US20060041184A1 - System and method of treating stuttering by neuromodulation - Google Patents

System and method of treating stuttering by neuromodulation Download PDF

Info

Publication number
US20060041184A1
US20060041184A1 US11/168,600 US16860005A US2006041184A1 US 20060041184 A1 US20060041184 A1 US 20060041184A1 US 16860005 A US16860005 A US 16860005A US 2006041184 A1 US2006041184 A1 US 2006041184A1
Authority
US
United States
Prior art keywords
nucleus
stuttering
predetermined site
nuclei
speech
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US11/168,600
Other versions
US7632225B2 (en
Inventor
Paul Stypulkowski
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Medtronic Inc
Original Assignee
Medtronic Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Medtronic Inc filed Critical Medtronic Inc
Priority to US11/168,600 priority Critical patent/US7632225B2/en
Publication of US20060041184A1 publication Critical patent/US20060041184A1/en
Application granted granted Critical
Publication of US7632225B2 publication Critical patent/US7632225B2/en
Adjusted expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/142Pressure infusion, e.g. using pumps
    • A61M5/14244Pressure infusion, e.g. using pumps adapted to be carried by the patient, e.g. portable on the body
    • A61M5/14276Pressure infusion, e.g. using pumps adapted to be carried by the patient, e.g. portable on the body specially adapted for implantation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F5/00Orthopaedic methods or devices for non-surgical treatment of bones or joints; Nursing devices; Anti-rape devices
    • A61F5/58Apparatus for correcting stammering or stuttering
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/168Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body
    • A61M5/172Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body electrical or electronic
    • A61M5/1723Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body electrical or electronic using feedback of body parameters, e.g. blood-sugar, pressure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2210/00Anatomical parts of the body
    • A61M2210/06Head
    • A61M2210/0693Brain, cerebrum

Definitions

  • the invention relates to therapeutic treatment of stuttering. More particularly, the invention relates to treating stuttering via neural stimulation and drug therapy techniques.
  • Stuttering is a speech-disfluency problem that can have significant developmental and social impacts upon stuttering individuals. Stuttering can include repetitions of parts of words and/or whole words, prolongation of sounds, interjections of sounds or words, and unduly prolonged pauses.
  • U.S. Pat. No. 4,020,567 entitled Method and Stuttering Therapy Apparatus, issued to Webster on May 3, 1977, discloses a system for helping individuals determine when they are stuttering.
  • the system generates an electrical signal based on the person's speech and uses the signal to detect certain speech characteristics corresponding to stuttering.
  • a first embodiment detects speech onset errors during the first 100 milliseconds of syllable pronunciation.
  • stuttering is detected by evaluating the rate of change in the amplitude of the person's speech.
  • An LED is illuminated to notify a system-user that stuttering is occurring.
  • the system disclosed by Webster is intended for use by stutterers while they practice learning not to stutter.
  • U.S. Pat. No. 4,662,847 entitled Electronic Device and Method for the Treatment of Stuttering, issued to Blum on May 5, 1987, discloses an electronic device for treating stuttering.
  • the device transmits electronic speech signals from a microphone to an earphone through two paths. One path is synchronous. The other path is asynchronous. During normal speech, the synchronous speech signal is transmitted to the earphone. At any pause in phonation, the device switches to the asynchronous path and transmits speech in a delayed auditory feedback mode until a change in the user's speech occurs.
  • U.S. Pat. No. 4,784,115 entitled Anti-Stuttering Device and Method, issued to Webster on Nov. 15, 1988, discloses an anti-stuttering device for enhancing speech fluency.
  • the device detects vocal pulses generated by the opening and closing of a speaker's vocal folds. Electrical signals representative of the vocal pulses are transmitted to a receiver in the speaker's sealed ear canal where these signals are reproduced as audio pulses.
  • the device reduces stuttering by providing an early indication of the characteristics of the speaker's voice via audio pulses.
  • the audio pulses produce a resonant effect within the person's ear canal.
  • U.S. Pat. No. 5,794,203 entitled Biofeedback System for Speech Disorders, issued to Kehoe on Aug. 11, 1988, discloses a biofeedback system for speech disorders that detects disfluent speech and provides auditory feedback to enable fluent speech.
  • the disfluent-speech detector can be either an electromyograph (EMG) or an electroglottograph (EGG).
  • EMG is a system that measures the electrical activities of muscles through electrodes attached to a person's body.
  • EGG records the opening and closing of a person's vocal folds. EGG's use two electrodes on a person's neck and measure the resistance between the electrodes. This resistance changes as the vocal folds open and close.
  • An EGG can show the frequency of the vocal folds. This is the fundamental pitch of the user's voice, without the harmonics produced by the nasal cavities, mouth, and the like.
  • the system disclosed by Kehoe includes an electronic controller connected to an EMG and frequency-altered auditory feedback (FAF) circuit.
  • the controller receives data from the EMG regarding muscle tension in the user's vocal cords, masseter, and/or other speech-production muscles.
  • the controller controls the pitch of the FAF circuit in accordance with the user's muscle tension.
  • the user wears a headset with a microphone and headphones.
  • Three EMG electrodes are taped onto the user's neck and/or jaw.
  • U.S. Pat. No. 6,231,500 entitled Electronic Anti-Stuttering Device Providing Auditory Feedback and Disfluency-Detecting Biofeedback, issued to Kehoe on May 15, 2001, is a continuation-in-part of U.S. Pat. No. 5,794,203.
  • the Kehoe '500 patent discloses micropower impulse radar (MIR) as an alternative to EMG biofeedback for monitoring a user's muscle activity to detect disfluency.
  • MIR micropower impulse radar
  • MIR is short-range radar, using commonly available microchips. Unlike other radar, MIR is small and inexpensive. A small sensor for monitoring laryngeal activity could be taped to a user's throat.
  • an electrical lead having one or more electrodes is typically implanted near a specific site in the brain of a patient.
  • the lead is coupled to a signal generator that delivers electrical energy through the electrodes and creates an electrical field causing excitation of the nearby neurons to directly or indirectly treat the neurological disorder or symptoms of the disorder.
  • a catheter coupled to a pump is implanted near a treatment site in the brain. Therapeutics are delivered to the treatment sites in predetermined dosages through the catheter.
  • Muroi et al. describe their observation of a patient who, after paramedian thalamic infarction, experienced cessation of stuttering. Neurology, vol. 53, pp. 890-91 (September (1 of 2) 1999. In this article, A. Muroi et al. state that neuroimaging studies indicate that the occlusion of a single artery, the mesencephalic artery, have given rise to the infarction in the bilateral medial thalamus and rostral mesencephalic tegmentum.
  • Muroi et al. are reciprocally connected to the lateral prefrontal area and SMA, respectively.
  • the A. Muroi et al. article speculates that disordered function of the SMA-CM circuit or DM-lateral prefrontal cortex is responsible for developmental and acquired stuttering. Therefore, it may be possible to treat either developmental or acquired stuttering by stimulation or drug delivery of the neural circuits involved in stuttering.
  • a catheter is coupled to an implantable pump for infusing therapeutic dosages of at least one drug.
  • At least one implantable electrode is coupled to a signal generator for delivering electrical stimulation.
  • the invention may include various permutations and/or combinations of the following steps: implanting the one or more electrodes adjacent to a first predetermined site in the brain; implanting the catheter so that the discharge portion lies adjacent to a second predetermined site in the brain; coupling the proximal end of the implanted electrode to the signal generator; coupling the catheter to the pump; and operating the signal generator and the pump to stimulate or inhibit neurons of the first and second sites in the brain by delivering electrical stimulation to the first site and by delivering one or more drugs to the second predetermined site.
  • the first and/or second predetermined sites can be: the supplementary motor area, the perisylvian speech-language cortex, the centromedian circuit, the dorsomedial nuclei, the lateral prefrontal circuit, the mesothalamic reticular formation, the basal ganglia, or other paramedian thalamic and midbrain nuclei and fiber tracts including, but not limited to the red nucleus, the habenulointerpeduncular tract, the prerubral area, the zona incerta, the thalamic primary sensory relay nuclei (e.g., ventrooral nucleus, ventrolateral nucleus), the parafasicular nucleus, and the intralaminar nucleus.
  • the thalamic primary sensory relay nuclei e.g., ventrooral nucleus, ventrolateral nucleus
  • the parafasicular nucleus e.g., parafasicular nucleus, and the intralaminar nucleus.
  • the stuttering treatment may be performed via periodic, such as once per week, transcranial magnetic stimulation of a predetermined site of a patient's brain for a predetermined duration, such as 30 minutes.
  • the transcranial-magnetic-stimulation site is delivered to: the supplementary motor area, the perisylvian speech-language cortex, the centromedian circuit, the dorsomedial nuclei, the lateral prefrontal circuit, the mesothalamic reticular formation, the basal ganglia, or other paramedian thalamic and midbrain nuclei and fiber tracts including, but not limited to the red nucleus, the habenulointerpeduncular tract, the prerubral area, the zona incerta, the thalamic primary sensory relay nuclei (e.g., ventrooral nucleus, ventrolateral nucleus), the parafasicular nucleus, and the intralaminar nucleus.
  • the thalamic primary sensory relay nuclei e.
  • a system for therapeutically treating stuttering in a patient.
  • the system includes: a signal generator; at least one implantable lead, coupled to the signal generator, for delivering electrical stimulation to at least one predetermined site of the patient's brain; a sensor, located near the patient's vocal folds, for generating a signal responsive to activity of the patient's vocal folds; a controller that adjusts at least one stimulation parameter in response to the signal from the sensor.
  • the controller could detect when the patient starts speaking and then start the electrical stimulation in response to that patient having started to speak. The controller could then stop the electrical stimulation a predetermined amount of time after the patient started speaking.
  • the sensor could be an electromyographic sensor, an electroglottographic sensor, or a microphone, which could be implanted within the patient's body.
  • the controller could use a speech-recognition algorithm for detecting stuttering based on the signal received from the sensor.
  • FIG. 1 is a diagrammatic illustration of a system for treating stuttering illustrating a signal generator connected to an electrode implanted in a patient's brain.
  • FIG. 2 is a diagrammatic illustration of a stuttering-treatment system including an implantable pump and catheter for delivering therapeutics to predetermined sites in a patient's brain.
  • FIG. 3 is a diagrammatic illustration of a stuttering-treatment system including a combined catheter and electrode implanted in a patient's brain.
  • FIG. 4 is a diagrammatic illustration of a stuttering-treatment system in which a sensor is located near the patient's vocal folds and is used to control the amount of treatment delivered.
  • FIG. 5 is a schematic block diagram of a microprocessor and related circuitry for using the sensor to control drug delivery to the brain.
  • FIG. 6 is a flow chart illustrating a preferred form of a microprocessor program for using the sensor to control drug dosage administered to the brain.
  • FIG. 7 is a schematic block diagram of a microprocessor and related circuitry for using the sensor to control electrical stimulation administered to the brain.
  • FIGS. 8-12 are flow charts illustrating a preferred form of a microprocessor program for generating electrical stimulation pulses to be administered to the brain.
  • FIG. 13 is a diagrammatic illustration of a stuttering-treatment system in which a sensor is implanted in a patient's brain and is used to control the amount of treatment delivered.
  • stuttering The neurogenic basis of stuttering is not well understood, but an analogy can be drawn between stuttering and motor tremor in a person's extremities or axial musculature. It is know that in some forms of tremor the occurrence of abnormal neural activity in specific brain regions (e.g., thalamus) is associated with the presence of tremor. It is also known that treatment of these regions with electrical stimulation or drug delivery can reduce or abolish tremor.
  • the structures that are apparently involved in stuttering are the supplementary motor area, (SMA), the centromedian circuit (CM circuit), the dorsomedial nuclei (DM nuclei), the lateral prefrontal circuit, and other paramedian thalamic and midbrain nuclei, and by analogy to tremor, it is hypothesized that abnormal neural activity in these structures and circuits is associated with the presence of stuttering.
  • SMA supplementary motor area
  • CM circuit centromedian circuit
  • DM nuclei dorsomedial nuclei
  • lateral prefrontal circuit and other paramedian thalamic and midbrain nuclei
  • the thalamus and cortex are connected by a network of parallel neural circuits that send information in both directions to ultimately control thoughts, emotions, motor behaviors, and various other higher level functions.
  • Each of the various types of functions appears to have discrete anatomical circuit associated with them. If abnormal patterns of neural activity (e.g., too much or too little activity) arise in a specific circuit due to disease, trauma, or developmental causes, the result is often a clinical symptom associated with the specific functional area. For instance, obsessive-compulsive disorder is thought to be due to hyperactivity in the loop connecting orbital-frontal cortex with the medial thalamus.
  • Tremor in a specific body region appears to arise due to over activity in the loop between the basal ganglia, thalamus and the motor cortex subserving that body part.
  • stuttering may be related to abnormal activity in the basal ganglia and thalamo-cortical loops that control the production of speech.
  • an “outer” linguistic loop which controls the selection of speech information
  • an “inner” motor loop that controls the actual production of speech sounds via control of the vocal apparatus.
  • the linguistic loop appears to be mediated by neural circuits in the perisylvian speech-language cortex, and the motor loop by cortico-striatal-thalamo-cortical circuits. A disruption in timing between these circuits has been suggested as a possible mechanism of stuttering. By applying electrical stimulation and or drug delivery within these circuits, it may be possible to re-establish the proper timing relationships and thereby reduce or eliminate stuttering.
  • the supplementary motor area (SMA), part of the motor loop can be thought of as generating a signal indicative of the intention to do something, such as begin speaking. That signal then gets passed to the motor cortex, which is a part of the brain that sends a corresponding signal to a person's muscles, including a person's vocal cords, to do something, such as making speech sounds.
  • SMA supplementary motor area
  • Disruption of the appropriate precursor signal from the SMA may be responsible for a stutterer's inability to speak fluently when they are starting to say something. Such a disruption may also be responsible for a stutterer's inability to break out of a loop in which the same sound is being unintentionally repeated and the inability to progress to the next stage of speaking, which occurs in fluent speech.
  • This invention includes treatment techniques for ameliorating stuttering by influencing levels of activity in various neuronal loops associated with stuttering. These techniques include drug delivery, electrical and magnetic stimulation, and/or closed loop feedback systems for detecting the occurrence of speech or stuttering.
  • FIG. 1 is a diagrammatic illustration of a patient with an implant of a neurostimulation system employing an embodiment of the present invention.
  • An implantable signal generator 16 produces stimulation signals to various predetermined sites within a patient's brain, B.
  • the predetermined sites may include the supplementary motor area (SMA), the perisylvian speech-language cortex, the centromedian circuit (CM circuit), the dorsomedial nuclei (DM nuclei), the lateral prefrontal circuit, the mesothalamic reticular formation, the basal ganglia and other paramedian thalamic and midbrain nuclei and fiber tracts including, but not limited to the red nucleus, the habenulointerpeduncular tract, the prerubral area, the zona incerta, the thalamic primary sensory relay nuclei (e.g., ventrooral nucleus, ventrolateral nucleus), the parafasicular nucleus, and the intralaminar nucleus.
  • Device 16 may take the
  • a conductor 22 is implanted below the skin of a patient.
  • the distal end of conductor 22 terminates in a lead 22 A.
  • Lead 22 A may take the form of any of the leads sold with Medtronic's Model 7424 signal generator for stimulation of the brain.
  • the proximal end of conductor 22 is coupled to signal generator 16 .
  • the distal end of lead 22 A terminates in a stimulation electrode located at a predetermined area of the brain, B.
  • the distal end of lead 22 A is implanted using stereotactic techniques that are well known by those skilled in the art. The physician determines the number of electrodes needed for the particular treatment.
  • FIG. 2 is a diagrammatic illustration of a patient having an implant of a drug delivery system employing an embodiment of the present invention.
  • the system distributes a therapeutic agent to predetermined sites in the brain selected by a physician.
  • the system uses a pump 10 that can be an implantable pump like the Medtronic SynchroMed® pump or an external pump.
  • the pump 10 has a port 14 into which a hypodermic needle can be inserted to inject therapeutic to fill the pump 10 .
  • the therapeutic is delivered from pump 10 through a catheter port 20 into a catheter 222 .
  • Catheter 222 may be implanted below the skin of a patient using well-known stereotactic placement techniques and positioned to deliver the therapeutic to the predetermined sites within the brain, B.
  • the predetermined sites may include the supplementary motor area (SMA), the perisylvian speech-language cortex, the centromedian circuit (CM circuit), the dorsomedial nuclei (DM nuclei), the lateral prefrontal circuit, the mesothalamic reticular formation, the basal ganglia and other paramedian thalamic and midbrain nuclei and fiber tracts including, but not limited to the red nucleus, the habenulointerpeduncular tract, the prerubral area, the zona incerta, the thalamic primary sensory relay nuclei (e.g., ventrooral nucleus, ventrolateral nucleus), the parafasicular nucleus, and the intralaminar nucleus.
  • SMA supplementary motor area
  • CM circuit centromedian circuit
  • DM nuclei dorsomedial nuclei
  • lateral prefrontal circuit the mesothalamic reticular formation
  • FIG. 3 is a diagrammatic illustration of a patient having an implant of a neurological system employing an embodiment of the present invention.
  • the system as shown in FIG. 3 illustrates a combined catheter electrode, 322 , that can distribute both stimulation signals and therapeutics from the signal generator 16 and pump 10 , respectively.
  • the combined catheter electrode 322 terminates with a cylindrical hollow tube 322 A having a distal end implanted into a predetermined location of a patient's brain, B.
  • the distal end of tube 322 A is implanted using stereotactic techniques well known by those skilled in the art.
  • Tube 322 A includes an outer cylindrical insulation jacket (not shown) and an inner insulation jacket (not shown) that defines a cylindrical catheter lumen.
  • a multifular coil of wire, multiflar stranded wire or flexible printed circuit is embedded in tube 322 A (not shown).
  • Trans-cranial magnetic stimulation could also be used as a means to deliver therapeutic stimulation to the nervous system to treat stuttering. This magnetic stimulation would tend to be more of a clinical application as opposed to a portable and/or human-implantable device.
  • a patient's stuttering could be treated periodically, such as once per week, via trans-cranial magnetic stimulation of the supplementary motor area, (SMA), the centromedian circuit (CM circuit), the dorsomedial nuclei (DM nuclei), the lateral prefrontal circuit, and other paramedian thalamic and midbrain nuclei and fiber tracts including, but not limited to the red nucleus, the habenulointerpeduncular tract, the prerubral area, the zona incerta, the thalamic primary sensory relay nuclei (e.g., ventrooral nucleus, ventrolateral nucleus), the parafasicular nucleus, and the intralaminar nucleus.
  • SMA supplementary motor area
  • CM circuit cent
  • Magnetic stimulators of this type are capable of causing electrical current flow in particular regions of a patient's brain thereby activating specific neural structures or circuits. Such magnetic stimulation has been used clinically as a diagnostic tool to evaluate the condition of the motor system, and therapeutically to treat disorders such as depression.
  • FIG. 4 shows the placement of a sensor, 130 , near the vocal cords of a patient.
  • the sensor 130 is coupled to the pump 10 via cable 132 .
  • the vocal cords produce electrical signals, such as electromyographic (EMG) and electroglottographic (EGG) signals, that can be detected and used to control the treatment method.
  • EMG electromyographic
  • ECG electroglottographic
  • sensor 130 could detect the vocal-fold activity and send a signal to the treatment device to indicate that therapy should begin.
  • the treatment is delivered and continues to be delivered continuously as the patient speaks.
  • the sensor could be coupled to a microprocessor that contains speech recognition software stored in memory.
  • the speech recognition software could be programmed to distinguish between stuttering and normal speech by detecting a predetermined number of repetitions of a speech pattern. For example, treatment could begin upon detecting three repetitions of a particular speech pattern.
  • the software could analyze an EMG or EGG waveform from the vocal folds, or signals from a microphone, either implanted or placed externally on a person's neck near the person's vocal folds.
  • FIG. 13 shows the placement of a sensor, 1325 , located in a specific region of the brain to detect electroencephalogram (EEG) signals.
  • the sensor 1325 may be coupled to the pump 10 and the signal generator 16 through the combined catheter electrode 1322 .
  • the EEG signals may be detected and analyzed for abnormal activity related to stuttering with the use of a microprocessor that contains EEG recognition software stored in memory.
  • treatment is delivered and may continue to be delivered based on the recorded electrical activity as seen by sensor 1325 .
  • the amount and type of stimulation delivered in accordance with the invention may be controlled based upon analysis of the output from a sensor, such as sensor 130 shown in FIG. 4 .
  • a sensor 130 which could be an EEG, EMG or EGG sensor, micropower impulse radar, or a microphone as described above, is coupled by a cable 132 comprising conductors 134 and 135 to the input of analog to digital converter 140 .
  • the output of the sensor 130 could communicate through a “body bus” communication system as described in U.S. Pat. No. 5,113,859 (Funke), which is assigned to Medtronic and which is incorporated herein by reference.
  • the output of an external feedback sensor 130 would communicate with the implanted pulse generator 16 or pump 10 through a telemetry down-link.
  • the output of the analog to digital converter 140 is connected to terminals EF2 BAR and EF3 BAR.
  • Such a configuration may be one similar to that shown in U.S. Pat. No. 4,692,147 (“'147 Patent”) except that before converter 140 is connected to the terminals, the demodulator of the '147 patent (identified by 101 ) would be disconnected.
  • a drug can be delivered essentially continuously (within the constraints of the particular delivery device being used) or it may be delivered during intermittent intervals coordinated to reflect the half-life of the particular agent being infused or with circadian rhythms. As an example, stuttering will typically occur less frequently at night when the person is sleeping so the drug delivery rates might be reduced to coincide with the hours between 10 p.m. and 7 a.m.
  • microprocessor 100 included within pump 10 reads converter 140 in step 150 , and stores one or more values in RAM 102 a in step 152 .
  • a dosage is selected in step 154 , and an appropriate time interval is selected in step 156 .
  • the selected dosage and interval of a drug is then delivered through catheter 222 and tube 222 A to the basal ganglia of the brain as described in the '147 Patent.
  • An appropriate elect filter can be used to filter the output from sensor 130 to provide a control signal for signal generator 16 .
  • An example of such a filter is found in U.S. Pat. No. 5,259,387 “Muscle Artifact Filter, Issued to Victor de Pinto on Nov. 9, 1993, incorporated herein by reference.
  • a modified form of the ITREL II® signal generator can be used to achieve closed-loop electrical stimulation, which is schematically depicted in FIG. 7 .
  • the output of the analog to digital converter 206 is connected to a microprocessor 200 through a peripheral bus 202 including address, data and control lines.
  • Microprocessor 200 processes the sensor data in different ways depending on the type of transducer in use.
  • a sensor-signal threshold level stored in a memory 204
  • increasing amounts of stimulation will be applied through an output driver 224 .
  • the sensor-signal threshold level could be set such that the sensor signal will exceed the threshold whenever the person is speaking.
  • increasing amounts of stimulation could be applied through the output driver 224 when speech-processing software detects a speech pattern that is likely to correspond to stuttering.
  • the programmable frequency generator provides an interrupt signal to microprocessor 200 through an interrupt line 210 when each stimulus pulse is to be generated.
  • the frequency generator may be implemented by model CDP1878 sold by Harris Corporation.
  • the amplitude for each stimulus pulse is programmed to a digital to analog converter 218 using bus 202 .
  • the analog output is conveyed through a conductor 220 to an output driver circuit 224 to control stimulus amplitude.
  • Microprocessor 200 also programs a pulse width control module 214 using bus 202 .
  • the pulse width control provides an enabling pulse of duration equal to the pulse width via a conductor. Pulses with the selected characteristics are then delivered from signal generator 16 through cable 22 and lead 22 A to the target locations of a brain B.
  • Microprocessor 200 executes an algorithm shown in FIGS. 8-12 in order to provide stimulation with closed loop feedback control.
  • the clinician programs certain key parameters into the memory of the implanted device via telemetry. These parameters may be updated subsequently as needed.
  • Step 400 in FIG. 8 indicates the process of first choosing whether the neural activity at the stimulation site is to be blocked or facilitated (step 400 ( 1 )) and whether the sensor location is one for which an increase in the neural activity at that location is equivalent to an increase in neural activity at the stimulation target or vice versa (step 400 ( 2 )).
  • step 400 ( 3 ) the clinician must program the range of release for pulse width (step 400 ( 3 )), amplitude (step 400 ( 4 )) and frequency (step 400 ( 5 )) which signal generator 16 may use to optimize the therapy.
  • the clinician may also choose the order in which the parameter changes are made (step 400 ( 6 )). Alternatively, the clinician may elect to use default values.
  • the algorithm for selecting parameters is different depending on whether the clinician has chosen to block the neural activity at the stimulation target or facilitate the neural activity.
  • FIG. 8 details steps of the algorithm to make parameter changes.
  • the algorithm uses the clinician programmed indication of whether the neurons at the particular location of the stimulating electrode are to be facilitated or blocked in order to decide which path of the parameter selection algorithm to follow (step 420 , FIG. 9 ). If the neuronal activity is to be blocked, signal generator 16 first reads the feedback sensor 130 in step 421 . If the sensor values indicate a likelihood that the activity in the neurons is too high (step 450 ), for instance, if speech processing software detects a speech pattern likely to correspond to stuttering, the algorithm in this embodiment first increases the frequency of stimulation in step 424 provided this increase does not exceed the preset maximum value set by the physician. Step 423 checks for this condition. If the frequency parameter is not at the maximum, the algorithm returns to step 421 through path 421 A to monitor-the feed back signal from sensor 130 .
  • the algorithm next increases the pulse width in step 426 ( FIG. 10 ), again with the condition that this parameter has not exceeded the maximum value as checked for in step 451 through path 423 A. Not having reached maximum pulse width, the algorithm returns to step 421 to monitor the feedback signal from sensor 130 . Should the maximum pulse width have been reached, the algorithm next increases amplitude in a like manner as shown in steps 427 and 428 . In the event that all parameters reach the maximum, a notification message is set in step 429 to be sent by telemetry to the clinician indicating that device 16 is unable to reduce neural activity to the desired level.
  • the algorithm would follow a different sequence of events.
  • the frequency parameter would be fixed at a value chosen by the clinician to facilitate neuronal activity in step 430 ( FIG. 11 ) through path 420 A.
  • the algorithm uses the values of the feedback sensor to determine if neuronal activity is being adequately controlled. In this case, inadequate control indicates that the neuronal activity of the stimulation target is too low. Neuronal activity is increased by first increasing stimulation amplitude (step 434 ) provided it doesn't exceed the programmed maximum value checked for in step 433 .
  • the algorithm increases pulse width to its maximum value in steps 435 and 436 ( FIG. 12 ). A lack of adequate alteration of the symptoms of the neurological disorder, even though maximum parameters are used, is indicated to the clinician in step 437 . After steps 434 , 436 and 437 , the algorithm returns to step 431 through path 43 1 A, and the feedback sensor is read again.
  • steps 410 through 415 constitute the method to do this.
  • a time is reset in step 415 . If there is no need to change any stimulus parameters before the timer has counted out, then it may be possible due to changes in neuronal activity to reduce the parameter values and still maintain appropriate levels of neuronal activity in the target neurons.
  • signal generator 16 tries reducing a parameter in step 413 to determine if control is maintained. If it is, the various parameter values will be ratcheted down until such time as the sensor values again indicate a need to increase them. While the algorithms in FIGS. 8-12 follow the order of parameter selection indicated, other sequences may be programmed by the clinician.

Abstract

Stuttering-treatment techniques using neural stimulation and/or drug delivery. One or more electrodes and/or a catheter are implanted adjacent to sites in the brain. A signal generator and the electrode deliver stimulation to a first site. A pump and the catheter deliver one or more therapeutic drugs to a second site. The first and second sites could be: the supplementary motor area, the centromedian circuit, the dorsomedial nuclei, the lateral prefrontal circuit, or other paramedian thalamic and midbrain nuclei. The stuttering treatment could be performed via periodic transcranial magnetic stimulation. A sensor, located near the patient's vocal folds, can be used for generating a signal responsive to activity of the patient's speech-producing muscles. A controller adjusts one or more stimulation parameters in response to the signal from the sensor.

Description

    RELATED APPLICATIONS
  • This application is a Divisional application of U.S. application Ser. No. 10/001,751, filed Oct. 31, 2001. The entire content of this U.S. application is incorporated herein by reference.
  • FIELD OF THE INVENTION
  • The invention relates to therapeutic treatment of stuttering. More particularly, the invention relates to treating stuttering via neural stimulation and drug therapy techniques.
  • BACKGROUND OF THE INVENTION
  • Stuttering is a speech-disfluency problem that can have significant developmental and social impacts upon stuttering individuals. Stuttering can include repetitions of parts of words and/or whole words, prolongation of sounds, interjections of sounds or words, and unduly prolonged pauses.
  • Conventional stuttering treatment techniques typically focus on alerting the patient that stuttering is occurring and having the patient try to modify their breathing and/or speech patterns in an attempt to avoid stuttering. For instance, U.S. Pat. No. 4,020,567, entitled Method and Stuttering Therapy Apparatus, issued to Webster on May 3, 1977, discloses a system for helping individuals determine when they are stuttering. The system generates an electrical signal based on the person's speech and uses the signal to detect certain speech characteristics corresponding to stuttering. A first embodiment detects speech onset errors during the first 100 milliseconds of syllable pronunciation. In a second embodiment, stuttering is detected by evaluating the rate of change in the amplitude of the person's speech. An LED is illuminated to notify a system-user that stuttering is occurring. The system disclosed by Webster is intended for use by stutterers while they practice learning not to stutter.
  • U.S. Pat. No. 4,662,847, entitled Electronic Device and Method for the Treatment of Stuttering, issued to Blum on May 5, 1987, discloses an electronic device for treating stuttering. The device transmits electronic speech signals from a microphone to an earphone through two paths. One path is synchronous. The other path is asynchronous. During normal speech, the synchronous speech signal is transmitted to the earphone. At any pause in phonation, the device switches to the asynchronous path and transmits speech in a delayed auditory feedback mode until a change in the user's speech occurs.
  • U.S. Pat. No. 4,784,115, entitled Anti-Stuttering Device and Method, issued to Webster on Nov. 15, 1988, discloses an anti-stuttering device for enhancing speech fluency. The device detects vocal pulses generated by the opening and closing of a speaker's vocal folds. Electrical signals representative of the vocal pulses are transmitted to a receiver in the speaker's sealed ear canal where these signals are reproduced as audio pulses. The device reduces stuttering by providing an early indication of the characteristics of the speaker's voice via audio pulses. The audio pulses produce a resonant effect within the person's ear canal.
  • U.S. Pat. No. 5,794,203, entitled Biofeedback System for Speech Disorders, issued to Kehoe on Aug. 11, 1988, discloses a biofeedback system for speech disorders that detects disfluent speech and provides auditory feedback to enable fluent speech. The disfluent-speech detector can be either an electromyograph (EMG) or an electroglottograph (EGG). EMG is a system that measures the electrical activities of muscles through electrodes attached to a person's body. EGG records the opening and closing of a person's vocal folds. EGG's use two electrodes on a person's neck and measure the resistance between the electrodes. This resistance changes as the vocal folds open and close. An EGG can show the frequency of the vocal folds. This is the fundamental pitch of the user's voice, without the harmonics produced by the nasal cavities, mouth, and the like.
  • The system disclosed by Kehoe includes an electronic controller connected to an EMG and frequency-altered auditory feedback (FAF) circuit. The controller receives data from the EMG regarding muscle tension in the user's vocal cords, masseter, and/or other speech-production muscles. The controller then controls the pitch of the FAF circuit in accordance with the user's muscle tension. The user wears a headset with a microphone and headphones. Three EMG electrodes are taped onto the user's neck and/or jaw. When the user speaks fluently, with speech-production muscles relaxed, the user's hears his or her voice shifted lower in pitch. This downward-shifted pitch is relaxing and pleasant, sort of like hearing James Earl Jones speak. If the user's speech-production muscles are abnormally tense, however, the user will hear his or her voice shifted higher in pitch.
  • U.S. Pat. No. 6,231,500, entitled Electronic Anti-Stuttering Device Providing Auditory Feedback and Disfluency-Detecting Biofeedback, issued to Kehoe on May 15, 2001, is a continuation-in-part of U.S. Pat. No. 5,794,203. The Kehoe '500 patent discloses micropower impulse radar (MIR) as an alternative to EMG biofeedback for monitoring a user's muscle activity to detect disfluency. MIR is short-range radar, using commonly available microchips. Unlike other radar, MIR is small and inexpensive. A small sensor for monitoring laryngeal activity could be taped to a user's throat.
  • Conventional treatment techniques for treating stuttering typically do not use neurostimulation and/or drug delivery devices. These types of devices, however,.are capable of treating a number of neurological disorders as well as symptoms of those disorders. In the context of neurostimulators, an electrical lead having one or more electrodes is typically implanted near a specific site in the brain of a patient. The lead is coupled to a signal generator that delivers electrical energy through the electrodes and creates an electrical field causing excitation of the nearby neurons to directly or indirectly treat the neurological disorder or symptoms of the disorder. In the context of a drug delivery system, a catheter coupled to a pump is implanted near a treatment site in the brain. Therapeutics are delivered to the treatment sites in predetermined dosages through the catheter.
  • In an article entitled Cessation of Stuttering After Bilateral Thalamic Infarction, A.
  • Muroi et al. describe their observation of a patient who, after paramedian thalamic infarction, experienced cessation of stuttering. Neurology, vol. 53, pp. 890-91 (September (1 of 2) 1999. In this article, A. Muroi et al. state that neuroimaging studies indicate that the occlusion of a single artery, the mesencephalic artery, have given rise to the infarction in the bilateral medial thalamus and rostral mesencephalic tegmentum. Further, in developmental stuttering, regional cerebral blood flow (rCBF) was observed as relatively increased in the medial and lateral prefrontal areas and in the orbital cortices, and also in the supplementary motor area (SMA) and the superior lateral premotor cortex. A. Muroi et al. then discuss a study by Nagafuchi and Takahashi in which a patient started to stutter after an infarct in the SMA. Another article, by Abe et al., describes a case of stuttering-like repetitive speech disorder after paramedian thalamomesencephalic infarction. Yet another article, by Andy and Bhatnager, reported that stuttering was elicited by destruction of the centromedian (CM) in one case; they also found that stimulation of the same region alleviated the acquired stuttering in another case. The work reported by Andy and Bhatnagar related only to adult onset, acquired stuttering, due to the presence of cortical or subcortical pathologies (related to a central pain syndrome), but did not involve the more common form of developmental stuttering. Further, there is no teaching in their work on the application of DBS or drug delivery for the chronic treatment of developmental stuttering as a disorder of the motor system. The dorsomedial (DM) nuclei and CM, which were involved in the case reported by A. Muroi et al., are reciprocally connected to the lateral prefrontal area and SMA, respectively. In light of these studies and the case reported by A. Muroi et al., the A. Muroi et al. article speculates that disordered function of the SMA-CM circuit or DM-lateral prefrontal cortex is responsible for developmental and acquired stuttering. Therefore, it may be possible to treat either developmental or acquired stuttering by stimulation or drug delivery of the neural circuits involved in stuttering.
  • Based on the foregoing, there is a need for stuttering-treatment techniques that use neural stimulation and/or drug delivery to target the neurological underpinnings of stuttering.
  • BRIEF SUMMARY OF THE INVENTION
  • The invention is directed toward various stuttering-treatment techniques using neural stimulation and/or drug delivery. In accordance with various inventive principles, a catheter is coupled to an implantable pump for infusing therapeutic dosages of at least one drug. At least one implantable electrode is coupled to a signal generator for delivering electrical stimulation. The invention may include various permutations and/or combinations of the following steps: implanting the one or more electrodes adjacent to a first predetermined site in the brain; implanting the catheter so that the discharge portion lies adjacent to a second predetermined site in the brain; coupling the proximal end of the implanted electrode to the signal generator; coupling the catheter to the pump; and operating the signal generator and the pump to stimulate or inhibit neurons of the first and second sites in the brain by delivering electrical stimulation to the first site and by delivering one or more drugs to the second predetermined site. The first and/or second predetermined sites can be: the supplementary motor area, the perisylvian speech-language cortex, the centromedian circuit, the dorsomedial nuclei, the lateral prefrontal circuit, the mesothalamic reticular formation, the basal ganglia, or other paramedian thalamic and midbrain nuclei and fiber tracts including, but not limited to the red nucleus, the habenulointerpeduncular tract, the prerubral area, the zona incerta, the thalamic primary sensory relay nuclei (e.g., ventrooral nucleus, ventrolateral nucleus), the parafasicular nucleus, and the intralaminar nucleus.
  • In accordance with the invention, the stuttering treatment may be performed via periodic, such as once per week, transcranial magnetic stimulation of a predetermined site of a patient's brain for a predetermined duration, such as 30 minutes. The transcranial-magnetic-stimulation site is delivered to: the supplementary motor area, the perisylvian speech-language cortex, the centromedian circuit, the dorsomedial nuclei, the lateral prefrontal circuit, the mesothalamic reticular formation, the basal ganglia, or other paramedian thalamic and midbrain nuclei and fiber tracts including, but not limited to the red nucleus, the habenulointerpeduncular tract, the prerubral area, the zona incerta, the thalamic primary sensory relay nuclei (e.g., ventrooral nucleus, ventrolateral nucleus), the parafasicular nucleus, and the intralaminar nucleus.
  • A system, in accordance with the invention, for therapeutically treating stuttering in a patient is disclosed. The system includes: a signal generator; at least one implantable lead, coupled to the signal generator, for delivering electrical stimulation to at least one predetermined site of the patient's brain; a sensor, located near the patient's vocal folds, for generating a signal responsive to activity of the patient's vocal folds; a controller that adjusts at least one stimulation parameter in response to the signal from the sensor. The controller could detect when the patient starts speaking and then start the electrical stimulation in response to that patient having started to speak. The controller could then stop the electrical stimulation a predetermined amount of time after the patient started speaking. The sensor could be an electromyographic sensor, an electroglottographic sensor, or a microphone, which could be implanted within the patient's body. The controller could use a speech-recognition algorithm for detecting stuttering based on the signal received from the sensor.
  • Other advantages, novel features, and further scope of applicability of the invention will be set forth in the following detailed description.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a diagrammatic illustration of a system for treating stuttering illustrating a signal generator connected to an electrode implanted in a patient's brain.
  • FIG. 2 is a diagrammatic illustration of a stuttering-treatment system including an implantable pump and catheter for delivering therapeutics to predetermined sites in a patient's brain.
  • FIG. 3 is a diagrammatic illustration of a stuttering-treatment system including a combined catheter and electrode implanted in a patient's brain.
  • FIG. 4 is a diagrammatic illustration of a stuttering-treatment system in which a sensor is located near the patient's vocal folds and is used to control the amount of treatment delivered.
  • FIG. 5 is a schematic block diagram of a microprocessor and related circuitry for using the sensor to control drug delivery to the brain.
  • FIG. 6 is a flow chart illustrating a preferred form of a microprocessor program for using the sensor to control drug dosage administered to the brain.
  • FIG. 7 is a schematic block diagram of a microprocessor and related circuitry for using the sensor to control electrical stimulation administered to the brain.
  • FIGS. 8-12 are flow charts illustrating a preferred form of a microprocessor program for generating electrical stimulation pulses to be administered to the brain.
  • FIG. 13 is a diagrammatic illustration of a stuttering-treatment system in which a sensor is implanted in a patient's brain and is used to control the amount of treatment delivered.
  • DETAILED DESCRIPTION OF THE INVENTION
  • The neurogenic basis of stuttering is not well understood, but an analogy can be drawn between stuttering and motor tremor in a person's extremities or axial musculature. It is know that in some forms of tremor the occurrence of abnormal neural activity in specific brain regions (e.g., thalamus) is associated with the presence of tremor. It is also known that treatment of these regions with electrical stimulation or drug delivery can reduce or abolish tremor. The structures that are apparently involved in stuttering are the supplementary motor area, (SMA), the centromedian circuit (CM circuit), the dorsomedial nuclei (DM nuclei), the lateral prefrontal circuit, and other paramedian thalamic and midbrain nuclei, and by analogy to tremor, it is hypothesized that abnormal neural activity in these structures and circuits is associated with the presence of stuttering.
  • The thalamus and cortex are connected by a network of parallel neural circuits that send information in both directions to ultimately control thoughts, emotions, motor behaviors, and various other higher level functions. Each of the various types of functions appears to have discrete anatomical circuit associated with them. If abnormal patterns of neural activity (e.g., too much or too little activity) arise in a specific circuit due to disease, trauma, or developmental causes, the result is often a clinical symptom associated with the specific functional area. For instance, obsessive-compulsive disorder is thought to be due to hyperactivity in the loop connecting orbital-frontal cortex with the medial thalamus. Tremor in a specific body region appears to arise due to over activity in the loop between the basal ganglia, thalamus and the motor cortex subserving that body part. Similarly, stuttering may be related to abnormal activity in the basal ganglia and thalamo-cortical loops that control the production of speech.
  • It has been hypothesized that two such loops are involved in language production and therefore in the dysfunction of stuttering: an “outer” linguistic loop, which controls the selection of speech information, and an “inner” motor loop that controls the actual production of speech sounds via control of the vocal apparatus. The linguistic loop appears to be mediated by neural circuits in the perisylvian speech-language cortex, and the motor loop by cortico-striatal-thalamo-cortical circuits. A disruption in timing between these circuits has been suggested as a possible mechanism of stuttering. By applying electrical stimulation and or drug delivery within these circuits, it may be possible to re-establish the proper timing relationships and thereby reduce or eliminate stuttering.
  • For example, the supplementary motor area (SMA), part of the motor loop, can be thought of as generating a signal indicative of the intention to do something, such as begin speaking. That signal then gets passed to the motor cortex, which is a part of the brain that sends a corresponding signal to a person's muscles, including a person's vocal cords, to do something, such as making speech sounds.
  • Disruption of the appropriate precursor signal from the SMA may be responsible for a stutterer's inability to speak fluently when they are starting to say something. Such a disruption may also be responsible for a stutterer's inability to break out of a loop in which the same sound is being unintentionally repeated and the inability to progress to the next stage of speaking, which occurs in fluent speech.
  • This invention includes treatment techniques for ameliorating stuttering by influencing levels of activity in various neuronal loops associated with stuttering. These techniques include drug delivery, electrical and magnetic stimulation, and/or closed loop feedback systems for detecting the occurrence of speech or stuttering.
  • FIG. 1 is a diagrammatic illustration of a patient with an implant of a neurostimulation system employing an embodiment of the present invention. An implantable signal generator 16 produces stimulation signals to various predetermined sites within a patient's brain, B. The predetermined sites may include the supplementary motor area (SMA), the perisylvian speech-language cortex, the centromedian circuit (CM circuit), the dorsomedial nuclei (DM nuclei), the lateral prefrontal circuit, the mesothalamic reticular formation, the basal ganglia and other paramedian thalamic and midbrain nuclei and fiber tracts including, but not limited to the red nucleus, the habenulointerpeduncular tract, the prerubral area, the zona incerta, the thalamic primary sensory relay nuclei (e.g., ventrooral nucleus, ventrolateral nucleus), the parafasicular nucleus, and the intralaminar nucleus. Device 16 may take the form of a signal generator such as model 7424 manufactured by Medtronic Inc. under the trademark Itrel II®.
  • As depicted in FIG. 1, a conductor 22 is implanted below the skin of a patient. The distal end of conductor 22 terminates in a lead 22A. Lead 22A may take the form of any of the leads sold with Medtronic's Model 7424 signal generator for stimulation of the brain. The proximal end of conductor 22 is coupled to signal generator 16.
  • The distal end of lead 22A terminates in a stimulation electrode located at a predetermined area of the brain, B. The distal end of lead 22A is implanted using stereotactic techniques that are well known by those skilled in the art. The physician determines the number of electrodes needed for the particular treatment.
  • FIG. 2 is a diagrammatic illustration of a patient having an implant of a drug delivery system employing an embodiment of the present invention. The system distributes a therapeutic agent to predetermined sites in the brain selected by a physician. The system uses a pump 10 that can be an implantable pump like the Medtronic SynchroMed® pump or an external pump. As depicted in FIG. 2, the pump 10 has a port 14 into which a hypodermic needle can be inserted to inject therapeutic to fill the pump 10. In the system shown, the therapeutic is delivered from pump 10 through a catheter port 20 into a catheter 222. Catheter 222 may be implanted below the skin of a patient using well-known stereotactic placement techniques and positioned to deliver the therapeutic to the predetermined sites within the brain, B. The predetermined sites may include the supplementary motor area (SMA), the perisylvian speech-language cortex, the centromedian circuit (CM circuit), the dorsomedial nuclei (DM nuclei), the lateral prefrontal circuit, the mesothalamic reticular formation, the basal ganglia and other paramedian thalamic and midbrain nuclei and fiber tracts including, but not limited to the red nucleus, the habenulointerpeduncular tract, the prerubral area, the zona incerta, the thalamic primary sensory relay nuclei (e.g., ventrooral nucleus, ventrolateral nucleus), the parafasicular nucleus, and the intralaminar nucleus.
  • FIG. 3 is a diagrammatic illustration of a patient having an implant of a neurological system employing an embodiment of the present invention. The system as shown in FIG. 3, illustrates a combined catheter electrode, 322, that can distribute both stimulation signals and therapeutics from the signal generator 16 and pump 10, respectively.
  • The combined catheter electrode 322 terminates with a cylindrical hollow tube 322A having a distal end implanted into a predetermined location of a patient's brain, B. The distal end of tube 322A is implanted using stereotactic techniques well known by those skilled in the art. Tube 322A includes an outer cylindrical insulation jacket (not shown) and an inner insulation jacket (not shown) that defines a cylindrical catheter lumen. A multifular coil of wire, multiflar stranded wire or flexible printed circuit is embedded in tube 322A (not shown).
  • Trans-cranial magnetic stimulation could also be used as a means to deliver therapeutic stimulation to the nervous system to treat stuttering. This magnetic stimulation would tend to be more of a clinical application as opposed to a portable and/or human-implantable device. In accordance with the invention, a patient's stuttering could be treated periodically, such as once per week, via trans-cranial magnetic stimulation of the supplementary motor area, (SMA), the centromedian circuit (CM circuit), the dorsomedial nuclei (DM nuclei), the lateral prefrontal circuit, and other paramedian thalamic and midbrain nuclei and fiber tracts including, but not limited to the red nucleus, the habenulointerpeduncular tract, the prerubral area, the zona incerta, the thalamic primary sensory relay nuclei (e.g., ventrooral nucleus, ventrolateral nucleus), the parafasicular nucleus, and the intralaminar nucleus. The Magpro stimulator available from Medtronic, Inc. of Minneapolis Minn. is an example of a suitable magnetic stimulator. Magnetic stimulators of this type are capable of causing electrical current flow in particular regions of a patient's brain thereby activating specific neural structures or circuits. Such magnetic stimulation has been used clinically as a diagnostic tool to evaluate the condition of the motor system, and therapeutically to treat disorders such as depression.
  • FIG. 4 shows the placement of a sensor, 130, near the vocal cords of a patient. The sensor 130 is coupled to the pump 10 via cable 132. The vocal cords produce electrical signals, such as electromyographic (EMG) and electroglottographic (EGG) signals, that can be detected and used to control the treatment method. For example, when a patient begins to speak, sensor 130 could detect the vocal-fold activity and send a signal to the treatment device to indicate that therapy should begin. In this embodiment, the treatment is delivered and continues to be delivered continuously as the patient speaks. Alternatively, the sensor could be coupled to a microprocessor that contains speech recognition software stored in memory. The speech recognition software could be programmed to distinguish between stuttering and normal speech by detecting a predetermined number of repetitions of a speech pattern. For example, treatment could begin upon detecting three repetitions of a particular speech pattern. The software could analyze an EMG or EGG waveform from the vocal folds, or signals from a microphone, either implanted or placed externally on a person's neck near the person's vocal folds.
  • FIG. 13 shows the placement of a sensor, 1325, located in a specific region of the brain to detect electroencephalogram (EEG) signals. The sensor 1325 may be coupled to the pump 10 and the signal generator 16 through the combined catheter electrode 1322. The EEG signals may be detected and analyzed for abnormal activity related to stuttering with the use of a microprocessor that contains EEG recognition software stored in memory. In this embodiment, treatment is delivered and may continue to be delivered based on the recorded electrical activity as seen by sensor 1325.
  • Several other techniques, which are well known in the art, could also be used in accordance with the invention for detecting speech disfluency. For instance, as described in more detail above, each of U.S. Pat. Nos. 4,020,567, 5,794,203, and 6,231,500, which are incorporated herein by reference, disclose speech-disfluency-detection devices that could be used with this invention.
  • The amount and type of stimulation delivered in accordance with the invention may be controlled based upon analysis of the output from a sensor, such as sensor 130 shown in FIG. 4. Referring to FIG. 5, the output of a sensor 130, which could be an EEG, EMG or EGG sensor, micropower impulse radar, or a microphone as described above, is coupled by a cable 132 comprising conductors 134 and 135 to the input of analog to digital converter 140. Alternatively the output of the sensor 130 could communicate through a “body bus” communication system as described in U.S. Pat. No. 5,113,859 (Funke), which is assigned to Medtronic and which is incorporated herein by reference. Alternatively, the output of an external feedback sensor 130 would communicate with the implanted pulse generator 16 or pump 10 through a telemetry down-link. The output of the analog to digital converter 140 is connected to terminals EF2 BAR and EF3 BAR. Such a configuration may be one similar to that shown in U.S. Pat. No. 4,692,147 (“'147 Patent”) except that before converter 140 is connected to the terminals, the demodulator of the '147 patent (identified by 101) would be disconnected. A drug can be delivered essentially continuously (within the constraints of the particular delivery device being used) or it may be delivered during intermittent intervals coordinated to reflect the half-life of the particular agent being infused or with circadian rhythms. As an example, stuttering will typically occur less frequently at night when the person is sleeping so the drug delivery rates might be reduced to coincide with the hours between 10 p.m. and 7 a.m.
  • An exemplary computer algorithm is shown in FIG. 6. Referring to FIGS. 5 and 6, microprocessor 100 included within pump 10 reads converter 140 in step 150, and stores one or more values in RAM 102 a in step 152. A dosage is selected in step 154, and an appropriate time interval is selected in step 156. The selected dosage and interval of a drug is then delivered through catheter 222 and tube 222A to the basal ganglia of the brain as described in the '147 Patent.
  • For some types of sensors, a microprocessor and analog to digital converter will not be necessary. An appropriate elect filter can be used to filter the output from sensor 130 to provide a control signal for signal generator 16. An example of such a filter is found in U.S. Pat. No. 5,259,387 “Muscle Artifact Filter, Issued to Victor de Pinto on Nov. 9, 1993, incorporated herein by reference.
  • A modified form of the ITREL II® signal generator can be used to achieve closed-loop electrical stimulation, which is schematically depicted in FIG. 7. The output of the analog to digital converter 206 is connected to a microprocessor 200 through a peripheral bus 202 including address, data and control lines. Microprocessor 200 processes the sensor data in different ways depending on the type of transducer in use. When the signal on sensor 130 exceeds a sensor-signal threshold level stored in a memory 204, increasing amounts of stimulation will be applied through an output driver 224. The sensor-signal threshold level could be set such that the sensor signal will exceed the threshold whenever the person is speaking. Alternatively, increasing amounts of stimulation could be applied through the output driver 224 when speech-processing software detects a speech pattern that is likely to correspond to stuttering.
  • Programming a value to a programmable frequency generator 208, using bus 202, controls the stimulus pulse frequency. The programmable frequency generator provides an interrupt signal to microprocessor 200 through an interrupt line 210 when each stimulus pulse is to be generated. The frequency generator may be implemented by model CDP1878 sold by Harris Corporation. The amplitude for each stimulus pulse is programmed to a digital to analog converter 218 using bus 202. The analog output is conveyed through a conductor 220 to an output driver circuit 224 to control stimulus amplitude. Microprocessor 200 also programs a pulse width control module 214 using bus 202. The pulse width control provides an enabling pulse of duration equal to the pulse width via a conductor. Pulses with the selected characteristics are then delivered from signal generator 16 through cable 22 and lead 22A to the target locations of a brain B.
  • Microprocessor 200 executes an algorithm shown in FIGS. 8-12 in order to provide stimulation with closed loop feedback control. At the time the stimulation signal generator 16 or alternative device in which the stimulation and infusion functions are combined is implanted, the clinician programs certain key parameters into the memory of the implanted device via telemetry. These parameters may be updated subsequently as needed. Step 400 in FIG. 8 indicates the process of first choosing whether the neural activity at the stimulation site is to be blocked or facilitated (step 400(1)) and whether the sensor location is one for which an increase in the neural activity at that location is equivalent to an increase in neural activity at the stimulation target or vice versa (step 400(2)). Next the clinician must program the range of release for pulse width (step 400(3)), amplitude (step 400(4)) and frequency (step 400(5)) which signal generator 16 may use to optimize the therapy. The clinician may also choose the order in which the parameter changes are made (step 400(6)). Alternatively, the clinician may elect to use default values.
  • The algorithm for selecting parameters is different depending on whether the clinician has chosen to block the neural activity at the stimulation target or facilitate the neural activity. FIG. 8 details steps of the algorithm to make parameter changes.
  • The algorithm uses the clinician programmed indication of whether the neurons at the particular location of the stimulating electrode are to be facilitated or blocked in order to decide which path of the parameter selection algorithm to follow (step 420, FIG. 9). If the neuronal activity is to be blocked, signal generator 16 first reads the feedback sensor 130 in step 421. If the sensor values indicate a likelihood that the activity in the neurons is too high (step 450), for instance, if speech processing software detects a speech pattern likely to correspond to stuttering, the algorithm in this embodiment first increases the frequency of stimulation in step 424 provided this increase does not exceed the preset maximum value set by the physician. Step 423 checks for this condition. If the frequency parameter is not at the maximum, the algorithm returns to step 421 through path 421A to monitor-the feed back signal from sensor 130.
  • If the frequency parameter is at the maximum, the algorithm next increases the pulse width in step 426 (FIG. 10), again with the condition that this parameter has not exceeded the maximum value as checked for in step 451 through path 423A. Not having reached maximum pulse width, the algorithm returns to step 421 to monitor the feedback signal from sensor 130. Should the maximum pulse width have been reached, the algorithm next increases amplitude in a like manner as shown in steps 427 and 428. In the event that all parameters reach the maximum, a notification message is set in step 429 to be sent by telemetry to the clinician indicating that device 16 is unable to reduce neural activity to the desired level.
  • If, on the other hand, the stimulation electrode is placed in a location which the clinician would like to activate in order to alleviate stuttering, the algorithm would follow a different sequence of events. In the preferred embodiment, the frequency parameter would be fixed at a value chosen by the clinician to facilitate neuronal activity in step 430 (FIG. 11) through path 420A. In steps 431 and 432 the algorithm uses the values of the feedback sensor to determine if neuronal activity is being adequately controlled. In this case, inadequate control indicates that the neuronal activity of the stimulation target is too low. Neuronal activity is increased by first increasing stimulation amplitude (step 434) provided it doesn't exceed the programmed maximum value checked for in step 433. When maximum amplitude is reached, the algorithm increases pulse width to its maximum value in steps 435 and 436 (FIG. 12). A lack of adequate alteration of the symptoms of the neurological disorder, even though maximum parameters are used, is indicated to the clinician in step 437. After steps 434, 436 and 437, the algorithm returns to step 431 through path 43 1A, and the feedback sensor is read again.
  • It is desirable to reduce parameter values to the minimum level needed to establish the appropriate level of neuronal activity in, for example, the target brain nucleus. Superimposed on the algorithm just described is an additional algorithm to readjust all the parameter levels downward as far as possible. In FIG. 8, steps 410 through 415 constitute the method to do this. When parameters are changed, a time is reset in step 415. If there is no need to change any stimulus parameters before the timer has counted out, then it may be possible due to changes in neuronal activity to reduce the parameter values and still maintain appropriate levels of neuronal activity in the target neurons. At the end of the programmed time interval, signal generator 16 tries reducing a parameter in step 413 to determine if control is maintained. If it is, the various parameter values will be ratcheted down until such time as the sensor values again indicate a need to increase them. While the algorithms in FIGS. 8-12 follow the order of parameter selection indicated, other sequences may be programmed by the clinician.
  • While the invention has been described with respect to specific examples including presently preferred modes of carrying out the invention, those skilled in the art will appreciate that there are numerous variations and permutations of the above described systems and techniques that fall within the spirit and scope of the invention as set forth in the appended claims and their equivalents.

Claims (14)

1. A method of therapeutically treating stuttering via transcranial magnetic stimulation, the method comprising: periodically stimulating, for a predetermined duration, a first predetermined site of a patient's brain using transcranial magnetic stimulation, wherein the first predetermined site is selected from the group consisting of: the supplementary motor area, the perisylvian speech-language cortex, the centromedian circuit, the dorsomedial nuclei, the lateral prefrontal circuit, the mesothalamic reticular formation, the basal ganglia, and other paramedian thalamic and midbrain nuclei and fiber tracts including, the red nucleus, the habenulointerpeduncular tract, the prerubral area, the zona incerta, the thalamic primary sensory relay nuclei, the ventrooral nucleus, the ventrolateral nucleus, the parafasicular nucleus, and the intralaminar nucleus.
2. The method of claim 1, wherein the predetermined duration of transcranial magnetic stimulation is approximately 30 minutes.
3. The method of claim 2, wherein the transcranial magnetic stimulation is periodically performed approximately once per week.
4. The method of claim 1, wherein the transcranial magnetic stimulation is periodically performed approximately once per week.
5. The method of claim 1, wherein the first predetermined site is the supplementary motor area.
6. The method of claim 1, wherein the first predetermined site is the perisylvian speech-language cortex.
7. The method of claim 1, wherein the first predetermined site is the centromedian circuit.
8. The method of claim 1, wherein the first predetermined site is the dorsomedial nuclei.
9. The method of claim 1, wherein the first predetermined site is the lateral prefrontal circuit.
10. The method of claim 1, wherein the first predetermined site is the mesothalamic reticular formation.
11. The method of claim 1, wherein the first predetermined site is the basal ganglia.
12. The method of claim 1, wherein the first predetermined site is at least one of the paramedian thalamic and midbrain nuclei and fiber tracts.
13. The method of claim 12 wherein the at least one of the paramedian thalamic and midbrain nuclei and fiber tracts is selected from the group consisting of: the red nucleus, the habenulointerpeduncular tract, the prerubral area, the zona incerta, the thalamic primary sensory relay nuclei, the ventrooral nucleus, the ventrolateral nucleus, the parafasicular nucleus, and the intralaminar nucleus.
14. The method of claim 1 wherein the step of periodically stimulating, for a predetermined duration, a first predetermined site of a patient's brain using transcranial magnetic stimulation causes electrical current flow in the first predetermined site.
US11/168,600 2001-10-31 2005-06-27 System and method of treating stuttering by neuromodulation Expired - Fee Related US7632225B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/168,600 US7632225B2 (en) 2001-10-31 2005-06-27 System and method of treating stuttering by neuromodulation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/001,751 US6944497B2 (en) 2001-10-31 2001-10-31 System and method of treating stuttering by neuromodulation
US11/168,600 US7632225B2 (en) 2001-10-31 2005-06-27 System and method of treating stuttering by neuromodulation

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/001,751 Division US6944497B2 (en) 2001-10-31 2001-10-31 System and method of treating stuttering by neuromodulation

Publications (2)

Publication Number Publication Date
US20060041184A1 true US20060041184A1 (en) 2006-02-23
US7632225B2 US7632225B2 (en) 2009-12-15

Family

ID=21697666

Family Applications (4)

Application Number Title Priority Date Filing Date
US10/001,751 Expired - Fee Related US6944497B2 (en) 2001-10-31 2001-10-31 System and method of treating stuttering by neuromodulation
US11/168,600 Expired - Fee Related US7632225B2 (en) 2001-10-31 2005-06-27 System and method of treating stuttering by neuromodulation
US11/168,604 Expired - Fee Related US7815597B2 (en) 2001-10-31 2005-06-27 System and method of treating stuttering by neuromodulation
US11/168,752 Abandoned US20060041242A1 (en) 2001-10-31 2005-06-27 System and method of treating stuttering by neuromodulation

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/001,751 Expired - Fee Related US6944497B2 (en) 2001-10-31 2001-10-31 System and method of treating stuttering by neuromodulation

Family Applications After (2)

Application Number Title Priority Date Filing Date
US11/168,604 Expired - Fee Related US7815597B2 (en) 2001-10-31 2005-06-27 System and method of treating stuttering by neuromodulation
US11/168,752 Abandoned US20060041242A1 (en) 2001-10-31 2005-06-27 System and method of treating stuttering by neuromodulation

Country Status (1)

Country Link
US (4) US6944497B2 (en)

Families Citing this family (163)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6764472B1 (en) * 2000-01-11 2004-07-20 Bard Access Systems, Inc. Implantable refillable infusion device
US6708064B2 (en) * 2000-02-24 2004-03-16 Ali R. Rezai Modulation of the brain to affect psychiatric disorders
US7024247B2 (en) 2001-10-15 2006-04-04 Northstar Neuroscience, Inc. Systems and methods for reducing the likelihood of inducing collateral neural activity during neural stimulation threshold test procedures
US7010351B2 (en) 2000-07-13 2006-03-07 Northstar Neuroscience, Inc. Methods and apparatus for effectuating a lasting change in a neural-function of a patient
US7831305B2 (en) 2001-10-15 2010-11-09 Advanced Neuromodulation Systems, Inc. Neural stimulation system and method responsive to collateral neural activity
US7756584B2 (en) 2000-07-13 2010-07-13 Advanced Neuromodulation Systems, Inc. Methods and apparatus for effectuating a lasting change in a neural-function of a patient
US7672730B2 (en) * 2001-03-08 2010-03-02 Advanced Neuromodulation Systems, Inc. Methods and apparatus for effectuating a lasting change in a neural-function of a patient
US7305268B2 (en) 2000-07-13 2007-12-04 Northstar Neurscience, Inc. Systems and methods for automatically optimizing stimulus parameters and electrode configurations for neuro-stimulators
US6944497B2 (en) * 2001-10-31 2005-09-13 Medtronic, Inc. System and method of treating stuttering by neuromodulation
US7221981B2 (en) 2002-03-28 2007-05-22 Northstar Neuroscience, Inc. Electrode geometries for efficient neural stimulation
US7369894B2 (en) * 2002-09-06 2008-05-06 Medtronic, Inc. Method, system and device for treating disorders of the pelvic floor by electrical stimulation of the sacral and/or pudendal nerves
US7212851B2 (en) * 2002-10-24 2007-05-01 Brown University Research Foundation Microstructured arrays for cortex interaction and related methods of manufacture and use
US7236830B2 (en) 2002-12-10 2007-06-26 Northstar Neuroscience, Inc. Systems and methods for enhancing or optimizing neural stimulation therapy for treating symptoms of Parkinson's disease and/or other movement disorders
US7829694B2 (en) 2002-11-26 2010-11-09 Medtronic, Inc. Treatment of neurodegenerative disease through intracranial delivery of siRNA
US7618948B2 (en) 2002-11-26 2009-11-17 Medtronic, Inc. Devices, systems and methods for improving and/or cognitive function through brain delivery of siRNA
US7605249B2 (en) 2002-11-26 2009-10-20 Medtronic, Inc. Treatment of neurodegenerative disease through intracranial delivery of siRNA
US20050075680A1 (en) 2003-04-18 2005-04-07 Lowry David Warren Methods and systems for intracranial neurostimulation and/or sensing
US7565199B2 (en) * 2002-12-09 2009-07-21 Advanced Neuromodulation Systems, Inc. Methods for treating and/or collecting information regarding neurological disorders, including language disorders
US7732591B2 (en) * 2003-11-25 2010-06-08 Medtronic, Inc. Compositions, devices and methods for treatment of huntington's disease through intracranial delivery of sirna
US7994149B2 (en) 2003-02-03 2011-08-09 Medtronic, Inc. Method for treatment of Huntington's disease through intracranial delivery of sirna
US7153256B2 (en) 2003-03-07 2006-12-26 Neuronetics, Inc. Reducing discomfort caused by electrical stimulation
US8118722B2 (en) * 2003-03-07 2012-02-21 Neuronetics, Inc. Reducing discomfort caused by electrical stimulation
WO2005011805A2 (en) 2003-08-01 2005-02-10 Northstar Neuroscience, Inc. Apparatus and methods for applying neural stimulation to a patient
US7371228B2 (en) 2003-09-19 2008-05-13 Medtronic Vascular, Inc. Delivery of therapeutics to treat aneurysms
US20050143589A1 (en) * 2003-11-09 2005-06-30 Donoghue John P. Calibration systems and methods for neural interface devices
US7104947B2 (en) 2003-11-17 2006-09-12 Neuronetics, Inc. Determining stimulation levels for transcranial magnetic stimulation
US20050113744A1 (en) * 2003-11-21 2005-05-26 Cyberkinetics, Inc. Agent delivery systems and related methods under control of biological electrical signals
US7751877B2 (en) * 2003-11-25 2010-07-06 Braingate Co., Llc Neural interface system with embedded id
US7647097B2 (en) * 2003-12-29 2010-01-12 Braingate Co., Llc Transcutaneous implant
US7651459B2 (en) * 2004-01-06 2010-01-26 Neuronetics, Inc. Method and apparatus for coil positioning for TMS studies
US8467875B2 (en) 2004-02-12 2013-06-18 Medtronic, Inc. Stimulation of dorsal genital nerves to treat urologic dysfunctions
US20050203366A1 (en) * 2004-03-12 2005-09-15 Donoghue John P. Neurological event monitoring and therapy systems and related methods
US20050208090A1 (en) * 2004-03-18 2005-09-22 Medtronic, Inc. Methods and systems for treatment of neurological diseases of the central nervous system
US8177702B2 (en) 2004-04-15 2012-05-15 Neuronetics, Inc. Method and apparatus for determining the proximity of a TMS coil to a subject's head
US7601115B2 (en) * 2004-05-24 2009-10-13 Neuronetics, Inc. Seizure therapy method and apparatus
US7346382B2 (en) 2004-07-07 2008-03-18 The Cleveland Clinic Foundation Brain stimulation models, systems, devices, and methods
US7483747B2 (en) * 2004-07-15 2009-01-27 Northstar Neuroscience, Inc. Systems and methods for enhancing or affecting neural stimulation efficiency and/or efficacy
US20060049957A1 (en) * 2004-08-13 2006-03-09 Surgenor Timothy R Biological interface systems with controlled device selector and related methods
EP1827207A2 (en) * 2004-10-04 2007-09-05 Cyberkinetics Neurotechnology Systems, Inc. Biological interface system
US7857746B2 (en) * 2004-10-29 2010-12-28 Nueronetics, Inc. System and method to reduce discomfort using nerve stimulation
US7565200B2 (en) 2004-11-12 2009-07-21 Advanced Neuromodulation Systems, Inc. Systems and methods for selecting stimulation sites and applying treatment, including treatment of symptoms of Parkinson's disease, other movement disorders, and/or drug side effects
US7991461B2 (en) 2005-01-06 2011-08-02 Braingate Co., Llc Patient training routine for biological interface system
US8095209B2 (en) * 2005-01-06 2012-01-10 Braingate Co., Llc Biological interface system with gated control signal
US7901368B2 (en) * 2005-01-06 2011-03-08 Braingate Co., Llc Neurally controlled patient ambulation system
US20060189901A1 (en) * 2005-01-10 2006-08-24 Flaherty J C Biological interface system with surrogate controlled device
US20060167564A1 (en) * 2005-01-10 2006-07-27 Flaherty J C Limb and digit movement system
US7881780B2 (en) * 2005-01-18 2011-02-01 Braingate Co., Llc Biological interface system with thresholded configuration
US8088058B2 (en) * 2005-01-20 2012-01-03 Neuronetics, Inc. Articulating arm
US20060199159A1 (en) * 2005-03-01 2006-09-07 Neuronetics, Inc. Head phantom for simulating the patient response to magnetic stimulation
US20060253068A1 (en) * 2005-04-20 2006-11-09 Van Bilsen Paul Use of biocompatible in-situ matrices for delivery of therapeutic cells to the heart
WO2006121960A2 (en) * 2005-05-06 2006-11-16 Medtronic, Inc. Methods and sequences to suppress primate huntington gene expression
US7902352B2 (en) * 2005-05-06 2011-03-08 Medtronic, Inc. Isolated nucleic acid duplex for reducing huntington gene expression
US7396326B2 (en) 2005-05-17 2008-07-08 Neuronetics, Inc. Ferrofluidic cooling and acoustical noise reduction in magnetic stimulators
US9133517B2 (en) 2005-06-28 2015-09-15 Medtronics, Inc. Methods and sequences to preferentially suppress expression of mutated huntingtin
US20080280843A1 (en) * 2006-05-24 2008-11-13 Van Bilsen Paul Methods and kits for linking polymorphic sequences to expanded repeat mutations
US7824324B2 (en) 2005-07-27 2010-11-02 Neuronetics, Inc. Magnetic core for medical procedures
US8929991B2 (en) 2005-10-19 2015-01-06 Advanced Neuromodulation Systems, Inc. Methods for establishing parameters for neural stimulation, including via performance of working memory tasks, and associated kits
US7856264B2 (en) * 2005-10-19 2010-12-21 Advanced Neuromodulation Systems, Inc. Systems and methods for patient interactive neural stimulation and/or chemical substance delivery
US7729773B2 (en) 2005-10-19 2010-06-01 Advanced Neuromodualation Systems, Inc. Neural stimulation and optical monitoring systems and methods
US7684867B2 (en) * 2005-11-01 2010-03-23 Boston Scientific Neuromodulation Corporation Treatment of aphasia by electrical stimulation and/or drug infusion
US20070106143A1 (en) * 2005-11-08 2007-05-10 Flaherty J C Electrode arrays and related methods
US20070156126A1 (en) * 2005-12-29 2007-07-05 Flaherty J C Medical device insertion system and related methods
US7809443B2 (en) * 2006-01-31 2010-10-05 Medtronic, Inc. Electrical stimulation to alleviate chronic pelvic pain
US20070255333A1 (en) * 2006-04-28 2007-11-01 Medtronic, Inc. Neuromodulation therapy for perineal or dorsal branch of pudendal nerve
US7761166B2 (en) * 2006-04-28 2010-07-20 Medtronic, Inc. Electrical stimulation of iliohypogastric nerve to alleviate chronic pelvic pain
US8219202B2 (en) 2006-04-28 2012-07-10 Medtronic, Inc. Electrical stimulation of ilioinguinal nerve to alleviate chronic pelvic pain
US20090030481A1 (en) * 2006-05-18 2009-01-29 Med-El Elektromedizinische Geraete Gmbh Implantable Microphone for Treatment of Neurological Disorders
AR060952A1 (en) * 2006-05-18 2008-07-23 Med El Elektromed Geraete Gmbh IMPLANTABLE MICROPHONE FOR THE TREATMENT OF NEUROLOGICAL DISORDERS
US9273356B2 (en) 2006-05-24 2016-03-01 Medtronic, Inc. Methods and kits for linking polymorphic sequences to expanded repeat mutations
US20080039415A1 (en) * 2006-08-11 2008-02-14 Gregory Robert Stewart Retrograde transport of sirna and therapeutic uses to treat neurologic disorders
US20080089867A1 (en) * 2006-10-13 2008-04-17 Brian Fernandes Method of increasing retention, survival and proliferation of transplanted cells in vivo
US8324367B2 (en) 2006-11-03 2012-12-04 Medtronic, Inc. Compositions and methods for making therapies delivered by viral vectors reversible for safety and allele-specificity
US9375440B2 (en) * 2006-11-03 2016-06-28 Medtronic, Inc. Compositions and methods for making therapies delivered by viral vectors reversible for safety and allele-specificity
US7819842B2 (en) 2006-11-21 2010-10-26 Medtronic, Inc. Chronically implantable guide tube for repeated intermittent delivery of materials or fluids to targeted tissue sites
US7988668B2 (en) * 2006-11-21 2011-08-02 Medtronic, Inc. Microsyringe for pre-packaged delivery of pharmaceuticals
US8057426B2 (en) * 2007-01-03 2011-11-15 Medtronic Vascular, Inc. Devices and methods for injection of multiple-component therapies
US20080171906A1 (en) * 2007-01-16 2008-07-17 Everaerts Frank J L Tissue performance via hydrolysis and cross-linking
US7813811B2 (en) * 2007-02-08 2010-10-12 Neuropace, Inc. Refillable reservoir lead systems
US7844345B2 (en) * 2007-02-08 2010-11-30 Neuropace, Inc. Drug eluting lead systems
WO2008100845A1 (en) * 2007-02-12 2008-08-21 Med-El Elektromedizinische Geraete Gmbh Implantable microphone noise suppression
US8571673B2 (en) * 2007-02-12 2013-10-29 Med-El Elektromedizinische Geraete Gmbh Energy saving silent mode for hearing implant systems
US20080261183A1 (en) * 2007-04-23 2008-10-23 Steven Donaldson Device for treating stuttering and method of using the same
US8380314B2 (en) 2007-09-26 2013-02-19 Medtronic, Inc. Patient directed therapy control
US8290596B2 (en) * 2007-09-26 2012-10-16 Medtronic, Inc. Therapy program selection based on patient state
US20090264789A1 (en) * 2007-09-26 2009-10-22 Medtronic, Inc. Therapy program selection
US8121694B2 (en) 2007-10-16 2012-02-21 Medtronic, Inc. Therapy control based on a patient movement state
US20090287120A1 (en) 2007-12-18 2009-11-19 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Circulatory monitoring systems and methods
US8636670B2 (en) 2008-05-13 2014-01-28 The Invention Science Fund I, Llc Circulatory monitoring systems and methods
US9717896B2 (en) 2007-12-18 2017-08-01 Gearbox, Llc Treatment indications informed by a priori implant information
CN101925377A (en) 2008-01-25 2010-12-22 麦德托尼克公司 The detection of Sleep stages
US9220889B2 (en) 2008-02-11 2015-12-29 Intelect Medical, Inc. Directional electrode devices with locating features
US8019440B2 (en) 2008-02-12 2011-09-13 Intelect Medical, Inc. Directional lead assembly
US9884200B2 (en) * 2008-03-10 2018-02-06 Neuronetics, Inc. Apparatus for coil positioning for TMS studies
US8016814B2 (en) * 2008-03-10 2011-09-13 Medtronic Vascular, Inc. Guidewires and delivery catheters having fiber optic sensing components and related systems and methods
US7959612B2 (en) * 2008-04-21 2011-06-14 Medtronic Vascular, Inc. Dual syringe injector system
US20090270806A1 (en) * 2008-04-24 2009-10-29 Medtronic Vascular, Inc. Devices and Methods for Controlled-Depth Injection
US9272153B2 (en) 2008-05-15 2016-03-01 Boston Scientific Neuromodulation Corporation VOA generation system and method using a fiber specific analysis
US7799016B2 (en) * 2008-06-20 2010-09-21 Pharmaco-Kinesis Corporation Magnetic breather pump and a method for treating a brain tumor using the same
EP2313148B1 (en) 2008-07-30 2013-08-21 Ecole Polytechnique Fédérale de Lausanne Apparatus for optimized stimulation of a neurological target
US8130095B2 (en) 2008-08-27 2012-03-06 The Invention Science Fund I, Llc Health-related signaling via wearable items
US8284046B2 (en) 2008-08-27 2012-10-09 The Invention Science Fund I, Llc Health-related signaling via wearable items
US8094009B2 (en) 2008-08-27 2012-01-10 The Invention Science Fund I, Llc Health-related signaling via wearable items
US8125331B2 (en) 2008-08-27 2012-02-28 The Invention Science Fund I, Llc Health-related signaling via wearable items
EP3563902B1 (en) 2008-11-12 2021-07-14 Ecole Polytechnique Fédérale de Lausanne Microfabricated neurostimulation device
US8396558B2 (en) * 2009-02-11 2013-03-12 University Of Maryland, Baltimore Methods for treating central pain syndrome and other pain related pathologies
CA2772330A1 (en) 2009-08-27 2011-03-03 The Cleveland Clinic Foundation System and method to estimate region of tissue activation
US9770204B2 (en) 2009-11-11 2017-09-26 Medtronic, Inc. Deep brain stimulation for sleep and movement disorders
CA2782710C (en) 2009-12-01 2019-01-22 Ecole Polytechnique Federale De Lausanne Microfabricated neurostimulation device and methods of making and using the same
WO2011068997A1 (en) 2009-12-02 2011-06-09 The Cleveland Clinic Foundation Reversing cognitive-motor impairments in patients having a neuro-degenerative disease using a computational modeling approach to deep brain stimulation programming
AU2011234422B2 (en) 2010-04-01 2015-11-05 Ecole Polytechnique Federale De Lausanne (Epfl) Device for interacting with neurological tissue and methods of making and using the same
CA2802708A1 (en) 2010-06-14 2011-12-22 Boston Scientific Neuromodulation Corporation Programming interface for spinal cord neuromodulation
US9211411B2 (en) 2010-08-26 2015-12-15 Medtronic, Inc. Therapy for rapid eye movement behavior disorder (RBD)
WO2012050847A2 (en) 2010-09-28 2012-04-19 Masimo Corporation Depth of consciousness monitor including oximeter
JP5976675B2 (en) 2011-01-05 2016-08-24 日東電工株式会社 Wavelength-converting perylene diester chromophore and luminescent film
WO2012135190A2 (en) 2011-03-29 2012-10-04 Boston Scientific Neuromodulation Corporation System and method for atlas registration
US8571873B2 (en) 2011-04-18 2013-10-29 Nuance Communications, Inc. Systems and methods for reconstruction of a smooth speech signal from a stuttered speech signal
US9592389B2 (en) 2011-05-27 2017-03-14 Boston Scientific Neuromodulation Corporation Visualization of relevant stimulation leadwire electrodes relative to selected stimulation information
US8751008B2 (en) 2011-08-09 2014-06-10 Boston Scientific Neuromodulation Corporation Remote control data management with correlation of patient condition to stimulation settings and/or with clinical mode providing a mismatch between settings and interface data
CN105419380B (en) 2011-09-26 2017-09-29 日东电工株式会社 For raising day light collecting efficiency high fluorescence and photostability chromophore
CN103415589B (en) 2011-10-05 2016-08-10 日东电工株式会社 There is the Wavelength conversion film of the pressure sensitive adhesive layer improving day light collecting efficiency
CN104363865A (en) * 2012-01-18 2015-02-18 S·斯坦伯格沙皮拉 Method and device for stuttering alleviation
WO2014025624A1 (en) 2012-08-04 2014-02-13 Boston Scientific Neuromodulation Corporation Techniques and methods for storing and transferring registration, atlas, and lead information between medical devices
WO2014036079A2 (en) 2012-08-28 2014-03-06 Boston Scientific Neuromodulation Corporation Parameter visualization, selection, and annotation interface
WO2014070290A2 (en) 2012-11-01 2014-05-08 Boston Scientific Neuromodulation Corporation Systems and methods for voa model generation and use
CN106455985B (en) 2014-05-16 2019-09-17 阿莱瓦神经治疗股份有限公司 With the device and production and preparation method thereof of nerve fiber interaction
US11311718B2 (en) 2014-05-16 2022-04-26 Aleva Neurotherapeutics Sa Device for interacting with neurological tissue and methods of making and using the same
US9959388B2 (en) 2014-07-24 2018-05-01 Boston Scientific Neuromodulation Corporation Systems, devices, and methods for providing electrical stimulation therapy feedback
US10265528B2 (en) 2014-07-30 2019-04-23 Boston Scientific Neuromodulation Corporation Systems and methods for electrical stimulation-related patient population volume analysis and use
US10272247B2 (en) 2014-07-30 2019-04-30 Boston Scientific Neuromodulation Corporation Systems and methods for stimulation-related volume analysis, creation, and sharing with integrated surgical planning and stimulation programming
US9925376B2 (en) 2014-08-27 2018-03-27 Aleva Neurotherapeutics Treatment of autoimmune diseases with deep brain stimulation
US9403011B2 (en) 2014-08-27 2016-08-02 Aleva Neurotherapeutics Leadless neurostimulator
US9474894B2 (en) 2014-08-27 2016-10-25 Aleva Neurotherapeutics Deep brain stimulation lead
US9974959B2 (en) 2014-10-07 2018-05-22 Boston Scientific Neuromodulation Corporation Systems, devices, and methods for electrical stimulation using feedback to adjust stimulation parameters
WO2016057553A1 (en) 2014-10-07 2016-04-14 Masimo Corporation Modular physiological sensors
US20160284363A1 (en) * 2015-03-24 2016-09-29 Intel Corporation Voice activity detection technologies, systems and methods employing the same
US10780283B2 (en) 2015-05-26 2020-09-22 Boston Scientific Neuromodulation Corporation Systems and methods for analyzing electrical stimulation and selecting or manipulating volumes of activation
US9956419B2 (en) 2015-05-26 2018-05-01 Boston Scientific Neuromodulation Corporation Systems and methods for analyzing electrical stimulation and selecting or manipulating volumes of activation
US20160375248A1 (en) 2015-06-29 2016-12-29 Boston Scientific Neuromodulation Corporation Systems and methods for selecting stimulation parameters based on stimulation target region, effects, or side effects
WO2017003947A1 (en) 2015-06-29 2017-01-05 Boston Scientific Neuromodulation Corporation Systems and methods for selecting stimulation parameters by targeting and steering
US11278722B2 (en) 2015-08-27 2022-03-22 Hrl Laboratories, Llc System and method to cue specific memory recalls while awake
US10596372B2 (en) 2015-08-27 2020-03-24 Hrl Laboratories, Llc Targeted steerable transcranial intervention to accelerate memory consolidation
US10413724B2 (en) 2015-10-23 2019-09-17 Hrl Laboratories, Llc Method for low latency automated closed-loop synchronization of neurostimulation interventions to neurophysiological activity
US10071249B2 (en) 2015-10-09 2018-09-11 Boston Scientific Neuromodulation Corporation System and methods for clinical effects mapping for directional stimulation leads
US10918862B1 (en) 2015-10-23 2021-02-16 Hrl Laboratories, Llc Method for automated closed-loop neurostimulation for improving sleep quality
US10716942B2 (en) 2016-04-25 2020-07-21 Boston Scientific Neuromodulation Corporation System and methods for directional steering of electrical stimulation
WO2017223505A2 (en) 2016-06-24 2017-12-28 Boston Scientific Neuromodulation Corporation Systems and methods for visual analytics of clinical effects
CN105997009A (en) * 2016-07-01 2016-10-12 张民 Wearable stutter correction device and stutter correction clothes
US20180018985A1 (en) * 2016-07-16 2018-01-18 Ron Zass System and method for detecting repetitive speech
US10350404B2 (en) 2016-09-02 2019-07-16 Boston Scientific Neuromodulation Corporation Systems and methods for visualizing and directing stimulation of neural elements
US10780282B2 (en) 2016-09-20 2020-09-22 Boston Scientific Neuromodulation Corporation Systems and methods for steering electrical stimulation of patient tissue and determining stimulation parameters
CN109803719B (en) 2016-10-14 2023-05-26 波士顿科学神经调制公司 System and method for closed loop determination of stimulation parameter settings for an electrical simulation system
CA3045697C (en) 2017-01-03 2021-07-20 Boston Scientific Neuromodulation Corporation Systems and methods for selecting mri-compatible stimulation parameters
US10589104B2 (en) 2017-01-10 2020-03-17 Boston Scientific Neuromodulation Corporation Systems and methods for creating stimulation programs based on user-defined areas or volumes
US10625082B2 (en) 2017-03-15 2020-04-21 Boston Scientific Neuromodulation Corporation Visualization of deep brain stimulation efficacy
US11357986B2 (en) 2017-04-03 2022-06-14 Boston Scientific Neuromodulation Corporation Systems and methods for estimating a volume of activation using a compressed database of threshold values
JP6932835B2 (en) 2017-07-14 2021-09-08 ボストン サイエンティフィック ニューロモデュレイション コーポレイション Systems and methods for estimating the clinical effects of electrical stimulation
US10960214B2 (en) 2017-08-15 2021-03-30 Boston Scientific Neuromodulation Corporation Systems and methods for controlling electrical stimulation using multiple stimulation fields
US10702692B2 (en) 2018-03-02 2020-07-07 Aleva Neurotherapeutics Neurostimulation device
US11285320B1 (en) 2018-04-06 2022-03-29 Hrl Laboratories, Llc Comprehensive second-language acquisition system leveraging sleep neuromodulation and neuroaugmented executive control
US11285319B1 (en) 2018-04-06 2022-03-29 Hrl Laboratories, Llc Method and system for improving quality of life for the elderly through neurostimulation
JP7295141B2 (en) 2018-04-27 2023-06-20 ボストン サイエンティフィック ニューロモデュレイション コーポレイション Multimodal electrical stimulation system and methods of making and using
EP3784332B1 (en) 2018-04-27 2023-04-26 Boston Scientific Neuromodulation Corporation Systems for visualizing and programming electrical stimulation
US11727949B2 (en) 2019-08-12 2023-08-15 Massachusetts Institute Of Technology Methods and apparatus for reducing stuttering

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3566858A (en) * 1968-11-04 1971-03-02 Zenith Radio Corp Antistuttering therapeutic device
US4020567A (en) * 1973-01-11 1977-05-03 Webster Ronald L Method and stuttering therapy apparatus
US4662847A (en) * 1985-11-29 1987-05-05 Blum Arthur M Electronic device and method for the treatment of stuttering
US4692147A (en) * 1980-04-02 1987-09-08 Medtronic, Inc. Drug administration device
US4784115A (en) * 1986-06-16 1988-11-15 Webster Ronald L Anti-stuttering device and method
US4909261A (en) * 1989-02-13 1990-03-20 Syracuse University Tracking multielectrode electroglottograph
US5061234A (en) * 1989-09-25 1991-10-29 Corteks, Inc. Magnetic neural stimulator for neurophysiology
US5111814A (en) * 1990-07-06 1992-05-12 Thomas Jefferson University Laryngeal pacemaker
US5113859A (en) * 1988-09-19 1992-05-19 Medtronic, Inc. Acoustic body bus medical device communication system
US5259387A (en) * 1991-09-09 1993-11-09 Quinton Instrument Company ECG muscle artifact filter system
US5478304A (en) * 1992-09-23 1995-12-26 Webster; Ronald L. Anti-sturrering device and method
US5794203A (en) * 1994-03-22 1998-08-11 Kehoe; Thomas David Biofeedback system for speech disorders
US5833600A (en) * 1995-08-21 1998-11-10 Young; Robert B. Method of diagnosing amygdala related transitory disorders and treatment thereof
US5843142A (en) * 1997-03-27 1998-12-01 Sultan; Hashem Voice activated loco motor device and method of use for spinal cord injuries
US5940798A (en) * 1997-12-31 1999-08-17 Scientific Learning Corporation Feedback modification for reducing stuttering
US5961443A (en) * 1996-07-31 1999-10-05 East Carolina University Therapeutic device to ameliorate stuttering
US6117066A (en) * 1992-12-04 2000-09-12 Somatics, Inc. Prevention of seizure arising from medical magnetoictal non-convulsive stimulation therapy
US6128538A (en) * 1997-10-27 2000-10-03 Neuropace, Inc. Means and method for the treatment of neurological disorders
US6231500B1 (en) * 1994-03-22 2001-05-15 Thomas David Kehoe Electronic anti-stuttering device providing auditory feedback and disfluency-detecting biofeedback

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4685448A (en) * 1983-10-11 1987-08-11 University Of Pittsburgh Vocal tactile feedback method and associated apparatus
IL108908A (en) * 1994-03-09 1996-10-31 Speech Therapy Systems Ltd Speech therapy system
US6463328B1 (en) * 1996-02-02 2002-10-08 Michael Sasha John Adaptive brain stimulation method and system
US5683422A (en) * 1996-04-25 1997-11-04 Medtronic, Inc. Method and apparatus for treating neurodegenerative disorders by electrical brain stimulation
US6094598A (en) * 1996-04-25 2000-07-25 Medtronics, Inc. Method of treating movement disorders by brain stimulation and drug infusion
US5735814A (en) * 1996-04-30 1998-04-07 Medtronic, Inc. Techniques of treating neurodegenerative disorders by brain infusion
US5713923A (en) * 1996-05-13 1998-02-03 Medtronic, Inc. Techniques for treating epilepsy by brain stimulation and drug infusion
US6128537A (en) * 1997-05-01 2000-10-03 Medtronic, Inc Techniques for treating anxiety by brain stimulation and drug infusion
US6227203B1 (en) * 1998-02-12 2001-05-08 Medtronic, Inc. Techniques for controlling abnormal involuntary movements by brain stimulation and drug infusion
US6539263B1 (en) * 1999-06-11 2003-03-25 Cornell Research Foundation, Inc. Feedback mechanism for deep brain stimulation
US6381496B1 (en) * 1999-10-01 2002-04-30 Advanced Bionics Corporation Parameter context switching for an implanted device
US6671550B2 (en) * 2000-09-20 2003-12-30 Medtronic, Inc. System and method for determining location and tissue contact of an implantable medical device within a body
US6944497B2 (en) * 2001-10-31 2005-09-13 Medtronic, Inc. System and method of treating stuttering by neuromodulation

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3566858A (en) * 1968-11-04 1971-03-02 Zenith Radio Corp Antistuttering therapeutic device
US4020567A (en) * 1973-01-11 1977-05-03 Webster Ronald L Method and stuttering therapy apparatus
US4692147A (en) * 1980-04-02 1987-09-08 Medtronic, Inc. Drug administration device
US4662847A (en) * 1985-11-29 1987-05-05 Blum Arthur M Electronic device and method for the treatment of stuttering
US4784115A (en) * 1986-06-16 1988-11-15 Webster Ronald L Anti-stuttering device and method
US5113859A (en) * 1988-09-19 1992-05-19 Medtronic, Inc. Acoustic body bus medical device communication system
US4909261A (en) * 1989-02-13 1990-03-20 Syracuse University Tracking multielectrode electroglottograph
US5061234A (en) * 1989-09-25 1991-10-29 Corteks, Inc. Magnetic neural stimulator for neurophysiology
US5111814A (en) * 1990-07-06 1992-05-12 Thomas Jefferson University Laryngeal pacemaker
US5259387A (en) * 1991-09-09 1993-11-09 Quinton Instrument Company ECG muscle artifact filter system
US5478304A (en) * 1992-09-23 1995-12-26 Webster; Ronald L. Anti-sturrering device and method
US6117066A (en) * 1992-12-04 2000-09-12 Somatics, Inc. Prevention of seizure arising from medical magnetoictal non-convulsive stimulation therapy
US5794203A (en) * 1994-03-22 1998-08-11 Kehoe; Thomas David Biofeedback system for speech disorders
US6231500B1 (en) * 1994-03-22 2001-05-15 Thomas David Kehoe Electronic anti-stuttering device providing auditory feedback and disfluency-detecting biofeedback
US5833600A (en) * 1995-08-21 1998-11-10 Young; Robert B. Method of diagnosing amygdala related transitory disorders and treatment thereof
US5961443A (en) * 1996-07-31 1999-10-05 East Carolina University Therapeutic device to ameliorate stuttering
US5843142A (en) * 1997-03-27 1998-12-01 Sultan; Hashem Voice activated loco motor device and method of use for spinal cord injuries
US6128538A (en) * 1997-10-27 2000-10-03 Neuropace, Inc. Means and method for the treatment of neurological disorders
US5940798A (en) * 1997-12-31 1999-08-17 Scientific Learning Corporation Feedback modification for reducing stuttering

Also Published As

Publication number Publication date
US7632225B2 (en) 2009-12-15
US7815597B2 (en) 2010-10-19
US20060041242A1 (en) 2006-02-23
US20030082507A1 (en) 2003-05-01
US20060041221A1 (en) 2006-02-23
US6944497B2 (en) 2005-09-13

Similar Documents

Publication Publication Date Title
US7632225B2 (en) System and method of treating stuttering by neuromodulation
US11745014B2 (en) Brain stimulation system including multiple stimulation modes
US9333351B2 (en) Neurostimulation method and system to treat apnea
US6430443B1 (en) Method and apparatus for treating auditory hallucinations
US6529774B1 (en) Extradural leads, neurostimulator assemblies, and processes of using them for somatosensory and brain stimulation
US6128537A (en) Techniques for treating anxiety by brain stimulation and drug infusion
EP1843814B1 (en) Device for the transdermal stimulation of a nerve of the human body
US6176242B1 (en) Method of treating manic depression by brain infusion
US10155114B2 (en) Systems and methods of treating a neurological disorder in a patient
US6356784B1 (en) Method of treating movement disorders by electrical stimulation and/or drug infusion of the pendunulopontine nucleus
US9821162B2 (en) Deep brain stimulation for sleep disorders
US8175699B2 (en) Punctual stimulation apparatus
US20040193220A1 (en) Treatment of movement disorders with drug therapy
US10967182B2 (en) Devices and methods for reducing inflammation using electrical stimulation
EP2197536A1 (en) System and method for neural stimulation
EP3996807B1 (en) Systems for delivering therapy using an auricular stimulation device
JP2005193026A (en) Closed loop system to control muscle activity through intrathecal catheter and method therefor
DE102011009528B4 (en) Device for transcutaneous stimulation of a nerve of the human body
WO2015024945A1 (en) Systems and methods for electrotherapy combined with feedback from sensors
US20230310862A1 (en) Medical implant for treatment of sleep-disordered breathing
US20230233855A1 (en) Adjustable auricular nerve stimulation devices, and associated systems and methods
WO2023209455A1 (en) Medical implant with tissue location monitoring
CN115697478A (en) Stimulation device and method of activating a patient
WO2023026124A1 (en) Wirelessly powered medical implant for treatment of sleep-disordered breathing

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

CC Certificate of correction
REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20131215