US20060012879A1 - Polymeric optical film - Google Patents

Polymeric optical film Download PDF

Info

Publication number
US20060012879A1
US20060012879A1 US11/220,157 US22015705A US2006012879A1 US 20060012879 A1 US20060012879 A1 US 20060012879A1 US 22015705 A US22015705 A US 22015705A US 2006012879 A1 US2006012879 A1 US 2006012879A1
Authority
US
United States
Prior art keywords
layer
optical film
biaxially stretched
film
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/220,157
Inventor
Matthew Johnson
Richard Allen
Fred Roska
Steven Rhyner
William Merrill
Joan Strobel
Kevin Hamer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
3M Innovative Properties Co
Original Assignee
3M Innovative Properties Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 3M Innovative Properties Co filed Critical 3M Innovative Properties Co
Priority to US11/220,157 priority Critical patent/US20060012879A1/en
Publication of US20060012879A1 publication Critical patent/US20060012879A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133634Birefringent elements, e.g. for optical compensation the refractive index Nz perpendicular to the element surface being different from in-plane refractive indices Nx and Ny, e.g. biaxial or with normal optical axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/10Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
    • B29C55/12Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
    • B29C55/16Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial simultaneously
    • B29C55/165Apparatus therefor
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements

Definitions

  • Liquid crystal displays such as for example, twisted nematic (TN), single domain vertically aligned (VA), optically compensated birefringent (OCB) liquid crystal displays and the like, have inherently narrow and non-uniform viewing angle characteristics.
  • Such viewing angle characteristics can describe, at least in part, the optical performance of a display.
  • Characteristics such as contrast, color, and gray scale intensity profile can vary substantially in uncompensated displays for different viewing angles. There is a desire to modify these characteristics from those of an uncompensated display to provide a desired set of characteristics as a viewer changes positions horizontally, vertically, or both and for viewers at different horizontal and vertical positions. For example, in some applications there may be a desire to make the viewing characteristics more uniform over a range of horizontal or vertical positions.
  • the range of viewing angles that are important can depend on the application of the liquid crystal display. For example, in some applications, a broad range of horizontal positions may be desired, but a relatively narrow range of vertical positions may be sufficient. In other applications, viewing from a narrow range of horizontal or vertical angles (or both) may be desirable. Accordingly, the desired optical compensation for non-uniform viewing angle characteristics can depend on the desired range of viewing positions.
  • One viewing angle characteristic is the contrast ratio between the bright state and the dark state of the liquid crystal display.
  • the contrast ratio can be affected by a variety of factors.
  • Color shift refers to the change in the color coordinates (e.g., the color coordinates based on the CIE 1931 standard) of the light from the display as viewing angle is altered.
  • Color shift can be measured by taking the difference in the chromaticity color coordinates (e.g., ⁇ x or ⁇ y) at an angle normal to the plane containing the screen and at any non-normal viewing angle or set of viewing angles.
  • the definition of acceptable color shift is determined by the application, but can be defined as when the absolute value of ⁇ x or ⁇ y exceeds some defined value, for example, exceeds 0.05 or 0.10. For example, it can be determined whether the color shift is acceptable for a desired set of viewing angles. Because the color shift may depend upon the voltage to any pixel or set of pixels, color shift is ideally measured at one or more pixel driving voltages.
  • gray scale inversion occurs when the ratio of intensities of any two adjacent gray levels approaches a value of one, where the gray levels become indistinguishable or even invert. Typically, gray scale inversion occurs only at some viewing angles.
  • Compensators have been proposed to address these issues.
  • One concept includes a compensator film made of discotic molecules.
  • One drawback of current discotic compensators is the typical occurrence of comparatively large color shifts.
  • Other concepts include specific combinations of birefringent layers. There is a need for new compensator structures to provide improved or desired viewing angle characteristics.
  • the present invention relates to polymeric optical film useful for a variety of applications including, for example, optical compensators for displays, such as liquid crystal displays, as well as the displays and other devices containing the optical compensators.
  • an optical film includes a layer of simultaneously biaxially stretched polyolefin film that is substantially non-absorbing and non-scattering for at least one polarization state of visible light.
  • the layer has x, y, and z orthogonal indices of refraction where at least two of the orthogonal indices of refraction are not equal.
  • the layer has an in-plane retardance of 100 nm or less and an out-of-plane retardance of 50 nm or greater.
  • an optical film includes a layer of simultaneously biaxially stretched polymer film that is substantially non-absorbing and non-scattering for at least one polarization state of visible light.
  • the layer has x, y, and z orthogonal indices of refraction where at least two of the orthogonal indices of refraction are not equal.
  • the layer has an in-plane retardance of 100 nm or less and an out-of-plane retardance of 50 nm or greater.
  • the layer has a length and width of at least 0.65 meter and the in-plane and out-of-plane retardance are substantially uniform across the length and width.
  • an optical film in another embodiment, includes a layer of simultaneously biaxially stretched polymer film that is substantially non-absorbing and non-scattering for at least one polarization state of visible light.
  • the layer has x, y, and z orthogonal indices of refraction where at least two of the orthogonal indices of refraction are not equal.
  • the layer has an in-plane retardance of 100 nm or less and an out-of-plane retardance of 50 nm or greater.
  • the layer has a thickness of 5 micrometers to 200 micrometers.
  • FIG. 1 is a is a schematic illustration of a coordinate system with an optical film element
  • FIG. 2 is a top schematic view of a tenter apparatus for use to form the optical film element
  • FIG. 3 is a schematic cross-sectional view of an optical compensator stack according to the present invention.
  • FIG. 4 is a schematic cross-sectional view of an optical compensator stack according to the present invention.
  • FIG. 5 is a schematic cross-sectional view of a liquid crystal display according to the present invention.
  • FIG. 6 is a schematic cross-sectional view of a liquid crystal display according to the present invention.
  • the polymeric optical film of the present invention is believed to be applicable to a variety of applications needing polymeric optical film including, for example, optical compensators for displays, such as liquid crystal displays, as well as the displays and other devices containing the optical compensators. While the present invention is not so limited, an appreciation of various aspects of the invention will be gained through a discussion of the examples provided below.
  • a “c-plate” denotes a birefringent optical element, such as, for example, a plate or film, with a principle optical axis (often referred to as the “extraordinary axis”) substantially perpendicular to the selected surface of the optical element.
  • the principle optical axis corresponds to the axis along which the birefringent optical element has an index of refraction different from the substantially uniform index of refraction along directions normal to the principle optical axis.
  • a c-plate using the axis system illustrated in FIG.
  • n x n y ⁇ n z
  • n x , n y , and n z are the indices of refraction along the x, y, and z axes, respectively.
  • an “o-plate” denotes a birefringent optical element, such as, for example, a plate or film, having its principle optical axis tilted with respect to the surface of the optical element.
  • a-plate denotes a birefringent optical element, such as, for example, a plate or film, having its principle optical axis within the x-y plane of the optical element.
  • Positively birefringent a-plates can be fabricated using, for example, uniaxially stretched films of polymers such as, for example, polyvinyl alcohol, or uniaxially aligned films of nematic positive optical anisotropy LCP materials.
  • Negatively birefringent a-plates can be formed using uniaxially aligned films of negative optical anisotropy nematic LCP materials, including for example discotic compounds.
  • a “biaxial retarder” denotes a birefringent optical element, such as, for example, a plate or film, having different indices of refraction along all three axes (i.e., n x ⁇ n y ⁇ n z ).
  • Biaxial retarders can be fabricated, for example, by biaxially orienting plastic films. Examples of biaxial retarders are discussed in U.S. Pat. No. 5,245,456, incorporated herein by reference. Examples of suitable films include films available from Sumitomo Chemical Co. (Osaka, Japan) and Nitto Denko Co. (Osaka, Japan). In-plane retardation and out-of-plane retardation are parameters used to describe a biaxial retarder.
  • a biaxial retarder as defined herein, has an in-plane retardation of at least 3 nm for 550 nm light. Retarders with lower in-plane retardation are considered c-plates.
  • polymer will be understood to include polymers, copolymers (e.g., polymers formed using two or more different monomers), oligomers and combinations thereof, as well as polymers, oligomers, or copolymers that can be formed in a miscible blend by, for example, coextrusion or reaction, including transesterification. Both block and random copolymers are included, unless indicated otherwise.
  • polarization refers to plane polarization, circular polarization, elliptical polarization, or any other nonrandom polarization state in which the electric vector of the beam of light does not change direction randomly, but either maintains a constant orientation or varies in a systematic manner.
  • In-plane polarization the electric vector remains in a single plane, while in circular or elliptical polarization, the electric vector of the beam of light rotates in a systematic manner.
  • biaxially stretched refers to a film that has been stretched in two different directions, a first direction and a second direction, in the plane of the film.
  • spontaneous biaxially stretched refers to a film in which at least a portion of stretching in each of the two directions is performed simultaneously.
  • retardation or retardance refers to the difference between two orthogonal indices of refraction times the thickness of the optical element.
  • in-plane retardation refers to the product of the difference between two orthogonal in-plane indices of refraction times the thickness of the optical element.
  • out-of-plane retardation refers to the product of the difference of the index of refraction along the thickness direction (z direction) of the optical element minus one in-plane index of refraction times the thickness of the optical element.
  • this term refers to the product of the difference of the index of refraction along the thickness direction (z direction) of the optical element minus the average of in-plane indices of refraction times the thickness of the optical element.
  • substantially non-absorbing refers to the level of transmission of the optical element, being at least 80 percent transmissive to at least one polarization state of visible light, where the percent transmission is normalized to the intensity of the incident, optionally polarized light.
  • substantially non-scattering refers to the level of collimated or nearly collimated incident light that is transmitted through the optical element, being at least 80 percent transmissive for at least one polarization state of visible light within a cone angle of less than 30 degrees.
  • J-retarder refers to a film or sheet that is substantially non-absorbing and non-scattering for at least one polarization state of visible light, where at least two of the three orthogonal indices of refraction are unequal, and where the in-plane retardation is no more than 100 nm and the out-of plane retardation is at least 50 nm.
  • Weight percent, percent by weight, % by weight, and the like are synonyms that refer to the concentration of a substance as the weight of that substance divided by the weight of the composition and multiplied by 100.
  • FIG. 1 illustrates an axis system for use in describing the optical elements.
  • the x and y axes correspond to the width and length of the display and the z axis is typically along the thickness direction of the display. This convention will be used throughout, unless otherwise stated.
  • the x axis and y axis are defined to be parallel to a major surface 102 of the optical element 100 and may correspond to width and length directions of a square or rectangular surface.
  • the z axis is perpendicular to that major surface and is typically along the thickness direction of the optical element.
  • the optical film may include a layer of simultaneous biaxially stretched polymeric film being substantially non-absorbing and non-scattering for at least one polarization state of visible light; and having x, y, and z orthogonal indices of refraction wherein at least two of the orthogonal indices of refraction are not equal, an in-plane retardance being 100 nm or less and an out-of-plane retardance being 50 nm or greater.
  • Any polymeric material capable of being biaxially stretched and possessing the optical properties described herein are contemplated.
  • a partial listing of these polymers include, for example, polyolefin, polyacrylates, polyesters, polycarbonates, fluoropolymers and the like.
  • One or more polymers can be combined to form the polymeric optical film.
  • Polyolefin includes for example: cyclic olefin polymers such as, for example, polystyrene, norbornene and the like; polypropylene; polyethylene; polybutylene; polypentylene; and the like.
  • a specific polybutylene is poly(1-butene).
  • a specific polypentylene is poly(4-methyl-1-pentene).
  • Polyacrylate includes, for example, acrylates, methacrylates and the like.
  • specific polyacrylates include poly(methyl methacrylate), and poly(butyl methacrylate).
  • Fluoropolymer specifically includes, but is not limited to, poly(vinylidene fluoride).
  • the in-plane retardance of the polymeric optical film may be 100 nm or less or 0 nm to 100 nm.
  • the in-plane retardance of the polymeric optical film may be 20 nm or less or 0 nm to 20 nm.
  • the in-plane retardance of the polymeric optical film may be 20 nm to 50 nm.
  • the in-plane retardance of the polymeric optical film may be 50 nm to 100 nm.
  • the out-of-plane retardance of the polymeric optical film may be 50 nm or greater, up to 1000 nm.
  • the out-of-plane retardance of the polymeric optical film may be 75 nm or greater or 75 nm to 1000 nm.
  • the out-of-plane retardance of the polymeric optical film may be 100 nm or greater or 100 nm to 1000 nm.
  • the out-of-plane retardance of the polymeric optical film may be 150 nm or greater or 150 nm to 1000 nm.
  • the polymeric optical film can have a thickness (z direction) of 5 micrometers or greater.
  • the polymeric optical film can have a thickness (z direction) of 5 micrometers to 200 micrometers or 5 micrometers to 100 micrometers.
  • the polymeric optical film can have a thickness (z direction) of 7 micrometers to 75 micrometers.
  • the polymeric optical film can have a thickness (z direction) of 10 micrometers to 50 micrometers.
  • the polymeric optical film can have a length and width of at least 0.65 meter.
  • the polymeric optical film can have a length and width of at least 1.3 meters.
  • the polymeric optical film can have a length and width of at least 1.5 meters.
  • the in-plane and out-of-plane retardance is substantially uniform across the length and width of the polymeric optical film.
  • the phrase “retardance is substantially uniform across the length and width of the polymeric optical film” refers to retardance (both in-plane and out-of-plane) changing less than 4 nm/cm, or 2 nm/cm or 1 nm/cm along the width and/or length and width of the layer of biaxially stretched polymer film.
  • One quantitative measure of uniformity is defined as, ⁇ in max - ⁇ in min w
  • Stabilizers include, for example, anti-oxidants, anti-ozone agents, anti-static agents, UV absorbers, and light stabilizers.
  • Processing aids include, for example, lubricants, extrusion aids, blocking agents, and electrostatic pinning aids.
  • Crystallization modifiers include, for example, clarifying agents and nucleating agents. Crystallization modifiers aid in reducing “haze” in the biaxially stretched polymeric optical film. Crystallization modifiers can be present in any amount effective to reduce “haze”, such as, for example, 10 ppm to 500000 ppm or 100 ppm to 400000 pm or 100 ppm to 350000 ppm or 250 ppm to 300000 ppm.
  • the range or solid cone of desired viewing angles can be manipulated depending upon the exact nature of the application. For example, in some embodiments, it is desirable to have a large solid angle of acceptable viewing. In other embodiments, it is desirable to strictly control the range of acceptable viewing (for example, for privacy purposes) to a narrower range of angles than is normally associated with an uncompensated display.
  • the polymeric optical film of the invention may replace cellulose triacetate (TAC) layers now present in many optical bodies.
  • TAC may be obtained commercially from Fuji Photo (Japan).
  • TAC films are available in a range of thickness from about 40 micrometers to over 120 micrometers.
  • TAC is made with a solvent casting process and exhibits a nearly isotropic in-plane retardance.
  • TAC exhibits an out-of-plane retardance from 30 nm to 120 nm.
  • the simultaneous biaxially stretched polymeric optical film of the invention may provide a wide range of properties that are different from TAC, such as, for example: lower dispersion of the refractive index; higher levels of out-of-plane retardation for any given thickness of the polymeric optical film of the invention verses TAC; improved moisture barrier resistance; lower manufacturing costs; environmentally friendly manufacturing; ability to easily customize the optical properties from substantially a c-plate to that of a biaxial retarder.
  • the polymeric optical film of the invention may be thinner than TAC films with a similar or even smaller negative c-plate retardance, the overall thickness of the novel integrated stack of films, described below, can be thinner.
  • New techniques for manufacturing polymeric optical film have been developed. These techniques include stretching a polymer film in a first direction and stretching the polymer film in a second direction different than the first direction forming a biaxially stretched polymeric film. At least a portion of the stretching in the second direction occurs simultaneously with the stretching in the first direction. This technique forms a polymeric optical film with the properties and attributes described above.
  • Simultaneously biaxially stretched polymeric optical film still has some of the problems associated with sequentially biaxially stretched polymeric optical film in addition to issues unique to simultaneously biaxially stretched polymeric optical film. Simultaneously biaxially stretched polymeric optical film does not produce polymeric optical film with “patchy” optical properties and attributes. In addition, by employing a simultaneously biaxially stretching process, improvements in film dimensional stability and reduced thickness variability is realized over a sequential biaxial stretching process. The process described herein produces polymeric optical films with the properties and attributes of the present invention.
  • FIG. 2 illustrates a top schematic view of a tenter apparatus for carrying out the process of the invention.
  • the tenter may be of the type disclosed in U.S. Pat. No. 5,051,225.
  • Tenter apparatus 10 includes a first side rail 12 and a second side rail 14 on which the driven clips 22 and idler clips 24 ride.
  • the driven clips 22 are illustrated schematically as boxes marked “X” while the idler clips 24 are illustrated schematically as open boxes.
  • One set of clips 22 , 24 travels in a closed loop about the first rail 12 in the direction indicated by the arrows at the ends of the rail.
  • another set of clips 22 , 24 travels in a closed loop about the second rail 14 in the direction indicated by the arrows at the ends of the rail.
  • the clips 22 , 24 hold the film edges and propel film 26 in the direction shown by the arrow at the center of the film.
  • the clips 22 , 24 release the film 26 .
  • the clips then return along the outside of the rails to the entrance of the tenter to grip the cast web to propel it through the tenter. (For clarity of illustration, the clips returning to the entrance on the outside of the rails have been omitted from FIG. 2 .)
  • the stretched film 26 exiting the tenter may be wound up for later processing or use, or may be processed further.
  • the polymer can be cast into a sheet form to prepare a web suitable for stretching to arrive at the optical film described above.
  • the polymer may be cast by feeding polymer resin into the feed hopper of a single screw, twin screw, cascade, or other extrusion system having an extruder barrel with temperatures adjusted to produce a stable homogeneous melt.
  • the polymer can be extruded through a sheet die onto a rotating cooled metal casting wheel.
  • the web is then biaxially stretched according to the process described herein.
  • the extruded web may be quenched, reheated and fed to the clips 22 , 24 on the first and second rails 12 , 14 to be propelled through the tenter apparatus 10 .
  • the optional heating and the gripping by the clips 22 , 24 may occur in any order or simultaneously.
  • the rails 12 , 14 pass through three sections: preheat section 16 ; stretch section 18 ; and post-stretch treatment section 20 .
  • the preheat section 16 the film is heated to within an appropriate temperature range to allow a significant amount of stretching without breaking.
  • the three functional sections 16 , 18 , and 20 may be broken down further into zones.
  • the preheat section 16 includes zones Z 1 , Z 2 , and Z 3
  • the stretch section 18 includes zones Z 4 , Z 5 , and Z 6
  • the post-stretch section 20 may include zones Z 7 , Z 8 , and Z 9 . It is understood that the preheat, stretch, and post-treatment sections may each include fewer or more zones than illustrated.
  • the TD (Transverse Direction) component of stretch or the MD (Machine Direction) component of stretch may be performed in the same or in different zones.
  • MD and TD stretch each may occur in any one, two or three of the zones Z 4 , Z 5 , and Z 6 .
  • one component of stretch may occur before the other, or may begin before the other and overlap the other.
  • either component of stretch may occur in more than one discrete step.
  • MD stretch may occur in Z 4 and Z 6 without any MD stretch occurring in Z 5 .
  • stretching in the MD and/or TD may also occur in the preheat section or post-stretch treatment section.
  • stretching may begin in zone Z 3 . Stretching may continue into zone Z 7 or beyond. Stretching may resume in any of the zones after zones Z 3 , Z 5 , or Z 6 .
  • the amount of stretching in the MD may be different than the amount of stretching in the TD.
  • the amount of stretching in the MD may be up to 10% or 25% or 50% greater than the amount of stretching in the TD.
  • the amount of stretching in the TD may be up to 10% or 25% or 50% greater than the amount of stretching in the MD.
  • the film may be propelled through the post-treatment section 20 .
  • the film 26 may be maintained at a desired temperature while no significant stretching occurs.
  • This treatment can be referred to as a heat set or anneal, and may be performed to improve the properties of the final film, such as dimensional stability.
  • a small amount of relaxation in either or both the TD and MD may occur in the post-treatment section 20 . Relaxation here refers to a convergence of the rails in the TD and/or a convergence of the driven clips on each rail in the MD, or simply the reduction of stress on the film in the TD and/or MD.
  • Biaxial stretching of films is sensitive to many process conditions, including but not limited to the composition of the polymer or resin, film casting and quenching parameters, the time-temperature history while preheating the film prior to stretching, the stretching temperature used, the stretch profile used, and the rates of stretching. With the benefits of the teaching herein, one of skill in the art may adjust any or all of these parameters and obtain films having the desired optical properties and characteristics.
  • the cooling of the biaxially stretched optical film may begin before or after the onset of stretching in the stretch section 18 .
  • the cooling can be “zone” cooling which refers to cooling substantially the entire width or TD of the web, from the edge portions 28 of the film through the center portion 30 of the film. Surprisingly, zone cooling immediately after the stretching zone has been found to improve uniformity of in-plane retardance of polymeric optical films when applied in an effective amount. Cooling may be provided by forced air convection.
  • TD cross-directional
  • ⁇ in max - ⁇ in min w is reduced.
  • the ability to actively control the cross-directional (TD) variation of in-plane retardation is useful when considering the practical aspects of manufacturing polymeric optical films to a sizable width (i.e. 0.65 meter or 1.3 meter or 1.5 meter) and when considering advantages gained in economy of scale and yield.
  • the Examples below illustrate a variety of processing parameters to achieve the polymeric optical film of the present invention.
  • Optical compensators can be formed using a variety of different optical elements. Among these optical elements are o-plates, c-plates, a-plates, biaxial retarders, twisted o-plates, twisted a-plates, and other retarders. Information regarding o-plates, c-plates, and a-plates can be found, for example, in Yeh et al., Optics of Liquid Crystal Displays , John Wiley & Sons, New York (1999), U.S. Pat. Nos. 5,504,603, 5,557,434, 5,612,801, 5,619,352, 5,638,197, 5,986,733, and 5,986,734, and PCT Patent Applications Publication Nos. WO 01/20393 and WO 01/20394, all of which are incorporated herein by reference.
  • optical elements are configured in combinations as described below to form optical bodies or optical compensator stacks.
  • Optical bodies or optical compensator stacks can be formed by disposing a polarizer layer or a cholesteric liquid crystal material on the novel polymeric optical film described above.
  • FIG. 3 shows an optical compensator stack 300 that includes a J-retarder 310 disposed on a first liquid crystal layer 320 .
  • the J-retarder 310 includes a layer of simultaneous biaxially stretched polymeric film being substantially non-absorbing and non-scattering for at least one polarization state of visible light.
  • the J-retarder 310 has x, y, and z orthogonal indices of refraction where at least two of the orthogonal indices of refraction are not equal, an in-plane retardance being 100 nm or less and an out-of-plane retardance being 50 nm or greater.
  • the first liquid crystal layer 320 includes liquid crystal material.
  • the first liquid crystal layer 320 may be an o-plate, an a-plate or the like.
  • FIG. 3 shows that the optical compensator stack 300 may include a second liquid crystal layer 325 disposed on the J-retarder 310 or the J-retarder 310 may be disposed between the first liquid crystal layer 320 and the second liquid crystal layer 325 .
  • the second liquid crystal layer 325 may be an o-plate, an a-plate or the like.
  • the optical compensator stack 300 may further include a polarizer layer 330 disposed on the first liquid crystal layer 320 or the first liquid crystal layer 320 may be disposed between the polarizer layer 330 and the J-retarder 310 .
  • the polarizer layer 330 may be an absorbing polarizer or a reflecting polarizer.
  • a reflecting polarizer layer 340 can be disposed on the absorbing polarizing layer 330 or the absorbing polarizing layer 330 can be disposed between the reflecting polarizing layer 340 and the first liquid crystal layer 320 .
  • FIG. 4 shows an optical compensator stack 400 that includes a J-retarder 410 disposed on a polarizer layer 430 .
  • the J-retarder 410 includes a layer of simultaneous biaxially stretched polymeric film being substantially non-absorbing and non-scattering for at least one polarization state of visible light.
  • the J-retarder 410 has x, y, and z orthogonal indices of refraction where at least two of the orthogonal indices of refraction are not equal, an in-plane retardance being 100 nm or less and an out-of-plane retardance being 50 nm or greater.
  • the optical compensator stack 400 may further include a second polarizer layer 440 disposed on the first polarizing layer 430 or the first polarizing layer 430 can be disposed between the second polarizing layer 440 and the J-retarder 410 .
  • the polarizer layer 430 may be an absorbing polarizer or a reflecting polarizer. If the first polarizing layer 430 is an absorbing polarizer, then the second polarizing layer 440 can be a reflecting polarizer layer.
  • Additional layers can be added to or between the optical compensation stacks layers described above. Additional optional layer include, for example, alignment layers, o-plates, a-plates and/or c-plates and the like.
  • One or more optical compensation stacks can be laminated to a first major face and a second major face of a LCD panel in a manner similar to that which conventional dichroic polarizers are laminated.
  • the optical compensation stacks described above provide a wider range of retarder, for example, a biaxial retarder or c-plate, birefringence can be fabricated to make an optical compensation stack without dramatically increasing the thickness of the polarizer.
  • FIG. 5 illustrates a schematic cross-sectional view of one illustrative display system 500 including a light modulator 550 disposed on an optical compensator stack 501 that includes a J-retarder 510 disposed on a first liquid crystal layer 520 .
  • the J-retarder 510 includes a layer of simultaneous biaxially stretched polymeric film being substantially non-absorbing and non-scattering for at least one polarization state of visible light.
  • the J-retarder 510 has x, y, and z orthogonal indices of refraction where at least two of the orthogonal indices of refraction are not equal, an in-plane retardance being 100 nm or less and an out-of-plane retardance being 50 nm or greater.
  • the first liquid crystal layer 520 includes liquid crystal material.
  • the first liquid crystal layer 520 may be an o-plate, an a-plate and the like.
  • the optical compensator stack 501 may include a second liquid crystal layer 525 disposed on the J-retarder 510 or the J-retarder 510 can be disposed between the second liquid crystal layer 525 and the first liquid crystal layer 520 .
  • the second liquid crystal layer 525 may be an o-plate, an a-plate or the like.
  • the optical compensator stack 501 may further include a polarizer layer 530 disposed on the first liquid crystal layer 520 or the first liquid crystal layer 520 can be disposed between the polarizer layer 530 and the J-retarder 510 .
  • the polarizer layer 530 may be an absorbing polarizer or a reflecting polarizer.
  • a reflecting polarizer layer 540 can be disposed on the polarizing layer 530 or the polarizing layer 530 can be disposed between the reflecting polarizing layer 540 and the first liquid crystal layer 520 .
  • FIG. 6 illustrates a schematic cross-sectional view of one illustrative display system 600 including a light modulator 650 disposed on an optical compensator stack 601 that includes a J-retarder 610 disposed on a polarizer layer 630 .
  • the J-retarder 610 includes a layer of simultaneous biaxially stretched polymer film being substantially non-absorbing and non-scattering for at least one polarization state of visible light.
  • the J-retarder 610 has x, y, and z orthogonal indices of refraction where at least two of the orthogonal indices of refraction are not equal, an in-plane retardance being 100 nm or less and an out-of-plane retardance being 50 nm or greater.
  • the optical compensator stack 601 may further include a second polarizer layer 640 disposed on the first polarizing layer 630 or the first polarizing layer 630 can be disposed between the second polarizer layer 640 and the J-retarder 610 .
  • a reflecting polarizer layer 640 can be disposed on the polarizing layer 630 or the first polarizing layer 630 can be disposed between the second polarizing layer 640 and the J-retarder 610 .
  • the polarizer layer 630 may be an absorbing polarizer or a reflecting polarizer. If the first polarizing layer 630 is an absorbing polarizer, then the second polarizing layer 640 can be a reflecting polarizer layer.
  • the light modulator 550 , 650 that supplies the light used to view the display system 500 , 600 includes, for example, a light source and a light guide, although other lighting systems can be used.
  • a light source and a light guide although other lighting systems can be used.
  • the light modulator 550 , 650 depicted in FIG. 5 and FIG. 6 has a generally rectangular cross-section
  • light modulators 550 , 650 can use light guides with any suitable shape.
  • the light guide can be wedge-shaped, channeled, a pseudo-wedge guide, etc.
  • the primary consideration is that the light guide be capable of receiving light from the light source and emitting that light.
  • the light can include back reflectors (e.g., optional reflector), extraction mechanisms and other components to achieve the desired functions.
  • Additional films may also include touch components.
  • films may include diffusers, protective shields, EMI shielding, anti-reflection films, prismatic structured films, such as BEF sold by 3M, or reflective polarizers, such as DBEF sold by 3M or Nipocs sold by Nitto Denko.
  • BEF sold by 3M
  • reflective polarizers such as DBEF sold by 3M or Nipocs sold by Nitto Denko.
  • additional retarder films are required, such as a quarter wave plate and the like.
  • FIG. 5 and FIG. 6 illustrate one optical compensation stack disposed on a light modulator, however as stated above, two optical compensation stacks can be laminated to a first major face and a second major face of a LCD panel in a manner similar to that which conventional dichroic polarizers are laminated.
  • an LCD panel may be disposed between similar or different optical compensation stacks as described above.
  • optical films improved the adhesion of these films to other optical films normally used in LCD's.
  • Surface treatments include, for example, corona, flame, or plasma. Gases used in these surface treatments included oxygen, nitrogen, noble gases (such as argon and helium), chlorine, ammonia, methane, propane, and butane. Coating (e.g., chlorinated polyolefin, i.e., PVDC), chemical etching, and hydrolysis treatments can also be used to enhance the adhesive properties of the optical films.
  • Liquid crystal displays utilize a variety of optical films in the stack of layers comprising the display. Two examples will be provided to help explain the nature of the optical films used in displays, and how surface treatment of these films improves performance and handling.
  • a polarizer comprises an oriented PVA film, which, at least in some embodiments, is stained with iodine to create the dichroism required to effectively polarize light.
  • the oriented and stained PVA is protected from the environment by encapsulating it between two barrier films.
  • barrier films are often cellulose triacetate (TAC), and the material used to adhere the TAC films to the two major faces of the oriented and stained PVA is a solution including water and PVA, optionally containing methanol. Because TAC film does not wet aqueous solutions, typically the TAC film is treated with a caustic solution to hydrolyze the surfaces prior to the lamination process.
  • compensation films useful in improving the viewing angle characteristics of liquid crystal displays include a number of different layers, such as a substrate, an alignment layer, an LCP layer, a polarizer (optionally with encapsulating layers), optional primer coatings and adhesives.
  • TAC films are often used both as the encapsulating layers for the oriented and stained PVA and as the substrate for the alignment layer.
  • TAC films are often hydrolyzed in order to provide an adequate level of adhesion. A certain level of adhesion is required to assure that, should adhesive failure occur, it does so at the adhesive:glass interface, thus avoiding expensive and tedious removal of films during the optional rework process.
  • the present invention documents improved adhesion of optical films described herein without complex and potentially expensive primer coatings or hydrolysis treatments. It was found that a variety of surface treatments for a range of optical films improved the adhesion of said films. Novel surface treatments include, for example, corona, flame, or plasma. Gases used in these surface treatments included oxygen, nitrogen, noble gases (such as argon and helium), chlorine, ammonia, methane, propane, and butane.
  • the polymeric optical film described herein can be used with a variety of other components and films that enhance or provide other properties to a liquid crystal display.
  • Such components and films include, for example, brightness enhancement films, retardation plates including quarter-wave plates and films, multilayer or continuous/disperse phase reflective polarizers, metallized back reflectors, prismatic back reflectors, diffusely reflecting back reflectors, multilayer dielectric back reflectors, and holographic back reflectors.
  • This example illustrates a method for making simultaneously biaxially oriented polypropylene film with equal biaxial orientation.
  • a homopolymer polypropylene (Fina 3376, commercially available from Atofina, Deer Park, Tex.) was melt extruded and cast using conventional melt extrusion and casting equipment. The film was cast a thickness of 2250 micrometers. The film was preheated at 178 degrees Celsius with a fan speed setting of 80%. It was simultaneously oriented 7.0 times in the MD and 7.0 times in the TD at a temperature of 160 degrees Celsius. Following orientation, the film was cooled to a temperature of 135 degrees Celsius. The final film thickness was 25 micrometers.
  • the transmission between crossed polarizers was measured using a Perkin Elmer Lambda 900 spectrophotometer, the transmission reading was 0.015%.
  • a piece of the film was then juxtaposed to the analyzer, rotating the piece of film until the transmission was a minimum.
  • the minimum transmission with the sample in place was 0.15%.
  • depolarization the minimum transmission of a sample film between crossed polarizers.
  • the polarizer was then rotated by 90 degrees at align its transmission axis parallel to that of the analyzer.
  • the ratio of the intensity of the parallel polarizers to the intensity of crossed polarizers henceforth known as the contrast ratio (CR), was 500:1.
  • Shrinkage values in both the MD and TD were measured by suspending a film in an oven at 85 degrees Celsius for 1000 hours.
  • the results for Example A were 3% in the MD and 1% in the TD.
  • Creep resistance for both the TD and MD was measured at 100 degrees Celsius for 1 minute under a load of 1 lb/linear inch (180 gm/linear cm). The MD and TD creep were both 3.6%.
  • Example A had an
  • Example 1 illustrates a process for making an unbalanced simultaneously biaxially oriented polypropylene film with unequal biaxial orientation that shows improved thermal stability and a lower ⁇ in .
  • a film was made in a manner similar to that described in Example A, with the exception that the cast web was 1000 micrometers thick. The final film thickness was 15 micrometers.
  • the temperatures in various sections of the tenter along with the MD and TD draw ratios are listed in Table 1 below.
  • Example 1 Other properties of Example 1 are shown in Table 2. TABLE 2 ⁇ in max - ⁇ in min w Depolarization % Shrink % creep resistance
  • Examples 2 and 3 were made in a manner similar to Example 1 with the exception of those process conditions cited in Table 1.
  • the final film thickness for both Examples was 16 micrometers.
  • Examples 2 and 3 demonstrate that tenter temperatures impacts ⁇ in max - ⁇ in min w and depolarization. Examples 2 and 3 also exhibit a higher out-of-plane retardance and significantly lower in-plane retardance.
  • Example 4 illustrates the effect of adding a clarifying agent. This example was made in a manner similar to Example 3, with the exception that resin containing a clarifying agent or nucleating agent, Atofina 3289MZ was added at a concentration of 25%. The resulting concentration of clarifying or nucleating agent for Example 4 was 1000 ppm.
  • Example 5 illustrates the effect of reducing temperature in the preheat section of the tenter. This example was made in a manner similar to Example 3, with the exception that the preheat temperature was decreased by reducing the fan speed to 55%. Example 5 exhibited a reduced depolarization to 0.03% from 0.05% in Example 3.
  • Example 6 illustrates a means to improve creep resistance. This example was made in a manner similar to Example 1, with the exception that the cooling and annealing temperature were slightly reduced and the orientation was unbalanced. An additional process step was added to Example 6 whereby the film was orientated in the MD by an additional 5% in the post-stretch zone. Example 6 exhibited a 50% reduction in the MD creep resistance relative to Example A.
  • Examples 7-16 describe improved adhesion of optical films using surface treatment of optical films.
  • Surface treatment may include, for example, corona, flame, and/or plasma. Gases used for these surface treatments include oxygen nitrogen, noble gases, chlorine, ammonia, methane, propane, and butane.
  • the use of coatings, chemical etching, and hydrolysis treatments may also be used to enhance the adhesive properties of the optical films.
  • Example 7 is a 16 micrometer polypropylene film was made in a manner similar to Example 3 and treated using a variety of gaseous surface chemistries:
  • Example 8 describes a film using alternate surface treatment chemistries. In a manner similar to Example 7, a 16 micrometer film was treated with different chemistries. Examples 8(a) and 8(b) are described as atmospheric-pressure plasma treatment performed using the Plasma3-brand hardware developed by Enercon Industries of Milwaukee. Example 8(c) uses a standard corona type treatment with a different chemistry.
  • Example 9 describes surface-treated film with LCP coatings.
  • Example films 7a, 7b, 7c, and 7d were coated with Staralign 2110 (available from Vantico AG, Basel, Switzerland) using MEK as the solvent to form Examples 9a, 9b, 9c and 9d.
  • the thickness of the dried Staralign layer was 50 nm.
  • the Staralign material was then exposed to polarized UV light using an OptoAlign (available from Elsicon, Inc., Newark, Del.) to provide a dose of 15 mJ/cm 2 with an incidence angle of 45 degrees.
  • OptoAlign available from Elsicon, Inc., Newark, Del.
  • the Staralign coated films were then scored with razors prior to laminating with an adhesive tape, which was subsequently removed.
  • the Adhesion Tape Test was performed consistent with ASTM D3359. Where poor adhesion of the Staralign coating to the polypropylene film may exist, the tape removes the alignment material. The subsequently coated liquid crystal polymer layer would exhibit random alignment.
  • the samples were then coated with a 18 weight percent solids mixture in MEK comprising Paliocolor LC242 (henceforth referred to simply as LCP and available from BASF AG, Ludwigshafen, Germany) with 1.26 weight percent Darocur 1173 (available from Ciba, Basel, Switzerland).
  • the coating was then dried at 80 degrees Celsius and cured with a UV lamp at 100 percent power in an anaerobic atmosphere.
  • the coated samples were viewed under crossed polarizers and evaluated specifically for regions where the Adhesion Tape Test removed alignment material. In the order of decreasing quality, the relative performance of the surface treatments was: 9 c , 9 b , and 9 a .
  • the control film (Example film 9d) exhibited the worst performance of any of the substrates.
  • Example 10 describes corona-treated polypropylene film with LCP coatings.
  • Example films 8a, 8b, and 8c were coated with Staralign 2110 and photo-aligned and subsequently coated with LCP in a manner similar to Example 9 to form Examples 10a, 10b, and 10c, respectively.
  • the peel force between polypropylene film and LCP for Examples 10a, 10b and 10c were each around 50 oz/inch (560 g/cm) as tested in a manner consistent with ASTM D3330.
  • Example 11 describes laminates of surface treated polypropylene film and oriented PVA.
  • Surface treated films Examples 7a, 7b, 7c, and 7d were laminated to an oriented and iodine stained PVA film to form Examples 11a, 11b, 11c, and 11d, respectively.
  • the oriented and stained PVA actually comprised two films, the PVA and a hydrolyzed TAC layer adhered using a solution comprising 66.5%/27.9%/5.6% MeOH/water/AIRVOL PVA Grade 205 (available from Air Products and Chemicals Inc., Allentown, Pa., USA).
  • the designation, “oriented and stained PVA,” is intended to help clarify the major face to which additional laminations are performed.
  • the adhesive used to laminate Examples 7a, 7b, 7 c , and 7d to the oriented and stained PVA comprised a solution containing 66.5%/27.9%/5.6% MeOH/water/AIRVOL PVA Grade 205. Following lamination, all samples were autoclaved at 60 degrees Celsius for 1 hour at 1 atmosphere of pressure in an air atmosphere.
  • the laminate films were then environmentally aged at 65 degrees Celsius/90% RH, and the peel forces were tested in a manner consistent with ASTM D3330.
  • the peel forces were: ⁇ 0.4 oz/inch (2.9 g/cm) for Example film 11d, 15 oz/inch (170 g/cm) for Example film 11a, 20 oz/inch (225 g/cm) for Example film 11b, and 22 oz/inch (250 g/cm) for Example film 11c.
  • Example 12 describes laminates of surface treated polypropylene and oriented PVA.
  • Surface treated films Examples 8a, 8b, 8c, and 8d were laminated to an oriented and iodine stained PVA film in a manner similar to Example 11. Peel forces for all Example 12 films were found to be similar to Example film 11c.
  • Example 13 describes surface treated polypropylene:oriented PVA laminated to glass.
  • the opposite major face comprising polypropylene film of Example film 11c was N 2 corona treated (1.0 J/cm 2 ).
  • the resultant surface treated film, designed 13a was then laminated to Soken 2263, a transfer optical adhesive (available from Soken Chemical & Engineering Co., Ltd, Japan), to form Example film 13b, which was then adhered to a piece of glass to form Example film 13c.
  • the peel force of the Soken 2263 adhesive/glass interface of Example film 13c was measured to be 22 oz/inch (250 g/cm).
  • Example 14 describes corona treatment of LCP coated polypropylene.
  • the major face of Example film 9c comprising LCP was surface treated to form Example films 14a, 14b, and 14c.
  • the various surface treatments were:
  • Example 15 describes corona treated “LCP coated polypropylene” laminated to PVA.
  • Example films 14 were laminated to oriented and iodine stained PVA in a manner similar to that described in Example 11 to form Example films 15a, 15b, 15c, and 15d. Peel forces were measured. The results were ⁇ 0.9 oz/inch (9.8 g/cm) of width for Example film 15d and 19 oz/inch (220 g/cm) of width for Example films 15a, 15b, and 15c.
  • Example 16 describes “corona treated LCP coated polypropylene”: PVA laminate adhered to glass.
  • Example films 15a, 15b, and 15c was then laminated to glass using Soken 2263 adhesive, in a manner similar to that described in Example 13.
  • the peel force of adhesive/glass interface was, in all cases, greater than the polypropylene/PVA interface.
  • optical films such as DBEF (available from 3M, St. Paul, Minn. USA) and Nipocs (available from Nitto Denko, Japan) can be similarly surface treated and adhered to oriented and stained PVA.
  • DBEF available from 3M, St. Paul, Minn. USA
  • Nipocs available from Nitto Denko, Japan

Abstract

An optical film includes a layer of simultaneously biaxially stretched polyolefin film that is substantially non-absorbing and non-scattering for at least one polarization state of visible light. The layer has x, y, and z orthogonal indices of refraction where at least two of the orthogonal indices of refraction are not equal. The layer has an in-plane retardance of 100 nm or less and an out-of-plane retardance of 50 nm or greater.

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • This application is a continuation-in-part of U.S. patent application Ser. No. 10/365,250 filed Feb. 12, 2003, which is incorporated by reference herein.
  • BACKGROUND OF THE INVENTION
  • Liquid crystal displays, such as for example, twisted nematic (TN), single domain vertically aligned (VA), optically compensated birefringent (OCB) liquid crystal displays and the like, have inherently narrow and non-uniform viewing angle characteristics. Such viewing angle characteristics can describe, at least in part, the optical performance of a display. Characteristics such as contrast, color, and gray scale intensity profile can vary substantially in uncompensated displays for different viewing angles. There is a desire to modify these characteristics from those of an uncompensated display to provide a desired set of characteristics as a viewer changes positions horizontally, vertically, or both and for viewers at different horizontal and vertical positions. For example, in some applications there may be a desire to make the viewing characteristics more uniform over a range of horizontal or vertical positions.
  • The range of viewing angles that are important can depend on the application of the liquid crystal display. For example, in some applications, a broad range of horizontal positions may be desired, but a relatively narrow range of vertical positions may be sufficient. In other applications, viewing from a narrow range of horizontal or vertical angles (or both) may be desirable. Accordingly, the desired optical compensation for non-uniform viewing angle characteristics can depend on the desired range of viewing positions.
  • One viewing angle characteristic is the contrast ratio between the bright state and the dark state of the liquid crystal display. The contrast ratio can be affected by a variety of factors.
  • Another viewing angle characteristic is the color shift of the display with changes in viewing angle. Color shift refers to the change in the color coordinates (e.g., the color coordinates based on the CIE 1931 standard) of the light from the display as viewing angle is altered. Color shift can be measured by taking the difference in the chromaticity color coordinates (e.g., Δx or Δy) at an angle normal to the plane containing the screen and at any non-normal viewing angle or set of viewing angles. The definition of acceptable color shift is determined by the application, but can be defined as when the absolute value of Δx or Δy exceeds some defined value, for example, exceeds 0.05 or 0.10. For example, it can be determined whether the color shift is acceptable for a desired set of viewing angles. Because the color shift may depend upon the voltage to any pixel or set of pixels, color shift is ideally measured at one or more pixel driving voltages.
  • Yet another viewing angle characteristic that can be observed is substantial non-uniform behavior of gray scale changes and even the occurrence of gray scale inversion. The non-uniform behavior occurs when the angular dependent transmission of the liquid crystal layer does not monotonically follow the voltage applied to the layer. Gray scale inversion occurs when the ratio of intensities of any two adjacent gray levels approaches a value of one, where the gray levels become indistinguishable or even invert. Typically, gray scale inversion occurs only at some viewing angles.
  • Compensators have been proposed to address these issues. One concept includes a compensator film made of discotic molecules. One drawback of current discotic compensators is the typical occurrence of comparatively large color shifts. Other concepts include specific combinations of birefringent layers. There is a need for new compensator structures to provide improved or desired viewing angle characteristics.
  • SUMMARY OF THE INVENTION
  • Generally, the present invention relates to polymeric optical film useful for a variety of applications including, for example, optical compensators for displays, such as liquid crystal displays, as well as the displays and other devices containing the optical compensators.
  • In one embodiment, an optical film includes a layer of simultaneously biaxially stretched polyolefin film that is substantially non-absorbing and non-scattering for at least one polarization state of visible light. The layer has x, y, and z orthogonal indices of refraction where at least two of the orthogonal indices of refraction are not equal. The layer has an in-plane retardance of 100 nm or less and an out-of-plane retardance of 50 nm or greater.
  • In a further embodiment, an optical film includes a layer of simultaneously biaxially stretched polymer film that is substantially non-absorbing and non-scattering for at least one polarization state of visible light. The layer has x, y, and z orthogonal indices of refraction where at least two of the orthogonal indices of refraction are not equal. The layer has an in-plane retardance of 100 nm or less and an out-of-plane retardance of 50 nm or greater. The layer has a length and width of at least 0.65 meter and the in-plane and out-of-plane retardance are substantially uniform across the length and width.
  • In another embodiment, an optical film includes a layer of simultaneously biaxially stretched polymer film that is substantially non-absorbing and non-scattering for at least one polarization state of visible light. The layer has x, y, and z orthogonal indices of refraction where at least two of the orthogonal indices of refraction are not equal. The layer has an in-plane retardance of 100 nm or less and an out-of-plane retardance of 50 nm or greater. The layer has a thickness of 5 micrometers to 200 micrometers.
  • The above summary of the present invention is not intended to describe each disclosed embodiment or every implementation of the present invention. The Figures, Detailed Description and Examples which follow more particularly exemplify these embodiments.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The invention may be more completely understood in consideration of the following detailed description of various embodiments of the invention in connection with the accompanying drawings, in which:
  • FIG. 1 is a is a schematic illustration of a coordinate system with an optical film element;
  • FIG. 2 is a top schematic view of a tenter apparatus for use to form the optical film element;
  • FIG. 3 is a schematic cross-sectional view of an optical compensator stack according to the present invention;
  • FIG. 4 is a schematic cross-sectional view of an optical compensator stack according to the present invention;
  • FIG. 5 is a schematic cross-sectional view of a liquid crystal display according to the present invention; and
  • FIG. 6 is a schematic cross-sectional view of a liquid crystal display according to the present invention.
  • While the invention is amenable to various modifications and alternative forms, specifics thereof have been shown by way of example in the drawings and will be described in detail. It should be understood, however, that the intention is not to limit the invention to the particular embodiments described. On the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention.
  • DETAILED DESCRIPTION
  • The polymeric optical film of the present invention is believed to be applicable to a variety of applications needing polymeric optical film including, for example, optical compensators for displays, such as liquid crystal displays, as well as the displays and other devices containing the optical compensators. While the present invention is not so limited, an appreciation of various aspects of the invention will be gained through a discussion of the examples provided below.
  • For the following defined terms, these definitions shall be applied, unless a different definition is given in the claims or elsewhere in this specification.
  • A “c-plate” denotes a birefringent optical element, such as, for example, a plate or film, with a principle optical axis (often referred to as the “extraordinary axis”) substantially perpendicular to the selected surface of the optical element. The principle optical axis corresponds to the axis along which the birefringent optical element has an index of refraction different from the substantially uniform index of refraction along directions normal to the principle optical axis. As one example of a c-plate, using the axis system illustrated in FIG. 1, nx=ny≠nz, where nx, ny, and nz are the indices of refraction along the x, y, and z axes, respectively. The optical anisotropy is defined as Δnzx=nz−nx.
  • An “o-plate” denotes a birefringent optical element, such as, for example, a plate or film, having its principle optical axis tilted with respect to the surface of the optical element.
  • An “a-plate” denotes a birefringent optical element, such as, for example, a plate or film, having its principle optical axis within the x-y plane of the optical element. Positively birefringent a-plates can be fabricated using, for example, uniaxially stretched films of polymers such as, for example, polyvinyl alcohol, or uniaxially aligned films of nematic positive optical anisotropy LCP materials. Negatively birefringent a-plates can be formed using uniaxially aligned films of negative optical anisotropy nematic LCP materials, including for example discotic compounds.
  • A “biaxial retarder” denotes a birefringent optical element, such as, for example, a plate or film, having different indices of refraction along all three axes (i.e., nx≠ny≠nz). Biaxial retarders can be fabricated, for example, by biaxially orienting plastic films. Examples of biaxial retarders are discussed in U.S. Pat. No. 5,245,456, incorporated herein by reference. Examples of suitable films include films available from Sumitomo Chemical Co. (Osaka, Japan) and Nitto Denko Co. (Osaka, Japan). In-plane retardation and out-of-plane retardation are parameters used to describe a biaxial retarder. As the in-plane retardation approaches zero, then the biaxial retarder element behaves more like a c-plate. Generally, a biaxial retarder, as defined herein, has an in-plane retardation of at least 3 nm for 550 nm light. Retarders with lower in-plane retardation are considered c-plates.
  • The term “polymer” will be understood to include polymers, copolymers (e.g., polymers formed using two or more different monomers), oligomers and combinations thereof, as well as polymers, oligomers, or copolymers that can be formed in a miscible blend by, for example, coextrusion or reaction, including transesterification. Both block and random copolymers are included, unless indicated otherwise.
  • The term “polarization” refers to plane polarization, circular polarization, elliptical polarization, or any other nonrandom polarization state in which the electric vector of the beam of light does not change direction randomly, but either maintains a constant orientation or varies in a systematic manner. In-plane polarization, the electric vector remains in a single plane, while in circular or elliptical polarization, the electric vector of the beam of light rotates in a systematic manner.
  • The term “biaxially stretched” refers to a film that has been stretched in two different directions, a first direction and a second direction, in the plane of the film.
  • The term “simultaneously biaxially stretched” refers to a film in which at least a portion of stretching in each of the two directions is performed simultaneously.
  • The terms “orient,” “draw,” and “stretch” are used interchangeably throughout this disclosure, as are the terms “oriented,” “drawn,” and “stretched” and the terms “orienting,” “drawing,” and “stretching”.
  • The term “retardation or retardance” refers to the difference between two orthogonal indices of refraction times the thickness of the optical element.
  • The term “in-plane retardation” refers to the product of the difference between two orthogonal in-plane indices of refraction times the thickness of the optical element.
  • The term “out-of-plane retardation” refers to the product of the difference of the index of refraction along the thickness direction (z direction) of the optical element minus one in-plane index of refraction times the thickness of the optical element. Alternatively, this term refers to the product of the difference of the index of refraction along the thickness direction (z direction) of the optical element minus the average of in-plane indices of refraction times the thickness of the optical element.
  • The term “substantially non-absorbing” refers to the level of transmission of the optical element, being at least 80 percent transmissive to at least one polarization state of visible light, where the percent transmission is normalized to the intensity of the incident, optionally polarized light.
  • The term “substantially non-scattering” refers to the level of collimated or nearly collimated incident light that is transmitted through the optical element, being at least 80 percent transmissive for at least one polarization state of visible light within a cone angle of less than 30 degrees.
  • The term “J-retarder” refers to a film or sheet that is substantially non-absorbing and non-scattering for at least one polarization state of visible light, where at least two of the three orthogonal indices of refraction are unequal, and where the in-plane retardation is no more than 100 nm and the out-of plane retardation is at least 50 nm.
  • All numeric values are herein assumed to be modified by the term “about,” whether or not explicitly indicated. The term “about” generally refers to a range of numbers that one of skill in the art would consider equivalent to the recited value (i.e., having the same function or result). In many instances, the terms “about” may include numbers that are rounded to the nearest significant figure.
  • Weight percent, percent by weight, % by weight, and the like are synonyms that refer to the concentration of a substance as the weight of that substance divided by the weight of the composition and multiplied by 100.
  • The recitation of numerical ranges by endpoints includes all numbers subsumed within that range (e.g. 1 to 5 includes 1, 1.5, 2, 2.75, 3, 3.80, 4, and 5).
  • As used in this specification and the appended claims, the singular forms “a”, “an”, and “the” include plural referents unless the content clearly dictates otherwise. Thus, for example, reference to a composition containing “a compound” includes a mixture of two or more compounds. As used in this specification and the appended claims, the term “or” is generally employed in its sense including “and/or” unless the content clearly dictates otherwise.
  • FIG. 1 illustrates an axis system for use in describing the optical elements. Generally, for display devices, the x and y axes correspond to the width and length of the display and the z axis is typically along the thickness direction of the display. This convention will be used throughout, unless otherwise stated. In the axis system of FIG. 1, the x axis and y axis are defined to be parallel to a major surface 102 of the optical element 100 and may correspond to width and length directions of a square or rectangular surface. The z axis is perpendicular to that major surface and is typically along the thickness direction of the optical element.
  • A variety of materials and methods can be used to make optical film element of the invention. For example, the optical film may include a layer of simultaneous biaxially stretched polymeric film being substantially non-absorbing and non-scattering for at least one polarization state of visible light; and having x, y, and z orthogonal indices of refraction wherein at least two of the orthogonal indices of refraction are not equal, an in-plane retardance being 100 nm or less and an out-of-plane retardance being 50 nm or greater.
  • Any polymeric material capable of being biaxially stretched and possessing the optical properties described herein are contemplated. A partial listing of these polymers include, for example, polyolefin, polyacrylates, polyesters, polycarbonates, fluoropolymers and the like. One or more polymers can be combined to form the polymeric optical film.
  • Polyolefin includes for example: cyclic olefin polymers such as, for example, polystyrene, norbornene and the like; polypropylene; polyethylene; polybutylene; polypentylene; and the like. A specific polybutylene is poly(1-butene). A specific polypentylene is poly(4-methyl-1-pentene).
  • Polyacrylate includes, for example, acrylates, methacrylates and the like. Examples of specific polyacrylates include poly(methyl methacrylate), and poly(butyl methacrylate).
  • Fluoropolymer specifically includes, but is not limited to, poly(vinylidene fluoride).
  • The in-plane retardance of the polymeric optical film may be 100 nm or less or 0 nm to 100 nm. The in-plane retardance of the polymeric optical film may be 20 nm or less or 0 nm to 20 nm. The in-plane retardance of the polymeric optical film may be 20 nm to 50 nm. The in-plane retardance of the polymeric optical film may be 50 nm to 100 nm.
  • The out-of-plane retardance of the polymeric optical film may be 50 nm or greater, up to 1000 nm. The out-of-plane retardance of the polymeric optical film may be 75 nm or greater or 75 nm to 1000 nm. The out-of-plane retardance of the polymeric optical film may be 100 nm or greater or 100 nm to 1000 nm. The out-of-plane retardance of the polymeric optical film may be 150 nm or greater or 150 nm to 1000 nm.
  • The polymeric optical film can have a thickness (z direction) of 5 micrometers or greater. The polymeric optical film can have a thickness (z direction) of 5 micrometers to 200 micrometers or 5 micrometers to 100 micrometers. The polymeric optical film can have a thickness (z direction) of 7 micrometers to 75 micrometers. The polymeric optical film can have a thickness (z direction) of 10 micrometers to 50 micrometers.
  • The polymeric optical film can have a length and width of at least 0.65 meter. The polymeric optical film can have a length and width of at least 1.3 meters. The polymeric optical film can have a length and width of at least 1.5 meters. The in-plane and out-of-plane retardance is substantially uniform across the length and width of the polymeric optical film. The phrase “retardance is substantially uniform across the length and width of the polymeric optical film” refers to retardance (both in-plane and out-of-plane) changing less than 4 nm/cm, or 2 nm/cm or 1 nm/cm along the width and/or length and width of the layer of biaxially stretched polymer film. One quantitative measure of uniformity is defined as, Δ in max - Δ in min w
      • where over a width of film w, Δin max is the maximum in-plane retardation and Δin min is the minimum in-plane retardation. Any number of additional additives may optionally be added to the polymer forming the optical film. A partial listing of additives includes, for example, stabilizers, processing aids, crystallization modifiers, tackifiers, stiffening agents, nano-particles, and the like.
  • Stabilizers include, for example, anti-oxidants, anti-ozone agents, anti-static agents, UV absorbers, and light stabilizers. Processing aids include, for example, lubricants, extrusion aids, blocking agents, and electrostatic pinning aids.
  • Crystallization modifiers include, for example, clarifying agents and nucleating agents. Crystallization modifiers aid in reducing “haze” in the biaxially stretched polymeric optical film. Crystallization modifiers can be present in any amount effective to reduce “haze”, such as, for example, 10 ppm to 500000 ppm or 100 ppm to 400000 pm or 100 ppm to 350000 ppm or 250 ppm to 300000 ppm.
  • The range or solid cone of desired viewing angles can be manipulated depending upon the exact nature of the application. For example, in some embodiments, it is desirable to have a large solid angle of acceptable viewing. In other embodiments, it is desirable to strictly control the range of acceptable viewing (for example, for privacy purposes) to a narrower range of angles than is normally associated with an uncompensated display.
  • The polymeric optical film of the invention may replace cellulose triacetate (TAC) layers now present in many optical bodies. TAC may be obtained commercially from Fuji Photo (Japan). TAC films are available in a range of thickness from about 40 micrometers to over 120 micrometers. TAC is made with a solvent casting process and exhibits a nearly isotropic in-plane retardance. TAC exhibits an out-of-plane retardance from 30 nm to 120 nm.
  • The simultaneous biaxially stretched polymeric optical film of the invention may provide a wide range of properties that are different from TAC, such as, for example: lower dispersion of the refractive index; higher levels of out-of-plane retardation for any given thickness of the polymeric optical film of the invention verses TAC; improved moisture barrier resistance; lower manufacturing costs; environmentally friendly manufacturing; ability to easily customize the optical properties from substantially a c-plate to that of a biaxial retarder. The polymeric optical film of the invention may be thinner than TAC films with a similar or even smaller negative c-plate retardance, the overall thickness of the novel integrated stack of films, described below, can be thinner.
  • New techniques for manufacturing polymeric optical film have been developed. These techniques include stretching a polymer film in a first direction and stretching the polymer film in a second direction different than the first direction forming a biaxially stretched polymeric film. At least a portion of the stretching in the second direction occurs simultaneously with the stretching in the first direction. This technique forms a polymeric optical film with the properties and attributes described above.
  • Attempts to biaxially stretch polymeric film in a sequential manner have failed to produce ideal polymeric optical film with the properties and attributes described above. Polymeric optical film biaxially stretched in a sequential manner (i.e., stretching the film in a first machine direction (MD) followed by stretching the film in a second transverse direction (TD)) may often produce polymeric optical film with “patchy” optical properties and attributes. It has been observed that the final stretch direction imparts a greater influence on the optical properties and attributes of the biaxially stretched polymeric optical film. However, attempts to optimize this process have failed to produce polymeric optical films with the properties and attributes of the present invention.
  • Simultaneously biaxially stretched polymeric optical film still has some of the problems associated with sequentially biaxially stretched polymeric optical film in addition to issues unique to simultaneously biaxially stretched polymeric optical film. Simultaneously biaxially stretched polymeric optical film does not produce polymeric optical film with “patchy” optical properties and attributes. In addition, by employing a simultaneously biaxially stretching process, improvements in film dimensional stability and reduced thickness variability is realized over a sequential biaxial stretching process. The process described herein produces polymeric optical films with the properties and attributes of the present invention.
  • FIG. 2 illustrates a top schematic view of a tenter apparatus for carrying out the process of the invention. The tenter may be of the type disclosed in U.S. Pat. No. 5,051,225. Tenter apparatus 10 includes a first side rail 12 and a second side rail 14 on which the driven clips 22 and idler clips 24 ride. The driven clips 22 are illustrated schematically as boxes marked “X” while the idler clips 24 are illustrated schematically as open boxes. Between pairs of driven clips 22 on a given rail, there are one or more idler clips 24. As illustrated, there may be two idler clips 24 between each pair of clips 22 on a given rail. One set of clips 22, 24 travels in a closed loop about the first rail 12 in the direction indicated by the arrows at the ends of the rail. Similarly, another set of clips 22, 24 travels in a closed loop about the second rail 14 in the direction indicated by the arrows at the ends of the rail. The clips 22, 24 hold the film edges and propel film 26 in the direction shown by the arrow at the center of the film. At the ends of the rails 12, 14, the clips 22, 24 release the film 26. The clips then return along the outside of the rails to the entrance of the tenter to grip the cast web to propel it through the tenter. (For clarity of illustration, the clips returning to the entrance on the outside of the rails have been omitted from FIG. 2.) The stretched film 26 exiting the tenter may be wound up for later processing or use, or may be processed further.
  • The polymer can be cast into a sheet form to prepare a web suitable for stretching to arrive at the optical film described above. The polymer may be cast by feeding polymer resin into the feed hopper of a single screw, twin screw, cascade, or other extrusion system having an extruder barrel with temperatures adjusted to produce a stable homogeneous melt. The polymer can be extruded through a sheet die onto a rotating cooled metal casting wheel. The web is then biaxially stretched according to the process described herein. The extruded web may be quenched, reheated and fed to the clips 22, 24 on the first and second rails 12, 14 to be propelled through the tenter apparatus 10. The optional heating and the gripping by the clips 22, 24 may occur in any order or simultaneously.
  • The rails 12, 14 pass through three sections: preheat section 16; stretch section 18; and post-stretch treatment section 20. In the preheat section 16, the film is heated to within an appropriate temperature range to allow a significant amount of stretching without breaking. The three functional sections 16, 18, and 20 may be broken down further into zones. For example, in one embodiment of the tenter, the preheat section 16 includes zones Z1, Z2, and Z3, the stretch section 18 includes zones Z4, Z5, and Z6, and the post-stretch section 20 may include zones Z7, Z8, and Z9. It is understood that the preheat, stretch, and post-treatment sections may each include fewer or more zones than illustrated. Further, within the stretch section 18, the TD (Transverse Direction) component of stretch or the MD (Machine Direction) component of stretch may be performed in the same or in different zones. For example, MD and TD stretch each may occur in any one, two or three of the zones Z4, Z5, and Z6. Further, one component of stretch may occur before the other, or may begin before the other and overlap the other. Still further, either component of stretch may occur in more than one discrete step. For example, MD stretch may occur in Z4 and Z6 without any MD stretch occurring in Z5.
  • Some stretching in the MD and/or TD may also occur in the preheat section or post-stretch treatment section. For example, in the embodiment illustrated, stretching may begin in zone Z3. Stretching may continue into zone Z7 or beyond. Stretching may resume in any of the zones after zones Z3, Z5, or Z6.
  • The amount of stretching in the MD may be different than the amount of stretching in the TD. The amount of stretching in the MD may be up to 10% or 25% or 50% greater than the amount of stretching in the TD. The amount of stretching in the TD may be up to 10% or 25% or 50% greater than the amount of stretching in the MD. Surprisingly, this “unbalanced” stretching helps to provide the optical film with substantially uniform in-plane retardance.
  • The film may be propelled through the post-treatment section 20. In this section, the film 26 may be maintained at a desired temperature while no significant stretching occurs. This treatment can be referred to as a heat set or anneal, and may be performed to improve the properties of the final film, such as dimensional stability. Also, a small amount of relaxation in either or both the TD and MD may occur in the post-treatment section 20. Relaxation here refers to a convergence of the rails in the TD and/or a convergence of the driven clips on each rail in the MD, or simply the reduction of stress on the film in the TD and/or MD.
  • Biaxial stretching of films is sensitive to many process conditions, including but not limited to the composition of the polymer or resin, film casting and quenching parameters, the time-temperature history while preheating the film prior to stretching, the stretching temperature used, the stretch profile used, and the rates of stretching. With the benefits of the teaching herein, one of skill in the art may adjust any or all of these parameters and obtain films having the desired optical properties and characteristics.
  • The cooling of the biaxially stretched optical film may begin before or after the onset of stretching in the stretch section 18. The cooling can be “zone” cooling which refers to cooling substantially the entire width or TD of the web, from the edge portions 28 of the film through the center portion 30 of the film. Surprisingly, zone cooling immediately after the stretching zone has been found to improve uniformity of in-plane retardance of polymeric optical films when applied in an effective amount. Cooling may be provided by forced air convection.
  • In addition, application of an effective amount of zone cooling improves the cross-directional (TD) variation of in-plane retardation. As illustrated in the Examples below, by employing zone cooling immediately after the stretching zone, the cross-directional (TD) variation of in-plane retardation, as expressed previously, Δ in max - Δ in min w
    is reduced. The ability to actively control the cross-directional (TD) variation of in-plane retardation is useful when considering the practical aspects of manufacturing polymeric optical films to a sizable width (i.e. 0.65 meter or 1.3 meter or 1.5 meter) and when considering advantages gained in economy of scale and yield. The Examples below illustrate a variety of processing parameters to achieve the polymeric optical film of the present invention.
  • Optical compensators can be formed using a variety of different optical elements. Among these optical elements are o-plates, c-plates, a-plates, biaxial retarders, twisted o-plates, twisted a-plates, and other retarders. Information regarding o-plates, c-plates, and a-plates can be found, for example, in Yeh et al., Optics of Liquid Crystal Displays, John Wiley & Sons, New York (1999), U.S. Pat. Nos. 5,504,603, 5,557,434, 5,612,801, 5,619,352, 5,638,197, 5,986,733, and 5,986,734, and PCT Patent Applications Publication Nos. WO 01/20393 and WO 01/20394, all of which are incorporated herein by reference.
  • The optical elements are configured in combinations as described below to form optical bodies or optical compensator stacks. Optical bodies or optical compensator stacks can be formed by disposing a polarizer layer or a cholesteric liquid crystal material on the novel polymeric optical film described above.
  • FIG. 3 shows an optical compensator stack 300 that includes a J-retarder 310 disposed on a first liquid crystal layer 320. The J-retarder 310 includes a layer of simultaneous biaxially stretched polymeric film being substantially non-absorbing and non-scattering for at least one polarization state of visible light. The J-retarder 310 has x, y, and z orthogonal indices of refraction where at least two of the orthogonal indices of refraction are not equal, an in-plane retardance being 100 nm or less and an out-of-plane retardance being 50 nm or greater.
  • The first liquid crystal layer 320 includes liquid crystal material. The first liquid crystal layer 320 may be an o-plate, an a-plate or the like.
  • FIG. 3 shows that the optical compensator stack 300 may include a second liquid crystal layer 325 disposed on the J-retarder 310 or the J-retarder 310 may be disposed between the first liquid crystal layer 320 and the second liquid crystal layer 325. The second liquid crystal layer 325 may be an o-plate, an a-plate or the like. The optical compensator stack 300 may further include a polarizer layer 330 disposed on the first liquid crystal layer 320 or the first liquid crystal layer 320 may be disposed between the polarizer layer 330 and the J-retarder 310. The polarizer layer 330 may be an absorbing polarizer or a reflecting polarizer. A reflecting polarizer layer 340 can be disposed on the absorbing polarizing layer 330 or the absorbing polarizing layer 330 can be disposed between the reflecting polarizing layer 340 and the first liquid crystal layer 320.
  • FIG. 4 shows an optical compensator stack 400 that includes a J-retarder 410 disposed on a polarizer layer 430. The J-retarder 410 includes a layer of simultaneous biaxially stretched polymeric film being substantially non-absorbing and non-scattering for at least one polarization state of visible light. The J-retarder 410 has x, y, and z orthogonal indices of refraction where at least two of the orthogonal indices of refraction are not equal, an in-plane retardance being 100 nm or less and an out-of-plane retardance being 50 nm or greater.
  • The optical compensator stack 400 may further include a second polarizer layer 440 disposed on the first polarizing layer 430 or the first polarizing layer 430 can be disposed between the second polarizing layer 440 and the J-retarder 410. The polarizer layer 430 may be an absorbing polarizer or a reflecting polarizer. If the first polarizing layer 430 is an absorbing polarizer, then the second polarizing layer 440 can be a reflecting polarizer layer.
  • Additional layers can be added to or between the optical compensation stacks layers described above. Additional optional layer include, for example, alignment layers, o-plates, a-plates and/or c-plates and the like.
  • One or more optical compensation stacks can be laminated to a first major face and a second major face of a LCD panel in a manner similar to that which conventional dichroic polarizers are laminated. The optical compensation stacks described above provide a wider range of retarder, for example, a biaxial retarder or c-plate, birefringence can be fabricated to make an optical compensation stack without dramatically increasing the thickness of the polarizer. With the teaching of the invention herein, it is possible to fabricate an optical compensation stack with polarizer which is thinner than a conventional polarizer not containing additional compensation film.
  • DISPLAY EXAMPLES
  • The optical bodies or optical compensators described above can be used in a variety of optical displays and other applications, including transmissive (e.g., backlit), reflective, and transflective displays. For example, FIG. 5 illustrates a schematic cross-sectional view of one illustrative display system 500 including a light modulator 550 disposed on an optical compensator stack 501 that includes a J-retarder 510 disposed on a first liquid crystal layer 520. The J-retarder 510 includes a layer of simultaneous biaxially stretched polymeric film being substantially non-absorbing and non-scattering for at least one polarization state of visible light. The J-retarder 510 has x, y, and z orthogonal indices of refraction where at least two of the orthogonal indices of refraction are not equal, an in-plane retardance being 100 nm or less and an out-of-plane retardance being 50 nm or greater. The first liquid crystal layer 520 includes liquid crystal material. The first liquid crystal layer 520 may be an o-plate, an a-plate and the like.
  • The optical compensator stack 501 may include a second liquid crystal layer 525 disposed on the J-retarder 510 or the J-retarder 510 can be disposed between the second liquid crystal layer 525 and the first liquid crystal layer 520. The second liquid crystal layer 525 may be an o-plate, an a-plate or the like. The optical compensator stack 501 may further include a polarizer layer 530 disposed on the first liquid crystal layer 520 or the first liquid crystal layer 520 can be disposed between the polarizer layer 530 and the J-retarder 510. The polarizer layer 530 may be an absorbing polarizer or a reflecting polarizer. A reflecting polarizer layer 540 can be disposed on the polarizing layer 530 or the polarizing layer 530 can be disposed between the reflecting polarizing layer 540 and the first liquid crystal layer 520.
  • FIG. 6 illustrates a schematic cross-sectional view of one illustrative display system 600 including a light modulator 650 disposed on an optical compensator stack 601 that includes a J-retarder 610 disposed on a polarizer layer 630. The J-retarder 610 includes a layer of simultaneous biaxially stretched polymer film being substantially non-absorbing and non-scattering for at least one polarization state of visible light. The J-retarder 610 has x, y, and z orthogonal indices of refraction where at least two of the orthogonal indices of refraction are not equal, an in-plane retardance being 100 nm or less and an out-of-plane retardance being 50 nm or greater.
  • The optical compensator stack 601 may further include a second polarizer layer 640 disposed on the first polarizing layer 630 or the first polarizing layer 630 can be disposed between the second polarizer layer 640 and the J-retarder 610. A reflecting polarizer layer 640 can be disposed on the polarizing layer 630 or the first polarizing layer 630 can be disposed between the second polarizing layer 640 and the J-retarder 610. The polarizer layer 630 may be an absorbing polarizer or a reflecting polarizer. If the first polarizing layer 630 is an absorbing polarizer, then the second polarizing layer 640 can be a reflecting polarizer layer.
  • The light modulator 550, 650 that supplies the light used to view the display system 500, 600 includes, for example, a light source and a light guide, although other lighting systems can be used. Although the light modulator 550, 650 depicted in FIG. 5 and FIG. 6 has a generally rectangular cross-section, light modulators 550, 650 can use light guides with any suitable shape. For example, the light guide can be wedge-shaped, channeled, a pseudo-wedge guide, etc. The primary consideration is that the light guide be capable of receiving light from the light source and emitting that light. As a result, the light can include back reflectors (e.g., optional reflector), extraction mechanisms and other components to achieve the desired functions.
  • To minimize surface reflections, to enable cleaning of the front surface, to prevent scratching as well as to facilitate a number of other properties, different layers or combinations of materials can be disposed on the optical compensation stacks 501, 601. Additional films may also include touch components.
  • To improve brightness of a resulting display, a number of different types of films may be added to the back of the display or in to a back-light cavity. These films may include diffusers, protective shields, EMI shielding, anti-reflection films, prismatic structured films, such as BEF sold by 3M, or reflective polarizers, such as DBEF sold by 3M or Nipocs sold by Nitto Denko. When reflective polarizers operate by transmitting and reflecting circularly polarized light, such as Nipocs, additional retarder films are required, such as a quarter wave plate and the like.
  • FIG. 5 and FIG. 6 illustrate one optical compensation stack disposed on a light modulator, however as stated above, two optical compensation stacks can be laminated to a first major face and a second major face of a LCD panel in a manner similar to that which conventional dichroic polarizers are laminated. Thus, an LCD panel may be disposed between similar or different optical compensation stacks as described above.
  • It was found that the surface treatment of optical films improved the adhesion of these films to other optical films normally used in LCD's. Surface treatments include, for example, corona, flame, or plasma. Gases used in these surface treatments included oxygen, nitrogen, noble gases (such as argon and helium), chlorine, ammonia, methane, propane, and butane. Coating (e.g., chlorinated polyolefin, i.e., PVDC), chemical etching, and hydrolysis treatments can also be used to enhance the adhesive properties of the optical films.
  • Liquid crystal displays utilize a variety of optical films in the stack of layers comprising the display. Two examples will be provided to help explain the nature of the optical films used in displays, and how surface treatment of these films improves performance and handling.
  • In a first example, a polarizer comprises an oriented PVA film, which, at least in some embodiments, is stained with iodine to create the dichroism required to effectively polarize light. The oriented and stained PVA is protected from the environment by encapsulating it between two barrier films. These barrier films are often cellulose triacetate (TAC), and the material used to adhere the TAC films to the two major faces of the oriented and stained PVA is a solution including water and PVA, optionally containing methanol. Because TAC film does not wet aqueous solutions, typically the TAC film is treated with a caustic solution to hydrolyze the surfaces prior to the lamination process.
  • In another example, compensation films (such as WVF® available from Fuji Photo, Japan) useful in improving the viewing angle characteristics of liquid crystal displays include a number of different layers, such as a substrate, an alignment layer, an LCP layer, a polarizer (optionally with encapsulating layers), optional primer coatings and adhesives. TAC films are often used both as the encapsulating layers for the oriented and stained PVA and as the substrate for the alignment layer. In a manner similar to that described above, TAC films are often hydrolyzed in order to provide an adequate level of adhesion. A certain level of adhesion is required to assure that, should adhesive failure occur, it does so at the adhesive:glass interface, thus avoiding expensive and tedious removal of films during the optional rework process.
  • The present invention documents improved adhesion of optical films described herein without complex and potentially expensive primer coatings or hydrolysis treatments. It was found that a variety of surface treatments for a range of optical films improved the adhesion of said films. Novel surface treatments include, for example, corona, flame, or plasma. Gases used in these surface treatments included oxygen, nitrogen, noble gases (such as argon and helium), chlorine, ammonia, methane, propane, and butane.
  • The polymeric optical film described herein can be used with a variety of other components and films that enhance or provide other properties to a liquid crystal display. Such components and films include, for example, brightness enhancement films, retardation plates including quarter-wave plates and films, multilayer or continuous/disperse phase reflective polarizers, metallized back reflectors, prismatic back reflectors, diffusely reflecting back reflectors, multilayer dielectric back reflectors, and holographic back reflectors.
  • EXAMPLES Example A
  • This example illustrates a method for making simultaneously biaxially oriented polypropylene film with equal biaxial orientation.
  • A homopolymer polypropylene (Fina 3376, commercially available from Atofina, Deer Park, Tex.) was melt extruded and cast using conventional melt extrusion and casting equipment. The film was cast a thickness of 2250 micrometers. The film was preheated at 178 degrees Celsius with a fan speed setting of 80%. It was simultaneously oriented 7.0 times in the MD and 7.0 times in the TD at a temperature of 160 degrees Celsius. Following orientation, the film was cooled to a temperature of 135 degrees Celsius. The final film thickness was 25 micrometers.
  • The transmission between crossed polarizers was measured using a Perkin Elmer Lambda 900 spectrophotometer, the transmission reading was 0.015%. A piece of the film was then juxtaposed to the analyzer, rotating the piece of film until the transmission was a minimum. The minimum transmission with the sample in place was 0.15%. Henceforth, the minimum transmission of a sample film between crossed polarizers will be referred to as depolarization. The polarizer was then rotated by 90 degrees at align its transmission axis parallel to that of the analyzer. The ratio of the intensity of the parallel polarizers to the intensity of crossed polarizers, henceforth known as the contrast ratio (CR), was 500:1.
  • Shrinkage values in both the MD and TD were measured by suspending a film in an oven at 85 degrees Celsius for 1000 hours. The results for Example A were 3% in the MD and 1% in the TD.
  • Creep resistance for both the TD and MD was measured at 100 degrees Celsius for 1 minute under a load of 1 lb/linear inch (180 gm/linear cm). The MD and TD creep were both 3.6%.
  • An in-plane retardance was measured using a National Instruments RPA2000. The in-plane retardance (Δin) was 20 nm. The in-plane and out-of-plane indices of refraction was measured using a Metricon Model 2010 Prisim Coupler. The out-of-plane retardance (Δout) is the product of the thickness times the difference between the average refractive index in the thickness direction (z direction) and the average refractive index in the plane of the film. Example A had an |Δout| of 265 nm.
  • Example 1
  • Example 1 illustrates a process for making an unbalanced simultaneously biaxially oriented polypropylene film with unequal biaxial orientation that shows improved thermal stability and a lower Δin.
  • A film was made in a manner similar to that described in Example A, with the exception that the cast web was 1000 micrometers thick. The final film thickness was 15 micrometers. The temperatures in various sections of the tenter along with the MD and TD draw ratios are listed in Table 1 below.
    TABLE 1
    Preheat Stretch Zone Cool Anneal MD Draw TD Draw
    Example zone (° C.) zone (° C.) (° C.) zone (° C.) ratio ratio
    ExA 178 160 135 135 7 7
    Ex1 159 152 169 169 7.5 8
    Ex2 159 152 140 169 7.5 8
    Ex3 159 152 135 169 7.5 8
    Ex4 159 152 135 169 7.5 8
    Ex5 159 152 135 169 7.5 8
    Ex6 178 160 130 135 7.35 7
  • Other properties of Example 1 are shown in Table 2.
    TABLE 2
    Δ in max - Δ in min w Depolarization % Shrink % creep resistance in| out|
    Example (nm/m) (%) CR MD TD MD TD (nm) (nm)
    Ex A 0.15 —500:1 3 1   3.6 3.6 20 265
    Ex 1 23 0.15 —500:1 1 0.5 30 165
    Ex 2 15 0.05 1540:1 1 0.5 10 180
    Ex 3 12 0.05 1540:1 1 0.5  8 180
    Ex 4 12 0.02 3600:1 1 0.5  8 180
    Ex 5 0.03 2600:1
    Ex 6 4 2   1.8

    in| and |Δout| were averaged over at least 150 cm of web along TD.
  • Examples 2 and 3
  • Examples 2 and 3 were made in a manner similar to Example 1 with the exception of those process conditions cited in Table 1. The final film thickness for both Examples was 16 micrometers.
  • Examples 2 and 3 demonstrate that tenter temperatures impacts Δ in max - Δ in min w
    and depolarization. Examples 2 and 3 also exhibit a higher out-of-plane retardance and significantly lower in-plane retardance.
  • Example 4
  • Example 4 illustrates the effect of adding a clarifying agent. This example was made in a manner similar to Example 3, with the exception that resin containing a clarifying agent or nucleating agent, Atofina 3289MZ was added at a concentration of 25%. The resulting concentration of clarifying or nucleating agent for Example 4 was 1000 ppm.
  • The addition of a clarifying agent reduced depolarization to 0.03% from 0.05% in Example 3.
  • Example 5
  • Example 5 illustrates the effect of reducing temperature in the preheat section of the tenter. This example was made in a manner similar to Example 3, with the exception that the preheat temperature was decreased by reducing the fan speed to 55%. Example 5 exhibited a reduced depolarization to 0.03% from 0.05% in Example 3.
  • Example 6
  • Example 6 illustrates a means to improve creep resistance. This example was made in a manner similar to Example 1, with the exception that the cooling and annealing temperature were slightly reduced and the orientation was unbalanced. An additional process step was added to Example 6 whereby the film was orientated in the MD by an additional 5% in the post-stretch zone. Example 6 exhibited a 50% reduction in the MD creep resistance relative to Example A.
  • Example 7
  • Examples 7-16 describe improved adhesion of optical films using surface treatment of optical films. Surface treatment may include, for example, corona, flame, and/or plasma. Gases used for these surface treatments include oxygen nitrogen, noble gases, chlorine, ammonia, methane, propane, and butane. The use of coatings, chemical etching, and hydrolysis treatments may also be used to enhance the adhesive properties of the optical films.
  • Example 7 is a 16 micrometer polypropylene film was made in a manner similar to Example 3 and treated using a variety of gaseous surface chemistries:
    • (a) Air corona at 0.15 J/cm2 with a relative humidity (RH) of around 25%;
    • (b) Flame treatment using a laminar, premixed natural gas:air flame supported on a ribbon burner at an equivalence ratio of 0.95 (air:fuel ratio of 10.1:1), a flame power of 5300 Btu/hr-inch (611 W/cm), and a burner-to-film gap of 10 mm;
    • (c) N2 corona at 1.0 j/cm2 where all of the nitrogen corona treatments throughout the examples have an the oxygen concentration in the corona of less than 10 ppm;
    • (d) Control (no treatment).
    Example 8
  • Example 8 describes a film using alternate surface treatment chemistries. In a manner similar to Example 7, a 16 micrometer film was treated with different chemistries. Examples 8(a) and 8(b) are described as atmospheric-pressure plasma treatment performed using the Plasma3-brand hardware developed by Enercon Industries of Milwaukee. Example 8(c) uses a standard corona type treatment with a different chemistry.
    • (a) 88%/12% He/N2 at 0.5 J/cm2,
    • (b) 88%/12% He/N2 at 1.0 J/cm2
    • (c) 99%/1% N2/NH3 at 2.6 J/cm2.
    Example 9
  • Example 9 describes surface-treated film with LCP coatings. Example films 7a, 7b, 7c, and 7d were coated with Staralign 2110 (available from Vantico AG, Basel, Switzerland) using MEK as the solvent to form Examples 9a, 9b, 9c and 9d. The thickness of the dried Staralign layer was 50 nm. The Staralign material was then exposed to polarized UV light using an OptoAlign (available from Elsicon, Inc., Newark, Del.) to provide a dose of 15 mJ/cm2 with an incidence angle of 45 degrees.
  • The Staralign coated films were then scored with razors prior to laminating with an adhesive tape, which was subsequently removed. The Adhesion Tape Test was performed consistent with ASTM D3359. Where poor adhesion of the Staralign coating to the polypropylene film may exist, the tape removes the alignment material. The subsequently coated liquid crystal polymer layer would exhibit random alignment.
  • The samples were then coated with a 18 weight percent solids mixture in MEK comprising Paliocolor LC242 (henceforth referred to simply as LCP and available from BASF AG, Ludwigshafen, Germany) with 1.26 weight percent Darocur 1173 (available from Ciba, Basel, Switzerland). The coating was then dried at 80 degrees Celsius and cured with a UV lamp at 100 percent power in an anaerobic atmosphere.
  • The coated samples were viewed under crossed polarizers and evaluated specifically for regions where the Adhesion Tape Test removed alignment material. In the order of decreasing quality, the relative performance of the surface treatments was: 9 c, 9 b, and 9 a. The control film (Example film 9d) exhibited the worst performance of any of the substrates.
  • Environment stability was also assessed by laminating the LCP coated polypropylene film to glass and then placing the glass in two ovens with temperatures set at 80 degrees Celsius and 60 degrees Celsius/90% RH, respectively. Failure occurred when films delaminated after exposure to temperature and humidity. In decreasing order, the relative order of performance was: 9 c, 9 b, 9 a, and 9 d.
  • Example 10
  • Example 10 describes corona-treated polypropylene film with LCP coatings. Example films 8a, 8b, and 8c were coated with Staralign 2110 and photo-aligned and subsequently coated with LCP in a manner similar to Example 9 to form Examples 10a, 10b, and 10c, respectively. The peel force between polypropylene film and LCP for Examples 10a, 10b and 10c were each around 50 oz/inch (560 g/cm) as tested in a manner consistent with ASTM D3330.
  • Example 11
  • Example 11 describes laminates of surface treated polypropylene film and oriented PVA. Surface treated films Examples 7a, 7b, 7c, and 7d were laminated to an oriented and iodine stained PVA film to form Examples 11a, 11b, 11c, and 11d, respectively.
  • In all cases, the oriented and stained PVA actually comprised two films, the PVA and a hydrolyzed TAC layer adhered using a solution comprising 66.5%/27.9%/5.6% MeOH/water/AIRVOL PVA Grade 205 (available from Air Products and Chemicals Inc., Allentown, Pa., USA). The designation, “oriented and stained PVA,” is intended to help clarify the major face to which additional laminations are performed.
  • The adhesive used to laminate Examples 7a, 7b, 7 c, and 7d to the oriented and stained PVA comprised a solution containing 66.5%/27.9%/5.6% MeOH/water/AIRVOL PVA Grade 205. Following lamination, all samples were autoclaved at 60 degrees Celsius for 1 hour at 1 atmosphere of pressure in an air atmosphere.
  • The laminate films were then environmentally aged at 65 degrees Celsius/90% RH, and the peel forces were tested in a manner consistent with ASTM D3330. The peel forces were: <0.4 oz/inch (2.9 g/cm) for Example film 11d, 15 oz/inch (170 g/cm) for Example film 11a, 20 oz/inch (225 g/cm) for Example film 11b, and 22 oz/inch (250 g/cm) for Example film 11c.
  • Example 12
  • Example 12 describes laminates of surface treated polypropylene and oriented PVA. Surface treated films Examples 8a, 8b, 8c, and 8d were laminated to an oriented and iodine stained PVA film in a manner similar to Example 11. Peel forces for all Example 12 films were found to be similar to Example film 11c.
  • Example 13
  • Example 13 describes surface treated polypropylene:oriented PVA laminated to glass. The opposite major face comprising polypropylene film of Example film 11c was N2 corona treated (1.0 J/cm2). The resultant surface treated film, designed 13a, was then laminated to Soken 2263, a transfer optical adhesive (available from Soken Chemical & Engineering Co., Ltd, Japan), to form Example film 13b, which was then adhered to a piece of glass to form Example film 13c.
  • The peel force of the Soken 2263 adhesive/glass interface of Example film 13c was measured to be 22 oz/inch (250 g/cm).
  • Example 14
  • Example 14 describes corona treatment of LCP coated polypropylene. The major face of Example film 9c comprising LCP was surface treated to form Example films 14a, 14b, and 14c. The various surface treatments were:
    • a. N2 corona at 0.5 J/cm2;
    • b. N2 corona at 1.0 J/cm2;
    • c. N2 corona at 2.0 J/cm2;
    • d. Control (same as Example film 11c).
    Example 15
  • Example 15 describes corona treated “LCP coated polypropylene” laminated to PVA. Example films 14 were laminated to oriented and iodine stained PVA in a manner similar to that described in Example 11 to form Example films 15a, 15b, 15c, and 15d. Peel forces were measured. The results were <0.9 oz/inch (9.8 g/cm) of width for Example film 15d and 19 oz/inch (220 g/cm) of width for Example films 15a, 15b, and 15c.
  • Example 16
  • Example 16 describes “corona treated LCP coated polypropylene”: PVA laminate adhered to glass. Example films 15a, 15b, and 15c was then laminated to glass using Soken 2263 adhesive, in a manner similar to that described in Example 13. The peel force of adhesive/glass interface was, in all cases, greater than the polypropylene/PVA interface.
  • It is envisioned that other optical films, such as DBEF (available from 3M, St. Paul, Minn. USA) and Nipocs (available from Nitto Denko, Japan) can be similarly surface treated and adhered to oriented and stained PVA.
  • The present invention should not be considered limited to the particular examples described above, but rather should be understood to cover all aspects of the invention as fairly set out in the attached claims. Various modifications, equivalent processes, as well as numerous structures to which the present invention may be applicable will be readily apparent to those of skill in the art to which the present invention is directed upon review of the instant specification.

Claims (23)

1. An optical film comprising:
a layer of extruded simultaneously biaxially stretched polymer film being substantially non-absorbing and non-scattering for at least one polarization state of visible light; and having x, y, and z orthogonal indices of refraction wherein at least two of the orthogonal indices of refraction are not equal, an in-plane retardance of the layer being 100 nm or less and an out-of-plane retardance of the layer being 50 nm or greater.
2. The optical film according to claim 1, wherein the layer of extruded simultaneously biaxially stretched polymer film is a polyolefin film.
3. The optical film according to claim 1, wherein the polymer comprises at least one of: polypropylene, polyethylene, polyester, copolyester, polyacrylate, fluoropolymer, polybutylene, cyclic olefin polymer, poly(4-methyl-1-pentene), polymethacrylate and poly(vinylidene fluoride).
4. An optical film comprising:
a layer of extruded simultaneously biaxially stretched polymer film being substantially non-absorbing and non-scattering for at least one polarization state of visible light; and having x, y, and z orthogonal indices of refraction wherein at least two of the orthogonal indices of refraction are not equal, an in-plane retardance of the layer being 100 nm or less and an out-of-plane retardance of the layer being 50 nm or greater and the layer has a length and a width of at least 0.65 meter and the in-plane and out-of-plane retardance are substantially uniform across the length and width.
5. The optical film according to claim 4, wherein the width and length of the layer of extruded simultaneously biaxially stretched polymer film are each at least 1.3 meter.
6. The optical film according to claim 4, wherein the width and length of the layer of extruded simultaneously biaxially stretched polymer film are each at least 1.5 meter.
7. The optical film according to claim 4, wherein the in-plane retardance changes less than 4 nm/cm along the width and length of the layer of extruded simultaneously biaxially stretched polymer film.
8. The optical film according to claim 4, wherein the in-plane retardance changes less than 2 nm/cm along the width and length of the layer of extruded simultaneously biaxially stretched polymer film.
9. The optical film according to claim 4, wherein the in-plane retardance changes less than 1 nm/cm along the width and length of the layer of extruded simultaneously biaxially stretched polymer film.
10. The optical film according to claim 4, wherein the layer of extruded simultaneously biaxially stretched polymer film has a thickness of 5 micrometers to 200 micrometers.
11. An optical film comprising:
a layer of extruded simultaneously biaxially stretched polymer film being substantially non-absorbing and non-scattering for at least one polarization state of visible light; and having x, y, and z orthogonal indices of refraction wherein at least two of the orthogonal indices of refraction are not equal, an in-plane retardance of the layer being 100 nm or less and an out-of-plane retardance of the layer being 50 nm or greater and a thickness of 5 micrometers to 200 micrometers.
12. The optical film according to claim 1, 4 or 11 wherein the out-of-plane retardance of the layer of extruded simultaneously biaxially stretched polymer film is greater than 100 nm.
13. The optical film according to claim 1, 4 or 11, wherein the out-of-plane retardance of the layer of extruded simultaneously biaxially stretched polymer film is greater than 150 nm.
14. The optical film according to claim 1, 4 or 11, wherein the layer of extruded simultaneously biaxially stretched polymer film has a thickness of 5 micrometers to 25 micrometers.
15. The optical film according to claim 1, 4 or 11, wherein the layer of extruded simultaneously biaxially stretched polymer film has a thickness of 7 micrometers to 75 micrometers.
16. The optical film according to claim 1, 4 or 11, wherein the in-plane retardance of the layer of extruded simultaneously biaxially stretched polymer film is less than 20 nm.
17. The optical film according to claim 1, 4 or 11, wherein the in-plane retardance of the layer of extruded simultaneously biaxially stretched polymer film is from 20 nm to 50 nm.
18. The optical film according to claim 1, further comprising an LCP coating on the layer of extruded simultaneously biaxially stretched polymer film.
19. The optical film according to claim 18, further comprising an oriented PVA film laminated to the LCP coating.
20. The optical film according to claim 18, wherein the layer of extruded simultaneously biaxially stretched polymer film is laminated to glass.
21. The optical film according to claim 1, further comprising an oriented PVA film laminated to the layer of extruded simultaneously biaxially stretched polymer film.
22. The optical film according to claim 21, further comprising a TAC layer.
23. The optical film according to claim 21, wherein the layer of extruded simultaneously biaxially stretched polymer film is laminated to glass.
US11/220,157 2003-02-12 2005-09-06 Polymeric optical film Abandoned US20060012879A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/220,157 US20060012879A1 (en) 2003-02-12 2005-09-06 Polymeric optical film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/365,250 US6965474B2 (en) 2003-02-12 2003-02-12 Polymeric optical film
US11/220,157 US20060012879A1 (en) 2003-02-12 2005-09-06 Polymeric optical film

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/365,250 Continuation-In-Part US6965474B2 (en) 2003-02-12 2003-02-12 Polymeric optical film

Publications (1)

Publication Number Publication Date
US20060012879A1 true US20060012879A1 (en) 2006-01-19

Family

ID=32824597

Family Applications (4)

Application Number Title Priority Date Filing Date
US10/365,250 Expired - Fee Related US6965474B2 (en) 2003-02-12 2003-02-12 Polymeric optical film
US10/770,604 Expired - Fee Related US7099083B2 (en) 2003-02-12 2004-01-29 Polymeric optical film
US11/220,157 Abandoned US20060012879A1 (en) 2003-02-12 2005-09-06 Polymeric optical film
US11/463,428 Abandoned US20060285041A1 (en) 2003-02-12 2006-08-09 Polymeric optical film

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US10/365,250 Expired - Fee Related US6965474B2 (en) 2003-02-12 2003-02-12 Polymeric optical film
US10/770,604 Expired - Fee Related US7099083B2 (en) 2003-02-12 2004-01-29 Polymeric optical film

Family Applications After (1)

Application Number Title Priority Date Filing Date
US11/463,428 Abandoned US20060285041A1 (en) 2003-02-12 2006-08-09 Polymeric optical film

Country Status (7)

Country Link
US (4) US6965474B2 (en)
EP (2) EP1923727A1 (en)
JP (1) JP2006517608A (en)
KR (1) KR20050108354A (en)
CN (1) CN1748162A (en)
TW (1) TW200508669A (en)
WO (1) WO2004072701A1 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040156000A1 (en) * 2003-02-12 2004-08-12 Roska Fred J. Compensators for liquid crystal displays
US20060122879A1 (en) * 2004-12-07 2006-06-08 O'kelley Brian Method and system for pricing electronic advertisements
US20060272779A1 (en) * 2003-02-12 2006-12-07 3M Innovative Properties Company Process for manufacturing polymeric optical film
US20060285041A1 (en) * 2003-02-12 2006-12-21 3M Innovative Properties Company Polymeric optical film
US20070185779A1 (en) * 2006-01-31 2007-08-09 O'kelley Charles Brian Open exchange platforms
US20070192217A1 (en) * 2006-01-31 2007-08-16 O'kelley Charles Brian Entity linking in open exchange platforms
US20070192356A1 (en) * 2006-01-31 2007-08-16 O'kelley Charles Brian Open media exchange platforms
US20070198350A1 (en) * 2006-01-31 2007-08-23 O'kelley Charles Brian Global constraints in open exchange platforms
US20070231495A1 (en) * 2006-03-31 2007-10-04 Ciliske Scott L Method of forming multi-layer films using corona treatments
US20070234954A1 (en) * 2006-03-31 2007-10-11 Ciliske Scott L System for forming multi-layer films using corona treatments
US20070236636A1 (en) * 2006-03-31 2007-10-11 Watson Philip E Contrast ratio enhancement optical stack
US20090012853A1 (en) * 2007-07-03 2009-01-08 Right Media, Inc. Inferring legitimacy of advertisement calls
US20090012852A1 (en) * 2007-07-03 2009-01-08 Right Media, Inc. Data marketplace and broker fees
US20090013031A1 (en) * 2007-07-03 2009-01-08 Right Media, Inc. Inferring legitimacy of web-based resource requests
US20090278794A1 (en) * 2008-05-09 2009-11-12 Smart Technologies Ulc Interactive Input System With Controlled Lighting
US20100254157A1 (en) * 2007-11-30 2010-10-07 Lg Innotek Co., Ltd. Display Device and Backlight Unit
US20190189062A1 (en) * 2017-12-19 2019-06-20 Dell Products L.P. System and Method of Controlling Light Emissions of Displays
US10684507B2 (en) 2018-03-19 2020-06-16 Dell Products L.P. System and method of controlling light emissions of displays

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100618153B1 (en) * 2003-02-06 2006-08-29 주식회사 엘지화학 Protective film of polarizar,polarizing plate and method for preparing the same
JP3896098B2 (en) * 2003-06-27 2007-03-22 株式会社東芝 Hologram recording medium and method for producing the same
US7327422B2 (en) * 2004-03-09 2008-02-05 Nitto Denko Corporation Optical compensation film, display, and process
US20060099411A1 (en) * 2004-11-10 2006-05-11 Jianhui Xia Multi-layer pressure sensitive adhesive for optical assembly
JP4759317B2 (en) * 2005-05-26 2011-08-31 富士フイルム株式会社 Polarizing plate and liquid crystal display device using the same
CA2611777A1 (en) * 2005-06-16 2006-12-28 3M Innovative Properties Company Modifying agent composition for polyolefins
JP2009515218A (en) 2005-11-05 2009-04-09 スリーエム イノベイティブ プロパティズ カンパニー Optical film with high refractive index and antireflection coating
US7744969B2 (en) * 2006-03-23 2010-06-29 Sumitomo Chemical Company, Limited Retardation film and method for production thereof
US20070228586A1 (en) * 2006-03-31 2007-10-04 Merrill William W Process for making an optical film
US20070231548A1 (en) * 2006-03-31 2007-10-04 Merrill William W Process for making an optical film and rolls of optical film
US7407710B2 (en) * 2006-04-14 2008-08-05 3M Innovative Properties Company Composition containing fluoroalkyl silicone and hydrosilicone
US7413807B2 (en) * 2006-04-14 2008-08-19 3M Innovative Properties Company Fluoroalkyl silicone composition
US7410704B2 (en) * 2006-04-14 2008-08-12 3M Innovative Properties Company Composition containing fluoroalkyl hydrosilicone
US20090161045A1 (en) * 2006-05-01 2009-06-25 Mitsui Chemicals, Inc. Method of Compensating Wavelength Dependence of Birefringence of Optical Part, Optical Part, and Display Obtained with these
US7564628B2 (en) * 2006-06-06 2009-07-21 Cpfilms, Inc. Multiple band reflector with metal and dielectric layers
KR100907818B1 (en) * 2006-06-08 2009-07-16 주식회사 엘지화학 An integrated O-film for improving the TN-LCD viewing angle, a polarizing plate laminate containing the same, and a TN-LCD
TW200821691A (en) * 2006-07-26 2008-05-16 Toshiba Matsushita Display Tec Liquid crystal display device
TWI406899B (en) * 2006-09-05 2013-09-01 Tosoh Corp Optical compensation film and phase difference film
US20080085481A1 (en) * 2006-10-06 2008-04-10 3M Innovative Properties Company Rolls of optical film
US20080083999A1 (en) * 2006-10-06 2008-04-10 3M Innovative Properties Company Process for making an optical film
TWI439740B (en) * 2006-11-17 2014-06-01 Dainippon Printing Co Ltd Optical film, polarizing plate and image display device
US20080124555A1 (en) 2006-11-29 2008-05-29 3M Innovative Properties Company Polymerizable composition comprising perfluoropolyether urethane having ethylene oxide repeat units
US7709092B2 (en) * 2007-01-19 2010-05-04 3M Innovative Properties Company Solar control multilayer film
JP2011508281A (en) * 2007-12-28 2011-03-10 ダウ グローバル テクノロジーズ インコーポレイティド Phase compensation film containing polymer nanoparticles absorbing liquid crystal material
JP5241853B2 (en) * 2007-12-28 2013-07-17 ダウ グローバル テクノロジーズ エルエルシー Micro functional materials
TWI491930B (en) 2009-04-15 2015-07-11 3M新設資產公司 Optical film
US9464179B2 (en) 2009-04-15 2016-10-11 3M Innovative Properties Company Process and apparatus for a nanovoided article
CN102459440B (en) 2009-04-15 2013-11-06 3M创新有限公司 Process and apparatus for a nanovoided article
US9376558B2 (en) 2009-05-29 2016-06-28 Milliken & Company Polymer compositions, articles made from such compositons, and methods for molding such compositions
US9005493B2 (en) * 2010-02-09 2015-04-14 Roger Wen-Yi Hsu Method and apparatus for making retarder in stereoscopic glasses
US8379159B2 (en) 2010-03-12 2013-02-19 Roger Wen-Yi Hsu Method and apparatus for improved retarder of 3D glasses
US9234987B2 (en) * 2010-09-24 2016-01-12 Akron Polymer Systems, Inc. Wide-view multilayer optical films
US8742022B2 (en) 2010-12-20 2014-06-03 3M Innovative Properties Company Coating compositions comprising non-ionic surfactant exhibiting reduced fingerprint visibility
US9296904B2 (en) 2010-12-20 2016-03-29 3M Innovative Properties Company Coating compositions comprising non-ionic surfactant exhibiting reduced fingerprint visibility
KR20140015443A (en) 2011-03-09 2014-02-06 쓰리엠 이노베이티브 프로퍼티즈 컴파니 Antireflective film comprising large particle size fumed silica
JP2013054207A (en) * 2011-09-05 2013-03-21 Mitsubishi Plastics Inc Polyester film for protecting polarizing plate and method for manufacturing the same
CN104736650B (en) 2011-12-29 2017-09-29 3M创新有限公司 Cleanable product and its method of preparation and use
CN104755562B (en) 2012-06-19 2017-05-17 3M创新有限公司 Additive comprising low surface energy group and hydroxyl groups and coating compositions
CN104662105B (en) 2012-06-19 2017-06-13 3M创新有限公司 The coating composition of the non-iron polymerizable surfactant comprising the fingerprint visibility for showing to reduce
JP5370601B1 (en) * 2013-02-08 2013-12-18 東洋紡株式会社 Image display device
KR102466758B1 (en) * 2016-02-18 2022-11-14 효성화학 주식회사 Polyester base film for optical use
KR102477403B1 (en) 2016-05-31 2022-12-13 밀리켄 앤드 캄파니 Polymer compositions, articles made from such compositions and methods for molding such compositions
EP3582974B1 (en) 2017-02-15 2021-03-24 3M Innovative Properties Company Dry erase article
WO2018236593A1 (en) 2017-06-23 2018-12-27 3M Innovative Properties Company Films with a primer layer containing composite particles that include an organic polymer portion and a siliceous portion
WO2018234916A1 (en) 2017-06-23 2018-12-27 3M Innovative Properties Company Films with a primer layer containing silica nanoparticles modified by an organic silane
KR101934448B1 (en) * 2017-10-17 2019-01-02 에스케이씨 주식회사 Polarizing plate protective film and liquid crystal display comprising same
EP3824325A2 (en) 2018-07-18 2021-05-26 3M Innovative Properties Company Vehicle sensors comprising repellent surface, protective films, repellent coating compositions, and methods
JP2023502413A (en) 2019-11-20 2023-01-24 スリーエム イノベイティブ プロパティズ カンパニー Medical tape with high optical clarity when laminated
WO2022123489A1 (en) 2020-12-11 2022-06-16 3M Innovative Properties Company Perforated tapes for medical applications

Citations (91)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2618012A (en) * 1948-05-14 1952-11-18 American Viscose Corp Method and apparatus for two-way stretching a continuous sheet
US2961711A (en) * 1956-09-06 1960-11-29 Hoechst Ag Process for strengthening hollow bodies of plastic material
US3046599A (en) * 1959-12-30 1962-07-31 Bx Plastics Ltd Stretching apparatus
US3057835A (en) * 1956-10-03 1962-10-09 Eastman Kodak Co Process of producing highly crystalline polyolefins with titanium borohydride catalyst
US3231642A (en) * 1964-07-09 1966-01-25 Du Pont Extrusion and stretching of thermoplastic film
US3241662A (en) * 1962-06-22 1966-03-22 Johnson & Johnson Biaxially oriented polypropylene tape backing
US3296351A (en) * 1961-08-11 1967-01-03 Phillips Petroleum Co Method of producing a lateral stretching of a continuous sheet material
US3324218A (en) * 1963-09-28 1967-06-06 Kalle Ag Process for the manufacture of polypropylene films
US3372049A (en) * 1961-10-09 1968-03-05 Minnesota Mining & Mfg Polyolefin film composition, film, and pressure-sensitive adhesive sheet material
US3491877A (en) * 1966-03-17 1970-01-27 Minnesota Mining & Mfg Pressure-sensitive adhesive tape
US3502766A (en) * 1965-01-28 1970-03-24 Nippon Rayon Kk Process for the improvement of polyamide films
US3510552A (en) * 1965-09-15 1970-05-05 Nippon Rayon Kk Biaxially drawing polyamide film
US3816584A (en) * 1971-03-05 1974-06-11 Kalle Ag Asymmetrical transverse stretching of plastic film
US3887745A (en) * 1972-09-08 1975-06-03 Toray Industries Finger-tearable adhesive tape
US3890421A (en) * 1971-08-05 1975-06-17 Cellophane Sa Method for biaxially drawing plastic films
US3903234A (en) * 1973-02-01 1975-09-02 Du Pont Process for preparing filled, biaxially oriented, polymeric film
US3952073A (en) * 1972-06-09 1976-04-20 Toyo Boseki Kabushiki Kaisha Film having good tear property on impact comprising polypropylene and an ethylene polymer
US3995007A (en) * 1971-10-05 1976-11-30 Sanyo-Kokusaku Pulp Co., Ltd. Method of stretching film below the natural draw ratio without necking
US4045515A (en) * 1972-06-09 1977-08-30 Toyo Boseki Kabushiki Kaisha Film of good tear property on impact
US4076532A (en) * 1976-01-16 1978-02-28 Eastman Kodak Company Thermosensitive image-forming element and method of processing thereof
US4134957A (en) * 1970-10-26 1979-01-16 Toyobo Co., Ltd. Method of stretching polypropylene films
US4137362A (en) * 1973-08-27 1979-01-30 Nitto Electric Industrial Co., Ltd. Pressure sensitive adhesive tapes
US4138459A (en) * 1975-09-08 1979-02-06 Celanese Corporation Process for preparing a microporous polymer film
US4139669A (en) * 1974-09-09 1979-02-13 Chang Chow M Non-knifing plastic adhesive tape for packaging and sealing purpose
US4173676A (en) * 1976-12-28 1979-11-06 Toyo Kagaku Kabushiki Kaisha Adhesive tape
US4185148A (en) * 1976-05-17 1980-01-22 Mitsubishi Rayon Company Limited Process for producing the polypropylene film for electrical appliances
US4230767A (en) * 1978-02-08 1980-10-28 Toyo Boseki Kabushiki Kaisha Heat sealable laminated propylene polymer packaging material
US4234532A (en) * 1978-08-15 1980-11-18 Toray Industries, Inc. Method of manufacturing polyester films
US4283462A (en) * 1979-01-25 1981-08-11 Societe Chimiques Des Charbonnages Phenolic laminates with furan resin coating
US4330499A (en) * 1978-12-11 1982-05-18 Internationale Octrooi Maatschappij "Octropa" B.V. Process and apparatus for the simultaneous biaxial stretching of a plastic film
US4335069A (en) * 1981-06-25 1982-06-15 E. I. Du Pont De Nemours And Company Flat sheet process for production of polyolefin shrink film
US4343852A (en) * 1979-07-13 1982-08-10 Toyo Boseki Kabushiki Kaisha Composite film and packaging material of polypropylene base and surface polymer composition
US4370291A (en) * 1980-09-25 1983-01-25 Toray Industries, Inc. Process for producing polyester film
US4393115A (en) * 1980-07-22 1983-07-12 Toray Industries Multilayered polypropylene film
US4410582A (en) * 1980-12-10 1983-10-18 Toray Industries, Inc. Multi-layered polyolefin laminated film
US4414261A (en) * 1981-10-27 1983-11-08 Mitsubishi Plastics Industries Limited Adhesive tape
US4428723A (en) * 1982-02-18 1984-01-31 Thiel Alfons W Apparatus for stretching a continuously advancing synthetic-resin web and feeding same stepwise to a thermoforming machine
US4447485A (en) * 1981-08-04 1984-05-08 Mitsubishi Plastics Industries Limited Adhesive tape and process for its production
US4451533A (en) * 1983-02-09 1984-05-29 Minnesota Mining And Manufacturing Company Dispensable polypropylene adhesive-coated tape
US4514534A (en) * 1984-04-13 1985-04-30 United States Steel Corporation Modified polypropylene for film
US4536441A (en) * 1983-06-25 1985-08-20 Beiersdorf Aktiengesellschaft Adhesive tape
US4581087A (en) * 1983-02-04 1986-04-08 The Kendall Company Method of making a thermoplastic adhesive-coated tape
US4595738A (en) * 1979-05-21 1986-06-17 Internationale Octrooi Maatschappij "Octropa" B.V. Polypropylene film
US4652409A (en) * 1983-09-06 1987-03-24 Bakelite Xylonite Limited Web-stretching process
US4675582A (en) * 1985-12-24 1987-06-23 E. I. Du Pont De Nemours And Company System useful for controlling multiple synchronous secondaries of a linear motor along an elongated path
US4698261A (en) * 1984-10-23 1987-10-06 Hoechst Aktiengesellschaft Polyolefin film having improved mechanical properties
US4758398A (en) * 1986-10-07 1988-07-19 The Dexter Corporation Method of manufacture preforms
US4825111A (en) * 1987-11-02 1989-04-25 E. I. Du Pont De Nemours And Company Linear motor propulsion system
US4853602A (en) * 1985-12-24 1989-08-01 E. I. Dupont De Nemours And Company System for using synchronous secondaries of a linear motor to biaxially draw plastic films
US4908278A (en) * 1986-10-31 1990-03-13 Minnesota Mining And Manufacturing Company Severable multilayer thermoplastic film
US4968464A (en) * 1987-04-30 1990-11-06 Kohjin Co., Ltd. Process for producing a porous resin film
US5034078A (en) * 1985-05-08 1991-07-23 Exxon Chemical Patents Inc. Method of making an elastomeric film
US5036262A (en) * 1989-09-13 1991-07-30 E. I. Du Pont De Nemours And Company Method of determining control instructions
US5051225A (en) * 1988-06-22 1991-09-24 E. I. Du Pont De Nemours And Company Method of drawing plastic film in a tenter frame
US5064579A (en) * 1989-06-20 1991-11-12 Courtaulds Films & Packaging (Holdings) Ltd. Process of producing an oriented silicone resin coated polymeric film
US5091237A (en) * 1988-06-25 1992-02-25 Hoechst Aktiengesellschaft Transparent shrink film based on polypropylene, process for its manufacture, and its use for shrink labels
US5118566A (en) * 1989-06-29 1992-06-02 Hoechst Aktiengesellschaft Biaxially-oriented polypropylene film with high mechanical strength
US5252389A (en) * 1991-01-22 1993-10-12 Hoechst Aktiengesellschaft Biaxially stretched polypropylene monofilm
US5292563A (en) * 1990-11-24 1994-03-08 Hoechst Aktiengesellschaft Metallizable, twist wrap, biaxially oriented, polypropylene film
US5292561A (en) * 1990-09-26 1994-03-08 Hoechst Aktiengesellschaft Transparent shrink film made from biaxially oriented polypropylene
US5366796A (en) * 1991-10-24 1994-11-22 Hoechst Aktiengesellschaft Sealable, matt, biaxially oriented multilayer polyolefin film
US5429785A (en) * 1994-03-01 1995-07-04 E. I. Du Pont De Nemours And Company Method of making biaxially oriented thermoplastic films
US5451455A (en) * 1990-10-02 1995-09-19 Hoechst Aktiengesellschaft Biaxially oriented polypropylene film suitable for twist wrapping
US5527594A (en) * 1991-12-04 1996-06-18 Diafoil Hoechst Company, Limited Optical tape
US5620803A (en) * 1994-09-29 1997-04-15 Kohjin Co., Ltd. Heat shrinkable polypropylene laminate film
US5691043A (en) * 1994-07-15 1997-11-25 Mobil Oil Corporation Uniaxially shrinkable biaxially oriented polypropylene film and its method of preparation
US5738918A (en) * 1996-06-14 1998-04-14 Hoechst Celanese Corp Laminates of liquid crystalline polymeric films for polarizer applications
US5753172A (en) * 1996-12-11 1998-05-19 E. I. Du Pont De Nemours And Company Film bead heating for simultaneous stretching
US5795834A (en) * 1995-12-22 1998-08-18 Minnesota Mining & Manufacturing Company Adhesive tape and method of making
US5880800A (en) * 1996-01-09 1999-03-09 Nitto Denko Corporation Optical film and liquid crystal display
US5885501A (en) * 1997-06-24 1999-03-23 E. I. Du Pont De Nemours And Company Process for preparing dimensionally stabilized biaxially stretched thermoplastic film
US5912292A (en) * 1993-02-10 1999-06-15 Fina Technology, Inc. Sodium benzoate as a nucleating agent for monoaxially oriented polypropylene film
US6068936A (en) * 1995-09-28 2000-05-30 Ticona Gmbh Polyolefin film containing cycloolefin polymer, process for the production thereof, and the use thereof
US6115095A (en) * 1997-10-24 2000-09-05 Nec Corporation In-plane switching type liquid crystal display having a compensation layer with the principal optical axis extending perpendicularly to the substrate
US6208396B1 (en) * 1996-10-25 2001-03-27 Sumitomo Chemical Company, Limited Normally white mode twisted nematic liquid crystal display device having improved viewing angle characteristics
US6266114B1 (en) * 1999-07-14 2001-07-24 Rockwell Collins, Inc. Method and apparatus for compensating a liquid crystal display
US6303067B1 (en) * 1998-11-13 2001-10-16 3M Innovative Properties Company Method of stretching films according to an overbias or overstretch stretch profile
US6358457B1 (en) * 1998-11-13 2002-03-19 3M Innovative Properties Company Method of stretching films according to an overbias or overstretch profile
US20020049725A1 (en) * 2000-05-19 2002-04-25 Motoki Nakade Item combination presenting apparatus, item combination presenting system, item combination presenting method and item information presenting method
US6380996B1 (en) * 1998-01-07 2002-04-30 Fuji Photo Film Co., Ltd. Optical compensatory sheet and liquid crystal display
US6451425B1 (en) * 1999-06-16 2002-09-17 3M Innovative Properties Company Adhesive tape backing
US20020149725A1 (en) * 2000-12-25 2002-10-17 Kiyokazu Hashimoto Optical compensatory sheet comprising optically uniaxial or biaxial transparent stretched film
US20030072931A1 (en) * 2001-05-24 2003-04-17 3M Innovative Properties Company Low Tg multilayer optical films
US20030086033A1 (en) * 2001-10-10 2003-05-08 Nitto Denko Corporation Laminated phase retarder, polarizing member and liquid-crystal display device
US20030156235A1 (en) * 2002-01-09 2003-08-21 Noriyasu Kuzuhara Polarizing plate and liquid crystal display employing the same
US20040080693A1 (en) * 2000-07-21 2004-04-29 Konica Corporation Optical compensation sheet and liquid crystal display
US20040155372A1 (en) * 2003-02-12 2004-08-12 Allen Richard C. Process for manufacturing polymeric optical film
US20040156106A1 (en) * 2003-02-12 2004-08-12 Allen Richard C. Polymeric optical film
US20040156000A1 (en) * 2003-02-12 2004-08-12 Roska Fred J. Compensators for liquid crystal displays
US6844403B2 (en) * 2001-09-13 2005-01-18 Jsr Corporation Cyclic olefin addition copolymer and process for producing same, crosslinking composition, crosslinked product and process for producing same, and optically transparent material and application thereof
US6861121B2 (en) * 2000-12-25 2005-03-01 Nitto Denko Corporation Optical diffusing layer, optical diffusing sheet, and optical element

Family Cites Families (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3014234A (en) * 1959-12-21 1961-12-26 American Viscose Corp Method and apparatus for biaxially stretching films
GB1000361A (en) 1962-02-28 1965-08-04 Toyo Rayon Co Ltd Improvements in or relating to polyethylene terepthalate films
US3853598A (en) * 1970-04-17 1974-12-10 Scholl Inc Adhesive tape
US3705283A (en) * 1971-08-16 1972-12-05 Varian Associates Microwave applicator employing a broadside slot radiator
DD125061A5 (en) * 1975-06-25 1977-03-30
FR2317076A2 (en) 1975-07-07 1977-02-04 Cellophane Sa Flat drawing plastic films with self-propelling grippers - preventing wastage of film edges due to arching
US4385022A (en) * 1981-05-18 1983-05-24 Mobil Oil Corporation Process for preparing biaxially oriented films of butene-1 homopolymer and copolymers
DE3144912A1 (en) 1981-11-12 1983-05-19 Hoechst Ag, 65929 Frankfurt BIAXIAL STRETCHED POLYOLEFINIC PLASTIC FILM WITH AN ELASTICITY MODULE IN THE LENGTH DIRECTION OF MORE THAN 4000 N / MM (ARROW HIGH) 2 (ARROW HIGH)
EP0149878B1 (en) 1984-01-24 1987-09-09 Toray Industries, Inc. Link device for stretching sheet material and stretching apparatus using said link device
DE3501726A1 (en) * 1985-01-19 1986-07-24 Hoechst Ag, 6230 Frankfurt POLYPROPYLENE TAPE
FR2595157B1 (en) * 1986-02-28 1988-04-29 Commissariat Energie Atomique CELL WITH A DOUBLE LAYER OF LIQUID CRYSTAL, USING THE ELECTRICALLY CONTROLLED BIREFRINGENCE EFFECT AND METHOD FOR MANUFACTURING A UNIAXIC NEGATIVE ANISOTROPY ANISOTROPY MEDIUM FOR USE IN THIS CELL
DE3624921A1 (en) 1986-07-23 1988-01-28 Beiersdorf Ag DUCT TAPE
US5072493A (en) * 1988-06-22 1991-12-17 E. I. Du Pont De Nemours And Company Apparatus for drawing plastic film in a tenter frame
US5077121A (en) * 1988-10-27 1991-12-31 Shell Oil Company High strength high modulus polyolefin composite with improved solid state drawability
DE69011097T2 (en) 1990-05-03 1995-01-26 Minnesota Mining & Mfg Tear-off, pressure-sensitive medical adhesive tape with continuous film.
US5073458A (en) * 1990-05-31 1991-12-17 Shell Oil Company Polypropylene-polybutylene laminated packaging film with improved tear strength
EP0482620B1 (en) 1990-10-24 1997-03-05 Nitto Denko Corporation Birefringent film, process for producing the same, retardation film, elliptically polarizing plate, and liquid crystal display
JP3273046B2 (en) * 1991-06-25 2002-04-08 日本ゼオン株式会社 Phase plate
DE69219571T2 (en) 1991-12-09 1997-09-11 Sumitomo Chemical Co Process for producing a phase retarder from a film or sheet made of thermoplastic resin
US5374482A (en) * 1992-12-02 1994-12-20 Tti Masking tape
US5318842A (en) 1992-12-03 1994-06-07 Himont Incorporated Biaxially oriented propylene polymer film or sheet articles
US5986733A (en) 1993-04-30 1999-11-16 Rockwell International Corporation Negative optical compensator tilted in respect to liquid crystal cell for liquid crystal display
US5474730A (en) * 1993-06-09 1995-12-12 Hoechst Celanese Corporation Production of highly birefringent film
JPH07125064A (en) 1993-10-29 1995-05-16 Mitsui Toatsu Chem Inc Inflation molding of polypropylene
KR100344364B1 (en) * 1993-12-21 2002-11-30 미네소타 마이닝 앤드 매뉴팩춰링 캄파니 Optical Polarizers and Display Devices
US5504603A (en) 1994-04-04 1996-04-02 Rockwell International Corporation Optical compensator for improved gray scale performance in liquid crystal display
US5612801A (en) 1994-04-04 1997-03-18 Rockwell Science Center, Inc. Monolithic optical compensation device for improved viewing angle in liquid crystal displays
US5638197A (en) 1994-04-04 1997-06-10 Rockwell International Corp. Inorganic thin film compensator for improved gray scale performance in twisted nematic liquid crystal displays and method of making
US5619352A (en) 1994-04-04 1997-04-08 Rockwell International Corporation LCD splay/twist compensator having varying tilt and /or azimuthal angles for improved gray scale performance
US5986734A (en) 1994-04-04 1999-11-16 Rockwell International Corporation Organic polymer O-plate compensator for improved gray scale performance in twisted nematic liquid crystal displays
US5557434A (en) 1994-09-30 1996-09-17 Rockwell International Optical compensator including an o-plate for super-twist nematic liquid crystal display
US6737154B2 (en) * 1995-06-26 2004-05-18 3M Innovative Properties Company Multilayer polymer film with additional coatings or layers
EP0922243A1 (en) * 1997-05-30 1999-06-16 Koninklijke Philips Electronics N.V. A liquid crystal display device provided with a reflective polarizer, and a reflective polarizer
US5837177A (en) * 1997-06-23 1998-11-17 Aristech Chemical Corporation Controlled nucleation of polypropylene in biaxially oriented films
EP0899605B1 (en) 1997-08-29 2009-07-01 Sharp Kabushiki Kaisha Liquid crystal display device
US5973043A (en) * 1997-11-26 1999-10-26 Milliken & Company Carbamoyl substituted acetals and compositions containing the same
EP0926533B1 (en) * 1997-12-25 2001-08-29 Fuji Photo Film Co., Ltd. Optical compensating sheet and liquid crystal display comprising the sheet
US6179948B1 (en) * 1998-01-13 2001-01-30 3M Innovative Properties Company Optical film and process for manufacture thereof
US6256146B1 (en) * 1998-07-31 2001-07-03 3M Innovative Properties Post-forming continuous/disperse phase optical bodies
KR100679436B1 (en) 1999-02-17 2007-02-06 후지필름 홀딩스 가부시끼가이샤 Optical compensation sheet having optical anisotropic layer formed from liquid crystal molecules
KR100728560B1 (en) 1999-09-16 2007-06-14 메르크 파텐트 게엠베하 Optical compensator and liquid crystal display ?
WO2001020394A1 (en) 1999-09-16 2001-03-22 Merck Patent Gmbh Optical compensator and liquid crystal display i
JP2001194534A (en) * 2000-01-13 2001-07-19 Nitto Denko Corp Light transmission plate and its manufacturing method
US7084944B2 (en) 2000-05-15 2006-08-01 Fuji Photo Film Co., Ltd. Optical compensatory sheet comprising a biaxially stretched cellulose acetate film, polarizing plate and liquid crystal display
US6673425B1 (en) * 2000-10-27 2004-01-06 3M Innovative Properties Company Method and materials for preventing warping in optical films
JP2002196134A (en) * 2000-12-22 2002-07-10 Nitto Denko Corp Optically compensated film, method for manufacturing the same and polarization plate and liquid crystal display device using the film
EP1394187B1 (en) * 2001-05-15 2006-03-29 Denki Kagaku Kogyo Kabushiki Kaisha Process for producing olefin/aromatic vinyl copolymer

Patent Citations (98)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2618012A (en) * 1948-05-14 1952-11-18 American Viscose Corp Method and apparatus for two-way stretching a continuous sheet
US2961711A (en) * 1956-09-06 1960-11-29 Hoechst Ag Process for strengthening hollow bodies of plastic material
US3057835A (en) * 1956-10-03 1962-10-09 Eastman Kodak Co Process of producing highly crystalline polyolefins with titanium borohydride catalyst
US3046599A (en) * 1959-12-30 1962-07-31 Bx Plastics Ltd Stretching apparatus
US3296351A (en) * 1961-08-11 1967-01-03 Phillips Petroleum Co Method of producing a lateral stretching of a continuous sheet material
US3372049A (en) * 1961-10-09 1968-03-05 Minnesota Mining & Mfg Polyolefin film composition, film, and pressure-sensitive adhesive sheet material
US3241662A (en) * 1962-06-22 1966-03-22 Johnson & Johnson Biaxially oriented polypropylene tape backing
US3324218A (en) * 1963-09-28 1967-06-06 Kalle Ag Process for the manufacture of polypropylene films
US3231642A (en) * 1964-07-09 1966-01-25 Du Pont Extrusion and stretching of thermoplastic film
US3502766A (en) * 1965-01-28 1970-03-24 Nippon Rayon Kk Process for the improvement of polyamide films
US3510552A (en) * 1965-09-15 1970-05-05 Nippon Rayon Kk Biaxially drawing polyamide film
US3491877A (en) * 1966-03-17 1970-01-27 Minnesota Mining & Mfg Pressure-sensitive adhesive tape
US4134957A (en) * 1970-10-26 1979-01-16 Toyobo Co., Ltd. Method of stretching polypropylene films
US3816584A (en) * 1971-03-05 1974-06-11 Kalle Ag Asymmetrical transverse stretching of plastic film
US3890421A (en) * 1971-08-05 1975-06-17 Cellophane Sa Method for biaxially drawing plastic films
US3995007A (en) * 1971-10-05 1976-11-30 Sanyo-Kokusaku Pulp Co., Ltd. Method of stretching film below the natural draw ratio without necking
US3952073A (en) * 1972-06-09 1976-04-20 Toyo Boseki Kabushiki Kaisha Film having good tear property on impact comprising polypropylene and an ethylene polymer
US4045515A (en) * 1972-06-09 1977-08-30 Toyo Boseki Kabushiki Kaisha Film of good tear property on impact
US3887745A (en) * 1972-09-08 1975-06-03 Toray Industries Finger-tearable adhesive tape
US3903234A (en) * 1973-02-01 1975-09-02 Du Pont Process for preparing filled, biaxially oriented, polymeric film
US4137362A (en) * 1973-08-27 1979-01-30 Nitto Electric Industrial Co., Ltd. Pressure sensitive adhesive tapes
US4139669A (en) * 1974-09-09 1979-02-13 Chang Chow M Non-knifing plastic adhesive tape for packaging and sealing purpose
US4138459A (en) * 1975-09-08 1979-02-06 Celanese Corporation Process for preparing a microporous polymer film
US4076532A (en) * 1976-01-16 1978-02-28 Eastman Kodak Company Thermosensitive image-forming element and method of processing thereof
US4185148A (en) * 1976-05-17 1980-01-22 Mitsubishi Rayon Company Limited Process for producing the polypropylene film for electrical appliances
US4173676A (en) * 1976-12-28 1979-11-06 Toyo Kagaku Kabushiki Kaisha Adhesive tape
US4230767A (en) * 1978-02-08 1980-10-28 Toyo Boseki Kabushiki Kaisha Heat sealable laminated propylene polymer packaging material
US4234532A (en) * 1978-08-15 1980-11-18 Toray Industries, Inc. Method of manufacturing polyester films
US4330499A (en) * 1978-12-11 1982-05-18 Internationale Octrooi Maatschappij "Octropa" B.V. Process and apparatus for the simultaneous biaxial stretching of a plastic film
US4283462A (en) * 1979-01-25 1981-08-11 Societe Chimiques Des Charbonnages Phenolic laminates with furan resin coating
US4595738A (en) * 1979-05-21 1986-06-17 Internationale Octrooi Maatschappij "Octropa" B.V. Polypropylene film
US4343852A (en) * 1979-07-13 1982-08-10 Toyo Boseki Kabushiki Kaisha Composite film and packaging material of polypropylene base and surface polymer composition
US4393115A (en) * 1980-07-22 1983-07-12 Toray Industries Multilayered polypropylene film
US4370291A (en) * 1980-09-25 1983-01-25 Toray Industries, Inc. Process for producing polyester film
US4410582A (en) * 1980-12-10 1983-10-18 Toray Industries, Inc. Multi-layered polyolefin laminated film
US4335069A (en) * 1981-06-25 1982-06-15 E. I. Du Pont De Nemours And Company Flat sheet process for production of polyolefin shrink film
US4513028A (en) * 1981-08-04 1985-04-23 Mitsubishi Plastics Industries Limited Adhesive tape and process for its production
US4447485A (en) * 1981-08-04 1984-05-08 Mitsubishi Plastics Industries Limited Adhesive tape and process for its production
US4414261A (en) * 1981-10-27 1983-11-08 Mitsubishi Plastics Industries Limited Adhesive tape
US4428723A (en) * 1982-02-18 1984-01-31 Thiel Alfons W Apparatus for stretching a continuously advancing synthetic-resin web and feeding same stepwise to a thermoforming machine
US4581087A (en) * 1983-02-04 1986-04-08 The Kendall Company Method of making a thermoplastic adhesive-coated tape
US4451533A (en) * 1983-02-09 1984-05-29 Minnesota Mining And Manufacturing Company Dispensable polypropylene adhesive-coated tape
US4536441A (en) * 1983-06-25 1985-08-20 Beiersdorf Aktiengesellschaft Adhesive tape
US4652409A (en) * 1983-09-06 1987-03-24 Bakelite Xylonite Limited Web-stretching process
US4514534A (en) * 1984-04-13 1985-04-30 United States Steel Corporation Modified polypropylene for film
US4698261A (en) * 1984-10-23 1987-10-06 Hoechst Aktiengesellschaft Polyolefin film having improved mechanical properties
US5034078A (en) * 1985-05-08 1991-07-23 Exxon Chemical Patents Inc. Method of making an elastomeric film
US4675582A (en) * 1985-12-24 1987-06-23 E. I. Du Pont De Nemours And Company System useful for controlling multiple synchronous secondaries of a linear motor along an elongated path
US4853602A (en) * 1985-12-24 1989-08-01 E. I. Dupont De Nemours And Company System for using synchronous secondaries of a linear motor to biaxially draw plastic films
US4758398A (en) * 1986-10-07 1988-07-19 The Dexter Corporation Method of manufacture preforms
US4908278A (en) * 1986-10-31 1990-03-13 Minnesota Mining And Manufacturing Company Severable multilayer thermoplastic film
US4968464A (en) * 1987-04-30 1990-11-06 Kohjin Co., Ltd. Process for producing a porous resin film
US4825111A (en) * 1987-11-02 1989-04-25 E. I. Du Pont De Nemours And Company Linear motor propulsion system
US5051225A (en) * 1988-06-22 1991-09-24 E. I. Du Pont De Nemours And Company Method of drawing plastic film in a tenter frame
US5091237A (en) * 1988-06-25 1992-02-25 Hoechst Aktiengesellschaft Transparent shrink film based on polypropylene, process for its manufacture, and its use for shrink labels
US5064579A (en) * 1989-06-20 1991-11-12 Courtaulds Films & Packaging (Holdings) Ltd. Process of producing an oriented silicone resin coated polymeric film
US5118566A (en) * 1989-06-29 1992-06-02 Hoechst Aktiengesellschaft Biaxially-oriented polypropylene film with high mechanical strength
US5036262A (en) * 1989-09-13 1991-07-30 E. I. Du Pont De Nemours And Company Method of determining control instructions
US5292561A (en) * 1990-09-26 1994-03-08 Hoechst Aktiengesellschaft Transparent shrink film made from biaxially oriented polypropylene
US5451455A (en) * 1990-10-02 1995-09-19 Hoechst Aktiengesellschaft Biaxially oriented polypropylene film suitable for twist wrapping
US5292563A (en) * 1990-11-24 1994-03-08 Hoechst Aktiengesellschaft Metallizable, twist wrap, biaxially oriented, polypropylene film
US5252389A (en) * 1991-01-22 1993-10-12 Hoechst Aktiengesellschaft Biaxially stretched polypropylene monofilm
US5366796A (en) * 1991-10-24 1994-11-22 Hoechst Aktiengesellschaft Sealable, matt, biaxially oriented multilayer polyolefin film
US5527594A (en) * 1991-12-04 1996-06-18 Diafoil Hoechst Company, Limited Optical tape
US5912292A (en) * 1993-02-10 1999-06-15 Fina Technology, Inc. Sodium benzoate as a nucleating agent for monoaxially oriented polypropylene film
US5429785A (en) * 1994-03-01 1995-07-04 E. I. Du Pont De Nemours And Company Method of making biaxially oriented thermoplastic films
US5691043A (en) * 1994-07-15 1997-11-25 Mobil Oil Corporation Uniaxially shrinkable biaxially oriented polypropylene film and its method of preparation
US5620803A (en) * 1994-09-29 1997-04-15 Kohjin Co., Ltd. Heat shrinkable polypropylene laminate film
US6068936A (en) * 1995-09-28 2000-05-30 Ticona Gmbh Polyolefin film containing cycloolefin polymer, process for the production thereof, and the use thereof
US5795834A (en) * 1995-12-22 1998-08-18 Minnesota Mining & Manufacturing Company Adhesive tape and method of making
US5880800A (en) * 1996-01-09 1999-03-09 Nitto Denko Corporation Optical film and liquid crystal display
US5738918A (en) * 1996-06-14 1998-04-14 Hoechst Celanese Corp Laminates of liquid crystalline polymeric films for polarizer applications
US6208396B1 (en) * 1996-10-25 2001-03-27 Sumitomo Chemical Company, Limited Normally white mode twisted nematic liquid crystal display device having improved viewing angle characteristics
US5753172A (en) * 1996-12-11 1998-05-19 E. I. Du Pont De Nemours And Company Film bead heating for simultaneous stretching
US5885501A (en) * 1997-06-24 1999-03-23 E. I. Du Pont De Nemours And Company Process for preparing dimensionally stabilized biaxially stretched thermoplastic film
US6115095A (en) * 1997-10-24 2000-09-05 Nec Corporation In-plane switching type liquid crystal display having a compensation layer with the principal optical axis extending perpendicularly to the substrate
US6380996B1 (en) * 1998-01-07 2002-04-30 Fuji Photo Film Co., Ltd. Optical compensatory sheet and liquid crystal display
US6303067B1 (en) * 1998-11-13 2001-10-16 3M Innovative Properties Company Method of stretching films according to an overbias or overstretch stretch profile
US6358457B1 (en) * 1998-11-13 2002-03-19 3M Innovative Properties Company Method of stretching films according to an overbias or overstretch profile
US20020098372A1 (en) * 1998-11-13 2002-07-25 3M Innovative Properties Company Methods of stretching films and such films
US6451425B1 (en) * 1999-06-16 2002-09-17 3M Innovative Properties Company Adhesive tape backing
US6266114B1 (en) * 1999-07-14 2001-07-24 Rockwell Collins, Inc. Method and apparatus for compensating a liquid crystal display
US20020049725A1 (en) * 2000-05-19 2002-04-25 Motoki Nakade Item combination presenting apparatus, item combination presenting system, item combination presenting method and item information presenting method
US20040080693A1 (en) * 2000-07-21 2004-04-29 Konica Corporation Optical compensation sheet and liquid crystal display
US20020149725A1 (en) * 2000-12-25 2002-10-17 Kiyokazu Hashimoto Optical compensatory sheet comprising optically uniaxial or biaxial transparent stretched film
US6861121B2 (en) * 2000-12-25 2005-03-01 Nitto Denko Corporation Optical diffusing layer, optical diffusing sheet, and optical element
US20030072931A1 (en) * 2001-05-24 2003-04-17 3M Innovative Properties Company Low Tg multilayer optical films
US6844403B2 (en) * 2001-09-13 2005-01-18 Jsr Corporation Cyclic olefin addition copolymer and process for producing same, crosslinking composition, crosslinked product and process for producing same, and optically transparent material and application thereof
US20030086033A1 (en) * 2001-10-10 2003-05-08 Nitto Denko Corporation Laminated phase retarder, polarizing member and liquid-crystal display device
US20030156235A1 (en) * 2002-01-09 2003-08-21 Noriyasu Kuzuhara Polarizing plate and liquid crystal display employing the same
US20040156000A1 (en) * 2003-02-12 2004-08-12 Roska Fred J. Compensators for liquid crystal displays
US20040183973A1 (en) * 2003-02-12 2004-09-23 3M Innovative Properties Company Compensators for liquid crystal displays
US20040184150A1 (en) * 2003-02-12 2004-09-23 3M Innovative Properties Company Polymeric optical film
US20040156106A1 (en) * 2003-02-12 2004-08-12 Allen Richard C. Polymeric optical film
US20040155372A1 (en) * 2003-02-12 2004-08-12 Allen Richard C. Process for manufacturing polymeric optical film
US7099083B2 (en) * 2003-02-12 2006-08-29 3M Innovative Properties Company Polymeric optical film
US7110072B2 (en) * 2003-02-12 2006-09-19 3M Innovative Properties Company Compensators for liquid crystal displays
US20060238682A1 (en) * 2003-02-12 2006-10-26 3M Innovative Properties Company Compensators for liquid crystal displays

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040156000A1 (en) * 2003-02-12 2004-08-12 Roska Fred J. Compensators for liquid crystal displays
US20060238682A1 (en) * 2003-02-12 2006-10-26 3M Innovative Properties Company Compensators for liquid crystal displays
US20060272779A1 (en) * 2003-02-12 2006-12-07 3M Innovative Properties Company Process for manufacturing polymeric optical film
US20060272778A1 (en) * 2003-02-12 2006-12-07 3M Innovative Properties Company Process for manufacturing polymeric optical film
US20060285041A1 (en) * 2003-02-12 2006-12-21 3M Innovative Properties Company Polymeric optical film
US20060122879A1 (en) * 2004-12-07 2006-06-08 O'kelley Brian Method and system for pricing electronic advertisements
US20070185779A1 (en) * 2006-01-31 2007-08-09 O'kelley Charles Brian Open exchange platforms
US20070192217A1 (en) * 2006-01-31 2007-08-16 O'kelley Charles Brian Entity linking in open exchange platforms
US20070192356A1 (en) * 2006-01-31 2007-08-16 O'kelley Charles Brian Open media exchange platforms
US20070198350A1 (en) * 2006-01-31 2007-08-23 O'kelley Charles Brian Global constraints in open exchange platforms
US20070231495A1 (en) * 2006-03-31 2007-10-04 Ciliske Scott L Method of forming multi-layer films using corona treatments
US20070234954A1 (en) * 2006-03-31 2007-10-11 Ciliske Scott L System for forming multi-layer films using corona treatments
US20070236636A1 (en) * 2006-03-31 2007-10-11 Watson Philip E Contrast ratio enhancement optical stack
US7707963B2 (en) 2006-03-31 2010-05-04 3M Innovative Properties Company System for forming multi-layer films using corona treatments
US20090012853A1 (en) * 2007-07-03 2009-01-08 Right Media, Inc. Inferring legitimacy of advertisement calls
US20090012852A1 (en) * 2007-07-03 2009-01-08 Right Media, Inc. Data marketplace and broker fees
US20090013031A1 (en) * 2007-07-03 2009-01-08 Right Media, Inc. Inferring legitimacy of web-based resource requests
US20100254157A1 (en) * 2007-11-30 2010-10-07 Lg Innotek Co., Ltd. Display Device and Backlight Unit
US8696182B2 (en) * 2007-11-30 2014-04-15 Lg Display Co., Ltd. Display device and backlight unit for improving uniformity of brightness
US20090278794A1 (en) * 2008-05-09 2009-11-12 Smart Technologies Ulc Interactive Input System With Controlled Lighting
US20190189062A1 (en) * 2017-12-19 2019-06-20 Dell Products L.P. System and Method of Controlling Light Emissions of Displays
US10684507B2 (en) 2018-03-19 2020-06-16 Dell Products L.P. System and method of controlling light emissions of displays

Also Published As

Publication number Publication date
US20060285041A1 (en) 2006-12-21
EP1923727A1 (en) 2008-05-21
JP2006517608A (en) 2006-07-27
US20040156106A1 (en) 2004-08-12
TW200508669A (en) 2005-03-01
KR20050108354A (en) 2005-11-16
EP1595171A1 (en) 2005-11-16
US6965474B2 (en) 2005-11-15
WO2004072701A1 (en) 2004-08-26
US7099083B2 (en) 2006-08-29
US20040184150A1 (en) 2004-09-23
CN1748162A (en) 2006-03-15

Similar Documents

Publication Publication Date Title
US6965474B2 (en) Polymeric optical film
US20060272778A1 (en) Process for manufacturing polymeric optical film
US20060238682A1 (en) Compensators for liquid crystal displays
US8760601B2 (en) Liquid crystal display device and polarizing plate
US7964254B2 (en) Optical laminate, optical element and liquid crystal display device
EP1876491A1 (en) Liquid crystal panel and liquid crystal display
JP5209233B2 (en) Retardation film, polarizing plate, liquid crystal panel and liquid crystal display device
US8993075B2 (en) Stretched film, process for producing the same, and liquid crystal display device
KR20180102306A (en) A polyester protective film for polarizer and polarizer using it
WO2009105427A2 (en) Optical compensation film including strippable skin
US20160291229A1 (en) Method for producing retardation film

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION