US20060155384A1 - Medical prosthetic devices and implants having improved biocompatibility - Google Patents

Medical prosthetic devices and implants having improved biocompatibility Download PDF

Info

Publication number
US20060155384A1
US20060155384A1 US11/344,437 US34443706A US2006155384A1 US 20060155384 A1 US20060155384 A1 US 20060155384A1 US 34443706 A US34443706 A US 34443706A US 2006155384 A1 US2006155384 A1 US 2006155384A1
Authority
US
United States
Prior art keywords
implant
hydride
natural
recombinant
prosthetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/344,437
Inventor
Jan Ellingsen
Staale Lyngstadaas
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NuMat AS
Original Assignee
Ellingsen Jan E
Lyngstadaas Staale P
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ellingsen Jan E, Lyngstadaas Staale P filed Critical Ellingsen Jan E
Priority to US11/344,437 priority Critical patent/US20060155384A1/en
Publication of US20060155384A1 publication Critical patent/US20060155384A1/en
Assigned to NUMAT AS reassignment NUMAT AS ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ASTRA TECH AB
Abandoned legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/04Metals or alloys
    • A61L27/047Other specific metals or alloys not covered by A61L27/042 - A61L27/045 or A61L27/06
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/04Metals or alloys
    • A61L27/06Titanium or titanium alloys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/28Materials for coating prostheses
    • A61L27/30Inorganic materials
    • A61L27/306Other specific inorganic materials not covered by A61L27/303 - A61L27/32
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/54Biologically active materials, e.g. therapeutic substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/08Materials for coatings
    • A61L31/082Inorganic materials
    • A61L31/088Other specific inorganic materials not covered by A61L31/084 or A61L31/086
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L31/16Biologically active materials, e.g. therapeutic substances
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D13/00Electrophoretic coating characterised by the process
    • C25D13/04Electrophoretic coating characterised by the process with organic material
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D9/00Electrolytic coating other than with metals
    • C25D9/04Electrolytic coating other than with metals with inorganic materials
    • C25D9/08Electrolytic coating other than with metals with inorganic materials by cathodic processes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00005The prosthesis being constructed from a particular material
    • A61F2310/00011Metals or alloys
    • A61F2310/00023Titanium or titanium-based alloys, e.g. Ti-Ni alloys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00005The prosthesis being constructed from a particular material
    • A61F2310/00011Metals or alloys
    • A61F2310/00035Other metals or alloys
    • A61F2310/00059Chromium or Cr-based alloys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00005The prosthesis being constructed from a particular material
    • A61F2310/00011Metals or alloys
    • A61F2310/00035Other metals or alloys
    • A61F2310/00089Zirconium or Zr-based alloys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00005The prosthesis being constructed from a particular material
    • A61F2310/00011Metals or alloys
    • A61F2310/00035Other metals or alloys
    • A61F2310/00095Niobium or Nb-based alloys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00005The prosthesis being constructed from a particular material
    • A61F2310/00011Metals or alloys
    • A61F2310/00035Other metals or alloys
    • A61F2310/00125Hafnium or Hf-based alloys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00005The prosthesis being constructed from a particular material
    • A61F2310/00011Metals or alloys
    • A61F2310/00035Other metals or alloys
    • A61F2310/00131Tantalum or Ta-based alloys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00389The prosthesis being coated or covered with a particular material
    • A61F2310/00592Coating or prosthesis-covering structure made of ceramics or of ceramic-like compounds
    • A61F2310/0073Coating or prosthesis-covering structure made of compounds based on metal carbides
    • A61F2310/0079Coating made of tungsten carbide
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00389The prosthesis being coated or covered with a particular material
    • A61F2310/00592Coating or prosthesis-covering structure made of ceramics or of ceramic-like compounds
    • A61F2310/00802Coating or prosthesis-covering structure made of compounds based on metal hydrides
    • A61F2310/00808Coating made of titanium hydride
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00389The prosthesis being coated or covered with a particular material
    • A61F2310/00592Coating or prosthesis-covering structure made of ceramics or of ceramic-like compounds
    • A61F2310/00802Coating or prosthesis-covering structure made of compounds based on metal hydrides
    • A61F2310/00814Coating made of vanadium hydride
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00389The prosthesis being coated or covered with a particular material
    • A61F2310/00592Coating or prosthesis-covering structure made of ceramics or of ceramic-like compounds
    • A61F2310/00802Coating or prosthesis-covering structure made of compounds based on metal hydrides
    • A61F2310/0082Coating made of chromium hydride
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00389The prosthesis being coated or covered with a particular material
    • A61F2310/00592Coating or prosthesis-covering structure made of ceramics or of ceramic-like compounds
    • A61F2310/00802Coating or prosthesis-covering structure made of compounds based on metal hydrides
    • A61F2310/00826Coating made of zirconium hydride
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00389The prosthesis being coated or covered with a particular material
    • A61F2310/00592Coating or prosthesis-covering structure made of ceramics or of ceramic-like compounds
    • A61F2310/00802Coating or prosthesis-covering structure made of compounds based on metal hydrides
    • A61F2310/00832Coating made of niobium hydride
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00389The prosthesis being coated or covered with a particular material
    • A61F2310/00592Coating or prosthesis-covering structure made of ceramics or of ceramic-like compounds
    • A61F2310/00802Coating or prosthesis-covering structure made of compounds based on metal hydrides
    • A61F2310/00838Coating made of hafnium hydride
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00389The prosthesis being coated or covered with a particular material
    • A61F2310/00592Coating or prosthesis-covering structure made of ceramics or of ceramic-like compounds
    • A61F2310/00802Coating or prosthesis-covering structure made of compounds based on metal hydrides
    • A61F2310/00844Coating made of tantalum hydride
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00389The prosthesis being coated or covered with a particular material
    • A61F2310/0097Coating or prosthesis-covering structure made of pharmaceutical products, e.g. antibiotics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00389The prosthesis being coated or covered with a particular material
    • A61F2310/00976Coating or prosthesis-covering structure made of proteins or of polypeptides, e.g. of bone morphogenic proteins BMP or of transforming growth factors TGF
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/60Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a special physical form
    • A61L2300/606Coatings

Definitions

  • the present invention concerns medical prosthetic devices and implants having improved biocompatibility.
  • the invention therefore, concerns a medical prosthetic device or implant containing a metal material (A) selected from the group consisting of titanium or an alloy thereof, zirconium or an alloy thereof, tantalum or an alloy thereof, hafnium or an alloy thereof, niobium or an alloy thereof and a chromium-vanadium alloy, wherein surface parts of the metal material (A) are coated with a layer of a corresponding hydride material (B) selected from titanium hydride, zirconium hydride, tantalum hydride, hafnium hydride, niobium hydride and chromium and/or vanadium hydride, respectively, characterised in that the layer of hydride material (B) comprises one or more biomolecule substances (C) associated therewith.
  • A selected from the group consisting of titanium or an alloy thereof, zirconium or an alloy thereof, tantalum or an alloy thereof, hafnium or an alloy thereof, niobium or an alloy thereof and a chromium-
  • the invention further concerns a method for preparing a medical prosthetic device or implant as defined above, said method comprising subjecting surface parts of the metal material (A) as defined above to an electrolysis treatment to form the layer of hydride material (B), said electrolysis treatment being carried out in the presence of one or more biomolecule substances (C).
  • the phrase “medical prosthetic device and implant” includes within its scope any device intended to be implanted into the body of a vertebrate animal, in particular a mammal such as a human.
  • Non-limiting examples of such devices are medical devices that replace anatomy or restore a function of the body, such as the femoral hip joint; the femoral head; acetabular cup; elbow, including stems, wedges, articular inserts; knee, including the femoral and tibial components, stem, wedges, articular inserts or patellar components; shoulders including stem and head; wrist; ankles; hand; fingers; toes; vertebrae; spinal discs; artificial joints; dental implants; ossiculoplastic implants; middle ear implants including incus, malleus, stapes, incus-stapes, malleusincus, malleusincus-stapes; cochlear implants; orthopaedic fixation devices such as nails, screws, staples and plates; heart valve
  • biomolecule is intended to cover and comprise within its meaning a very wide variety of biologically active molecules in the widest sense of the word, be they natural biomolecules (i.e., naturally occurring molecules derived from natural sources), synthetic biomolecules (i.e., naturally occurring molecules prepared synthetically as well as non-naturally occurring molecules or forms of molecules prepared synthetically) or recombinant biomolecules (i.e., prepared through the use of recombinant techniques).
  • biomolecules that mediate attachment of cells, tissue, organs or organisms onto non-biological surfaces like glass, rock etc.
  • This group of bio-molecules includes the marine mussel adhesive proteins, fibrin-like proteins, spider-web proteins, plant-derived adhesives (resins), adhesives extracted from marine animals, and insect-derived adhesives (like resilins).
  • Some specific examples of adhesives are: Fibrin; fibroin; Mytilus edulis foot protein (mefpl, “mussel adhesive protein”); other mussel's adhesive proteins; proteins and peptides with glycine-rich blocks; proteins and peptides with poly-alanine blocks; and silks.
  • Cell attachment factors are biomolecules that mediate attachment and spreading of cells onto biological surfaces or other cells and tissues. This group of molecules typically contains molecules participating in cell-matrix and cell-cell interaction during vertebrate development, neogenesis, regeneration and repair. Typical biomolecules in this class are molecules on the outer surface of cells like the CD class of receptors on white blood cells, immunoglobulins and haemagglutinating proteins, and extracellular matrix molecules/ligands that adhere to such cellular molecules.
  • Typical examples of cell attachment factors with potential for use as bioactive coating on metal hydride-coated implants are: Ankyrins; cadherins (Calcium dependent adhesion molecules); connexins; dermatan sulphate; entactin; fibrin; fibronectin; glycolipids; glycophorin; glycoproteins; heparan sulphate; heparin sulphate; hyaluronic acid; immunglobulins; keratan sulphate; integrins; laminins; N-CAMs (Calcium independent Adhesive Molecules); proteoglycans; spektrin; vinculin; vitronectin.
  • Ankyrins Calcium dependent adhesion molecules
  • connexins Calcium dependent adhesion molecules
  • dermatan sulphate Calcium dependent adhesion molecules
  • entactin fibrin
  • fibronectin glycolipids
  • glycophorin glycoproteins
  • Biopolymers are any biologically prepared molecule which, given the right conditions, can be assembled into polymeric, macromolecular structures. Such molecules constitute important parts of the extracellular matrix where they participate in providing tissue resilience, strength, rigidity, integrity etc. Some important biopolymers with potential for use as bioactive coating on metal hydride-coated implants are: Alginates; Amelogenins; cellulose; chitosan; collagen; gelatins; oligosaccharides; pectin.
  • This class of proteins typically contains any dissolved or aggregated protein which normally is present whole blood. Such proteins can participate in a wide range of biological processes like inflammation, homing of cells, clotting, cell signalling, defence, immune reactions, metabolism etc.
  • Typical examples with potential for use as bioactive coating on metal hydride-coated implants are: Albumin; albumen; cytokines; factor IX; factor V; factor VII; factor VIII; factor X; factor XI; factor XII; factor XIII; hemoglobins (with or without iron); immunoglobulins (antibodies); fibrin; platelet derived growth factors (PDGFs); plasminogen; thrombospondin; transferrin.
  • Enzymes are any protein or peptide that have a specific catalytic effect on one ore more biological substrates which can be virtually anything from simple sugars to complex macromolecules like DNA. Enzymes are potentially useful for triggering biological responses in the tissue by degradation of matrix molecules, or they could be used to activate or release other bioactive compounds in the implant coating.
  • Some important examples with potential for use as bioactive coating on metal hydride-coated implants are: Abzymes (antibodies with enzymatic capacity); adenylate cyclase; alkaline phosphatase; carboxylases; collagenases; cyclooxygenase; hydrolases; isomerases; ligases; lyases; metallo-matrix proteases (MMPs); nucleases; oxidoreductases; peptidases; peptide hydrolase; peptidyl transferase; phospholipase; proteases; sucrase-isomaltase; TIMPs; transferases.
  • Abzymes antibodies with enzymatic capacity
  • adenylate cyclase alkaline phosphatase
  • carboxylases include collagenases; cyclooxygenase; hydrolases; isomerases; ligases; lyases; metallo-matrix proteases (MMP
  • Specialized cells e.g., fibroblasts and osteoblasts, produce the extracellular matrix.
  • This matrix participates in several important processes.
  • the matrix is crucial for i.e., wound healing, tissue homeostasis, development and repair, tissue strength, and tissue integrity.
  • the matrix also decides the extracellular milieu like pH, ionic strength, osmolarity, etc.
  • extracellular matrix molecules are crucial for induction and control of biomineral formation (bone, cartilage, teeth).
  • Important extracellular proteins and biomolecules with potential for use as bioactive coating on metal hydride-coated implants include: Ameloblastin; amelin; amelogenins; collagens (I to XII); dentin-sialo-protein (DSP); dentin-sialo-phospho-protein (OSPP); elastins; enamelin; fibrins; fibronectins; keratins (1 to 2.0); laminins; tuftelin; carbohydrates; chondroitin sulphate; heparan sulphate; heparin sulphate; hyaluronic acid; lipids and fatty acids; lipopolysaccarides.
  • Growth factors and hormones are molecules that bind to cellular surface structures (receptors) and generate a signal in the target cell to start a specific biological process. Examples of such processes are growth, programmed cell death, release of other molecules (e.g., extracellular matrix molecules or sugar), cell differentiation and maturation, regulation of metabolic rate etc.
  • Activins Act
  • Amphiregulin AR
  • Angiopoietins Ang 1 to 4
  • Apo3 a weak apoptosis inducer also known as TWEAK, DR3, WSL-I, TRAMP or LARD
  • Betacellulin BTC
  • Basic Fibroblast Growth Factor bFGF, FGF-b
  • Acidic Fibroblast Growth Factor aFGF, FGF-a
  • 4-1BB Ligand Brain-derived Neurotrophic Factor (BDNF); Breast and Kidney derived Bolokine (BRAK); Bone Morphogenic Proteins (BMPs); B-Lymphocyte Chemoattractant/B cell Attracting Chemokine 1 (BLC/BCA-1); CD27L (CD27 ligand); CD30L (CD30 ligand); CD40L (CD40 ligand); A Proliferation-inducing Ligand (APRIL); Cardio
  • DNA encodes the genes for proteins and peptides. Also, DNA contains a wide array of sequences that regulate the expression of the contained genes. Several types of DNA exist, depending on source, function, origin, and structure. Typical examples for DNA based molecules that can be utilized as bioactive, slow release coatings on implants (local gene-therapy) are: A-DNA; B-DNA; artificial chromosomes carrying mammalian DNA (YACs); chromosomal DNA; circular DNA; cosmids carrying mammalian DNA; DNA; Double-stranded DNA (dsDNA); genomic DNA; hemi-methylated DNA; linear DNA; mammalian cDNA (complimentary DNA; DNA copy of RNA); mammalian DNA; methylated DNA; mitochondrial DNA; phages carrying mammalian DNA; phagemids carrying mammalian DNA; plasmids carrying mammalian DNA; plastids carrying mammalian DNA; recombinant DNA; restriction fragments of mammalian DNA; retro
  • RNA Nucleic Acids
  • RNA is a transcription of DNA-encoded information. (Sometimes (in some viruses) RNA is the essential information-encoding unit). Besides being an intermediate for expression of genes, RNA have been shown to have several biological functions. Ribozymes are simple RNA molecules with a catalytic action. These RNA can catalyze DNA and RNA cleavage and ligation, hydrolyze peptides, and are the core of the translation of RNA into peptides (the ribosome is a ribozyme).
  • RNA molecules with potential for use as bioactive coating on metal hydride-coated implants are: Acetylated transfer RNA (activated tRNA, charged tRNA); circular RNA; linear RNA; mammalian heterogeneous nuclear RNA (hnRNA), mammalian messenger RNA (mRNA); mammalian RNA; mammalian ribosomal RNA (rRNA); mammalian transport RNA (tRNA); mRNA; poly-adenylated RNA; ribosomal RNA (rRNA); recombinant RNA; retroposons carrying mammalian RNA; ribozymes; transport RNA (tRNA); viruses carrying mammalian RNA.
  • activate tRNA activated tRNA
  • circular RNA linear RNA
  • RNA mammalian heterogeneous nuclear RNA
  • mRNA mammalian messenger RNA
  • rRNA mammalian ribosomal RNA
  • tRNA mammalian transport RNA
  • mRNA
  • Receptors are cell surface biomolecules that bind signals (e.g., hormone ligands and growth factors) and transmit the signal Over the cell membrane and into the internal machinery of cells. Different receptors are differently “wired” imposing different intracellular responses even to the same ligand. This makes it possible for the cells to react differentially to external signals by varying the pattern of receptors on their surface. Receptors typically bind their ligand in a reversible manner, making them suitable as carriers of growth factors that are to be released into the tissue. Thus by coating implants with growth factor receptors, and then load these receptors with their principal ligands, a bioactive surface is achieved that can be used for controlled release of growth factors to the surrounding tissues following implantation.
  • signals e.g., hormone ligands and growth factors
  • Suitable receptors with potential for use as bioactive coating on metal hydride-coated implants includes: The CD class of receptors CD; EGF receptors; FGF receptors; Fibronectin receptor (VLA-5); Growth Factor receptor, IGF Binding Proteins (IGFBP 1 to 4); Integrins (including VLA 1-4); Laminin receptor; PDGF receptors; Transforming Growth Factor alpha and beta receptors; BMP receptors; Fas; Vascular Endothelial Growth Factor receptor (FLt-1); Vitronectin receptor.
  • Synthetic biomolecules are molecules that are based on (mimicking) naturally occurring biomolecules. By synthesizing such molecules a wide array of chemical and structural modification can be introduced that can stabilize the molecule or make it more bioactive or specific. Thus if a molecule is either too unstable or unspecific to be used from extracts it is possible to engineer them and synthesize them for use as implant surface coatings. Furthermore, many biomolecules are so low abundant that extraction in industrial scales is impossible. Such rare biomolecules have to be prepared synthetically, e.g., by recombinant technology or by (bio-) chemistry. Below is listed several classes of synthetic molecules that can be potentially useful for implant coatings:
  • Antisense RNA chemically modified RNA; chemically stabilized RNA; heterogeneous nuclear RNA (hnRNA); messenger RNA (mRNA); ribozymes; RNA; RNA analogues; RNA-DNA hybrids; RNA oligomers; RNA polymers; ribosomal RNA (rRNA); transport RNA (tRNA).
  • hnRNA nuclear RNA
  • mRNA messenger RNA
  • ribozymes RNA
  • RNA RNA analogues
  • RNA-DNA hybrids RNA oligomers
  • RNA polymers ribosomal RNA (rRNA); transport RNA (tRNA).
  • Cationic and anionic liposomes cellulose acetate; hyaluronic acid; polylactic acid; polyglycol alginate; polyglycolic acid; poly-prolines; polysaccharides.
  • Decapeptides containing DOPA and/or diDOP A peptides with sequence “Ala Lys Pro Ser Tyr Pro Pro Thr Tyr Lys”; peptides where Pro is substituted with hydroxyproline; peptides where one or more Pro is substituted with DOPA; peptides where one or more Pro is substituted with diDOP A; peptides where one or more Tyr is substituted with DOPA; peptide hormones; peptide sequences based on the above listed extracted proteins; peptides containing an RGD (Arg Gly Asp) motif.
  • Synthetic enzyme inhibitors range from simple molecules, like certain metal ions, that block enzyme activity by binding directly to the enzyme, to synthetic molecules that mimic the natural substrate of an enzyme and thus compete with the principle substrate.
  • An implant coating including enzyme inhibitors could help stabilizing and counteract breakdown of other biomolecules present in the coating, so that more reaction time and/or higher concentration of the bioactive compound is achieved.
  • enzyme inhibitors are: Pepstatin; poly-pro lines; D-sugars; D-aminoacids; Cyanide; Diisopropyl fluorophosphates (DFP); metal ions; N-tosyl-1-phenylalaninechloromethyl ketone (TPCK); Physostigmine; Parathion; Penicillin.
  • Adenosine di-phosphate ADP
  • AMP adenosine mono-phosphate
  • ATP adenosine tri-phosphate
  • DOPA 3,4-dihydroxyphenylalanine
  • DOPA 5,′-di(dihydroxyphenyl-L-alanine
  • diDOPA quinone DOPA-like o-diphenols
  • fatty acids glucose; hydroxyproline; nucleosides; nucleotides (RNA and DNA bases); prostaglandin; sugars; sphingosine 1-phosphate; rapamycin; synthetic sex hormones such as estrogen, progesterone or testosterone analogues, e.g., Tamoxifene; estrogen receptor modulators (SERMs) such as Raloxifene; bis-phosphonates such as alendronate, risendronate and etidronate; statins such as cerivastatin, lovastatin, simvast
  • Drugs incorporated in the hydride layer could be utilized for local effects like improving local resistance against invading microbes, local pain control, local inhibition of prostaglandin synthesis; local inflammation regulation, local induction of biomineralisation and local stimulation of tissue growth.
  • drugs suitable for incorporation into metal hydride layers include: Antibiotics; cyclooxygenase inhibitors; hormones; inflammation inhibitors; NSAIDs; painkillers; prostaglandin synthesis inhibitors; steroids, tetracycline (also as biomineralizing agent).
  • Ions are important in a diversity of biological mechanisms.
  • biologically active ions in metal hydride layers on implants it is possible to locally stimulate biological processes like enzyme function, enzyme blocking, cellular uptake of biomolecules, homing of specific cells, biomineralization, apoptosis, cellular secretion of biomolecules, cellular metabolism and cellular defense.
  • bioactive ions for incorporation into metal hydride include: Calcium; chromium; copper; fluoride; gold; iodide; iron; potassium; magnesium; manganese; selenium; silver; sodium; zinc.
  • Biological Markers are molecules that generates a detectable signal, e.g., by emitting light, enzymatic activity, radioactivity, specific color, magnetism, x-ray density, specific structure, antigenicity, etc., that can be detected by specific instruments or by microscopy or an imaging method like x-ray or magnetic resonance. Markers are used to monitor biological processes in research and development of new biomedical treatment strategies.
  • markers On implants, such markers would typically be employed to monitor processes like biocompatibility, formation of tissue, tissue neogenesis, biomineralisation, inflammation, infection, regeneration, repair, tissue homeostasis, tissue breakdown, tissue turnover, release of biomolecules from the implant surface, bioactivity of released biomolecules, uptake and expression of nucleic acids released from the implant surface, and antibiotic capability of the implant surface to provide “proof of principle”, effect, efficacy and safety validation prior to clinical studies.
  • Marker biomolecules suitable for incorporation in hydride coatings include: Calcein; alizaran red; tetracyclins; fluorescins; fura; luciferase; alkaline phosphatase; radioed amino acids (e.g., marked with 32 P, 33 P, 3 H, 35 S, 14 C, 125 I, 51 Cr, 45 CaO; radiolabeled nucleotides (e.g., marked with 32 p, 33 p, 3 H, 35 S, 14 C,); radiolabeled peptides and proteins; radio labeled DNA and RNA; immuno-gold complexes (gold particles with antibodies attached); immuno-silver complexes; immuno-magnetite complexes; Green Fluorescent protein (GFP); Red Fluorescent Protein (E5); biotinylated proteins and peptides; biotinylated nucleic acids; biotinylated antibodies; biotinylated carbon-linkers; reporter genes (any gene that generates
  • the device or implant according to the invention can be used for a number of purposes. Examples of such purposes include use for: inducing local hard tissue (e.g., bone tissue) formation at the implantation site; controlling microbial growth and/or invasion at the implantation site or systemically; reducing inflammation at the implantation site or systemically; stimulating ligament repair, regeneration or formation; inducing cartilage formation; nucleating, controlling and/or templating biomineralization; improving attachment between implants and tissues; improving osseointegration of implants; improving tissue adherence to an implant; hindering tissue adherence to an (semipermanent or temporary) implant; improving contact between tissues or tissues and implants, improving tissue sealing of a (surgical) wound; inducing apoptosis (cell death) in unwanted cells (e.g., cancer cells); inducing specific cell differentiation and/or maturation, increasing tissue tensile strength; improving wound healing; speeding up wound healing; templating tissue formation; guiding tissue formation; local gene therapy; stimulating nerve growth; improving vascularisation in tissues adjacent
  • the metal material (A) is an alloy of titanium, zirconium, tantalum, hafnium or niobium, it may be an alloy between one or more of these metal elements; or it may be an alloy containing one or more other metals such as aluminium, vanadium, chrome, cobalt, magnesium, iron, gold, silver, copper, mercury, tin or zinc; or both.
  • the metal material (A) is titanium or an alloy thereof, e.g., an alloy with zirconium, tantalum, hafnium, niobium, aluminium, vanadium, chrome, cobalt, magnesium, iron, gold, silver, copper, mercury, tin or zinc.
  • the metal material (A) is titanium.
  • the corresponding hydride material (B) is preferably titanium hydride.
  • the amount of biomolecule substance (C) present on or in the hydride layer (B) of the parts of the prosthesis, device or implant coated with the hydride may vary within wide limits, e.g., dependent on the chemical and biological characteristics of the biomolecule substance or substances in question.
  • the biomolecule substance (C) associated with the hydride material (B) may be present in amounts ranging from as low from 1 picogram per mm 2 to as high as 1 mg per mm 2 of hydride-coated device or implant surface.
  • most useful biomolecule coatings will range from 0.1 nanogram to 100 microgram per mm 2 .
  • the method of the invention involves subjecting surface parts of the metal material (A) to a electrolysis treatment to form the hydride layer (B), said treatment being carried out in the presence of one or more biomolecule substances as discussed above. It has been found that is important that the conditions in the electrolyte (pH, ionic strength etc.) are such that the biomolecule has a net positive charge. It is therefore advantageous that most biomolecules are ampholytes, i.e., they are weak acids (or bases) that change their net charge according to the ionic strength and pH of the solution they are dissolved in.
  • the main concern for incorporation thereof in a hydride layer is stability under the conditions needed for bio-hydride preparation, i.e., an environment that supply enough H+ ions for hydride preparation and at the same time keeps the net charge of the biomolecule in question positive.
  • the electrolyte should have a high salt concentration and hence ionic strength; a comparatively high temperature, although preferably below any denaturing temperature of the biomolecule substance; and a low pH.
  • the electrolyte may be any salt solution, preferably aqueous, e.g., a solution of sodium chloride, sodium sulphate, calcium phosphate, calcium chloride, phosphate buffered saline (PBS), saline, a salt solution mimicking physiological conditions, bicarbonates, carbonates etc., in which the desired biomolecule is dissolved.
  • aqueous e.g., a solution of sodium chloride, sodium sulphate, calcium phosphate, calcium chloride, phosphate buffered saline (PBS), saline, a salt solution mimicking physiological conditions, bicarbonates, carbonates etc.
  • PBS phosphate buffered saline
  • the ionic strength of the salt is typically 1 M, but concentrations can be adjusted to as low as 0.01 M and as high as 10 M according to the chemical properties and concentration of the biomolecule(s).
  • the temperature of the electrolyte containing the biomolecule may range from ambient (20° C.) to as high as the boiling point of the electrolyte, typically around 100° C., although the use of temperatures in the upper part of this range clearly depends on the ability of the biomolecule to withstand such temperatures without damage. If the biomolecule can withstand it, an optimum temperature for the formation of hydride is around 80° C.
  • the pH of the electrolyte is typically adjusted to the desired pH by means of a strong acid, e.g., HCl, HF, H 2 SO 4 , etc., although it should be taken into account that a pH below 2 will produce a irregular, corroded implant surface on titanium while a pH above 2 conserves the original surface.
  • the preferred pH for hydride preparation is between 5 and 2, depending on the chemical characteristics and concentration of the biomolecule(s), the electrolyte used and the preferred hydride/biomolecule ratio.
  • the preferred pH for hydride preparation is between 5 and 2, depending on the chemical characteristics and concentration of the biomolecule(s), the electrolyte used and the preferred hydride/biomolecule ratio.
  • the only requirement is that there are hydrogen ions (H + ) and positively charged biomolecules (Biomolecule + , net charge) present in the electrolyte.
  • the concentration of the biomolecule(s) (one or any combinations of two or more) in the electrolyte may vary over a very wide range, depending on type of bioactivity, type of molecule, chemical and biological characteristics, toxicity, potency, mode of action, if it is to be released or not from the hydride layer, stability in vivo, stability in the electrolyte, availability, optimal pH, etc.,
  • the concentration of the biomolecule(s) in the electrolyte may be within the range of 1 pg to 50 mg per milliliter.
  • a preferred range is between 10 pg and 1 mg per milliliter, but the optimal biomolecule concentration should always be by finally determined in pilot experiments with each biomolecule or biomolecule-mix.
  • the time span over which the electrolysis is performed may vary, but chiefly influences the thickness of the hydride layer and hence the concentration of biomolecules in the hydride layer.
  • An electrolysis cell for use in the method of the invention may be of any conventional design, but is typically a two-chamber cell without any conducting connections between the chambers except for the electrolyte.
  • the metal implant to be hydride-modified is placed in the cathode (i.e., the negatively charged electrode) chamber, whereas the anode (the positively charged electrode), typically made of carbon, is placed in a separate chamber.
  • the electrolytes of each chamber are connected through a porous glass or porcelain filter allowing the current to pass unhindered, but without any exchange of electrolytes between the two chambers.
  • the separation of the two cells also allows the use of a smaller cathode electrolyte volume and thus a more effective use of biomolecules as well as the possibility to use a two-electrolyte system that allows optimization of the electrolytic process, e.g., one electrolyte optimal for biomolecules on the cathode side and an electrolyte on the anode side which is optimized for the efficacy of the electrolysis per se (conductivity, avoiding toxic products, or even producing useful byproducts/coatings).
  • the temperature in the cathode cell (T cat ) should be as high at possible with an optimum for hydride preparation at 80° C.
  • the cathode compartment of the electrolysis cell is preferably equipped with a cooled lid for condensation of vaporized electrolyte and a temperature regulated radiator shell for stabilizing temperatures and volumes during electrolysis.
  • the power supply is typically a so-called current pump, i.e., a device delivering a constant current even if the resistance within the circuit varies. Although voltages between 0.1 and 1000 volts can be used, the voltage is typically below 10 volts.
  • the current density during electrolysis is typically in the range of 0.1 mA to 1 A per square centimeter (cm 2 ) of implant specimen. A preferred charge density is I Ma/cm 2 , although adjustments in the electrolyte, pH and temperature to increase biomolecule compatibility may command minor or major deviations from this value.
  • the duration of the process depends on several parameters, such as the desired thickness of the bio-hydride layer, the composition and characteristics of the electrolyte, the characteristics of the biomolecule, the temperature and pH, the desired hydride/biomolecule ratio, the size of the implant specimen, the volume of the cathode electrolyte, the concentration of the biomolecule, etc.
  • the duration of the process may be between 0.5 hours and several days.
  • an optimal time-span is generally between 8 and 24 hours.
  • a calomel electrode may typically be placed in the cathode chamber.
  • a difference of ⁇ 1 Volt is observed between the calomel electrode and the cathode. If the current differs much from this value, the process will be running under sub-optimal conditions, and a change in the set-up should be considered.
  • a temperature probe and a pH probe may typically be placed in the cathode chamber to monitor that the process is running within the desired pH and temperature limits.
  • a stirring device such as a magnetic stirrer, may also be applied in the cathode cell to continuously mix the electrolyte and keep the temperature homogenous and avoid variations in local ionic strength, pH and biomolecule concentrations.
  • the now biomolecule/hydride-coated metal device or implant is immediately removed from the electrolyte and treated according to the requirement of the biomolecule(s) in question.
  • the device or implant specimen is allowed to air-dry and is then packaged in a sterile, airtight plastic bag in which it is stored until use for implantation.
  • a wet storage system might be desired, e.g., like canning or storage in a fluid like saline or simply the electrolyte from the manufacturing process.
  • the electrolysis can be run under aseptic or even sterile conditions, the need for doing this may be avoided by including a sterilization step prior to use, using conventional methods, such as ionizing radiation, heating, autoclaving, or ethylene oxide gas, etc.
  • conventional methods such as ionizing radiation, heating, autoclaving, or ethylene oxide gas, etc.
  • the choice of method will depend on the specific characteristics and properties of the biomolecule(s) present in the metal hydride layer.
  • the device or implant Prior to the electrolysis treatment, the device or implant should be thoroughly cleaned. This may typically consist in the implant being mechanically pre-treated by electropolishing or sandblasting to modify surface structure if desired, and subsequently thoroughly cleaned using hot caustic soda followed by a de-greasing step, e.g., in concentrated tri-chloro-ethylene, ethanol or methanol, before being treated in a pickling solution, e.g., hydrofluoric acid, to remove oxides and impurities on the surface. After pickling, the implant specimen is washed thoroughly in hot, double distilled, ion-exchanged water.
  • a pickling solution e.g., hydrofluoric acid
  • a two-chamber electrolysis cell was used to prepare a layer of titanium hydride containing the extracellular matrix molecule amelogenin onto five coin-shaped electropolished titanium implants each with a surface area of 0.6 cm 2 exposed to the electrolyte.
  • Five similar items were used as controls by being present in the electrolyte chamber, but not connected to the electrolysis current.
  • the electrolyte in both chambers was 1 M NaCl in sterile water, pH adjusted to pH 4 by the use of HCl, and the initial concentration of amelogenin was 0.1 mg/ml.
  • For electrolysis a voltage of 10 volts at a charge density of 1 mA/cm 2 was used.
  • the temperature of the cathode chamber was set to 70° C. Electrolysis was allowed to progress for 18 hours, after which the titanium implants were removed from the electrolysis cell, washed in sterile water and allowed to air-dry in a desiccator.
  • the precipitation pellets containing salt and possible organic molecules, were then dissolved in 50 ⁇ l 2 ⁇ SDS-PAGE sample buffer and boiled for five minutes. All samples were then submitted to electrophoresis on a 12% SDS-polyacrylamide gel at 80 mA overnight. After electrophoresis, proteins in the gel were transferred onto a poly(vinylidene difluoride) membrane by the semidry “sandwich” electroblotting technique. Amelogenin proteins were then detected by an immune assay using an rabbit amelogenin specific primary IgG antibody and a biotin labelled goat anti rabbit IgG secondary antibody.
  • the western blot showed significant amounts of amelogenins present in extracts from test specimens, and hence trapped in the titanium hydride layer thereon, whereas no amelogenins were detected in extracts from the control specimens that were not connected to the electrolysis current.
  • the set-up from example one was used to produce a layer of titanium hydride containing the extracellular matrix molecule amelogenin onto electropolished titanium implants with a surface area of 0.35 cm 2 exposed to the electrolyte.
  • the electrolyte in both chambers was 1 M NaCl in sterile water, pH adjusted to pH 4 by the use of HCl, and the initial concentration of amelogenin was 0.1 mg/ml.
  • T cat was set to 70° C. Electrolysis was allowed to progress for 18 hours after which the titanium implants were removed from the electrolysis cell, washed in sterile water and allowed to air-dry in a desiccator.
  • the titanium specimens were washed three times in 1 ml saline at pH 6.5. Following the washes the proteins remaining on the titanium surfaces were dissolved by boiling the titanium specimen in 0.1 ml 2 ⁇ SDS sample buffer (0.4 g SDS, 1.0 g 2-mercaptoethanol in 10 ml 0.125 M Tris/HCl, pH 6.8) for 5 minutes. The amount of amelogenin dissolved into the SDS solution from the rinsed titanium surfaces was then analyzed by standard photometry measuring light absorbance at 280 and 310 nm against a 2 ⁇ SDS sample buffer blank, and comparing the results with a standard dilution series of amelogenin in 2 ⁇ SDS sample buffer. The experiment was repeated twice in series of 16 implants, both times with 5 negative internal controls in the form of identical titanium implants that was present in the reaction chamber during the whole process, but not attached to the cathode.
  • the set-up from example one was used to produce a layer of titanium hydride containing nucleic acids in the form of radio labeled total human placenta DNA onto electropolished titanium implants with a total surface area of 0.35 cm 2 exposed to the electrolyte.
  • the electrolyte in both chambers was 1 M NaCl in sterile water.
  • the pH was adjusted to pH 2 by the use of HCL.
  • the initial concentration of DNA in the electrolyte was 10 ⁇ g/ml.
  • For electrolysis a voltage of 10 volts at a charge density of 1 mA/cm 2 and a T cat of 75° C. were used.
  • Electrolysis was allowed to progress for 16 or 24 hours after which the titanium specimens were removed from the electrolysis cell, rinsed three times in ample amounts of Tris-EDTA buffer (TE-buffer; 10 mM Tris-Cl and 1 mM EDTA in sterile water, pH 7.6) and then allowed to air dry over night in a desiccator.
  • Tris-EDTA buffer TE-buffer; 10 mM Tris-Cl and 1 mM EDTA in sterile water, pH 7.6
  • the DNA was radiolabeled using a Stratagene Prime-It® II Random Primer Labeling kit for production of high specific-activity probes and [ ⁇ - 32 P]dATP (Amersham).
  • the specific radioactivity of the DNA probe was measured in a Packard Tricarb® scintillation counter to be 3.0 ⁇ 10 8 disintegrations per minute per microgram labeled DNA (dpm/ ⁇ g).
  • the amount of DNA present on the implants ranged between 0.25 and 0.75 ⁇ g/cm 2 with a mean value of 0.43 ⁇ g DNA per cm 2 when the reaction time was 24 hours. When the reaction time was reduced to 16 hours, the respective values ranged between 0.19 and 0.32 ⁇ g/cm 2 with a mean value of 0.30 ⁇ g DNA per cm 2 . This figure is well within the applicable range for gene therapy and DNA vaccines and other molecular medicine applications. Identical control implants that had been present is the same electrolytic cell as the experimental implants, but that were not connected to the cathode showed only very small amounts (picograms) of DNA attached to the surface.
  • Example 1 The set-up from Example 1 was used to prepare a layer of titanium hydride containing ascorbic acid (vitamin C) onto electropolished coin-shaped titanium implants with a total surface area exposed to the electrolyte of 0.35 cm 2 .
  • the electrolyte in both chambers was saline with pH adjusted to pH 3 by means of phosphoric acid.
  • the initial concentration of ascorbic acid was 10 mg/ml.
  • Electrolysis with a voltage of 6 volts at a Current density of 2 mA/cm 2 and a cathode chamber temperature of 20° C. was used. Electrolysis was allowed to progress for 16 hours after which the titanium implant is removed from the electrolysis cell, rinsed twice in sterile water and allowed to dry in a desiccator.
  • the tentative ascorbic acid was dissolved from the titanium specimens by submerging the specimens in 1 ml Tris-EDT A buffer (TE-buffer; 10 mM Tris-Cl and 1 mM EDT A in sterile water) at pH 8.0 for 1 hour with shaking.
  • the amount of ascorbic acid in the buffer samples was then analyzed by measuring light absorption at 250 nm and comparing the results with a standard curve for ascorbic acid in TE, pH 8.0 at this wavelength.
  • Identical control implants present is the same electrolytic cell as the experimental implants, but not connected to the cathode may be used as controls. The experiment was repeated twice in a series of 16 implants, both times with 5 negative, internal controls.
  • the amount of ascorbic acid extracted from the titanium specimens was calculated to range between 28 and 76 ⁇ g/cm 2 with a mean value of 39 ⁇ g ascorbic acid per cm 2 , by comparison with the ascorbic acid standard. This figure is well within the bioactivity range of this vitamin (the normal plasma concentration in humans range between 8-15 ⁇ g/ml).
  • the internal control specimens that had been present is the same electrolytic cell as the experimental implants, but which were not connected to the cathode, showed only minute amounts of ascorbic acid attached to the surface (4 ⁇ g/cm 2 ). This experiment clearly demonstrates that a biologically significant amount of ascorbic acid can be incorporated or attached to the titanium hydride layer during the electrolytic process.
  • the set-up from Example 1 may be used to prepare a layer of titanium hydride containing a synthetic, full-length (37 amino acids) fibroblast growth factor 4 (FGF-4) peptide onto coin-shaped electropolished titanium implants with a total surface area of 0.6 cm 2 exposed to the electrolyte.
  • Electrolytes, pH, voltage, current density and electrolysis time may suitably be as in Example 1.
  • the initial concentration of FGF-4 may suitably be 0.1 mg/ml, and the cathode chamber temperature may suitably be 50° C.
  • protein in the gel may be transferred to a silver staining solution and the full-length synthetic FGF-4 peptides present visualised as a distinct band in the gel.
  • the set-up from Example 1 may be used to prepare a layer of titanium hydride containing the antibiotic agent amoxicillin (aminopenicillinium) onto an electropolished, coin-shaped titanium implant with a surface area exposed to the electrolyte of 0.6 cm 2 .
  • the electrolyte in both chambers is suitably 1M NaCl in sterile water with pH adjusted to pH 2 by means of HCl, and the initial concentration of amoxicillin is suitably 5 mg/ml.
  • a voltage of 10 volts at a charge density of 1 mA/cm 2 and a cathode chamber temperature of 50° C. may be used.
  • Electrolysis may suitably be allowed to progress for 24 hours after which the titanium implant is removed from the electrolysis cell, rinsed in sterile water and allowed to dry in a desiccator.
  • the amount of amoxicillin trapped in the hydride layer on the titanium implants may be assessed by its antibacterial effect on penicillin sensitive bacteria of the species Escherichia coli ( E. coli ), strain K12, in liquid cultures.
  • the cultures are suitably inoculated with one colony of E. coli K12 in 5 ml LB broth.
  • the modified implants and controls are placed in the culture and the cultures incubated at 37° C. overnight. The next day the amounts of bacteria present in the cultures may be assessed by photometry and comparison with a standard dilution. Identical control implants present in the same electrolytic cell as the experimental implants, but not connected to the cathode may be used as controls.
  • the set-up from Example 1 may be used to prepare a layer of titanium hydride containing a synthetic poly-proline peptide that has the potential to act as a biological nucleator of mineral formation in saturated solutions of calcium phosphate.
  • the biomolecule may be incorporated in the hydride layer on electropolished, coin-shaped titanium implants surface with a total area exposed to the electrolyte of 0.6 cm 2 .
  • the electrolyte in both chambers may suitably be 1 M NaCl in sterile water with pH adjusted to pH 2 by means of HCl, and the initial concentration of the synthetic poly-proline may suitably be 0.1 mg/ml.
  • Electrolysis For electrolysis a voltage of 10 volts at a current density of 1 mA/cm 2 and a cathode chamber temperature of 70° C. may be used. Electrolysis may suitably be allowed to progress for 18 hours after which the titanium implants are removed from the electrolysis cell, rinsed in sterile water and allowed to air-dry in a desiccator.
  • the titanium implants and controls with tentative mineral nucleating peptide attached are placed in 5 ml saturated solution of calcium phosphate. After incubation for 4 hours in room temperature, the implants are removed from the mineral solution, rinsed in sterile water and air-dried in a desiccator. When dry, the implants may be directly submitted to scanning electron microscopy for assessment of the number of mineral foci present on the modified surfaces. Identical control implants present is the same electrolytic cell as the experimental implants but not connected to the cathode may be used as controls.
  • the set-up from Example 1 may be used to prepare a layer of titanium hydride containing Ca-alginate nanospheres (Pronova AS) onto electropolished, coin-shaped titanium implants with a total area exposed to the electrolyte of 0.6 cm 2 .
  • the electrolyte in both chambers is suitably 1 M CaCl 2 in sterile water with pH adjusted to pH 5.5 by means of HCl, and the initial concentration of Ca-alginate is suitably 1% w/v.
  • a voltage of 10 volts at a current density of 1 mA/cm 2 and a cathode chamber temperature of 35° C. may be used.
  • Electrolysis is suitably allowed to progress for 48 hours, after which the titanium implants are removed from the electrolysis cell, rinsed in cold sterile water and allowed to air-dry in a desiccator.
  • the titanium implants with a hydride-alginate layer are suitably submerged in sterile saline, dyed with bromophenol blue (0.02 g/ml) and incubated for one hour at 37° C. with the modified surface facing the solution. Following incubation in the dyed saline the implants and controls are rinsed in distilled water and observed with a magnifying glass for the retention of blue dye within the tentative swelled alginate layer. The thickness of the alginate layers may also be assessed by viewing the implants edge on in a calibrated light microscope. Identical control implants present is the same electrolytic cell as the experimental implants but not connected to the cathode may be used as controls.
  • the set-up from Example 1 may be used to prepare a dual layer of biomolecule containing titanium hydride on the surface of electropolished, coin-shaped titanium implants with a total surface exposed to the electrolyte of 0.6 cm 2 .
  • the inner layer may be prepared using amelogenin as biomolecule according to the method in Example 1.
  • the electrolyte and conditions may be changed to those of Example 3 using genomic human DNA as biomolecule.
  • titanium implants may be prepared with an outer layer of titanium hydride-DNA overlaying an inner layer of titanium hydride-amelogenin. After the electrolysis the implants are removed from the electrolysis cell, rinsed in sterile water and allowed to air-dry in a desiccator.
  • the titanium specimens with tentative nucleic acids and proteins attached are suitably rinsed three times in Tris-EDTA buffer (TE-buffer; 10 mM Tris-Cl and 1 mM EDT A in sterile water). At each rinse the pH is increased starting at pH 7.4, then rinsed at pH 7.6 and finally at pH 8.0. After rinsing in TE the remaining DNA and protein on the titanium implants is finally removed using 0.1 N NaOH. The rinsing fractions are then divided in two; on part for nucleic acid analysis and one for protein analysis. The DNA fractions are suitably precipitated with an equal volume of absolute alcohol at ⁇ 20° C. for 1 hour and then cleared from the supernatant by centrifugation at 13,000 g at 4° C. The pellet is then dissolved in 50 ⁇ l TE buffer pH 7.4 and the amount of DNA from all four rinsing solutions assessed by fluorometric analysis using Hoechst dye (Boehringer Mannheim).
  • Tris-EDTA buffer TE-buffer;
  • the fractions for protein analysis are suitably precipitated with an equal volume of 0.6 N perchloric acid and the supernatants cleared by centrifugation.
  • the precipitation pellets containing salt and proteins are then dissolved in 50 ⁇ l 2 ⁇ SDS-PAGE sample buffer (0.4 g SDS, 1.0 g 2-mercaptoethanol, 0.02 g bromophenol blue and 4.4 g glycerol in 10 ml 0.125 M Tris/HCl, pH 6.8) and boiled for five minutes. All samples are then submitted to electrophoresis on a 10% SDS-polyacrylamide gel at 80 mA for 4 hours.
  • electrophoresis proteins in the gel are transferred to a silver staining solution and amelogenin present in the fractions is visualized as distinct bands in the gel.
  • Identical control implants present is the same electrolytic cell as the experimental implants but not connected to the cathode may be used as controls.
  • the set-up from Example 1 may be used to prepare two separate zones of titanium hydride layers. Electropolished, rod-shaped titanium implants with a total area of 2 cm 2 were treated according to Examples 3 and 6. First the implants were placed in the electrolyte from Example 3, so that only one half of each implant was submerged in the electrolyte. After the procedure of Example 3 was completed, the implants were turned around and placed in a new electrolyte similar to the one used in Example 6, so that the untreated half of each implant now was submerged in electrolyte. The procedure and reaction conditions from Example 6 were then carried out, after which the titanium specimen was removed from the electrolysis cell, rinsed in sterile water and allowed to dry in a desiccator.
  • the halves layered with titanium hydride-synthetic FGF-4 peptide may be submitted to analysis according to Example 2.
  • the other halves of the implants, layered with titanium hydride-amoxicillin, may be analyzed in the bacterial growth assay according to Example 5.
  • Identical control implants present is the same electrolytic cells as the experimental implants but not connected to the cathode may be used as controls.
  • Implants prepared as in Example 1 are placed in calibrated bone defects in the tibia bone of rabbits, making sure that fenestrations into the bone marrow beneath the implants allow migration of osteogenic cells to the modified implant surfaces, using a standardized and validated model (R ⁇ nold and Ellingsen, European Society for Biomaterials Conference, Amsterdam, October 2000).
  • the rabbits are given an intravenous calcein (Sigma) injection of 10 mg/kg body weight.
  • the rabbits will be sacrificed and the tibia removed, fixed in 4% formaldehyde and embedded for preparation of ground sections through the bone and the integrated implant material.
  • Identical control implants present is the same electrolytic cell as the experimental implants but not connected to the cathode may be used as controls.

Abstract

A medical prosthetic device or medical implant containing a metal material (A) selected from the group consisting of titanium or an alloy thereof, zirconium or an alloy thereof, tantalum or an alloy thereof, hafnium or an alloy thereof, niobium or an alloy thereof and a chromium-vanadium alloy, wherein surface parts of the metal material (A) are coated with a layer of a corresponding hydride material (B) selected from titanium hydride, zirconium hydride, tantalum hydride, hafnium hydride, niobium hydride and chromium and/or vanadium hydride, respectively, said device or implant being characterised in that the layer of hydride material (B) comprises one or more biomolecule substances (C) associated therewith. The device or implant exhibits improved biocompatibility. The metal material (A) is preferably titanium. The biomolecule substance (C) may be selected from the following types of substances: Natural or recombinant bio-adhesives; natural or recombinant cell attachment factors; natural, recombinant or synthetic biopolymers; natural or recombinant blood proteins; natural or recombinant enzymes; natural or recombinant extracellular matrix proteins; natural or synthetic extracellular matrix biomolecules; natural or recombinant growth factors and hormones; natural, recombinant or synthetic peptide hormones; natural, recombinant or synthetic deoxyribonucleic acids; natural, recombinant or synthetic ribonucleic acids; natural or recombinant receptors; enzyme inhibitors; drugs; biologically active anions and cations; vitamins; adenosine monophosphate (AMP), adenosine diphosphate (ADP) or adenosine triphosphate (A TP); marker biomolecules; amino acids; fatty acids; nucleotides (RNA and DNA bases); and sugars.

Description

    RELATED APPLICATIONS
  • This application is a 37 C.F.R. § 1.53(b) continuation of U.S. application Ser. No. 10/010,140 filed Dec. 6, 2001, which claims priority on U.S. Provisional Application 60/254,987 filed on Dec. 12, 2000, and Denmark Patent Application No. PA 2000 01829 filed on Dec. 6, 2000. The entire contents of each of these applications is incorporated herein by reference.
  • FIELD OF THE INVENTION
  • The present invention concerns medical prosthetic devices and implants having improved biocompatibility.
  • BACKGROUND OF THE INVENTION
  • It has been proposed to improve the biocompatibility of e.g., a titanium prosthesis by coating metal surfaces thereof with a layer of titanium hydride. Such a hydride layer may be applied by plasma bombardment, or in may be applied by electrolysis; see, for example. U.S. patent application Ser. No. 09/868,965 which is hereby incorporated by reference.
  • It has also been proposed to improve the biocompatibility of prostheses or implants by binding or integrating various active biomolecules to the surface of the prosthesis, e.g., on to the metallic surface of a titanium prosthesis. It has been the aim with implants prepared this way that they have improved fit; exhibit increased tissue stickiness and increased tissue compatibility; have a biologically active surface for increased cell growth, differentiation and maturation; exhibit reduced immunoreactivity; exhibit antimicrobial activity; exhibit increased biomineralisation capabilities; result in improved wound and/or bone healing; lead to improved bone density; have reduced “time to load” and cause less inflammation.
  • Such binding has often been proposed carried out using for example chemical reactants having two reactive functionalities such as formalin or glutaraldehyde, but the reactive nature of these agents often leads to the biomolecules becoming biologically inactive and/or with enhanced immunoreactivity which is undesirable.
  • SUMMARY OF THE INVENTION
  • It has now surprisingly been found that it is possible to interlock, bind, trap and/or integrate a wide variety of biomolecules in or with a hydride layer during the inorganic process of formation of such a hydride layer on metals by electrolysis. Prior to this observation, it was considered very difficult to bind and stabilize unmodified, bioactive biomolecules on metals, especially for use as bioactive surfaces on metals for use as implants in the vertebrate body in vivo.
  • The invention, therefore, concerns a medical prosthetic device or implant containing a metal material (A) selected from the group consisting of titanium or an alloy thereof, zirconium or an alloy thereof, tantalum or an alloy thereof, hafnium or an alloy thereof, niobium or an alloy thereof and a chromium-vanadium alloy, wherein surface parts of the metal material (A) are coated with a layer of a corresponding hydride material (B) selected from titanium hydride, zirconium hydride, tantalum hydride, hafnium hydride, niobium hydride and chromium and/or vanadium hydride, respectively, characterised in that the layer of hydride material (B) comprises one or more biomolecule substances (C) associated therewith.
  • The invention further concerns a method for preparing a medical prosthetic device or implant as defined above, said method comprising subjecting surface parts of the metal material (A) as defined above to an electrolysis treatment to form the layer of hydride material (B), said electrolysis treatment being carried out in the presence of one or more biomolecule substances (C).
  • DETAILED DESCRIPTION OF THE INVENTION
  • In the present context, the phrase “medical prosthetic device and implant” includes within its scope any device intended to be implanted into the body of a vertebrate animal, in particular a mammal such as a human. Non-limiting examples of such devices are medical devices that replace anatomy or restore a function of the body, such as the femoral hip joint; the femoral head; acetabular cup; elbow, including stems, wedges, articular inserts; knee, including the femoral and tibial components, stem, wedges, articular inserts or patellar components; shoulders including stem and head; wrist; ankles; hand; fingers; toes; vertebrae; spinal discs; artificial joints; dental implants; ossiculoplastic implants; middle ear implants including incus, malleus, stapes, incus-stapes, malleusincus, malleusincus-stapes; cochlear implants; orthopaedic fixation devices such as nails, screws, staples and plates; heart valves; pacemakers; catheters; vessels; space filling implants; implants for retention of hearing aids; implants for external fixation; and also intrauterine devices (IUDs); and bioelectronic devices such as intracochlear or intracranial electronic devices.
  • In the present context, the term “biomolecule” is intended to cover and comprise within its meaning a very wide variety of biologically active molecules in the widest sense of the word, be they natural biomolecules (i.e., naturally occurring molecules derived from natural sources), synthetic biomolecules (i.e., naturally occurring molecules prepared synthetically as well as non-naturally occurring molecules or forms of molecules prepared synthetically) or recombinant biomolecules (i.e., prepared through the use of recombinant techniques).
  • A non-limiting list of main groups of and species biomolecules that are contemplated as being suitable for incorporation into a metal hydride layer (in a stable and/or physiologically reversible manner) in accordance with the invention is given below.
  • Extracted Biomolecules
  • Bioadhesives:
  • These are biomolecules that mediate attachment of cells, tissue, organs or organisms onto non-biological surfaces like glass, rock etc. This group of bio-molecules includes the marine mussel adhesive proteins, fibrin-like proteins, spider-web proteins, plant-derived adhesives (resins), adhesives extracted from marine animals, and insect-derived adhesives (like resilins). Some specific examples of adhesives are: Fibrin; fibroin; Mytilus edulis foot protein (mefpl, “mussel adhesive protein”); other mussel's adhesive proteins; proteins and peptides with glycine-rich blocks; proteins and peptides with poly-alanine blocks; and silks.
  • Cell Attachment Factors:
  • Cell attachment factors are biomolecules that mediate attachment and spreading of cells onto biological surfaces or other cells and tissues. This group of molecules typically contains molecules participating in cell-matrix and cell-cell interaction during vertebrate development, neogenesis, regeneration and repair. Typical biomolecules in this class are molecules on the outer surface of cells like the CD class of receptors on white blood cells, immunoglobulins and haemagglutinating proteins, and extracellular matrix molecules/ligands that adhere to such cellular molecules. Typical examples of cell attachment factors with potential for use as bioactive coating on metal hydride-coated implants are: Ankyrins; cadherins (Calcium dependent adhesion molecules); connexins; dermatan sulphate; entactin; fibrin; fibronectin; glycolipids; glycophorin; glycoproteins; heparan sulphate; heparin sulphate; hyaluronic acid; immunglobulins; keratan sulphate; integrins; laminins; N-CAMs (Calcium independent Adhesive Molecules); proteoglycans; spektrin; vinculin; vitronectin.
  • Biopolymers:
  • Biopolymers are any biologically prepared molecule which, given the right conditions, can be assembled into polymeric, macromolecular structures. Such molecules constitute important parts of the extracellular matrix where they participate in providing tissue resilience, strength, rigidity, integrity etc. Some important biopolymers with potential for use as bioactive coating on metal hydride-coated implants are: Alginates; Amelogenins; cellulose; chitosan; collagen; gelatins; oligosaccharides; pectin.
  • Blood Proteins:
  • This class of proteins typically contains any dissolved or aggregated protein which normally is present whole blood. Such proteins can participate in a wide range of biological processes like inflammation, homing of cells, clotting, cell signalling, defence, immune reactions, metabolism etc. Typical examples with potential for use as bioactive coating on metal hydride-coated implants are: Albumin; albumen; cytokines; factor IX; factor V; factor VII; factor VIII; factor X; factor XI; factor XII; factor XIII; hemoglobins (with or without iron); immunoglobulins (antibodies); fibrin; platelet derived growth factors (PDGFs); plasminogen; thrombospondin; transferrin.
  • Enzymes:
  • Enzymes are any protein or peptide that have a specific catalytic effect on one ore more biological substrates which can be virtually anything from simple sugars to complex macromolecules like DNA. Enzymes are potentially useful for triggering biological responses in the tissue by degradation of matrix molecules, or they could be used to activate or release other bioactive compounds in the implant coating. Some important examples with potential for use as bioactive coating on metal hydride-coated implants are: Abzymes (antibodies with enzymatic capacity); adenylate cyclase; alkaline phosphatase; carboxylases; collagenases; cyclooxygenase; hydrolases; isomerases; ligases; lyases; metallo-matrix proteases (MMPs); nucleases; oxidoreductases; peptidases; peptide hydrolase; peptidyl transferase; phospholipase; proteases; sucrase-isomaltase; TIMPs; transferases.
  • Extracellular Matrix Proteins and Biomolecules:
  • Specialized cells, e.g., fibroblasts and osteoblasts, produce the extracellular matrix. This matrix participates in several important processes. The matrix is crucial for i.e., wound healing, tissue homeostasis, development and repair, tissue strength, and tissue integrity. The matrix also decides the extracellular milieu like pH, ionic strength, osmolarity, etc. Furthermore, extracellular matrix molecules are crucial for induction and control of biomineral formation (bone, cartilage, teeth). Important extracellular proteins and biomolecules with potential for use as bioactive coating on metal hydride-coated implants include: Ameloblastin; amelin; amelogenins; collagens (I to XII); dentin-sialo-protein (DSP); dentin-sialo-phospho-protein (OSPP); elastins; enamelin; fibrins; fibronectins; keratins (1 to 2.0); laminins; tuftelin; carbohydrates; chondroitin sulphate; heparan sulphate; heparin sulphate; hyaluronic acid; lipids and fatty acids; lipopolysaccarides.
  • Growth Factors and Hormones:
  • Growth factors and hormones are molecules that bind to cellular surface structures (receptors) and generate a signal in the target cell to start a specific biological process. Examples of such processes are growth, programmed cell death, release of other molecules (e.g., extracellular matrix molecules or sugar), cell differentiation and maturation, regulation of metabolic rate etc. Typical examples of such biomolecules with potential for use as bioactive coating on metal hydride-coated implants are: Activins (Act); Amphiregulin (AR); Angiopoietins (Ang 1 to 4); Apo3 (a weak apoptosis inducer also known as TWEAK, DR3, WSL-I, TRAMP or LARD); Betacellulin (BTC); Basic Fibroblast Growth Factor (bFGF, FGF-b); Acidic Fibroblast Growth Factor (aFGF, FGF-a); 4-1BB Ligand; Brain-derived Neurotrophic Factor (BDNF); Breast and Kidney derived Bolokine (BRAK); Bone Morphogenic Proteins (BMPs); B-Lymphocyte Chemoattractant/B cell Attracting Chemokine 1 (BLC/BCA-1); CD27L (CD27 ligand); CD30L (CD30 ligand); CD40L (CD40 ligand); A Proliferation-inducing Ligand (APRIL); Cardiotrophin-1 (CT-1); Ciliary Neurotrophic Factor (CNTF); Connective Tissue Growth Factor (CTGF); Cytokines; 6-cysteine Chemokine (6Ckine); Epidermal Growth Factors (EGFs); Eotaxin (Eot); Epithelial Cell-derived Neutrophil Activating Protein 78 (ENA-78); Erythropoietin (Epo); Fibroblast Growth Factors (FGF 3 to 19); Fractalkine; Glial-derived Neurotrophic Factors (GDNFs); Glucocorticoid-induced TNF Receptor Ligand (GITRL); Granulocyte Colony Stimulating Factor (G-CSF); Granulocyte Macrophage Colony Stimulating Factor (GM-CSF); Granulocyte Chemotactic Proteins (GCPs); Growth Hormone (GH); I-309; Growth Related Oncogene (GRO); Inhibins (Inh); Interferon-inducible T-cell Alpha Chemoattractant (I-TAC); Fas Ligand (FasL); Heregulins (HRGs); Heparin-Binding Epidermal Growth Factor-Like Growth Factor (HB-EGF); fms-like Tyrosine Kinase 3 Ligand (Flt-3L); Hemofiltrate CC Chemokines (HCC-1 to 4); Hepatocyte Growth Factor (HGF); Insulin; Insulin-like Growth Factors (IGF 1 and 2); Interferon-gamma Inducible Protein 10 (IP-10); Interleukins (IL 1 to 18); Interferon-gamma (IFN-gamma); Keratinocyte Growth Factor (KGF); Keratinocyte Growth Factor-2 (FGF-10); Leptin (OB); Leukemia Inhibitory Factor (LIF); Lymphotoxin Beta (LT-B); Lymphotactin (LTN); Macrophage-Colony Stimulating Factor (M-CSF); Macrophage-derived Chemokine (MDC); Macrophage Stimulating Protein (MSP); Macrophage Inflammatory Proteins (MIPs); Midkine (MK); Monocyte Chemoattractant Proteins (MCP-1 to 4); Monokine Induced by IFN-gamma (MIG); MSX 1; MSX 2; Mullerian Inhibiting Substance (MIS); Myeloid Progenitor Inhibitory Factor 1 (MPIF-1); Nerve Growth Factor (NGF); Neurotrophins (NTs); Neutrophil Activating Peptide 2 (NAP-2); Oncostatin M (OSM); Osteocalcin; OP-1; Osteopontin; OX40 Ligand; Platelet derived Growth Factors (PDGF aa, ab and bb); Platelet Factor 4 (PF4); Pleiotrophin (PTN); Pulmonary and Activation-regulated Chemokine (PARC); Regulated on Activation, Normal T-cell Expressed and Secreted (RANTES); Sensory and Motor Neuron-derived Factor (SMDF); Small Inducible Cytokine Subfamily A Member 26 (SCYA26); Stem Cell Factor (SCF); Stromal Cell Derived Factor 1 (SDF-1); Thymus and Activation-regulated Chemokine (T ARC); Thymus Expressed Chemokine (TECK); TNF and ApoL-related Leukocyte-expressed Ligand-1 (TALL-1); TNF-related Apoptosis Inducing Ligand (TRAIL); TNF -related Activation Induced Cytokine (TRANCE); Lymphotoxin Inducible Expression and Competes with HSV Glycoprotein D for HVEM T-Iymphocyte receptor (LIGHT); Placenta Growth Factor (PIGF); Thrombopoietin (Tpo); Transforming Growth Factors (TGF alpha, TGF beta 1, TGF beta 2); Tumor Necrosis Factors (TNF alpha and beta); Vascular Endothelial Growth Factors (VEGF-A, B, C and D); calcitonins; and steroid compounds such as naturally occurring sex hormones such as estrogen, progesterone, testosterone as well as analogues thereof. Thus, certain implants, such as IUD's (intrauterine devices) comprising e.g., estrogens or progesterone or analogues thereof, could be contemplated.
  • Nucleic Acids (DNA):
  • DNA encodes the genes for proteins and peptides. Also, DNA contains a wide array of sequences that regulate the expression of the contained genes. Several types of DNA exist, depending on source, function, origin, and structure. Typical examples for DNA based molecules that can be utilized as bioactive, slow release coatings on implants (local gene-therapy) are: A-DNA; B-DNA; artificial chromosomes carrying mammalian DNA (YACs); chromosomal DNA; circular DNA; cosmids carrying mammalian DNA; DNA; Double-stranded DNA (dsDNA); genomic DNA; hemi-methylated DNA; linear DNA; mammalian cDNA (complimentary DNA; DNA copy of RNA); mammalian DNA; methylated DNA; mitochondrial DNA; phages carrying mammalian DNA; phagemids carrying mammalian DNA; plasmids carrying mammalian DNA; plastids carrying mammalian DNA; recombinant DNA; restriction fragments of mammalian DNA; retroposons carrying mammalian DNA; single-stranded DNA (ssDNA); transposons carrying mammalian DNA; T-DNA; viruses carrying mammalian DNA; Z-DNA.
  • Nucleic Acids (RNA):
  • RNA is a transcription of DNA-encoded information. (Sometimes (in some viruses) RNA is the essential information-encoding unit). Besides being an intermediate for expression of genes, RNA have been shown to have several biological functions. Ribozymes are simple RNA molecules with a catalytic action. These RNA can catalyze DNA and RNA cleavage and ligation, hydrolyze peptides, and are the core of the translation of RNA into peptides (the ribosome is a ribozyme). Typical examples of RNA molecules with potential for use as bioactive coating on metal hydride-coated implants are: Acetylated transfer RNA (activated tRNA, charged tRNA); circular RNA; linear RNA; mammalian heterogeneous nuclear RNA (hnRNA), mammalian messenger RNA (mRNA); mammalian RNA; mammalian ribosomal RNA (rRNA); mammalian transport RNA (tRNA); mRNA; poly-adenylated RNA; ribosomal RNA (rRNA); recombinant RNA; retroposons carrying mammalian RNA; ribozymes; transport RNA (tRNA); viruses carrying mammalian RNA.
  • Receptors:
  • Receptors are cell surface biomolecules that bind signals (e.g., hormone ligands and growth factors) and transmit the signal Over the cell membrane and into the internal machinery of cells. Different receptors are differently “wired” imposing different intracellular responses even to the same ligand. This makes it possible for the cells to react differentially to external signals by varying the pattern of receptors on their surface. Receptors typically bind their ligand in a reversible manner, making them suitable as carriers of growth factors that are to be released into the tissue. Thus by coating implants with growth factor receptors, and then load these receptors with their principal ligands, a bioactive surface is achieved that can be used for controlled release of growth factors to the surrounding tissues following implantation. Examples of suitable receptors with potential for use as bioactive coating on metal hydride-coated implants includes: The CD class of receptors CD; EGF receptors; FGF receptors; Fibronectin receptor (VLA-5); Growth Factor receptor, IGF Binding Proteins (IGFBP 1 to 4); Integrins (including VLA 1-4); Laminin receptor; PDGF receptors; Transforming Growth Factor alpha and beta receptors; BMP receptors; Fas; Vascular Endothelial Growth Factor receptor (FLt-1); Vitronectin receptor.
  • Synthetic Biomolecules
  • Synthetic biomolecules are molecules that are based on (mimicking) naturally occurring biomolecules. By synthesizing such molecules a wide array of chemical and structural modification can be introduced that can stabilize the molecule or make it more bioactive or specific. Thus if a molecule is either too unstable or unspecific to be used from extracts it is possible to engineer them and synthesize them for use as implant surface coatings. Furthermore, many biomolecules are so low abundant that extraction in industrial scales is impossible. Such rare biomolecules have to be prepared synthetically, e.g., by recombinant technology or by (bio-) chemistry. Below is listed several classes of synthetic molecules that can be potentially useful for implant coatings:
  • Synthetic DNA:
  • A-DNA; antisense DNA; B-DNA; complimentary DNA (cDNA); chemically modified DNA; chemically stabilized DNA; DNA; DNA analogues; DNA oligomers; DNA polymers; DNA-RNA hybrids; double-stranded DNA (dsDNA); hemi-methylated DNA; methylated DNA; single-stranded DNA (ssDNA); recombinant DNA; triplex DNA; T-DNA; Z-DNA.
  • Synthetic RNA:
  • Antisense RNA; chemically modified RNA; chemically stabilized RNA; heterogeneous nuclear RNA (hnRNA); messenger RNA (mRNA); ribozymes; RNA; RNA analogues; RNA-DNA hybrids; RNA oligomers; RNA polymers; ribosomal RNA (rRNA); transport RNA (tRNA).
  • Synthetic Biopolymers:
  • Cationic and anionic liposomes; cellulose acetate; hyaluronic acid; polylactic acid; polyglycol alginate; polyglycolic acid; poly-prolines; polysaccharides.
  • Synthetic Peptides:
  • Decapeptides containing DOPA and/or diDOP A; peptides with sequence “Ala Lys Pro Ser Tyr Pro Pro Thr Tyr Lys”; peptides where Pro is substituted with hydroxyproline; peptides where one or more Pro is substituted with DOPA; peptides where one or more Pro is substituted with diDOP A; peptides where one or more Tyr is substituted with DOPA; peptide hormones; peptide sequences based on the above listed extracted proteins; peptides containing an RGD (Arg Gly Asp) motif.
  • Recombinant Proteins:
  • All recombinantly prepared peptides and proteins.
  • Synthetic Enzyme Inhibitors:
  • Synthetic enzyme inhibitors range from simple molecules, like certain metal ions, that block enzyme activity by binding directly to the enzyme, to synthetic molecules that mimic the natural substrate of an enzyme and thus compete with the principle substrate. An implant coating including enzyme inhibitors could help stabilizing and counteract breakdown of other biomolecules present in the coating, so that more reaction time and/or higher concentration of the bioactive compound is achieved. Examples of enzyme inhibitors are: Pepstatin; poly-pro lines; D-sugars; D-aminoacids; Cyanide; Diisopropyl fluorophosphates (DFP); metal ions; N-tosyl-1-phenylalaninechloromethyl ketone (TPCK); Physostigmine; Parathion; Penicillin.
  • Vitamins (Synthetic or Extracted) for Incorporation in Hydride:
  • Biotin; calciferol (Vitamin D's; vital for bone mineralisation); citrin; folic acid; niacin; nicotinamide; nicotinamide adenine dinucleotide (NAD, NAD+); nicotinamide adenine dinucleotide phosphate (NADP, NADPH); retinoic acid (vitamin A); riboflavin; vitamin Bs; vitamin C (vital for collagen synthesis); vitamin E; vitamin Ks.
  • Other Bioactive Molecules for Incorporation into Hydride:
  • Adenosine di-phosphate (ADP); adenosine mono-phosphate (AMP); adenosine tri-phosphate (ATP); amino acids; cyclic AMP (cAMP); 3,4-dihydroxyphenylalanine (DOPA); 5′-di(dihydroxyphenyl-L-alanine (diDOPA); diDOPA quinone; DOPA-like o-diphenols; fatty acids; glucose; hydroxyproline; nucleosides; nucleotides (RNA and DNA bases); prostaglandin; sugars; sphingosine 1-phosphate; rapamycin; synthetic sex hormones such as estrogen, progesterone or testosterone analogues, e.g., Tamoxifene; estrogen receptor modulators (SERMs) such as Raloxifene; bis-phosphonates such as alendronate, risendronate and etidronate; statins such as cerivastatin, lovastatin, simvaststin, pravastatin, fluvastatin, atorvastatin and sodium 3,5-dihydroxy-7-[3-(4-fluorophenyl)-1-(methylethyl)-1 H-indol-2-y1]-hept-6-enoate.
  • Drugs for Incorporation into Hydride Coatings:
  • Drugs incorporated in the hydride layer could be utilized for local effects like improving local resistance against invading microbes, local pain control, local inhibition of prostaglandin synthesis; local inflammation regulation, local induction of biomineralisation and local stimulation of tissue growth. Examples of drugs suitable for incorporation into metal hydride layers include: Antibiotics; cyclooxygenase inhibitors; hormones; inflammation inhibitors; NSAIDs; painkillers; prostaglandin synthesis inhibitors; steroids, tetracycline (also as biomineralizing agent).
  • Biologically Active Ions for Incorporation in Hydride Coatings:
  • Ions are important in a diversity of biological mechanisms. By incorporating biologically active ions in metal hydride layers on implants it is possible to locally stimulate biological processes like enzyme function, enzyme blocking, cellular uptake of biomolecules, homing of specific cells, biomineralization, apoptosis, cellular secretion of biomolecules, cellular metabolism and cellular defense. Examples of bioactive ions for incorporation into metal hydride include: Calcium; chromium; copper; fluoride; gold; iodide; iron; potassium; magnesium; manganese; selenium; silver; sodium; zinc.
  • Marker Biomolecules:
  • Biological Markers are molecules that generates a detectable signal, e.g., by emitting light, enzymatic activity, radioactivity, specific color, magnetism, x-ray density, specific structure, antigenicity, etc., that can be detected by specific instruments or by microscopy or an imaging method like x-ray or magnetic resonance. Markers are used to monitor biological processes in research and development of new biomedical treatment strategies. On implants, such markers would typically be employed to monitor processes like biocompatibility, formation of tissue, tissue neogenesis, biomineralisation, inflammation, infection, regeneration, repair, tissue homeostasis, tissue breakdown, tissue turnover, release of biomolecules from the implant surface, bioactivity of released biomolecules, uptake and expression of nucleic acids released from the implant surface, and antibiotic capability of the implant surface to provide “proof of principle”, effect, efficacy and safety validation prior to clinical studies.
  • Marker biomolecules suitable for incorporation in hydride coatings include: Calcein; alizaran red; tetracyclins; fluorescins; fura; luciferase; alkaline phosphatase; radioed amino acids (e.g., marked with 32P, 33P, 3H, 35S, 14C, 125I, 51Cr, 45CaO; radiolabeled nucleotides (e.g., marked with 32p, 33p, 3H, 35S, 14C,); radiolabeled peptides and proteins; radio labeled DNA and RNA; immuno-gold complexes (gold particles with antibodies attached); immuno-silver complexes; immuno-magnetite complexes; Green Fluorescent protein (GFP); Red Fluorescent Protein (E5); biotinylated proteins and peptides; biotinylated nucleic acids; biotinylated antibodies; biotinylated carbon-linkers; reporter genes (any gene that generates a signal when expressed); propidium iodide; diamidino yellow.
  • The device or implant according to the invention can be used for a number of purposes. Examples of such purposes include use for: inducing local hard tissue (e.g., bone tissue) formation at the implantation site; controlling microbial growth and/or invasion at the implantation site or systemically; reducing inflammation at the implantation site or systemically; stimulating ligament repair, regeneration or formation; inducing cartilage formation; nucleating, controlling and/or templating biomineralization; improving attachment between implants and tissues; improving osseointegration of implants; improving tissue adherence to an implant; hindering tissue adherence to an (semipermanent or temporary) implant; improving contact between tissues or tissues and implants, improving tissue sealing of a (surgical) wound; inducing apoptosis (cell death) in unwanted cells (e.g., cancer cells); inducing specific cell differentiation and/or maturation, increasing tissue tensile strength; improving wound healing; speeding up wound healing; templating tissue formation; guiding tissue formation; local gene therapy; stimulating nerve growth; improving vascularisation in tissues adjacent to an implant; stimulating local extracellular matrix synthesis; inhibiting local extracellular matrix breakdown; inducing local growth factor release; increasing local tissue metabolism; improving function of a tissue or body-part; reducing local pain and discomfort. The purpose will depend on the type of implant as well as the nature and/or concentration of the biomolecule present in the hydride layer on the implant.
  • When the metal material (A) is an alloy of titanium, zirconium, tantalum, hafnium or niobium, it may be an alloy between one or more of these metal elements; or it may be an alloy containing one or more other metals such as aluminium, vanadium, chrome, cobalt, magnesium, iron, gold, silver, copper, mercury, tin or zinc; or both.
  • It is preferred that the metal material (A) is titanium or an alloy thereof, e.g., an alloy with zirconium, tantalum, hafnium, niobium, aluminium, vanadium, chrome, cobalt, magnesium, iron, gold, silver, copper, mercury, tin or zinc. In a particularly preferred embodiment, the metal material (A) is titanium.
  • The corresponding hydride material (B) is preferably titanium hydride.
  • The amount of biomolecule substance (C) present on or in the hydride layer (B) of the parts of the prosthesis, device or implant coated with the hydride may vary within wide limits, e.g., dependent on the chemical and biological characteristics of the biomolecule substance or substances in question. Thus, the biomolecule substance (C) associated with the hydride material (B) may be present in amounts ranging from as low from 1 picogram per mm2 to as high as 1 mg per mm2 of hydride-coated device or implant surface. However, it is contemplated that most useful biomolecule coatings will range from 0.1 nanogram to 100 microgram per mm2.
  • As indicated above, the method of the invention involves subjecting surface parts of the metal material (A) to a electrolysis treatment to form the hydride layer (B), said treatment being carried out in the presence of one or more biomolecule substances as discussed above. It has been found that is important that the conditions in the electrolyte (pH, ionic strength etc.) are such that the biomolecule has a net positive charge. It is therefore advantageous that most biomolecules are ampholytes, i.e., they are weak acids (or bases) that change their net charge according to the ionic strength and pH of the solution they are dissolved in. Consequently, the main concern for incorporation thereof in a hydride layer is stability under the conditions needed for bio-hydride preparation, i.e., an environment that supply enough H+ ions for hydride preparation and at the same time keeps the net charge of the biomolecule in question positive. This mostly means that the electrolyte should have a high salt concentration and hence ionic strength; a comparatively high temperature, although preferably below any denaturing temperature of the biomolecule substance; and a low pH.
  • Thus, the electrolyte may be any salt solution, preferably aqueous, e.g., a solution of sodium chloride, sodium sulphate, calcium phosphate, calcium chloride, phosphate buffered saline (PBS), saline, a salt solution mimicking physiological conditions, bicarbonates, carbonates etc., in which the desired biomolecule is dissolved. The ionic strength of the salt is typically 1 M, but concentrations can be adjusted to as low as 0.01 M and as high as 10 M according to the chemical properties and concentration of the biomolecule(s).
  • The temperature of the electrolyte containing the biomolecule may range from ambient (20° C.) to as high as the boiling point of the electrolyte, typically around 100° C., although the use of temperatures in the upper part of this range clearly depends on the ability of the biomolecule to withstand such temperatures without damage. If the biomolecule can withstand it, an optimum temperature for the formation of hydride is around 80° C.
  • The pH of the electrolyte is typically adjusted to the desired pH by means of a strong acid, e.g., HCl, HF, H2SO4, etc., although it should be taken into account that a pH below 2 will produce a irregular, corroded implant surface on titanium while a pH above 2 conserves the original surface. The pH is adjusted according to the desired Hydride/biomolecule ratio; Low pH produces an implant surface with a high hydride/biomolecule ratio (=more metal hydride), whereas a high pH close to the pI of the biomolecule in question will produce a surface with a low hydride/biomolecule ratio (=more biomolecules). Accordingly, while any pH between 0 and 10 can be used, the preferred pH for hydride preparation is between 5 and 2, depending on the chemical characteristics and concentration of the biomolecule(s), the electrolyte used and the preferred hydride/biomolecule ratio. For higher hydride/biomolecule(s) ratios (=more hydride), adjust pH more acidic, for lower hydride/biomolecule(s) ratios (=more biomolecule(s)) adjust pH closer to, but not above, PiBIOMOLECULE. The only requirement is that there are hydrogen ions (H+) and positively charged biomolecules (Biomolecule+, net charge) present in the electrolyte.
  • The concentration of the biomolecule(s) (one or any combinations of two or more) in the electrolyte may vary over a very wide range, depending on type of bioactivity, type of molecule, chemical and biological characteristics, toxicity, potency, mode of action, if it is to be released or not from the hydride layer, stability in vivo, stability in the electrolyte, availability, optimal pH, etc., Thus, the concentration of the biomolecule(s) in the electrolyte may be within the range of 1 pg to 50 mg per milliliter. A preferred range is between 10 pg and 1 mg per milliliter, but the optimal biomolecule concentration should always be by finally determined in pilot experiments with each biomolecule or biomolecule-mix. Also, the time span over which the electrolysis is performed may vary, but chiefly influences the thickness of the hydride layer and hence the concentration of biomolecules in the hydride layer.
  • An electrolysis cell for use in the method of the invention may be of any conventional design, but is typically a two-chamber cell without any conducting connections between the chambers except for the electrolyte. The metal implant to be hydride-modified is placed in the cathode (i.e., the negatively charged electrode) chamber, whereas the anode (the positively charged electrode), typically made of carbon, is placed in a separate chamber. The electrolytes of each chamber are connected through a porous glass or porcelain filter allowing the current to pass unhindered, but without any exchange of electrolytes between the two chambers. This is important because the products from the anode reaction, e.g., chloride or hypo-chlorites etc., could potentially interfere with the formation of the biomolecule-hydride layer or destroy or modify the biomolecule in the cathode electrolyte. The separation of the two cells also allows the use of a smaller cathode electrolyte volume and thus a more effective use of biomolecules as well as the possibility to use a two-electrolyte system that allows optimization of the electrolytic process, e.g., one electrolyte optimal for biomolecules on the cathode side and an electrolyte on the anode side which is optimized for the efficacy of the electrolysis per se (conductivity, avoiding toxic products, or even producing useful byproducts/coatings).
  • As indicated above, the temperature in the cathode cell (Tcat) should be as high at possible with an optimum for hydride preparation at 80° C.
  • The electrolytic process itself also produces heat which can pose two problems: constituents of the electrolyte will evaporate so that the volume decreases and the ionic strength and the concentration of biomolecules increase above the preferred range, and the increase in temperature might cause precipitation, coagulation, denaturation, degradation or destruction of the biomolecule(s) present. Therefore, the cathode compartment of the electrolysis cell is preferably equipped with a cooled lid for condensation of vaporized electrolyte and a temperature regulated radiator shell for stabilizing temperatures and volumes during electrolysis.
  • By adjusting current, charge and electrolyte composition it may also be possible to provide a favorable milieu for positive charge for most biomolecules. If not, a pulse field electrolysis set-up where the polarity of the electrodes is switching in controlled cycles during preparation of the bio-hydride layer could be one way to omit a negative net charge problem.
  • The power supply is typically a so-called current pump, i.e., a device delivering a constant current even if the resistance within the circuit varies. Although voltages between 0.1 and 1000 volts can be used, the voltage is typically below 10 volts. The current density during electrolysis is typically in the range of 0.1 mA to 1 A per square centimeter (cm2) of implant specimen. A preferred charge density is I Ma/cm2, although adjustments in the electrolyte, pH and temperature to increase biomolecule compatibility may command minor or major deviations from this value.
  • The duration of the process depends on several parameters, such as the desired thickness of the bio-hydride layer, the composition and characteristics of the electrolyte, the characteristics of the biomolecule, the temperature and pH, the desired hydride/biomolecule ratio, the size of the implant specimen, the volume of the cathode electrolyte, the concentration of the biomolecule, etc. Thus, the duration of the process may be between 0.5 hours and several days. However, an optimal time-span is generally between 8 and 24 hours.
  • To monitor the bio-hydride process, a calomel electrode may typically be placed in the cathode chamber. When the hydride layer formation process at the cathode is optimal, a difference of −1 Volt is observed between the calomel electrode and the cathode. If the current differs much from this value, the process will be running under sub-optimal conditions, and a change in the set-up should be considered. Furthermore, a temperature probe and a pH probe may typically be placed in the cathode chamber to monitor that the process is running within the desired pH and temperature limits. A stirring device, such as a magnetic stirrer, may also be applied in the cathode cell to continuously mix the electrolyte and keep the temperature homogenous and avoid variations in local ionic strength, pH and biomolecule concentrations.
  • After the electrolysis step, the now biomolecule/hydride-coated metal device or implant is immediately removed from the electrolyte and treated according to the requirement of the biomolecule(s) in question. Typically, the device or implant specimen is allowed to air-dry and is then packaged in a sterile, airtight plastic bag in which it is stored until use for implantation. However, some biomolecules might be sensitive to drying, and consequently a wet storage system might be desired, e.g., like canning or storage in a fluid like saline or simply the electrolyte from the manufacturing process. Although the electrolysis can be run under aseptic or even sterile conditions, the need for doing this may be avoided by including a sterilization step prior to use, using conventional methods, such as ionizing radiation, heating, autoclaving, or ethylene oxide gas, etc. The choice of method will depend on the specific characteristics and properties of the biomolecule(s) present in the metal hydride layer.
  • Prior to the electrolysis treatment, the device or implant should be thoroughly cleaned. This may typically consist in the implant being mechanically pre-treated by electropolishing or sandblasting to modify surface structure if desired, and subsequently thoroughly cleaned using hot caustic soda followed by a de-greasing step, e.g., in concentrated tri-chloro-ethylene, ethanol or methanol, before being treated in a pickling solution, e.g., hydrofluoric acid, to remove oxides and impurities on the surface. After pickling, the implant specimen is washed thoroughly in hot, double distilled, ion-exchanged water.
  • The invention is further illustrated by the following, non-limiting examples of which Examples 1-4 describe conducted experiments, and Examples 5-11 illustrate contemplated working examples.
  • EXAMPLES Example 1
  • Preparation of a titanium hydride implant surface layer containing an extracellular matrix protein.
  • A two-chamber electrolysis cell was used to prepare a layer of titanium hydride containing the extracellular matrix molecule amelogenin onto five coin-shaped electropolished titanium implants each with a surface area of 0.6 cm2 exposed to the electrolyte. Five similar items were used as controls by being present in the electrolyte chamber, but not connected to the electrolysis current. The electrolyte in both chambers was 1 M NaCl in sterile water, pH adjusted to pH 4 by the use of HCl, and the initial concentration of amelogenin was 0.1 mg/ml. For electrolysis a voltage of 10 volts at a charge density of 1 mA/cm2 was used. The temperature of the cathode chamber was set to 70° C. Electrolysis was allowed to progress for 18 hours, after which the titanium implants were removed from the electrolysis cell, washed in sterile water and allowed to air-dry in a desiccator.
  • After drying the titanium test and control specimens were each washed three times in 1 ml saline at pH 6.5. Following the washes, any protein remaining on the titanium surfaces was dissolved by boiling the titanium specimen in 0.5 ml 2×SDS-PAGE sample buffer (0.4 g SDS, 1.0 g 2-mercaptoethanol, 0.02 g bromophenol blue and 4.4 g glycerol in 10 ml 0.125 M Tris/HCl, pH 6.8). The washing solutions and the 2×SDS-PAGE sample buffer with possible protein therein were precipitated with an equal volume of 0.6 N perchloric acid and the supernatant was cleared by centrifugation. The precipitation pellets, containing salt and possible organic molecules, were then dissolved in 50 μl 2×SDS-PAGE sample buffer and boiled for five minutes. All samples were then submitted to electrophoresis on a 12% SDS-polyacrylamide gel at 80 mA overnight. After electrophoresis, proteins in the gel were transferred onto a poly(vinylidene difluoride) membrane by the semidry “sandwich” electroblotting technique. Amelogenin proteins were then detected by an immune assay using an rabbit amelogenin specific primary IgG antibody and a biotin labelled goat anti rabbit IgG secondary antibody. The western blot showed significant amounts of amelogenins present in extracts from test specimens, and hence trapped in the titanium hydride layer thereon, whereas no amelogenins were detected in extracts from the control specimens that were not connected to the electrolysis current.
  • This experiment clearly demonstrates that a significant amount of amelogenin was incorporated in the hydride layer during the electrolytic process. The amelogenin proteins were not merely present as a simple coating, since there is no evidence of proteins in the initial washing solutions. Only with the combination of a strong detergent (SDS), a reducing agent (mercaptoethanol) and high temperature (100° C.) could amelogenins be extracted from the titanium hydride surface layer and detected by western blot. The amount of protein extracted was calculated to be 50 μg/cm2 by comparison with an amelogenin standard. This figure is well within the bioactivity range of this extracellular matrix protein.
  • Example 2
  • Production of an amelogenin-containing titanium hydride implant surface layer.
  • The set-up from example one was used to produce a layer of titanium hydride containing the extracellular matrix molecule amelogenin onto electropolished titanium implants with a surface area of 0.35 cm2 exposed to the electrolyte. The electrolyte in both chambers was 1 M NaCl in sterile water, pH adjusted to pH 4 by the use of HCl, and the initial concentration of amelogenin was 0.1 mg/ml. For electrolysis a voltage of 10 volts at a charge density of 1 mA/cm2 was used. Tcat was set to 70° C. Electrolysis was allowed to progress for 18 hours after which the titanium implants were removed from the electrolysis cell, washed in sterile water and allowed to air-dry in a desiccator.
  • After drying, the titanium specimens were washed three times in 1 ml saline at pH 6.5. Following the washes the proteins remaining on the titanium surfaces were dissolved by boiling the titanium specimen in 0.1 ml 2×SDS sample buffer (0.4 g SDS, 1.0 g 2-mercaptoethanol in 10 ml 0.125 M Tris/HCl, pH 6.8) for 5 minutes. The amount of amelogenin dissolved into the SDS solution from the rinsed titanium surfaces was then analyzed by standard photometry measuring light absorbance at 280 and 310 nm against a 2×SDS sample buffer blank, and comparing the results with a standard dilution series of amelogenin in 2×SDS sample buffer. The experiment was repeated twice in series of 16 implants, both times with 5 negative internal controls in the form of identical titanium implants that was present in the reaction chamber during the whole process, but not attached to the cathode.
  • This experiment clearly demonstrates that a significant amount of amelogenin was incorporated in the hydride layer during the electrolytic process. The amelogenin proteins were not only present as a simple coating, as there is no evidence of proteins in the washing solutions. Only with the combination of a strong detergent (SDS), a reducing agent (mercaptoethanol) and high temperature (100° C.) could amelogenins be extracted from the surface layer of the titanium hydride. the amount of protein extracted was calculated to range between 57 and 114 μg/cm2 with a mean value of 87 μg amelogenin per cm2, by comparison with the amelogenin standard. This figure is well within the bioactivity range of this extracellular matrix protein. Identical control implants that had been present is the same electrolytic cell as the experimental implants, but which were not connected to the cathode, showed no significant amounts of amelogenin proteins attached to the surface (<1 μg/cm2).
  • Example 3
  • Production of a nucleic acid-containing titanium hydride implant surface layer.
  • The set-up from example one was used to produce a layer of titanium hydride containing nucleic acids in the form of radio labeled total human placenta DNA onto electropolished titanium implants with a total surface area of 0.35 cm2 exposed to the electrolyte. The electrolyte in both chambers was 1 M NaCl in sterile water. The pH was adjusted to pH 2 by the use of HCL. The initial concentration of DNA in the electrolyte was 10 μg/ml. For electrolysis a voltage of 10 volts at a charge density of 1 mA/cm2 and a Tcat of 75° C. were used. Electrolysis was allowed to progress for 16 or 24 hours after which the titanium specimens were removed from the electrolysis cell, rinsed three times in ample amounts of Tris-EDTA buffer (TE-buffer; 10 mM Tris-Cl and 1 mM EDTA in sterile water, pH 7.6) and then allowed to air dry over night in a desiccator.
  • The DNA was radiolabeled using a Stratagene Prime-It® II Random Primer Labeling kit for production of high specific-activity probes and [α-32P]dATP (Amersham).
  • After labeling of the DNA, the specific radioactivity of the DNA probe was measured in a Packard Tricarb® scintillation counter to be 3.0×108 disintegrations per minute per microgram labeled DNA (dpm/μg).
  • After drying the titanium specimens with tentative nucleic acids attached, were put on a phosphor screen (Fujii®) for 15 minutes. The specimens were then removed and the phosphor screen was scanned in a BioRad® phosphor imaging machine measuring the number of disintegrations occurred at the surface of each implant using a 100/μm grid (12265 points per implant) The experiment was repeated twice in a series of 16 implants, both times with 5 negative internal controls in the form of identical titanium implants that was present in the reaction chamber during the whole process, but which were not connected to the cathode. For the first series the reaction time was 24 hours, for the second it was 16 hours. The total number of dpm per implant was calculated and converted to μg DNA per square centimeter (μg DNA/cm2).
  • The amount of DNA present on the implants ranged between 0.25 and 0.75 μg/cm2 with a mean value of 0.43 μg DNA per cm2 when the reaction time was 24 hours. When the reaction time was reduced to 16 hours, the respective values ranged between 0.19 and 0.32 μg/cm2 with a mean value of 0.30 μg DNA per cm2. This figure is well within the applicable range for gene therapy and DNA vaccines and other molecular medicine applications. Identical control implants that had been present is the same electrolytic cell as the experimental implants, but that were not connected to the cathode showed only very small amounts (picograms) of DNA attached to the surface.
  • This experiment clearly demonstrates that a significant amount of DNA was incorporated in the hydride layer during the electrolytic process. The DNA was not merely present as a simple coating because the DNA was not dissolved or washed off the test implants during rinsing with TE. Furthermore, the fact that the amount of DNA incorporated in the titanium hydride surface layer increased linearly with reaction time also shows that adjusting reaction time is an easy way to control the amount of biomolecules in the hydride layer.
  • Example 4
  • Preparation of a titanium hydride implant surface layer containing ascorbic acid
  • The set-up from Example 1 was used to prepare a layer of titanium hydride containing ascorbic acid (vitamin C) onto electropolished coin-shaped titanium implants with a total surface area exposed to the electrolyte of 0.35 cm2. The electrolyte in both chambers was saline with pH adjusted to pH 3 by means of phosphoric acid. The initial concentration of ascorbic acid was 10 mg/ml. Electrolysis with a voltage of 6 volts at a Current density of 2 mA/cm2 and a cathode chamber temperature of 20° C. was used. Electrolysis was allowed to progress for 16 hours after which the titanium implant is removed from the electrolysis cell, rinsed twice in sterile water and allowed to dry in a desiccator.
  • After drying over night, the tentative ascorbic acid was dissolved from the titanium specimens by submerging the specimens in 1 ml Tris-EDT A buffer (TE-buffer; 10 mM Tris-Cl and 1 mM EDT A in sterile water) at pH 8.0 for 1 hour with shaking. The amount of ascorbic acid in the buffer samples was then analyzed by measuring light absorption at 250 nm and comparing the results with a standard curve for ascorbic acid in TE, pH 8.0 at this wavelength. Identical control implants present is the same electrolytic cell as the experimental implants, but not connected to the cathode may be used as controls. The experiment was repeated twice in a series of 16 implants, both times with 5 negative, internal controls.
  • The amount of ascorbic acid extracted from the titanium specimens was calculated to range between 28 and 76 μg/cm2 with a mean value of 39 μg ascorbic acid per cm2, by comparison with the ascorbic acid standard. This figure is well within the bioactivity range of this vitamin (the normal plasma concentration in humans range between 8-15 μg/ml). The internal control specimens that had been present is the same electrolytic cell as the experimental implants, but which were not connected to the cathode, showed only minute amounts of ascorbic acid attached to the surface (4 μg/cm2). This experiment clearly demonstrates that a biologically significant amount of ascorbic acid can be incorporated or attached to the titanium hydride layer during the electrolytic process.
  • Example 5
  • Preparation of a titanium hydride implant surface layer containing a synthetic growth factor-based peptide
  • The set-up from Example 1 may be used to prepare a layer of titanium hydride containing a synthetic, full-length (37 amino acids) fibroblast growth factor 4 (FGF-4) peptide onto coin-shaped electropolished titanium implants with a total surface area of 0.6 cm2 exposed to the electrolyte. Electrolytes, pH, voltage, current density and electrolysis time may suitably be as in Example 1. The initial concentration of FGF-4 may suitably be 0.1 mg/ml, and the cathode chamber temperature may suitably be 50° C.
  • Following washing in saline and 2×SDS-PAGE buffer, precipitation, centrifugation, re-dissolution in SDS-PAGE, boiling and electrophoresis as in Example 1, protein in the gel may be transferred to a silver staining solution and the full-length synthetic FGF-4 peptides present visualised as a distinct band in the gel. Identical control implants incorporated in the same electrolytic cell as the experimental implants, but not connected to the cathode, can be used as controls.
  • Example 6
  • Preparation of a titanium hydride implant surface layer containing an antibiotic
  • The set-up from Example 1 may be used to prepare a layer of titanium hydride containing the antibiotic agent amoxicillin (aminopenicillinium) onto an electropolished, coin-shaped titanium implant with a surface area exposed to the electrolyte of 0.6 cm2. The electrolyte in both chambers is suitably 1M NaCl in sterile water with pH adjusted to pH 2 by means of HCl, and the initial concentration of amoxicillin is suitably 5 mg/ml. For electrolysis a voltage of 10 volts at a charge density of 1 mA/cm2 and a cathode chamber temperature of 50° C. may be used. Electrolysis may suitably be allowed to progress for 24 hours after which the titanium implant is removed from the electrolysis cell, rinsed in sterile water and allowed to dry in a desiccator.
  • After drying the amount of amoxicillin trapped in the hydride layer on the titanium implants may be assessed by its antibacterial effect on penicillin sensitive bacteria of the species Escherichia coli (E. coli), strain K12, in liquid cultures. The cultures are suitably inoculated with one colony of E. coli K12 in 5 ml LB broth. After inoculation, the modified implants and controls are placed in the culture and the cultures incubated at 37° C. overnight. The next day the amounts of bacteria present in the cultures may be assessed by photometry and comparison with a standard dilution. Identical control implants present in the same electrolytic cell as the experimental implants, but not connected to the cathode may be used as controls.
  • Example 7
  • Preparation of a biomineral-inducing titanium hydride implant surface layer
  • The set-up from Example 1 may be used to prepare a layer of titanium hydride containing a synthetic poly-proline peptide that has the potential to act as a biological nucleator of mineral formation in saturated solutions of calcium phosphate. The biomolecule may be incorporated in the hydride layer on electropolished, coin-shaped titanium implants surface with a total area exposed to the electrolyte of 0.6 cm2. The electrolyte in both chambers may suitably be 1 M NaCl in sterile water with pH adjusted to pH 2 by means of HCl, and the initial concentration of the synthetic poly-proline may suitably be 0.1 mg/ml. For electrolysis a voltage of 10 volts at a current density of 1 mA/cm2 and a cathode chamber temperature of 70° C. may be used. Electrolysis may suitably be allowed to progress for 18 hours after which the titanium implants are removed from the electrolysis cell, rinsed in sterile water and allowed to air-dry in a desiccator.
  • After drying the titanium implants and controls with tentative mineral nucleating peptide attached are placed in 5 ml saturated solution of calcium phosphate. After incubation for 4 hours in room temperature, the implants are removed from the mineral solution, rinsed in sterile water and air-dried in a desiccator. When dry, the implants may be directly submitted to scanning electron microscopy for assessment of the number of mineral foci present on the modified surfaces. Identical control implants present is the same electrolytic cell as the experimental implants but not connected to the cathode may be used as controls.
  • Example 8
  • Preparation of a swelling (space filling) biomolecule-titanium-hydride implant surface layer.
  • The set-up from Example 1 may be used to prepare a layer of titanium hydride containing Ca-alginate nanospheres (Pronova AS) onto electropolished, coin-shaped titanium implants with a total area exposed to the electrolyte of 0.6 cm2. The electrolyte in both chambers is suitably 1 M CaCl2 in sterile water with pH adjusted to pH 5.5 by means of HCl, and the initial concentration of Ca-alginate is suitably 1% w/v. For electrolysis a voltage of 10 volts at a current density of 1 mA/cm2 and a cathode chamber temperature of 35° C. may be used. Electrolysis is suitably allowed to progress for 48 hours, after which the titanium implants are removed from the electrolysis cell, rinsed in cold sterile water and allowed to air-dry in a desiccator.
  • After drying, the titanium implants with a hydride-alginate layer are suitably submerged in sterile saline, dyed with bromophenol blue (0.02 g/ml) and incubated for one hour at 37° C. with the modified surface facing the solution. Following incubation in the dyed saline the implants and controls are rinsed in distilled water and observed with a magnifying glass for the retention of blue dye within the tentative swelled alginate layer. The thickness of the alginate layers may also be assessed by viewing the implants edge on in a calibrated light microscope. Identical control implants present is the same electrolytic cell as the experimental implants but not connected to the cathode may be used as controls.
  • Example 9
  • Preparation of a dual layer biomolecule-titanium-hydride implant surface
  • The set-up from Example 1 may be used to prepare a dual layer of biomolecule containing titanium hydride on the surface of electropolished, coin-shaped titanium implants with a total surface exposed to the electrolyte of 0.6 cm2. The inner layer may be prepared using amelogenin as biomolecule according to the method in Example 1. Immediately after this procedure, and without air-drying in between, the electrolyte and conditions may be changed to those of Example 3 using genomic human DNA as biomolecule. In this way titanium implants may be prepared with an outer layer of titanium hydride-DNA overlaying an inner layer of titanium hydride-amelogenin. After the electrolysis the implants are removed from the electrolysis cell, rinsed in sterile water and allowed to air-dry in a desiccator.
  • After drying the titanium specimens with tentative nucleic acids and proteins attached are suitably rinsed three times in Tris-EDTA buffer (TE-buffer; 10 mM Tris-Cl and 1 mM EDT A in sterile water). At each rinse the pH is increased starting at pH 7.4, then rinsed at pH 7.6 and finally at pH 8.0. After rinsing in TE the remaining DNA and protein on the titanium implants is finally removed using 0.1 N NaOH. The rinsing fractions are then divided in two; on part for nucleic acid analysis and one for protein analysis. The DNA fractions are suitably precipitated with an equal volume of absolute alcohol at −20° C. for 1 hour and then cleared from the supernatant by centrifugation at 13,000 g at 4° C. The pellet is then dissolved in 50 μl TE buffer pH 7.4 and the amount of DNA from all four rinsing solutions assessed by fluorometric analysis using Hoechst dye (Boehringer Mannheim).
  • The fractions for protein analysis are suitably precipitated with an equal volume of 0.6 N perchloric acid and the supernatants cleared by centrifugation. The precipitation pellets containing salt and proteins are then dissolved in 50 μl 2×SDS-PAGE sample buffer (0.4 g SDS, 1.0 g 2-mercaptoethanol, 0.02 g bromophenol blue and 4.4 g glycerol in 10 ml 0.125 M Tris/HCl, pH 6.8) and boiled for five minutes. All samples are then submitted to electrophoresis on a 10% SDS-polyacrylamide gel at 80 mA for 4 hours. After electrophoresis proteins in the gel are transferred to a silver staining solution and amelogenin present in the fractions is visualized as distinct bands in the gel. Identical control implants present is the same electrolytic cell as the experimental implants but not connected to the cathode may be used as controls.
  • Example 10
  • Preparation of a dual zone biomolecule-titanium-hydride layered implant surface.
  • The set-up from Example 1 may be used to prepare two separate zones of titanium hydride layers. Electropolished, rod-shaped titanium implants with a total area of 2 cm2 were treated according to Examples 3 and 6. First the implants were placed in the electrolyte from Example 3, so that only one half of each implant was submerged in the electrolyte. After the procedure of Example 3 was completed, the implants were turned around and placed in a new electrolyte similar to the one used in Example 6, so that the untreated half of each implant now was submerged in electrolyte. The procedure and reaction conditions from Example 6 were then carried out, after which the titanium specimen was removed from the electrolysis cell, rinsed in sterile water and allowed to dry in a desiccator.
  • Following electrolysis the dual zone implants are cut in two at the center. The halves layered with titanium hydride-synthetic FGF-4 peptide may be submitted to analysis according to Example 2. The other halves of the implants, layered with titanium hydride-amoxicillin, may be analyzed in the bacterial growth assay according to Example 5. Identical control implants present is the same electrolytic cells as the experimental implants but not connected to the cathode may be used as controls.
  • Example 11
  • Preparation of a osteoinductive titanium hydride implant surface layer containing a biomolecule
  • Implants prepared as in Example 1 (titanium hydride-amelogenin) are placed in calibrated bone defects in the tibia bone of rabbits, making sure that fenestrations into the bone marrow beneath the implants allow migration of osteogenic cells to the modified implant surfaces, using a standardized and validated model (Rφnold and Ellingsen, European Society for Biomaterials Conference, Amsterdam, October 2000). On the day after surgery and every following week the rabbits are given an intravenous calcein (Sigma) injection of 10 mg/kg body weight. At four weeks after placing of the modified implants and control implants the rabbits will be sacrificed and the tibia removed, fixed in 4% formaldehyde and embedded for preparation of ground sections through the bone and the integrated implant material. Identical control implants present is the same electrolytic cell as the experimental implants but not connected to the cathode may be used as controls.

Claims (18)

1. A medical prosthetic device or medical implant comprising a metal material selected from the group consisting of titanium or an alloy thereof, zirconium or an alloy thereof, tantalum or an alloy thereof, hafnium or an alloy thereof, nobium or an alloy thereof and a chromium-vanadium alloy,
wherein surface parts of the metal material comprise a layer of a corresponding hydride material selected from the group consisting of titanium hydride, zirconium hydride, tantalum hydride, hafnium hydride, niobium hydride, chromium hydride, vanadium hydride, and chromium-vanadium hydride, and
wherein the layer of hydride material comprises one or more biomolecule substances interlocked, bound, trapped and/or integrated in or with the hydride material.
2. The device or implant as claimed in claim 1, wherein the metal material is titanium or an alloy thereof.
3. The device or implant as claimed in claim 1, wherein the biomolecule substance is selected from the group consisting of natural or recombinant bio-adhesives; natural or recombinant cell attachment factors; natural, recombinant or synthetic biopolymers; natural or recombinant blood proteins; natural or recombinant enzymes; natural or recombinant extracellular matrix proteins; natural or synthetic extracellular matrix biomolecules; natural or recombinant growth factors and hormones; natural, recombinant or synthetic peptide hormones; natural, recombinant or synthetic deoxyribonucleic acids; natural, recombinant or synthetic ribonucleotide acids; natural or recombinant receptors; enzyme inhibitors; drugs; biologically active anions and cations; vitamins; adenosine monophosphate (AMP), adenosine diphosphate (ADP) or adenosine triphosphate (ATP); marker biomolecules; amino acids; fatty acids; nucleotides (RNA and DNA bases); and sugars.
4. The device or implant as claimed in claim 1, wherein the layer of the hydride material comprises one or more biomolecule substances in an amount of about 1 picogram per mm2 to 1 mg per mm2.
5. The device or implant as claimed in claim 1, wherein said surface parts of the metal material comprising the layer of the hydride material is adapted to be in contact with bone or other tissue when the device is deployed in the body of a mammal.
6. The device or implant as claimed in claim 1, said device or implant is selected from the group consisting of: a prosthetic femoral hip joint; a prosthetic femoral head; a prosthetic acetabular cup; a prosthetic elbow; a prosthetic knee; a prosthetic shoulder; a prosthetic wrist; a prosthetic ankle; a prosthetic hand; a prosthetic finger; a prosthetic toe; a prosthetic vertebrae; a prosthetic spinal disc; a prosthetic cochlea; a prosthetic vessel; and a prosthetic heart valve.
7. The device or implant as claimed in claim 2, wherein the material is titanium.
8. The device or implant as claimed in claim 4, wherein the layer of the hydride material comprises one or more biomolecule substances in an amount of about 0.1 nanogram per mm2 to 100 microgram per mm2.
9. The device or implant as claimed in claim 1, wherein said device or implant is selected from the group consisting of: an artificial joint, a dental implant, an ossiculoplastic implant, a middle ear implant, a cochlear implant, an orthopaedic fixation device, a pacemaker, a catheter, a space filling implant, an implant for retention of hearing aids, an implant for external fixation, an intrauterine device (IUD) and a bioelectric device.
10. The device or implant as claimed in claim 6, wherein said prosthetic elbow implant is adapted to replace a stem, wedge or articular insert.
11. The device or implant as claimed in claim 6, wherein said prosthetic knee implant is adapted to replace a femoral component, a tibial component, stem, wedge, an articular insert or a patellar component.
12. The device or implant as claimed in claim 6, wherein said prosthetic shoulder implant is adapted to replace a stem or head.
13. The device or implant as claimed in claim 9, wherein said middle ear knee implant is adapted to replace an incus, a malleus, a stapes, an incus-stapes, a malleus-incus, or a malleus-incus-stapes.
14. The device or implant as claimed in claim 9, wherein said orthopaedic fixation device is a nail, screw, staple or plate.
15. The device or implant as claimed in claim 9, wherein said bioelectronic device is an intracochlear or intracranial electronic device.
16. The device or implant as claimed in claim 1, wherein the biomolecule substance is an ampholyte.
17. The device or implant as claimed in claim 1, wherein said device or implant is sterile.
18. The device or implant as claimed in claim 1, wherein the biomolecule substance exhibits a net positive charge dissolved in a salt solution having an ionic strength within the range of from 0.01 to 10 M, a temperature within the range of from 20 to 100° C. and a pH within the range of from 0 to 10.
US11/344,437 2000-12-06 2006-02-01 Medical prosthetic devices and implants having improved biocompatibility Abandoned US20060155384A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/344,437 US20060155384A1 (en) 2000-12-06 2006-02-01 Medical prosthetic devices and implants having improved biocompatibility

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DKPA200001829 2000-12-06
DKPA200001829 2000-12-06
US25498700P 2000-12-12 2000-12-12
US10/010,140 US7192445B2 (en) 2000-12-06 2001-12-06 Medical prosthetic devices and implants having improved biocompatibility
US11/344,437 US20060155384A1 (en) 2000-12-06 2006-02-01 Medical prosthetic devices and implants having improved biocompatibility

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/010,140 Continuation US7192445B2 (en) 2000-12-06 2001-12-06 Medical prosthetic devices and implants having improved biocompatibility

Publications (1)

Publication Number Publication Date
US20060155384A1 true US20060155384A1 (en) 2006-07-13

Family

ID=27222470

Family Applications (3)

Application Number Title Priority Date Filing Date
US10/010,140 Expired - Lifetime US7192445B2 (en) 2000-12-06 2001-12-06 Medical prosthetic devices and implants having improved biocompatibility
US11/344,437 Abandoned US20060155384A1 (en) 2000-12-06 2006-02-01 Medical prosthetic devices and implants having improved biocompatibility
US11/561,176 Active 2027-03-08 US9168141B2 (en) 2000-12-06 2006-11-17 Medical prosthetic devices and implants having improved biocompatibility

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/010,140 Expired - Lifetime US7192445B2 (en) 2000-12-06 2001-12-06 Medical prosthetic devices and implants having improved biocompatibility

Family Applications After (1)

Application Number Title Priority Date Filing Date
US11/561,176 Active 2027-03-08 US9168141B2 (en) 2000-12-06 2006-11-17 Medical prosthetic devices and implants having improved biocompatibility

Country Status (1)

Country Link
US (3) US7192445B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100016989A1 (en) * 2006-12-21 2010-01-21 Numat As Metal oxide scaffolds
US20100191247A1 (en) * 2009-01-23 2010-07-29 David James Schneider Apparatus and method for arthroscopic transhumeral rotator cuff repair
US20100292756A1 (en) * 2009-05-12 2010-11-18 Schneider David J Bioelectric implant and method
US8012205B2 (en) * 2001-07-16 2011-09-06 Depuy Products, Inc. Cartilage repair and regeneration device
WO2014044672A1 (en) 2012-09-18 2014-03-27 Corticalis As Scaffold with cortical wall
US9005746B2 (en) 2012-05-31 2015-04-14 Covidien Lp Polymeric ascorbic acid devices for tissue regeneration
US20150335400A1 (en) * 2009-06-17 2015-11-26 The Trustees Of Columbia University In The City Of New York Tooth scaffolds
US9238090B1 (en) 2014-12-24 2016-01-19 Fettech, Llc Tissue-based compositions

Families Citing this family (126)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9603711B2 (en) 2001-05-25 2017-03-28 Conformis, Inc. Patient-adapted and improved articular implants, designs and related guide tools
US8545569B2 (en) 2001-05-25 2013-10-01 Conformis, Inc. Patient selectable knee arthroplasty devices
US8771365B2 (en) 2009-02-25 2014-07-08 Conformis, Inc. Patient-adapted and improved orthopedic implants, designs, and related tools
US8556983B2 (en) 2001-05-25 2013-10-15 Conformis, Inc. Patient-adapted and improved orthopedic implants, designs and related tools
US8617242B2 (en) 2001-05-25 2013-12-31 Conformis, Inc. Implant device and method for manufacture
US8882847B2 (en) 2001-05-25 2014-11-11 Conformis, Inc. Patient selectable knee joint arthroplasty devices
US8480754B2 (en) 2001-05-25 2013-07-09 Conformis, Inc. Patient-adapted and improved articular implants, designs and related guide tools
US8735773B2 (en) 2007-02-14 2014-05-27 Conformis, Inc. Implant device and method for manufacture
ATE439806T1 (en) 1998-09-14 2009-09-15 Univ Leland Stanford Junior DETERMINING THE CONDITION OF A JOINT AND PREVENTING DAMAGE
US7184814B2 (en) 1998-09-14 2007-02-27 The Board Of Trustees Of The Leland Stanford Junior University Assessing the condition of a joint and assessing cartilage loss
US7239908B1 (en) 1998-09-14 2007-07-03 The Board Of Trustees Of The Leland Stanford Junior University Assessing the condition of a joint and devising treatment
ATE426357T1 (en) 2000-09-14 2009-04-15 Univ Leland Stanford Junior ASSESSING THE CONDITION OF A JOINT AND PLANNING TREATMENT
US7192445B2 (en) * 2000-12-06 2007-03-20 Astra Tech Ab Medical prosthetic devices and implants having improved biocompatibility
JP2005504563A (en) 2001-05-25 2005-02-17 イメージング セラピューティクス,インコーポレーテッド Methods and compositions for resurfacing joints
AU2002345328A1 (en) 2001-06-27 2003-03-03 Remon Medical Technologies Ltd. Method and device for electrochemical formation of therapeutic species in vivo
US6670179B1 (en) * 2001-08-01 2003-12-30 University Of Kentucky Research Foundation Molecular functionalization of carbon nanotubes and use as substrates for neuronal growth
US7514075B2 (en) * 2001-12-07 2009-04-07 Cytori Therapeutics, Inc. Systems and methods for separating and concentrating adipose derived stem cells from tissue
US7771716B2 (en) * 2001-12-07 2010-08-10 Cytori Therapeutics, Inc. Methods of using regenerative cells in the treatment of musculoskeletal disorders
US7585670B2 (en) * 2001-12-07 2009-09-08 Cytori Therapeutics, Inc. Automated methods for isolating and using clinically safe adipose derived regenerative cells
US20050095228A1 (en) 2001-12-07 2005-05-05 Fraser John K. Methods of using regenerative cells in the treatment of peripheral vascular disease and related disorders
US8105580B2 (en) 2001-12-07 2012-01-31 Cytori Therapeutics, Inc. Methods of using adipose derived stem cells to promote wound healing
US8404229B2 (en) * 2001-12-07 2013-03-26 Cytori Therapeutics, Inc. Methods of using adipose derived stem cells to treat acute tubular necrosis
WO2006075986A1 (en) * 2005-01-10 2006-07-20 Macropore Biosurgery, Inc. Devices and methods for monitoring, managing, and servicing medical devices
US7651684B2 (en) * 2001-12-07 2010-01-26 Cytori Therapeutics, Inc. Methods of using adipose tissue-derived cells in augmenting autologous fat transfer
US9597395B2 (en) 2001-12-07 2017-03-21 Cytori Therapeutics, Inc. Methods of using adipose tissue-derived cells in the treatment of cardiovascular conditions
CA2469370C (en) * 2001-12-07 2014-07-08 Macropore Biosurgery, Inc. Adipose-derived cell processing unit
US7595043B2 (en) * 2001-12-07 2009-09-29 Cytori Therapeutics, Inc. Method for processing and using adipose-derived stem cells
US20050008626A1 (en) * 2001-12-07 2005-01-13 Fraser John K. Methods of using adipose tissue-derived cells in the treatment of cardiovascular conditions
US20060204556A1 (en) * 2001-12-07 2006-09-14 Cytori Therapeutics, Inc. Cell-loaded prostheses for regenerative intraluminal applications
US20050048036A1 (en) * 2001-12-07 2005-03-03 Hedrick Marc H. Methods of using regenerative cells in the treatment of inherited and acquired disorders of the bone, bone marrow, liver, and other tissues
GB0208642D0 (en) * 2002-04-16 2002-05-22 Accentus Plc Metal implants
US7998699B2 (en) 2002-08-15 2011-08-16 University Of South Florida Early detection of pathogens in blood
EP1555962B1 (en) * 2002-10-07 2011-02-09 Conformis, Inc. Minimally invasive joint implant with 3-dimensional geometry matching the articular surfaces
JP2006505366A (en) 2002-11-07 2006-02-16 コンフォーミス・インコーポレイテッド Method of determining meniscus size and shape and devised treatment
FR2848856B1 (en) * 2002-12-24 2007-05-25 Cadorel Catherine MATERIAL FOR MEDICAL OR VETERINARY USE, PROCESS FOR OBTAINING SAME AND APPLICATIONS THEREOF
ATE343403T1 (en) * 2003-02-10 2006-11-15 Heraeus Gmbh W C IMPROVED METAL ALLOY FOR MEDICAL DEVICES AND IMPLANTS
US20070276488A1 (en) * 2003-02-10 2007-11-29 Jurgen Wachter Medical implant or device
US20080038146A1 (en) * 2003-02-10 2008-02-14 Jurgen Wachter Metal alloy for medical devices and implants
WO2004078065A2 (en) * 2003-03-03 2004-09-16 Sinus Rhythm Technologies, Inc. Electrical conduction block implant device
AU2003901867A0 (en) * 2003-04-17 2003-05-08 Cochlear Limited Osseointegration fixation system for an implant
PT2103694E (en) 2003-08-15 2011-07-26 Univ South Florida Materials and methods for capture of pathogens and removal of aurintricarboxylic acid from a sample
GB0405680D0 (en) * 2004-03-13 2004-04-21 Accentus Plc Metal implants
JP2005270371A (en) * 2004-03-25 2005-10-06 Gc Corp Implant made of titanium or titanium alloy and its surface treating method
US20050220907A1 (en) * 2004-03-30 2005-10-06 Theoharides Theoharis C Implanted medical devices with anti-inflammatory coatings
US20060062825A1 (en) * 2004-04-19 2006-03-23 Maria Maccecchini Method of implanting a sterile, active agent-coated material and composition made according to same
WO2005120549A2 (en) * 2004-06-07 2005-12-22 Conor Medsystems, Inc. Local delivery of growth factors for stem cell transplantation
WO2006038866A1 (en) * 2004-10-01 2006-04-13 Bio Polymer Products Of Sweden Ab Improved coating comprising a bioadhesive polyphenolic protein derived from a byssus-forming mussel
AU2006200043B2 (en) * 2005-01-07 2011-11-17 Inframat Corporation Coated medical devices and methods of making and using
US7727273B2 (en) * 2005-01-13 2010-06-01 Boston Scientific Scimed, Inc. Medical devices and methods of making the same
CA2601449A1 (en) * 2005-03-22 2006-09-28 Tyco Healthcare Group, Lp Mesh implant
WO2006122573A1 (en) 2005-05-17 2006-11-23 Syntach Ag A device a kit for treatment of disorders in the heart rhythm regulation system
EP1926508A2 (en) * 2005-07-27 2008-06-04 Cook Incorporated Implantable remodelable materials comprising magnetic material
US20070158446A1 (en) * 2006-01-05 2007-07-12 Howmedica Osteonics Corp. Method for fabricating a medical implant component and such component
US8187660B2 (en) * 2006-01-05 2012-05-29 Howmedica Osteonics Corp. Method for fabricating a medical implant component and such component
US8840660B2 (en) 2006-01-05 2014-09-23 Boston Scientific Scimed, Inc. Bioerodible endoprostheses and methods of making the same
US8089029B2 (en) 2006-02-01 2012-01-03 Boston Scientific Scimed, Inc. Bioabsorbable metal medical device and method of manufacture
US7836847B2 (en) * 2006-02-17 2010-11-23 Howmedica Osteonics Corp. Multi-station rotation system for use in spray operations
US7981479B2 (en) * 2006-02-17 2011-07-19 Howmedica Osteonics Corp. Multi-station rotation system for use in spray operations
US8048150B2 (en) 2006-04-12 2011-11-01 Boston Scientific Scimed, Inc. Endoprosthesis having a fiber meshwork disposed thereon
WO2007139551A1 (en) * 2006-05-30 2007-12-06 Cytori Therapeutics, Inc. Systems and methods for manipulation of regenerative cells from adipose tissue
EP2316499B1 (en) * 2006-06-12 2013-05-01 Accentus Medical PLC Metal implants
WO2008013863A2 (en) * 2006-07-26 2008-01-31 Cytori Therapeutics, Inc. Generation of adipose tissue and adipocytes
US20080124373A1 (en) * 2006-08-02 2008-05-29 Inframat Corporation Lumen - supporting devices and methods of making and using
US20080069854A1 (en) * 2006-08-02 2008-03-20 Inframat Corporation Medical devices and methods of making and using
EP2054537A2 (en) 2006-08-02 2009-05-06 Boston Scientific Scimed, Inc. Endoprosthesis with three-dimensional disintegration control
JP2010503490A (en) 2006-09-15 2010-02-04 ボストン サイエンティフィック リミテッド Endoprosthesis with adjustable surface features
JP2010503494A (en) 2006-09-15 2010-02-04 ボストン サイエンティフィック リミテッド Biodegradable endoprosthesis and method for producing the same
WO2008034048A2 (en) 2006-09-15 2008-03-20 Boston Scientific Limited Bioerodible endoprosthesis with biostable inorganic layers
WO2008034031A2 (en) 2006-09-15 2008-03-20 Boston Scientific Limited Bioerodible endoprostheses and methods of making the same
CA2663220A1 (en) 2006-09-15 2008-03-20 Boston Scientific Limited Medical devices and methods of making the same
EP2068962B1 (en) 2006-09-18 2013-01-30 Boston Scientific Limited Endoprostheses
US20080109034A1 (en) * 2006-11-08 2008-05-08 Mather Michael T Controlled Adhesive Locations Facilitating Tissue Remodeling
ES2506144T3 (en) 2006-12-28 2014-10-13 Boston Scientific Limited Bioerodible endoprosthesis and their manufacturing procedure
ATE477006T1 (en) * 2007-01-15 2010-08-15 Accentus Medical Plc METAL IMPLANTS
SE531319C2 (en) * 2007-02-22 2009-02-24 Tigran Technologies Ab Publ Porous implant granule
US20090088844A1 (en) * 2007-07-03 2009-04-02 Keegan Mark E Drug-eluting stapes prosthesis
US8052745B2 (en) 2007-09-13 2011-11-08 Boston Scientific Scimed, Inc. Endoprosthesis
EP2211754B1 (en) * 2007-09-26 2013-12-04 Straumann Holding AG Dental implant system
US9247973B2 (en) * 2007-09-28 2016-02-02 DePuy Synthes Products, Inc. Anti-microbial implant
JP5287861B2 (en) 2007-10-03 2013-09-11 アクセンタス メディカル リミテッド Method for producing metal with biocidal properties
JP2011504374A (en) 2007-11-26 2011-02-10 イッサム リサーチ ディベロップメント カンパニー オブ ザ ヘブリュー ユニバーシティー オブ エルサレム リミテッド Composition comprising fibrous polypeptide and polysaccharide
WO2009076485A2 (en) * 2007-12-10 2009-06-18 Xiaolian Gao Sequencing of nucleic acids
US20090164011A1 (en) * 2007-12-21 2009-06-25 Howmedica Osteonics Corp. Surface treatment of implants
US9192571B2 (en) 2008-03-03 2015-11-24 Allergan, Inc. Ketorolac tromethamine compositions for treating or preventing ocular pain
WO2009111656A1 (en) * 2008-03-05 2009-09-11 Conformis, Inc. Edge-matched articular implant
US8682052B2 (en) 2008-03-05 2014-03-25 Conformis, Inc. Implants for altering wear patterns of articular surfaces
US7998192B2 (en) 2008-05-09 2011-08-16 Boston Scientific Scimed, Inc. Endoprostheses
EP2303193A4 (en) 2008-05-12 2012-03-21 Conformis Inc Devices and methods for treatment of facet and other joints
US8236046B2 (en) 2008-06-10 2012-08-07 Boston Scientific Scimed, Inc. Bioerodible endoprosthesis
EP2339976B1 (en) 2008-07-09 2016-03-16 Icon Orthopaedic Concepts, LLC Ankle arthrodesis nail and outrigger assembly
US8414584B2 (en) 2008-07-09 2013-04-09 Icon Orthopaedic Concepts, Llc Ankle arthrodesis nail and outrigger assembly
US7985252B2 (en) 2008-07-30 2011-07-26 Boston Scientific Scimed, Inc. Bioerodible endoprosthesis
WO2010021993A1 (en) * 2008-08-19 2010-02-25 Cytori Therapeutics, Inc. Methods of using adipose tissue-derived cells in the treatment of the lymphatic system and malignant disease
US8382824B2 (en) 2008-10-03 2013-02-26 Boston Scientific Scimed, Inc. Medical implant having NANO-crystal grains with barrier layers of metal nitrides or fluorides
KR101070341B1 (en) * 2008-10-08 2011-10-06 서울대학교산학협력단 Porous titanium scaffolds for living body and Method thereof
WO2010099231A2 (en) 2009-02-24 2010-09-02 Conformis, Inc. Automated systems for manufacturing patient-specific orthopedic implants and instrumentation
WO2010101901A2 (en) 2009-03-02 2010-09-10 Boston Scientific Scimed, Inc. Self-buffering medical implants
US20100247600A1 (en) * 2009-03-24 2010-09-30 Warsaw Orthopedic, Inc. Therapeutic drug eluting implant cover and method of making the same
US20100249783A1 (en) * 2009-03-24 2010-09-30 Warsaw Orthopedic, Inc. Drug-eluting implant cover
US9414864B2 (en) 2009-04-15 2016-08-16 Warsaw Orthopedic, Inc. Anterior spinal plate with preformed drug-eluting device affixed thereto
US9078712B2 (en) * 2009-04-15 2015-07-14 Warsaw Orthopedic, Inc. Preformed drug-eluting device to be affixed to an anterior spinal plate
JP5917392B2 (en) * 2009-05-01 2016-05-11 ビミニ テクノロジーズ リミテッド ライアビリティ カンパニー Systems, methods and compositions for optimizing tissue and cell-enriched grafts
SG177768A1 (en) 2009-08-25 2012-03-29 Prostec Co Ltd Medical supplies and method of producing the same
EP2509539B1 (en) 2009-12-11 2020-07-01 ConforMIS, Inc. Patient-specific and patient-engineered orthopedic implants
EP2538861A2 (en) * 2010-02-23 2013-01-02 University of Connecticut Natural polymer-based orthopedic fixation screw for bone repair and regeneration
US20110225809A1 (en) * 2010-03-17 2011-09-22 Alan Francis Daher Apparatus for removably attaching an item to a surface
US8668732B2 (en) 2010-03-23 2014-03-11 Boston Scientific Scimed, Inc. Surface treated bioerodible metal endoprostheses
US9498273B2 (en) 2010-06-02 2016-11-22 Wright Medical Technology, Inc. Orthopedic implant kit
US8608785B2 (en) 2010-06-02 2013-12-17 Wright Medical Technology, Inc. Hammer toe implant with expansion portion for retrograde approach
US9724140B2 (en) 2010-06-02 2017-08-08 Wright Medical Technology, Inc. Tapered, cylindrical cruciform hammer toe implant and method
US9072564B2 (en) 2010-06-02 2015-07-07 Wright Medical Technology, Inc. Hammer toe implant and method
US9622712B2 (en) 2010-08-25 2017-04-18 Halifax Biomedical Inc. Method of detecting movement between an implant and a bone
EP2636415B1 (en) 2010-11-04 2019-12-25 Sanyo Chemical Industries, Ltd. Cell adhesive material for biological tissue
US8440618B2 (en) 2011-01-19 2013-05-14 New York Society For The Ruptured And Crippled Maintaining The Hospital For Special Surgery Composition for the attachment of implants to collagen or other components of biological tissue
EP2754419B1 (en) 2011-02-15 2024-02-07 ConforMIS, Inc. Patient-adapted and improved orthopedic implants
US9687583B2 (en) * 2011-09-01 2017-06-27 Yissum Research Development Company Of The Hebrew University Of Jerusalem Ltd. Adhesive biopolymers and uses thereof
EP2879616A4 (en) * 2012-08-06 2016-03-30 South Dakota Board Of Regents Ascorbic acid-eluting implantable medical devices, systems, and related methods
SG11201505045SA (en) * 2012-12-26 2015-08-28 Quarrymen Corp Sophisticated implant material
US8945232B2 (en) 2012-12-31 2015-02-03 Wright Medical Technology, Inc. Ball and socket implants for correction of hammer toes and claw toes
US9724139B2 (en) 2013-10-01 2017-08-08 Wright Medical Technology, Inc. Hammer toe implant and method
US9474561B2 (en) 2013-11-19 2016-10-25 Wright Medical Technology, Inc. Two-wire technique for installing hammertoe implant
US9545274B2 (en) 2014-02-12 2017-01-17 Wright Medical Technology, Inc. Intramedullary implant, system, and method for inserting an implant into a bone
US9498266B2 (en) 2014-02-12 2016-11-22 Wright Medical Technology, Inc. Intramedullary implant, system, and method for inserting an implant into a bone
WO2016043751A1 (en) 2014-09-18 2016-03-24 Wright Medical Technology, Inc. Hammertoe implant and instrument
CN105960211B (en) 2014-12-19 2019-01-11 瑞特医疗技术公司 For anchor log in the marrow of interphalangeal arthrodesis of toe
CN106970032B (en) * 2017-03-13 2019-06-28 山西大学 A kind of preparation method and application visualizing gold nanoparticle probe

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4542539A (en) * 1982-03-12 1985-09-24 Artech Corp. Surgical implant having a graded porous coating
US4818559A (en) * 1985-08-08 1989-04-04 Sumitomo Chemical Company, Limited Method for producing endosseous implants
US5152993A (en) * 1988-01-20 1992-10-06 Ellem Bioteknik Ab Method of preparing an implant body for implantation
US5205921A (en) * 1991-02-04 1993-04-27 Queen's University At Kingston Method for depositing bioactive coatings on conductive substrates
US5383935A (en) * 1992-07-22 1995-01-24 Shirkhanzadeh; Morteza Prosthetic implant with self-generated current for early fixation in skeletal bone
US5723038A (en) * 1995-02-10 1998-03-03 Jurgen Hofinger Process for producing a gradient coating made of calcium phosphate phases and metal oxide phase on metallic implants
US6190412B1 (en) * 1997-04-22 2001-02-20 Washington Research Foundation Trap-coated bone grafts and prostheses
US6544288B2 (en) * 1999-03-19 2003-04-08 Akiyoshi Osaka Biocompatible titanium implant for medical use
US6627321B1 (en) * 1998-12-23 2003-09-30 Astra Tech Ab Implants with modified surfaces for increased biocompatibility, and method for production thereof
US7192445B2 (en) * 2000-12-06 2007-03-20 Astra Tech Ab Medical prosthetic devices and implants having improved biocompatibility

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3839175A (en) * 1973-06-28 1974-10-01 Owens Illinois Inc Electrodeposition of enzymes
US3892648A (en) * 1974-04-16 1975-07-01 Us Navy Electrochemical deposition of bone
US4469564A (en) * 1982-08-11 1984-09-04 At&T Bell Laboratories Copper electroplating process
JPH0829150B2 (en) 1985-08-08 1996-03-27 住友化学工業株式会社 Manufacturing method of intraosseous implant
JPS6399869A (en) 1986-10-17 1988-05-02 ペルメレツク電極株式会社 Production of composite material coated with calcium phosphate
CA1269898A (en) 1986-10-17 1990-06-05 Takayuki Shimamune Process for production of calcium phosphate compound- coated composite material
US5037527A (en) * 1987-08-28 1991-08-06 Kanzaki Paper Mfg. Co., Ltd. Reference electrode and a measuring apparatus using the same
US5166063A (en) * 1990-06-29 1992-11-24 Eli Lilly And Company Immobolization of biomolecules by enhanced electrophoretic precipitation
US5422264A (en) 1993-11-12 1995-06-06 Desmos, Inc. Soluble factor stimulation of attachment and hemidesmosome assembly in epithelial cells
CA2188563C (en) * 1994-04-29 2005-08-02 Andrew W. Buirge Stent with collagen
RU2074674C1 (en) 1994-08-09 1997-03-10 Саратовский государственный технический университет Method for manufacturing intraosseous implants
US5861032A (en) 1996-01-31 1999-01-19 Surface Genesis, Inc. Medical device having a biocompatible coating and oxidation method of coupling therefor
WO1997036621A1 (en) 1996-03-29 1997-10-09 Desmos, Inc. Cellular attachment to laminin 5-coated trans-epithelial appliances
US6376476B1 (en) * 1996-12-13 2002-04-23 Zymogenetics Corporation Isoprenoid pathway inhibitors for stimulating bone growth
US6509026B1 (en) 1997-08-15 2003-01-21 Children's Medical Center Corporation Osteopontin coated surfaces and methods of use
US6193516B1 (en) * 1999-06-18 2001-02-27 Sulzer Calcitek Inc. Dental implant having a force distribution shell to reduce stress shielding
US6555157B1 (en) * 2000-07-25 2003-04-29 Advanced Cardiovascular Systems, Inc. Method for coating an implantable device and system for performing the method

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4542539A (en) * 1982-03-12 1985-09-24 Artech Corp. Surgical implant having a graded porous coating
US4818559A (en) * 1985-08-08 1989-04-04 Sumitomo Chemical Company, Limited Method for producing endosseous implants
US5152993A (en) * 1988-01-20 1992-10-06 Ellem Bioteknik Ab Method of preparing an implant body for implantation
US5205921A (en) * 1991-02-04 1993-04-27 Queen's University At Kingston Method for depositing bioactive coatings on conductive substrates
US5383935A (en) * 1992-07-22 1995-01-24 Shirkhanzadeh; Morteza Prosthetic implant with self-generated current for early fixation in skeletal bone
US5723038A (en) * 1995-02-10 1998-03-03 Jurgen Hofinger Process for producing a gradient coating made of calcium phosphate phases and metal oxide phase on metallic implants
US6190412B1 (en) * 1997-04-22 2001-02-20 Washington Research Foundation Trap-coated bone grafts and prostheses
US6627321B1 (en) * 1998-12-23 2003-09-30 Astra Tech Ab Implants with modified surfaces for increased biocompatibility, and method for production thereof
US6544288B2 (en) * 1999-03-19 2003-04-08 Akiyoshi Osaka Biocompatible titanium implant for medical use
US7192445B2 (en) * 2000-12-06 2007-03-20 Astra Tech Ab Medical prosthetic devices and implants having improved biocompatibility

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8012205B2 (en) * 2001-07-16 2011-09-06 Depuy Products, Inc. Cartilage repair and regeneration device
US20100016989A1 (en) * 2006-12-21 2010-01-21 Numat As Metal oxide scaffolds
US20100191247A1 (en) * 2009-01-23 2010-07-29 David James Schneider Apparatus and method for arthroscopic transhumeral rotator cuff repair
US8277458B2 (en) 2009-01-23 2012-10-02 Biomet Sports Medicine, Llc Apparatus and method for arthroscopic transhumeral rotator cuff repair
US8740913B2 (en) 2009-01-23 2014-06-03 Biomet Sports Medicine, Llc Apparatus and method for arthroscopic transhumeral rotator cuff repair
US20100292756A1 (en) * 2009-05-12 2010-11-18 Schneider David J Bioelectric implant and method
US8738144B2 (en) 2009-05-12 2014-05-27 Ingenium, Llc Bioelectric implant and method
US20150335400A1 (en) * 2009-06-17 2015-11-26 The Trustees Of Columbia University In The City Of New York Tooth scaffolds
US9005746B2 (en) 2012-05-31 2015-04-14 Covidien Lp Polymeric ascorbic acid devices for tissue regeneration
WO2014044672A1 (en) 2012-09-18 2014-03-27 Corticalis As Scaffold with cortical wall
US9238090B1 (en) 2014-12-24 2016-01-19 Fettech, Llc Tissue-based compositions
US11938246B2 (en) 2014-12-24 2024-03-26 Fettech, Llc Tissue-based compositions and methods of use thereof

Also Published As

Publication number Publication date
US7192445B2 (en) 2007-03-20
US9168141B2 (en) 2015-10-27
US20070077346A1 (en) 2007-04-05
US20020111694A1 (en) 2002-08-15

Similar Documents

Publication Publication Date Title
US7192445B2 (en) Medical prosthetic devices and implants having improved biocompatibility
EP1339437B1 (en) Medical prosthetic devices and implants coated with metal hydrides and biomolecules having improved biocompatibility
US7410502B2 (en) Medical prosthetic devices having improved biocompatibility
EP1492579B1 (en) Medical prosthetic devices having improved biocompatibility
AU2002220955A1 (en) Medical prosthetic devices and implants having improved biocompatibility
Yavari et al. Bone regeneration performance of surface-treated porous titanium
Paital et al. Calcium phosphate coatings for bio-implant applications: Materials, performance factors, and methodologies
Surmenev et al. Significance of calcium phosphate coatings for the enhancement of new bone osteogenesis–a review
Santos-Coquillat et al. Hybrid functionalized coatings on metallic biomaterials for tissue engineering
Suntharavel Muthaiah et al. Electrophoretic deposition of nanocrystalline calcium phosphate coating for augmenting bioactivity of additively manufactured Ti-6Al-4V
WO2009026380A1 (en) Medical device with biofunctionalized polymer coating
Schmitz Functional coatings by physical vapor deposition (PVD) for biomedical applications
Fu et al. Plasma modification of materials
Mehta et al. State-of-art of biomaterial coatings for enhanced biofunctionality of metallic implants
Khadke et al. Investigation of bio-active coating on Ti-6al-7nb for bio-medical applications–A short review
BG64409B1 (en) Supporting part of kerato prosthesis

Legal Events

Date Code Title Description
AS Assignment

Owner name: NUMAT AS, NORWAY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ASTRA TECH AB;REEL/FRAME:020982/0149

Effective date: 20080428

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION