US20050282156A1 - Methods for making a device for concurrently processing multiple biological chip assays - Google Patents

Methods for making a device for concurrently processing multiple biological chip assays Download PDF

Info

Publication number
US20050282156A1
US20050282156A1 US11/173,366 US17336605A US2005282156A1 US 20050282156 A1 US20050282156 A1 US 20050282156A1 US 17336605 A US17336605 A US 17336605A US 2005282156 A1 US2005282156 A1 US 2005282156A1
Authority
US
United States
Prior art keywords
microarray
cover
breakaway seal
fluid
pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/173,366
Inventor
Richard Rava
Stephen Fodor
Mark Trulson
Vernon Norviel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Affymetrix Inc
Original Assignee
Affymetrix Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US08/476,850 external-priority patent/US5545531A/en
Application filed by Affymetrix Inc filed Critical Affymetrix Inc
Priority to US11/173,366 priority Critical patent/US20050282156A1/en
Publication of US20050282156A1 publication Critical patent/US20050282156A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0046Sequential or parallel reactions, e.g. for the synthesis of polypeptides or polynucleotides; Apparatus and devices for combinatorial chemistry or for making molecular arrays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/508Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above
    • B01L3/5085Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above for multiple samples, e.g. microtitration plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/508Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above
    • B01L3/5085Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above for multiple samples, e.g. microtitration plates
    • B01L3/50853Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above for multiple samples, e.g. microtitration plates with covers or lids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6834Enzymatic or biochemical coupling of nucleic acids to a solid phase
    • C12Q1/6837Enzymatic or biochemical coupling of nucleic acids to a solid phase using probe arrays or probe chips
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/028Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations having reaction cells in the form of microtitration plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00279Features relating to reactor vessels
    • B01J2219/00281Individual reactor vessels
    • B01J2219/00286Reactor vessels with top and bottom openings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00279Features relating to reactor vessels
    • B01J2219/00306Reactor vessels in a multiple arrangement
    • B01J2219/00313Reactor vessels in a multiple arrangement the reactor vessels being formed by arrays of wells in blocks
    • B01J2219/00315Microtiter plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00279Features relating to reactor vessels
    • B01J2219/00306Reactor vessels in a multiple arrangement
    • B01J2219/00313Reactor vessels in a multiple arrangement the reactor vessels being formed by arrays of wells in blocks
    • B01J2219/00315Microtiter plates
    • B01J2219/00317Microwell devices, i.e. having large numbers of wells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00351Means for dispensing and evacuation of reagents
    • B01J2219/00427Means for dispensing and evacuation of reagents using masks
    • B01J2219/00432Photolithographic masks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00497Features relating to the solid phase supports
    • B01J2219/00527Sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00497Features relating to the solid phase supports
    • B01J2219/00527Sheets
    • B01J2219/00529DNA chips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/0054Means for coding or tagging the apparatus or the reagents
    • B01J2219/00572Chemical means
    • B01J2219/00576Chemical means fluorophore
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00605Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00605Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
    • B01J2219/00608DNA chips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00605Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
    • B01J2219/0061The surface being organic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00605Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
    • B01J2219/00612Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports the surface being inorganic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00605Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
    • B01J2219/00614Delimitation of the attachment areas
    • B01J2219/00617Delimitation of the attachment areas by chemical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00605Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
    • B01J2219/00614Delimitation of the attachment areas
    • B01J2219/00617Delimitation of the attachment areas by chemical means
    • B01J2219/00619Delimitation of the attachment areas by chemical means using hydrophilic or hydrophobic regions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00605Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
    • B01J2219/00614Delimitation of the attachment areas
    • B01J2219/00621Delimitation of the attachment areas by physical means, e.g. trenches, raised areas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00605Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
    • B01J2219/00623Immobilisation or binding
    • B01J2219/00626Covalent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00605Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
    • B01J2219/00632Introduction of reactive groups to the surface
    • B01J2219/00637Introduction of reactive groups to the surface by coating it with another layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00639Making arrays on substantially continuous surfaces the compounds being trapped in or bound to a porous medium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00659Two-dimensional arrays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00659Two-dimensional arrays
    • B01J2219/00662Two-dimensional arrays within two-dimensional arrays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/0068Means for controlling the apparatus of the process
    • B01J2219/00702Processes involving means for analysing and characterising the products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/0068Means for controlling the apparatus of the process
    • B01J2219/00702Processes involving means for analysing and characterising the products
    • B01J2219/00707Processes involving means for analysing and characterising the products separated from the reactor apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00718Type of compounds synthesised
    • B01J2219/0072Organic compounds
    • B01J2219/00722Nucleotides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/04Closures and closing means
    • B01L2300/041Connecting closures to device or container
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/04Closures and closing means
    • B01L2300/041Connecting closures to device or container
    • B01L2300/044Connecting closures to device or container pierceable, e.g. films, membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/04Closures and closing means
    • B01L2300/046Function or devices integrated in the closure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0627Sensor or part of a sensor is integrated
    • B01L2300/0636Integrated biosensor, microarrays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0819Microarrays; Biochips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0829Multi-well plates; Microtitration plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/06Valves, specific forms thereof
    • B01L2400/0677Valves, specific forms thereof phase change valves; Meltable, freezing, dissolvable plugs; Destructible barriers
    • B01L2400/0683Valves, specific forms thereof phase change valves; Meltable, freezing, dissolvable plugs; Destructible barriers mechanically breaking a wall or membrane within a channel or chamber
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B40/00Libraries per se, e.g. arrays, mixtures
    • C40B40/04Libraries containing only organic compounds
    • C40B40/06Libraries containing nucleotides or polynucleotides, or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B60/00Apparatus specially adapted for use in combinatorial chemistry or with libraries
    • C40B60/14Apparatus specially adapted for use in combinatorial chemistry or with libraries for creating libraries
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00029Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor provided with flat sample substrates, e.g. slides
    • G01N2035/00099Characterised by type of test elements
    • G01N2035/00158Elements containing microarrays, i.e. "biochip"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence

Definitions

  • This invention relates to methods for concurrently performing multiple biological chip assays.
  • the invention therefore relates to diverse fields impacted by the nature of molecular interaction, including chemistry, biology, medicine and diagnostics.
  • VLSIPSTM New technology, called VLSIPSTM, has enabled the production of chips smaller than a thumbnail that contain hundreds of thousands or more of different molecular probes. These biological chips or arrays have probes arranged in arrays, each probe assigned a specific location. Biological chips have been produced in which each location has a scale of, for example, ten microns. The chips can be used to determine whether target molecules interact with any of the probes on the chip After exposing the array to target molecules under selected test conditions, scanning devices can examine each location in the array and determine whether a target molecule has interacted with the probe at that location
  • Bio chips or arrays are useful in a variety of screening techniques for obtaining information about either the probes or the target molecules
  • a library of peptides can be used as probes to screen for drugs.
  • the peptides can be exposed to a receptor, and those probes that bind to the receptor can be identified
  • Arrays of nucleic acid probes can be used to extract sequence information from, for example, nucleic acid samples. The samples are exposed to the probes under conditions that allow hybridization. The arrays are then scanned to determine to which probes the sample molecules have hybridized. One can obtain sequence information by careful probe selection and using algorithms to compare patterns of hybridization and non-hybridization This method is useful for sequencing nucleic acids, as well as sequence checking. For example, the method is useful in diagnostic screening for genetic diseases or for the presence and/or identity of a particular pathogen or a strain of pathogen. For example, there are various strains of HIV, the virus that causes AIDS. Some of them have become resistant to current AIDS therapies. Diagnosticians can use DNA arrays to examine a nucleic acid sample from the virus to determine what strain at belongs to.
  • a biological chip plate comprising a plurality of test wells. Each test well defines a space for the introduction of a sample and contains a biological array The array is formed on a surface of the substrate, with the probes exposed to the space.
  • a fluid handling device manipulates the plates to perform steps to carry out reactions between the target molecules in samples and the probes in a plurality of test wells.
  • the biological chip plate is then interrogated by a biological chip plate reader to detect any reactions between target molecules and probes in a plurality of the test wells, thereby generating results of the assay.
  • the method also includes processing the results of the assay with a computer. Such analysis is useful when sequencing a gene by a method that uses an algorithm to process the results of many hybridization assays to provide the nucleotide sequence of the gene.
  • the methods of the invention can involve the binding of tagged target molecules to the probes.
  • the tags can be, for example, fluorescent markers, chemiluminescent markers, light scattering markers or radioactive markers.
  • the probes are nucleic acids, such as DNA or RNA molecules.
  • the methods can be used to detect or identify a pathogenic organism, such as HIV, or to detect a human gene variant, such a the gene for a genetic disease such as cystic fibrosis, diabetes, muscular dystrophy or predisposition to certain cancers.
  • the invention also provides systems for performing the methods of this invention.
  • the systems include a biological chip plate, a fluid handling device that automatically performs steps to carry out assays on samples introduced into a plurality of the test wells, a biological chip plate reader that determines in a plurality of the test wells the results of the assay and, optionally, a computer comprising a program for processing the results.
  • the fluid handling device and plate reader can have a heater/cooler controlled by a thermostat for controlling the temperature of the samples in the test wells and robotically controlled pipets for adding or removing fluids from the test wells at predetermined times
  • the probes are attached by light-directed probe synthesis
  • the biological chip plates can have 96 wells arranged in 8 rows and 12 columns, such as a standard microtiter plate
  • the probe arrays can each have at least about 100, 1000, 100,000 or 1,000,000 addressable features (e g., probes).
  • a variety of probes can be used on the plates, including, for example, various polymers such as peptides or nucleic acids
  • the plates can have wells in which the probe array in each test well is the same Alternatively, when each of several samples are to be subjected to several tests, each row can have the same probe array and each column can have a different array. Alternatively, all the wells can have different arrays.
  • a wafer and a body are provided.
  • the wafer includes a substrate and a surface to which is attached a plurality of arrays of probes.
  • the body has a plurality of channels.
  • the body is attached to the surface of the wafer whereby the channels each cover an array of probes and the wafer closes one end of a plurality of the channels, thereby forming test wells defining spaces for receiving samples.
  • a body having a plurality of wells defining spaces is provided and biological chips are provided.
  • the chips are attached to the wells so that the probe arrays are exposed to the space
  • Another embodiment involves providing a wafer having a plurality of probe arrays; and applying a material resistant to the flow of a liquid sample so as to surround the probe arrays, thereby creating test wells
  • This invention also provides a wafer for making a biological chip plate
  • the wafer has a substrate and a surface to which are attached a plurality of probe arrays
  • the probe arrays are arranged on the wafer surface in rows and columns, wherein the probe arrays in each row are the same and the probe arrays in each column are different.
  • FIG. 1 depicts a system of this invention having a biological chip plate, fluid handling device, biological chip plate reader and computer;
  • FIG. 2 depicts the scanning of a biological chip plate by a biological chip plate reader
  • FIG. 3 depicts a biological plate of this invention
  • FIG. 4 depicts the mating of a wafer containing many biological arrays with a body having channels to create a biological chip plate
  • FIG. 5 depicts a biological chip plate in cross section having a body attached to a water to create closed test wells in which a probe array is exposed to the space in the test well;
  • FIG. 6 depicts a biological plate in cross section having a body which has individual biological chips attached to the bottom of the wells;
  • FIG. 7 is a top-down view of a test well containing a biological array.
  • FIG. 8 depicts a method of producing an array of oligonucleotide probes on the surface of a substrate by using a mask to expose certain parts of the surface to light, thereby removing photoremovable protective groups, and attaching nucleotides to the exposed reactive groups.
  • This invention provides automated methods for concurrently processing multiple biological chip assays Currently available methods utilize each biological chip assay individually. The methods of this invention allow many tests to be set up and processed together Because they allow much higher throughput of test samples, these methods greatly improve the efficiency of performing assays on biological chips.
  • a biological chip plate having a plurality of test wells Each test well includes a biological chip Test samples, which may contain target molecules, are introduced into the test wells A fluid handling device exposes the test wells to a chosen set of reaction conditions by, for example, adding or removing fluid from the wells, maintaining the liquid in the wells at predetermined temperatures, and agitating the wells as required, thereby performing the test. Then, a biological chip reader interrogates the probe arrays in the test wells, thereby obtaining the results of the tests A computer having an appropriate program can further analyze the results from the tests.
  • one embodiment of the invention is a system for concurrently processing biological chip assays.
  • the system includes a biological chip plate reader 100 , a fluid handling device 110 , a biological chip plate 120 and, optionally, a computer 130 .
  • samples are placed in wells on the chip plate 120 with fluid handling device 110
  • the plate optionally can be moved with a stage translation device 140 .
  • Reader 100 is used to identify where targets in the wells have bound to complementary probes.
  • the system operates under control of computer 130 which may optionally interpret the results of the assay.
  • detectably labeled target molecules bind to probe molecules Reading the results of an assay involves detecting a signal produced by the detectable label. Reading assays on a biological chip plate requires a biological chip reader Accordingly, locations at which target(s) bind with complementary probes can be identified by detecting the location of the label Through knowledge of the characteristics/sequence of the probe versus location, characteristics of the target can be determined. The nature of the biological chip reader depends upon the particular type of label attached to the target molecules.
  • targets and probes can be characterized in terms of kinetics and thermodynamics As such, it may be necessary to interrogate the array while in contact with a solution of labeled targets.
  • the detection system must be extremely selective, with the capacity to discriminate between surface-bound and solution-born targets.
  • the high-density of the probe sequences requires the system to have the capacity to distinguish between each feature site. The system also should have sensitivity to low signal and a large dynamic range.
  • the chip plate reader includes a confocal detection device having a monochromatic or polychromatic light source, a focusing system for directing an excitation light from the light source to the substrate, a temperature controller for controlling the substrate temperature during a reaction, and a detector for detecting fluorescence emitted by the targets in response to the excitation light.
  • the detector for detecting the fluorescent emissions from the substrate includes a photomultiplier tube.
  • the location to which light is directed may be controlled by, for example, an x-y-z translation table. Translation of the x-y-z table, temperature control, and data collection are managed and recorded by an appropriately programmed digital computer.
  • FIG. 2 illustrates the reader according to one specific embodiment.
  • the chip plate reader comprises a body 200 for immobilizing the biological chip plate Excitation radiation, from an excitation source 210 having a first wavelength, passes through excitation optics 220 from below the array. The light passes through the chip plate since it is transparent to at least this wavelength of light The excitation radiation excites a region of a probe array on the biological chip plate 230
  • labeled material on the sample emits radiation which has a wavelength that is different from the excitation wavelength
  • Collection optics 240 also below the array, then collect the emission from the sample and image it onto a detector 250 , which can house a CCD array, as described below
  • the detector generates a signal proportional to the amount of radiation sensed thereon.
  • the signals can be assembled to represent an image associated with the plurality of regions from which the emission originated.
  • a multi-axis translation stage 260 moves the biological chip plate to position different wells to be scanned, and to allow different probe portions of a probe array to be interrogated. As a result, a 2-dimensional image of the probe arrays in each well is obtained.
  • the biological chip reader can include auto-focusing feature to maintain the sample in the focal plane of the excitation light throughout the scanning process. Further, a temperature controller may be employed to maintain the sample at a specific temperature while it is being scanned.
  • the multi-axis translation stage, temperature controller, auto-focusing feature, and electronics associated with imaging and data collection are managed by an appropriately programmed digital computer 270 .
  • a beam is focused onto a spot of about 2 ⁇ m in diameter on the surface of the plate using, for example, the objective lens of a microscope or other optical means to control beam diameter.
  • fluorescent probes are employed in combination with CCD imaging systems Details of this method are described in U.S. application Ser. No. 08/301,051, incorporated herein by reference in its entirely
  • the light source is placed above a well, and a photodiode detector is below the well.
  • the light source can be replaced with a higher power lamp or laser
  • the standard absorption geometry is used, but the photodiode detector is replaced with a CCD camera and imaging optics to allow rapid imaging of the well.
  • a series of Raman holographic or notch filters can be used in the optical path to eliminate the excitation light while allowing the emission to pass to the detector.
  • a fiber optic imaging bundle is utilized to bring the light to the CCD detector.
  • the laser is placed below the biological chip plate and light directed through the transparent wafer or base that forms the bottom of the biological chip plate
  • the CCD array is built into the wafer of the biological chip plate.
  • CCD array The choice of the CCD array will depend on the number of probes in each biological array. If 2500 probes nominally arranged in a square (50 ⁇ 50) are examined, and 6 lines in each feature are sampled to obtain a good image, then a CCD array of 300 ⁇ 300 pixels is desirable in this area. However, if an individual well has 48,400 probes (220 ⁇ 220) then a CCD array with 1320 ⁇ 1320 pixels is desirable.
  • CCD detectors are commercially available from, e.g., Princeton Instruments, which can meet either of these requirements
  • the detection device comprises a line scanner, as described in U.S. patent application Ser. No. 08/301,051, filed Sep. 2, 1994, incorporated herein by reference.
  • Excitation optics focuses excitation light to a line at a sample, simultaneously scanning or imaging a strip of the sample
  • Surface bound labeled targets from the sample fluoresce in response to the light collection optics image the emission onto a linear array of light detectors.
  • confocal techniques substantially only emission from the light's focal plane is imaged. Once a strip has been scanned, the data representing the 1-dimensional image are stored in the memory of a computer.
  • a multi-axis translation stage moves the device at a constant velocity to continuously integrate and process data
  • galvometric scanners or rotating polyhedral mirrors may be employed to scan the excitation light across the sample. As a result, a 2-dimensional image of the sample is obtained
  • collection optics direct the emission to a spectrograph which images an emission spectrum onto a 2-dimensional array of light detectors By using a spectrograph, a full spectrally resolved image of the sample is obtained.
  • the read time for a full microtiter plate will depend on the photophysics of the fluorophore (i e fluorescence quantum yield and photodestruction yield) as well as the sensitivity of the detector
  • fluorescein sufficient signal-to-noise to read a chip image with a CCD detector can be obtained in about 30 seconds using 3 mW/cm 2 and 488 nm excitation from an Ar ion laser or lamp
  • dyes such as CY3 or CY5 which have lower photodestruction yields and whose emission more closely matches the sensitivity maximum of the CCD detector
  • a computer can transform the data into another format for presentation.
  • Data analysis can include the steps of determining, e.g., fluorescent intensity as a function of substrate position from the data collected, removing “outliers” (data deviating from a predetermined statistical distribution), and calculating the relative binding affinity of the targets from the remaining data.
  • the resulting data can be displayed as an image with color in each region varying according to the light emission or binding affinity between targets and probes therein.
  • the amount of binding at each address is determined at several time points after the probes are contacted with the sample.
  • the amount of total hybridization can be determined as a function of the kinetics of binding based on the amount of binding at each time point. Thus, it is not necessary to wait for equilibrium to be reached.
  • the dependence of the hybridization rate for different oligonucleotides on temperature, sample agitation, washing conditions e.g. pH, solvent characteristics, temperature
  • washing conditions e.g. pH, solvent characteristics, temperature
  • Assays on biological arrays generally include contacting a probe array with a sample under the selected reaction conditions, optionally washing the well to remove unreacted molecules, and analyzing the biological array for evidence of reaction between target molecules the probes. These steps involve handling fluids.
  • the methods of this invention automate these steps so as to allow multiple assays to be performed concurrently. Accordingly, this invention employs automated fluid handling systems for concurrently performing the assay steps in each of the test wells. Fluid handling allows uniform treatment of samples in the wells. Microtiter robotic and fluid-handling devices are available commercially, for example, from Tecan AG.
  • the plate is introduced into a holder in the fluid-handling device.
  • This robotic device is programmed to set appropriate reaction conditions, such as temperature, add samples to the test wells, incubate the test samples for an appropriate time, remove unreacted samples, wash the wells, add substrates as appropriate and perform detection assays
  • reaction conditions such as temperature
  • add samples to the test wells incubate the test samples for an appropriate time, remove unreacted samples, wash the wells, add substrates as appropriate and perform detection assays
  • the particulars of the reaction conditions depends upon the purpose of the assay For example, in a sequencing assay involving DNA hybridization, standard hybridization conditions are chosen However, the assay may involve testing whether a sample contains target molecules that react to a probe under a specified set of reaction conditions. In this case, the reaction conditions are chosen accordingly.
  • FIG. 3 depicts an example of a biological chip plate 300 used in the methods of this invention based on the standard 96-well microtiter plate in which the chips are located at the bottom of the wells.
  • Biological chip plates include a plurality of test wells 310 , each test well defining an area or space for the introduction of a sample, and each test well comprising a biological chip 320 , i e, a substrate and a surface to which an array of probes is attached, the probes being exposed to the space.
  • FIG. 7 shows a top-down view of a well of a biological chip plate of this invention containing a biological chip on the bottom surface of the well.
  • the biological chip plate includes two parts. One part is a wafer 410 that includes a plurality of biological arrays 420 The other part is the body of the plate 430 that contains channels 440 that form the walls of the well, but that are open at the bottom. The body is attached to the surface of the wafer so as to close one end of the channels, thereby creating wells. The walls of the channels are placed on the wafer so that each surrounds and encloses the probe array of a biological array.
  • FIG. 5 depicts a cross-section of this embodiment, showing the wafer 510 having a substrate 520 (preferably transparent to light) and a surface 530 to which is attached an array of probes 540 .
  • a channel wall 550 covers a probe array on the wafer, thereby creating well spaces 560 .
  • the wafer can be attached to the body by any attachment means known in the art, for example, gluing (e.g, by ultraviolet-curing epoxy or various sticking tapes), acoustic welding, sealing such as vacuum or suction sealing, or even by relying on the weight of the body on the wafer to resist the flow of fluids between test wells
  • the plates include a body 610 having pre-formed wells 620 , usually flat-bottomed.
  • Individual biological chips 630 are attached to the bottom of the wells so that the surface containing the array of probes 640 is exposed to the well space where the sample is to be placed.
  • the biological chip plate has a wafer having a plurality of probe arrays and a material resistant to the flow of a liquid sample that surrounds each probe array.
  • the wafer can be scored with waxes, tapes or other hydrophobic materials in the spaces between the arrays, forming cells that act as test wells.
  • the cells thus contain liquid applied to an array by resisting spillage over the barrier and into another cell. If the sample contains a non-aqueous solvent, such as an alcohol, the material is selected to be resistant to corrosion by the solvent.
  • the microplates of this invention have a plurality of test wells that can be arrayed in a variety of ways.
  • the plates have the general size and shape of standard-sized microtiter plates having 96 wells arranged in an 8 ⁇ 12 format.
  • This format is that instrumentation already exists for handling and reading assays on microtiter plates. Therefore, using such plates in biological chip assays does not involve extensive re-engineering of commercially available fluid handling devices.
  • the plates can have other formats as well.
  • the material from which the body of the biological chip plate is made depends upon the use to which it is to be put.
  • this invention contemplates a variety of polymers already used for microtiter plates including, for example, (poly)tetrafluoroethylene, (poly)vinylidenedifluoride, polypropylene, polystyrene, polycarbonate, or combinations thereof.
  • the assay is to be performed by sending an excitation beam through the bottom of the plate collecting data through the bottom of the plate, the body of the plate and the substrate of the chip should be transparent to the wavelengths of light being used.
  • probe arrays in the wells of a microplate depends on the particular application contemplated. For example, for diagnostic uses involving performing the same test on many samples, every well can have the same array of probes If several different tests are to be performed on each sample, each row of the plate can have the same array of probes and each column can contain a different array Samples from a single patient are introduced into the wells of a particular column Samples from a different patient are introduced into the wells of a different column In still another embodiment, multiple patient samples are introduced into a single well. If a well indicates a “positive” result for a particular characteristic, the samples from each patient are then rerun, each in a different well, to determine which patient sample gave a positive result.
  • the biological chip plates used in the methods of this invention include biological chips.
  • the array of probe sequences can be fabricated on the biological chip according to the pioneering techniques disclosed in U.S. Pat. No. 5,143,854, PCT WO 92/10092, PCT WO 90/15070, or U.S. application Ser. Nos. 08/249,188, 07/624,120, and 08/082,937, incorporated herein by reference for all purposes.
  • the combination of photolithographic and fabrication techniques may, for example, enable each probe sequence (“feature”) to occupy a very small area (“site” or “location”) on the support. In some embodiments, this feature site may be as small as a few microns or even a single molecule.
  • a probe array of 0.25 mm 2 (about the size that would fit in a well of a typical 96-well microtiter plate) could have at least 10, 100, 1000, 10 4 , 10 5 or 10 6 features.
  • such synthesis is performed according to the mechanical techniques disclosed in U.S. Pat. No. 5,384,261, incorporated herein by reference.
  • linker molecules ⁇ O—X
  • the substrate is preferably flat but may take on a variety of alternative surface configurations
  • the substrate may contain raised or depressed regions on which the probes are located
  • the substrate and its surface preferably form a rigid support on which the sample can be formed.
  • the substrate and its surface are also chosen to provide appropriate light-absorbing characteristics
  • the substrate may be functionalized glass, Si, Ge, GaAs, GaP, SiO 2 , SiN 4 , modified silicon, or any one of a wide variety of gels or polymers such as (poly)tetrafluoroethylene, (poly)vinylidenedifluoride, polystyrene, polycarbonate, polypropylene, or combinations thereof.
  • gels or polymers such as (poly)tetrafluoroethylene, (poly)vinylidenedifluoride, polystyrene, polycarbonate, polypropylene, or combinations thereof.
  • Other substrate materials will be readily apparent to those of skill in the art upon review of this disclosure
  • the substrate is flat glass or silica.
  • the surface usually, though not always, are composed of the same material as the substrate.
  • the surface may be composed of any of a wide variety of materials, for example, polymers, plastics, resins, polysaccharides, silica or silica-based materials, carbon, metals, inorganic glasses, membranes, or any of the above-listed substrate materials.
  • the surface will be optically transparent and will have surface Si—OH functionalities, such as those found on silica surfaces.
  • a terminal end of the linker molecules is provided with a reactive functional group protected with a photoremovable protective group, O—X.
  • a photoremovable protective group O—X.
  • the photoremovable protective group is exposed to light, hv, through a mask, M 1 , that exposes a selected portion of the surface, and removed from the linker molecules in first selected regions.
  • the substrate is then washed or otherwise contacted with a first monomer that reacts with exposed functional groups on the linker molecules ( ⁇ T-X).
  • the monomer can be a phosphoramidite activated nucleoside protected at the 5′-hydroxyl with a photolabile protecting group.
  • a second set of selected regions, thereafter, exposed to light through a mask, M 2 , and photoremovable protective group on the linker molecule/protected amino acid or nucleotide is removed at the second set of regions
  • the substrate is then contacted with a second monomer containing a photoremovable protective group for reaction with exposed functional groups. This process is repeated to selectively apply monomers until polymers of a desired length and desired chemical sequence are obtained Photolabile groups are then optionally removed and the sequence is, thereafter, optionally capped Side chain protective groups, if present, are also removed.
  • the general process of synthesizing probes by removing protective groups by exposure to light, coupling monomer units to the exposed active sites, and capping unreacted sites is referred to herein as “light-directed probe synthesis.” If the probe is an oligonucleotide, the process is referred to as “light-directed oligonucleotide synthesis” and so forth.
  • the probes can be made of any molecules whose synthesis involves sequential addition of units. This includes polymers composed of a series of attached units and molecules bearing a common skeleton to which various functional groups are added.
  • Polymers useful as probes in this invention include, for example, both linear and cyclic polymers of nucleic acids, polysaccharides, phospholipids, and peptides having either ⁇ -, ⁇ -, or ⁇ -amino acids, heteropolymers in which a known drug is covalently bound to any of the above, polyurethanes, polyesters, polycarbonates, polyureas, polyamides, polyethyleneimines, polyarylene sulfides, polysiloxanes, polyimides, polyacetates, or other polymers which will be apparent upon review of this disclosure.
  • Molecules bearing a common skeleton include benzodiazepines and other small molecules, such as described in U.S. Pat. No. 5,288,514, incorporated herein by reference
  • probes are arrayed on a chip in addressable rows and columns in which the dimensions of the chip conform to the dimension of the plate test well. Technologies already have been developed to read information from such arrays The amount of information that can be stored on each plate of chips depends on the lithographic density which is used to synthesize the wafer. For example, if each feature size is about 100 microns on a side, each array can have about 10,000 probe addresses in a 1 cm 2 area. A plate having 96 wells would contain about 192,000 probes However, if the arrays have a feature size of 20 microns on a side, each array can have close to 50,000 probes and the plate would have over 4,800,000 probes
  • the chips are used to sequence or re-sequence nucleic acid molecules, or compare their sequence to a referent molecule.
  • Re-sequencing nucleic acid molecules involves determining whether a particular molecule has any deviations from the sequence of reference molecule.
  • the plates are used to identify in a particular type of HIV in a set of patient samples. Tiling strategies for sequence checking of nucleic acids are described in U.S. patent application Ser. No. 08/284,064 (PCT/US94/12305), incorporated herein by reference.
  • a solution containing one or more targets to be identified contacts the probe array.
  • the targets will bind or hybridize with complementary probe sequences.
  • the probes will be selected to have sequences directed to (i e., having at least some complementarity with) the target sequences to be detected, e.g., human or pathogen sequences.
  • the targets are tagged with a detectable label.
  • the detectable label can be, for example, a luminescent label, a light scattering label or a radioactive label.
  • locations at which targets hybridize with complimentary probes can be identified by locating the markers. Based on the locations where hybridization occurs, information regarding the target sequences can be extracted. The existence of a mutation may be determined by comparing the target sequence with the wild type
  • the detectable label is a luminescent label
  • luminescent labels include fluorescent labels, chemi-luminescent labels, bio-luminescent labels, and colorimetric labels, among others
  • the label is a fluorescent label such as fluorescein, rhodamine, cyanine and so forth.
  • Fluorescent labels include, inter alia, the commercially available fluorescein phosphoramidites such as Fluoreprime (Pharmacia), Fluoredite (Millipore) and FAM (ABI)
  • Fluorescein phosphoramidites such as Fluoreprime (Pharmacia), Fluoredite (Millipore) and FAM (ABI)
  • the entire surface of the substrate is exposed to the activated fluorescent phosphoramidite, which reacts with all of the deprotected 5′-hydroxyl groups.
  • an alkaline solution eg, 50% ethylenediamine in ethanol for 1-2 hours at room temperature. This is necessary to remove the protecting groups from the fluorescein
  • the fluorescent tag monomer should be diluted with a non-fluorescent analog of equivalent reactivity.
  • a non-fluorescent phosphoramidite such as the standard 5′-DMT-nucleoside phosphoramidites. Correction for background non-specific binding of the fluorescent reagent and other such effects can be determined by routine testing.
  • Useful light scattering labels include large colloids, and especially the metal colloids such as those from gold, selenium and titanium oxide.
  • Radioactive labels include, for example, 32 P.
  • This label can be detected by a phosphoimager. Detection of course, depends on the resolution of the imager. Phosophoimagers are available having resolution of 50 microns. Accordingly, this label is currently useful with chips having features of that size.
  • the methods of this invention will find particular use wherever high through-put of samples is required.
  • this invention is useful in clinical settings and for sequencing large quantities of DNA, for example in connection with the Human Genome project.
  • a DNA array can determine the particular strain of a pathogenic organism based on characteristic DNA sequences of the strain
  • the advanced techniques based on these assays now can be introduced into the clinic. Fluid samples from several patients are introduced into the test wells of a biological chip plate and the assays are performed concurrently.
  • rows (or columns) of the microtiter plate will contain probe arrays for diagnosis of a particular disease or trait.
  • one row might contain probe arrays designed for a particular cancer, while other rows contain probe arrays for another cancer.
  • Patient samples are then introduced into respective columns (or rows) of the microtiter plate.
  • one column may be used to introduce samples from patient “one,” another column for patient “two” etc.
  • multiple diagnostic tests may be performed on multiple patients in parallel.
  • multiple patient samples are introduced into a single well. In a particular well indicator the presence of a genetic disease or other characteristic, each patient sample is then individually processed to identify which patient exhibits that disease or trait. For relatively rarely occurring characteristics, further order-of-magnitude efficiency may be obtained according to this embodiment
  • the assay is the detection of a human gene variant that indicates existence of or predisposition to a genetic disease, either from acquired or inherited mutations in an individual DNA
  • genetic diseases such as cystic fibrosis, diabetes, and muscular dystrophy, as well as diseases such as cancer (the P53 gene is relevant to some cancers), as disclosed in U.S. patent application Ser. No. 08/143,312, already incorporated by reference.
  • the present invention provides a substantially novel method for performing assays on biological arrays While specific examples have been provided, the above description is illustrative and not restrictive Many variations of the invention will become apparent to those of skill in the art upon review of this specification The scope of the invention should, therefore, be determined not with reference to the above description, but instead should be determined with reference to the appended claims along with their full scope of equivalents.

Abstract

Methods for concurrently processing multiple biological chip assays by providing a biological chip plate comprising a plurality of test wells, each test well having a biological chip having a molecular probe array; introducing samples into the test wells, subjecting the biological chip plate to manipulation by a fluid handling device that automatically performs steps to carry out reactions between target molecules in the samples and probes; and subjecting the biological chip plate to a biological chip plate reader that interrogates the probe arrays to detect any reactions between target molecules and probes.

Description

    RELATED APPLICATIONS
  • This application is a continuation of U.S. application Ser. No. 10/157,252, filed May 28, 2002 which is a continuation of Ser. No. 09/247,430, filed Feb. 10, 1999 (now abandoned), which is a continuation of U.S. application Ser. No. 08/630,051, filed Apr. 9, 1996, now U.S. Pat. No. 5,874,219, which is a continuation of U.S. application Ser. No. 08/476,850, filed Jun. 7, 1995, now U.S. Pat. No. 5,545,531 The entire teachings of the above applications are incorporated herein by reference
  • BACKGROUND OF THE INVENTION
  • This invention relates to methods for concurrently performing multiple biological chip assays. The invention therefore relates to diverse fields impacted by the nature of molecular interaction, including chemistry, biology, medicine and diagnostics.
  • New technology, called VLSIPS™, has enabled the production of chips smaller than a thumbnail that contain hundreds of thousands or more of different molecular probes. These biological chips or arrays have probes arranged in arrays, each probe assigned a specific location. Biological chips have been produced in which each location has a scale of, for example, ten microns. The chips can be used to determine whether target molecules interact with any of the probes on the chip After exposing the array to target molecules under selected test conditions, scanning devices can examine each location in the array and determine whether a target molecule has interacted with the probe at that location
  • Biological chips or arrays are useful in a variety of screening techniques for obtaining information about either the probes or the target molecules For example, a library of peptides can be used as probes to screen for drugs. The peptides can be exposed to a receptor, and those probes that bind to the receptor can be identified
  • Arrays of nucleic acid probes can be used to extract sequence information from, for example, nucleic acid samples. The samples are exposed to the probes under conditions that allow hybridization. The arrays are then scanned to determine to which probes the sample molecules have hybridized. One can obtain sequence information by careful probe selection and using algorithms to compare patterns of hybridization and non-hybridization This method is useful for sequencing nucleic acids, as well as sequence checking. For example, the method is useful in diagnostic screening for genetic diseases or for the presence and/or identity of a particular pathogen or a strain of pathogen. For example, there are various strains of HIV, the virus that causes AIDS. Some of them have become resistant to current AIDS therapies. Diagnosticians can use DNA arrays to examine a nucleic acid sample from the virus to determine what strain at belongs to.
  • Currently, chips are treated individually, from the step of exposure to the target molecules to scanning. These methods yield exquisitely detailed information However, they are not adapted for handling multiple samples simultaneously. The ability to do so would be advantageous in settings in which large amounts of information are required quickly, such as in clinical diagnostic laboratories or in large-scale undertakings such as the Human Genome Project
  • SUMMARY OF THE INVENTION
  • This invention provides methods for concurrently processing multiple biological chip assays According to the methods, a biological chip plate comprising a plurality of test wells is provided. Each test well defines a space for the introduction of a sample and contains a biological array The array is formed on a surface of the substrate, with the probes exposed to the space. A fluid handling device manipulates the plates to perform steps to carry out reactions between the target molecules in samples and the probes in a plurality of test wells The biological chip plate is then interrogated by a biological chip plate reader to detect any reactions between target molecules and probes in a plurality of the test wells, thereby generating results of the assay. In a further embodiment of the invention, the method also includes processing the results of the assay with a computer. Such analysis is useful when sequencing a gene by a method that uses an algorithm to process the results of many hybridization assays to provide the nucleotide sequence of the gene.
  • The methods of the invention can involve the binding of tagged target molecules to the probes. The tags can be, for example, fluorescent markers, chemiluminescent markers, light scattering markers or radioactive markers. In certain embodiments, the probes are nucleic acids, such as DNA or RNA molecules. The methods can be used to detect or identify a pathogenic organism, such as HIV, or to detect a human gene variant, such a the gene for a genetic disease such as cystic fibrosis, diabetes, muscular dystrophy or predisposition to certain cancers.
  • This invention also provides systems for performing the methods of this invention. The systems include a biological chip plate, a fluid handling device that automatically performs steps to carry out assays on samples introduced into a plurality of the test wells, a biological chip plate reader that determines in a plurality of the test wells the results of the assay and, optionally, a computer comprising a program for processing the results. The fluid handling device and plate reader can have a heater/cooler controlled by a thermostat for controlling the temperature of the samples in the test wells and robotically controlled pipets for adding or removing fluids from the test wells at predetermined times
  • In certain embodiments, the probes are attached by light-directed probe synthesis The biological chip plates can have 96 wells arranged in 8 rows and 12 columns, such as a standard microtiter plate The probe arrays can each have at least about 100, 1000, 100,000 or 1,000,000 addressable features (e g., probes). A variety of probes can be used on the plates, including, for example, various polymers such as peptides or nucleic acids
  • The plates can have wells in which the probe array in each test well is the same Alternatively, when each of several samples are to be subjected to several tests, each row can have the same probe array and each column can have a different array. Alternatively, all the wells can have different arrays.
  • Several methods of making biological chip plates are contemplated. In one method, a wafer and a body are provided. The wafer includes a substrate and a surface to which is attached a plurality of arrays of probes. The body has a plurality of channels. The body is attached to the surface of the wafer whereby the channels each cover an array of probes and the wafer closes one end of a plurality of the channels, thereby forming test wells defining spaces for receiving samples. In a second method, a body having a plurality of wells defining spaces is provided and biological chips are provided. The chips are attached to the wells so that the probe arrays are exposed to the space Another embodiment involves providing a wafer having a plurality of probe arrays; and applying a material resistant to the flow of a liquid sample so as to surround the probe arrays, thereby creating test wells
  • This invention also provides a wafer for making a biological chip plate The wafer has a substrate and a surface to which are attached a plurality of probe arrays The probe arrays are arranged on the wafer surface in rows and columns, wherein the probe arrays in each row are the same and the probe arrays in each column are different.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 depicts a system of this invention having a biological chip plate, fluid handling device, biological chip plate reader and computer;
  • FIG. 2 depicts the scanning of a biological chip plate by a biological chip plate reader,
  • FIG. 3 depicts a biological plate of this invention,
  • FIG. 4 depicts the mating of a wafer containing many biological arrays with a body having channels to create a biological chip plate,
  • FIG. 5 depicts a biological chip plate in cross section having a body attached to a water to create closed test wells in which a probe array is exposed to the space in the test well;
  • FIG. 6 depicts a biological plate in cross section having a body which has individual biological chips attached to the bottom of the wells;
  • FIG. 7 is a top-down view of a test well containing a biological array; and
  • FIG. 8 depicts a method of producing an array of oligonucleotide probes on the surface of a substrate by using a mask to expose certain parts of the surface to light, thereby removing photoremovable protective groups, and attaching nucleotides to the exposed reactive groups.
  • DETAILED DESCRIPTION OF THE INVENTION
  • I Definitions
  • The following terms are intended to have the following general meanings as they are used herein
      • A Complementary: Refers to the topological compatibility or matching together of interacting surfaces of a probe molecule and its target Thus, the target and its probe can be described as complementary, and furthermore, the contact surface characteristics are complementary to each other
      • B. Probe A probe is a surface-immobilized molecule that can be recognized by a particular target Examples of probes that can be investigated by this invention include, but are not restricted to, agonists and antagonists for cell membrane receptors, toxins and venoms, viral epitopes, hormones (e.g., opioid peptides, steroids, etc), hormone receptors, peptides, enzymes, enzyme substrates, cofactors, drugs, lectins, sugars, oligonucleotides, nucleic acids, oligosaccharides, proteins, and monoclonal antibodies
      • C. Target: A molecule that has an affinity for a given probe. Targets may be naturally-occurring or man-made molecules. Also, they can be employed in their unaltered state or as aggregates with other species. Targets may be attached, covalently or noncovalently, to a binding member, either directly or via a specific binding substance. Examples of targets which can be employed by this invention include, but are not restricted to, antibodies, cell membrane receptors, monoclonal antibodies and antisera reactive with specific antigenic determinants (such as on viruses, cells or other materials), drugs, oligonucleotides, nucleic acids, peptides, cofactors, lectins, sugars, polysaccharides, cells, cellular membranes, and organelles. Targets are sometimes referred to in the art as anti-probes. As the term targets is used herein, no difference in meaning is intended A “Probe Target Pair” is formed when two macromolecules have combined through molecular recognition to form a complex.
      • D. Array A collection of probes, at least two of which are different, arranged in a spacially defined and physically addressable manner
      • E. Biological Chip A substrate having a surface to which one or more arrays of probes is attached. The substrate can be, merely by way of example, silicon or glass and can have the thickness of a glass microscope slide or a glass cover slip. Substrates that are transparent to light are useful when the method of performing an assay on the chip involves optical detection. As used herein, the term also refers to a probe array and the substrate to which it is attached that form part of a wafer
      • F. Wafer: A substrate having a surface to which a plurality of probe arrays are attached. On a wafer, the arrays are physically separated by a distance of at least about a millimeter, so that individual chips can be made by dicing a wafer or otherwise physically separating the array into units having a probe array.
      • G. Biological Chip Plate: A device having an array of biological chips in which the probe array of each chip is separated from the probe array of other chips by a physical barrier resistant to the passage of liquids and forming an area or space, referred to as a “test well,” capable of containing liquids in contact with the probe array.
        II General
  • This invention provides automated methods for concurrently processing multiple biological chip assays Currently available methods utilize each biological chip assay individually. The methods of this invention allow many tests to be set up and processed together Because they allow much higher throughput of test samples, these methods greatly improve the efficiency of performing assays on biological chips.
  • In the methods of this invention, a biological chip plate is provided having a plurality of test wells Each test well includes a biological chip Test samples, which may contain target molecules, are introduced into the test wells A fluid handling device exposes the test wells to a chosen set of reaction conditions by, for example, adding or removing fluid from the wells, maintaining the liquid in the wells at predetermined temperatures, and agitating the wells as required, thereby performing the test. Then, a biological chip reader interrogates the probe arrays in the test wells, thereby obtaining the results of the tests A computer having an appropriate program can further analyze the results from the tests.
  • Referring to FIG. 1, one embodiment of the invention is a system for concurrently processing biological chip assays. The system includes a biological chip plate reader 100, a fluid handling device 110, a biological chip plate 120 and, optionally, a computer 130. In operation, samples are placed in wells on the chip plate 120 with fluid handling device 110 The plate optionally can be moved with a stage translation device 140. Reader 100 is used to identify where targets in the wells have bound to complementary probes. The system operates under control of computer 130 which may optionally interpret the results of the assay.
  • A. Biological Chip Plate Reader
  • In assays performed on biological chips, detectably labeled target molecules bind to probe molecules Reading the results of an assay involves detecting a signal produced by the detectable label. Reading assays on a biological chip plate requires a biological chip reader Accordingly, locations at which target(s) bind with complementary probes can be identified by detecting the location of the label Through knowledge of the characteristics/sequence of the probe versus location, characteristics of the target can be determined. The nature of the biological chip reader depends upon the particular type of label attached to the target molecules.
  • The interaction between targets and probes can be characterized in terms of kinetics and thermodynamics As such, it may be necessary to interrogate the array while in contact with a solution of labeled targets. In such systems, the detection system must be extremely selective, with the capacity to discriminate between surface-bound and solution-born targets. Also, in order to perform a quantitative analysis, the high-density of the probe sequences requires the system to have the capacity to distinguish between each feature site. The system also should have sensitivity to low signal and a large dynamic range.
  • In one embodiment, the chip plate reader includes a confocal detection device having a monochromatic or polychromatic light source, a focusing system for directing an excitation light from the light source to the substrate, a temperature controller for controlling the substrate temperature during a reaction, and a detector for detecting fluorescence emitted by the targets in response to the excitation light. The detector for detecting the fluorescent emissions from the substrate, in some embodiments, includes a photomultiplier tube. The location to which light is directed may be controlled by, for example, an x-y-z translation table. Translation of the x-y-z table, temperature control, and data collection are managed and recorded by an appropriately programmed digital computer.
  • Further details for methods of detecting fluorescently labelled materials on biological chips are provided in U.S. patent application Ser. No. 08/195,889, filed Feb. 10, 1994 and incorporated herein by reference.
  • FIG. 2 illustrates the reader according to one specific embodiment. The chip plate reader comprises a body 200 for immobilizing the biological chip plate Excitation radiation, from an excitation source 210 having a first wavelength, passes through excitation optics 220 from below the array. The light passes through the chip plate since it is transparent to at least this wavelength of light The excitation radiation excites a region of a probe array on the biological chip plate 230 In response, labeled material on the sample emits radiation which has a wavelength that is different from the excitation wavelength Collection optics 240, also below the array, then collect the emission from the sample and image it onto a detector 250, which can house a CCD array, as described below The detector generates a signal proportional to the amount of radiation sensed thereon. The signals can be assembled to represent an image associated with the plurality of regions from which the emission originated.
  • According to one embodiment, a multi-axis translation stage 260 moves the biological chip plate to position different wells to be scanned, and to allow different probe portions of a probe array to be interrogated. As a result, a 2-dimensional image of the probe arrays in each well is obtained.
  • The biological chip reader can include auto-focusing feature to maintain the sample in the focal plane of the excitation light throughout the scanning process. Further, a temperature controller may be employed to maintain the sample at a specific temperature while it is being scanned. The multi-axis translation stage, temperature controller, auto-focusing feature, and electronics associated with imaging and data collection are managed by an appropriately programmed digital computer 270.
  • In one embodiment, a beam is focused onto a spot of about 2 μm in diameter on the surface of the plate using, for example, the objective lens of a microscope or other optical means to control beam diameter. (See, e.g., U.S. patent application Ser. No. 08/195,889, supra)
  • In another embodiment, fluorescent probes are employed in combination with CCD imaging systems Details of this method are described in U.S. application Ser. No. 08/301,051, incorporated herein by reference in its entirely In many commercially available microplate readers, typically the light source is placed above a well, and a photodiode detector is below the well. In the present invention, the light source can be replaced with a higher power lamp or laser In one embodiment, the standard absorption geometry is used, but the photodiode detector is replaced with a CCD camera and imaging optics to allow rapid imaging of the well. A series of Raman holographic or notch filters can be used in the optical path to eliminate the excitation light while allowing the emission to pass to the detector. In a variation of this method, a fiber optic imaging bundle is utilized to bring the light to the CCD detector. In another embodiment, the laser is placed below the biological chip plate and light directed through the transparent wafer or base that forms the bottom of the biological chip plate In another embodiment, the CCD array is built into the wafer of the biological chip plate.
  • The choice of the CCD array will depend on the number of probes in each biological array. If 2500 probes nominally arranged in a square (50×50) are examined, and 6 lines in each feature are sampled to obtain a good image, then a CCD array of 300×300 pixels is desirable in this area. However, if an individual well has 48,400 probes (220×220) then a CCD array with 1320×1320 pixels is desirable. CCD detectors are commercially available from, e.g., Princeton Instruments, which can meet either of these requirements
  • In another embodiment, the detection device comprises a line scanner, as described in U.S. patent application Ser. No. 08/301,051, filed Sep. 2, 1994, incorporated herein by reference. Excitation optics focuses excitation light to a line at a sample, simultaneously scanning or imaging a strip of the sample Surface bound labeled targets from the sample fluoresce in response to the light collection optics image the emission onto a linear array of light detectors. By employing confocal techniques, substantially only emission from the light's focal plane is imaged. Once a strip has been scanned, the data representing the 1-dimensional image are stored in the memory of a computer. According to one embodiment, a multi-axis translation stage moves the device at a constant velocity to continuously integrate and process data Alternatively, galvometric scanners or rotating polyhedral mirrors may be employed to scan the excitation light across the sample. As a result, a 2-dimensional image of the sample is obtained
  • In another embodiment, collection optics direct the emission to a spectrograph which images an emission spectrum onto a 2-dimensional array of light detectors By using a spectrograph, a full spectrally resolved image of the sample is obtained.
  • The read time for a full microtiter plate will depend on the photophysics of the fluorophore (i e fluorescence quantum yield and photodestruction yield) as well as the sensitivity of the detector For fluorescein, sufficient signal-to-noise to read a chip image with a CCD detector can be obtained in about 30 seconds using 3 mW/cm2 and 488 nm excitation from an Ar ion laser or lamp By increasing the laser power, and switching to dyes such as CY3 or CY5 which have lower photodestruction yields and whose emission more closely matches the sensitivity maximum of the CCD detector, one easily is able to read each well in less than 5 seconds. Thus, an entire plate could be examined quantitatively in less than 10 minutes, even if the whole plate has over 4.5 million probes.
  • A computer can transform the data into another format for presentation. Data analysis can include the steps of determining, e.g., fluorescent intensity as a function of substrate position from the data collected, removing “outliers” (data deviating from a predetermined statistical distribution), and calculating the relative binding affinity of the targets from the remaining data. The resulting data can be displayed as an image with color in each region varying according to the light emission or binding affinity between targets and probes therein.
  • One application of this system when coupled with the CCD imaging system that speeds performance of the tests is to obtain results of the assay by examining the on- or off-rates of the hybridization In one embodiment of this method, the amount of binding at each address is determined at several time points after the probes are contacted with the sample. The amount of total hybridization can be determined as a function of the kinetics of binding based on the amount of binding at each time point. Thus, it is not necessary to wait for equilibrium to be reached. The dependence of the hybridization rate for different oligonucleotides on temperature, sample agitation, washing conditions (e.g. pH, solvent characteristics, temperature) can easily be determined in order to maximize the conditions for rate and signal-to-noise Alternative methods are described in Fodor et al., U.S. Pat. No. 5,324,633, incorporated herein by reference.
  • B. Fluid Handling Instruments And Assay Automation
  • Assays on biological arrays generally include contacting a probe array with a sample under the selected reaction conditions, optionally washing the well to remove unreacted molecules, and analyzing the biological array for evidence of reaction between target molecules the probes. These steps involve handling fluids. The methods of this invention automate these steps so as to allow multiple assays to be performed concurrently. Accordingly, this invention employs automated fluid handling systems for concurrently performing the assay steps in each of the test wells. Fluid handling allows uniform treatment of samples in the wells. Microtiter robotic and fluid-handling devices are available commercially, for example, from Tecan AG.
  • The plate is introduced into a holder in the fluid-handling device. This robotic device is programmed to set appropriate reaction conditions, such as temperature, add samples to the test wells, incubate the test samples for an appropriate time, remove unreacted samples, wash the wells, add substrates as appropriate and perform detection assays The particulars of the reaction conditions depends upon the purpose of the assay For example, in a sequencing assay involving DNA hybridization, standard hybridization conditions are chosen However, the assay may involve testing whether a sample contains target molecules that react to a probe under a specified set of reaction conditions. In this case, the reaction conditions are chosen accordingly.
  • C Biological Chip Plates
  • FIG. 3 depicts an example of a biological chip plate 300 used in the methods of this invention based on the standard 96-well microtiter plate in which the chips are located at the bottom of the wells. Biological chip plates include a plurality of test wells 310, each test well defining an area or space for the introduction of a sample, and each test well comprising a biological chip 320, i e, a substrate and a surface to which an array of probes is attached, the probes being exposed to the space. FIG. 7 shows a top-down view of a well of a biological chip plate of this invention containing a biological chip on the bottom surface of the well.
  • This invention contemplates a number of embodiments of the biological chip plate. In a preferred embodiment, depicted in FIG. 4, the biological chip plate includes two parts. One part is a wafer 410 that includes a plurality of biological arrays 420 The other part is the body of the plate 430 that contains channels 440 that form the walls of the well, but that are open at the bottom. The body is attached to the surface of the wafer so as to close one end of the channels, thereby creating wells. The walls of the channels are placed on the wafer so that each surrounds and encloses the probe array of a biological array. FIG. 5 depicts a cross-section of this embodiment, showing the wafer 510 having a substrate 520 (preferably transparent to light) and a surface 530 to which is attached an array of probes 540. A channel wall 550 covers a probe array on the wafer, thereby creating well spaces 560. The wafer can be attached to the body by any attachment means known in the art, for example, gluing (e.g, by ultraviolet-curing epoxy or various sticking tapes), acoustic welding, sealing such as vacuum or suction sealing, or even by relying on the weight of the body on the wafer to resist the flow of fluids between test wells
  • In another preferred embodiment, depicted in cross section in FIG. 6, the plates include a body 610 having pre-formed wells 620, usually flat-bottomed. Individual biological chips 630 are attached to the bottom of the wells so that the surface containing the array of probes 640 is exposed to the well space where the sample is to be placed.
  • In another embodiment, the biological chip plate has a wafer having a plurality of probe arrays and a material resistant to the flow of a liquid sample that surrounds each probe array. For example, in an embodiment useful for testing aqueous-based samples, the wafer can be scored with waxes, tapes or other hydrophobic materials in the spaces between the arrays, forming cells that act as test wells. The cells thus contain liquid applied to an array by resisting spillage over the barrier and into another cell. If the sample contains a non-aqueous solvent, such as an alcohol, the material is selected to be resistant to corrosion by the solvent.
  • The microplates of this invention have a plurality of test wells that can be arrayed in a variety of ways. In one embodiment, the plates have the general size and shape of standard-sized microtiter plates having 96 wells arranged in an 8×12 format. One advantage of this format is that instrumentation already exists for handling and reading assays on microtiter plates. Therefore, using such plates in biological chip assays does not involve extensive re-engineering of commercially available fluid handling devices. However, the plates can have other formats as well.
  • The material from which the body of the biological chip plate is made depends upon the use to which it is to be put. In particular, this invention contemplates a variety of polymers already used for microtiter plates including, for example, (poly)tetrafluoroethylene, (poly)vinylidenedifluoride, polypropylene, polystyrene, polycarbonate, or combinations thereof. When the assay is to be performed by sending an excitation beam through the bottom of the plate collecting data through the bottom of the plate, the body of the plate and the substrate of the chip should be transparent to the wavelengths of light being used.
  • The arrangement of probe arrays in the wells of a microplate depends on the particular application contemplated. For example, for diagnostic uses involving performing the same test on many samples, every well can have the same array of probes If several different tests are to be performed on each sample, each row of the plate can have the same array of probes and each column can contain a different array Samples from a single patient are introduced into the wells of a particular column Samples from a different patient are introduced into the wells of a different column In still another embodiment, multiple patient samples are introduced into a single well. If a well indicates a “positive” result for a particular characteristic, the samples from each patient are then rerun, each in a different well, to determine which patient sample gave a positive result.
  • D. Biological Chips
  • The biological chip plates used in the methods of this invention include biological chips. The array of probe sequences can be fabricated on the biological chip according to the pioneering techniques disclosed in U.S. Pat. No. 5,143,854, PCT WO 92/10092, PCT WO 90/15070, or U.S. application Ser. Nos. 08/249,188, 07/624,120, and 08/082,937, incorporated herein by reference for all purposes. The combination of photolithographic and fabrication techniques may, for example, enable each probe sequence (“feature”) to occupy a very small area (“site” or “location”) on the support. In some embodiments, this feature site may be as small as a few microns or even a single molecule. For example, a probe array of 0.25 mm2 (about the size that would fit in a well of a typical 96-well microtiter plate) could have at least 10, 100, 1000, 104, 105 or 106 features. In an alternative embodiment, such synthesis is performed according to the mechanical techniques disclosed in U.S. Pat. No. 5,384,261, incorporated herein by reference.
  • Referring to FIG. 8, in general, linker molecules, O—X, are provided on a substrate. The substrate is preferably flat but may take on a variety of alternative surface configurations For example, the substrate may contain raised or depressed regions on which the probes are located The substrate and its surface preferably form a rigid support on which the sample can be formed. The substrate and its surface are also chosen to provide appropriate light-absorbing characteristics For instance, the substrate may be functionalized glass, Si, Ge, GaAs, GaP, SiO2, SiN4, modified silicon, or any one of a wide variety of gels or polymers such as (poly)tetrafluoroethylene, (poly)vinylidenedifluoride, polystyrene, polycarbonate, polypropylene, or combinations thereof. Other substrate materials will be readily apparent to those of skill in the art upon review of this disclosure In a preferred embodiment the substrate is flat glass or silica.
  • Surfaces on the solid substrate usually, though not always, are composed of the same material as the substrate. Thus, the surface may be composed of any of a wide variety of materials, for example, polymers, plastics, resins, polysaccharides, silica or silica-based materials, carbon, metals, inorganic glasses, membranes, or any of the above-listed substrate materials. In one embodiment, the surface will be optically transparent and will have surface Si—OH functionalities, such as those found on silica surfaces.
  • A terminal end of the linker molecules is provided with a reactive functional group protected with a photoremovable protective group, O—X. Using lithographic methods, the photoremovable protective group is exposed to light, hv, through a mask, M1, that exposes a selected portion of the surface, and removed from the linker molecules in first selected regions. The substrate is then washed or otherwise contacted with a first monomer that reacts with exposed functional groups on the linker molecules (T-X). In the case of nucleic acids, the monomer can be a phosphoramidite activated nucleoside protected at the 5′-hydroxyl with a photolabile protecting group.
  • A second set of selected regions, thereafter, exposed to light through a mask, M2, and photoremovable protective group on the linker molecule/protected amino acid or nucleotide is removed at the second set of regions The substrate is then contacted with a second monomer containing a photoremovable protective group for reaction with exposed functional groups. This process is repeated to selectively apply monomers until polymers of a desired length and desired chemical sequence are obtained Photolabile groups are then optionally removed and the sequence is, thereafter, optionally capped Side chain protective groups, if present, are also removed.
  • The general process of synthesizing probes by removing protective groups by exposure to light, coupling monomer units to the exposed active sites, and capping unreacted sites is referred to herein as “light-directed probe synthesis.” If the probe is an oligonucleotide, the process is referred to as “light-directed oligonucleotide synthesis” and so forth.
  • The probes can be made of any molecules whose synthesis involves sequential addition of units. This includes polymers composed of a series of attached units and molecules bearing a common skeleton to which various functional groups are added. Polymers useful as probes in this invention include, for example, both linear and cyclic polymers of nucleic acids, polysaccharides, phospholipids, and peptides having either α-, β-, or ω-amino acids, heteropolymers in which a known drug is covalently bound to any of the above, polyurethanes, polyesters, polycarbonates, polyureas, polyamides, polyethyleneimines, polyarylene sulfides, polysiloxanes, polyimides, polyacetates, or other polymers which will be apparent upon review of this disclosure. Molecules bearing a common skeleton include benzodiazepines and other small molecules, such as described in U.S. Pat. No. 5,288,514, incorporated herein by reference
  • Preferably, probes are arrayed on a chip in addressable rows and columns in which the dimensions of the chip conform to the dimension of the plate test well. Technologies already have been developed to read information from such arrays The amount of information that can be stored on each plate of chips depends on the lithographic density which is used to synthesize the wafer. For example, if each feature size is about 100 microns on a side, each array can have about 10,000 probe addresses in a 1 cm2 area. A plate having 96 wells would contain about 192,000 probes However, if the arrays have a feature size of 20 microns on a side, each array can have close to 50,000 probes and the plate would have over 4,800,000 probes
  • The selection of probes and their organization in an array depends upon the use to which the biological chip will be put. In one embodiment, the chips are used to sequence or re-sequence nucleic acid molecules, or compare their sequence to a referent molecule. Re-sequencing nucleic acid molecules involves determining whether a particular molecule has any deviations from the sequence of reference molecule. For example, in one embodiment, the plates are used to identify in a particular type of HIV in a set of patient samples. Tiling strategies for sequence checking of nucleic acids are described in U.S. patent application Ser. No. 08/284,064 (PCT/US94/12305), incorporated herein by reference.
  • In typical diagnostic applications, a solution containing one or more targets to be identified (i.e., samples from patients) contacts the probe array. The targets will bind or hybridize with complementary probe sequences. Accordingly, the probes will be selected to have sequences directed to (i e., having at least some complementarity with) the target sequences to be detected, e.g., human or pathogen sequences. Generally, the targets are tagged with a detectable label. The detectable label can be, for example, a luminescent label, a light scattering label or a radioactive label. Accordingly, locations at which targets hybridize with complimentary probes can be identified by locating the markers. Based on the locations where hybridization occurs, information regarding the target sequences can be extracted. The existence of a mutation may be determined by comparing the target sequence with the wild type
  • In a preferred embodiment, the detectable label is a luminescent label Useful luminescent labels include fluorescent labels, chemi-luminescent labels, bio-luminescent labels, and colorimetric labels, among others Most preferably, the label is a fluorescent label such as fluorescein, rhodamine, cyanine and so forth. Fluorescent labels include, inter alia, the commercially available fluorescein phosphoramidites such as Fluoreprime (Pharmacia), Fluoredite (Millipore) and FAM (ABI) For example, the entire surface of the substrate is exposed to the activated fluorescent phosphoramidite, which reacts with all of the deprotected 5′-hydroxyl groups. Then the entire substrate is exposed to an alkaline solution (eg, 50% ethylenediamine in ethanol for 1-2 hours at room temperature). This is necessary to remove the protecting groups from the fluorescein tag.
  • To avoid self-quenching interactions between fluorophores on the surface of a biological chip, the fluorescent tag monomer should be diluted with a non-fluorescent analog of equivalent reactivity. For example, in the case of the fluorescein phosphoramidites noted above, a 1:20 dilution of the reagent with a non-fluorescent phosphoramidite such as the standard 5′-DMT-nucleoside phosphoramidites, has been found to be suitable. Correction for background non-specific binding of the fluorescent reagent and other such effects can be determined by routine testing.
  • Useful light scattering labels include large colloids, and especially the metal colloids such as those from gold, selenium and titanium oxide.
  • Radioactive labels include, for example, 32P. This label can be detected by a phosphoimager. Detection of course, depends on the resolution of the imager. Phosophoimagers are available having resolution of 50 microns. Accordingly, this label is currently useful with chips having features of that size.
  • E Uses
  • The methods of this invention will find particular use wherever high through-put of samples is required. In particular, this invention is useful in clinical settings and for sequencing large quantities of DNA, for example in connection with the Human Genome project.
  • The clinical setting requires performing the same test on many patient samples The automated methods of this invention lend themselves to these uses when the test is one appropriately performed on a biological chip. For example, a DNA array can determine the particular strain of a pathogenic organism based on characteristic DNA sequences of the strain The advanced techniques based on these assays now can be introduced into the clinic. Fluid samples from several patients are introduced into the test wells of a biological chip plate and the assays are performed concurrently.
  • In some embodiments, it may be desirable to perform multiple tests on multiple patient samples concurrently. According to such embodiments, rows (or columns) of the microtiter plate will contain probe arrays for diagnosis of a particular disease or trait. For example, one row might contain probe arrays designed for a particular cancer, while other rows contain probe arrays for another cancer. Patient samples are then introduced into respective columns (or rows) of the microtiter plate. For example, one column may be used to introduce samples from patient “one,” another column for patient “two” etc. Accordingly, multiple diagnostic tests may be performed on multiple patients in parallel. In still further embodiments, multiple patient samples are introduced into a single well. In a particular well indicator the presence of a genetic disease or other characteristic, each patient sample is then individually processed to identify which patient exhibits that disease or trait. For relatively rarely occurring characteristics, further order-of-magnitude efficiency may be obtained according to this embodiment
  • Particular assays that will find use in automation include those designed specifically to detect or identify particular variants of a pathogenic organism, such as HIV Assays to detect or identify a human or animal gene are also contemplated In one embodiment, the assay is the detection of a human gene variant that indicates existence of or predisposition to a genetic disease, either from acquired or inherited mutations in an individual DNA These include genetic diseases such as cystic fibrosis, diabetes, and muscular dystrophy, as well as diseases such as cancer (the P53 gene is relevant to some cancers), as disclosed in U.S. patent application Ser. No. 08/143,312, already incorporated by reference.
  • The present invention provides a substantially novel method for performing assays on biological arrays While specific examples have been provided, the above description is illustrative and not restrictive Many variations of the invention will become apparent to those of skill in the art upon review of this specification The scope of the invention should, therefore, be determined not with reference to the above description, but instead should be determined with reference to the appended claims along with their full scope of equivalents.

Claims (51)

1-31. (canceled)
32. A chemical array apparatus comprising: a breakaway seal applied to a surface of a planar substrate, the breakaway seal surrounding a microarray attached to the substrate surface, wherein a portion of the breakaway seal is removable to create a gap in the breakaway seal.
33. The chemical array apparatus of claim 32, wherein the breakaway seal comprises one or both of a physical seal and a chemical seal.
34. The chemical array apparatus of claim 32, wherein the breakaway seal provides fluid isolation to the microarray.
35. The chemical array apparatus of claim 34, wherein the breakaway seal retains a fluid with the microarray until the gap is created, the gap being created on the portion of the breakaway seal that provides a drainage path for the fluid to a perimeter edge of the planar substrate.
36. The chemical array apparatus of claim 34, wherein the fluidly isolated microarray is from a plurality of microarrays attached to the surface of the substrate, and wherein during an assay of the isolated microarray, the breakaway seal retains a fluid with the isolated microarray, such that a remainder of the plurality of microarrays is unaffected by the assay of the isolated microarray.
37. The chemical array apparatus of claim 32, wherein the microarray is from a plurality of microarrays attached to the surface of the substrate, and wherein the breakaway seal provides the plurality of microarrays fluid isolation from one another.
38. The chemical array apparatus of claim 32, wherein the breakaway seal comprises a plurality of sides, the microarray being surrounded by respective sides of the breakaway seal to provide fluid isolation, the respective sides that surround a microarray comprise one or both of a side shared by an adjacent microarray and a side unshared by an adjacent microarray.
39. The chemical array apparatus of claim 38, wherein the gap is created on a respective side surrounding the microarray that is unshared by an adjacent microarray.
40. The chemical array apparatus of claim 32, wherein the breakaway seal forms a channel or path located between adjacent microarrays on the substrate surface.
41. The chemical array apparatus of claim 32, wherein the microarray is from a plurality of microarrays, the plurality of microarrays being arranged in an array pattern that is spatially addressable, the microarray of the plurality comprising a plurality of a chemical or biochemical polymer attached to the substrate surface in a spatially addressable subarray pattern, the breakaway seal having a grid pattern that corresponds to the array pattern, the grid pattern comprising a plurality of zones, the microarray being surrounded by a respective zone of the breakaway seal.
42. The chemical array apparatus of claim 32, wherein the breakaway seal has physical sidewalls that extend a height from the substrate surface, the height being greater than a height that the microarray extends from the substrate surface, the sidewalls being capable of retaining a fluid with the microarray.
43. The chemical array apparatus of claim 32, wherein the breakaway seal is formed by changing a chemical characteristic of the substrate surface along sides surrounding the microarray, the changed characteristic of the substrate retaining a fluid with the microarray using one or both of a hydrophobic effect and a hydrophilic effect.
44. The chemical array apparatus of claim 32, further comprising: a removable cover extending over and in contact with the breakaway seal to enclose or shield the microarray.
45. The chemical array apparatus of claim 44, wherein the microarray is from a plurality of microarrays attached to the substrate surface in an array pattern, the cover shielding the plurality of microarrays, the cover optionally being selectively removable in sections to uncover a respective microarray relative to a remainder of the plurality of microarrays, the cover being intact over the remainder of the microarrays when a section of the cover is selectively removed.
46. A system for processing a microarray of a chemical array comprising: a chemical array that comprises a microarray attached to a surface of a planar substrate; a breakaway seal provided on the planar substrate to surround the microarray, wherein a portion of the breakaway seal is removable to create a gap in the breakaway seal; and a removable cover extending over and in contact with the breakaway seal to shield the microarray.
47. The system of claim 46, wherein the microarray is from a plurality of microarrays attached to the substrate surface in a spatially addressable array pattern, the breakaway seal comprising sidewalls in a grid pattern that form zones, the grid pattern corresponding to the array pattern.
48. The system of claim 46, wherein the breakaway seal is dimensioned to reduce contact between the cover and the microarray.
49. The system of claim 46, wherein the removable cover is taut over the breakaway seal to reduce contact between the cover and the microarray.
50. The system of claim 46, wherein the cover is removable by peeling the cover away from the breakaway seal.
51. The system of claim 47, wherein the cover is selective removably from the breakaway seal, such that when a section of the cover is selectively removed to expose a respective microarray, a remainder of the cover that shields a remainder of the plurality of microarrays remains intact and unaffected by the selective removal of the section.
52. The system of claim 51, wherein the selectively removable cover comprises a scored pattern corresponding to the grid pattern of the breakaway seal, such that the section of the cover is selectively removable by separating the section along respective scoring of the scored pattern.
53. The system of claim 52, wherein the section of the cover is further selectively removable by peeling the section away from the breakaway seal.
54. The system of claim 47, wherein the cover comprises a film layer and a grid frame layer, the grid frame layer having a plurality of grid frame units arranged in a frame grid pattern, the frame grid pattern corresponding to the grid pattern of the breakaway seal, the grid frame layer being adjacent and securely attached to the breakaway seal, the film layer overlying the grid frame layer, the film layer being readily separable from the grid frame layer relative to the secure attachment of the grid frame layer to the breakaway seal.
55. The system of claim 54, wherein the film layer comprises scoring in a scored pattern, the scored pattern corresponding to the grid frame pattern, the film layer being selectively separable from the grid frame layer in sections along the scoring, such that when a section of the film layer is removed, the section is peeled from a respective grid frame unit and separated from a remainder of the film layer along a portion of the scoring, the removed section exposing a underlying microarray that is otherwise surrounded by sidewalls of a respective zone of the breakaway seal and the respective grid frame unit, and the remainder of the film layer being unaffected by the removal of the film layer section.
56. The system of claim 47, wherein a zone of the grid pattern surrounds and provides fluid isolation to a respective microarray from other microarrays of the plurality, the removable cover being selectively removable from the zone to provide fluid access to the respective microarray that is otherwise surrounded by respective sidewalls of the breakaway seal, and wherein an unremoved portion of the cover remains intact and provides the other microarrays protection from physical damage and fluid contamination.
57. The system of claim 56, wherein during an assay of the respective microarray, a respective section of the cover is selectively removed from the zone to expose the respective microarray, a fluid deposited on the exposed respective microarray being retained by the respective sidewalls of the zone.
58. The system of claim 57, wherein during the assay of the isolated microarray, the removed cover section is applied over the deposited fluid retained by the respective sidewalls to help shield the fluid during the assay.
59. The system of claim 58, wherein further during the assay, localized pressure is deliberately applied to a sidewall of the respective sidewalls of the zone to create the gap in the breakaway seal, the deposited fluid being released through the created gap.
60. The system of claim 46, wherein the portion of the breakaway seal is removed by deliberately applying localized pressure to a sidewall of the breakaway seal, such that the portion breaks away to create the gap in the sidewall.
61. The system of claim 46, further comprising a fixture having a planar inclined surface and a shelf, the inclined surface and the shelf supporting the chemical array during an assay of the microarray.
62. The system of claim 47, wherein the removable cover is adhered to the breakaway seal using one or more of an adhesive at between the cover and an edge surface of a sidewall of the breakaway seal, an electrostatic attraction between the breakaway seal and the cover along the edge surface of a sidewall, and an adhesive strip in an adhesive grid pattern similar to the breakaway seal grid pattern between the cover and the edge surface of the sidewalls.
63. The system of claim 47, wherein the microarray comprises a plurality of a chemical or biochemical polymer attached to the substrate surface in a spatially addressable subarray pattern.
64. A method of processing a microarray of a chemical array of microarrays comprising: applying a breakaway seal to a surface of a planar substrate to ultimately surround a microarray on the planar substrate; processing the microarray with a fluid that is deposited on the microarray, the breakaway seal retaining the fluid with the microarray; and breaking away a portion of the breakaway seal that retains the fluid with the microarray, the broken away portion creating a gap in the breakaway seal, the gap providing an exit for the release of the fluid from the microarray.
65. The method of claim 64, further comprising attaching a plurality of microarrays to the substrate surface in an array pattern either before or after the breakaway seal is applied, the microarray being from the plurality, the array pattern being spatially addressable, the microarray comprising a plurality of a chemical or biochemical polymer arranged in a subarray pattern that is spatially addressable.
66. The method of claim 64, wherein breaking away a portion of the breakaway seal comprises tilting and orienting the planar substrate in a direction such that the retained fluid will drain through the gap and off the planar substrate.
67. The method of claim 64, wherein the gap is created in the portion of the breakaway seal facing a perimeter edge of the planar substrate, such that the fluid is released in a direction of the facing perimeter edge off the planar substrate.
68. The method of claim 64, wherein breaking away a portion of the seal comprises: holding the planar substrate at an incline angle, the incline angle being such that the fluid is prevented from exceeding the breakaway seal until the gap is created; orienting the planar substrate such that a perimeter edge of the planar substrate is at a lowest position when inclined, the lowest position of the substrate perimeter edge being relative to other perimeter edges of the planar substrate; and applying localized pressure to a sidewall of the portion of the breakaway seal surrounding the microarray, the gap being created in the sidewall, the fluid exiting through the gap off the planar substrate in the direction of the lowest substrate perimeter edge.
69. The method of claim 68, wherein the incline angle assists the fluid to flow through the gap when created.
70. The method of claim 64, further comprising: covering the microarray with a removable cover, the cover being in contact with the breakaway seal, the cover shielding the microarray; and removing the cover before processing the microarray, the removed cover providing fluid access to the microarray.
71. The method of claim 70, wherein the microarray is from a plurality of microarrays attached to the substrate surface in an array pattern, the cover being selectively removable from the breakaway seal, such that during removing, a section of the removable cover over the microarray is selectively removed before processing, a remainder of the removable cover being intact over the other microarrays, wherein selectively removing the section of the cover provides fluid access to the uncovered microarray while shielding the other microarrays from the fluid.
72. The method of claim 70, further comprising applying the removed cover on the fluid to help shield the fluid during processing.
73. The method of claim 64, further comprising one or more of: rinsing the microarray with a wash solution that drains through the created gap; scanning the microarray using scanning equipment to determine results of the processing; storing the planar substrate until another microarray on the substrate having an intact breakaway seal is to be processed; and processing another microarray on the substrate surrounded by an intact portion of the breakaway seal with another fluid when the processing of the microarray having the created gap in the breakaway seal is complete.
74. A removable cover for a chemical array apparatus comprising a sheet of material that overlies a microarray of the chemical array apparatus, the sheet being removable to provide fluid access to the microarray.
75. The removable cover of claim 74, wherein when the sheet is removed, the microarray is exposed, the removed sheet being reapplied on a fluid deposited on the exposed microarray during an assay, the reapplied sheet helping to shield the fluid during the assay of the microarray.
76. The removable cover of claim 74, wherein the chemical array apparatus comprises an array pattern of microarrays, the sheet overlying the microarrays of the array pattern, the sheet being independently removable from over a respective microarray of the array pattern, such that other microarrays of the chemical array apparatus remain covered.
77. The removable cover of claim 74, wherein the sheet of material is taut over the microarray to reduce contact between the sheet and the microarray.
78. The removable cover of claim 74, wherein the sheet is removable by peeling the sheet away from the chemical array apparatus.
79. The removable cover of claim 76, wherein the sheet is independently removably from the chemical array apparatus in sections, the independently removable sheet comprises a scored pattern corresponding to the array pattern of microarrays, such that a section of the sheet is selectively removed by separating the section along respective scoring of the scored pattern.
80. The removable cover of claim 76, wherein the sheet of material comprises a film layer and a grid frame layer, the grid frame layer having a plurality of grid frame units arranged in a frame grid pattern, the frame grid pattern corresponding to the array pattern of the microarrays, the grid frame layer being adjacent and securely attached to the chemical array apparatus, the film layer overlying the grid frame layer, the film layer being readily separable from the grid frame layer relative to the secure attachment of the grid frame layer to the chemical array apparatus.
81. The removable cover of claim 80, wherein the film layer comprises scoring in a scored pattern, the scored pattern corresponding to the grid frame pattern, the film layer being selectively separable from the grid frame layer in sections along the scoring, such that when a section of the film layer is selectively removed, the section is peeled from a respective grid frame unit and separated from a remainder of the film layer along a portion of the scoring, a remainder of the film layer being unaffected by the removal of the film layer section.
US11/173,366 1995-06-07 2005-07-01 Methods for making a device for concurrently processing multiple biological chip assays Abandoned US20050282156A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/173,366 US20050282156A1 (en) 1995-06-07 2005-07-01 Methods for making a device for concurrently processing multiple biological chip assays

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US08/476,850 US5545531A (en) 1995-06-07 1995-06-07 Methods for making a device for concurrently processing multiple biological chip assays
US08/630,051 US5874219A (en) 1995-06-07 1996-04-09 Methods for concurrently processing multiple biological chip assays
US09/247,430 US20020018991A1 (en) 1995-06-07 1999-02-10 Method for concurrently processing multiple biological chip assays
US10/157,252 US6720149B1 (en) 1995-06-07 2002-05-28 Methods for concurrently processing multiple biological chip assays
US10/795,086 US20050042628A1 (en) 1995-06-07 2004-03-05 Methods for concurrently processing multiple biological chip assays
US10/997,492 US20050123907A1 (en) 1995-06-07 2004-11-24 Methods for making a device for concurrently processing multiple biological chip assays
US11/044,834 US20050181403A1 (en) 1995-06-07 2005-01-26 Methods for making a device for concurrently processing multiple biological chip assays
US11/173,366 US20050282156A1 (en) 1995-06-07 2005-07-01 Methods for making a device for concurrently processing multiple biological chip assays

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/044,834 Continuation US20050181403A1 (en) 1995-06-07 2005-01-26 Methods for making a device for concurrently processing multiple biological chip assays

Publications (1)

Publication Number Publication Date
US20050282156A1 true US20050282156A1 (en) 2005-12-22

Family

ID=32045837

Family Applications (5)

Application Number Title Priority Date Filing Date
US10/157,252 Expired - Fee Related US6720149B1 (en) 1995-06-07 2002-05-28 Methods for concurrently processing multiple biological chip assays
US10/795,086 Abandoned US20050042628A1 (en) 1995-06-07 2004-03-05 Methods for concurrently processing multiple biological chip assays
US10/997,492 Abandoned US20050123907A1 (en) 1995-06-07 2004-11-24 Methods for making a device for concurrently processing multiple biological chip assays
US11/044,834 Abandoned US20050181403A1 (en) 1995-06-07 2005-01-26 Methods for making a device for concurrently processing multiple biological chip assays
US11/173,366 Abandoned US20050282156A1 (en) 1995-06-07 2005-07-01 Methods for making a device for concurrently processing multiple biological chip assays

Family Applications Before (4)

Application Number Title Priority Date Filing Date
US10/157,252 Expired - Fee Related US6720149B1 (en) 1995-06-07 2002-05-28 Methods for concurrently processing multiple biological chip assays
US10/795,086 Abandoned US20050042628A1 (en) 1995-06-07 2004-03-05 Methods for concurrently processing multiple biological chip assays
US10/997,492 Abandoned US20050123907A1 (en) 1995-06-07 2004-11-24 Methods for making a device for concurrently processing multiple biological chip assays
US11/044,834 Abandoned US20050181403A1 (en) 1995-06-07 2005-01-26 Methods for making a device for concurrently processing multiple biological chip assays

Country Status (1)

Country Link
US (5) US6720149B1 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020053915A1 (en) * 2000-07-07 2002-05-09 Weaver Charles David Electrophysiology configuration suitable for high throughput screening of compounds for drug discovery
US20030152994A1 (en) * 1996-04-03 2003-08-14 Applera Corporation Device and method for multiple analyte detection
US20040225982A1 (en) * 2003-05-09 2004-11-11 Donelly Ross A. Constrained optimization with linear constraints to remove overlap among cells of an integrated circuit
US20050158781A1 (en) * 1996-04-03 2005-07-21 Applera Corporation Device and method for multiple analyte detection
US7235406B1 (en) 1996-04-03 2007-06-26 Applera Corporation Nucleic acid analysis device
US20070202543A1 (en) * 2004-12-29 2007-08-30 Jacques Gollier Optical reader system and method for monitoring and correcting lateral and angular misaligments of label independent biosensors
WO2007131103A2 (en) * 2006-05-03 2007-11-15 Quadraspec, Inc. Direct printing of patterned hydrophobic wells
US20070263914A1 (en) * 2006-03-09 2007-11-15 Tessarae Inc. Microarray imaging system and associated methodology
WO2007140889A1 (en) * 2006-06-09 2007-12-13 Euroimmun Medizinische Labordiagnostika Ag Process for obtaining perfect macro- and microarrays by combining preselected coated solid phase fragments
GB2450992A (en) * 2007-07-13 2009-01-14 Samsung Electronics Co Ltd Biochips
US20110130308A1 (en) * 2009-12-02 2011-06-02 Luckey John A Multiplexed microarray and method of fabricating thereof
WO2012013971A1 (en) * 2010-07-26 2012-02-02 Randox Laboratories Ltd Biochip holder, sealed well assembly, apparatus and methods for opening sealed wells
US8501122B2 (en) 2009-12-08 2013-08-06 Affymetrix, Inc. Manufacturing and processing polymer arrays
US8753873B2 (en) 2011-04-15 2014-06-17 Roche Nimblegen, Inc. Multiplexed microarray assembly and method for fabricating a multiplexed microarray
CN105092468A (en) * 2006-11-22 2015-11-25 科隆迪亚戈有限公司 Methods for optically detecting multiple analytes in a liquid sample with a compressible microfluidic device
US10753927B2 (en) 2006-09-22 2020-08-25 ALERE TECHNOLOGIES GmbH Methods for detecting an analyte

Families Citing this family (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6287850B1 (en) * 1995-06-07 2001-09-11 Affymetrix, Inc. Bioarray chip reaction apparatus and its manufacture
EP0695941B1 (en) * 1994-06-08 2002-07-31 Affymetrix, Inc. Method and apparatus for packaging a chip
US6720149B1 (en) * 1995-06-07 2004-04-13 Affymetrix, Inc. Methods for concurrently processing multiple biological chip assays
US6406921B1 (en) * 1998-07-14 2002-06-18 Zyomyx, Incorporated Protein arrays for high-throughput screening
US20030138973A1 (en) * 1998-07-14 2003-07-24 Peter Wagner Microdevices for screening biomolecules
US6576478B1 (en) * 1998-07-14 2003-06-10 Zyomyx, Inc. Microdevices for high-throughput screening of biomolecules
US6780582B1 (en) * 1998-07-14 2004-08-24 Zyomyx, Inc. Arrays of protein-capture agents and methods of use thereof
US20020119579A1 (en) * 1998-07-14 2002-08-29 Peter Wagner Arrays devices and methods of use thereof
US20030096321A1 (en) * 1999-05-19 2003-05-22 Jose Remacle Method for the identification and/or the quantification of a target compound obtained from a biological sample upon chips
IL152634A0 (en) * 2000-05-04 2003-06-24 Univ Yale High density protein arrays for screening of protein activity
US7371563B2 (en) * 2000-11-08 2008-05-13 Surface Logix, Inc. Peelable and resealable devices for biochemical assays
US7439056B2 (en) * 2000-11-08 2008-10-21 Surface Logix Inc. Peelable and resealable devices for arraying materials
US20040166593A1 (en) * 2001-06-22 2004-08-26 Nolte David D. Adaptive interferometric multi-analyte high-speed biosensor
GB0208817D0 (en) * 2002-04-17 2002-05-29 European Molecular Biology Lab Embl Method for producing monoclonal antibodies
US20030208936A1 (en) * 2002-05-09 2003-11-13 Lee Charles Hee Method for manufacturing embroidery decorated cards and envelopes
WO2004013290A2 (en) * 2002-08-05 2004-02-12 Invitrogen Corporation Compositions and methods for molecular biology
US20050233473A1 (en) * 2002-08-16 2005-10-20 Zyomyx, Inc. Methods and reagents for surface functionalization
US20040081967A1 (en) * 2002-10-25 2004-04-29 Leproust Eric M Chemical arrays with features of different probe densities
US20040129676A1 (en) * 2003-01-07 2004-07-08 Tan Roy H. Apparatus for transfer of an array of liquids and methods for manufacturing same
US6970240B2 (en) * 2003-03-10 2005-11-29 Applera Corporation Combination reader
US20050218067A1 (en) * 2003-04-10 2005-10-06 Cuno Incorporated Ablated predetermined surface geometric shaped boundary formed on porous material mounted on a substrate and methods of making same
US8652774B2 (en) * 2003-04-16 2014-02-18 Affymetrix, Inc. Automated method of manufacturing polyer arrays
US20040248323A1 (en) * 2003-06-09 2004-12-09 Protometrix, Inc. Methods for conducting assays for enzyme activity on protein microarrays
JP4067463B2 (en) * 2003-07-18 2008-03-26 トヨタ自動車株式会社 Control device for hybrid vehicle
US8277760B2 (en) * 2003-09-19 2012-10-02 Applied Biosystems, Llc High density plate filler
US20050220675A1 (en) * 2003-09-19 2005-10-06 Reed Mark T High density plate filler
US20050226782A1 (en) * 2003-09-19 2005-10-13 Reed Mark T High density plate filler
US7407630B2 (en) * 2003-09-19 2008-08-05 Applera Corporation High density plate filler
US7998435B2 (en) * 2003-09-19 2011-08-16 Life Technologies Corporation High density plate filler
US9492820B2 (en) 2003-09-19 2016-11-15 Applied Biosystems, Llc High density plate filler
US7695688B2 (en) * 2003-09-19 2010-04-13 Applied Biosystems, Llc High density plate filler
US20060233671A1 (en) * 2003-09-19 2006-10-19 Beard Nigel P High density plate filler
US20060233673A1 (en) * 2003-09-19 2006-10-19 Beard Nigel P High density plate filler
US20060272738A1 (en) * 2003-09-19 2006-12-07 Gary Lim High density plate filler
US7887750B2 (en) * 2004-05-05 2011-02-15 Bayer Healthcare Llc Analytical systems, devices, and cartridges therefor
US20070056898A1 (en) * 2004-05-13 2007-03-15 Keith Wesner Ablated predetermined surface geometric shaped boundary formed on porous material mounted on a substrate and methods of making same
US20060108287A1 (en) * 2004-09-21 2006-05-25 Arnold Todd E Discrete zoned microporous nylon coated glass platform for use in microwell plates and methods of making and using same
DE102004056735A1 (en) * 2004-11-09 2006-07-20 Clondiag Chip Technologies Gmbh Device for performing and analyzing microarray experiments
US20070023643A1 (en) * 2005-02-01 2007-02-01 Nolte David D Differentially encoded biological analyzer planar array apparatus and methods
US7910356B2 (en) * 2005-02-01 2011-03-22 Purdue Research Foundation Multiplexed biological analyzer planar array apparatus and methods
US7663092B2 (en) * 2005-02-01 2010-02-16 Purdue Research Foundation Method and apparatus for phase contrast quadrature interferometric detection of an immunoassay
US20090305238A1 (en) * 2006-01-23 2009-12-10 Applera Corporation Microarray Microcard
RU2348695C2 (en) 2006-05-23 2009-03-10 Закрытое акционерное общество "Молекулярно-медицинские технологии" Differentiating and specific oligonucleotids for dna sequence identification for infection agents in biological materials, method of species identification of infection agents, biochip and method implementation kit
US20080230605A1 (en) * 2006-11-30 2008-09-25 Brian Weichel Process and apparatus for maintaining data integrity
US7522282B2 (en) * 2006-11-30 2009-04-21 Purdue Research Foundation Molecular interferometric imaging process and apparatus
US20080144899A1 (en) * 2006-11-30 2008-06-19 Manoj Varma Process for extracting periodic features from images by template matching
US7659968B2 (en) 2007-01-19 2010-02-09 Purdue Research Foundation System with extended range of molecular sensing through integrated multi-modal data acquisition
WO2008118934A1 (en) 2007-03-26 2008-10-02 Purdue Research Foundation Method and apparatus for conjugate quadrature interferometric detection of an immunoassay
US20090203022A1 (en) * 2008-02-07 2009-08-13 Arizona Board Of Regents For And On Behalf Of Arizona State University Analysis
IT1397110B1 (en) * 2008-12-29 2012-12-28 St Microelectronics Rousset SELF-SEALING MICROREACTOR AND METHOD TO CARRY OUT A REACTION
EP2393941A2 (en) * 2009-02-09 2011-12-14 Frederic Zenhausern Improvements in and relating to microfluidic devices for processing a sample
AU2010257118B2 (en) * 2009-06-04 2014-08-28 Lockheed Martin Corporation Multiple-sample microfluidic chip for DNA analysis
GB2497501A (en) 2010-10-15 2013-06-12 Lockheed Corp Micro fluidic optic design
US9322054B2 (en) 2012-02-22 2016-04-26 Lockheed Martin Corporation Microfluidic cartridge
WO2014154336A1 (en) * 2013-03-26 2014-10-02 Iffmedic Gmbh Microtiter plate-based microarray
US20160319329A1 (en) 2013-09-12 2016-11-03 Siemens Healthcare Diagnostics Inc. Dynamic assay selection and sample preparation apparatus and methods and machine-readable mediums thereof
GB201401584D0 (en) * 2014-01-29 2014-03-19 Bg Res Ltd Intelligent detection of biological entities
JP6415712B2 (en) 2014-10-24 2018-10-31 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Assessment of TGF-β cell signaling pathway activity using mathematical modeling of target gene expression
CN108064380A (en) 2014-10-24 2018-05-22 皇家飞利浦有限公司 Use the prediction of the medical prognosis and therapeutic response of various kinds of cell signal transduction path activity
CN108064311B (en) 2014-10-24 2022-10-28 皇家飞利浦有限公司 Medical prognosis and prediction of treatment response using multiple cell signaling pathway activities
US20160245832A1 (en) * 2015-02-25 2016-08-25 Kwong Hou WONG Biological chip systems
ES2861400T3 (en) 2015-08-14 2021-10-06 Koninklijke Philips Nv Evaluation of the activity of the NFkB cell signaling pathway using mathematical models of target gene expression
CN105521841B (en) * 2016-02-04 2017-06-23 龙岩市九健生物芯片有限公司 A kind of biochip hybridizing box
JP2020517266A (en) * 2017-04-21 2020-06-18 エッセンリックス コーポレーション Molecular manipulation and assay with controlled temperature (II)
EP3461915A1 (en) 2017-10-02 2019-04-03 Koninklijke Philips N.V. Assessment of jak-stat1/2 cellular signaling pathway activity using mathematical modelling of target gene expression
EP3502279A1 (en) 2017-12-20 2019-06-26 Koninklijke Philips N.V. Assessment of mapk-ap 1 cellular signaling pathway activity using mathematical modelling of target gene expression
TW202043450A (en) * 2018-11-15 2020-12-01 中國商深圳華大智造科技有限公司 System and method for integrated sensor cartridge

Citations (93)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3281860A (en) * 1964-11-09 1966-10-25 Dick Co Ab Ink jet nozzle
US3690836A (en) * 1966-03-01 1972-09-12 Promoveo Device for use in the study of chemical and biological reactions and method of making same
US3710933A (en) * 1971-12-23 1973-01-16 Atomic Energy Commission Multisensor particle sorter
US3802966A (en) * 1969-08-22 1974-04-09 Ethyl Corp Apparatus for delivering a fluid suspension to a forming unit clear reactor power plant
US4016855A (en) * 1974-09-04 1977-04-12 Hitachi, Ltd. Grinding method
US4121222A (en) * 1977-09-06 1978-10-17 A. B. Dick Company Drop counter ink replenishing system
US4204929A (en) * 1978-04-18 1980-05-27 University Patents, Inc. Isoelectric focusing method
US4373071A (en) * 1981-04-30 1983-02-08 City Of Hope Research Institute Solid-phase synthesis of polynucleotides
US4458066A (en) * 1980-02-29 1984-07-03 University Patents, Inc. Process for preparing polynucleotides
US4500707A (en) * 1980-02-29 1985-02-19 University Patents, Inc. Nucleosides useful in the preparation of polynucleotides
US4728502A (en) * 1984-05-02 1988-03-01 Hamill Brendan J Apparatus for the chemical synthesis of oligonucleotides
US4780504A (en) * 1985-06-20 1988-10-25 Roussel Uclaf Supports useful in solid phase synthesis of oligonucleotides
US4812512A (en) * 1985-06-27 1989-03-14 Roussel Uclaf Supports and their use
US4853335A (en) * 1987-09-28 1989-08-01 Olsen Duane A Colloidal gold particle concentration immunoassay
US4877745A (en) * 1986-11-17 1989-10-31 Abbott Laboratories Apparatus and process for reagent fluid dispensing and printing
US4963498A (en) * 1985-08-05 1990-10-16 Biotrack Capillary flow device
US4992383A (en) * 1988-08-05 1991-02-12 Porton Instruments, Inc. Method for protein and peptide sequencing using derivatized glass supports
US5002889A (en) * 1988-10-21 1991-03-26 Genetic Systems Corporation Reaction well shape for a microwell tray
US5021550A (en) * 1986-10-07 1991-06-04 Thomas Jefferson University Method for preventing deletion sequences in solid phase synthesis
US5047524A (en) * 1988-12-21 1991-09-10 Applied Biosystems, Inc. Automated system for polynucleotide synthesis and purification
US5141813A (en) * 1989-08-28 1992-08-25 Clontech Laboratories, Inc. Multifunctional controlled pore glass reagent for solid phase oligonucleotide synthesis
US5143854A (en) * 1989-06-07 1992-09-01 Affymax Technologies N.V. Large scale photolithographic solid phase synthesis of polypeptides and receptor binding screening thereof
US5153319A (en) * 1986-03-31 1992-10-06 University Patents, Inc. Process for preparing polynucleotides
US5196305A (en) * 1989-09-12 1993-03-23 Eastman Kodak Company Diagnostic and amplification methods using primers having thymine at 3' end to overcome primer-target mismatch at the 3' end
US5200051A (en) * 1988-11-14 1993-04-06 I-Stat Corporation Wholly microfabricated biosensors and process for the manufacture and use thereof
US5204253A (en) * 1990-05-29 1993-04-20 E. I. Du Pont De Nemours And Company Method and apparatus for introducing biological substances into living cells
US5256549A (en) * 1986-03-28 1993-10-26 Chiron Corporation Purification of synthetic oligomers
US5281540A (en) * 1988-08-02 1994-01-25 Abbott Laboratories Test array for performing assays
US5281516A (en) * 1988-08-02 1994-01-25 Gene Tec Corporation Temperature control apparatus and method
US5287272A (en) * 1988-04-08 1994-02-15 Neuromedical Systems, Inc. Automated cytological specimen classification system and method
US5288514A (en) * 1992-09-14 1994-02-22 The Regents Of The University Of California Solid phase and combinatorial synthesis of benzodiazepine compounds on a solid support
US5300779A (en) * 1985-08-05 1994-04-05 Biotrack, Inc. Capillary flow device
US5304487A (en) * 1992-05-01 1994-04-19 Trustees Of The University Of Pennsylvania Fluid handling in mesoscale analytical devices
US5310469A (en) * 1991-12-31 1994-05-10 Abbott Laboratories Biosensor with a membrane containing biologically active material
US5314829A (en) * 1992-12-18 1994-05-24 California Institute Of Technology Method for imaging informational biological molecules on a semiconductor substrate
US5320808A (en) * 1988-08-02 1994-06-14 Abbott Laboratories Reaction cartridge and carousel for biological sample analyzer
US5322799A (en) * 1988-02-03 1994-06-21 The State Of Oregon Acting By And Through The State Board Of Higher Education On Behalf Of Oregon State University Observation cell and mixing chamber
US5324633A (en) * 1991-11-22 1994-06-28 Affymax Technologies N.V. Method and apparatus for measuring binding affinity
US5346672A (en) * 1989-11-17 1994-09-13 Gene Tec Corporation Devices for containing biological specimens for thermal processing
US5348855A (en) * 1986-03-05 1994-09-20 Miles Inc. Assay for nucleic acid sequences in an unpurified sample
US5382512A (en) * 1993-08-23 1995-01-17 Chiron Corporation Assay device with captured particle reagent
US5382511A (en) * 1988-08-02 1995-01-17 Gene Tec Corporation Method for studying nucleic acids within immobilized specimens
US5384261A (en) * 1991-11-22 1995-01-24 Affymax Technologies N.V. Very large scale immobilized polymer synthesis using mechanically directed flow paths
US5424186A (en) * 1989-06-07 1995-06-13 Affymax Technologies N.V. Very large scale immobilized polymer synthesis
US5436129A (en) * 1989-11-17 1995-07-25 Gene Tec Corp. Process for specimen handling for analysis of nucleic acids
US5486335A (en) * 1992-05-01 1996-01-23 Trustees Of The University Of Pennsylvania Analysis based on flow restriction
US5486452A (en) * 1981-04-29 1996-01-23 Ciba-Geigy Corporation Devices and kits for immunological analysis
US5489678A (en) * 1989-06-07 1996-02-06 Affymax Technologies N.V. Photolabile nucleoside and peptide protecting groups
US5494124A (en) * 1993-10-08 1996-02-27 Vortexx Group, Inc. Negative pressure vortex nozzle
US5498392A (en) * 1992-05-01 1996-03-12 Trustees Of The University Of Pennsylvania Mesoscale polynucleotide amplification device and method
US5538857A (en) * 1994-06-01 1996-07-23 Isolab, Inc. Assay for enzyme activity from a red blood sample using a direct microfluorometric assay
US5545531A (en) * 1995-06-07 1996-08-13 Affymax Technologies N.V. Methods for making a device for concurrently processing multiple biological chip assays
US5556752A (en) * 1994-10-24 1996-09-17 Affymetrix, Inc. Surface-bound, unimolecular, double-stranded DNA
US5567583A (en) * 1991-12-16 1996-10-22 Biotronics Corporation Methods for reducing non-specific priming in DNA detection
US5593839A (en) * 1994-05-24 1997-01-14 Affymetrix, Inc. Computer-aided engineering system for design of sequence arrays and lithographic masks
US5631734A (en) * 1994-02-10 1997-05-20 Affymetrix, Inc. Method and apparatus for detection of fluorescently labeled materials
US5637469A (en) * 1992-05-01 1997-06-10 Trustees Of The University Of Pennsylvania Methods and apparatus for the detection of an analyte utilizing mesoscale flow systems
US5639612A (en) * 1992-07-28 1997-06-17 Hitachi Chemical Company, Ltd. Method for detecting polynucleotides with immobilized polynucleotide probes identified based on Tm
US5677195A (en) * 1991-11-22 1997-10-14 Affymax Technologies N.V. Combinatorial strategies for polymer synthesis
US5757666A (en) * 1993-04-23 1998-05-26 Boehringer Mannheim Gmbh System for analyzing compounds contained liquid samples
US5800992A (en) * 1989-06-07 1998-09-01 Fodor; Stephen P.A. Method of detecting nucleic acids
US5807522A (en) * 1994-06-17 1998-09-15 The Board Of Trustees Of The Leland Stanford Junior University Methods for fabricating microarrays of biological samples
US5861242A (en) * 1993-06-25 1999-01-19 Affymetrix, Inc. Array of nucleic acid probes on biological chips for diagnosis of HIV and methods of using the same
US5910288A (en) * 1997-07-10 1999-06-08 Hewlett-Packard Company Method and apparatus for mixing a thin film of fluid
US5945334A (en) * 1994-06-08 1999-08-31 Affymetrix, Inc. Apparatus for packaging a chip
US5961923A (en) * 1995-04-25 1999-10-05 Irori Matrices with memories and uses thereof
US6083682A (en) * 1997-12-19 2000-07-04 Glaxo Group Limited System and method for solid-phase parallel synthesis of a combinatorial collection of compounds
US6096561A (en) * 1992-03-27 2000-08-01 Abbott Laboratories Scheduling operation of an automated analytical system
US6103463A (en) * 1992-02-19 2000-08-15 The Public Health Research Institute Of The City Of New York, Inc. Method of sorting a mixture of nucleic acid strands on a binary array
US6121048A (en) * 1994-10-18 2000-09-19 Zaffaroni; Alejandro C. Method of conducting a plurality of reactions
US6180351B1 (en) * 1999-07-22 2001-01-30 Agilent Technologies Inc. Chemical array fabrication with identifier
US6186659B1 (en) * 1998-08-21 2001-02-13 Agilent Technologies Inc. Apparatus and method for mixing a film of fluid
US6215894B1 (en) * 1999-02-26 2001-04-10 General Scanning, Incorporated Automatic imaging and analysis of microarray biochips
US6232066B1 (en) * 1997-12-19 2001-05-15 Neogen, Inc. High throughput assay system
US6238862B1 (en) * 1995-09-18 2001-05-29 Affymetrix, Inc. Methods for testing oligonucleotide arrays
US6258593B1 (en) * 1999-06-30 2001-07-10 Agilent Technologies Inc. Apparatus for conducting chemical or biochemical reactions on a solid surface within an enclosed chamber
US6270961B1 (en) * 1987-04-01 2001-08-07 Hyseq, Inc. Methods and apparatus for DNA sequencing and DNA identification
US6284460B1 (en) * 1993-06-25 2001-09-04 Affymetrix Inc. Hybridization and sequencing of nucleic acids using base pair mismatches
US6285893B1 (en) * 1998-02-09 2001-09-04 Nec Corporation Portable radio device
US6287850B1 (en) * 1995-06-07 2001-09-11 Affymetrix, Inc. Bioarray chip reaction apparatus and its manufacture
US6355431B1 (en) * 1999-04-20 2002-03-12 Illumina, Inc. Detection of nucleic acid amplification reactions using bead arrays
US6396995B1 (en) * 1999-05-20 2002-05-28 Illumina, Inc. Method and apparatus for retaining and presenting at least one microsphere array to solutions and/or to optical imaging systems
US6399394B1 (en) * 1999-06-30 2002-06-04 Agilent Technologies, Inc. Testing multiple fluid samples with multiple biopolymer arrays
US6420114B1 (en) * 1999-12-06 2002-07-16 Incyte Genomics, Inc. Microarray hybridization chamber
US6429027B1 (en) * 1998-12-28 2002-08-06 Illumina, Inc. Composite arrays utilizing microspheres
US6436351B1 (en) * 1998-07-15 2002-08-20 Deltagen Research Laboratories, L.L.C. Microtitre chemical reaction system
US6620584B1 (en) * 1999-05-20 2003-09-16 Illumina Combinatorial decoding of random nucleic acid arrays
US6628853B1 (en) * 2001-12-18 2003-09-30 Bookham Technology, Plc Optical amplifiers
US6682702B2 (en) * 2001-08-24 2004-01-27 Agilent Technologies, Inc. Apparatus and method for simultaneously conducting multiple chemical reactions
US6720149B1 (en) * 1995-06-07 2004-04-13 Affymetrix, Inc. Methods for concurrently processing multiple biological chip assays
US6905816B2 (en) * 2000-11-27 2005-06-14 Intelligent Medical Devices, Inc. Clinically intelligent diagnostic devices and methods
US6955915B2 (en) * 1989-06-07 2005-10-18 Affymetrix, Inc. Apparatus comprising polymers
US6991939B2 (en) * 2001-07-19 2006-01-31 Tufts University Optical array device and methods of use thereof for screening, analysis and manipulation of particles

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI71768C (en) * 1984-02-17 1987-02-09 Orion Yhtymae Oy Enhanced nucleic acid reagents and process for their preparation.
GB8429212D0 (en) * 1984-11-19 1984-12-27 Vincent Patents Ltd Exhaust systems for ic engines
JPH0750094B2 (en) * 1987-01-28 1995-05-31 富士写真フイルム株式会社 Continuous manufacturing method for chemical analysis slides
GB8810400D0 (en) 1988-05-03 1988-06-08 Southern E Analysing polynucleotide sequences
US5700637A (en) 1988-05-03 1997-12-23 Isis Innovation Limited Apparatus and method for analyzing polynucleotide sequences and method of generating oligonucleotide arrays
ES2155822T3 (en) 1990-12-06 2001-06-01 Affymetrix Inc COMPOUNDS AND ITS USE IN A BINARY SYNTHESIS STRATEGY.
US5474796A (en) * 1991-09-04 1995-12-12 Protogene Laboratories, Inc. Method and apparatus for conducting an array of chemical reactions on a support surface
US5846708A (en) * 1991-11-19 1998-12-08 Massachusetts Institiute Of Technology Optical and electrical methods and apparatus for molecule detection
US5376313A (en) * 1992-03-27 1994-12-27 Abbott Laboratories Injection molding a plastic assay cuvette having low birefringence
US5837832A (en) 1993-06-25 1998-11-17 Affymetrix, Inc. Arrays of nucleic acid probes on biological chips
US5374395A (en) * 1993-10-14 1994-12-20 Amoco Corporation Diagnostics instrument
DE69433180T2 (en) 1993-10-26 2004-06-24 Affymetrix, Inc., Santa Clara FIELDS OF NUCLEIC ACID PROBE ON ORGANIC CHIPS
US5539857A (en) * 1994-01-24 1996-07-23 Caco Pacific Corporation Heater block for injection molding with removable heat conductive member in groove in heater block
US5578832A (en) 1994-09-02 1996-11-26 Affymetrix, Inc. Method and apparatus for imaging a sample on a device
US5698393A (en) * 1995-08-18 1997-12-16 Abbott Laboratories Method for elimination of rheumatoid factor interference in diagnostic assays
US5851488A (en) * 1996-02-29 1998-12-22 Biocircuits Corporation Apparatus for automatic electro-optical chemical assay determination
EP1090293B2 (en) * 1998-06-24 2019-01-23 Illumina, Inc. Decoding of array sensors with microspheres
US20020150909A1 (en) * 1999-02-09 2002-10-17 Stuelpnagel John R. Automated information processing in randomly ordered arrays
US20030108867A1 (en) * 1999-04-20 2003-06-12 Chee Mark S Nucleic acid sequencing using microsphere arrays
US6544732B1 (en) * 1999-05-20 2003-04-08 Illumina, Inc. Encoding and decoding of array sensors utilizing nanocrystals
US7582420B2 (en) * 2001-07-12 2009-09-01 Illumina, Inc. Multiplex nucleic acid reactions
EP1990428B1 (en) * 2000-02-07 2010-12-22 Illumina, Inc. Nucleic acid detection methods using universal priming
US20030096239A1 (en) * 2000-08-25 2003-05-22 Kevin Gunderson Probes and decoder oligonucleotides
US20020048754A1 (en) 2000-10-24 2002-04-25 Lockhart David J. Apparatus and method for processing multiple arrays of biological probes
US6648853B1 (en) * 2000-10-31 2003-11-18 Agilent Technologies Inc. Septum
US20030235520A1 (en) * 2002-06-21 2003-12-25 Shea Laurence R. Array assay devices and methods of using the same

Patent Citations (100)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3281860A (en) * 1964-11-09 1966-10-25 Dick Co Ab Ink jet nozzle
US3690836A (en) * 1966-03-01 1972-09-12 Promoveo Device for use in the study of chemical and biological reactions and method of making same
US3802966A (en) * 1969-08-22 1974-04-09 Ethyl Corp Apparatus for delivering a fluid suspension to a forming unit clear reactor power plant
US3710933A (en) * 1971-12-23 1973-01-16 Atomic Energy Commission Multisensor particle sorter
US4016855A (en) * 1974-09-04 1977-04-12 Hitachi, Ltd. Grinding method
US4121222A (en) * 1977-09-06 1978-10-17 A. B. Dick Company Drop counter ink replenishing system
US4204929A (en) * 1978-04-18 1980-05-27 University Patents, Inc. Isoelectric focusing method
US4458066A (en) * 1980-02-29 1984-07-03 University Patents, Inc. Process for preparing polynucleotides
US4500707A (en) * 1980-02-29 1985-02-19 University Patents, Inc. Nucleosides useful in the preparation of polynucleotides
US5486452A (en) * 1981-04-29 1996-01-23 Ciba-Geigy Corporation Devices and kits for immunological analysis
US4373071A (en) * 1981-04-30 1983-02-08 City Of Hope Research Institute Solid-phase synthesis of polynucleotides
US4728502A (en) * 1984-05-02 1988-03-01 Hamill Brendan J Apparatus for the chemical synthesis of oligonucleotides
US4780504A (en) * 1985-06-20 1988-10-25 Roussel Uclaf Supports useful in solid phase synthesis of oligonucleotides
US4812512A (en) * 1985-06-27 1989-03-14 Roussel Uclaf Supports and their use
US5300779A (en) * 1985-08-05 1994-04-05 Biotrack, Inc. Capillary flow device
US4963498A (en) * 1985-08-05 1990-10-16 Biotrack Capillary flow device
US5348855A (en) * 1986-03-05 1994-09-20 Miles Inc. Assay for nucleic acid sequences in an unpurified sample
US5256549A (en) * 1986-03-28 1993-10-26 Chiron Corporation Purification of synthetic oligomers
US5153319A (en) * 1986-03-31 1992-10-06 University Patents, Inc. Process for preparing polynucleotides
US5021550A (en) * 1986-10-07 1991-06-04 Thomas Jefferson University Method for preventing deletion sequences in solid phase synthesis
US4877745A (en) * 1986-11-17 1989-10-31 Abbott Laboratories Apparatus and process for reagent fluid dispensing and printing
US6270961B1 (en) * 1987-04-01 2001-08-07 Hyseq, Inc. Methods and apparatus for DNA sequencing and DNA identification
US4853335A (en) * 1987-09-28 1989-08-01 Olsen Duane A Colloidal gold particle concentration immunoassay
US5322799A (en) * 1988-02-03 1994-06-21 The State Of Oregon Acting By And Through The State Board Of Higher Education On Behalf Of Oregon State University Observation cell and mixing chamber
US5287272B1 (en) * 1988-04-08 1996-08-27 Neuromedical Systems Inc Automated cytological specimen classification system and method
US5287272A (en) * 1988-04-08 1994-02-15 Neuromedical Systems, Inc. Automated cytological specimen classification system and method
US5382511A (en) * 1988-08-02 1995-01-17 Gene Tec Corporation Method for studying nucleic acids within immobilized specimens
US5320808A (en) * 1988-08-02 1994-06-14 Abbott Laboratories Reaction cartridge and carousel for biological sample analyzer
US5281540A (en) * 1988-08-02 1994-01-25 Abbott Laboratories Test array for performing assays
US5281516A (en) * 1988-08-02 1994-01-25 Gene Tec Corporation Temperature control apparatus and method
US4992383A (en) * 1988-08-05 1991-02-12 Porton Instruments, Inc. Method for protein and peptide sequencing using derivatized glass supports
US5002889A (en) * 1988-10-21 1991-03-26 Genetic Systems Corporation Reaction well shape for a microwell tray
US5200051A (en) * 1988-11-14 1993-04-06 I-Stat Corporation Wholly microfabricated biosensors and process for the manufacture and use thereof
US5047524A (en) * 1988-12-21 1991-09-10 Applied Biosystems, Inc. Automated system for polynucleotide synthesis and purification
US5143854A (en) * 1989-06-07 1992-09-01 Affymax Technologies N.V. Large scale photolithographic solid phase synthesis of polypeptides and receptor binding screening thereof
US5800992A (en) * 1989-06-07 1998-09-01 Fodor; Stephen P.A. Method of detecting nucleic acids
US6420169B1 (en) * 1989-06-07 2002-07-16 Affymetrix, Inc. Apparatus for forming polynucleotides or polypeptides
US6955915B2 (en) * 1989-06-07 2005-10-18 Affymetrix, Inc. Apparatus comprising polymers
US5489678A (en) * 1989-06-07 1996-02-06 Affymax Technologies N.V. Photolabile nucleoside and peptide protecting groups
US5424186A (en) * 1989-06-07 1995-06-13 Affymax Technologies N.V. Very large scale immobilized polymer synthesis
US5141813A (en) * 1989-08-28 1992-08-25 Clontech Laboratories, Inc. Multifunctional controlled pore glass reagent for solid phase oligonucleotide synthesis
US5196305A (en) * 1989-09-12 1993-03-23 Eastman Kodak Company Diagnostic and amplification methods using primers having thymine at 3' end to overcome primer-target mismatch at the 3' end
US5436129A (en) * 1989-11-17 1995-07-25 Gene Tec Corp. Process for specimen handling for analysis of nucleic acids
US5451500A (en) * 1989-11-17 1995-09-19 Gene Tec Corporation Device for processing biological specimens for analysis of nucleic acids
US5346672A (en) * 1989-11-17 1994-09-13 Gene Tec Corporation Devices for containing biological specimens for thermal processing
US5204253A (en) * 1990-05-29 1993-04-20 E. I. Du Pont De Nemours And Company Method and apparatus for introducing biological substances into living cells
US5384261A (en) * 1991-11-22 1995-01-24 Affymax Technologies N.V. Very large scale immobilized polymer synthesis using mechanically directed flow paths
US5324633A (en) * 1991-11-22 1994-06-28 Affymax Technologies N.V. Method and apparatus for measuring binding affinity
US5677195A (en) * 1991-11-22 1997-10-14 Affymax Technologies N.V. Combinatorial strategies for polymer synthesis
US5567583A (en) * 1991-12-16 1996-10-22 Biotronics Corporation Methods for reducing non-specific priming in DNA detection
US5310469A (en) * 1991-12-31 1994-05-10 Abbott Laboratories Biosensor with a membrane containing biologically active material
US6103463A (en) * 1992-02-19 2000-08-15 The Public Health Research Institute Of The City Of New York, Inc. Method of sorting a mixture of nucleic acid strands on a binary array
US6096561A (en) * 1992-03-27 2000-08-01 Abbott Laboratories Scheduling operation of an automated analytical system
US5486335A (en) * 1992-05-01 1996-01-23 Trustees Of The University Of Pennsylvania Analysis based on flow restriction
US5304487A (en) * 1992-05-01 1994-04-19 Trustees Of The University Of Pennsylvania Fluid handling in mesoscale analytical devices
US5498392A (en) * 1992-05-01 1996-03-12 Trustees Of The University Of Pennsylvania Mesoscale polynucleotide amplification device and method
US5637469A (en) * 1992-05-01 1997-06-10 Trustees Of The University Of Pennsylvania Methods and apparatus for the detection of an analyte utilizing mesoscale flow systems
US5639612A (en) * 1992-07-28 1997-06-17 Hitachi Chemical Company, Ltd. Method for detecting polynucleotides with immobilized polynucleotide probes identified based on Tm
US5288514A (en) * 1992-09-14 1994-02-22 The Regents Of The University Of California Solid phase and combinatorial synthesis of benzodiazepine compounds on a solid support
US5314829A (en) * 1992-12-18 1994-05-24 California Institute Of Technology Method for imaging informational biological molecules on a semiconductor substrate
US5757666A (en) * 1993-04-23 1998-05-26 Boehringer Mannheim Gmbh System for analyzing compounds contained liquid samples
US5861242A (en) * 1993-06-25 1999-01-19 Affymetrix, Inc. Array of nucleic acid probes on biological chips for diagnosis of HIV and methods of using the same
US6284460B1 (en) * 1993-06-25 2001-09-04 Affymetrix Inc. Hybridization and sequencing of nucleic acids using base pair mismatches
US5382512A (en) * 1993-08-23 1995-01-17 Chiron Corporation Assay device with captured particle reagent
US5494124A (en) * 1993-10-08 1996-02-27 Vortexx Group, Inc. Negative pressure vortex nozzle
US5631734A (en) * 1994-02-10 1997-05-20 Affymetrix, Inc. Method and apparatus for detection of fluorescently labeled materials
US5593839A (en) * 1994-05-24 1997-01-14 Affymetrix, Inc. Computer-aided engineering system for design of sequence arrays and lithographic masks
US5538857A (en) * 1994-06-01 1996-07-23 Isolab, Inc. Assay for enzyme activity from a red blood sample using a direct microfluorometric assay
US5945334A (en) * 1994-06-08 1999-08-31 Affymetrix, Inc. Apparatus for packaging a chip
US6733977B2 (en) * 1994-06-08 2004-05-11 Affymetrix, Inc. Hybridization device and method
US6399365B2 (en) * 1994-06-08 2002-06-04 Affymetrix, Inc. Bioarray chip reaction apparatus and its manufacture
US6140044A (en) * 1994-06-08 2000-10-31 Affymetrix, Inc. Method and apparatus for packaging a probe array
US5807522A (en) * 1994-06-17 1998-09-15 The Board Of Trustees Of The Leland Stanford Junior University Methods for fabricating microarrays of biological samples
US6121048A (en) * 1994-10-18 2000-09-19 Zaffaroni; Alejandro C. Method of conducting a plurality of reactions
US5556752A (en) * 1994-10-24 1996-09-17 Affymetrix, Inc. Surface-bound, unimolecular, double-stranded DNA
US5961923A (en) * 1995-04-25 1999-10-05 Irori Matrices with memories and uses thereof
US5874219A (en) * 1995-06-07 1999-02-23 Affymetrix, Inc. Methods for concurrently processing multiple biological chip assays
US6720149B1 (en) * 1995-06-07 2004-04-13 Affymetrix, Inc. Methods for concurrently processing multiple biological chip assays
US5545531A (en) * 1995-06-07 1996-08-13 Affymax Technologies N.V. Methods for making a device for concurrently processing multiple biological chip assays
US6287850B1 (en) * 1995-06-07 2001-09-11 Affymetrix, Inc. Bioarray chip reaction apparatus and its manufacture
US6238862B1 (en) * 1995-09-18 2001-05-29 Affymetrix, Inc. Methods for testing oligonucleotide arrays
US5910288A (en) * 1997-07-10 1999-06-08 Hewlett-Packard Company Method and apparatus for mixing a thin film of fluid
US6083682A (en) * 1997-12-19 2000-07-04 Glaxo Group Limited System and method for solid-phase parallel synthesis of a combinatorial collection of compounds
US6232066B1 (en) * 1997-12-19 2001-05-15 Neogen, Inc. High throughput assay system
US6285893B1 (en) * 1998-02-09 2001-09-04 Nec Corporation Portable radio device
US6436351B1 (en) * 1998-07-15 2002-08-20 Deltagen Research Laboratories, L.L.C. Microtitre chemical reaction system
US6186659B1 (en) * 1998-08-21 2001-02-13 Agilent Technologies Inc. Apparatus and method for mixing a film of fluid
US6429027B1 (en) * 1998-12-28 2002-08-06 Illumina, Inc. Composite arrays utilizing microspheres
US6215894B1 (en) * 1999-02-26 2001-04-10 General Scanning, Incorporated Automatic imaging and analysis of microarray biochips
US6355431B1 (en) * 1999-04-20 2002-03-12 Illumina, Inc. Detection of nucleic acid amplification reactions using bead arrays
US6620584B1 (en) * 1999-05-20 2003-09-16 Illumina Combinatorial decoding of random nucleic acid arrays
US6396995B1 (en) * 1999-05-20 2002-05-28 Illumina, Inc. Method and apparatus for retaining and presenting at least one microsphere array to solutions and/or to optical imaging systems
US6399394B1 (en) * 1999-06-30 2002-06-04 Agilent Technologies, Inc. Testing multiple fluid samples with multiple biopolymer arrays
US6258593B1 (en) * 1999-06-30 2001-07-10 Agilent Technologies Inc. Apparatus for conducting chemical or biochemical reactions on a solid surface within an enclosed chamber
US6180351B1 (en) * 1999-07-22 2001-01-30 Agilent Technologies Inc. Chemical array fabrication with identifier
US6420114B1 (en) * 1999-12-06 2002-07-16 Incyte Genomics, Inc. Microarray hybridization chamber
US6905816B2 (en) * 2000-11-27 2005-06-14 Intelligent Medical Devices, Inc. Clinically intelligent diagnostic devices and methods
US6991939B2 (en) * 2001-07-19 2006-01-31 Tufts University Optical array device and methods of use thereof for screening, analysis and manipulation of particles
US6682702B2 (en) * 2001-08-24 2004-01-27 Agilent Technologies, Inc. Apparatus and method for simultaneously conducting multiple chemical reactions
US6628853B1 (en) * 2001-12-18 2003-09-30 Bookham Technology, Plc Optical amplifiers

Cited By (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7381571B2 (en) 1996-04-03 2008-06-03 Applera Corporation Device and method for analyte detection
US8067226B2 (en) 1996-04-03 2011-11-29 Applied Biosystems, Llc Device and method for multiple analyte detection
US7381569B2 (en) 1996-04-03 2008-06-03 Applera Corporation Device and method for multiple analyte detection
US20050158781A1 (en) * 1996-04-03 2005-07-21 Applera Corporation Device and method for multiple analyte detection
US20050186684A1 (en) * 1996-04-03 2005-08-25 Applera Corporation Device and method for multiple analyte detection
US20060127939A1 (en) * 1996-04-03 2006-06-15 Applera Corporation Device and method for multiple analyte detection
US20060128007A1 (en) * 1996-04-03 2006-06-15 Applera Corporation Device and method for multiple analyte detection
US20060183151A1 (en) * 1996-04-03 2006-08-17 Applera Corporation Device and method for multiple analyte detection
US20060188917A1 (en) * 1996-04-03 2006-08-24 Applera Corporation Device and method for multiple analyte detection
US20060204401A1 (en) * 1996-04-03 2006-09-14 Applera Corporation Device and method for multiple analyte detection
US20060210439A1 (en) * 1996-04-03 2006-09-21 Applera Corporation Device and method for multiple analyte detection
US7211443B2 (en) * 1996-04-03 2007-05-01 Applera Corporation Device and method for multiple analyte detection
US20070111300A1 (en) * 1996-04-03 2007-05-17 Applera Corporation Device and method for multiple analyte detection
US20070111299A1 (en) * 1996-04-03 2007-05-17 Applera Corporation Device and method for multiple analyte detection
US20070134710A1 (en) * 1996-04-03 2007-06-14 Applera Corporation Device and method for multiple analyte detection
US7235406B1 (en) 1996-04-03 2007-06-26 Applera Corporation Nucleic acid analysis device
US7244622B2 (en) 1996-04-03 2007-07-17 Applera Corporation Device and method for multiple analyte detection
US8247219B2 (en) 1996-04-03 2012-08-21 Applied Biosystems, Llc Device and method for multiple analyte detection
US8163538B2 (en) 1996-04-03 2012-04-24 Applied Biosystems, Llc Device and method for multiple analyte detection
US8119423B2 (en) 1996-04-03 2012-02-21 Applied Biosystems, Llc Device and method for multiple analyte detection
US20030152994A1 (en) * 1996-04-03 2003-08-14 Applera Corporation Device and method for multiple analyte detection
US8062883B2 (en) 1996-04-03 2011-11-22 Applied Biosystems, Llc Device and method for multiple analyte detection
US20080102461A1 (en) * 1996-04-03 2008-05-01 Applera Corporation Device and method for multiple analyte detection
US20080102462A1 (en) * 1996-04-03 2008-05-01 Applera Corporation Device and method for multiple analyte detection
US7888108B2 (en) 1996-04-03 2011-02-15 Applied Biosystems, Llc Device and method for multiple analyte detection
US7381570B2 (en) 1996-04-03 2008-06-03 Applera Corporation Device and method for multiple analyte detection
US20080108068A1 (en) * 1996-04-03 2008-05-08 Applera Corporation Device and method for multiple analyte detection
US20110003281A1 (en) * 1996-04-03 2011-01-06 Applera Corporation Device and method for multiple analyte detection
US7833711B2 (en) 1996-04-03 2010-11-16 Applied Biosystems, Llc Device and method for multiple analyte detection
US7687280B2 (en) 1996-04-03 2010-03-30 Applied Biosystems, Llc Device and method for multiple analyte detection
US20020053915A1 (en) * 2000-07-07 2002-05-09 Weaver Charles David Electrophysiology configuration suitable for high throughput screening of compounds for drug discovery
US20040225982A1 (en) * 2003-05-09 2004-11-11 Donelly Ross A. Constrained optimization with linear constraints to remove overlap among cells of an integrated circuit
US7851208B2 (en) * 2004-12-29 2010-12-14 Corning Incorporated Optical reader system and method for monitoring and correcting lateral and angular misaligments of label independent biosensors
US20070202543A1 (en) * 2004-12-29 2007-08-30 Jacques Gollier Optical reader system and method for monitoring and correcting lateral and angular misaligments of label independent biosensors
US7961323B2 (en) 2006-03-09 2011-06-14 Tessarae, Llc Microarray imaging system and associated methodology
WO2007104057A3 (en) * 2006-03-09 2008-04-24 Clark Tibbetts Microarray imaging system and associated methodology
US20070263914A1 (en) * 2006-03-09 2007-11-15 Tessarae Inc. Microarray imaging system and associated methodology
AU2007222986B2 (en) * 2006-03-09 2012-01-12 Tessarae Llc Microarray imaging system and associated methodology
WO2007131103A2 (en) * 2006-05-03 2007-11-15 Quadraspec, Inc. Direct printing of patterned hydrophobic wells
WO2007131103A3 (en) * 2006-05-03 2009-07-09 Quadraspec Inc Direct printing of patterned hydrophobic wells
WO2007140889A1 (en) * 2006-06-09 2007-12-13 Euroimmun Medizinische Labordiagnostika Ag Process for obtaining perfect macro- and microarrays by combining preselected coated solid phase fragments
US10753927B2 (en) 2006-09-22 2020-08-25 ALERE TECHNOLOGIES GmbH Methods for detecting an analyte
CN105092468A (en) * 2006-11-22 2015-11-25 科隆迪亚戈有限公司 Methods for optically detecting multiple analytes in a liquid sample with a compressible microfluidic device
US20090018035A1 (en) * 2007-07-13 2009-01-15 Samsung Electronics Co., Ltd. Packages, biochip kits and methods of packaging
US8052941B2 (en) 2007-07-13 2011-11-08 Samsung Electronics Co., Ltd. Packages, biochip kits and methods of packaging
GB2450992B (en) * 2007-07-13 2012-06-20 Samsung Electronics Co Ltd Packages, biochip kits, and methods of packaging
GB2450992A (en) * 2007-07-13 2009-01-14 Samsung Electronics Co Ltd Biochips
US20110130308A1 (en) * 2009-12-02 2011-06-02 Luckey John A Multiplexed microarray and method of fabricating thereof
US8501122B2 (en) 2009-12-08 2013-08-06 Affymetrix, Inc. Manufacturing and processing polymer arrays
US9540129B2 (en) 2010-07-26 2017-01-10 Randox Laboratories Ltd. Biochip well, sealed well assembly, cartridge therefor, and apparatus and methods for opening sealed wells
WO2012013971A1 (en) * 2010-07-26 2012-02-02 Randox Laboratories Ltd Biochip holder, sealed well assembly, apparatus and methods for opening sealed wells
US10751720B2 (en) 2010-07-26 2020-08-25 Randox Laboratories Ltd. Biochip well, sealed well assembly, cartridge therefor, and apparatus and methods for opening sealed wells
US8753873B2 (en) 2011-04-15 2014-06-17 Roche Nimblegen, Inc. Multiplexed microarray assembly and method for fabricating a multiplexed microarray

Also Published As

Publication number Publication date
US20050042628A1 (en) 2005-02-24
US6720149B1 (en) 2004-04-13
US20050123907A1 (en) 2005-06-09
US20050181403A1 (en) 2005-08-18

Similar Documents

Publication Publication Date Title
US6720149B1 (en) Methods for concurrently processing multiple biological chip assays
US5545531A (en) Methods for making a device for concurrently processing multiple biological chip assays
US20030157700A1 (en) Apparatus and methods for constructing array plates
US5843655A (en) Methods for testing oligonucleotide arrays
US8084197B2 (en) Identification of molecular sequence signatures and methods involving the same
JP4334823B2 (en) Multiplexed molecular analyzer and method
US6632605B1 (en) Hybridization assays on oligonucleotide arrays
US6329140B1 (en) Identification of molecular sequence signatures and methods involving the same
KR100991052B1 (en) Biomolecular substrate, method of testing or diagnosis with use thereof and apparatus therefor
US20040038388A1 (en) Manufacturing process for array plate assembly
JP2000512009A (en) Miniaturized cell array method and apparatus for performing cell-based screening
CA2320810A1 (en) Method of quality control in manufacturing processes
AU2005211907A1 (en) A device for analysing an interaction between target and probe molecules
JP4696782B2 (en) Sample reaction device and target molecule detection device
WO2003100098A1 (en) Analyte microdetector and methods for use

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION