invention showing a rotation to the right. FIG. 3C is a top view of an embodiment of the implant of the invention showing a rotation to the left.
  • FIG. 4A and FIG. 4B show perspective views of the first and second inner surfaces of the first end plate and the second end plate of an embodiment of implant 100.
  • FIG. 5A is a posterior view of the embodiment of the implant of the invention after being implanted between two vertebral bodies. FIG. 5B is a side view of the embodiment of the implant of the invention after being implanted between two vertebral bodies.
  • FIG. 6A is a rear view of an alternate embodiment of the invention having two plates. FIG. 6B and FIG. 6C show perspective views of the first and second inner surfaces of the first end plate and the second end plate of an alternative embodiment of implant 600. FIG. 6D is a cross sectional view of the embodiment shown in FIG. 6A.
  • FIG. 7A is a top view of an embodiment of a cutting tool of the invention used to prepare the vertebral bodies for the implant. FIG. 7B is a side view of the embodiment of the cutting tool of the invention from the distal end. FIG. 7C is a distal end view of an embodiment of the cutting tool of the invention.
  • FIG. 8A is a side view of an embodiment of the implant lateral insertion tool of the invention. FIG. 8B is a top view of the embodiment of the implant lateral insertion tool of the invention. FIG. 8C is a distal end view of the embodiment of the implant lateral insertion tool of the invention. FIG. 8D is a top view of an embodiment of the implant lateral insertion tool holding an embodiment of the implant.
  • FIG. 9 is a block diagram illustrating the steps of a method for inserting the implant between vertebral bodies.
  • DETAILED DESCRIPTION
  • The following description is presented to enable any person skilled in the art to make and use what is disclosed. Various modifications to the embodiments described will be readily apparent to those skilled in the art, and the principles defined herein can be applied to other embodiments and applications without departing from the spirit and scope of what is disclosed and defined by the appended claims. Thus, what is disclosed is not intended to be limited to the embodiments shown, but is to be accorded the widest scope consistent with the principles and features disclosed herein. To the extent necessary to achieve a complete understanding of what is disclosed herein, the specification and drawings of all patents and patent applications cited in this application are incorporated herein by reference.
  • FIG. 1A shows an embodiment of the implant 100 having a four-piece configuration. The designations, “A” for anterior, “P” for posterior, “RL” for right lateral, and “LL” for left lateral are given in the drawings for spatial orientation. These designations give the relationship of all faces of embodiments of the disclosed intervertebral implant from the superior perspective; i.e. looking down the axis of the spine. The implant 100 has a pair 131 of first end plates, or upper end plates 110 that are configured to mate with a first vertebra. The upper end plate 110 of implant 100 has a first outer surface 112 from which a first keel 114 extends with a first set of teeth 115. Additionally, the implant 100 has a pair 133 of second end plates, or lower end plates 120 that are configured to mate with a second vertebra. The lower end plate 120 has a second outer surface 122 from which a keel 124 extends with a second set of teeth 125. A pair of pivoting or articulating elements or spacers 130 that are part of the pair 133 of lower end plates 120 acts as an articulating element, or spacer between the first end plate 110 and the second end plate 120 and facilitates pivotal or rotational and also twisting movement of the first end plate 110 and the second end plate 120, relative to each other. In the embodiments described, the pair of articulating elements, or spacers 130 is curved or convex, as will be discussed in more detail below.
  • Several configurations of implant 100 are contemplated. For instance, FIG. 6A illustrates a posterior view of an alternate embodiment of the implant shown in FIG. 1A. The implant 600 of FIG. 6A is in the form of a two-piece implant 600 having a first end plate 610 and a second end plate 620. The first end plate, or upper end plate 610 is configured to mate with a first vertebra, and a second end plate, or lower end plate 620 is configured to mate with a second vertebra. The first inner surface 616 of the upper end plate 610 has a socket or first cavity 636 formed therein. A pivoting or articulation element, or spacer 630 is formed on second end plate 620. The spacer 630 at least partially engages the first socket 636, and facilitates pivotal or rotational and also twisting movement of the first end plate 610 and the second end plate 620, relative to each other. The spacer 630 and corresponding socket 636 are dimensioned so that they are hemi-cylindrical (FIG. 6D), while in another embodiment shown in FIG. 6B and FIG. 6C, the articulating element, or spacer 630 and corresponding socket 636 are hemispherical.
  • The upper end plate 610 of implant 600 has a first outer surface 612 from which a first keel 614 extends with a first set of teeth 615. In one embodiment, when implant 600 is inserted between vertebrae, the first keel 614 extends longitudinally across the first outer surface 612, about perpendicular to the sagittal plane of the spine. In another embodiment, the first keel 614 extends longitudinally only partially across the first outer surface 612, about perpendicular to the sagittal plane of the spine. The teeth 615 in the two embodiments with complete or partial extension of the keel 614 across the first outer surface 612 of the upper end plate 610 point towards the left lateral face of implant 600 when the embodiment is meant to be put into a slot in a vertebral body from the left lateral approach to the spine. This orientation is shown in the figures, and is particularly evident where the keel 614 is fully displayed, as in FIG. 1A and FIG. 6A, for example. Alternatively, the teeth 615 point towards the right lateral face of implant 600 when the embodiments are meant to be put into a slot in a vertebral body from the right lateral approach to the spine.
  • The first outer surface 612 abuts the vertebral body when the implant 600 is implanted. The first keel 614 extends into the vertebral body to anchor implant 600 into position, and is perpendicular to the median sagittal plane of the spine, in which extension and flexion occur. The first keel 614 in this orientation offers substantial stability during extension and flexion for the implant 600 inserted between the vertebrae of a patient. Additionally, the first keel 614 in this embodiment is preferably aligned with and supports the articulation of implant 600. The first inner surface 616 with socket 636 at least partially engages the spacer 630 of the implant and opposes the second end plate 620. The first inner surface 616 can form a planar surface that is parallel to the first outer surface 612, or can form a planar surface that is not parallel to the first outer surface 612.
  • The lower end plate 620 has a second outer surface 622 from which a keel 624 extends with a second set of teeth 625. In one embodiment, when implant 600 is inserted between vertebrae, the second keel 624 is about perpendicular to the sagittal plane of the spine. As described above for the first upper end plate 610, in one embodiment, the second keel 624 extends longitudinally across the second outer surface 622, while in another embodiment, the second keel 624 extends longitudinally partially across the second outer surface 622. The teeth 625 in the two embodiments with complete or partial extension of the second keel 624 across the second outer surface 622 of the lower end plate 620 point towards the left lateral face of implant 600 when the embodiment is meant to be put into a slot in a vertebral body from the left lateral approach to the spine. This orientation is shown in the figures, and is particularly evident where the second keel 624 is fully displayed, as in FIG. 1A and FIG. 6A, for example. Alternatively, the teeth 625 point towards the right lateral face of implant 600 when the embodiments are meant to be put into a slot in a vertebral body from the right lateral approach to the spine.
  • The second outer surface 622 abuts the vertebral body when the implant 600 is implanted. The second keel 624 extends into the vertebral body to anchor implant 600 into position, and is perpendicular to the median sagittal plane of the spine, in which extension and flexion occur. The second keel 624 in this orientation offers substantial stability during extension and flexion for the implant 600 inserted between the vertebrae of a patient. Additionally, the second keel 624 in this embodiment is aligned with and supports the articulation of implant 600. The second end plate 620 with second inner surface 626 having the spacer 630 opposes the first end plate 610 with first inner surface 616 having socket 636. The spacer 630 of second inner surface 626 at least partially engages socket 636 of first upper surface. The second inner surface 626 can form a planar surface that is parallel to the second outer surface 622, or can form a planar surface that is not parallel to the second outer surface 622.
  • The first inner surface 616 of the first end plate 610 can be parallel to the second inner surface 626 of the second end plate 620 when the implant 600 is assembled and is in a neutral position (i.e., the position where the first end plate 610 has not rotated relative to the second end plate 620). Alternatively, the first inner surface 616 of the first end plate 610 can be non-parallel to the planar surface of the second inner surface 626 of the second end plate 620 when the implant 600 is assembled and in a neutral position. This non-parallel orientation of the first end plate 610 and the second end plate 620 allows the plates to pivot to a greater degree with respect to each other. Additionally, factors such as the height and position of the spacer 630, and the, can also be adjusted in order to increase the degree that the first end plate 610 and the second end plate 620 can pivot relative to each other. Other factors that effect the degree of movement of the first end plates 110 or 610 relative to the second end plates 120 or 620 for implant 100 or implant 600 will discussed below.
  • When implant 600 is inserted between vertebrae the planar surfaces corresponding to the first and second outer surfaces 612, 622 and the first and second inner surfaces 616, 626 of the first and second end plates 610, 620 lie within, or substantially within, the axial plane of the body. Similarly, the first and second keels 614, 624 are aligned in the axial plane, or perpendicular to the sagittal plane of the vertebrae. The first and second keels 614,624 extend into the vertebral bodies to anchor implant 600 into position, and are perpendicular to the median sagittal plane of the spine, in which extension and flexion occur. The first and second keels 614,624 in this orientation offer substantial stability during extension and flexion for implant 600 inserted between the vertebrae of a patient. Additionally, the first and second keels 614,624 in this embodiment are aligned with and support the axis of articulation of implant 600 defined by an RL to LL orientation.
  • The lateral orientation of the keels allow the implants to be inserted into the spine using a lateral approach as opposed to an anterior or posterior approach. The lateral approach is advantageous, because the spinal nerves in the spinal cavity are minimally undisturbed when the implants are inserted laterally into the spine. In comparison to a posterior insertion approach in which the spinal nerves can be substantially disturbed, the spinal nerves are bypassed and relatively undisturbed when the implant is inserted laterally between the vertebral bodies from the side of the spine. Although an anterior insertion approach has its benefits, the lateral insertion approach can allow the present implant and associated implantation tools, to be inserted into the spine with less disturbance of the patient's internal organs. This can translate into less time and risk associated with preparing the spine for insertion as well as inserting the implant itself into the spine. Further, the laterally oriented keels offer substantial stability to the vertebral bodies during extension, flexion and lateral bending of the spine.
  • In the embodiment shown in FIG. 1A and FIG. 6A, the first and second keels 114,124 and 614,624 include ports 148,152 and 648,652, respectively, that facilitate bone ingrowth. For example, bone from the vertebral bodies can grow thorough the ports 148,152 and 648,652, and aid in securing the first and second keels 114,124 and 614,624, and thereby for securing implants 100 and 600 once inserted between vertebral bodies. In addition, surfaces defined by the first and second keels 114,124 and 614,624 and the first and second outer surfaces 112,122 and 612, 622 of implants 100 and 600 can be roughened in order to promote bone ingrowth into these defined surfaces of implants 100 and 600. In other embodiments the ports 148,152 and 648,652, the first and second keels 114,124 and 614,624, and the first and second outer surfaces 112,122 and 612, 622 of implant 600 can be coated with materials that promote bone growth such as for example bone morphogenic protein, BMP, or structural materials such as hyaluronic acid, HA, or other substance which promotes growth of bone relative to and into the keels 614,624, keel ports 648,652, and other external surfaces of the implant 600.
  • Further, a combination of the two embodiments shown in FIG. 1A and FIG. 6A can be used to create a three-piece implant as will also be appreciated by those of ordinary skill in the art. For example, the first end plate 610 of FIG. 6A with its socket 636 from a two-piece embodiment can be combined with two second end plates 120 of FIG. 1A from a four-piece embodiment to form an implant. Similarly, the second end plate 620 with spacer 630 of a two piece embodiment, such as FIG. 6A, can be combined with two first end plates 110 from a four-piece design, such as FIG. 1A, to achieve an implant. The features described herein for an interspinous implant for lateral insertion between adjacent vertebrae are applicable to two-, three-, or four-piece embodiments. None of these configurations depart from the scope of the invention.
  • FIG. 1B depicts the pair 131 of first or upper end plates 110 and the pair 133 of second or lower end plates 120 in cross-section. Each upper and lower end plate 110,120 has a keel 114,124 with a set of teeth 115,125. As for implant 600, different embodiments of implant 100 may have complete or partial extension of the first and second keels 114,124 across the first and second outer surfaces 112,122 of the upper and lower end plates 110,120. The teeth 115,125 point towards the left lateral face of implant 100 when the embodiment is meant to be put into a slot in a vertebral body from the left lateral approach to the spine, and alternatively, the teeth 115,125 point towards the right lateral face of implant 100 when the embodiments are meant to be put into a slot in a vertebral body from the right lateral approach to the spine.
  • In FIG. 1B, the socket 136 formed in the first inner surface 116 of first end plate 110 has a first elongated sidewall 150, a corresponding second elongated sidewall 152 (shown in FIG. 3B), an end wall 154, and an open end 156. The open ends 156 of each of the first end plates 110 are oriented so that the open ends 156 face each other. Each of the first and second end plates 110, 120 has a first end 138, 141 and a second end 139, 143. The ends 139 of the first end plate 110 face each other, as do the ends 143 of the second end plate 120. The lower plates 120 each have an articulating element, or spacer 130, which is convex and hemi-cylindrical, that engage the socket 136. The concave hemi-cylindrical inner surface 135 of the socket 136 is sloped to allow the pair 131 of first or upper end plates 110 to easily slide, or rock, side-to-side on the articulating element, or spacer 130 and slide, or ride, forward and backward with enough looseness of fit to allow for some twisting in order to emulate the motion of the vertebral bone and intervertebral disk tissue. This arrangement, thus, has a sliding or translating pivot point. It is evident from FIG. 1B that the first and second keels 114,124 are aligned with and support the axis of articulation of the upper end plate 110 about the spacer 130 for this embodiment. This axis of articulation is longitudinally oriented with respect to the vertebrae, or about perpendicular to the sagittal plane of the spine. The alignment of the first and second keels 114,124 with the axis of articulation offers substantial stability during flexion and extension when implant 100 is inserted between the vertebrae of a patient.
  • As shown in FIG. 1C, the articulating element, or spacer 130 has four sides: a first elongated sidewall 140, a second elongated sidewall 142, a third end wall 143, and a fourth end wall 146. The third end wall 144 is flush with the end 143 of the lower end plate 120 of the implant. The third end wall 144 has a profile height 160 and the fourth end wall 146 has a profile height 162. Comparing the profile heights 160, 162 to each other at the same point on the second inner surface 126 of the second end plate 120, the overall profile height of the third end wall 144 is greater than the fourth end wall 146 (i.e., 160>162). Thus, it is evident that the upper surface 135 of socket 136 slopes downwardly from the end wall 144 to the end wall 146. Together spacers 130 comprise an articulating element that has a high surface where the third end walls 144 abut each other and slope to a lower surface adjacent to fourth end walls 146.
  • In FIG. 1C, the edges of the articulating element or spacer 130 are eased or rounded to allow for further range of motion of the pair 131 of upper end plates 110 relative to the pair 133 of lower end plates 120. As will be appreciated by those of skill in the art, the overall height of the third end wall 144 and the fourth end wall 146 can be equivalent while still having an effective third end wall height 160 that is greater than the effective fourth end wall height 162 due to the overall slope of the second inner surface 126. Alternatively, the overall height of the third end wall 144 and the fourth end wall 146, can be different with the third end wall 144 having a height greater than the fourth end wall 146, thus eliminating the need for the second inner surface 126 to have a slope or further increasing the net difference between the height of the third end wall and the forth end wall. Further, although the spacer 130 is depicted such that the third end wall 144 is flush with the second end 143, those of skill in the art will appreciate that the spacer 130 could also be configured such that the third end wall 144 is recessed relative to the end 143 of the second end plate. In such a configuration, the third end wall 144 and the end 143 would not be flush.
  • FIGS. 1D and 1E illustrate posterior views of the implant 100 showing the clearance for left and right lateral bending. Typically, left and right lateral bending ranges from 3-5°. As evident from these figures, the length of the spacer 130 can be less than the length of the socket 136. As shown, the open ends 156 of the sockets facilitate movement of the articulating elements, or spacers 130 within the socket 136 to accommodate side-bending movement.
  • FIG. 2A and FIG. 2B are views of the intervertebral implant 100, which depict the motion of the first end plate 110 relative to the second end plate 120. In FIG. 2A and FIG. 2B, a side view of implant 100 is depicted, showing first end plate 110 with socket 136 and the second end plate 120 with the articulating element or spacer 130. As is apparent from the figures, the sloping of the first inner surface 116 of the first end plate 110 facilitates rotation of the spacer and socket in an anterior A direction and a posterior P direction. As depicted, the first inner surface 116 slopes from a high point at about where the socket is located to low points at the ends 111 and 113 of the upper end plate 110. As shown in FIG. 2A, the implant 100 is positioned to achieve flexion (i.e., forward bending) in a range up to about 15°, but more preferably 10°, while in FIG. 2B, the implant 100 is positioned to achieve extension (i.e., backward bending) in a preferable range of up to about 5°.
  • FIG. 2C and FIG. 2D show cross sections of implant 100 through the sagittal plane of the vertebrae. FIG. 2C is a cross-section of the side view of the intervertebral implant 100 showing the mating of the spacer 130 to the socket 136. FIG. 2D illustrates an alternate embodiment of the first end plate 110 wherein the socket 136 has ridges 268, 269 forming a protuberance that extends into the channel 264, 265 respectively on the second end plate 120. As will be appreciated by those of skill in the art, the protuberances 268, 269 can extend partially into the channel, such as the configuration shown, or can have a channel conforming shape such that when the spacer and socket are moved to achieve flexion 272 or extension 274 the protuberance or ridge 268, 269 extends into the channels 264, 265. This embodiment allows the first inner surface 116 and second inner surface 126 of the first end plate 110 and the second end plate 120 to be flat and non-sloping as shown while still allowing for the implant to emulate forward and backward bending and allow for the blocking of the motion of the socket relative to the spacer. In this embodiment, it is noted that the first and second keels 114,124 are aligned with and support the articulation of first end plate 110 about the spacer 130 for this embodiment, and where the articulation is about perpendicular to the sagittal plane of the spine.
  • Turning now to FIG. 3A, a top view of one-half of the intervertebral implant 100 is shown. Each of the top first end plate 110 and the bottom second end plate 120 have a bores 376 for receiving pins of an implant tool. The first keel 114 on the first end plate 110 is positioned so that it is aligned in the same plane with the second keel 124 on the second end plate 120. Additionally, the length of spacer 130 from the third end wall 144 to the fourth end wall 146 is shorter than the length of the socket 136 from the end wall 154 to the open end 156, so that the fit of the spacer with the socket is somewhat loose. The loose fit of the spacer 130 in the socket 136 allows the first end plate 110 to be able to twist somewhat relative to the second plate 120. This twisting action would generally be about an axis that is perpendicular to the first and second inner surfaces 116,126 of the first and second end plates 110,120, respectively. Thus, implant 100 of this embodiment allows the spine to have movement in three orthogonal degrees of freedom, namely (1) forward and backward bending movement, (2) lateral side-to-side bending, and (3) twisting movement. FIGS. 3B and 3C show the relative rotation of the first or upper end plate 110 to the second or lower end plate 120 to achieve rotation about a central axis 378. This rotation results in about a 3°-6° rotation about the axis (i.e., 3° of torso twisting in each direction).
  • FIG. 4A and FIG. 4B show views of the first and second end plates, 110,120. FIG. 4A shows a perspective view of a second end plate 120 of the intervertebral implant 100. The second inner surface 126 of the second end plate 120 is shown with a hemi-cylindrical spacer 130 formed therefrom, and channels or grooves 264, 265 extending about the spacer 130. As illustrated in FIG. 4A, the channels 264, 265 are formed on two sides of the spacer 130. However, as will be appreciated by those of skill in the art, the channels 264, 265 can alternatively surround the spacer 130. The channels allow the sides of the spacer 130 to be made more perpendicular so as to create a greater blocking wall thus preventing the socket of the upper plate 100 from moving too much anteriorly or posteriorly relative to the lower plate 120. FIG. 4B shows a perspective view of the first end plate 110, with a first inner surface 116 that opposes the second inner surface 126. The first inner surface 116 has a hemi-cylindrical socket 136 formed therein. The socket 136 of FIG. 4B is configured to mate with the spacer 130 of FIG. 4A.
  • FIG. 4 c and FIG. 4 d show views of the first and second end plates, 110, 120 for an alternative embodiment of implant 100. FIG. 4 c shows a perspective view of an embodiment of the second inner surface 126 of the second or lower end plate 120 of implant 100. The second inner surface 126 of the lower end plate 120 has a hemispherical spacer 130 formed therefrom. FIG. 4 d shows a perspective view of an embodiment of the first inner surface 116 of the first or upper end plate 110 of implant 100, which opposes the second inner surface 126. The first inner surface 116 of the upper end plate 110 has a socket or cavity 136 formed therein. In the embodiment of FIG. 4 d, the socket 136 has a concave hemispherical surface. The socket 136 allows the first end plate 110 to pivot or rotate on spacer 130.
  • In the embodiments shown in FIG. 4A and FIG. 4B, it is noted that the first and second keels 114,124 are aligned with and support the articulation of the first end plate 110 about the spacer 130, relative to the second end plate 120. The first and second keels 114,124 in this orientation offer substantial stability during extension and flexion for implant 100 inserted between the vertebrae of a patient. Additionally, the first and second keels 114,124 in these embodiments are aligned with and support the lateral axis of articulation of implant 100, which is perpendicular to the sagittal plane of the spine. Additionally, as evidenced from the perspective views of FIG. 4A and FIG. 4B, the perimeter shape of the upper and lower end plates 110,120 can be configured to correspond to the perimeter shape of a vertebral disk. As will be appreciated by those of ordinary skill in the art, the perimeter shape of the upper end plate 110 and the lower end plate 120 can be the same.
  • FIG. 5A and FIG. 5B show the implant after insertion between the vertebrae of a patient. FIG. 5A illustrates a posterior view of the implant shown in FIG. 1A implanted between vertebral bodies in a spine. FIG. 5A illustrates the spinal column 500 and the cauda equina 504 (a collection of lumbar and sacral nerve roots that fill the caudal end of the spinal cord) with individual nerves 506 exiting the cord between lumbar vertebrae. The implant 100 is positioned between two vertebral bodies 520, 521 such that the first and second keels 114, 124 lie in a plane parallel to coronal or frontal plane of the body, or perpendicular to the sagittal plane of the vertebrae. FIG. 5B illustrates a side view of the implant inserted between vertebral bodies 520, 521, for embodiments of the implant as that shown in FIG. 1A, or FIG. 6A. The gap between the first end plate 110 and the second end plate 120 at the anterior “A” face of implants 100,600 is greater than at the posterior “P” face of implants 100,600. The greater gap at the anterior face vs. the posterior face of implants 100,600 results in the flexion (forward bending) movement being facilitated to a greater degree than extension (backward bending) movement. Thus, for these embodiments, an example of a forward bending movement of up to 10° can be achieved while a backward bending movement of 5° will be achieved. These embodiments show implants 100,600 inserted between two vertebrae with two first keels 114 extending from the first end plate 110, and two second keels 124 extending from the second end plate 120. The first and second keels 114,124 are about perpendicular to the sagittal plane of the spine, and support the articulation of the first end plate 110 relative to the second end plate 120, about the spacer 130.
  • The embodiments of implants 100, 600 can be made of medical grade titanium, stainless steel or cobalt chrome. Other materials that have appropriate structural strength and that are suitable for implantation into a patient can also be used.
  • One class of materials contemplated for use in implant 100 is the class of biocompatible polymers. Copolymers, blends and composites of polymers are also contemplated for fabrication of parts of the disclosed device. A copolymer is a polymer derived from more than one species of monomer. A polymer composite is a heterogeneous combination of two or more materials, wherein the constituents are not miscible, and therefore exhibit an interface between one another. A polymer blend is a macroscopically homogeneous mixture of two or more different species of polymer.
  • One group of biocompatible polymers are the polyaryl ester ketones which has several members, which include polyetheretherketone (PEEK), and polyetherketoneketone (PEKK). PEEK has proven as a durable material for implants, as well as meeting criteria of biocompatibility. Medical grade PEEK is available from Victrex Corporation under the product name PEEK-OPTIMA. Medical grade PEKK is available from Oxford Performance Materials under the name OXPEKK, and also from CoorsTek under the name BioPEKK. Still another interesting group of biocompatible polymers are polyalkyl biocompatible polymers, such as polyethylenes, polypropylenes, and the like.
  • These medical grade biocompatible polymers are also available as reinforced polymer materials. To reinforce a polymeric material, fillers, are added to a polymer, copolymer, polymer blend, or polymer composite. Fillers are added to modify properties, such as mechanical, optical, and thermal properties. In this case, fillers, such as carbon fibers, are added to reinforce the polymers mechanically to enhance strength for certain uses, such as load bearing devices.
  • In addition to disclosure of embodiments of an intervertebral implant, tools for preparing and inserting an intervertebral implant are also disclosed. FIG. 7A through 7D show an embodiment of a tool for preparing vertebral bodies to receive implants 100,600, while FIG. 8A through FIG. 8D show an embodiment of a tool for inserting embodiments of the disclosed intervertebral implants 100,600.
  • FIG. 7A through FIG. 7C are the top view, the side view, and an end view of the cutting tool 700. The cutting tool 700 has a handle 710 at its proximal end for controlling the tool during operation. As will be appreciated by those of skill in the art, the handle 710 can be removable or affixed to the cutting end. The distal end 702 of the tool 700 is solid head has an upper surface 705, and a lower surface 706. The upper surface 705 has a first blade 712 mounted thereon, and the lower surface 706 has a second blade 714 mounted thereon. Preferably the first blade 712 is about centered with the upper surface 705, and the second blade 714 is about centered with the lower surface 706. The first and second blades 712,714 are oriented to cut a space in a first and second intervertebral body for the first and second keels 114,124 of implants 100,600. The space is perpendicular to the sagittal plane of the vertebrae, and allows for the lateral insertion of the implants 100,600. FIG. 7C is a view of the distal end of the cutting tool 700 showing the beveled end 716 and the first and second blades 712,714. The height h of the head 702 of the cutting tool 700 approximates the distance between two vertebral bodies or the height of the disk space. In this embodiment of cutting tool 700, the blades 712, 714 extend above and below the head 702.
  • As will be appreciated by those of skill in the art, the tool shown in FIG. 7A can be modified such that instead of cutting keel-receiving channels in the upper and lower vertebral bodies at the same time, two tools are provided so that only one vertebral body is cut for keel-receiving channels at a time. For example, an alternative embodiment of cutting tool 700 has a first tool with a single blade mounted on the head 702. A second tool could be provided having a single blade mounted on the head 702, and additionally on the opposing surface, a guide. The guide on the surface opposite the surface with the blade is designed to engage with the first keel receiving channel cut the first vertebrae with the first tool to ensure that the second cut is optimally aligned with the first cut.
  • FIG. 8A through FIG. 8D depict an embodiment of the implanting tool used to insert the implant 600 of FIG. 6A between vertebral bodies. FIG. 8A is a side view of the implantation tool 800 that has a handle 810 and an implant holder 820. The implant holder 820 has an implant conforming surface 824 and four pins 822 for holding the first end plate 610 and the second end plate 620 implant 600. The conforming surface 824 is curved to follow the convex outer LL edges of the first and second end plates 610, 620, respectively, for an implant inserted from the left lateral side of a patient. The implant 600 nests within a conforming surface 824 and is held by pins 822. FIG. 8C shows the distal view of the end of the tool with four pins 822 for securing the first and second end plate of the implant.
  • A variety of kits can be assembled that include an implant 100 (or 600) sized for a particular patient. The kit could also include several cutting tools 700 and several implanting tools 800 or a single handle that cooperates with cutting ends 702 and implantation ends 820.
  • FIG. 9 is a block diagram showing the basic steps of the method for laterally inserting the embodiments of implants 100,600. First the spine is exposed through a lateral access 910, then the intervertebral disk is removed laterally 920, if necessary. A tool, such as the one depicted in FIG. 7A is inserted laterally between the vertebral bodies to create channels in the bodies to receive the keels of the implant. The implant is then inserted laterally 930 between two vertebrae and the wound is closed 940. This procedure can be followed for either a left lateral approach or right lateral approach. For a left lateral approach, the teeth 115,125 of upper and lower keels 114, 124 would be pointed towards the left lateral face of the device in order to aid in retaining embodiments of implants 100,600 in place. For a right lateral approach, the teeth would point towards the right lateral face of the device.
  • What has been disclosed herein has been provided for the purposes of illustration and description. It is not intended to be exhaustive or to limit what is disclosed to the precise forms described. Many modifications and variations will be apparent to the practitioner skilled in the art. What is disclosed was chosen and described in order to best explain the principles and practical application of the embodiments described herein, thereby enabling others skilled in the art to understand the various embodiments and various modifications that are suited to the particular use contemplated. It is intended that the scope of what is disclosed be defined by the following claims and their equivalence.

Claims (27)

1. An intervertebral implant comprising:
a first end plate with a first inner surface;
a second end plate with a second inner surface opposing the first inner surface, where the second inner surface has an articulating element formed thereon; and
an attachment mechanism adapted to engage a vertebral body, wherein the attachment mechanism is adapted to extend, when implanted, along a lateral direction with respect to the vertebral body.
2. The implant of claim 1 wherein the articulating element allows movement of the vertebral body in between flexion to extension directions.
3. The implant of claim 1 wherein the attachment mechanism is aligned with and supports the articulating element.
4. The implant of claim 1 wherein the articulating element further comprises an elongated hemi-cylindrical structure protruding from the second inner surface and an elongated cavity in the first inner surface adapted to receive the hemi-cylindrical structure.
5. The implant of claim 1 wherein the attachment mechanism is a keel upstanding from at least one of the first end plate and the second end plate.
6. An intervertebral implant comprising:
a first end plate adapted to mate with a first vertebral body further comprising:
a first inner surface;
a first outer surface; and
at least one keel on the first outer surface, wherein the keel is adapted to be perpendicular to a sagittal plane of the first vertebral body when implanted thereto;
a second end plate adapted to mate with a second vertebral body further comprising;
a second inner surface opposing the first inner surface, wherein the second inner surface has a spacer coupled thereto; and
a second outer surface.
7. The implant of claim 6 wherein the spacer allows bending from flexion to extension.
8. The implant of claim 6, where the keel is aligned with and supports the spacer.
9. The implant of claim 6, further comprising at least one keel on the second outer surface, wherein the keel is oriented perpendicular to the sagittal plane when implanted to a second vertebral body.
10. The implant of claim 9 wherein the keel is supports the spacer.
11. An intervertebral implant comprising:
a first end plate adapted to mate with a first vertebral body further comprising:
a first inner surface;
a first outer surface; and
at least one keel on the first outer surface, where the keel is adapted to be perpendicular to the sagittal plane of the vertebrae when implanted thereto;
a second end plate adapted to mate a second vertebrae, comprising:
a second inner surface opposing the first inner surface, where the second inner surface has extending spacer therefrom;
a second outer surface; and
at least one keel on the second outer surface, where the keel is adapted to be perpendicular to the sagittal plane of the vertebral body when implanted thereto.
12. The intervertebral implant of claim 11 wherein the spacer allows bending from flexion to extension.
13. The intervertebral implant of claim 11 wherein the keels on the first outer surface and the second outer surface support the spacer.
14. The intervertebral implant of claim 11 wherein the first end plate and second end plate have a lateral dimension longer than an anterior-posterior dimension.
15. An interspinous disk replacement implant adatped to be inserted between adjacent vertebral bodies, the implant having a first end plate, a second end plate, and an articulating element formed on the second end plate, the improvement comprising the implant having at least one keel that is about perpendicular to the sagittal plane of a vertebral body.
16. The implant of claim 15 wherein the articulating element is hemi-cylindrical.
17. An interspinous disk replacement implant adapted to be inserted between adjacent vertebral bodies, the implant having an articulating unit with a first end plate having a first inner surface with a first socket therein, a second end plate having a second inner surface opposing the first inner surface, the second inner surface with an articulating element formed thereon, where the articulating element is at least partially received in the first socket, the improvement of the implant comprising the implant having at least one keel extending from the articulating unit that is about perpendicular to the sagittal plane of a vertebral body.
18. The implant of claim 17 wherein the articulating element is hemi-cylindrical.
19. An interspinous disk replacement implant having a first end plate, a second end plate, and an articulating element between formed on the second end plate, the improvement comprising the implant having an attachment mechanism that supports the articulating element, the attachment mechanism adapted to laterally engage an adjacent vertebrae.
20. The implant of claim 19 wherein the attachment mechanism is at least one keel.
21. The implant of claim 19 wherein the articulating element is hemi-cylindrical.
22. An interspinous disk replacement implant having an articulating unit with a first end plate having a first inner surface with a first socket therein, a second end plate having a second inner surface opposing the first inner surface, the second inner surface with an articulating element formed thereon, where the articulating element is at least partially received in the first socket, the improvement of the implant comprising the implant having an attachment mechanism is aligned with and supports the articulating element, the attachment mechanism adapted to laterally engage an adjacent vertebrae.
23. The implant of claim 22 wherein the attachment mechanism is at least one keel.
24. The implant of claim 22 wherein the articulating element is hemi-cylindrical.
25. A kit to insert an interspinous disk replacement implant in a spine, the kit comprising:
an interspinous disk replacement implant adapted for lateral insertion into the spine; and
at least one tool for preparing the spine to receive the implant.
26. An interspinious implant comprising:
a first end plate having a first anterior end, a first posterior end and two first lateral ends extending between the first anterior and posterior ends;
a second end plate having a second anterior end, a second posterior end and two second lateral ends extending between the second anterior and posterior ends;
a spacer extending from the second end plate, the spacer having an elongated hemi-cylindrical configuration;
a first keel protruding from a first outer surface of the first end plate, wherein the first keel is oriented lengthwise between the two first lateral ends; and
a second keel protruding from a second outer surface of the second end plate, wherein the second keel is oriented lengthweise between the two second lateral ends.
27. An interspinous implant adapted to be inserted between adjacent vertebral bodies comprising:
an implant body having a first outer surface adapted to mate with a first vertebral body and a second outer surface adapted to mate with a second vertebral body;
an articulating element within the implant body, the articulating element having an elongated spacer and corresponding elongated socket;
a first keel protruding from the first outer surface and oriented generally parallel to the articulating element.
US10/981,863 2003-12-02 2004-11-05 Laterally insertable artificial vertebral disk replacement implant with translating pivot point Abandoned US20050154462A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/981,863 US20050154462A1 (en) 2003-12-02 2004-11-05 Laterally insertable artificial vertebral disk replacement implant with translating pivot point

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US52672403P 2003-12-02 2003-12-02
US10/981,863 US20050154462A1 (en) 2003-12-02 2004-11-05 Laterally insertable artificial vertebral disk replacement implant with translating pivot point

Publications (1)

Publication Number Publication Date
US20050154462A1 true US20050154462A1 (en) 2005-07-14

Family

ID=34704248

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/981,863 Abandoned US20050154462A1 (en) 2003-12-02 2004-11-05 Laterally insertable artificial vertebral disk replacement implant with translating pivot point
US10/981,807 Expired - Fee Related US7503935B2 (en) 2003-12-02 2004-11-05 Method of laterally inserting an artificial vertebral disk replacement with translating pivot point

Family Applications After (1)

Application Number Title Priority Date Filing Date
US10/981,807 Expired - Fee Related US7503935B2 (en) 2003-12-02 2004-11-05 Method of laterally inserting an artificial vertebral disk replacement with translating pivot point

Country Status (1)

Country Link
US (2) US20050154462A1 (en)

Cited By (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050033435A1 (en) * 2003-08-04 2005-02-10 Spine Next Intervertebral disk prosthesis
US20050143820A1 (en) * 2003-12-02 2005-06-30 St. Francis Medical Technologies, Inc. Method of laterally inserting an artificial vertebral disk replacement implant with translating pivot point
US20050154467A1 (en) * 2004-01-09 2005-07-14 Sdgi Holdings, Inc. Interconnected spinal device and method
US20050171609A1 (en) * 2004-01-09 2005-08-04 Sdgi Holdings, Inc. Spinal arthroplasty device and method
US20060089654A1 (en) * 2004-10-25 2006-04-27 Lins Robert E Interspinous distraction devices and associated methods of insertion
US20060271055A1 (en) * 2005-05-12 2006-11-30 Jeffery Thramann Spinal stabilization
US20070118223A1 (en) * 2005-11-23 2007-05-24 Warsaw Orthopedic Inc. Posterior Articular Disc and Method for Implantation
US20070173941A1 (en) * 2006-01-25 2007-07-26 Sdgi Holdings, Inc. Intervertebral prosthetic disc and method of installing same
US20070179621A1 (en) * 2006-01-25 2007-08-02 Spinemedica Corporation Spinal disc implants with flexible keels and methods of fabricating implants
US20070179622A1 (en) * 2006-01-25 2007-08-02 Salumedica, Llc Methods of producing pva hydrogel implants and related devices
US20070270959A1 (en) * 2006-04-18 2007-11-22 Sdgi Holdings, Inc. Arthroplasty device
US20070288091A1 (en) * 2006-05-31 2007-12-13 Braddock Danny H Intervertebral lordatic adapter
US20080021561A1 (en) * 1997-01-02 2008-01-24 Zucherman James F Spine distraction implant and method
US20080172057A1 (en) * 1997-01-02 2008-07-17 Zucherman James F Spine distraction implant and method
US20080172090A1 (en) * 2007-01-12 2008-07-17 Warsaw Orthopedic, Inc. Spinal Prosthesis Systems
US20080234823A1 (en) * 2007-01-19 2008-09-25 Landry Michael E Artificial functional spinal unit system and method for use
US20090054986A1 (en) * 2005-05-02 2009-02-26 Cordaro Nicholas M Motion restoring intervertebral device
US20090082868A1 (en) * 2005-05-02 2009-03-26 Cordaro Nicholas M Prosthesis for restoring motion in an appendage or spinal joint and an intervertebral spacer
US7556651B2 (en) 2004-01-09 2009-07-07 Warsaw Orthopedic, Inc. Posterior spinal device and method
US20100004746A1 (en) * 2008-07-02 2010-01-07 Spinalmotion, Inc. Limited Motion Prosthetic Intervertebral Disc
US7670377B2 (en) * 2003-11-21 2010-03-02 Kyphon Sarl Laterally insertable artifical vertebral disk replacement implant with curved spacer
US7682540B2 (en) 2004-02-06 2010-03-23 Georgia Tech Research Corporation Method of making hydrogel implants
US20100094422A1 (en) * 2008-10-13 2010-04-15 Noah Hansell Intervertebral Spacer
US7771479B2 (en) 2004-01-09 2010-08-10 Warsaw Orthopedic, Inc. Dual articulating spinal device and method
US7780676B2 (en) 2006-07-11 2010-08-24 Ebi, Llc Intervertebral implantation apparatus
US20100217395A1 (en) * 2006-07-24 2010-08-26 Rudolf Bertagnoli Intervertebral implant with keel
US7811326B2 (en) 2006-01-30 2010-10-12 Warsaw Orthopedic Inc. Posterior joint replacement device
US20100298941A1 (en) * 2009-05-19 2010-11-25 Robert Hes Dynamic trial implants
US7875077B2 (en) 2004-01-09 2011-01-25 Warsaw Orthopedic, Inc. Support structure device and method
US7901459B2 (en) 2004-01-09 2011-03-08 Warsaw Orthopedic, Inc. Split spinal device and method
US7910124B2 (en) 2004-02-06 2011-03-22 Georgia Tech Research Corporation Load bearing biocompatible device
US8002835B2 (en) * 2004-04-28 2011-08-23 Ldr Medical Intervertebral disc prosthesis
US8034081B2 (en) 2007-02-06 2011-10-11 CollabComl, LLC Interspinous dynamic stabilization implant and method of implanting
US8241330B2 (en) 2007-01-11 2012-08-14 Lanx, Inc. Spinous process implants and associated methods
US8257439B2 (en) 2004-12-22 2012-09-04 Ldr Medical Intervertebral disc prosthesis
US8267999B2 (en) 2002-11-05 2012-09-18 Ldr Medical Intervertebral disc prosthesis
US8328851B2 (en) 2005-07-28 2012-12-11 Nuvasive, Inc. Total disc replacement system and related methods
US8343219B2 (en) 2007-06-08 2013-01-01 Ldr Medical Intersomatic cage, intervertebral prosthesis, anchoring device and implantation instruments
US8465546B2 (en) 2007-02-16 2013-06-18 Ldr Medical Intervertebral disc prosthesis insertion assemblies
US8512408B2 (en) 2010-12-17 2013-08-20 Warsaw Orthopedic, Inc. Flexiable spinal implant
US8771284B2 (en) 2005-11-30 2014-07-08 Ldr Medical Intervertebral disc prosthesis and instrumentation for insertion of the prosthesis between the vertebrae
US8858635B2 (en) 2004-02-04 2014-10-14 Ldr Medical Intervertebral disc prosthesis
US8864832B2 (en) 2007-06-20 2014-10-21 Hh Spinal Llc Posterior total joint replacement
US8882839B2 (en) 1999-07-02 2014-11-11 DePuy Synthes Products, LLC Intervertebral implant
US8979932B2 (en) 2005-09-23 2015-03-17 Ldr Medical Intervertebral disc prosthesis
US9155543B2 (en) 2011-05-26 2015-10-13 Cartiva, Inc. Tapered joint implant and related tools
US9259327B2 (en) 2008-10-13 2016-02-16 Globus Medical, Inc. Articulating spacer
US9333095B2 (en) 2001-05-04 2016-05-10 Ldr Medical Intervertebral disc prosthesis, surgical methods, and fitting tools
US9492288B2 (en) 2013-02-20 2016-11-15 Flexuspine, Inc. Expandable fusion device for positioning between adjacent vertebral bodies
US9517144B2 (en) 2014-04-24 2016-12-13 Exactech, Inc. Limited profile intervertebral implant with incorporated fastening mechanism
US9526627B2 (en) 2011-11-17 2016-12-27 Exactech, Inc. Expandable interbody device system and method
US9579124B2 (en) 2003-08-05 2017-02-28 Flexuspine, Inc. Expandable articulating intervertebral implant with limited articulation
US9724136B2 (en) 2007-01-11 2017-08-08 Zimmer Biomet Spine, Inc. Spinous process implants and associated methods
US9743960B2 (en) 2007-01-11 2017-08-29 Zimmer Biomet Spine, Inc. Interspinous implants and methods
US9770271B2 (en) 2005-10-25 2017-09-26 Zimmer Biomet Spine, Inc. Spinal implants and methods
US9907663B2 (en) 2015-03-31 2018-03-06 Cartiva, Inc. Hydrogel implants with porous materials and methods
US10350072B2 (en) 2012-05-24 2019-07-16 Cartiva, Inc. Tooling for creating tapered opening in tissue and related methods
US10398565B2 (en) 2014-04-24 2019-09-03 Choice Spine, Llc Limited profile intervertebral implant with incorporated fastening and locking mechanism
US10603185B2 (en) 2004-02-04 2020-03-31 Ldr Medical Intervertebral disc prosthesis
US10758374B2 (en) 2015-03-31 2020-09-01 Cartiva, Inc. Carpometacarpal (CMC) implants and methods
US11812923B2 (en) 2011-10-07 2023-11-14 Alan Villavicencio Spinal fixation device
US11890202B2 (en) 2007-06-20 2024-02-06 3Spine, Inc. Spinal osteotomy

Families Citing this family (74)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8388684B2 (en) 2002-05-23 2013-03-05 Pioneer Signal Technology, Inc. Artificial disc device
EP1501453B2 (en) 2003-05-14 2010-06-30 Kilian Kraus Height-adjustable implant to be inserted between vertebral bodies and corresponding handling tool
DE20320974U1 (en) 2003-12-11 2005-08-25 Deltacor Gmbh Surgical backbone implant is positioned between adjacent vertebrae and consists of two concentric cylinders with interlocking fingers in cruciform array, where the cylinder inner faces bear a thread
US9622732B2 (en) 2004-10-08 2017-04-18 Nuvasive, Inc. Surgical access system and related methods
US8425559B2 (en) 2004-10-20 2013-04-23 Vertiflex, Inc. Systems and methods for posterior dynamic stabilization of the spine
US8123807B2 (en) 2004-10-20 2012-02-28 Vertiflex, Inc. Systems and methods for posterior dynamic stabilization of the spine
US7763074B2 (en) 2004-10-20 2010-07-27 The Board Of Trustees Of The Leland Stanford Junior University Systems and methods for posterior dynamic stabilization of the spine
US8613747B2 (en) * 2004-10-20 2013-12-24 Vertiflex, Inc. Spacer insertion instrument
US8277488B2 (en) 2004-10-20 2012-10-02 Vertiflex, Inc. Interspinous spacer
US8317864B2 (en) 2004-10-20 2012-11-27 The Board Of Trustees Of The Leland Stanford Junior University Systems and methods for posterior dynamic stabilization of the spine
US8128662B2 (en) 2004-10-20 2012-03-06 Vertiflex, Inc. Minimally invasive tooling for delivery of interspinous spacer
US9119680B2 (en) 2004-10-20 2015-09-01 Vertiflex, Inc. Interspinous spacer
US8945183B2 (en) * 2004-10-20 2015-02-03 Vertiflex, Inc. Interspinous process spacer instrument system with deployment indicator
US8409282B2 (en) 2004-10-20 2013-04-02 Vertiflex, Inc. Systems and methods for posterior dynamic stabilization of the spine
US8167944B2 (en) 2004-10-20 2012-05-01 The Board Of Trustees Of The Leland Stanford Junior University Systems and methods for posterior dynamic stabilization of the spine
US8152837B2 (en) 2004-10-20 2012-04-10 The Board Of Trustees Of The Leland Stanford Junior University Systems and methods for posterior dynamic stabilization of the spine
US8012207B2 (en) 2004-10-20 2011-09-06 Vertiflex, Inc. Systems and methods for posterior dynamic stabilization of the spine
US8123782B2 (en) * 2004-10-20 2012-02-28 Vertiflex, Inc. Interspinous spacer
US9023084B2 (en) 2004-10-20 2015-05-05 The Board Of Trustees Of The Leland Stanford Junior University Systems and methods for stabilizing the motion or adjusting the position of the spine
US9161783B2 (en) 2004-10-20 2015-10-20 Vertiflex, Inc. Interspinous spacer
WO2009009049A2 (en) 2004-10-20 2009-01-15 Vertiflex, Inc. Interspinous spacer
US7918875B2 (en) * 2004-10-25 2011-04-05 Lanx, Inc. Interspinous distraction devices and associated methods of insertion
WO2009086010A2 (en) 2004-12-06 2009-07-09 Vertiflex, Inc. Spacer insertion instrument
MX2007012258A (en) 2005-04-06 2007-12-07 Peter Francis Mccombe Vertebral disc prosthesis.
EP1945148B1 (en) * 2005-11-04 2019-07-03 NuVasive, Inc. Intervertebral prosthesis
US8118872B2 (en) * 2006-08-10 2012-02-21 Pioneer Surgical Technology, Inc. System and methods for inserting a spinal disc device into an intervertebral space
US8409213B2 (en) * 2006-08-10 2013-04-02 Pioneer Surgical Technology, Inc. Insertion instrument for artificial discs
US7976550B2 (en) * 2006-08-10 2011-07-12 Pioneer Surgical Technology Insertion instrument for artificial discs
US8414616B2 (en) * 2006-09-12 2013-04-09 Pioneer Surgical Technology, Inc. Mounting devices for fixation devices and insertion instruments used therewith
US8372084B2 (en) * 2006-09-22 2013-02-12 Pioneer Surgical Technology, Inc. System and methods for inserting a spinal disc device into an intervertebral space
US8845726B2 (en) 2006-10-18 2014-09-30 Vertiflex, Inc. Dilator
WO2008062397A1 (en) * 2006-11-24 2008-05-29 Flexsis Surgical Ltd. Articulating spinal spacer
US8715352B2 (en) * 2006-12-14 2014-05-06 Depuy Spine, Inc. Buckling disc replacement
US20080154378A1 (en) * 2006-12-22 2008-06-26 Warsaw Orthopedic, Inc. Bone implant having engineered surfaces
JP5296711B2 (en) * 2007-02-09 2013-09-25 ディアミクロン・インコーポレーテッド Multi-projection artificial spine joint
EP2155121B1 (en) 2007-04-16 2015-06-17 Vertiflex, Inc. Interspinous spacer
US8142479B2 (en) * 2007-05-01 2012-03-27 Spinal Simplicity Llc Interspinous process implants having deployable engagement arms
US8075593B2 (en) * 2007-05-01 2011-12-13 Spinal Simplicity Llc Interspinous implants and methods for implanting same
US20090012619A1 (en) * 2007-07-03 2009-01-08 Seaspine, Inc. Motion restoring intervertebral prosthesis with limited angular displacement
WO2009091922A2 (en) 2008-01-15 2009-07-23 Vertiflex, Inc. Interspinous spacer
DE102008032691A1 (en) * 2008-07-03 2010-01-07 Aesculap Ag Intervertebral disc prosthesis system
US8287572B2 (en) 2009-02-11 2012-10-16 Howmedica Osteonics Corp. Intervertebral implant with integrated fixation
WO2013025448A1 (en) * 2011-08-09 2013-02-21 Nuvasive, Inc. Vertebral body replacement
US9687357B2 (en) 2009-03-12 2017-06-27 Nuvasive, Inc. Vertebral body replacement
US9861399B2 (en) 2009-03-13 2018-01-09 Spinal Simplicity, Llc Interspinous process implant having a body with a removable end portion
US9757164B2 (en) 2013-01-07 2017-09-12 Spinal Simplicity Llc Interspinous process implant having deployable anchor blades
US8945184B2 (en) * 2009-03-13 2015-02-03 Spinal Simplicity Llc. Interspinous process implant and fusion cage spacer
WO2011019699A2 (en) 2009-08-10 2011-02-17 Howmedica Osteonics Corp Intervertebral implant with integrated fixation
US9033993B2 (en) 2009-11-03 2015-05-19 Howmedica Osteonics Corp. Intervertebral implant with integrated fixation
US8740948B2 (en) 2009-12-15 2014-06-03 Vertiflex, Inc. Spinal spacer for cervical and other vertebra, and associated systems and methods
US9480511B2 (en) 2009-12-17 2016-11-01 Engage Medical Holdings, Llc Blade fixation for ankle fusion and arthroplasty
US9925051B2 (en) 2010-12-16 2018-03-27 Engage Medical Holdings, Llc Arthroplasty systems and methods
US9358122B2 (en) 2011-01-07 2016-06-07 K2M, Inc. Interbody spacer
US9132021B2 (en) 2011-10-07 2015-09-15 Pioneer Surgical Technology, Inc. Intervertebral implant
US9017410B2 (en) * 2011-10-26 2015-04-28 Globus Medical, Inc. Artificial discs
US9254130B2 (en) 2011-11-01 2016-02-09 Hyun Bae Blade anchor systems for bone fusion
US9615856B2 (en) 2011-11-01 2017-04-11 Imds Llc Sacroiliac fusion cage
US10238382B2 (en) 2012-03-26 2019-03-26 Engage Medical Holdings, Llc Blade anchor for foot and ankle
US9675303B2 (en) 2013-03-15 2017-06-13 Vertiflex, Inc. Visualization systems, instruments and methods of using the same in spinal decompression procedures
US10478313B1 (en) 2014-01-10 2019-11-19 Nuvasive, Inc. Spinal fusion implant and related methods
US9730802B1 (en) 2014-01-14 2017-08-15 Nuvasive, Inc. Spinal fusion implant and related methods
AU2015256024B2 (en) 2014-05-07 2020-03-05 Vertiflex, Inc. Spinal nerve decompression systems, dilation systems, and methods of using the same
AU2016200179B2 (en) 2015-01-14 2020-09-17 Stryker European Operations Holdings Llc Spinal implant with porous and solid surfaces
AU2016200195B2 (en) 2015-01-14 2020-07-02 Stryker European Operations Holdings Llc Spinal implant with fluid delivery capabilities
US20160270928A1 (en) * 2015-03-18 2016-09-22 Baui Biotech Co., Ltd. Spinal spacer
CA2930123A1 (en) 2015-05-18 2016-11-18 Stryker European Holdings I, Llc Partially resorbable implants and methods
US10390955B2 (en) 2016-09-22 2019-08-27 Engage Medical Holdings, Llc Bone implants
US10456272B2 (en) 2017-03-03 2019-10-29 Engage Uni Llc Unicompartmental knee arthroplasty
US11540928B2 (en) 2017-03-03 2023-01-03 Engage Uni Llc Unicompartmental knee arthroplasty
AU2018327353A1 (en) 2017-09-08 2020-03-19 Pioneer Surgical Technology, Inc. Intervertebral implants, instruments, and methods
EP3459502A1 (en) 2017-09-20 2019-03-27 Stryker European Holdings I, LLC Spinal implants
USD907771S1 (en) 2017-10-09 2021-01-12 Pioneer Surgical Technology, Inc. Intervertebral implant
US11452618B2 (en) 2019-09-23 2022-09-27 Dimicron, Inc Spinal artificial disc removal tool
US20220008211A1 (en) * 2020-07-08 2022-01-13 Ctl Medical Corporation Cage with keel

Citations (94)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3426364A (en) * 1966-08-25 1969-02-11 Colorado State Univ Research F Prosthetic appliance for replacing one or more natural vertebrae
US3867728A (en) * 1971-12-30 1975-02-25 Cutter Lab Prosthesis for spinal repair
US3875595A (en) * 1974-04-15 1975-04-08 Edward C Froning Intervertebral disc prosthesis and instruments for locating same
US4309777A (en) * 1980-11-13 1982-01-12 Patil Arun A Artificial intervertebral disc
US4369769A (en) * 1980-06-13 1983-01-25 Edwards Charles C Spinal fixation device and method
US4501269A (en) * 1981-12-11 1985-02-26 Washington State University Research Foundation, Inc. Process for fusing bone joints
US4636217A (en) * 1985-04-23 1987-01-13 Regents Of The University Of Minnesota Anterior spinal implant
US4657550A (en) * 1984-12-21 1987-04-14 Daher Youssef H Buttressing device usable in a vertebral prosthesis
US4904261A (en) * 1987-08-06 1990-02-27 A. W. Showell (Surgicraft) Limited Spinal implants
US4904260A (en) * 1987-08-20 1990-02-27 Cedar Surgical, Inc. Prosthetic disc containing therapeutic material
US4911718A (en) * 1988-06-10 1990-03-27 University Of Medicine & Dentistry Of N.J. Functional and biocompatible intervertebral disc spacer
US4997432A (en) * 1988-03-23 1991-03-05 Waldemar Link Gmbh & Co. Surgical instrument set
US5002576A (en) * 1988-06-06 1991-03-26 Mecron Medizinische Produkte Gmbh Intervertebral disk endoprosthesis
US5108438A (en) * 1989-03-02 1992-04-28 Regen Corporation Prosthetic intervertebral disc
US5108442A (en) * 1991-05-09 1992-04-28 Boehringer Mannheim Corporation Prosthetic implant locking assembly
US5180381A (en) * 1991-09-24 1993-01-19 Aust Gilbert M Anterior lumbar/cervical bicortical compression plate
US5192327A (en) * 1991-03-22 1993-03-09 Brantigan John W Surgical prosthetic implant for vertebrae
US5192326A (en) * 1990-12-21 1993-03-09 Pfizer Hospital Products Group, Inc. Hydrogel bead intervertebral disc nucleus
US5290312A (en) * 1991-09-03 1994-03-01 Alphatec Artificial vertebral body
US5306308A (en) * 1989-10-23 1994-04-26 Ulrich Gross Intervertebral implant
US5306307A (en) * 1991-07-22 1994-04-26 Calcitek, Inc. Spinal disk implant
US5306309A (en) * 1992-05-04 1994-04-26 Calcitek, Inc. Spinal disk implant and implantation kit
US5383884A (en) * 1992-12-04 1995-01-24 American Biomed, Inc. Spinal disc surgical instrument
US5390683A (en) * 1991-02-22 1995-02-21 Pisharodi; Madhavan Spinal implantation methods utilizing a middle expandable implant
US5395317A (en) * 1991-10-30 1995-03-07 Smith & Nephew Dyonics, Inc. Unilateral biportal percutaneous surgical procedure
US5395372A (en) * 1993-09-07 1995-03-07 Danek Medical, Inc. Spinal strut graft holding staple
US5397364A (en) * 1993-10-12 1995-03-14 Danek Medical, Inc. Anterior interbody fusion device
US5401269A (en) * 1992-03-13 1995-03-28 Waldemar Link Gmbh & Co. Intervertebral disc endoprosthesis
US5480401A (en) * 1993-02-17 1996-01-02 Psi Extra-discal inter-vertebral prosthesis for controlling the variations of the inter-vertebral distance by means of a double damper
US5480442A (en) * 1993-06-24 1996-01-02 Man Ceramics Gmbh Fixedly adjustable intervertebral prosthesis
US5484437A (en) * 1988-06-13 1996-01-16 Michelson; Gary K. Apparatus and method of inserting spinal implants
US5489307A (en) * 1993-02-10 1996-02-06 Spine-Tech, Inc. Spinal stabilization surgical method
US5489308A (en) * 1989-07-06 1996-02-06 Spine-Tech, Inc. Spinal implant
US5507816A (en) * 1991-12-04 1996-04-16 Customflex Limited Spinal vertebrae implants
US5591235A (en) * 1995-03-15 1997-01-07 Kuslich; Stephen D. Spinal fixation device
US5593409A (en) * 1988-06-13 1997-01-14 Sofamor Danek Group, Inc. Interbody spinal fusion implants
US5599279A (en) * 1994-03-16 1997-02-04 Gus J. Slotman Surgical instruments and method useful for endoscopic spinal procedures
US5601556A (en) * 1994-03-18 1997-02-11 Pisharodi; Madhavan Apparatus for spondylolisthesis reduction
US5603713A (en) * 1991-09-24 1997-02-18 Aust; Gilbert M. Anterior lumbar/cervical bicortical compression plate
US5609635A (en) * 1988-06-28 1997-03-11 Michelson; Gary K. Lordotic interbody spinal fusion implants
US5609634A (en) * 1992-07-07 1997-03-11 Voydeville; Gilles Intervertebral prosthesis making possible rotatory stabilization and flexion/extension stabilization
US5609636A (en) * 1994-05-23 1997-03-11 Spine-Tech, Inc. Spinal implant
US5620458A (en) * 1994-03-16 1997-04-15 United States Surgical Corporation Surgical instruments useful for endoscopic spinal procedures
US5716415A (en) * 1993-10-01 1998-02-10 Acromed Corporation Spinal implant
US5716416A (en) * 1996-09-10 1998-02-10 Lin; Chih-I Artificial intervertebral disk and method for implanting the same
US5741253A (en) * 1988-06-13 1998-04-21 Michelson; Gary Karlin Method for inserting spinal implants
US5860973A (en) * 1995-02-27 1999-01-19 Michelson; Gary Karlin Translateral spinal implant
US5860977A (en) * 1997-01-02 1999-01-19 Saint Francis Medical Technologies, Llc Spine distraction implant and method
US5865846A (en) * 1994-11-14 1999-02-02 Bryan; Vincent Human spinal disc prosthesis
US5865845A (en) * 1996-03-05 1999-02-02 Thalgott; John S. Prosthetic intervertebral disc
US5885299A (en) * 1994-09-15 1999-03-23 Surgical Dynamics, Inc. Apparatus and method for implant insertion
US5885292A (en) * 1996-06-25 1999-03-23 Sdgi Holdings, Inc. Minimally invasive spinal surgical methods and instruments
US5888224A (en) * 1993-09-21 1999-03-30 Synthesis (U.S.A.) Implant for intervertebral space
US5888227A (en) * 1995-10-20 1999-03-30 Synthes (U.S.A.) Inter-vertebral implant
US5888226A (en) * 1997-11-12 1999-03-30 Rogozinski; Chaim Intervertebral prosthetic disc
US5888222A (en) * 1995-10-16 1999-03-30 Sdgi Holding, Inc. Intervertebral spacers
US5893890A (en) * 1994-03-18 1999-04-13 Perumala Corporation Rotating, locking intervertebral disk stabilizer and applicator
US5893889A (en) * 1997-06-20 1999-04-13 Harrington; Michael Artificial disc
US5895427A (en) * 1989-07-06 1999-04-20 Sulzer Spine-Tech Inc. Method for spinal fixation
US5895428A (en) * 1996-11-01 1999-04-20 Berry; Don Load bearing spinal joint implant
US5895426A (en) * 1996-09-06 1999-04-20 Osteotech, Inc. Fusion implant device and method of use
US6019792A (en) * 1998-04-23 2000-02-01 Cauthen Research Group, Inc. Articulating spinal implant
US6019793A (en) * 1996-10-21 2000-02-01 Synthes Surgical prosthetic device
US6022376A (en) * 1997-06-06 2000-02-08 Raymedica, Inc. Percutaneous prosthetic spinal disc nucleus and method of manufacture
US6039761A (en) * 1997-02-12 2000-03-21 Li Medical Technologies, Inc. Intervertebral spacer and tool and method for emplacement thereof
US6039763A (en) * 1998-10-27 2000-03-21 Disc Replacement Technologies, Inc. Articulating spinal disc prosthesis
US6042582A (en) * 1997-05-20 2000-03-28 Ray; Charles D. Instrumentation and method for facilitating insertion of spinal implant
US6045579A (en) * 1997-05-01 2000-04-04 Spinal Concepts, Inc. Adjustable height fusion device
US6048342A (en) * 1997-01-02 2000-04-11 St. Francis Medical Technologies, Inc. Spine distraction implant
US6051648A (en) * 1995-12-18 2000-04-18 Cohesion Technologies, Inc. Crosslinked polymer compositions and methods for their use
US6176882B1 (en) * 1998-02-20 2001-01-23 Biedermann Motech Gmbh Intervertebral implant
US6179874B1 (en) * 1998-04-23 2001-01-30 Cauthen Research Group, Inc. Articulating spinal implant
US6190387B1 (en) * 1997-01-02 2001-02-20 St. Francis Medical Technologies, Inc. Spine distraction implant
US6190414B1 (en) * 1996-10-31 2001-02-20 Surgical Dynamics Inc. Apparatus for fusion of adjacent bone structures
US6193757B1 (en) * 1998-10-29 2001-02-27 Sdgi Holdings, Inc. Expandable intervertebral spacers
US6206922B1 (en) * 1995-03-27 2001-03-27 Sdgi Holdings, Inc. Methods and instruments for interbody fusion
US6342074B1 (en) * 1999-04-30 2002-01-29 Nathan S. Simpson Anterior lumbar interbody fusion implant and method for fusing adjacent vertebrae
US6348071B1 (en) * 1997-10-31 2002-02-19 Depuy Acromed, Inc. Spinal disc
US6350283B1 (en) * 2000-04-19 2002-02-26 Gary K. Michelson Bone hemi-lumbar interbody spinal implant having an asymmetrical leading end and method of installation thereof
US6503279B1 (en) * 1996-09-04 2003-01-07 Synthes (Usa) Intervertebral implant
US6514256B2 (en) * 1997-01-02 2003-02-04 St. Francis Medical Technologies, Inc. Spine distraction implant and method
US6517580B1 (en) * 2000-03-03 2003-02-11 Scient'x Societe A Responsabilite Limited Disk prosthesis for cervical vertebrae
US6520996B1 (en) * 1999-06-04 2003-02-18 Depuy Acromed, Incorporated Orthopedic implant
US6520993B2 (en) * 2000-12-29 2003-02-18 Depuy Acromed, Inc. Spinal implant
US6524312B2 (en) * 2000-01-06 2003-02-25 Spinal Concepts, Inc. Instrument and method for implanting an interbody fusion device
US6527806B2 (en) * 2001-07-16 2003-03-04 Third Millennium Engineering, Llc Intervertebral spacer device having a spiral wave washer force restoring element
US6527804B1 (en) * 1998-12-11 2003-03-04 Dimso (Distribution Medicale Du Sud-Quest) Intervertebral disk prosthesis
US6527773B1 (en) * 1999-10-07 2003-03-04 Osteotech, Inc. Cervical dowel and insertion tool
US6530933B1 (en) * 1998-12-31 2003-03-11 Teresa T. Yeung Methods and devices for fastening bulging or herniated intervertebral discs
US6530955B2 (en) * 1999-06-08 2003-03-11 Osteotech, Inc. Ramp-shaped intervertebral implant
US6682562B2 (en) * 2000-03-10 2004-01-27 Eurosurgical Sa Intervertebral disc prosthesis
US6706070B1 (en) * 1997-05-01 2004-03-16 Spinal Concepts, Inc. Multi-variable-height fusion device
US6706068B2 (en) * 2002-04-23 2004-03-16 Bret A. Ferree Artificial disc replacements with natural kinematics
US20050043802A1 (en) * 2003-02-12 2005-02-24 Sdgi Holdings, Inc. Articular disc prosthesis for lateral insertion

Family Cites Families (119)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2456806A (en) 1947-01-14 1948-12-21 Erwin B Wolffe Vaginal gauge
US2677369A (en) 1952-03-26 1954-05-04 Fred L Knowles Apparatus for treatment of the spinal column
CA1146301A (en) 1980-06-13 1983-05-17 J. David Kuntz Intervertebral disc prosthesis
GB2083754B (en) 1980-09-15 1984-04-26 Rezaian Seyed Mahmoud Spinal fixator
US4479491A (en) 1982-07-26 1984-10-30 Martin Felix M Intervertebral stabilization implant
US4599084A (en) 1983-05-24 1986-07-08 American Hospital Supply Corp. Method of using biological tissue to promote even bone growth
US4554914A (en) 1983-10-04 1985-11-26 Kapp John P Prosthetic vertebral body
US4553273A (en) 1983-11-23 1985-11-19 Henry Ford Hospital Vertebral body prosthesis and spine stabilizing method
US4696290A (en) 1983-12-16 1987-09-29 Acromed Corporation Apparatus for straightening spinal columns
EP0176728B1 (en) 1984-09-04 1989-07-26 Humboldt-Universität zu Berlin Intervertebral-disc prosthesis
US4685447A (en) 1985-03-25 1987-08-11 Pmt Corporation Tissue expander system
US4599086A (en) 1985-06-07 1986-07-08 Doty James R Spine stabilization device and method
US4743256A (en) 1985-10-04 1988-05-10 Brantigan John W Surgical prosthetic implant facilitating vertebral interbody fusion and method
US5133755A (en) 1986-01-28 1992-07-28 Thm Biomedical, Inc. Method and apparatus for diodegradable, osteogenic, bone graft substitute device
CH671691A5 (en) 1987-01-08 1989-09-29 Sulzer Ag
US4834757A (en) 1987-01-22 1989-05-30 Brantigan John W Prosthetic implant
CA1283501C (en) 1987-02-12 1991-04-30 Thomas P. Hedman Artificial spinal disc
US4714469A (en) 1987-02-26 1987-12-22 Pfizer Hospital Products Group, Inc. Spinal implant
US4790303A (en) 1987-03-11 1988-12-13 Acromed Corporation Apparatus and method for securing bone graft
US4863477A (en) 1987-05-12 1989-09-05 Monson Gary L Synthetic intervertebral disc prosthesis
US5258043A (en) 1987-07-20 1993-11-02 Regen Corporation Method for making a prosthetic intervertebral disc
JPH01136655A (en) 1987-11-24 1989-05-29 Asahi Optical Co Ltd Movable type pyramid spacer
US4874389A (en) 1987-12-07 1989-10-17 Downey Ernest L Replacement disc
AU624627B2 (en) 1988-08-18 1992-06-18 Johnson & Johnson Orthopaedics, Inc. Functional and biocompatible intervertebral disc spacer containing elastomeric material of varying hardness
US4961740B1 (en) 1988-10-17 1997-01-14 Surgical Dynamics Inc V-thread fusion cage and method of fusing a bone joint
US4969888A (en) 1989-02-09 1990-11-13 Arie Scholten Surgical protocol for fixation of osteoporotic bone using inflatable device
CA1318469C (en) 1989-02-15 1993-06-01 Acromed Corporation Artificial disc
CA2007210C (en) 1989-05-10 1996-07-09 Stephen D. Kuslich Intervertebral reamer
US4936848A (en) 1989-09-22 1990-06-26 Bagby George W Implant for vertebrae
US4932975A (en) 1989-10-16 1990-06-12 Vanderbilt University Vertebral prosthesis
US5055104A (en) 1989-11-06 1991-10-08 Surgical Dynamics, Inc. Surgically implanting threaded fusion cages between adjacent low-back vertebrae by an anterior approach
US5059193A (en) 1989-11-20 1991-10-22 Spine-Tech, Inc. Expandable spinal implant and surgical method
US5059194A (en) 1990-02-12 1991-10-22 Michelson Gary K Cervical distractor
FR2659226B1 (en) 1990-03-07 1992-05-29 Jbs Sa PROSTHESIS FOR INTERVERTEBRAL DISCS AND ITS IMPLEMENTATION INSTRUMENTS.
DE59100448D1 (en) 1990-04-20 1993-11-11 Sulzer Ag Implant, in particular intervertebral prosthesis.
US5047055A (en) 1990-12-21 1991-09-10 Pfizer Hospital Products Group, Inc. Hydrogel intervertebral disc nucleus
US5123926A (en) 1991-02-22 1992-06-23 Madhavan Pisharodi Artificial spinal prosthesis
JP3007903B2 (en) 1991-03-29 2000-02-14 京セラ株式会社 Artificial disc
US5320644A (en) 1991-08-30 1994-06-14 Sulzer Brothers Limited Intervertebral disk prosthesis
US5313962A (en) 1991-10-18 1994-05-24 Obenchain Theodore G Method of performing laparoscopic lumbar discectomy
US5263953A (en) 1991-12-31 1993-11-23 Spine-Tech, Inc. Apparatus and system for fusing bone joints
US5425773A (en) 1992-01-06 1995-06-20 Danek Medical, Inc. Intervertebral disk arthroplasty device
US5258031A (en) 1992-01-06 1993-11-02 Danek Medical Intervertebral disk arthroplasty
US5167662A (en) 1992-01-24 1992-12-01 Zimmer, Inc. Temporary clamp and inserter for a posterior midline spinal clamp
DK0555033T3 (en) 1992-02-07 1999-12-13 Smith & Nephew Inc Surface-cured, biocompatible metal medical implants
DE59206917D1 (en) 1992-04-21 1996-09-19 Sulzer Medizinaltechnik Ag Artificial intervertebral disc body
FR2692952B1 (en) 1992-06-25 1996-04-05 Psi IMPROVED SHOCK ABSORBER WITH MOVEMENT LIMIT.
US5350397A (en) 1992-11-13 1994-09-27 Target Therapeutics, Inc. Axially detachable embolic coil assembly
US5370693A (en) 1992-09-28 1994-12-06 Depuy Inc. Orthopedic implant augmentation and stabilization device
US5246458A (en) 1992-10-07 1993-09-21 Graham Donald V Artificial disk
US5354302A (en) 1992-11-06 1994-10-11 Ko Sung Tao Medical device and method for facilitating intra-tissue visual observation and manipulation of distensible tissues
US5425777A (en) 1992-12-23 1995-06-20 Sarkisian; James S. Artificial finger joint
US5456722A (en) 1993-01-06 1995-10-10 Smith & Nephew Richards Inc. Load bearing polymeric cable
US5352225A (en) 1993-01-14 1994-10-04 Yuan Hansen A Dual-tier spinal clamp locking and retrieving system
US5336223A (en) 1993-02-04 1994-08-09 Rogers Charles L Telescoping spinal fixator
US5439464A (en) 1993-03-09 1995-08-08 Shapiro Partners Limited Method and instruments for performing arthroscopic spinal surgery
US5423816A (en) 1993-07-29 1995-06-13 Lin; Chih I. Intervertebral locking device
US5423817A (en) 1993-07-29 1995-06-13 Lin; Chih-I Intervertebral fusing device
US5360430A (en) 1993-07-29 1994-11-01 Lin Chih I Intervertebral locking device
US5458641A (en) 1993-09-08 1995-10-17 Ramirez Jimenez; Juan J. Vertebral body prosthesis
US5425772A (en) 1993-09-20 1995-06-20 Brantigan; John W. Prosthetic implant for intervertebral spinal fusion
US5443514A (en) 1993-10-01 1995-08-22 Acromed Corporation Method for using spinal implants
US5454812A (en) 1993-11-12 1995-10-03 Lin; Chih-I Spinal clamping device having multiple distance adjusting strands
US5458642A (en) 1994-01-18 1995-10-17 Beer; John C. Synthetic intervertebral disc
US5443515A (en) 1994-01-26 1995-08-22 Implex Corporation Vertebral body prosthetic implant with slidably positionable stabilizing member
FR2715293B1 (en) * 1994-01-26 1996-03-22 Biomat Vertebral interbody fusion cage.
US5431658A (en) 1994-02-14 1995-07-11 Moskovich; Ronald Facilitator for vertebrae grafts and prostheses
FR2722980B1 (en) * 1994-07-26 1996-09-27 Samani Jacques INTERTEPINOUS VERTEBRAL IMPLANT
US5527312A (en) * 1994-08-19 1996-06-18 Salut, Ltd. Facet screw anchor
US6055361A (en) * 1995-06-22 2000-04-25 Canon Kabushiki Kaisha Printer control with monitor function
US7101375B2 (en) * 1997-01-02 2006-09-05 St. Francis Medical Technologies, Inc. Spine distraction implant
US6048642A (en) * 1997-06-30 2000-04-11 Lsi Logic Corporation Adaptive clamping of an electrochemical cell within a replaceable container tray
FR2774581B1 (en) * 1998-02-10 2000-08-11 Dimso Sa INTEREPINOUS STABILIZER TO BE ATTACHED TO SPINOUS APOPHYSIS OF TWO VERTEBRES
FR2775183B1 (en) * 1998-02-20 2000-08-04 Jean Taylor INTER-SPINOUS PROSTHESIS
DE19816782A1 (en) * 1998-04-16 1999-10-28 Ulrich Gmbh & Co Kg Implant for insertion between the vertebral body of the spine
WO1999060837A2 (en) * 1998-05-27 1999-12-02 Nuvasive, Inc. Bone blocks and methods for inserting
US6682561B2 (en) * 1998-06-18 2004-01-27 Pioneer Laboratories, Inc. Spinal fixation system
WO2000007527A1 (en) * 1998-08-03 2000-02-17 Synthes Ag Chur Intervertebral allograft spacer
US6749635B1 (en) * 1998-09-04 2004-06-15 Sdgi Holdings, Inc. Peanut spectacle multi discoid thoraco-lumbar disc prosthesis
EP1217961B1 (en) * 1999-01-25 2010-04-21 Warsaw Orthopedic, Inc. Instrument for creating an intervertebral space for receiving an implant
DE29901611U1 (en) * 1999-01-30 1999-04-22 Aesculap Ag & Co Kg Surgical instrument for inserting intervertebral implants
US6241770B1 (en) * 1999-03-05 2001-06-05 Gary K. Michelson Interbody spinal fusion implant having an anatomically conformed trailing end
ES2238290T3 (en) * 1999-06-04 2005-09-01 Sdgi Holdings, Inc. IMPLANT OF ARTIFICIAL DISK.
BR9917397A (en) * 1999-07-02 2002-03-05 Spine Solutions Inc Intervertebral Implant
MXPA02002672A (en) * 1999-09-14 2003-10-14 Spine Solutions Inc Instrument for inserting intervertebral implants.
US6432107B1 (en) * 2000-01-15 2002-08-13 Bret A. Ferree Enhanced surface area spinal fusion devices
US6458131B1 (en) * 2000-08-07 2002-10-01 Salut, Ltd. Apparatus and method for reducing spinal deformity
US6899734B2 (en) * 2001-03-23 2005-05-31 Howmedica Osteonics Corp. Modular implant for fusing adjacent bone structure
US6368351B1 (en) * 2001-03-27 2002-04-09 Bradley J. Glenn Intervertebral space implant for use in spinal fusion procedures
US6890355B2 (en) * 2001-04-02 2005-05-10 Gary K. Michelson Artificial contoured spinal fusion implants made of a material other than bone
US6607558B2 (en) * 2001-07-03 2003-08-19 Axiomed Spine Corporation Artificial disc
FR2831796B1 (en) * 2001-11-06 2003-12-26 Ldr Medical BONE ANCHORING DEVICE FOR PROSTHESIS
US6740118B2 (en) * 2002-01-09 2004-05-25 Sdgi Holdings, Inc. Intervertebral prosthetic joint
RU2303422C2 (en) * 2002-03-12 2007-07-27 Сервитек Инк. Intervertebral prosthesis and system of intervertebral prostheses, in peculiar case, for cervical department of vertebral column
US20080027548A9 (en) * 2002-04-12 2008-01-31 Ferree Bret A Spacerless artificial disc replacements
US6770095B2 (en) * 2002-06-18 2004-08-03 Depuy Acroned, Inc. Intervertebral disc
EP1534194A2 (en) * 2002-06-26 2005-06-01 Nuvasive, Inc. Total disc replacement system and related methods
US6793678B2 (en) * 2002-06-27 2004-09-21 Depuy Acromed, Inc. Prosthetic intervertebral motion disc having dampening
US20040106998A1 (en) * 2002-10-04 2004-06-03 Ferree Bret A. Multiaxial artificial disc replacements
US7063725B2 (en) * 2002-10-21 2006-06-20 Sdgi Holdings, Inc. Systems and techniques for restoring and maintaining intervertebral anatomy
US7083649B2 (en) * 2002-10-29 2006-08-01 St. Francis Medical Technologies, Inc. Artificial vertebral disk replacement implant with translating pivot point
US6966929B2 (en) * 2002-10-29 2005-11-22 St. Francis Medical Technologies, Inc. Artificial vertebral disk replacement implant with a spacer
US7273496B2 (en) * 2002-10-29 2007-09-25 St. Francis Medical Technologies, Inc. Artificial vertebral disk replacement implant with crossbar spacer and method
CA2502292C (en) * 2002-10-31 2011-07-26 Spinal Concepts, Inc. Movable disc implant
US7204852B2 (en) * 2002-12-13 2007-04-17 Spine Solutions, Inc. Intervertebral implant, insertion tool and method of inserting same
US7491204B2 (en) * 2003-04-28 2009-02-17 Spine Solutions, Inc. Instruments and method for preparing an intervertebral space for receiving an artificial disc implant
US7105024B2 (en) * 2003-05-06 2006-09-12 Aesculap Ii, Inc. Artificial intervertebral disc
ZA200509644B (en) * 2003-05-27 2007-03-28 Spinalmotion Inc Prosthetic disc for intervertebral insertion
US7048766B2 (en) * 2003-06-06 2006-05-23 Ferree Bret A Methods and apparatus for total disc replacements with oblique keels
DE10330698B4 (en) * 2003-07-08 2005-05-25 Aesculap Ag & Co. Kg Intervertebral implant
US20050015095A1 (en) * 2003-07-15 2005-01-20 Cervitech, Inc. Insertion instrument for cervical prostheses
US7621956B2 (en) * 2003-07-31 2009-11-24 Globus Medical, Inc. Prosthetic spinal disc replacement
US20050102029A1 (en) * 2003-10-28 2005-05-12 Nu Vasive, Inc. Total disc replacement system and related methods
US7520899B2 (en) * 2003-11-05 2009-04-21 Kyphon Sarl Laterally insertable artificial vertebral disk replacement implant with crossbar spacer
US7670377B2 (en) * 2003-11-21 2010-03-02 Kyphon Sarl Laterally insertable artifical vertebral disk replacement implant with curved spacer
US20050154462A1 (en) * 2003-12-02 2005-07-14 St. Francis Medical Technologies, Inc. Laterally insertable artificial vertebral disk replacement implant with translating pivot point
US7217291B2 (en) * 2003-12-08 2007-05-15 St. Francis Medical Technologies, Inc. System and method for replacing degenerated spinal disks
US7780731B2 (en) * 2004-11-26 2010-08-24 Spine Solutions, Inc. Intervertebral implant
US20060069441A1 (en) * 2004-09-29 2006-03-30 Zucherman James F Posterior approach implant method for assembly of multi-piece artificial spinal disk replacement device in situ

Patent Citations (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3426364A (en) * 1966-08-25 1969-02-11 Colorado State Univ Research F Prosthetic appliance for replacing one or more natural vertebrae
US3867728A (en) * 1971-12-30 1975-02-25 Cutter Lab Prosthesis for spinal repair
US3875595A (en) * 1974-04-15 1975-04-08 Edward C Froning Intervertebral disc prosthesis and instruments for locating same
US4369769A (en) * 1980-06-13 1983-01-25 Edwards Charles C Spinal fixation device and method
US4309777A (en) * 1980-11-13 1982-01-12 Patil Arun A Artificial intervertebral disc
US4501269A (en) * 1981-12-11 1985-02-26 Washington State University Research Foundation, Inc. Process for fusing bone joints
US4657550A (en) * 1984-12-21 1987-04-14 Daher Youssef H Buttressing device usable in a vertebral prosthesis
US4636217A (en) * 1985-04-23 1987-01-13 Regents Of The University Of Minnesota Anterior spinal implant
US4904261A (en) * 1987-08-06 1990-02-27 A. W. Showell (Surgicraft) Limited Spinal implants
US4904260A (en) * 1987-08-20 1990-02-27 Cedar Surgical, Inc. Prosthetic disc containing therapeutic material
US4997432A (en) * 1988-03-23 1991-03-05 Waldemar Link Gmbh & Co. Surgical instrument set
US5002576A (en) * 1988-06-06 1991-03-26 Mecron Medizinische Produkte Gmbh Intervertebral disk endoprosthesis
US4911718A (en) * 1988-06-10 1990-03-27 University Of Medicine & Dentistry Of N.J. Functional and biocompatible intervertebral disc spacer
US5484437A (en) * 1988-06-13 1996-01-16 Michelson; Gary K. Apparatus and method of inserting spinal implants
US5741253A (en) * 1988-06-13 1998-04-21 Michelson; Gary Karlin Method for inserting spinal implants
US5593409A (en) * 1988-06-13 1997-01-14 Sofamor Danek Group, Inc. Interbody spinal fusion implants
US5505732A (en) * 1988-06-13 1996-04-09 Michelson; Gary K. Apparatus and method of inserting spinal implants
US5609635A (en) * 1988-06-28 1997-03-11 Michelson; Gary K. Lordotic interbody spinal fusion implants
US5108438A (en) * 1989-03-02 1992-04-28 Regen Corporation Prosthetic intervertebral disc
US5895427A (en) * 1989-07-06 1999-04-20 Sulzer Spine-Tech Inc. Method for spinal fixation
US5489308A (en) * 1989-07-06 1996-02-06 Spine-Tech, Inc. Spinal implant
US5306308A (en) * 1989-10-23 1994-04-26 Ulrich Gross Intervertebral implant
US5192326A (en) * 1990-12-21 1993-03-09 Pfizer Hospital Products Group, Inc. Hydrogel bead intervertebral disc nucleus
US5390683A (en) * 1991-02-22 1995-02-21 Pisharodi; Madhavan Spinal implantation methods utilizing a middle expandable implant
US5192327A (en) * 1991-03-22 1993-03-09 Brantigan John W Surgical prosthetic implant for vertebrae
US5108442A (en) * 1991-05-09 1992-04-28 Boehringer Mannheim Corporation Prosthetic implant locking assembly
US5306307A (en) * 1991-07-22 1994-04-26 Calcitek, Inc. Spinal disk implant
US5290312A (en) * 1991-09-03 1994-03-01 Alphatec Artificial vertebral body
US5180381A (en) * 1991-09-24 1993-01-19 Aust Gilbert M Anterior lumbar/cervical bicortical compression plate
US5603713A (en) * 1991-09-24 1997-02-18 Aust; Gilbert M. Anterior lumbar/cervical bicortical compression plate
US5395317A (en) * 1991-10-30 1995-03-07 Smith & Nephew Dyonics, Inc. Unilateral biportal percutaneous surgical procedure
US5507816A (en) * 1991-12-04 1996-04-16 Customflex Limited Spinal vertebrae implants
US5401269A (en) * 1992-03-13 1995-03-28 Waldemar Link Gmbh & Co. Intervertebral disc endoprosthesis
US5306309A (en) * 1992-05-04 1994-04-26 Calcitek, Inc. Spinal disk implant and implantation kit
US5609634A (en) * 1992-07-07 1997-03-11 Voydeville; Gilles Intervertebral prosthesis making possible rotatory stabilization and flexion/extension stabilization
US5383884A (en) * 1992-12-04 1995-01-24 American Biomed, Inc. Spinal disc surgical instrument
US5489307A (en) * 1993-02-10 1996-02-06 Spine-Tech, Inc. Spinal stabilization surgical method
US5480401A (en) * 1993-02-17 1996-01-02 Psi Extra-discal inter-vertebral prosthesis for controlling the variations of the inter-vertebral distance by means of a double damper
US5480442A (en) * 1993-06-24 1996-01-02 Man Ceramics Gmbh Fixedly adjustable intervertebral prosthesis
US5395372A (en) * 1993-09-07 1995-03-07 Danek Medical, Inc. Spinal strut graft holding staple
US5888224A (en) * 1993-09-21 1999-03-30 Synthesis (U.S.A.) Implant for intervertebral space
US5716415A (en) * 1993-10-01 1998-02-10 Acromed Corporation Spinal implant
US5397364A (en) * 1993-10-12 1995-03-14 Danek Medical, Inc. Anterior interbody fusion device
US5599279A (en) * 1994-03-16 1997-02-04 Gus J. Slotman Surgical instruments and method useful for endoscopic spinal procedures
US5620458A (en) * 1994-03-16 1997-04-15 United States Surgical Corporation Surgical instruments useful for endoscopic spinal procedures
US5893890A (en) * 1994-03-18 1999-04-13 Perumala Corporation Rotating, locking intervertebral disk stabilizer and applicator
US5601556A (en) * 1994-03-18 1997-02-11 Pisharodi; Madhavan Apparatus for spondylolisthesis reduction
US5609636A (en) * 1994-05-23 1997-03-11 Spine-Tech, Inc. Spinal implant
US5885299A (en) * 1994-09-15 1999-03-23 Surgical Dynamics, Inc. Apparatus and method for implant insertion
US5865846A (en) * 1994-11-14 1999-02-02 Bryan; Vincent Human spinal disc prosthesis
US5860973A (en) * 1995-02-27 1999-01-19 Michelson; Gary Karlin Translateral spinal implant
US5591235A (en) * 1995-03-15 1997-01-07 Kuslich; Stephen D. Spinal fixation device
US6206922B1 (en) * 1995-03-27 2001-03-27 Sdgi Holdings, Inc. Methods and instruments for interbody fusion
US5888222A (en) * 1995-10-16 1999-03-30 Sdgi Holding, Inc. Intervertebral spacers
US5888227A (en) * 1995-10-20 1999-03-30 Synthes (U.S.A.) Inter-vertebral implant
US6051648A (en) * 1995-12-18 2000-04-18 Cohesion Technologies, Inc. Crosslinked polymer compositions and methods for their use
US5865845A (en) * 1996-03-05 1999-02-02 Thalgott; John S. Prosthetic intervertebral disc
US5885292A (en) * 1996-06-25 1999-03-23 Sdgi Holdings, Inc. Minimally invasive spinal surgical methods and instruments
US5891147A (en) * 1996-06-25 1999-04-06 Sdgi Holdings, Inc. Minimally invasive spinal surgical methods & instruments
US6503279B1 (en) * 1996-09-04 2003-01-07 Synthes (Usa) Intervertebral implant
US5895426A (en) * 1996-09-06 1999-04-20 Osteotech, Inc. Fusion implant device and method of use
US6045580A (en) * 1996-09-06 2000-04-04 Osteotech, Inc. Fusion implant device and method of use
US5716416A (en) * 1996-09-10 1998-02-10 Lin; Chih-I Artificial intervertebral disk and method for implanting the same
US6019793A (en) * 1996-10-21 2000-02-01 Synthes Surgical prosthetic device
US6190414B1 (en) * 1996-10-31 2001-02-20 Surgical Dynamics Inc. Apparatus for fusion of adjacent bone structures
US5895428A (en) * 1996-11-01 1999-04-20 Berry; Don Load bearing spinal joint implant
US6048342A (en) * 1997-01-02 2000-04-11 St. Francis Medical Technologies, Inc. Spine distraction implant
US5876404A (en) * 1997-01-02 1999-03-02 St. Francis Medical Technologies, Llc Spine distraction implant and method
US6514256B2 (en) * 1997-01-02 2003-02-04 St. Francis Medical Technologies, Inc. Spine distraction implant and method
US5860977A (en) * 1997-01-02 1999-01-19 Saint Francis Medical Technologies, Llc Spine distraction implant and method
US6190387B1 (en) * 1997-01-02 2001-02-20 St. Francis Medical Technologies, Inc. Spine distraction implant
US6183471B1 (en) * 1997-01-02 2001-02-06 St. Francis Medical Technologies, Inc. Spine distraction implant and method
US6039761A (en) * 1997-02-12 2000-03-21 Li Medical Technologies, Inc. Intervertebral spacer and tool and method for emplacement thereof
US6045579A (en) * 1997-05-01 2000-04-04 Spinal Concepts, Inc. Adjustable height fusion device
US6706070B1 (en) * 1997-05-01 2004-03-16 Spinal Concepts, Inc. Multi-variable-height fusion device
US6042582A (en) * 1997-05-20 2000-03-28 Ray; Charles D. Instrumentation and method for facilitating insertion of spinal implant
US6022376A (en) * 1997-06-06 2000-02-08 Raymedica, Inc. Percutaneous prosthetic spinal disc nucleus and method of manufacture
US5893889A (en) * 1997-06-20 1999-04-13 Harrington; Michael Artificial disc
US6348071B1 (en) * 1997-10-31 2002-02-19 Depuy Acromed, Inc. Spinal disc
US5888226A (en) * 1997-11-12 1999-03-30 Rogozinski; Chaim Intervertebral prosthetic disc
US6176882B1 (en) * 1998-02-20 2001-01-23 Biedermann Motech Gmbh Intervertebral implant
US6179874B1 (en) * 1998-04-23 2001-01-30 Cauthen Research Group, Inc. Articulating spinal implant
US6019792A (en) * 1998-04-23 2000-02-01 Cauthen Research Group, Inc. Articulating spinal implant
US6039763A (en) * 1998-10-27 2000-03-21 Disc Replacement Technologies, Inc. Articulating spinal disc prosthesis
US6193757B1 (en) * 1998-10-29 2001-02-27 Sdgi Holdings, Inc. Expandable intervertebral spacers
US6527804B1 (en) * 1998-12-11 2003-03-04 Dimso (Distribution Medicale Du Sud-Quest) Intervertebral disk prosthesis
US6530933B1 (en) * 1998-12-31 2003-03-11 Teresa T. Yeung Methods and devices for fastening bulging or herniated intervertebral discs
US6342074B1 (en) * 1999-04-30 2002-01-29 Nathan S. Simpson Anterior lumbar interbody fusion implant and method for fusing adjacent vertebrae
US6520996B1 (en) * 1999-06-04 2003-02-18 Depuy Acromed, Incorporated Orthopedic implant
US6530955B2 (en) * 1999-06-08 2003-03-11 Osteotech, Inc. Ramp-shaped intervertebral implant
US6527773B1 (en) * 1999-10-07 2003-03-04 Osteotech, Inc. Cervical dowel and insertion tool
US6524312B2 (en) * 2000-01-06 2003-02-25 Spinal Concepts, Inc. Instrument and method for implanting an interbody fusion device
US6517580B1 (en) * 2000-03-03 2003-02-11 Scient'x Societe A Responsabilite Limited Disk prosthesis for cervical vertebrae
US6682562B2 (en) * 2000-03-10 2004-01-27 Eurosurgical Sa Intervertebral disc prosthesis
US6350283B1 (en) * 2000-04-19 2002-02-26 Gary K. Michelson Bone hemi-lumbar interbody spinal implant having an asymmetrical leading end and method of installation thereof
US6520993B2 (en) * 2000-12-29 2003-02-18 Depuy Acromed, Inc. Spinal implant
US6527806B2 (en) * 2001-07-16 2003-03-04 Third Millennium Engineering, Llc Intervertebral spacer device having a spiral wave washer force restoring element
US6706068B2 (en) * 2002-04-23 2004-03-16 Bret A. Ferree Artificial disc replacements with natural kinematics
US20050043802A1 (en) * 2003-02-12 2005-02-24 Sdgi Holdings, Inc. Articular disc prosthesis for lateral insertion

Cited By (131)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080021561A1 (en) * 1997-01-02 2008-01-24 Zucherman James F Spine distraction implant and method
US8672974B2 (en) 1997-01-02 2014-03-18 Warsaw Orthopedic, Inc. Spine distraction implant and method
US8617211B2 (en) 1997-01-02 2013-12-31 Warsaw Orthopedic, Inc. Spine distraction implant and method
US8540751B2 (en) 1997-01-02 2013-09-24 Warsaw Orthopedic, Inc. Spine distraction implant and method
US7666209B2 (en) 1997-01-02 2010-02-23 Kyphon Sarl Spine distraction implant and method
US20080172057A1 (en) * 1997-01-02 2008-07-17 Zucherman James F Spine distraction implant and method
US8882839B2 (en) 1999-07-02 2014-11-11 DePuy Synthes Products, LLC Intervertebral implant
US9526624B2 (en) 1999-07-02 2016-12-27 DePuy Synthes Products, Inc. Intervertebral implant
US9333095B2 (en) 2001-05-04 2016-05-10 Ldr Medical Intervertebral disc prosthesis, surgical methods, and fitting tools
US8267999B2 (en) 2002-11-05 2012-09-18 Ldr Medical Intervertebral disc prosthesis
US20110160863A1 (en) * 2003-08-04 2011-06-30 Karl Belliard Method of Implanting Intervertebral Disk Prosthesis
US20050033435A1 (en) * 2003-08-04 2005-02-10 Spine Next Intervertebral disk prosthesis
US8226721B2 (en) * 2003-08-04 2012-07-24 Zimmer Spine S.A.S. Method of implanting intervertebral disk prosthesis
US7896919B2 (en) 2003-08-04 2011-03-01 Zimmer Spine S.A.S. Method of implanting intervertebral disk prosthesis
US7611538B2 (en) * 2003-08-04 2009-11-03 Zimmer Spine S.A.S. Intervertebral disk prosthesis
US9579124B2 (en) 2003-08-05 2017-02-28 Flexuspine, Inc. Expandable articulating intervertebral implant with limited articulation
US7670377B2 (en) * 2003-11-21 2010-03-02 Kyphon Sarl Laterally insertable artifical vertebral disk replacement implant with curved spacer
US7503935B2 (en) * 2003-12-02 2009-03-17 Kyphon Sarl Method of laterally inserting an artificial vertebral disk replacement with translating pivot point
US20050143820A1 (en) * 2003-12-02 2005-06-30 St. Francis Medical Technologies, Inc. Method of laterally inserting an artificial vertebral disk replacement implant with translating pivot point
US20090254184A1 (en) * 2004-01-09 2009-10-08 Warsaw Orthopedic, Inc. Spinal Arthroplasty Device and Method
US8888852B2 (en) 2004-01-09 2014-11-18 Hh Spinal Llc Spinal athroplasty device and method
US7556651B2 (en) 2004-01-09 2009-07-07 Warsaw Orthopedic, Inc. Posterior spinal device and method
US7550010B2 (en) 2004-01-09 2009-06-23 Warsaw Orthopedic, Inc. Spinal arthroplasty device and method
US20090259255A1 (en) * 2004-01-09 2009-10-15 Warsaw Orthopedic, Inc. Spinal Arthroplasty Device and Method
US20050171609A1 (en) * 2004-01-09 2005-08-04 Sdgi Holdings, Inc. Spinal arthroplasty device and method
US8372150B2 (en) 2004-01-09 2013-02-12 Warsaw Orthpedic, Inc. Spinal device and method
US7875077B2 (en) 2004-01-09 2011-01-25 Warsaw Orthopedic, Inc. Support structure device and method
US7901459B2 (en) 2004-01-09 2011-03-08 Warsaw Orthopedic, Inc. Split spinal device and method
US20050154467A1 (en) * 2004-01-09 2005-07-14 Sdgi Holdings, Inc. Interconnected spinal device and method
US7771479B2 (en) 2004-01-09 2010-08-10 Warsaw Orthopedic, Inc. Dual articulating spinal device and method
US10603185B2 (en) 2004-02-04 2020-03-31 Ldr Medical Intervertebral disc prosthesis
US8858635B2 (en) 2004-02-04 2014-10-14 Ldr Medical Intervertebral disc prosthesis
US8895073B2 (en) 2004-02-06 2014-11-25 Georgia Tech Research Corporation Hydrogel implant with superficial pores
US8486436B2 (en) 2004-02-06 2013-07-16 Georgia Tech Research Corporation Articular joint implant
US8142808B2 (en) 2004-02-06 2012-03-27 Georgia Tech Research Corporation Method of treating joints with hydrogel implants
US7910124B2 (en) 2004-02-06 2011-03-22 Georgia Tech Research Corporation Load bearing biocompatible device
US7682540B2 (en) 2004-02-06 2010-03-23 Georgia Tech Research Corporation Method of making hydrogel implants
US8002830B2 (en) 2004-02-06 2011-08-23 Georgia Tech Research Corporation Surface directed cellular attachment
US8318192B2 (en) 2004-02-06 2012-11-27 Georgia Tech Research Corporation Method of making load bearing hydrogel implants
US8002835B2 (en) * 2004-04-28 2011-08-23 Ldr Medical Intervertebral disc prosthesis
US20120053693A1 (en) * 2004-04-28 2012-03-01 Ldr Medical Intervertebral disc prosthesis
US8974532B2 (en) * 2004-04-28 2015-03-10 Ldr Medical Intervertebral disc prosthesis
US20060089654A1 (en) * 2004-10-25 2006-04-27 Lins Robert E Interspinous distraction devices and associated methods of insertion
US8007517B2 (en) 2004-10-25 2011-08-30 Lanx, Inc. Interspinous distraction devices and associated methods of insertion
US8257439B2 (en) 2004-12-22 2012-09-04 Ldr Medical Intervertebral disc prosthesis
US10226355B2 (en) 2004-12-22 2019-03-12 Ldr Medical Intervertebral disc prosthesis
US20090054986A1 (en) * 2005-05-02 2009-02-26 Cordaro Nicholas M Motion restoring intervertebral device
US7799083B2 (en) 2005-05-02 2010-09-21 Seaspine, Inc. Prosthesis for restoring motion in an appendage or spinal joint and an intervertebral spacer
US8097036B2 (en) * 2005-05-02 2012-01-17 Seaspine, Inc. Motion restoring intervertebral device
US20090082868A1 (en) * 2005-05-02 2009-03-26 Cordaro Nicholas M Prosthesis for restoring motion in an appendage or spinal joint and an intervertebral spacer
US20060271055A1 (en) * 2005-05-12 2006-11-30 Jeffery Thramann Spinal stabilization
US8870960B2 (en) 2005-07-28 2014-10-28 Nuvasive, Inc. Total disc replacement system and related methods
US9610171B2 (en) 2005-07-28 2017-04-04 Nuvasive, Inc. Total disc replacement system and related methods
US9168149B2 (en) 2005-07-28 2015-10-27 NaVasive, Inc. Total disc replacement system and related methods
US8328851B2 (en) 2005-07-28 2012-12-11 Nuvasive, Inc. Total disc replacement system and related methods
US8979932B2 (en) 2005-09-23 2015-03-17 Ldr Medical Intervertebral disc prosthesis
US10492919B2 (en) 2005-09-23 2019-12-03 Ldr Medical Intervertebral disc prosthesis
US11872138B2 (en) 2005-09-23 2024-01-16 Ldr Medical Intervertebral disc prosthesis
US9770271B2 (en) 2005-10-25 2017-09-26 Zimmer Biomet Spine, Inc. Spinal implants and methods
US7967862B2 (en) 2005-11-23 2011-06-28 Warsaw Orthopedic, Inc. Posterior articular disc and method for implantation
US20070118223A1 (en) * 2005-11-23 2007-05-24 Warsaw Orthopedic Inc. Posterior Articular Disc and Method for Implantation
US8771284B2 (en) 2005-11-30 2014-07-08 Ldr Medical Intervertebral disc prosthesis and instrumentation for insertion of the prosthesis between the vertebrae
US20090326658A1 (en) * 2006-01-25 2009-12-31 Sdgi Holdings, Inc. Intervertebral prosthetic disc and method of installing same
US20070179622A1 (en) * 2006-01-25 2007-08-02 Salumedica, Llc Methods of producing pva hydrogel implants and related devices
US8603171B2 (en) 2006-01-25 2013-12-10 Mimedx Group, Inc. Spinal disc implants with flexible keels and methods of fabricating implants
US20070179621A1 (en) * 2006-01-25 2007-08-02 Spinemedica Corporation Spinal disc implants with flexible keels and methods of fabricating implants
US20070173941A1 (en) * 2006-01-25 2007-07-26 Sdgi Holdings, Inc. Intervertebral prosthetic disc and method of installing same
US8038920B2 (en) 2006-01-25 2011-10-18 Carticept Medical, Inc. Methods of producing PVA hydrogel implants and related devices
US7811326B2 (en) 2006-01-30 2010-10-12 Warsaw Orthopedic Inc. Posterior joint replacement device
US20070270959A1 (en) * 2006-04-18 2007-11-22 Sdgi Holdings, Inc. Arthroplasty device
US20070288091A1 (en) * 2006-05-31 2007-12-13 Braddock Danny H Intervertebral lordatic adapter
US7780676B2 (en) 2006-07-11 2010-08-24 Ebi, Llc Intervertebral implantation apparatus
US9387086B2 (en) 2006-07-24 2016-07-12 DePuy Synthes Products, Inc. Intervertebral implant with keel
US11690728B2 (en) 2006-07-24 2023-07-04 Centinel Spine, Llc Intervertebral implant with keel
US10583014B2 (en) 2006-07-24 2020-03-10 Centinel Spine, Llc Intervertebral implant with keel
US9883950B2 (en) 2006-07-24 2018-02-06 Centinel Spine Llc Intervertebral implant with keel
US8998990B2 (en) * 2006-07-24 2015-04-07 DePuy Synthes Products, LLC Intervertebral implant with keel
US20100217395A1 (en) * 2006-07-24 2010-08-26 Rudolf Bertagnoli Intervertebral implant with keel
US9861400B2 (en) 2007-01-11 2018-01-09 Zimmer Biomet Spine, Inc. Spinous process implants and associated methods
US8241330B2 (en) 2007-01-11 2012-08-14 Lanx, Inc. Spinous process implants and associated methods
US9743960B2 (en) 2007-01-11 2017-08-29 Zimmer Biomet Spine, Inc. Interspinous implants and methods
US9724136B2 (en) 2007-01-11 2017-08-08 Zimmer Biomet Spine, Inc. Spinous process implants and associated methods
US8075596B2 (en) 2007-01-12 2011-12-13 Warsaw Orthopedic, Inc. Spinal prosthesis systems
US20080172090A1 (en) * 2007-01-12 2008-07-17 Warsaw Orthopedic, Inc. Spinal Prosthesis Systems
US9066811B2 (en) * 2007-01-19 2015-06-30 Flexuspine, Inc. Artificial functional spinal unit system and method for use
US20080234823A1 (en) * 2007-01-19 2008-09-25 Landry Michael E Artificial functional spinal unit system and method for use
US20080234741A1 (en) * 2007-01-19 2008-09-25 Landry Michael E Artificial functional spinal unit system and method for use
US8940022B2 (en) * 2007-01-19 2015-01-27 Flexuspine, Inc. Artificial functional spinal unit system and method for use
US8034081B2 (en) 2007-02-06 2011-10-11 CollabComl, LLC Interspinous dynamic stabilization implant and method of implanting
US8465546B2 (en) 2007-02-16 2013-06-18 Ldr Medical Intervertebral disc prosthesis insertion assemblies
US10398574B2 (en) 2007-02-16 2019-09-03 Ldr Medical Intervertebral disc prosthesis insertion assemblies
US10188528B2 (en) 2007-02-16 2019-01-29 Ldr Medical Interveterbral disc prosthesis insertion assemblies
US10751187B2 (en) 2007-06-08 2020-08-25 Ldr Medical Intersomatic cage, intervertebral prosthesis, anchoring device and implantation instruments
US8343219B2 (en) 2007-06-08 2013-01-01 Ldr Medical Intersomatic cage, intervertebral prosthesis, anchoring device and implantation instruments
US8864832B2 (en) 2007-06-20 2014-10-21 Hh Spinal Llc Posterior total joint replacement
US11890202B2 (en) 2007-06-20 2024-02-06 3Spine, Inc. Spinal osteotomy
US20100004746A1 (en) * 2008-07-02 2010-01-07 Spinalmotion, Inc. Limited Motion Prosthetic Intervertebral Disc
US9220603B2 (en) * 2008-07-02 2015-12-29 Simplify Medical, Inc. Limited motion prosthetic intervertebral disc
US9138330B2 (en) 2008-10-13 2015-09-22 Globus Medical, Inc. Intervertebral spacer
US11026803B2 (en) 2008-10-13 2021-06-08 Globus Medical, Inc. Intervertebral spacer
US10130490B2 (en) 2008-10-13 2018-11-20 Globus Medical, Inc. Intervertebral spacer
US11896497B2 (en) 2008-10-13 2024-02-13 Globus Medical, Inc. Intervertebral spacer
US20100094422A1 (en) * 2008-10-13 2010-04-15 Noah Hansell Intervertebral Spacer
US8147554B2 (en) * 2008-10-13 2012-04-03 Globus Medical, Inc. Intervertebral spacer
US9259327B2 (en) 2008-10-13 2016-02-16 Globus Medical, Inc. Articulating spacer
US9782269B2 (en) 2008-10-13 2017-10-10 Globus Medical, Inc. Intervertebral spacer
US9084688B2 (en) * 2009-05-19 2015-07-21 DePuy Synthes Products, Inc. Dynamic trial implants
US10045864B2 (en) 2009-05-19 2018-08-14 DePuy Synthes Products, Inc. Dynamic trial implants
US20100298941A1 (en) * 2009-05-19 2010-11-25 Robert Hes Dynamic trial implants
US8512408B2 (en) 2010-12-17 2013-08-20 Warsaw Orthopedic, Inc. Flexiable spinal implant
US10376368B2 (en) 2011-05-26 2019-08-13 Cartiva, Inc. Devices and methods for creating wedge-shaped recesses
US9526632B2 (en) 2011-05-26 2016-12-27 Cartiva, Inc. Methods of repairing a joint using a wedge-shaped implant
US9155543B2 (en) 2011-05-26 2015-10-13 Cartiva, Inc. Tapered joint implant and related tools
US11278411B2 (en) 2011-05-26 2022-03-22 Cartiva, Inc. Devices and methods for creating wedge-shaped recesses
US11812923B2 (en) 2011-10-07 2023-11-14 Alan Villavicencio Spinal fixation device
US9526627B2 (en) 2011-11-17 2016-12-27 Exactech, Inc. Expandable interbody device system and method
US10350072B2 (en) 2012-05-24 2019-07-16 Cartiva, Inc. Tooling for creating tapered opening in tissue and related methods
US11369484B2 (en) 2013-02-20 2022-06-28 Flexuspine Inc. Expandable fusion device for positioning between adjacent vertebral bodies
US11766341B2 (en) 2013-02-20 2023-09-26 Tyler Fusion Technologies, Llc Expandable fusion device for positioning between adjacent vertebral bodies
US9492288B2 (en) 2013-02-20 2016-11-15 Flexuspine, Inc. Expandable fusion device for positioning between adjacent vertebral bodies
US11253373B2 (en) 2014-04-24 2022-02-22 Choice Spine, Llc Limited profile intervertebral implant with incorporated fastening and locking mechanism
US10398565B2 (en) 2014-04-24 2019-09-03 Choice Spine, Llc Limited profile intervertebral implant with incorporated fastening and locking mechanism
US9517144B2 (en) 2014-04-24 2016-12-13 Exactech, Inc. Limited profile intervertebral implant with incorporated fastening mechanism
US11717411B2 (en) 2015-03-31 2023-08-08 Cartiva, Inc. Hydrogel implants with porous materials and methods
US10758374B2 (en) 2015-03-31 2020-09-01 Cartiva, Inc. Carpometacarpal (CMC) implants and methods
US11839552B2 (en) 2015-03-31 2023-12-12 Cartiva, Inc. Carpometacarpal (CMC) implants and methods
US10973644B2 (en) 2015-03-31 2021-04-13 Cartiva, Inc. Hydrogel implants with porous materials and methods
US9907663B2 (en) 2015-03-31 2018-03-06 Cartiva, Inc. Hydrogel implants with porous materials and methods
US11020231B2 (en) 2015-04-14 2021-06-01 Cartiva, Inc. Tooling for creating tapered opening in tissue and related methods
US11701231B2 (en) 2015-04-14 2023-07-18 Cartiva, Inc. Tooling for creating tapered opening in tissue and related methods
US10952858B2 (en) 2015-04-14 2021-03-23 Cartiva, Inc. Tooling for creating tapered opening in tissue and related methods

Also Published As

Publication number Publication date
US7503935B2 (en) 2009-03-17
US20050143820A1 (en) 2005-06-30

Similar Documents

Publication Publication Date Title
US7503935B2 (en) Method of laterally inserting an artificial vertebral disk replacement with translating pivot point
US7575600B2 (en) Artificial vertebral disk replacement implant with translating articulation contact surface and method
US7691146B2 (en) Method of laterally inserting an artificial vertebral disk replacement implant with curved spacer
US11896493B2 (en) Expandable intervertebral spacer
US7320707B2 (en) Method of laterally inserting an artificial vertebral disk replacement implant with crossbar spacer
JP4547420B2 (en) Arthroplasty spine prosthesis and insertion device
US7083649B2 (en) Artificial vertebral disk replacement implant with translating pivot point
US9125751B2 (en) Transforaminal prosthetic spinal disc replacement and methods thereof
US7497859B2 (en) Tools for implanting an artificial vertebral disk
US7481840B2 (en) Multi-piece artificial spinal disk replacement device with selectably positioning articulating element
US20050283237A1 (en) Artificial spinal disk replacement device with staggered vertebral body attachments
US20070083267A1 (en) Posterior metal-on-metal disc replacement device and method
JP6971979B2 (en) Articulated expandable facet implant
US20060069438A1 (en) Multi-piece artificial spinal disk replacement device with multi-segmented support plates
US20070208425A1 (en) Artificial vertebral disk replacement implant with crossbar spacer and method
US20170165082A1 (en) Stabilized expandable intervertebral spacer
US11259938B2 (en) Stabilized intervertebral spacer
CA2586594A1 (en) Minimally invasive spinal disc stabilizer and insertion tool
JP2018531096A6 (en) Articulating expandable intervertebral implant
JP2016527061A (en) Articulating expandable intervertebral implant
US20090088801A1 (en) Spinal fixation device and method

Legal Events

Date Code Title Description
AS Assignment

Owner name: ST. FRANCIS MEDICAL TECHNOLOGIES, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ZUCHERMAN, JAMES F.;HSU, KEN Y.;WINSLOW, CHARLES J.;AND OTHERS;REEL/FRAME:016266/0038;SIGNING DATES FROM 20050121 TO 20050209

AS Assignment

Owner name: BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT,WAS

Free format text: SECURITY AGREEMENT;ASSIGNOR:ST. FRANCIS MEDICAL TECHNOLOGIES, INC.;REEL/FRAME:018911/0427

Effective date: 20070118

Owner name: BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT, WA

Free format text: SECURITY AGREEMENT;ASSIGNOR:ST. FRANCIS MEDICAL TECHNOLOGIES, INC.;REEL/FRAME:018911/0427

Effective date: 20070118

AS Assignment

Owner name: KYPHON INC., CALIFORNIA

Free format text: MERGER;ASSIGNOR:ST. FRANCIS MEDICAL TECHNOLOGIES, INC.;REEL/FRAME:020393/0260

Effective date: 20071128

Owner name: KYPHON INC.,CALIFORNIA

Free format text: MERGER;ASSIGNOR:ST. FRANCIS MEDICAL TECHNOLOGIES, INC.;REEL/FRAME:020393/0260

Effective date: 20071128

AS Assignment

Owner name: KYPHON, INC., CALIFORNIA

Free format text: TERMINATION/RELEASE OF SECURITY INTEREST;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:020679/0107

Effective date: 20071101

Owner name: KYPHON, INC.,CALIFORNIA

Free format text: TERMINATION/RELEASE OF SECURITY INTEREST;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:020679/0107

Effective date: 20071101

AS Assignment

Owner name: MEDTRONIC SPINE LLC, CALIFORNIA

Free format text: CHANGE OF NAME;ASSIGNOR:KYPHON INC;REEL/FRAME:020993/0042

Effective date: 20080118

Owner name: MEDTRONIC SPINE LLC,CALIFORNIA

Free format text: CHANGE OF NAME;ASSIGNOR:KYPHON INC;REEL/FRAME:020993/0042

Effective date: 20080118

AS Assignment

Owner name: KYPHON SARL, SWITZERLAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MEDTRONIC SPINE LLC;REEL/FRAME:021070/0278

Effective date: 20080325

Owner name: KYPHON SARL,SWITZERLAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MEDTRONIC SPINE LLC;REEL/FRAME:021070/0278

Effective date: 20080325

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION