US20060111761A1 - Methods and apparatus for light therapy - Google Patents

Methods and apparatus for light therapy Download PDF

Info

Publication number
US20060111761A1
US20060111761A1 US11/329,513 US32951306A US2006111761A1 US 20060111761 A1 US20060111761 A1 US 20060111761A1 US 32951306 A US32951306 A US 32951306A US 2006111761 A1 US2006111761 A1 US 2006111761A1
Authority
US
United States
Prior art keywords
light
light emitting
emitting diode
target area
targeting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/329,513
Inventor
Glenn Butler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Life Support Technology
Original Assignee
Life Support Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Life Support Technology filed Critical Life Support Technology
Priority to US11/329,513 priority Critical patent/US20060111761A1/en
Publication of US20060111761A1 publication Critical patent/US20060111761A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N5/0613Apparatus adapted for a specific treatment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N5/0613Apparatus adapted for a specific treatment
    • A61N5/0616Skin treatment other than tanning
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N2005/0626Monitoring, verifying, controlling systems and methods
    • A61N2005/0629Sequential activation of light sources
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N2005/0635Radiation therapy using light characterised by the body area to be irradiated
    • A61N2005/0636Irradiating the whole body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N2005/0635Radiation therapy using light characterised by the body area to be irradiated
    • A61N2005/0642Irradiating part of the body at a certain distance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N2005/065Light sources therefor
    • A61N2005/0651Diodes
    • A61N2005/0652Arrays of diodes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/01Devices for producing movement of radiation source during therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N5/0613Apparatus adapted for a specific treatment
    • A61N5/062Photodynamic therapy, i.e. excitation of an agent

Definitions

  • the present invention relates generally to the use of electromagnetic energy during medical treatment, and more particularly to methods and apparatus for light therapy.
  • Visible and near infrared wavelength light is known to have many therapeutic benefits.
  • wavelengths of 680, 730 and/or 880 nanometers have been shown to increase cell growth and speed wound healing (especially when combined with hyperbaric oxygen), and have been used to activate photoactive agents for various cancer treatments.
  • Whelan et al. “NASA Light Emitting Diode Medical Applications From Deep Space to Deep Sea,” Space Technology and Applications International Forum—2001, American Institute of Physics, pp. 35-45 (2001).
  • an apparatus for use in light therapy includes (1) at least one light emitting diode array adapted to emit a wavelength of light; and (2) a targeting mechanism coupled to the at least one light emitting diode array so as to allow light emitted from the at least one light emitting diode array to be repeatably positioned on a target area during non-contact light therapy.
  • an apparatus for use in light therapy includes (1) at least one light emitting diode array adapted to emit a wavelength of light; (2) a targeting mechanism that includes at least one targeting light source coupled to the at least one light emitting diode array so as to allow light emitted from the at least one light emitting diode array to be repeatably positioned on a target area, wherein the targeting light source is adapted to turn off prior to image recording; and (3) an imaging mechanism adapted to image the target area.
  • Each computer program product described herein may be carried by a medium readable by a computer (e.g., a carrier wave signal, a floppy disc, a compact disc, a DVD, a hard drive, a random access memory, etc.).
  • a medium readable by a computer e.g., a carrier wave signal, a floppy disc, a compact disc, a DVD, a hard drive, a random access memory, etc.
  • FIG. 1 is a block diagram of a first embodiment of a light therapy device provided in accordance with the present invention
  • FIG. 2 is a flowchart of an exemplary process that may be performed by the light therapy device of FIG. 1 ;
  • FIGS. 3 A-B are a schematic bottom view and side view, respectively, of an exemplary embodiment of the light therapy device of FIG. 1 ;
  • FIG. 4A illustrates an exemplary split screen interface provided in accordance with the present invention
  • FIG. 4B illustrates an exemplary overlay screen interface provided in accordance with the present invention
  • FIG. 5A is schematic side perspective view of an alternative embodiment of the light therapy device of FIGS. 3A and 3B ;
  • FIG. 5B is a schematic bottom view of the light array of FIG. 5A ;
  • FIG. 5C is an enlarged view of the targeting laser and the camera of FIG. 5A ;
  • FIG. 5D is a schematic top view of the LED array of FIG. 5A ;
  • FIGS. 5 E-G are schematic side, front and back views, respectively, of an exemplary embodiment of the interface of FIG. 5A ;
  • FIGS. 5H and 5I are a top schematic view and a side schematic view, respectively, of an embodiment of the LED array of FIG. 5A ;
  • FIG. 6 is a schematic diagram of an exemplary embodiment of an inventive wound documentation system provided in accordance with the present invention.
  • FIG. 1 is a block diagram of a first embodiment of a light therapy device 100 provided in accordance with the present invention.
  • the light therapy device 100 includes a light emitting diode (LED) array 102 in communication with a programmable power source 104 , and a user device 106 in communication with the programmable power source 104 .
  • the light therapy device 100 also may include one or more of a position adjustment device 108 , a camera 110 and a targeting mechanism 112 .
  • the light therapy device 100 allows for non-invasive, repeatable dose light therapy of a target area (e.g., target tissue 114 in FIG. 1 ) using one or more wavelengths of light.
  • a target area e.g., target tissue 114 in FIG. 1
  • Such light therapy may employed, for example, to stimulate new growth in chronic wounds, to kill pathogenic organisms, to activate photo sensitive chemicals for treatment of skin or other cancers, or for any similar purpose.
  • the LED array 102 comprises a plurality of LEDs (not separately shown in FIG. 1 ) each adapted to emit light within a predetermined wavelength range (e.g., about a specific center frequency or wavelength).
  • the LEDs of the LED array 102 may be adapted to emit the same wavelength, or one or more different wavelengths.
  • the LED array 102 comprises a plurality of sub-arrays each adapted to emit a different wavelength.
  • one sub-array of LEDs may be adapted to emit near-infrared light (e.g., light having a wavelength within the range from about 1000 to 800 nanometers), one sub-array of LEDs may be adapted to emit visible light (e.g., light having a wavelength within the range from about 800 to 400 nanometers), and another sub-array of LEDs may be adapted to emit ultraviolet light (e.g., light having a wavelength within the range from about 400 to 200 nanometers). Other combinations and numbers of wavelengths of light may be employed, as may other wavelength ranges.
  • the LEDs employed within the LED array 102 may comprise any conventional light emitting diodes adapted to emit light of the desired wavelength/frequency.
  • the programmable power source 104 may comprise any conventional power source capable of driving the LEDs of the LED array 102 (e.g., any power source capable of providing one or more driving voltages and/or currents with a desired amplitude, frequency, duration and/or duty cycle to the LEDs).
  • the programmable power source 104 comprises a model No. MS210 four-channel mixer and a model no. PS24 twenty-four volt power supply available from Advanced Illumination of Rochester, Vt., although any other programmable power source may be similarly employed.
  • a non-programmable power source also may be employed.
  • the user device 106 may comprise, for example, a desktop computer, a laptop computer, a microcontroller, a personal digital assistant (PDA), a keyboard or other interface to the programmable power source 104 or the like.
  • the user device 106 is adapted to interface with and control the programmable power source 104 (e.g., by allowing a user to specify the amplitude, frequency, duty cycle and/or duration of one or more power signals applied to the LED array 102 by the power source 104 ).
  • the user device 106 also may be employed to control one or more of the position adjustment mechanism 108 , the camera 110 and/or the targeting mechanism 112 .
  • the position adjustment mechanism 108 may comprise any mechanism capable of repeatably positioning the LED array 102 relative to a target such as the target tissue 114 .
  • the position adjustment mechanism 108 comprises an articulated arm. Any other conventional positioning device may be similarly employed for the position adjustment mechanism 108 , such as an x-y-z stage (with or without motorized control), a slideable rail system, etc.
  • the camera 110 may comprise any conventional imaging system for viewing a target area such as the target tissue 114 .
  • the camera 110 may comprise a digital or analog (film) camera, a charge-coupled device, a digital or analog video system or the like.
  • the camera 110 comprises a digital camera capable of capturing images of a target area for storage and/or manipulation by the user device 106 (e.g., in a TIF, JPEG or other known format).
  • the targeting mechanism 112 may comprise any mechanism that allows light beams emitted from the LED array 102 to be repeatably positioned on a target area such as the target tissue 114 .
  • the targeting mechanism 112 comprises one or more lasers for generating one or more light beams on a target area (e.g., one or more visible light beams).
  • the one or more light beams may be used, for example, to identify the outermost area irradiated by the LED array 102 .
  • Other suitable targeting mechanisms may include, for example, crosshairs, viewfinders, etc.
  • the position adjustment mechanism 108 , the camera 110 and/or the targeting mechanism 112 may operate independently, or in cooperation, so as to form an overall target positioning system that may or may not be in communication with the user device 106 .
  • devices in communication with each other need only be “capable of” communicating with each other and need not be continually transmitting data to or receiving data from each other. On the contrary, such devices need only transmit data to or receive data from each other as necessary, and may actually refrain from exchanging data most the time. Further, devices may be in communication even though steps may be required to establish a communication link. Such communication may be performed over any suitable channel or combination of channels including for example, wireless, hardwired, optical or other channel types.
  • the light therapy device 100 may include one or more focusing devices for focusing light emitted from the LED array (identified by reference numeral 116 in FIG. 1 ) onto a target area.
  • focusing devices are well known, and may include, for example, one or more appropriately selected optical components such as a lens.
  • FIG. 2 is a flowchart of an exemplary process 200 that may be performed by the light therapy device 100 of FIG. 1 .
  • One or more of the steps of the process 200 may be implemented as one or more computer program products stored, for example, in the user device 106 .
  • the process 200 begins with step 201 .
  • the LED array 102 is positioned relative to the target area (e.g., target tissue 114 ). Positioning of the LED array 102 may be achieved by employing one or more of the position adjustment mechanism 108 , the camera 110 and the targeting mechanism 112 (as described further below). Following positioning of the LED array 102 , the camera 110 may be employed to image the target area.
  • the targeting mechanisms 112 includes one or more targeting lasers for positioning and/or ranging (as described below with reference to FIGS. 3A and 3B ), laser beam features such as intersection points, crosshairs or the like may be imaged with the target area (e.g., to aid in repeatable positioning of the LED array 102 relative to the target area at a later time).
  • a wavelength and dosage of light therapy is selected. This may be performed, for example, via the user device 106 and/or the programmable power source 104 . Assuming the LED array 102 is capable of producing multiple wavelengths via a plurality of LED sub-arrays (e.g., each sub-array generating a different wavelength), the programmable power source 104 may be configured to independently drive each sub-array of LEDs. In the embodiment of the invention described below with reference to FIGS. 3 A-B, this is achieved by associating each sub-array of LEDs with a different, programmable channel of the programmable power source 104 .
  • a user may select a wavelength of light with which to irradiate a target area, and the dose of the light to deliver. Dose may be set via selection of amplitude, duty cycle and/or duration of the power signal or signals used to drive the LEDs which generate the selected wavelength of light.
  • the user device 106 may be provided with dose recipes which represent predetermined power signal amplitudes, duty cycles and/or durations for one or more light doses. Accordingly, a user need only select a desired dose without having to determine power signal amplitude, duty cycle, duration or the like.
  • step 204 the target area is irradiated with the selected wavelength and dosage (e.g., via application of the appropriate power signal or signals to the LED array 102 via the programmable power source 104 ).
  • step 205 it is determined whether any other wavelengths or doses of light therapy are to be applied to the target area. If so, the process 200 returns to step 203 for selection of the next wavelength and/or dosage of light therapy; otherwise the process 200 ends in step 206 .
  • the process 200 may include a step of documenting the performed light therapy such as taking one or more images of the target area, recording dose or exposure information, etc., with the user device 106 .
  • wavelengths may be applied (e.g., simultaneously) during step 204 , and that wavelength selection may occur prior to positioning of the LED array 102 .
  • FIGS. 3A and 3B are a schematic bottom view and side view, respectively, of an exemplary embodiment of the light therapy device 100 of FIG. 1 (referred to by reference numeral 100 ′ in FIGS. 3 A-B).
  • the light therapy device 100 ′ of FIGS. 3 A-B may provide clinically repeatable dosages of near infrared (NIR), ultra-violet (UV) and other light frequencies to stimulate new growth in chronic wounds, to kill pathogenic organisms, to activate photo sensitive chemicals in the treatment of skin and other cancers, etc.
  • NIR near infrared
  • UV ultra-violet
  • the light therapy device 100 ′ employs four different LED wavelengths within the range from about 200 to 1000 nanometers. It will be understood that in general, any number of independently controlled LED wavelengths may be employed (e.g., for specific clinical applications), and that other wavelengths may be employed.
  • the light therapy device 100 ′ includes an LED array 102 ′ having one-hundred twenty LEDs 302 (not all one-hundred twenty of which are illustrated in FIG. 3A ) configured in a circular arrangement.
  • the LED array 102 ′ is divided into four sub-arrays (not separately shown) of LEDs which emit four different wavelengths (frequencies).
  • the four wavelengths emitted by the four LED sub-arrays are 350, 590, 660, and 880 nanometers, although other wavelengths may be employed.
  • the shorter wavelengths may be desirable as 590 nm may provide the shorter wavelength needed to resonate low molecular weight growth factors, and 350 nm is a photochemical frequency responsible for the production of Vitamin D3 and melanin in human skin and is known to be moderately pathogenic to most infecting organisms.
  • Each of the four LED sub-arrays represents an isolated circuit of 30 LEDs, 29 of which are arranged in a 360-degree pattern of light distribution that is equal as compared to the other LED sub-array patterns for uniform light distribution to a circular, rectangular or otherwise shaped target area (e.g., a tissue target area 114 ′ in FIG. 3B ). That is, LED's of differing frequencies are uniformly interdispersed (rather than having all LED's of the same frequency being grouped together).
  • the remaining (one) LED of each sub-array is disposed on a backside of the LED array 102 ′ and may be employed as an indicator light to identify when power is being applied to each LED sub-array.
  • Such an LED array may be similar to a model no. CL 141A-4 Color RL36120 5” Ring Light available from Advanced Illumination but customized for the particular wavelengths being employed. Other LED arrays may be employed.
  • the LED array 102 ′ is arranged in a near flat circular plane that is directed and/or focused to a 150 mm per side square target when the LED array 102 ′ is positioned at a distance 303 of 300 mm from a target area (e.g., tissue target area 114 ′).
  • the outside diameter of the LED array 102 ′ may be about 128 mm in diameter with an interior circular opening 305 of about 50 mm.
  • Other LED array shapes, sizes, focal lengths and focal widths may be employed.
  • a four channel programmable power source 104 ′ (e.g., a four channel programmable controller, a programmable voltage source, a microcontroller, or the like) is provided that can vary both the power signal applied to each 30 unit LED circuit/sub-array.
  • the programmable power source 104 ′ may vary one or more of the voltage, current, amplitude, duty cycle, duration, etc., applied to each LED circuit/sub-array. This feature permits controlled tissue “dosing” with each individual LED wavelength, or a specific pattern of wavelength exposure in order to provide the optimal exposure to promote growth, fight infection, or activate photodynamic compounds.
  • the power source 104 ′ may be programmed via a user device such as a laptop or other computer 106 ′
  • the light therapy device 100 ′ is equipped with a target positioning system 304 that includes lasers 308 a - d, a camera 110 ′ (e.g., a digital camera) and a computer based programmable controller and text/photo documentation system (e.g., one or more software programs operable with the laptop or other computer 106 ′).
  • the computer 106 ′ may record and/or store patient medical information, wound measurements, wound photographs (e.g., provided via the camera 110 ′) and repeatable dosage exposures of the wound or wounds of each patient being treated.
  • the outer perimeter of the LED array 102 ′ employs four 400-700 nanometer lasers 308 a - d placed 90 degrees apart and each having an output power of less than about 1 milliwatt.
  • Other targeting laser wavelengths and powers may be employed.
  • Targeting lasers are widely available and may be obtained, for example, from Edmund Scientific.
  • the two vertical lasers (0 and 180 degree lasers—lasers 308 b and 308 d in FIG. 3A ) may be “ranging” lasers adjusted so that their output beams intersect on a target area, such as the tissue target area 114 ′, when the LED array 102 ′ is positioned a predetermined distance from the target area (e.g., at 300 mm).
  • the two horizontal lasers (90 and 270 degree lasers—lasers 308 a and 308 c in FIG.
  • 3A may be “positioning” lasers adjusted to produce two beams on the target area which are separated by a predetermined distance (e.g., 150 mm, 200 mm, 300 mm, etc.) when the ranging lasers 308 b, 308 d intersect (e.g., when the LED array 102 ′ is the predetermined distance from the target area).
  • a predetermined distance e.g. 150 mm, 200 mm, 300 mm, etc.
  • Other numbers of ranging and positioning lasers may be employed, as may other laser wavelengths, spacings, intersection distances and positioning distances.
  • a single laser that projects cross-hair 90 degree intersecting beams may be employed to provide simultaneous “ranging” and “positioning” beams that operate in essentially the same manner as the four laser embodiment described previously.
  • a single crosshair laser may be adjusted to produce crosshairs of a predetermined length (e.g., 150 mm, 200 mm, 300 mm, etc.) on the target area when the laser is positioned at a predetermined distance from the target area (e.g., 300 mm).
  • the target area may be delineated, for example, by an indelible marker with cross hairs spaced at the predetermined length (e.g., 150 mm) so that the crosshairs of the laser align with the target area delineations when the laser is positioned the predetermined distance from the target area (e.g., 300 mm).
  • the predetermined length e.g. 150 mm
  • Other targeting techniques may be employed for ensuring accurate placement of the LED array.
  • the camera 110 ′ is a charge coupled device (CCD) based digital camera that is located in an interior opening 310 of the LED array 102 ′.
  • the camera 110 ′ may be a Quick-Cam Pro 3000 available from Logitech or another similar camera.
  • the camera 110 ′ may be pre-focused to permit retargeting and digital photo documentation of the same tissue/wound site.
  • one or more software programs stored within the computer 106 ′ and the camera 110 ′ may form a digital photo system that permits wound areas to be compared and represented as a percentage or square centimeter change in wound area to document healing.
  • a slide show sequencing of overlay photographs over time may be employed to demonstrate stages of healing.
  • Software also may be employed to permit a sequence of photographs to be “morphed” together into a continuous motion.
  • the LED array 102 ′ and target positioning system 304 may be mounted on an articulating arm 108 ′ that permits the LED array 102 ′ to be positioned over a target area (e.g., 300 mm or another relevant distance over a patient's wound site in the above example) without physical contact.
  • the programmable power source 104 ′ and/or the computer 106 ′ may be connected to the arm 108 ′ and LED array 102 ′ by one or more cables 312 .
  • Wireless connectivity also may be employed.
  • a 12-volt battery or a 120/240 VAC power supply powers the entire system.
  • the target area e.g., tissue/wound
  • the computer 106 ′ may direct the programmable power source 104 ′ to provide a specific series or combination of wavelengths/frequencies and intensities/durations (e.g., dosages) of LED light to the target area.
  • the LED array 102 ′ is placed about 300 mm above the target area (e.g., a wound area to be exposed); and the lasers beams 307 a, 307 b (shown in the plane of FIG. 3B for reference purposes) from the ranging lasers 308 b, 308 d are placed to intersect at the proximal center 316 of the wound area.
  • the positioning lasers 308 a, 308 c are adjusted horizontally so that their output beams 309 a, 309 b “straddle” the wound area on normal tissue that has been “marked” (e.g., with an indelible marker used to mark skin in plastic surgery) as shown by crosses 314 a - b. Repeatable tissue dosing, dimensioning and photography thereby is ensured.
  • the target positioning system 304 thus allows repeatable placement of the LED array 102 ′ relative to a target area such as a chronic wound or targeted tissues to facilitate repeatable LED dosages, photographs, wound measurements and text narrative to document clinical progress.
  • a target area such as a chronic wound or targeted tissues
  • each of the four (or more) wavelengths in relation to each other is permitted.
  • the invention also provides for complete repeatable dosage control for each exposure as well as a complete dosage record for each patient.
  • the foregoing description discloses only exemplary embodiments of the invention. Modifications of the above disclosed apparatus and method which fall within the scope of the invention will be readily apparent to those of ordinary skill in the art. For instance, instead of employing LEDs as light sources, lasers or other light sources may be employed. Other wavelengths than those described may be employed. For example, in one embodiment, the following wavelengths may be employed: 625 nm, 660 nm, 735 nm and 880 nm.
  • Indicator lights may be mounted on the back of the LED array 102 ′ to indicate which LED circuit/sub-array has been activated.
  • a CCD-type color camera may be employed as the camera 110 ′.
  • the camera may be mounted inside the LED array 102 ′, and a single cross hair laser may be positioned underneath the camera and tilted to intersect the crosshairs at the center of a TV camera field.
  • Split screen software then may be employed on the computer 106 ′ to allow a user to position a previously recorded image next to a realtime image. When the position of both images match, the realtime image may be recorded. Overlaying the images allows a user to observe wound healing.
  • FIG. 4A illustrates an exemplary split screen interface 400 provided in accordance with the present invention.
  • the split screen interface 400 may be displayed, for example, on a screen of the user device 106 (e.g., a laptop or other computer such as the computer 106 ′); and may be implemented via one or more computer program products stored, for example, in the user device 106 .
  • the split screen interface 400 employs a window 402 having a first viewing area 404 a and a second viewing area 404 b.
  • the first viewing area 404 a is adapted to display a previously recorded image (e.g., an “historical” image) of a target area A (e.g., as captured by the camera 110 ) and the second viewing area 404 b is adapted to display a realtime image of the target area A (e.g., as captured by the camera 110 ).
  • the positioning of the historical and realtime images may be reversed.
  • reference numerals of like items within the second viewing area 404 b (the realtime image area) will be differentiated with a single apostrophe.
  • the target area A includes a wound 406 ( 406 ′) that has been delineated by indelible markings 408 a, 408 b ( 408 a ′, 408 b ′).
  • the image of the crosshairs of a targeting laser e.g., a single crosshair laser
  • reference numerals 410 a, 410 b 410 a ′, 410 b ′.
  • the crosshairs 410 a, 410 b ( 410 a ′, 410 b ′) have a predetermined length (e.g., 150 mm) when the LED array 102 is positioned a predetermined distance (e.g., 300 mm) above the target area.
  • the markings 408 a, 408 b ( 408 a ′, 408 b ′) are spaced 150 mm apart.
  • a repeatable distance may be maintained between the target area and the LED array 102 merely by ensuring that the crosshair 410 b ( 410 b ′) contacts both markings 408 a, 408 b ( 408 a ′, 408 b ′).
  • the split screen interface 400 allows for easy comparison of a previously recorded image of the target area A (viewing area 404 a ) with a realtime image of the target area A (viewing area 404 b ). Wound size thereby may be easily compared (e.g., to determine healing progress/rate).
  • proper positioning of the LED array 102 may be determined by contacting an end of the historical image crosshair 410 b with an end of the realtime image crosshair 410 b ′ (as shown).
  • Software preferably allows for calculation of wound area within the viewing areas 404 a, 404 b (e.g., to further aid in tracking healing).
  • Various information such as wound area size 412 ( 412 ′), patient information 414 ( 414 ′) or the like may be displayed within one or more of the viewing areas 404 a, 404 b.
  • FIG. 4B illustrates an exemplary overlay screen interface 450 provided in accordance with the present invention.
  • the overlay screen interface 450 may be displayed, for example, on a screen of the user device 106 (e.g., a laptop or other computer such as the computer 106 ′); and may be implemented via one or more computer program products stored, for example, in the user device 106 .
  • the overlay screen interface 450 is similar to the split screen interface 400 , but overlays the realtime image on the historical image as shown. Differences in wound area thereby are more readily observable, and positioning is simplified as proper positioning/alignment may be assured merely by overlaying historical image crosshairs 410 a, 410 b over realtime image crosshairs 410 a ′, 410 b ′. Other user interfaces may be employed. Patient information (not shown), wound area information 452 , etc., also may be displayed by the overlay screen interface 450 .
  • a real-time image of a smaller wound can be superimposed over a larger historical wound image so that both can be seen for comparison by moving the real-time LASER crosshair to cover the crosshair image from the historical image. This aligns the real-time image directly over the historical image for comparison.
  • Any number of images may be “layered” on top of each other in a slideshow format, and slowly or rapidly sequenced from the oldest to the latest image.
  • Software may be employed to compare and calculate a square centimeter (or other unit) area comparison between the historical and real-time images. This may be accomplished, for example, by “marking” the perimeter of the wound. The software then may compare the number of darker pixels inside the wound perimeter to the number of lighter pixels outside the wound perimeter. All images may be time/date stamped and saved as a retrievable file. In at least one embodiment, an image of a target area may not be saved without a patient number for identification.
  • the above described patient photo documentation system may also permit the historical and real-time images to be placed side by side for comparison (as shown in FIG. 4A ).
  • the historical image is placed on one side of a screen and the real-time image is placed on the other side of the screen.
  • the real time image may be aligned using a LASER crosshair by connecting a horizontal LASER line of each image end to end.
  • the LED array 102 may be placed in contact with a target area.
  • the LED array may be implemented as a flexible (e.g., rubber pad) array, placed in a disposable container (e.g., a plastic bag) and placed directly on a wound site.
  • FIG. 5A is schematic side perspective view of an alternative embodiment of the light therapy device 100 ′ of FIGS. 3A and 3B (referred to by reference numeral 100 ′′ in FIG. 5A ).
  • the light therapy device 100 ′′ of FIG. 5A may be similar to the light therapy device 100 ′ of FIGS. 3A-3B and include, for example, the LED array 102 ′, a programmable controller and/or power source similar to programmable controller 104 ′ of FIGS. 3A-3B (represented as interface 502 in FIG. 5A ) and a user device such as the computer 106 ′ (shown as a laptop computer in FIG. 5A , although any other computer may be employed).
  • the computer 106 ′ may control operation of the light therapy device 100 ′′ (e.g., as previously described with reference to the light therapy device 100 ′ of FIGS. 3A-3B ).
  • the light therapy device 100 ′′ of FIG. 5A includes the target positioning system 304 of the light therapy device 100 ′ of FIGS. 3A and 3B , which in the embodiment shown in FIG. 5A , includes a single targeting laser 504 (e.g., a single, crosshair laser), the camera 110 ′ and in some embodiments a computer based text/photo documentation system (e.g., one or more software programs operable with the laptop or other computer 106 ′).
  • the articulating arm 108 ′ or another position adjustment mechanism also may be employed (as previously described).
  • the light therapy device 100 ′′ may include a power source 506 (that may be coupled to the LED array 102 ′) for supplying power to the targeting laser 504 (e.g., via a power cord 508 ).
  • An external power source also may be used.
  • a switch 510 is provided that allows the targeting laser 504 to be turned on during positioning of the LED array 102 ′ and turned off after positioning of the LED array 102 ′, prior to employing the camera 110 ′ to record an image of a target area.
  • the computer 106 ′ may be used to automatically turn off the targeting laser 504 prior to image recording (e.g., instead of employing the switch 510 ). In some cases, it may be desirable to leave the targeting laser 504 on during image recording.
  • FIG. 5B is a schematic bottom view of the light array 102 ′ of FIG. 5A ;
  • FIG. 5C which is an enlarged view of the targeting laser 504 and the camera 110 ′ of FIG. 5A ;
  • FIG. 5D which is a schematic top view of the LED array 102 ′ of FIG. 5A ;
  • FIGS. 5 E-G which are schematic side, front and back views, respectively, of an exemplary embodiment of the interface 502 .
  • FIGS. 5H and 5I are a top schematic view and a side schematic view, respectively, of an embodiment of the LED array 102 ′ of FIG. 5A wherein the LED array 102 ′ is divided into four LED sub-arrays 512 a - d.
  • each sub-array is adapted to output a unique wavelength (e.g., 350, 590, 660 and 880 nanometers, although other frequencies may be employed).
  • Other numbers of LED sub-arrays and other LED arrangements may be used.
  • LED's that output the same wavelength of light need not be grouped together (as previously described with reference to the LED array 102 ′ of FIGS. 3A and 3B ).
  • each LED sub-array 512 a - d is configured to output and focus light over a predefined area 514 when the LED array 102 ′ is positioned at a predefined height 516 above a target area 518 ( FIG. 5I ).
  • the predefined area 514 is about 150 mm when the LED array 102 ′ is positioned at a predefined height 516 of 300 mm above the target area 518 .
  • Other predefined areas and/or heights may be employed.
  • the light beam of the targeting laser 504 , the focus of the camera 110 ′ and the focus of the LED sub-arrays 512 a - d may be configured so as to intersect on the target area 518 within the predefined area 514 when the LED array 102 ′ is positioned at the predefined height 516 (as shown in FIG. 5I ).
  • the LED sub-arrays 512 a - d may be configured to produce focused light beams on the target area 518 within the predefined area 514 ;
  • the targeting laser 504 may be configured to produce a crosshair or other identifying feature that fills, crosses or otherwise aligns with the target area 518 (such as described previously with reference to FIGS. 3 A- 4 B); and
  • the camera 110 ′ may be configured to provide a focused image of the predefined area 514 .
  • the targeting laser 504 and/or the camera 110 ′ may be controlled by an electronic sequencer such as a multi-position switch (not shown) positioned on the LED array 102 ′ or at another suitable location.
  • a multi-position switch (not shown) positioned on the LED array 102 ′ or at another suitable location.
  • the multi-position switch when the multi-position switch is not depressed, both the targeting laser 504 and the camera 110 ′ are off (or in a standby mode).
  • the targeting laser 504 is turned on, allowing the LED array 102 ′ to be accurately positioned relative to a target area (as previously described).
  • the targeting laser 504 When the multi-position switch is fully depressed, the targeting laser 504 is turned off, and the camera 110 ′ is directed to record an image of the target area. Alternatively, or additionally, full depression of the multi-position switch may initiate a predetermined dose of light to be delivered to the target area via the LED array 102 ′.
  • the electronic sequencer, the targeting laser 504 , the camera 110 ′ and/or the LED array 102 ′ may work in cooperation with the computer 106 ′.
  • depression of the electronic sequencer may signal the computer 106 ′ to (1) turn on or off the targeting laser 504 ; (2) record an image with the camera 110 ′; and/or (3) direct the LED array 102 ′ to deliver a predetermined light dose to a target.
  • dedicated control logic (not shown) may allow/direct the electronic sequencer, the targeting laser 504 , the camera 110 ′ and/or the LED array 102 ′ to so operate.
  • any of the above described embodiments for the light therapy device 100 ′′ may operate in a manner similar to the light therapy device 100 ′ of FIGS. 3A and 3B , and may be employed with a split and/or overlay screen interface in a manner similar to that described with reference to FIGS. 4A and 4B .
  • inventive target positioning systems described above may be employed to document any wound treatment (e.g., whether or not light therapy is employed). Such systems may permit exact positioning of a camera relative to a wound (e.g., using one or more lasers coupled to the camera that ensure that the camera is precisely positioned/focused relative to a target).
  • FIG. 6 is schematic diagram of an exemplary embodiment of an inventive wound documentation system 600 provided in accordance with the present invention.
  • the wound documentation system 600 comprises a digital (or other suitable) camera 602 , and at least one targeting laser 604 and an electronic sequencer 606 (e.g., a multi-position switch) coupled to the camera 602 .
  • the camera 602 may or may not be coupled to a computer or other controller 608 (e.g., an appropriately programmed laptop or desktop computer, personal digital assistant, hand held video game player such as a GameBoyTM, etc.).
  • a computer or other controller 608 e.g., an appropriately programmed laptop or desktop computer, personal digital assistant, hand held video game player such as a GameBoyTM, etc.
  • the targeting laser 604 comprises a crosshair laser that is affixed to the camera 602 and aligned to focus at a center of the optical field of the camera 602 .
  • a crosshair laser may produce a fan shaped, XY crosshair beam B on a target area, wherein each beam leg changes length as the camera 602 /laser 604 are moved toward or away from the target area (as shown in FIG. 6 ).
  • Other targeting lasers and/or alignment configurations may be employed.
  • the electronic sequencer 606 may comprise, for example, a multi-position switch.
  • the multi-position switch may be a momentary (e.g., multi-circuit N/O-N/C) three stage switch that allows the targeting laser 604 to be turned on to align the camera 602 , but turned off prior to image capture by the camera 602 (thereby eliminating the laser beam B from any recorded image).
  • the multi-position switch may have:
  • two or more marks or other indicators 610 a - c are made on a perimeter of a wound area 612 (e.g., using an indelible dermal marker pencil or other marking device).
  • the two or more marks 610 a - c preferably are placed peri-wound at a known distance (e.g., 200 mm in one embodiment, although other distances may be employed).
  • the electronic sequencer 606 is depressed to its first detent position to turn on the targeting laser 604 , and the camera 602 , and the targeting laser 604 coupled thereto, are moved toward or away from the marks 610 a - c until the crosshairs of the laser beam B align exactly between the marks 610 a - c.
  • the electronic sequencer 606 may be depressed (e.g., further) to the second detent position so as to turn off the targeting laser 604 and record an image with the camera 602 .
  • the camera 602 , the targeting laser 604 and/or the entire wound documentation system 600 may be self contained and may, for example, employ a diskette, memory chip or other storage medium for image storage.
  • the camera 602 is coupled to the computer 608 which may be equipped with a larger memory system and digital imaging software in order to add patient information (e.g., name) to a photo/image, print pictures for inclusion in a medical chart or the like.
  • the system 600 also may scale wound X-Y dimensions and area using the known distance between the markings 610 a - c.
  • the wound documentation system 600 may employ a split and/or overlay screen interface in a manner similar to that described with reference to FIGS. 4A and 4B (e.g., to allow side-by-side or overlap time lapsed sequencing of wound treatment/healing images).
  • An articulating arm or other positioning mechanism may be employed with the wound documentation system 600 to assist in positioning of the camera 602 . (Likewise, an articulating arm need not be employed with any of the light therapy devices described herein).

Abstract

In a first aspect, an apparatus for use in light therapy is provided that includes (1) at least one light emitting diode array adapted to emit a wavelength of light; and (2) a targeting mechanism coupled to the at least one light emitting diode array so as to allow light emitted from the at least one light emitting diode array to be repeatably positioned on a target area during non-contact light therapy. Numerous other aspects are provided.

Description

  • This application is a continuation of U.S. patent application Ser. No. 10/613,608 filed Jul. 3, 2003, which claims priority from U.S. Provisional Patent Application Ser. No. 60/393,607, filed Jul. 3, 2002 and U.S. Provisional Patent Application Ser. No. 60/430,269, filed Dec. 2, 2002. Each of the above applications is hereby incorporated by reference herein in its entirety.
  • FIELD OF THE INVENTION
  • The present invention relates generally to the use of electromagnetic energy during medical treatment, and more particularly to methods and apparatus for light therapy.
  • BACKGROUND OF THE INVENTION
  • Visible and near infrared wavelength light is known to have many therapeutic benefits. For example, wavelengths of 680, 730 and/or 880 nanometers have been shown to increase cell growth and speed wound healing (especially when combined with hyperbaric oxygen), and have been used to activate photoactive agents for various cancer treatments. Whelan et al., “NASA Light Emitting Diode Medical Applications From Deep Space to Deep Sea,” Space Technology and Applications International Forum—2001, American Institute of Physics, pp. 35-45 (2001).
  • Despite the recognition of the benefits of visible and near infrared wavelength light irradiation, there remains a need for methods and apparatus for carrying out these and other forms of light therapy.
  • SUMMARY OF THE INVENTION
  • In a first aspect of the invention, an apparatus for use in light therapy is provided that includes (1) at least one light emitting diode array adapted to emit a wavelength of light; and (2) a targeting mechanism coupled to the at least one light emitting diode array so as to allow light emitted from the at least one light emitting diode array to be repeatably positioned on a target area during non-contact light therapy.
  • In a second aspect of the invention, an apparatus for use in light therapy is provided that includes (1) at least one light emitting diode array adapted to emit a wavelength of light; (2) a targeting mechanism that includes at least one targeting light source coupled to the at least one light emitting diode array so as to allow light emitted from the at least one light emitting diode array to be repeatably positioned on a target area, wherein the targeting light source is adapted to turn off prior to image recording; and (3) an imaging mechanism adapted to image the target area.
  • Numerous other aspects are provided, as are methods and computer program products for carrying out these and other aspects of the invention. Each computer program product described herein may be carried by a medium readable by a computer (e.g., a carrier wave signal, a floppy disc, a compact disc, a DVD, a hard drive, a random access memory, etc.).
  • Other features and aspects of the present invention will become more fully apparent from the following detailed description, the appended claims and the accompanying drawings.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a block diagram of a first embodiment of a light therapy device provided in accordance with the present invention;
  • FIG. 2 is a flowchart of an exemplary process that may be performed by the light therapy device of FIG. 1;
  • FIGS. 3A-B are a schematic bottom view and side view, respectively, of an exemplary embodiment of the light therapy device of FIG. 1;
  • FIG. 4A illustrates an exemplary split screen interface provided in accordance with the present invention;
  • FIG. 4B illustrates an exemplary overlay screen interface provided in accordance with the present invention;
  • FIG. 5A is schematic side perspective view of an alternative embodiment of the light therapy device of FIGS. 3A and 3B;
  • FIG. 5B is a schematic bottom view of the light array of FIG. 5A;
  • FIG. 5C is an enlarged view of the targeting laser and the camera of FIG. 5A;
  • FIG. 5D is a schematic top view of the LED array of FIG. 5A;
  • FIGS. 5E-G are schematic side, front and back views, respectively, of an exemplary embodiment of the interface of FIG. 5A;
  • FIGS. 5H and 5I are a top schematic view and a side schematic view, respectively, of an embodiment of the LED array of FIG. 5A; and
  • FIG. 6 is a schematic diagram of an exemplary embodiment of an inventive wound documentation system provided in accordance with the present invention.
  • DETAILED DESCRIPTION
  • FIG. 1 is a block diagram of a first embodiment of a light therapy device 100 provided in accordance with the present invention. With reference to FIG. 1, the light therapy device 100 includes a light emitting diode (LED) array 102 in communication with a programmable power source 104, and a user device 106 in communication with the programmable power source 104. The light therapy device 100 also may include one or more of a position adjustment device 108, a camera 110 and a targeting mechanism 112. As will be described further below, the light therapy device 100 allows for non-invasive, repeatable dose light therapy of a target area (e.g., target tissue 114 in FIG. 1) using one or more wavelengths of light. Such light therapy may employed, for example, to stimulate new growth in chronic wounds, to kill pathogenic organisms, to activate photo sensitive chemicals for treatment of skin or other cancers, or for any similar purpose.
  • With reference to FIG. 1, the LED array 102 comprises a plurality of LEDs (not separately shown in FIG. 1) each adapted to emit light within a predetermined wavelength range (e.g., about a specific center frequency or wavelength). The LEDs of the LED array 102 may be adapted to emit the same wavelength, or one or more different wavelengths. In at least one embodiment of the invention described below with reference to FIGS. 3A-B, the LED array 102 comprises a plurality of sub-arrays each adapted to emit a different wavelength. For example, one sub-array of LEDs may be adapted to emit near-infrared light (e.g., light having a wavelength within the range from about 1000 to 800 nanometers), one sub-array of LEDs may be adapted to emit visible light (e.g., light having a wavelength within the range from about 800 to 400 nanometers), and another sub-array of LEDs may be adapted to emit ultraviolet light (e.g., light having a wavelength within the range from about 400 to 200 nanometers). Other combinations and numbers of wavelengths of light may be employed, as may other wavelength ranges. The LEDs employed within the LED array 102 may comprise any conventional light emitting diodes adapted to emit light of the desired wavelength/frequency.
  • The programmable power source 104 may comprise any conventional power source capable of driving the LEDs of the LED array 102 (e.g., any power source capable of providing one or more driving voltages and/or currents with a desired amplitude, frequency, duration and/or duty cycle to the LEDs). In one embodiment of the invention, the programmable power source 104 comprises a model No. MS210 four-channel mixer and a model no. PS24 twenty-four volt power supply available from Advanced Illumination of Rochester, Vt., although any other programmable power source may be similarly employed. A non-programmable power source also may be employed.
  • The user device 106 may comprise, for example, a desktop computer, a laptop computer, a microcontroller, a personal digital assistant (PDA), a keyboard or other interface to the programmable power source 104 or the like. In at least one embodiment of the invention, the user device 106 is adapted to interface with and control the programmable power source 104 (e.g., by allowing a user to specify the amplitude, frequency, duty cycle and/or duration of one or more power signals applied to the LED array 102 by the power source 104). The user device 106 also may be employed to control one or more of the position adjustment mechanism 108, the camera 110 and/or the targeting mechanism 112.
  • The position adjustment mechanism 108 may comprise any mechanism capable of repeatably positioning the LED array 102 relative to a target such as the target tissue 114. In the embodiment of the light therapy device 100 described below with reference to FIGS. 3A-B, the position adjustment mechanism 108 comprises an articulated arm. Any other conventional positioning device may be similarly employed for the position adjustment mechanism 108, such as an x-y-z stage (with or without motorized control), a slideable rail system, etc.
  • The camera 110 may comprise any conventional imaging system for viewing a target area such as the target tissue 114. For example, the camera 110 may comprise a digital or analog (film) camera, a charge-coupled device, a digital or analog video system or the like. In at least one embodiment of the invention, the camera 110 comprises a digital camera capable of capturing images of a target area for storage and/or manipulation by the user device 106 (e.g., in a TIF, JPEG or other known format).
  • The targeting mechanism 112 may comprise any mechanism that allows light beams emitted from the LED array 102 to be repeatably positioned on a target area such as the target tissue 114. In the embodiment of FIGS. 3A-B, the targeting mechanism 112 comprises one or more lasers for generating one or more light beams on a target area (e.g., one or more visible light beams). The one or more light beams may be used, for example, to identify the outermost area irradiated by the LED array 102. Other suitable targeting mechanisms may include, for example, crosshairs, viewfinders, etc.
  • The position adjustment mechanism 108, the camera 110 and/or the targeting mechanism 112 may operate independently, or in cooperation, so as to form an overall target positioning system that may or may not be in communication with the user device 106. Those skilled in the art will understand that devices in communication with each other need only be “capable of” communicating with each other and need not be continually transmitting data to or receiving data from each other. On the contrary, such devices need only transmit data to or receive data from each other as necessary, and may actually refrain from exchanging data most the time. Further, devices may be in communication even though steps may be required to establish a communication link. Such communication may be performed over any suitable channel or combination of channels including for example, wireless, hardwired, optical or other channel types.
  • Although not shown in FIG. 1, the light therapy device 100 may include one or more focusing devices for focusing light emitted from the LED array (identified by reference numeral 116 in FIG. 1) onto a target area. Such focusing devices are well known, and may include, for example, one or more appropriately selected optical components such as a lens.
  • FIG. 2 is a flowchart of an exemplary process 200 that may be performed by the light therapy device 100 of FIG. 1. One or more of the steps of the process 200 may be implemented as one or more computer program products stored, for example, in the user device 106.
  • With reference to FIG. 2, the process 200 begins with step 201. In step 202, the LED array 102 is positioned relative to the target area (e.g., target tissue 114). Positioning of the LED array 102 may be achieved by employing one or more of the position adjustment mechanism 108, the camera 110 and the targeting mechanism 112 (as described further below). Following positioning of the LED array 102, the camera 110 may be employed to image the target area. In an embodiment wherein the targeting mechanisms 112 includes one or more targeting lasers for positioning and/or ranging (as described below with reference to FIGS. 3A and 3B), laser beam features such as intersection points, crosshairs or the like may be imaged with the target area (e.g., to aid in repeatable positioning of the LED array 102 relative to the target area at a later time).
  • In step 203, a wavelength and dosage of light therapy is selected. This may be performed, for example, via the user device 106 and/or the programmable power source 104. Assuming the LED array 102 is capable of producing multiple wavelengths via a plurality of LED sub-arrays (e.g., each sub-array generating a different wavelength), the programmable power source 104 may be configured to independently drive each sub-array of LEDs. In the embodiment of the invention described below with reference to FIGS. 3A-B, this is achieved by associating each sub-array of LEDs with a different, programmable channel of the programmable power source 104.
  • Employing either the user device 106 or the programmable power source 104, a user may select a wavelength of light with which to irradiate a target area, and the dose of the light to deliver. Dose may be set via selection of amplitude, duty cycle and/or duration of the power signal or signals used to drive the LEDs which generate the selected wavelength of light. In at least one embodiment, the user device 106 may be provided with dose recipes which represent predetermined power signal amplitudes, duty cycles and/or durations for one or more light doses. Accordingly, a user need only select a desired dose without having to determine power signal amplitude, duty cycle, duration or the like.
  • Once a wavelength and dosage of light therapy has been selected, in step 204 the target area is irradiated with the selected wavelength and dosage (e.g., via application of the appropriate power signal or signals to the LED array 102 via the programmable power source 104).
  • In step 205, it is determined whether any other wavelengths or doses of light therapy are to be applied to the target area. If so, the process 200 returns to step 203 for selection of the next wavelength and/or dosage of light therapy; otherwise the process 200 ends in step 206. Note, the process 200 may include a step of documenting the performed light therapy such as taking one or more images of the target area, recording dose or exposure information, etc., with the user device 106.
  • It will be understood that multiple wavelengths may be applied (e.g., simultaneously) during step 204, and that wavelength selection may occur prior to positioning of the LED array 102.
  • FIGS. 3A and 3B are a schematic bottom view and side view, respectively, of an exemplary embodiment of the light therapy device 100 of FIG. 1 (referred to by reference numeral 100′ in FIGS. 3A-B). As will be described further below, the light therapy device 100′ of FIGS. 3A-B may provide clinically repeatable dosages of near infrared (NIR), ultra-violet (UV) and other light frequencies to stimulate new growth in chronic wounds, to kill pathogenic organisms, to activate photo sensitive chemicals in the treatment of skin and other cancers, etc.
  • In the embodiment of FIGS. 3A and 3B, the light therapy device 100′ employs four different LED wavelengths within the range from about 200 to 1000 nanometers. It will be understood that in general, any number of independently controlled LED wavelengths may be employed (e.g., for specific clinical applications), and that other wavelengths may be employed.
  • With reference to FIG. 3A, the light therapy device 100′ includes an LED array 102′ having one-hundred twenty LEDs 302 (not all one-hundred twenty of which are illustrated in FIG. 3A) configured in a circular arrangement. The LED array 102′ is divided into four sub-arrays (not separately shown) of LEDs which emit four different wavelengths (frequencies). In at least one embodiment, the four wavelengths emitted by the four LED sub-arrays are 350, 590, 660, and 880 nanometers, although other wavelengths may be employed. The shorter wavelengths may be desirable as 590 nm may provide the shorter wavelength needed to resonate low molecular weight growth factors, and 350 nm is a photochemical frequency responsible for the production of Vitamin D3 and melanin in human skin and is known to be moderately pathogenic to most infecting organisms.
  • Each of the four LED sub-arrays represents an isolated circuit of 30 LEDs, 29 of which are arranged in a 360-degree pattern of light distribution that is equal as compared to the other LED sub-array patterns for uniform light distribution to a circular, rectangular or otherwise shaped target area (e.g., a tissue target area 114′ in FIG. 3B). That is, LED's of differing frequencies are uniformly interdispersed (rather than having all LED's of the same frequency being grouped together). The remaining (one) LED of each sub-array is disposed on a backside of the LED array 102′ and may be employed as an indicator light to identify when power is being applied to each LED sub-array. Such an LED array may be similar to a model no. CL 141A-4 Color RL36120 5” Ring Light available from Advanced Illumination but customized for the particular wavelengths being employed. Other LED arrays may be employed.
  • In at least one embodiment, the LED array 102′ is arranged in a near flat circular plane that is directed and/or focused to a 150 mm per side square target when the LED array 102′ is positioned at a distance 303 of 300 mm from a target area (e.g., tissue target area 114′). In such an embodiment, the outside diameter of the LED array 102′ may be about 128 mm in diameter with an interior circular opening 305 of about 50 mm. Other LED array shapes, sizes, focal lengths and focal widths may be employed.
  • A four channel programmable power source 104′ (e.g., a four channel programmable controller, a programmable voltage source, a microcontroller, or the like) is provided that can vary both the power signal applied to each 30 unit LED circuit/sub-array. For example, the programmable power source 104′ may vary one or more of the voltage, current, amplitude, duty cycle, duration, etc., applied to each LED circuit/sub-array. This feature permits controlled tissue “dosing” with each individual LED wavelength, or a specific pattern of wavelength exposure in order to provide the optimal exposure to promote growth, fight infection, or activate photodynamic compounds. In at least one embodiment, the power source 104′ may be programmed via a user device such as a laptop or other computer 106
  • As shown in both FIGS. 3A and 3B, the light therapy device 100′ is equipped with a target positioning system 304 that includes lasers 308 a-d, a camera 110′ (e.g., a digital camera) and a computer based programmable controller and text/photo documentation system (e.g., one or more software programs operable with the laptop or other computer 106′). For example, the computer 106′ may record and/or store patient medical information, wound measurements, wound photographs (e.g., provided via the camera 110′) and repeatable dosage exposures of the wound or wounds of each patient being treated.
  • In one embodiment of the invention designed for multiple wounds in one area, the outer perimeter of the LED array 102′ employs four 400-700 nanometer lasers 308 a-d placed 90 degrees apart and each having an output power of less than about 1 milliwatt. Other targeting laser wavelengths and powers may be employed. Targeting lasers are widely available and may be obtained, for example, from Edmund Scientific.
  • The two vertical lasers (0 and 180 degree lasers— lasers 308 b and 308 d in FIG. 3A) may be “ranging” lasers adjusted so that their output beams intersect on a target area, such as the tissue target area 114′, when the LED array 102′ is positioned a predetermined distance from the target area (e.g., at 300 mm). The two horizontal lasers (90 and 270 degree lasers— lasers 308 a and 308 c in FIG. 3A) may be “positioning” lasers adjusted to produce two beams on the target area which are separated by a predetermined distance (e.g., 150 mm, 200 mm, 300 mm, etc.) when the ranging lasers 308 b, 308 d intersect (e.g., when the LED array 102′ is the predetermined distance from the target area). Other numbers of ranging and positioning lasers may be employed, as may other laser wavelengths, spacings, intersection distances and positioning distances.
  • In another embodiment designed for large single wounds, a single laser that projects cross-hair 90 degree intersecting beams may be employed to provide simultaneous “ranging” and “positioning” beams that operate in essentially the same manner as the four laser embodiment described previously. For example, a single crosshair laser may be adjusted to produce crosshairs of a predetermined length (e.g., 150 mm, 200 mm, 300 mm, etc.) on the target area when the laser is positioned at a predetermined distance from the target area (e.g., 300 mm). When such a laser is employed, the target area may be delineated, for example, by an indelible marker with cross hairs spaced at the predetermined length (e.g., 150 mm) so that the crosshairs of the laser align with the target area delineations when the laser is positioned the predetermined distance from the target area (e.g., 300 mm). Other targeting techniques may be employed for ensuring accurate placement of the LED array.
  • As best shown in FIG. 3A, in at least one embodiment of the invention, the camera 110′ is a charge coupled device (CCD) based digital camera that is located in an interior opening 310 of the LED array 102′. For example, the camera 110′ may be a Quick-Cam Pro 3000 available from Logitech or another similar camera. The camera 110′ may be pre-focused to permit retargeting and digital photo documentation of the same tissue/wound site. Further within this embodiment, one or more software programs stored within the computer 106′ and the camera 110′ may form a digital photo system that permits wound areas to be compared and represented as a percentage or square centimeter change in wound area to document healing. A slide show sequencing of overlay photographs over time may be employed to demonstrate stages of healing. Software also may be employed to permit a sequence of photographs to be “morphed” together into a continuous motion.
  • The LED array 102′ and target positioning system 304 may be mounted on an articulating arm 108′ that permits the LED array 102′ to be positioned over a target area (e.g., 300 mm or another relevant distance over a patient's wound site in the above example) without physical contact. The programmable power source 104′ and/or the computer 106′ may be connected to the arm 108′ and LED array 102′ by one or more cables 312. Wireless connectivity also may be employed. In at least one embodiment, a 12-volt battery or a 120/240 VAC power supply powers the entire system.
  • Once the light therapy device 100′ has been accurately placed over a target area such as the tissue target area 114′, the target area (e.g., tissue/wound) may be photographed and the computer 106′ may direct the programmable power source 104′ to provide a specific series or combination of wavelengths/frequencies and intensities/durations (e.g., dosages) of LED light to the target area.
  • In at least one embodiment of the invention, the LED array 102′ is placed about 300 mm above the target area (e.g., a wound area to be exposed); and the lasers beams 307 a, 307 b (shown in the plane of FIG. 3B for reference purposes) from the ranging lasers 308 b, 308 d are placed to intersect at the proximal center 316 of the wound area. The positioning lasers 308 a, 308 c are adjusted horizontally so that their output beams 309 a, 309 b “straddle” the wound area on normal tissue that has been “marked” (e.g., with an indelible marker used to mark skin in plastic surgery) as shown by crosses 314 a-b. Repeatable tissue dosing, dimensioning and photography thereby is ensured.
  • The target positioning system 304 thus allows repeatable placement of the LED array 102′ relative to a target area such as a chronic wound or targeted tissues to facilitate repeatable LED dosages, photographs, wound measurements and text narrative to document clinical progress. A repeatable clinical dosing system for delivering a number of frequencies, intensities, and a repeatable duration of exposure thereby is provided.
  • With use of the embodiments of the present invention, sequencing of each of the four (or more) wavelengths in relation to each other is permitted. The invention also provides for complete repeatable dosage control for each exposure as well as a complete dosage record for each patient. The foregoing description discloses only exemplary embodiments of the invention. Modifications of the above disclosed apparatus and method which fall within the scope of the invention will be readily apparent to those of ordinary skill in the art. For instance, instead of employing LEDs as light sources, lasers or other light sources may be employed. Other wavelengths than those described may be employed. For example, in one embodiment, the following wavelengths may be employed: 625 nm, 660 nm, 735 nm and 880 nm.
  • Indicator lights (not shown) may be mounted on the back of the LED array 102′ to indicate which LED circuit/sub-array has been activated.
  • In an least one embodiment, a CCD-type color camera may be employed as the camera 110′. The camera may be mounted inside the LED array 102′, and a single cross hair laser may be positioned underneath the camera and tilted to intersect the crosshairs at the center of a TV camera field. Split screen software then may be employed on the computer 106′ to allow a user to position a previously recorded image next to a realtime image. When the position of both images match, the realtime image may be recorded. Overlaying the images allows a user to observe wound healing.
  • FIG. 4A illustrates an exemplary split screen interface 400 provided in accordance with the present invention. The split screen interface 400 may be displayed, for example, on a screen of the user device 106 (e.g., a laptop or other computer such as the computer 106′); and may be implemented via one or more computer program products stored, for example, in the user device 106.
  • With reference to FIG. 4A, the split screen interface 400 employs a window 402 having a first viewing area 404 a and a second viewing area 404 b. The first viewing area 404 a is adapted to display a previously recorded image (e.g., an “historical” image) of a target area A (e.g., as captured by the camera 110) and the second viewing area 404 b is adapted to display a realtime image of the target area A (e.g., as captured by the camera 110). The positioning of the historical and realtime images may be reversed. For clarity, reference numerals of like items within the second viewing area 404 b (the realtime image area) will be differentiated with a single apostrophe.
  • In the embodiment of FIG. 4A, the target area A includes a wound 406 (406′) that has been delineated by indelible markings 408 a, 408 b (408 a′, 408 b′). Note that the image of the crosshairs of a targeting laser (e.g., a single crosshair laser) are also recorded by the camera 110 as indicated by reference numerals 410 a, 410 b (410 a′, 410 b′). In at least one embodiment, the crosshairs 410 a, 410 b (410 a′, 410 b′) have a predetermined length (e.g., 150 mm) when the LED array 102 is positioned a predetermined distance (e.g., 300 mm) above the target area. In the embodiment of FIG. 4A, the markings 408 a, 408 b (408 a′, 408 b′) are spaced 150 mm apart. In this manner, a repeatable distance may be maintained between the target area and the LED array 102 merely by ensuring that the crosshair 410 b (410 b′) contacts both markings 408 a, 408 b (408 a′, 408 b′).
  • As shown in FIG. 4A, the split screen interface 400 allows for easy comparison of a previously recorded image of the target area A (viewing area 404 a) with a realtime image of the target area A (viewing area 404 b). Wound size thereby may be easily compared (e.g., to determine healing progress/rate). In at least one embodiment, proper positioning of the LED array 102 may be determined by contacting an end of the historical image crosshair 410 b with an end of the realtime image crosshair 410 b′ (as shown). Software preferably allows for calculation of wound area within the viewing areas 404 a, 404 b (e.g., to further aid in tracking healing). Various information such as wound area size 412 (412′), patient information 414 (414′) or the like may be displayed within one or more of the viewing areas 404 a, 404 b.
  • FIG. 4B illustrates an exemplary overlay screen interface 450 provided in accordance with the present invention. The overlay screen interface 450 may be displayed, for example, on a screen of the user device 106 (e.g., a laptop or other computer such as the computer 106′); and may be implemented via one or more computer program products stored, for example, in the user device 106.
  • The overlay screen interface 450 is similar to the split screen interface 400, but overlays the realtime image on the historical image as shown. Differences in wound area thereby are more readily observable, and positioning is simplified as proper positioning/alignment may be assured merely by overlaying historical image crosshairs 410 a, 410 b over realtime image crosshairs 410 a′, 410 b′. Other user interfaces may be employed. Patient information (not shown), wound area information 452, etc., also may be displayed by the overlay screen interface 450.
  • As an example, a real-time image of a smaller wound (5×8 cm=40 cm2) can be superimposed over a larger historical wound image so that both can be seen for comparison by moving the real-time LASER crosshair to cover the crosshair image from the historical image. This aligns the real-time image directly over the historical image for comparison. Any number of images may be “layered” on top of each other in a slideshow format, and slowly or rapidly sequenced from the oldest to the latest image. Software may be employed to compare and calculate a square centimeter (or other unit) area comparison between the historical and real-time images. This may be accomplished, for example, by “marking” the perimeter of the wound. The software then may compare the number of darker pixels inside the wound perimeter to the number of lighter pixels outside the wound perimeter. All images may be time/date stamped and saved as a retrievable file. In at least one embodiment, an image of a target area may not be saved without a patient number for identification.
  • The above described patient photo documentation system may also permit the historical and real-time images to be placed side by side for comparison (as shown in FIG. 4A). The historical image is placed on one side of a screen and the real-time image is placed on the other side of the screen. The real time image may be aligned using a LASER crosshair by connecting a horizontal LASER line of each image end to end.
  • Though the present invention has been described primarily with reference to non-contact applications (e.g., for sterility purposes), it will be understood that the LED array 102 (or 102′) may be placed in contact with a target area. For example, the LED array may be implemented as a flexible (e.g., rubber pad) array, placed in a disposable container (e.g., a plastic bag) and placed directly on a wound site.
  • FIG. 5A is schematic side perspective view of an alternative embodiment of the light therapy device 100′ of FIGS. 3A and 3B (referred to by reference numeral 100″ in FIG. 5A). The light therapy device 100″ of FIG. 5A may be similar to the light therapy device 100′ of FIGS. 3A-3B and include, for example, the LED array 102′, a programmable controller and/or power source similar to programmable controller 104′ of FIGS. 3A-3B (represented as interface 502 in FIG. 5A) and a user device such as the computer 106′ (shown as a laptop computer in FIG. 5A, although any other computer may be employed). The computer 106′, for example, may control operation of the light therapy device 100″ (e.g., as previously described with reference to the light therapy device 100′ of FIGS. 3A-3B).
  • The light therapy device 100″ of FIG. 5A includes the target positioning system 304 of the light therapy device 100′ of FIGS. 3A and 3B, which in the embodiment shown in FIG. 5A, includes a single targeting laser 504 (e.g., a single, crosshair laser), the camera 110′ and in some embodiments a computer based text/photo documentation system (e.g., one or more software programs operable with the laptop or other computer 106′). The articulating arm 108′ or another position adjustment mechanism also may be employed (as previously described).
  • The light therapy device 100″ may include a power source 506 (that may be coupled to the LED array 102′) for supplying power to the targeting laser 504 (e.g., via a power cord 508). An external power source also may be used. Preferably a switch 510 is provided that allows the targeting laser 504 to be turned on during positioning of the LED array 102′ and turned off after positioning of the LED array 102′, prior to employing the camera 110′ to record an image of a target area. Other configurations may be employed. For example, the computer 106′ may be used to automatically turn off the targeting laser 504 prior to image recording (e.g., instead of employing the switch 510). In some cases, it may be desirable to leave the targeting laser 504 on during image recording.
  • Further views of portions of the light therapy device 100″ are shown in FIG. 5B which is a schematic bottom view of the light array 102′ of FIG. 5A; FIG. 5C which is an enlarged view of the targeting laser 504 and the camera 110′ of FIG. 5A; FIG. 5D which is a schematic top view of the LED array 102′ of FIG. 5A; and FIGS. 5E-G which are schematic side, front and back views, respectively, of an exemplary embodiment of the interface 502.
  • FIGS. 5H and 5I are a top schematic view and a side schematic view, respectively, of an embodiment of the LED array 102′ of FIG. 5A wherein the LED array 102′ is divided into four LED sub-arrays 512 a-d. In at least one embodiment, each sub-array is adapted to output a unique wavelength (e.g., 350, 590, 660 and 880 nanometers, although other frequencies may be employed). Other numbers of LED sub-arrays and other LED arrangements may be used. For example, LED's that output the same wavelength of light need not be grouped together (as previously described with reference to the LED array 102′ of FIGS. 3A and 3B).
  • In at least one embodiment of the invention, each LED sub-array 512 a-d is configured to output and focus light over a predefined area 514 when the LED array 102′ is positioned at a predefined height 516 above a target area 518 (FIG. 5I). In the exemplary embodiment shown in FIGS. 5H-I, the predefined area 514 is about 150 mm when the LED array 102′ is positioned at a predefined height 516 of 300 mm above the target area 518. Other predefined areas and/or heights may be employed. Note that the light beam of the targeting laser 504, the focus of the camera 110′ and the focus of the LED sub-arrays 512 a-d may be configured so as to intersect on the target area 518 within the predefined area 514 when the LED array 102′ is positioned at the predefined height 516 (as shown in FIG. 5I). That is, when the LED array 102′ is positioned at the predefined height 516, (1) the LED sub-arrays 512 a-d may be configured to produce focused light beams on the target area 518 within the predefined area 514; (2) the targeting laser 504 may be configured to produce a crosshair or other identifying feature that fills, crosses or otherwise aligns with the target area 518 (such as described previously with reference to FIGS. 3A-4B); and (3) the camera 110′ may be configured to provide a focused image of the predefined area 514.
  • In an alternative embodiment of the invention, rather than using the computer 106′ or the switch 510 to turn off the targeting laser 504, the targeting laser 504 and/or the camera 110′ may be controlled by an electronic sequencer such as a multi-position switch (not shown) positioned on the LED array 102′ or at another suitable location. For example, in one embodiment, when the multi-position switch is not depressed, both the targeting laser 504 and the camera 110′ are off (or in a standby mode). When the multi-position switch is slightly depressed, the targeting laser 504 is turned on, allowing the LED array 102′ to be accurately positioned relative to a target area (as previously described). When the multi-position switch is fully depressed, the targeting laser 504 is turned off, and the camera 110′ is directed to record an image of the target area. Alternatively, or additionally, full depression of the multi-position switch may initiate a predetermined dose of light to be delivered to the target area via the LED array 102′.
  • In one embodiment of the invention, the electronic sequencer, the targeting laser 504, the camera 110′ and/or the LED array 102′ may work in cooperation with the computer 106′. For example, depression of the electronic sequencer may signal the computer 106′ to (1) turn on or off the targeting laser 504; (2) record an image with the camera 110′; and/or (3) direct the LED array 102′ to deliver a predetermined light dose to a target. Likewise, dedicated control logic (not shown) may allow/direct the electronic sequencer, the targeting laser 504, the camera 110′ and/or the LED array 102′ to so operate. Note that any of the above described embodiments for the light therapy device 100″ may operate in a manner similar to the light therapy device 100′ of FIGS. 3A and 3B, and may be employed with a split and/or overlay screen interface in a manner similar to that described with reference to FIGS. 4A and 4B.
  • In general, repeatable measurements and documentation (e.g., imaging) of wounds during wound treatment is difficult, whether or not light therapy is employed. For instance, wounds typically are documented weekly and often by different people using different photography techniques.
  • The inventive target positioning systems described above may be employed to document any wound treatment (e.g., whether or not light therapy is employed). Such systems may permit exact positioning of a camera relative to a wound (e.g., using one or more lasers coupled to the camera that ensure that the camera is precisely positioned/focused relative to a target).
  • FIG. 6 is schematic diagram of an exemplary embodiment of an inventive wound documentation system 600 provided in accordance with the present invention. The wound documentation system 600 comprises a digital (or other suitable) camera 602, and at least one targeting laser 604 and an electronic sequencer 606 (e.g., a multi-position switch) coupled to the camera 602. The camera 602 may or may not be coupled to a computer or other controller 608 (e.g., an appropriately programmed laptop or desktop computer, personal digital assistant, hand held video game player such as a GameBoy™, etc.).
  • In one embodiment of the invention, the targeting laser 604 comprises a crosshair laser that is affixed to the camera 602 and aligned to focus at a center of the optical field of the camera 602. (Another type of laser, an LED or some other light source also may be used.) Such a crosshair laser may produce a fan shaped, XY crosshair beam B on a target area, wherein each beam leg changes length as the camera 602/laser 604 are moved toward or away from the target area (as shown in FIG. 6). Other targeting lasers and/or alignment configurations may be employed.
  • The electronic sequencer 606 may comprise, for example, a multi-position switch. In at least one embodiment, the multi-position switch may be a momentary (e.g., multi-circuit N/O-N/C) three stage switch that allows the targeting laser 604 to be turned on to align the camera 602, but turned off prior to image capture by the camera 602 (thereby eliminating the laser beam B from any recorded image). For example, the multi-position switch may have:
      • (1) a static (e.g., spring biased) position in which the targeting laser 604 is off (or in standby) and the camera 602 is off (or in standby);
      • (2) a first detent position in which the targeting laser 604 is on and the camera 602 is off (or in standby); and
      • (3) a second (e.g., fully depressed) detent position in which the targeting laser 604 is off and the camera 602 records an image.
        Other configurations may be employed.
  • In operation, two or more marks or other indicators 610 a-c (three of which are shown in FIG. 6) are made on a perimeter of a wound area 612 (e.g., using an indelible dermal marker pencil or other marking device). The two or more marks 610 a-c preferably are placed peri-wound at a known distance (e.g., 200 mm in one embodiment, although other distances may be employed).
  • Thereafter, the electronic sequencer 606 is depressed to its first detent position to turn on the targeting laser 604, and the camera 602, and the targeting laser 604 coupled thereto, are moved toward or away from the marks 610 a-c until the crosshairs of the laser beam B align exactly between the marks 610 a-c. Once the crosshairs of the laser beam B of the targeting laser 604 are aligned with the marks 610 a-c, the electronic sequencer 606 may be depressed (e.g., further) to the second detent position so as to turn off the targeting laser 604 and record an image with the camera 602.
  • The camera 602, the targeting laser 604 and/or the entire wound documentation system 600 may be self contained and may, for example, employ a diskette, memory chip or other storage medium for image storage. In the embodiment shown in FIG. 6, the camera 602 is coupled to the computer 608 which may be equipped with a larger memory system and digital imaging software in order to add patient information (e.g., name) to a photo/image, print pictures for inclusion in a medical chart or the like. The system 600 also may scale wound X-Y dimensions and area using the known distance between the markings 610 a-c. The wound documentation system 600 may employ a split and/or overlay screen interface in a manner similar to that described with reference to FIGS. 4A and 4B (e.g., to allow side-by-side or overlap time lapsed sequencing of wound treatment/healing images).
  • Fewer or more marks 610 a-c than described may be used (e.g., one or two, more than three, etc.). An articulating arm or other positioning mechanism may be employed with the wound documentation system 600 to assist in positioning of the camera 602. (Likewise, an articulating arm need not be employed with any of the light therapy devices described herein).
  • Accordingly, while the present invention has been disclosed in connection with exemplary embodiments thereof, it should be understood that other embodiments may fall within the spirit and scope of the invention, as defined by the following claims.

Claims (11)

1. An apparatus for use in light therapy comprising:
at least one light emitting diode array adapted to emit a wavelength of light; and
a targeting mechanism coupled to the at least one light emitting diode array so as to allow light emitted from the at least one light emitting diode array to be repeatably positioned on a target area during non-contact light therapy.
2. The apparatus of claim 1 wherein the at least one light emitting diode array comprises a plurality of light emitting diode arrays, each light emitting diode array adapted to emit a different wavelength of light.
3. The apparatus of claim 2 wherein each light emitting diode array includes a plurality of light emitting diodes and wherein light emitting diodes that emit different wavelengths are uniformly interdispersed.
4. The apparatus of claim 3 wherein each light emitting diode is adapted to emit a wavelength of 625 nm, 660 nm, 735 nm or 880 nm.
5. The apparatus of claim 3 wherein each light emitting diode is adapted to emit a wavelength of 350, 590, 660 or 880 nanometers.
6. The apparatus of claim 1 further comprising a positioning device coupled to the at least one light emitting diode array and adapted to position the at least one light emitting diode array relative to a target area.
7. The apparatus of claim 1 further comprising an imaging mechanism adapted to record an image of a target area.
8. The apparatus of claim 7 wherein the targeting mechanism is coupled to the imaging mechanism and includes at least one targeting light source, the at least one targeting light source adapted to allow the imaging mechanism to be repeatably positioned relative to a target area prior to image recording.
9. The apparatus of claim 8 further comprising a sequencer mechanism having:
a first position in which the at least one targeting light source is off and the imaging mechanism does not record an image;
a second position in which the targeting light source is on and the imaging mechanism does not record an image; and
a third position in which the targeting light source is off and the imaging mechanism records an image.
10. An apparatus for use in light therapy comprising:
at least one light emitting diode array adapted to emit a wavelength of light;
a targeting mechanism that includes at least one targeting light source coupled to the at least one light emitting diode array so as to allow light emitted from the at least one light emitting diode array to be repeatably positioned on a target area, wherein the targeting light source is adapted to turn off prior to image recording; and
an imaging mechanism adapted to image the target area.
11. A method of light therapy comprising:
providing an apparatus for use in light therapy having:
at least one light emitting diode array adapted to emit a wavelength of light; and
a targeting mechanism coupled to the at least one light emitting diode array so as to allow light emitted from the at least one light emitting diode array to be repeatably positioned on a target area during non-contact light therapy;
positioning the at least one light emitting array relative to a target area;
selecting a wavelength and a dosage of light therapy; and
irradiating the target area with the selected wavelength and dosage.
US11/329,513 2002-07-03 2006-01-11 Methods and apparatus for light therapy Abandoned US20060111761A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/329,513 US20060111761A1 (en) 2002-07-03 2006-01-11 Methods and apparatus for light therapy

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US39360702P 2002-07-03 2002-07-03
US43026902P 2002-12-02 2002-12-02
US10/613,608 US7001413B2 (en) 2002-07-03 2003-07-03 Methods and apparatus for light therapy
US11/329,513 US20060111761A1 (en) 2002-07-03 2006-01-11 Methods and apparatus for light therapy

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/613,608 Continuation US7001413B2 (en) 2002-07-03 2003-07-03 Methods and apparatus for light therapy

Publications (1)

Publication Number Publication Date
US20060111761A1 true US20060111761A1 (en) 2006-05-25

Family

ID=30119127

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/613,608 Expired - Fee Related US7001413B2 (en) 2002-07-03 2003-07-03 Methods and apparatus for light therapy
US11/329,513 Abandoned US20060111761A1 (en) 2002-07-03 2006-01-11 Methods and apparatus for light therapy

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/613,608 Expired - Fee Related US7001413B2 (en) 2002-07-03 2003-07-03 Methods and apparatus for light therapy

Country Status (1)

Country Link
US (2) US7001413B2 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040261796A1 (en) * 2003-06-30 2004-12-30 Life Support Technologies Hyperbaric chamber control and/or monitoring system and methods for using the same
US20050261621A1 (en) * 2003-09-17 2005-11-24 Thomas Perez Method and apparatus for providing UV light to blood
US20050261622A1 (en) * 2003-09-17 2005-11-24 Thomas Perez Method and apparatus for providing light to blood
US20060074467A1 (en) * 2003-09-17 2006-04-06 Thomas Perez Method and apparatus for sublingual application of light to blood
US20060095102A1 (en) * 2003-09-17 2006-05-04 Thomas Perez Method and apparatus for sublingual application of light to blood
US20060259101A1 (en) * 2005-05-10 2006-11-16 Thomas Perez UV light irradiation machine for veterinary use
US20070073365A1 (en) * 2002-07-03 2007-03-29 Life Support Technologies, Inc. Methods and apparatus for light therapy
US20070255454A1 (en) * 2006-04-27 2007-11-01 Honda Motor Co., Ltd. Control Of Robots From Human Motion Descriptors
DE102008045824A1 (en) * 2008-09-05 2010-03-11 livetec Ingenieurbüro GmbH Treatment device for external treatment of human or animal body for simulating cells of nerves and muscles, has sensor directly or indirectly arranged at fastening device, and controlling device connected with sensor
US20100074857A1 (en) * 2008-09-23 2010-03-25 Pamela Lipkin Compositions and methods to treat epithelial-related conditions
US7761945B2 (en) 2004-05-28 2010-07-27 Life Support Technologies, Inc. Apparatus and methods for preventing pressure ulcers in bedfast patients
US20130053677A1 (en) * 2009-11-09 2013-02-28 Jeffrey E. Schoenfeld System and method for wound care management based on a three dimensional image of a foot
US8858607B1 (en) 2013-03-15 2014-10-14 Gary W. Jones Multispectral therapeutic light source
US9278232B2 (en) 2011-03-17 2016-03-08 Jk-Holding Gmbh Device for irradiating actinic radiation of different wavelengths
US9295855B2 (en) 2013-03-15 2016-03-29 Gary W. Jones Ambient spectrum light conversion device
US9551468B2 (en) 2013-12-10 2017-01-24 Gary W. Jones Inverse visible spectrum light and broad spectrum light source for enhanced vision
WO2017060888A1 (en) * 2015-10-07 2017-04-13 Konica Minolta Laboratory U.S.A., Inc. Method and system for capturing an image for wound assessment
US9901746B2 (en) 2009-07-09 2018-02-27 Koninklijke Philips N.V. Skin radiation apparatus and method
US10288233B2 (en) 2013-12-10 2019-05-14 Gary W. Jones Inverse visible spectrum light and broad spectrum light source for enhanced vision
US20200086134A1 (en) * 2017-04-13 2020-03-19 Multi Radiance Medical Photobiomodulation therapy to reduce the effects of fibromyalgia
US11026735B2 (en) 2018-02-28 2021-06-08 Premia Spine Ltd. Bone marrow aspiration adaptor assembly

Families Citing this family (97)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6517532B1 (en) 1997-05-15 2003-02-11 Palomar Medical Technologies, Inc. Light energy delivery head
US20060149343A1 (en) * 1996-12-02 2006-07-06 Palomar Medical Technologies, Inc. Cooling system for a photocosmetic device
US8182473B2 (en) 1999-01-08 2012-05-22 Palomar Medical Technologies Cooling system for a photocosmetic device
JP4056091B2 (en) 1997-05-15 2008-03-05 パロマー・メディカル・テクノロジーズ・インコーポレーテッド Dermatological treatment method and apparatus
WO1999046005A1 (en) 1998-03-12 1999-09-16 Palomar Medical Technologies, Inc. System for electromagnetic radiation of the skin
US20080214988A1 (en) * 2000-12-28 2008-09-04 Palomar Medical Technologies, Inc. Methods And Devices For Fractional Ablation Of Tissue
US20060004347A1 (en) * 2000-12-28 2006-01-05 Palomar Medical Technologies, Inc. Methods and products for producing lattices of EMR-treated islets in tissues, and uses therefor
US6888319B2 (en) * 2001-03-01 2005-05-03 Palomar Medical Technologies, Inc. Flashlamp drive circuit
EP1365699A2 (en) * 2001-03-02 2003-12-03 Palomar Medical Technologies, Inc. Apparatus and method for photocosmetic and photodermatological treatment
BR0312430A (en) 2002-06-19 2005-04-26 Palomar Medical Tech Inc Method and apparatus for treating skin and subcutaneous conditions
US7131990B2 (en) * 2002-10-07 2006-11-07 Natus Medical Inc. Phototherapy system and device
EP2522293A2 (en) 2002-10-23 2012-11-14 Palomar Medical Technologies, Inc. Phototreatment device for use with coolants and topical substances
WO2004058352A2 (en) * 2002-12-20 2004-07-15 Palomar Medical Technologies, Inc. Apparatus for light treatment of acne and other disorders of follicles
US20110040295A1 (en) * 2003-02-28 2011-02-17 Photometics, Inc. Cancer treatment using selective photo-apoptosis
US7354433B2 (en) * 2003-02-28 2008-04-08 Advanced Light Technologies, Llc Disinfection, destruction of neoplastic growth, and sterilization by differential absorption of electromagnetic energy
CA2429906A1 (en) * 2003-05-28 2004-11-28 Tony Mori Controllable light therapy apparatus and method of treating with light therapy
US7133051B2 (en) 2003-09-19 2006-11-07 Microsoft Corporation Full scale video with overlaid graphical user interface and scaled image
WO2005065565A1 (en) * 2003-12-31 2005-07-21 Palomar Medical Technologies, Inc. Dermatological treatment with vusualization
JP5065005B2 (en) 2004-04-01 2012-10-31 ザ ジェネラル ホスピタル コーポレイション Method and apparatus for dermatological treatment and tissue remodeling
FR2872405B1 (en) * 2004-07-02 2006-11-10 Biomedical Electronics METHOD FOR PARAMETERSING A SKIN TREATMENT DEVICE USING LIGHT SOURCES
WO2006039404A2 (en) * 2004-10-01 2006-04-13 Harold Brem Wound electronic medical record system
US8109981B2 (en) * 2005-01-25 2012-02-07 Valam Corporation Optical therapies and devices
US7686839B2 (en) * 2005-01-26 2010-03-30 Lumitex, Inc. Phototherapy treatment devices for applying area lighting to a wound
DE102005010723A1 (en) * 2005-02-24 2006-08-31 LÜLLAU, Friedrich UV irradiation device for acting upon biological cellular structures, especially the skin, for medical and therapeutic purposes, has means for matching UV exposure geometries to those areas requiring treatment
US20060229689A1 (en) * 2005-04-08 2006-10-12 Led Technologies, Llc LED therapy device
US20080269730A1 (en) 2005-04-14 2008-10-30 Dotson Robert S Ophthalmic Phototherapy Device and Associated Treatment Method
US20130079759A1 (en) * 2005-04-14 2013-03-28 Robert S. Dotson Ophthalmic Phototherapy Device and Associated Treatment Method
US7856985B2 (en) 2005-04-22 2010-12-28 Cynosure, Inc. Method of treatment body tissue using a non-uniform laser beam
KR101361697B1 (en) * 2005-04-25 2014-02-10 유니버시티 오브 매사추세츠 Systems and methods for correcting optical reflectance measurements
GB0515550D0 (en) 2005-07-29 2005-09-07 Univ Strathclyde Inactivation of staphylococcus species
JP2009504260A (en) * 2005-08-08 2009-02-05 パロマー・メデイカル・テクノロジーズ・インコーポレーテツド Eye-safe photocosmetic device
AU2006292526A1 (en) 2005-09-15 2007-03-29 Palomar Medical Technologies, Inc. Skin optical characterization device
US20070208395A1 (en) * 2005-10-05 2007-09-06 Leclerc Norbert H Phototherapy Device and Method of Providing Phototherapy to a Body Surface
US7595876B2 (en) * 2006-01-11 2009-09-29 Baker Hughes Incorporated Method and apparatus for estimating a property of a fluid downhole
US7576856B2 (en) * 2006-01-11 2009-08-18 Baker Hughes Incorporated Method and apparatus for estimating a property of a fluid downhole
US20070219600A1 (en) * 2006-03-17 2007-09-20 Michael Gertner Devices and methods for targeted nasal phototherapy
US7892268B2 (en) * 2006-03-23 2011-02-22 Light Sciences Oncology, Inc. PDT apparatus with high output LED for therapy and aiming
WO2007117580A2 (en) * 2006-04-06 2007-10-18 Palomar Medical Technologies, Inc. Apparatus and method for skin treatment with compression and decompression
HRP20060149B1 (en) 2006-04-19 2008-11-30 Institut "Ruđer Bošković" Intelligent sequential illuminator photodynamic therapy
US20070276309A1 (en) * 2006-05-12 2007-11-29 Kci Licensing, Inc. Systems and methods for wound area management
US20070276195A1 (en) * 2006-05-12 2007-11-29 Kci Licensing, Inc. Systems and methods for wound area management
US7586957B2 (en) 2006-08-02 2009-09-08 Cynosure, Inc Picosecond laser apparatus and methods for its operation and use
KR101231281B1 (en) 2006-09-19 2013-02-07 케이씨아이 라이센싱 인코포레이티드 Reduced pressure treatment system having blockage clearing and dual-zone pressure protection capabilities
US8061360B2 (en) 2006-09-19 2011-11-22 Kci Licensing, Inc. System and method for locating fluid leaks at a drape of a reduced pressure delivery system
US8366690B2 (en) 2006-09-19 2013-02-05 Kci Licensing, Inc. System and method for determining a fill status of a canister of fluid in a reduced pressure treatment system
US8725528B2 (en) * 2006-09-19 2014-05-13 Kci Licensing, Inc. System and method for managing history of patient and wound therapy treatment
JP2008159718A (en) * 2006-12-21 2008-07-10 Sharp Corp Multichip module and its manufacturing method, and mounting structure of multichip module and its manufacturing method
US20080186591A1 (en) * 2007-02-01 2008-08-07 Palomar Medical Technologies, Inc. Dermatological device having a zoom lens system
EP2121122A2 (en) * 2007-02-01 2009-11-25 Candela Corporation Biofeedback
GB0721374D0 (en) * 2007-10-31 2007-12-12 Univ Strathclyde Optical device for the environmental control of pathogenic bacteria
GB2454652A (en) * 2007-11-01 2009-05-20 Mohamed Abdelhafez El-Far Photodynamic therapy device including a plurality of light sources
KR101357534B1 (en) 2009-06-09 2014-01-29 브레덴트 메디칼 게엠베하 운트 코. 카게 Device and method for photodynamic therapy
US9919168B2 (en) 2009-07-23 2018-03-20 Palomar Medical Technologies, Inc. Method for improvement of cellulite appearance
US20110037844A1 (en) * 2009-08-17 2011-02-17 Scot Johnson Energy emitting device
US8518094B2 (en) * 2010-03-02 2013-08-27 Bwt Property, Inc. Precisely guided phototherapy apparatus
US20130335545A1 (en) * 2010-12-19 2013-12-19 Matthew Ross Darling System for integrated wound analysis
US8980174B2 (en) 2011-05-13 2015-03-17 Bactriblue, Ltd. Methods and apparatus for reducing count of infectious agents in intravenous access system
US9352170B1 (en) 2012-01-31 2016-05-31 Christina Davis Spectral light therapy for autism spectral disorders
US9780518B2 (en) 2012-04-18 2017-10-03 Cynosure, Inc. Picosecond laser apparatus and methods for treating target tissues with same
EP2973894A2 (en) 2013-03-15 2016-01-20 Cynosure, Inc. Picosecond optical radiation systems and methods of use
EP2996769A1 (en) * 2013-05-17 2016-03-23 SR LIGHT ApS Apparatus and method for promoting d-vitamin production in a living organism
WO2015117828A1 (en) * 2014-02-05 2015-08-13 Koninklijke Philips N.V. Camera-based monitoring of vital signs of during phototherapy treatment
US11358002B2 (en) * 2014-05-29 2022-06-14 Raymond R. Blanche Method and apparatus for non-thermal nail, foot, and hand fungus treatment
US9333274B2 (en) 2014-07-31 2016-05-10 Vital Vio, Inc. Disinfecting light fixture
WO2016019029A1 (en) 2014-07-31 2016-02-04 Vital Vio, Inc. Disinfecting light fixture
CN107072821B (en) 2014-09-09 2022-07-01 卢米希拉公司 Multi-wavelength phototherapy devices, systems, and methods for non-invasive treatment of damaged or diseased tissue
US20160199665A1 (en) * 2015-01-08 2016-07-14 Photomed Technologies, Inc. Treatment of wounds using electromagnetic radiation
WO2016154664A1 (en) * 2015-04-02 2016-10-06 Mark John Mcdonald Rogers Method and apparatus for treating soft tissue injury
US9700641B2 (en) 2015-06-26 2017-07-11 Kenall Manufacturing Company Single-emitter lighting device that outputs a minimum amount of power to produce integrated radiance values sufficient for deactivating pathogens
US10434202B2 (en) 2015-06-26 2019-10-08 Kenall Manufacturing Company Lighting device that deactivates dangerous pathogens while providing visually appealing light
US11273324B2 (en) 2015-07-14 2022-03-15 Illumipure Corp LED structure and luminaire for continuous disinfection
DE112016003453T5 (en) 2015-07-30 2018-04-12 Vital Vio, Inc. Individual diodes disinfection
US10918747B2 (en) 2015-07-30 2021-02-16 Vital Vio, Inc. Disinfecting lighting device
US10357582B1 (en) 2015-07-30 2019-07-23 Vital Vio, Inc. Disinfecting lighting device
US11272594B2 (en) * 2016-10-31 2022-03-08 Hubbell Incorporated Multi-array lighting system for providing high intensity narrow spectrum light
US10828505B2 (en) * 2017-02-17 2020-11-10 Joovv, Inc. Therapeutic light source and hanging apparatus
US10617774B2 (en) 2017-12-01 2020-04-14 Vital Vio, Inc. Cover with disinfecting illuminated surface
US10309614B1 (en) 2017-12-05 2019-06-04 Vital Vivo, Inc. Light directing element
KR102627248B1 (en) 2018-02-26 2024-01-19 싸이노슈어, 엘엘씨 Q-switched cavity dumping subnanosecond laser
US10413626B1 (en) 2018-03-29 2019-09-17 Vital Vio, Inc. Multiple light emitter for inactivating microorganisms
US10967197B2 (en) * 2018-08-29 2021-04-06 Azulite, Inc. Phototherapy devices and methods for treating truncal acne and scars
US10478635B1 (en) 2018-10-22 2019-11-19 Joovv, Inc. Photobiomodulation therapy systems and methods
US11033752B2 (en) 2018-10-22 2021-06-15 Joovv, Inc. Photobiomodulation therapy systems and methods
US11207543B2 (en) 2018-10-22 2021-12-28 Joovv, Inc. Photobiomodulation therapy device accessories
US11458328B2 (en) 2018-10-22 2022-10-04 Joovv, Inc. Photobiomodulation therapy device accessories
USD877919S1 (en) 2019-01-08 2020-03-10 Joovv, Inc. Photobiomodulation system
US11639897B2 (en) 2019-03-29 2023-05-02 Vyv, Inc. Contamination load sensing device
US10939517B2 (en) 2019-05-15 2021-03-02 SABER Corporation Feedback control of light emitting devices using fluorescent components and light sensors
US11541135B2 (en) 2019-06-28 2023-01-03 Vyv, Inc. Multiple band visible light disinfection
US11369704B2 (en) 2019-08-15 2022-06-28 Vyv, Inc. Devices configured to disinfect interiors
US11878084B2 (en) 2019-09-20 2024-01-23 Vyv, Inc. Disinfecting light emitting subcomponent
EP3889493A1 (en) * 2020-03-30 2021-10-06 TRUMPF Medizin Systeme GmbH + Co. KG Surgical light system and method for operating the surgical light system
US11499707B2 (en) 2020-04-13 2022-11-15 Calyxpure, Inc. Light fixture having a fan and ultraviolet sterilization functionality
US11759540B2 (en) 2021-05-11 2023-09-19 Calyxpure, Inc. Portable disinfection unit
US11836922B2 (en) 2021-05-19 2023-12-05 Zerigo Health, Inc. System and method for evaluating effectiveness of a skin treatment
US20230181924A1 (en) * 2021-12-09 2023-06-15 Zerigo Health, Inc. Apparatus and system for treating skin lesions and evaluating the effectiveness of said treatment
US20230181923A1 (en) * 2021-12-09 2023-06-15 Zerigo Health, Inc. Apparatus and method for treating skin lesions

Citations (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3670460A (en) * 1970-06-01 1972-06-20 Senoptics Inc Tool positioning means for lens grinder
US4687980A (en) * 1980-10-20 1987-08-18 Eaton Corporation X-Y addressable workpiece positioner and mask aligner using same
US4930504A (en) * 1987-11-13 1990-06-05 Diamantopoulos Costas A Device for biostimulation of tissue and method for treatment of tissue
US4977361A (en) * 1978-06-26 1990-12-11 Eaton Corporation X-Y addressable workpiece positioner and mask aligner using same
US5098426A (en) * 1989-02-06 1992-03-24 Phoenix Laser Systems, Inc. Method and apparatus for precision laser surgery
US5151096A (en) * 1991-03-28 1992-09-29 Angiolaz, Incorporated Laser catheter diffuser
US5278432A (en) * 1992-08-27 1994-01-11 Quantam Devices, Inc. Apparatus for providing radiant energy
US5413587A (en) * 1993-11-22 1995-05-09 Hochstein; Peter A. Infrared heating apparatus and methods
US5562656A (en) * 1992-07-31 1996-10-08 Nidek Co., Ltd. Ophthalmic apparatus
US5645550A (en) * 1994-04-08 1997-07-08 Chiron Technolas Gmbh Ophthalmologische System Method and apparatus for providing precise location of points on the eye
US5660461A (en) * 1994-12-08 1997-08-26 Quantum Devices, Inc. Arrays of optoelectronic devices and method of making same
US5698886A (en) * 1994-08-19 1997-12-16 Thomson-Csf Semiconducteurs Specifiques Protection circuit against electrostatic discharges
US5728090A (en) * 1995-02-09 1998-03-17 Quantum Devices, Inc. Apparatus for irradiating living cells
US5860967A (en) * 1993-07-21 1999-01-19 Lucid, Inc. Dermatological laser treatment system with electronic visualization of the area being treated
US5865832A (en) * 1992-02-27 1999-02-02 Visx, Incorporated System for detecting, measuring and compensating for lateral movements of a target
US5938657A (en) * 1997-02-05 1999-08-17 Sahar Technologies, Inc. Apparatus for delivering energy within continuous outline
US5944748A (en) * 1996-07-25 1999-08-31 Light Medicine, Inc. Photodynamic therapy apparatus and methods
US6019482A (en) * 1998-10-15 2000-02-01 Everett; Randall L. Polychromatic body surface irradiator
US6048359A (en) * 1997-08-25 2000-04-11 Advanced Photodynamic Technologies, Inc. Spatial orientation and light sources and method of using same for medical diagnosis and photodynamic therapy
US6210425B1 (en) * 1999-07-08 2001-04-03 Light Sciences Corporation Combined imaging and PDT delivery system
US6221095B1 (en) * 1996-11-13 2001-04-24 Meditech International Inc. Method and apparatus for photon therapy
US6241697B1 (en) * 1992-06-19 2001-06-05 Augustine Medical, Inc. Wound covering
US6290713B1 (en) * 1999-08-24 2001-09-18 Thomas A. Russell Flexible illuminators for phototherapy
US6334069B1 (en) * 1998-01-15 2001-12-25 Regenesis Biomedical, Inc. Pulsed electromagnetic energy treatment apparatus and method
US20020026180A1 (en) * 2000-08-31 2002-02-28 Nidek Co., Ltd. Corneal surgery apparatus
US20020120312A1 (en) * 2001-02-27 2002-08-29 Ignatius Ronald W. Device for the treatment of mucositis
US20030004499A1 (en) * 2000-01-13 2003-01-02 Mcdaniel David H. Method and apparatus for the photomodulation of living cells
US6618620B1 (en) * 2000-11-28 2003-09-09 Txsonics Ltd. Apparatus for controlling thermal dosing in an thermal treatment system
US6641578B2 (en) * 2000-06-28 2003-11-04 Nidek Co., Ltd. Laser treatment apparatus
US6697664B2 (en) * 1999-02-10 2004-02-24 Ge Medical Systems Global Technology Company, Llc Computer assisted targeting device for use in orthopaedic surgery
US20040098069A1 (en) * 2000-12-22 2004-05-20 Clement Robert Marc Light delivery system for improving the appearance of skin
US20040158300A1 (en) * 2001-06-26 2004-08-12 Allan Gardiner Multiple wavelength illuminator having multiple clocked sources
US20040215176A1 (en) * 2000-07-07 2004-10-28 Jong-Yoon Bahk High power semiconductor laser diode
US7270593B2 (en) * 2006-01-18 2007-09-18 University Of Northern Iowa Research Foundation Light beam targeting and positioning system for a paint or coating removal blasting system
US7386339B2 (en) * 1999-05-18 2008-06-10 Mediguide Ltd. Medical imaging and navigation system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3837248A1 (en) * 1988-10-28 1990-05-03 Teichmann Heinrich Otto Dr Phy Device for treating skin lesions
JPH0521368A (en) * 1991-05-15 1993-01-29 Nec Corp Manufacture of semiconductor device
US5698866A (en) 1994-09-19 1997-12-16 Pdt Systems, Inc. Uniform illuminator for phototherapy

Patent Citations (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3670460A (en) * 1970-06-01 1972-06-20 Senoptics Inc Tool positioning means for lens grinder
US4977361A (en) * 1978-06-26 1990-12-11 Eaton Corporation X-Y addressable workpiece positioner and mask aligner using same
US4687980A (en) * 1980-10-20 1987-08-18 Eaton Corporation X-Y addressable workpiece positioner and mask aligner using same
US4930504A (en) * 1987-11-13 1990-06-05 Diamantopoulos Costas A Device for biostimulation of tissue and method for treatment of tissue
US5098426A (en) * 1989-02-06 1992-03-24 Phoenix Laser Systems, Inc. Method and apparatus for precision laser surgery
US5151096A (en) * 1991-03-28 1992-09-29 Angiolaz, Incorporated Laser catheter diffuser
US5865832A (en) * 1992-02-27 1999-02-02 Visx, Incorporated System for detecting, measuring and compensating for lateral movements of a target
US6241697B1 (en) * 1992-06-19 2001-06-05 Augustine Medical, Inc. Wound covering
US5562656A (en) * 1992-07-31 1996-10-08 Nidek Co., Ltd. Ophthalmic apparatus
US5278432A (en) * 1992-08-27 1994-01-11 Quantam Devices, Inc. Apparatus for providing radiant energy
US5860967A (en) * 1993-07-21 1999-01-19 Lucid, Inc. Dermatological laser treatment system with electronic visualization of the area being treated
US5649972A (en) * 1993-11-22 1997-07-22 Hochstein; Peter A. Infrared heating apparatus
US5413587A (en) * 1993-11-22 1995-05-09 Hochstein; Peter A. Infrared heating apparatus and methods
US5645550A (en) * 1994-04-08 1997-07-08 Chiron Technolas Gmbh Ophthalmologische System Method and apparatus for providing precise location of points on the eye
US5698886A (en) * 1994-08-19 1997-12-16 Thomson-Csf Semiconducteurs Specifiques Protection circuit against electrostatic discharges
US5660461A (en) * 1994-12-08 1997-08-26 Quantum Devices, Inc. Arrays of optoelectronic devices and method of making same
US5728090A (en) * 1995-02-09 1998-03-17 Quantum Devices, Inc. Apparatus for irradiating living cells
US5944748A (en) * 1996-07-25 1999-08-31 Light Medicine, Inc. Photodynamic therapy apparatus and methods
US6221095B1 (en) * 1996-11-13 2001-04-24 Meditech International Inc. Method and apparatus for photon therapy
US5938657A (en) * 1997-02-05 1999-08-17 Sahar Technologies, Inc. Apparatus for delivering energy within continuous outline
US6048359A (en) * 1997-08-25 2000-04-11 Advanced Photodynamic Technologies, Inc. Spatial orientation and light sources and method of using same for medical diagnosis and photodynamic therapy
US6353763B1 (en) * 1998-01-15 2002-03-05 Regenesis Biomedical, Inc. Pulsed electromagnetic energy treatment apparatus and method
US6334069B1 (en) * 1998-01-15 2001-12-25 Regenesis Biomedical, Inc. Pulsed electromagnetic energy treatment apparatus and method
US6019482A (en) * 1998-10-15 2000-02-01 Everett; Randall L. Polychromatic body surface irradiator
US6697664B2 (en) * 1999-02-10 2004-02-24 Ge Medical Systems Global Technology Company, Llc Computer assisted targeting device for use in orthopaedic surgery
US7386339B2 (en) * 1999-05-18 2008-06-10 Mediguide Ltd. Medical imaging and navigation system
US6210425B1 (en) * 1999-07-08 2001-04-03 Light Sciences Corporation Combined imaging and PDT delivery system
US6290713B1 (en) * 1999-08-24 2001-09-18 Thomas A. Russell Flexible illuminators for phototherapy
US20030004499A1 (en) * 2000-01-13 2003-01-02 Mcdaniel David H. Method and apparatus for the photomodulation of living cells
US6641578B2 (en) * 2000-06-28 2003-11-04 Nidek Co., Ltd. Laser treatment apparatus
US20040215176A1 (en) * 2000-07-07 2004-10-28 Jong-Yoon Bahk High power semiconductor laser diode
US20020026180A1 (en) * 2000-08-31 2002-02-28 Nidek Co., Ltd. Corneal surgery apparatus
US6618620B1 (en) * 2000-11-28 2003-09-09 Txsonics Ltd. Apparatus for controlling thermal dosing in an thermal treatment system
US20040098069A1 (en) * 2000-12-22 2004-05-20 Clement Robert Marc Light delivery system for improving the appearance of skin
US20020120312A1 (en) * 2001-02-27 2002-08-29 Ignatius Ronald W. Device for the treatment of mucositis
US20040158300A1 (en) * 2001-06-26 2004-08-12 Allan Gardiner Multiple wavelength illuminator having multiple clocked sources
US7270593B2 (en) * 2006-01-18 2007-09-18 University Of Northern Iowa Research Foundation Light beam targeting and positioning system for a paint or coating removal blasting system

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070073365A1 (en) * 2002-07-03 2007-03-29 Life Support Technologies, Inc. Methods and apparatus for light therapy
US7815668B2 (en) 2002-07-03 2010-10-19 Life Support Technologies, Inc. Methods and apparatus for light therapy
US20040261796A1 (en) * 2003-06-30 2004-12-30 Life Support Technologies Hyperbaric chamber control and/or monitoring system and methods for using the same
US8251057B2 (en) 2003-06-30 2012-08-28 Life Support Technologies, Inc. Hyperbaric chamber control and/or monitoring system and methods for using the same
US20060095102A1 (en) * 2003-09-17 2006-05-04 Thomas Perez Method and apparatus for sublingual application of light to blood
US20060074467A1 (en) * 2003-09-17 2006-04-06 Thomas Perez Method and apparatus for sublingual application of light to blood
US20050261622A1 (en) * 2003-09-17 2005-11-24 Thomas Perez Method and apparatus for providing light to blood
US20050261621A1 (en) * 2003-09-17 2005-11-24 Thomas Perez Method and apparatus for providing UV light to blood
US7761945B2 (en) 2004-05-28 2010-07-27 Life Support Technologies, Inc. Apparatus and methods for preventing pressure ulcers in bedfast patients
US20060259101A1 (en) * 2005-05-10 2006-11-16 Thomas Perez UV light irradiation machine for veterinary use
US20070255454A1 (en) * 2006-04-27 2007-11-01 Honda Motor Co., Ltd. Control Of Robots From Human Motion Descriptors
US8924021B2 (en) 2006-04-27 2014-12-30 Honda Motor Co., Ltd. Control of robots from human motion descriptors
DE102008045824A1 (en) * 2008-09-05 2010-03-11 livetec Ingenieurbüro GmbH Treatment device for external treatment of human or animal body for simulating cells of nerves and muscles, has sensor directly or indirectly arranged at fastening device, and controlling device connected with sensor
US20100074857A1 (en) * 2008-09-23 2010-03-25 Pamela Lipkin Compositions and methods to treat epithelial-related conditions
US9901746B2 (en) 2009-07-09 2018-02-27 Koninklijke Philips N.V. Skin radiation apparatus and method
US20130053677A1 (en) * 2009-11-09 2013-02-28 Jeffrey E. Schoenfeld System and method for wound care management based on a three dimensional image of a foot
US9278232B2 (en) 2011-03-17 2016-03-08 Jk-Holding Gmbh Device for irradiating actinic radiation of different wavelengths
US8858607B1 (en) 2013-03-15 2014-10-14 Gary W. Jones Multispectral therapeutic light source
US9295855B2 (en) 2013-03-15 2016-03-29 Gary W. Jones Ambient spectrum light conversion device
US9551468B2 (en) 2013-12-10 2017-01-24 Gary W. Jones Inverse visible spectrum light and broad spectrum light source for enhanced vision
US10288233B2 (en) 2013-12-10 2019-05-14 Gary W. Jones Inverse visible spectrum light and broad spectrum light source for enhanced vision
WO2017060888A1 (en) * 2015-10-07 2017-04-13 Konica Minolta Laboratory U.S.A., Inc. Method and system for capturing an image for wound assessment
US10070049B2 (en) * 2015-10-07 2018-09-04 Konica Minolta Laboratory U.S.A., Inc Method and system for capturing an image for wound assessment
EP3359024A4 (en) * 2015-10-07 2018-10-24 Konica Minolta Laboratory U.S.A., Inc. Method and system for capturing an image for wound assessment
US20200086134A1 (en) * 2017-04-13 2020-03-19 Multi Radiance Medical Photobiomodulation therapy to reduce the effects of fibromyalgia
US10744337B2 (en) * 2017-04-13 2020-08-18 Multi Radiance Medical Photobiomodulation therapy to reduce the effects of fibromyalgia
US11590355B2 (en) 2017-04-13 2023-02-28 Multi Radiance Medical Photobiomodulation therapy to reduce the effects of fibromyalgia
US11026735B2 (en) 2018-02-28 2021-06-08 Premia Spine Ltd. Bone marrow aspiration adaptor assembly

Also Published As

Publication number Publication date
US20040008523A1 (en) 2004-01-15
US7001413B2 (en) 2006-02-21

Similar Documents

Publication Publication Date Title
US7001413B2 (en) Methods and apparatus for light therapy
US7201766B2 (en) Methods and apparatus for light therapy
US8784461B2 (en) Method and apparatus for optical stimulation of nerves and other animal tissue
US8985119B1 (en) Method and apparatus for optical stimulation of nerves and other animal tissue
ES2266419T3 (en) AUTOMATIC ALIGNMENT HELPED BY COMPUTER, VITAL ACUPUNCTURE POINTS AND ELECTRONIC ACUPUNCTURE SYSTEM.
US20190232079A1 (en) Capsule phototherapy
US7850720B2 (en) Method and apparatus for applying light therapy
KR101862280B1 (en) LED mask capable of irradiating light of set wavelength band according to facial area
CN105050537B (en) Dentistry irradiation unit, dentistry irradiation system
US6991644B2 (en) Method and system for controlled spatially-selective epidermal pigmentation phototherapy with UVA LEDs
WO2019165302A1 (en) Device for delivering precision phototherapy
NZ530174A (en) Photodynamic therapy lamp
US20060206176A1 (en) Method of using multi-probe laser device
KR100670937B1 (en) Apparatus for receiving beauty treatment of skin using led
CN101505675A (en) Handheld photocosmetic device
BRPI0710815B1 (en) LASER DEVICE HAVING AT LEAST A LASER POWER SOURCE TO GENERATE A LASER BEAM
US20120078328A1 (en) System and apparatus for treatment of biological cellular structure with electromagnetic wave energy and electromagnetic field energy sources
KR20190063041A (en) light-therapy app platform system using wavelength variable LED mask
US20190201713A1 (en) Helmet and modular cap for laser light hair growth therapy
CN101282759A (en) Method and apparatus for improved photon irradiation therapyand treatment of pain
WO2022052447A1 (en) Laser scanning device and beauty equipment
CN201988068U (en) Illumination device for treating living organisms
US20090143843A1 (en) Method and apparatus for improved photon irradiation therapy and treatment of pain
WO2022035735A1 (en) Phototherapy systems, methods of using a phototherapy system, and methods of manufacturing a phototherapy system
US20190217119A1 (en) Interchangeable modular cap for laser light therapy

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION