US20060184241A1 - Self-molding annuloplasty ring - Google Patents

Self-molding annuloplasty ring Download PDF

Info

Publication number
US20060184241A1
US20060184241A1 US11/403,077 US40307706A US2006184241A1 US 20060184241 A1 US20060184241 A1 US 20060184241A1 US 40307706 A US40307706 A US 40307706A US 2006184241 A1 US2006184241 A1 US 2006184241A1
Authority
US
United States
Prior art keywords
annuloplasty ring
diameter
sizing member
inner sizing
dilated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/403,077
Inventor
Salvador Marquez
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US11/403,077 priority Critical patent/US20060184241A1/en
Publication of US20060184241A1 publication Critical patent/US20060184241A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2442Annuloplasty rings or inserts for correcting the valve shape; Implants for improving the function of a native heart valve
    • A61F2/2445Annuloplasty rings in direct contact with the valve annulus
    • A61F2/2448D-shaped rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2442Annuloplasty rings or inserts for correcting the valve shape; Implants for improving the function of a native heart valve
    • A61F2/2445Annuloplasty rings in direct contact with the valve annulus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S623/00Prosthesis, i.e. artificial body members, parts thereof, or aids and accessories therefor
    • Y10S623/902Method of implanting

Definitions

  • the human heart is hollow muscular organ having four pumping chambers separated by four heart valves.
  • the mitral and tricuspid valves present at the left and right atrio-ventricular junctions, open and close in response to a pressure gradient during each cardiac cycle of relaxation and contraction to control the flow of blood to a particular region of the heart.
  • valves are comprised of a dense fibrous ring known as the annulus, leaflets or cusps attached to the annulus, and a complex of chordae tendineae and papillary muscles securing the leaflets.
  • the size of the leaflets or cusps is such that when the heart contracts the resulting increased blood pressure formed within the ventricular cavity forces the leaflets towards the arterial cavity. As a result, the leaflets or cusps come in apposition to each other thereby closing the atrio-ventricular passage.
  • valvular dysfunction occurs when the annulus becomes excessively dilated or the valve geometry results in ineffective valve closure, which results in regurgitation. Due to the increased diameter of the annulus, the leaflets or cusps fail to meet during systolic contraction, thereby resulting in the regurgitation of blood during ventricular contractions. As such, sufficient back pressure exists within the chambers of the heart capable of forcing some blood flow to traverse the atrio-ventricular junction from the ventricle to the atria.
  • annuloplasty ring a prosthetic ring
  • annuloplasty ring having the desired internal diameter is positioned near the heart valve and sutured in place. As a result, the diameter of the valve is reduced to the diameter of the annuloplasty ring.
  • This procedure utilizing current annuloplasty rings has several shortcomings.
  • the tissue comprising the heart particularly in the area of the heart valves, is flexible.
  • the implantation of a rigid annuloplasty ring restricts the natural flexibility of this tissue, and may impact the heart's function.
  • the diameter of the dilated annulus is substantially larger than the annuloplasty ring, thereby making the implantation surgery unnecessarily time consuming.
  • the surgeon is required to position the prosthesis near a portion of the tissue and suture the ring in place. Thereafter, the opposing tissue is forced to engage the ring and is attached to the annuloplasty ring with sutures. Consequently, the sutures may be under different stress loads, and could result in an increased risk of ring dehiscence.
  • the present invention solves the aforementioned problems in that the resilient annuloplasty ring of the present invention may be stretched to the diameter of the dilated valve annulus prior to implantation, thereby simplifying the implantation process.
  • the contractive force of the resilient annuloplasty ring of the present invention may controllably reduce the diameter of an incompetent dilated valve annulus to more competent diameter.
  • the present invention is easy to manufacture and may be manufactured from a plurality of materials.
  • the annuloplasty ring of the present invention comprises a resilient inner sizing member positioned within a flexible outer attachment sheath.
  • the resilient inner sizing member applies a contractive force to the incompetent annulus tissue.
  • the flexible outer attachment sheath permits the surgeon to attach the device to the annulus tissue in a plurality of manners including suturing and stapling.
  • the annuloplasty ring of the present invention may be manufactured from a plurality of biologically compatible materials having sufficient resiliency to permit stretching during implantation and having sufficient contractive force to permit a reduction in the diameter of the incompetent valve annulus.
  • An alternate embodiment of the present self molding annuloplasty ring comprises an resilient inner sizing member positioned within a flexible outer attachment sheath, the ring further having a plurality of attachment members positioned thereon.
  • the attachment members may comprise a plurality of devices, including, without limitation, needles, barbs, or hooks.
  • the attachment members may be manufactured from a biologically compatible material such as, without limitation, stainless steel, titanium, and Nitinol.
  • a self molding annuloplasty ring having a predetermined contracted diameter comprises a resilient inner sizing member positioned within a series of individual support members.
  • a flexible outer attachment sheath is positioned on the exterior of the support members. This embodiment permits the surgeon to predetermine the inner diameter of a repaired valve annulus, thereby rendering an incompetent valve competent.
  • the support members may be manufactured from a biologically compatible material such as, without limitation, plastic and elastomer.
  • FIG. 1 shows a top sectional view of the mitral and tricuspid valves and valve annuli within a heart
  • FIG. 2A shows a side view of the annuloplasty ring of the present invention
  • FIG. 2B shows a top view of the annuloplasty ring of the present invention
  • FIG. 2C shows a cross sectional view of the annuloplasty ring of the present invention
  • FIG. 2D shows an alternate embodiment of the annuloplasty ring of the present invention having a support member positioned therein;
  • FIG. 2E shows a perspective view of the annuloplasty ring of the present invention
  • FIG. 3A shows a top sectional view of the annuloplasty ring of the present invention positioned within the valve annulus of the mitral valve;
  • FIG. 3B shows a top view of an embodiment of the present embodiment having a plurality of attachment devices disposed thereon;
  • FIG. 3C shows a cross sectional view of the present embodiment with an attachment device disposed thereon
  • FIG. 3D shows a perspective view of the present embodiment having a plurality of attachment devices disposed thereon
  • FIG. 4A shows a top view of the present embodiment of the present invention in a contracted state having a plurality of size support members positioned thereon;
  • FIG. 4B shows a top view of the present embodiment of the present invention in a stretched state having a plurality of size support members positioned thereon;
  • FIG. 4C shows a cross sectional view of the embodiment of FIGS. 4A and 4B .
  • the self-molding annuloplasty ring of the present invention is generally used in surgical procedures to repair an incompetent tissue annulus. More specifically, the present invention is used to render an otherwise incompetent heart valve competent by decreasing the diameter of the opening at the valvular junction. As those skilled in the art will appreciate, the present invention may be manufactured with varying degrees of pre-tension and contractive force, thereby permitting variations of the contraction of the anterior and/or posterior annuli. In addition, the present invention simplifies the implantation procedure by permitting pre-stretching of the annuloplasty ring to the diameter of the dilated annulus, and thereafter reducing the annulus with the contractive force exerted by the self-molding annulus ring.
  • FIG. 1 shows a cross sectional view of the heart 10 having a bicuspid or mitral valve 12 positioned near the mitral valve annulus 14 , and a tricuspid valve 16 positioned near the tricuspid valve annulus 18 .
  • FIGS. 2A-2E Various views of the present invention are illustrated in FIGS. 2A-2E .
  • the self-molding annulus ring 20 comprises a first planar surface 22 and an opposing second planar surface 24 .
  • FIG. 2B shows the annulus ring 20 having a rectilinear segment 26 and an arcuate segment 28 connected by two curved ends 30 and 32 , respectively.
  • the preferred annuloplasty ring 20 is generally “D” shaped to conform to the shape of a typical mitral valve annulus.
  • the ring 20 may be manufactured in any shape suitable for implantation about an annulus.
  • the present invention may be manufactured in a generally round or oval shape thereby permitting use of the present invention to remodel an otherwise incompetent tricuspid valve.
  • FIG. 2C shows a cross-sectional view of the annuloplasty ring 20 having an elastic sizing member 36 positioned within an attachment sheath 38 . While the cross-sectional view illustrated in FIG. 2C is substantially rectangular, it is to be appreciated that the cross-section can alternatively be of another dimension such as triangular, circular or any dimension that cooperates with the native annulus.
  • the elastic sizing member 36 preferably comprises a biologically-compatible materials such as, without limitation, elastomer, silicon, or any other material having sufficient resiliency to permit pre-stretching of the annuloplasty ring 20 prior to and during implantation, while having sufficient contractive force to decrease the size of the valve annulus to a desired diameter.
  • the attachment sheath 38 provides a suitable material for suturing or otherwise attaching the annulus ring 20 to the annulus tissue and promoting tissue growth therein.
  • the attachment sheath 38 preferably comprises a biologically-compatible material such as, without limitation, Dacron (polyethylene terepthalate), polyester knit, PTFE knit, and ePTFE knit.
  • the attachment sheath may also be treated with a biologically-compatible tissue growth factor or other medicament to aid in treating the attachment area.
  • a biologically-compatible tissue growth factor or other medicament to aid in treating the attachment area.
  • FIG. 2D An alternate embodiment of the present invention is shown in FIG. 2D having support members 40 positioned between the sizing member 36 and the attachment sheath 38 .
  • the support members 40 are preferably fabricated from a biologically-compatible materials having a comparable modulus of resiliency such as, without limitation, elastomer, rubber, silicon, or another material having sufficient resiliency to permit pre-stretching prior to implantation while providing sufficient support to the valve annulus.
  • the support member 40 provides additional support of the valve and valve annulus
  • FIG. 2E shows a perspective view of the annuloplasty ring of the present invention.
  • the annuloplasty ring of the present invention may be attached to the annulus or surrounding tissue using a plurality of devices.
  • the annulus ring 20 may be attached to the valve annulus, either 14 or 18 , with sutures 42 .
  • FIG. 3B shows an alternate embodiment of the present invention utilizing attachment devices positioned on the annuloplasty ring.
  • the present embodiment of the ring 44 comprises a rectilinear segment 46 attached to an arcuate portion 48 with two curved ends 50 and 52 positioned therebetween.
  • a number of attachment devices 54 are positioned around the ring 44 to facilitate attachment of the ring 44 to the annulus tissue.
  • FIG. 3C shows the internal materials of the present invention having a sizing member 56 and an tissue-engaging sheath 58 disposed thereon.
  • the sizing member 56 is preferably manufactured from a biologically-compatible material such as, without limitation, elastomer, silicon, or any other material having sufficient resiliency to permit pre-stretching of the annuloplasty ring 44 prior to and during implantation, while having sufficient contractive force to decrease the size of the valve annulus to a desired diameter.
  • the tissue-engaging sheath 58 is preferably manufactured from a biologically-compatible material having comparable resiliency, such as, without limitation, Dacron (polyethylene terepthalate), polyester knit, PTFE knit, and ePTFE knit, and may further incorporate tissue growth-enhancing materials.
  • the attachment device 54 may comprise various tissue-engaging devices, including, for example, needles, barbs, or hooks. Those skilled in the art will appreciate the attachment devices 54 is preferably manufactured from a biologically-compatible material such as, without limitation, stainless steel, titanium, or Nickel-Titanium alloy (Nitinol).
  • FIG. 3D shows a perspective view of the annuloplasty ring of the present embodiment having a plurality of attachment devices 54 positioned about the device body 44 .
  • FIGS. 4A-4C show an alternative embodiment of the present invention that includes size constraining support members.
  • FIG. 4A shows the annuloplasty ring 60 of the present embodiment in a contracted state, wherein the ring 60 comprises a rectilinear segment 62 , an arcuate segment 64 , and two curved ends 66 and 68 positioned therebetween.
  • the ring 60 is comprised of a series of support members 70 positioned about the device.
  • the support members 70 are positioned immediately adjacent to each other in the contracted state, though it is to be understood that the resilient inner sizing member is biased toward a fully relaxed diameter that is smaller than the diameter in the contracted state.
  • the plurality of support members 70 constrain contraction of the inner sizing member 72 to a contracted diameter that is larger than the fully relaxed diameter.
  • FIG. 4B shows the ring 60 stretched prior to implantation, having the resilient inner sizing member 72 positioned within the support members 70 .
  • each support member 70 has a receiving lumen 74 formed therein which is capable of receiving the inner sizing member 72 .
  • the attachment sheath 76 may be positioned on the exterior of the support members 70 .
  • the ring 60 is pre-stretched to a fully expanded diameter roughly equivalent to the diameter of the dilated valve annulus and the attachment sheath is attached to the tissue using, for example, sutures, staples, or barbs.
  • the insertion device (not shown) is removed and the ring 60 contracts causing each size support member 70 to engage the adjacent support members 70 , thereby limiting the degree of contraction that the ring 60 may achieve.
  • the plurality of support members 70 constrain contraction of the inner sizing member 72 to a contracted diameter that is smaller than the fully expanded diameter but larger than the fully relaxed diameter.
  • the support members 70 are preferably manufactured from a biologically-compatible material such as, without limitation, stainless steel, titanium, or plastic.
  • the inner sizing member 72 is preferably manufactured from a biologically compatible material such as, without limitation, elastomer, silicon, or any other material having sufficient resiliency to permit pre-stretching of the annuloplasty ring 60 prior to and during implantation, while having sufficient contractive force to decrease the size of the valve annulus to a desired diameter.
  • the attachment sheath 76 is preferably manufactured from a resilient biologically-compatible material such as, without limitation, Dacron (polyethylene terepthalate), polyester knit, PTFE knit, and ePTFE knit, or may incorporate tissue growth-enhancing materials.
  • the present invention further discloses a method of repairing a dilated or otherwise incompetent annulus.
  • An exemplary open-chest surgical repair of a mitral valve will be disclosed herein. It should be understood the method disclosed herein is not intended to limit the scope of the present invention in any way.
  • the mitral valve partially forms the atrio-ventricular junction between the left atrium and left ventricle of the heart and is most easily reached through the wall of the left atrium.
  • the wall of the left atrium is may be accessed through a medial stemotomy procedure.
  • the surgeon rotates the heart to an anterior position, thereby providing access to the left atrium.
  • An incision is made in the left atrium, thereby providing access to the mitral valve and the valve annulus.
  • the ring 20 is stretched for positioning on an insertion device.
  • the annuloplasty ring may be positioned on the insertion device at the time of manufacture or immediately prior to implantation.
  • the annuloplasty ring should be stretched to a size commensurate with the diameter of the dilated valve annulus.
  • the ring, positioned on the insertion device is positioned proximate to the valve annulus and attached to surrounding tissue in a plurality of known and accepted manners, including, suturing, stapling, or any other biologically-compatible attachment technique.
  • the insertion device With the ring sufficiently attached, the insertion device is removed, resulting in the annuloplasty ring contracting to its pre-stretched diameter, thereby rendering the valve competent.
  • the contractive force of the annuloplasty ring will determine the amount of post-implantation valvular dilation, thereby permitting the surgeon to accurately predict the post-implantation valve diameter.

Abstract

A resilient self molding annuloplasty ring which may be enlarged prior to implantation to facilitate implantation within a dilated or otherwise incompetent valve annulus having sufficient contractive force to render a valve competent. The self-molding annuloplasty ring may further comprise integral attachment devices to aid in the implantation process. The resilient self-molding annuloplasty ring may be stretched to an expanded diameter and attached to a heart valve annulus, then permitted to contract to reduce the diameter of the annulus. The ring may be positioned on an insertion device that maintains the ring in its expanded diameter while attaching to the annulus.

Description

    RELATED APPLICATIONS
  • The present application is a continuation of Ser. No. 10/777,343, filed Feb. 12, 2004, entitled METHOD OF IMPLANTING A SELF-MOLDING ANNULOPLASTY RING, which is a continuation of Ser. No. 09/938,902, filed Aug. 24, 2001, entitled SELF-MOLDING ANNULOPLASTY RING, now U.S. Pat. No. 6,726,716, which applications are expressly incorporated herein by reference.
  • BACKGROUND OF THE INVENTION
  • The human heart is hollow muscular organ having four pumping chambers separated by four heart valves. The mitral and tricuspid valves, present at the left and right atrio-ventricular junctions, open and close in response to a pressure gradient during each cardiac cycle of relaxation and contraction to control the flow of blood to a particular region of the heart.
  • These valves are comprised of a dense fibrous ring known as the annulus, leaflets or cusps attached to the annulus, and a complex of chordae tendineae and papillary muscles securing the leaflets. The size of the leaflets or cusps is such that when the heart contracts the resulting increased blood pressure formed within the ventricular cavity forces the leaflets towards the arterial cavity. As a result, the leaflets or cusps come in apposition to each other thereby closing the atrio-ventricular passage.
  • Natural defects and heart disease are common causes of valvular dysfunction within the heart of a patient. One common example of valvular dysfunction occurs when the annulus becomes excessively dilated or the valve geometry results in ineffective valve closure, which results in regurgitation. Due to the increased diameter of the annulus, the leaflets or cusps fail to meet during systolic contraction, thereby resulting in the regurgitation of blood during ventricular contractions. As such, sufficient back pressure exists within the chambers of the heart capable of forcing some blood flow to traverse the atrio-ventricular junction from the ventricle to the atria.
  • One manner of repairing this problem involves surgically implanting a prosthetic ring (i.e. “annuloplasty ring”) about the dilated annulus, thereby restoring the annulus to the normal size and shape and allowing the valve leaflets to function normally. Commonly, a surgeon positions the annuloplasty ring near the valve annulus and sutures the device in place.
  • One approach to correcting or remodeling the valve annulus has required the implantation of a rigid annuloplasty ring. Typically, an annuloplasty ring having the desired internal diameter is positioned near the heart valve and sutured in place. As a result, the diameter of the valve is reduced to the diameter of the annuloplasty ring. This procedure utilizing current annuloplasty rings has several shortcomings. For example, the tissue comprising the heart, particularly in the area of the heart valves, is flexible. The implantation of a rigid annuloplasty ring restricts the natural flexibility of this tissue, and may impact the heart's function. Also, the diameter of the dilated annulus is substantially larger than the annuloplasty ring, thereby making the implantation surgery unnecessarily time consuming. The surgeon is required to position the prosthesis near a portion of the tissue and suture the ring in place. Thereafter, the opposing tissue is forced to engage the ring and is attached to the annuloplasty ring with sutures. Consequently, the sutures may be under different stress loads, and could result in an increased risk of ring dehiscence.
  • There is thus a need for a flexible annuloplasty prosthesis and implantation device that enables a surgeon to precisely position and apply an annuloplasty ring to the dilated valve annulus.
  • SUMMARY OF THE INVENTION
  • The present invention solves the aforementioned problems in that the resilient annuloplasty ring of the present invention may be stretched to the diameter of the dilated valve annulus prior to implantation, thereby simplifying the implantation process. In addition, the contractive force of the resilient annuloplasty ring of the present invention may controllably reduce the diameter of an incompetent dilated valve annulus to more competent diameter. Those skilled in the art will appreciate the present invention is easy to manufacture and may be manufactured from a plurality of materials.
  • The annuloplasty ring of the present invention comprises a resilient inner sizing member positioned within a flexible outer attachment sheath. The resilient inner sizing member applies a contractive force to the incompetent annulus tissue. The flexible outer attachment sheath permits the surgeon to attach the device to the annulus tissue in a plurality of manners including suturing and stapling. The annuloplasty ring of the present invention may be manufactured from a plurality of biologically compatible materials having sufficient resiliency to permit stretching during implantation and having sufficient contractive force to permit a reduction in the diameter of the incompetent valve annulus.
  • An alternate embodiment of the present self molding annuloplasty ring comprises an resilient inner sizing member positioned within a flexible outer attachment sheath, the ring further having a plurality of attachment members positioned thereon. The attachment members may comprise a plurality of devices, including, without limitation, needles, barbs, or hooks. In addition, the attachment members may be manufactured from a biologically compatible material such as, without limitation, stainless steel, titanium, and Nitinol.
  • In yet another embodiment of the present invention, a self molding annuloplasty ring having a predetermined contracted diameter is disclosed. This embodiment comprises a resilient inner sizing member positioned within a series of individual support members. A flexible outer attachment sheath is positioned on the exterior of the support members. This embodiment permits the surgeon to predetermine the inner diameter of a repaired valve annulus, thereby rendering an incompetent valve competent. Those skilled in the art will appreciate that the support members may be manufactured from a biologically compatible material such as, without limitation, plastic and elastomer.
  • Other objects, features, and advantages of the present invention will become apparent from a consideration of the following description of the preferred embodiments.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The apparatus of the present invention will be explained in more detail by way of the accompanying drawings, wherein:
  • FIG. 1 shows a top sectional view of the mitral and tricuspid valves and valve annuli within a heart;
  • FIG. 2A shows a side view of the annuloplasty ring of the present invention;
  • FIG. 2B shows a top view of the annuloplasty ring of the present invention;
  • FIG. 2C shows a cross sectional view of the annuloplasty ring of the present invention;
  • FIG. 2D shows an alternate embodiment of the annuloplasty ring of the present invention having a support member positioned therein;
  • FIG. 2E shows a perspective view of the annuloplasty ring of the present invention;
  • FIG. 3A shows a top sectional view of the annuloplasty ring of the present invention positioned within the valve annulus of the mitral valve;
  • FIG. 3B shows a top view of an embodiment of the present embodiment having a plurality of attachment devices disposed thereon;
  • FIG. 3C shows a cross sectional view of the present embodiment with an attachment device disposed thereon;
  • FIG. 3D shows a perspective view of the present embodiment having a plurality of attachment devices disposed thereon;
  • FIG. 4A shows a top view of the present embodiment of the present invention in a contracted state having a plurality of size support members positioned thereon;
  • FIG. 4B shows a top view of the present embodiment of the present invention in a stretched state having a plurality of size support members positioned thereon; and
  • FIG. 4C shows a cross sectional view of the embodiment of FIGS. 4A and 4B.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • The following detailed description and the accompanying drawings are intended to describe and show certain presently preferred embodiments of the present invention, and are not intended to limit the scope of the invention in any way.
  • The self-molding annuloplasty ring of the present invention is generally used in surgical procedures to repair an incompetent tissue annulus. More specifically, the present invention is used to render an otherwise incompetent heart valve competent by decreasing the diameter of the opening at the valvular junction. As those skilled in the art will appreciate, the present invention may be manufactured with varying degrees of pre-tension and contractive force, thereby permitting variations of the contraction of the anterior and/or posterior annuli. In addition, the present invention simplifies the implantation procedure by permitting pre-stretching of the annuloplasty ring to the diameter of the dilated annulus, and thereafter reducing the annulus with the contractive force exerted by the self-molding annulus ring.
  • FIG. 1 shows a cross sectional view of the heart 10 having a bicuspid or mitral valve 12 positioned near the mitral valve annulus 14, and a tricuspid valve 16 positioned near the tricuspid valve annulus 18.
  • Various views of the present invention are illustrated in FIGS. 2A-2E. As shown in FIG. 2A, the self-molding annulus ring 20 comprises a first planar surface 22 and an opposing second planar surface 24. FIG. 2B shows the annulus ring 20 having a rectilinear segment 26 and an arcuate segment 28 connected by two curved ends 30 and 32, respectively. As illustrated, the preferred annuloplasty ring 20 is generally “D” shaped to conform to the shape of a typical mitral valve annulus. Alternatively, the ring 20 may be manufactured in any shape suitable for implantation about an annulus. For example, the present invention may be manufactured in a generally round or oval shape thereby permitting use of the present invention to remodel an otherwise incompetent tricuspid valve. FIG. 2C shows a cross-sectional view of the annuloplasty ring 20 having an elastic sizing member 36 positioned within an attachment sheath 38. While the cross-sectional view illustrated in FIG. 2C is substantially rectangular, it is to be appreciated that the cross-section can alternatively be of another dimension such as triangular, circular or any dimension that cooperates with the native annulus.
  • The elastic sizing member 36 preferably comprises a biologically-compatible materials such as, without limitation, elastomer, silicon, or any other material having sufficient resiliency to permit pre-stretching of the annuloplasty ring 20 prior to and during implantation, while having sufficient contractive force to decrease the size of the valve annulus to a desired diameter. The attachment sheath 38 provides a suitable material for suturing or otherwise attaching the annulus ring 20 to the annulus tissue and promoting tissue growth therein. The attachment sheath 38 preferably comprises a biologically-compatible material such as, without limitation, Dacron (polyethylene terepthalate), polyester knit, PTFE knit, and ePTFE knit. The attachment sheath may also be treated with a biologically-compatible tissue growth factor or other medicament to aid in treating the attachment area. Those skilled in the art will appreciate that the present invention reduces or eliminates the occurrence of systolic anterior motion (SAM), wherein the anterior leaflet of the mitral valve bulges into the left ventricular outflow track (LVOT) thereby obstructing blood flow into the aorta.
  • An alternate embodiment of the present invention is shown in FIG. 2D having support members 40 positioned between the sizing member 36 and the attachment sheath 38. The support members 40 are preferably fabricated from a biologically-compatible materials having a comparable modulus of resiliency such as, without limitation, elastomer, rubber, silicon, or another material having sufficient resiliency to permit pre-stretching prior to implantation while providing sufficient support to the valve annulus. The support member 40 provides additional support of the valve and valve annulus FIG. 2E shows a perspective view of the annuloplasty ring of the present invention.
  • The annuloplasty ring of the present invention may be attached to the annulus or surrounding tissue using a plurality of devices. Referring to FIG. 3A, the annulus ring 20 may be attached to the valve annulus, either 14 or 18, with sutures 42. FIG. 3B shows an alternate embodiment of the present invention utilizing attachment devices positioned on the annuloplasty ring. Like the previous embodiments, the present embodiment of the ring 44 comprises a rectilinear segment 46 attached to an arcuate portion 48 with two curved ends 50 and 52 positioned therebetween. A number of attachment devices 54 are positioned around the ring 44 to facilitate attachment of the ring 44 to the annulus tissue. FIG. 3C shows the internal materials of the present invention having a sizing member 56 and an tissue-engaging sheath 58 disposed thereon.
  • Like the previous embodiments, the sizing member 56 is preferably manufactured from a biologically-compatible material such as, without limitation, elastomer, silicon, or any other material having sufficient resiliency to permit pre-stretching of the annuloplasty ring 44 prior to and during implantation, while having sufficient contractive force to decrease the size of the valve annulus to a desired diameter. Similarly, the tissue-engaging sheath 58 is preferably manufactured from a biologically-compatible material having comparable resiliency, such as, without limitation, Dacron (polyethylene terepthalate), polyester knit, PTFE knit, and ePTFE knit, and may further incorporate tissue growth-enhancing materials. The attachment device 54 may comprise various tissue-engaging devices, including, for example, needles, barbs, or hooks. Those skilled in the art will appreciate the attachment devices 54 is preferably manufactured from a biologically-compatible material such as, without limitation, stainless steel, titanium, or Nickel-Titanium alloy (Nitinol). FIG. 3D shows a perspective view of the annuloplasty ring of the present embodiment having a plurality of attachment devices 54 positioned about the device body 44.
  • FIGS. 4A-4C show an alternative embodiment of the present invention that includes size constraining support members. FIG. 4A shows the annuloplasty ring 60 of the present embodiment in a contracted state, wherein the ring 60 comprises a rectilinear segment 62, an arcuate segment 64, and two curved ends 66 and 68 positioned therebetween. The ring 60 is comprised of a series of support members 70 positioned about the device. The support members 70 are positioned immediately adjacent to each other in the contracted state, though it is to be understood that the resilient inner sizing member is biased toward a fully relaxed diameter that is smaller than the diameter in the contracted state. In other words, the plurality of support members 70 constrain contraction of the inner sizing member 72 to a contracted diameter that is larger than the fully relaxed diameter. FIG. 4B shows the ring 60 stretched prior to implantation, having the resilient inner sizing member 72 positioned within the support members 70. As shown in FIG. 4C, each support member 70 has a receiving lumen 74 formed therein which is capable of receiving the inner sizing member 72. The attachment sheath 76 may be positioned on the exterior of the support members 70. Prior to implantation, the ring 60 is pre-stretched to a fully expanded diameter roughly equivalent to the diameter of the dilated valve annulus and the attachment sheath is attached to the tissue using, for example, sutures, staples, or barbs. Once the ring 60 is suitably positioned with the valve annulus and attached thereto, the insertion device (not shown) is removed and the ring 60 contracts causing each size support member 70 to engage the adjacent support members 70, thereby limiting the degree of contraction that the ring 60 may achieve. Again, the plurality of support members 70 constrain contraction of the inner sizing member 72 to a contracted diameter that is smaller than the fully expanded diameter but larger than the fully relaxed diameter.
  • The support members 70 are preferably manufactured from a biologically-compatible material such as, without limitation, stainless steel, titanium, or plastic. Like the previous embodiment, the inner sizing member 72 is preferably manufactured from a biologically compatible material such as, without limitation, elastomer, silicon, or any other material having sufficient resiliency to permit pre-stretching of the annuloplasty ring 60 prior to and during implantation, while having sufficient contractive force to decrease the size of the valve annulus to a desired diameter. Similarly, the attachment sheath 76 is preferably manufactured from a resilient biologically-compatible material such as, without limitation, Dacron (polyethylene terepthalate), polyester knit, PTFE knit, and ePTFE knit, or may incorporate tissue growth-enhancing materials.
  • The present invention further discloses a method of repairing a dilated or otherwise incompetent annulus. An exemplary open-chest surgical repair of a mitral valve will be disclosed herein. It should be understood the method disclosed herein is not intended to limit the scope of the present invention in any way.
  • The mitral valve partially forms the atrio-ventricular junction between the left atrium and left ventricle of the heart and is most easily reached through the wall of the left atrium. Those skilled in the art will appreciate that the wall of the left atrium is may be accessed through a medial stemotomy procedure. To gain access to the mitral valve during the stemotomy, the surgeon rotates the heart to an anterior position, thereby providing access to the left atrium. An incision is made in the left atrium, thereby providing access to the mitral valve and the valve annulus.
  • To insert the annuloplasty ring of the present invention, the ring 20 is stretched for positioning on an insertion device. Those skilled in art will appreciate the present invention may be inserted on a plurality of insertion devices know in the art. Additionally, the annuloplasty ring may be positioned on the insertion device at the time of manufacture or immediately prior to implantation. Ideally, the annuloplasty ring should be stretched to a size commensurate with the diameter of the dilated valve annulus. The ring, positioned on the insertion device, is positioned proximate to the valve annulus and attached to surrounding tissue in a plurality of known and accepted manners, including, suturing, stapling, or any other biologically-compatible attachment technique. With the ring sufficiently attached, the insertion device is removed, resulting in the annuloplasty ring contracting to its pre-stretched diameter, thereby rendering the valve competent. Those skilled in the art will appreciate the contractive force of the annuloplasty ring will determine the amount of post-implantation valvular dilation, thereby permitting the surgeon to accurately predict the post-implantation valve diameter.
  • While the foregoing describes the preferred embodiments of the invention, various alternatives, modifications, and equivalents may be used. By way of example but not of limitation, alternative insertion devices, and alternative attachment devices may be used. It will thus be obvious that certain other modifications may be practiced within the scope of the appended claims.

Claims (20)

1. A self-molding annuloplasty ring for implantation in a dilated heart valve annulus having a dilated size, comprising:
a resilient inner sizing member positioned within an outer attachment sheath, the annuloplasty ring defining a shape having a first diameter in the absence of an external force, the resilient inner sizing member having sufficient elasticity to permit pre-stretching such that the annuloplasty ring attains an expanded diameter larger than the first diameter and equivalent to the dilated size of the dilated valve annulus, the resilient inner sizing member being biased toward its relaxed diameter and having sufficient contractive force to decrease the dilated size of the dilated valve annulus when the expanded diameter annuloplasty ring is attached thereto.
2. The device of claim 1, further comprising support structure on the annuloplasty ring that limits inward contraction of the inner sizing member to a contracted diameter that is larger than its relaxed diameter.
3. The device of claim 2, wherein the support structure includes a series of support members positioned along the inner sizing member which engage one another to limit inward contraction of the inner sizing member.
4. The device of claim 3, wherein each support member comprises a body member having a lumen formed therein, the lumen being sized to receive the inner sizing member.
5. The device of claim 1, wherein the annuloplasty ring further comprises a plurality of attachment devices positioned thereon and extending outward from the outer attachment sheath.
6. The device of claim 5, wherein the plurality of attachment devices is selected from the group consisting of:
needles;
barbs; and
hooks.
7. The device of claim 5, wherein the material of the plurality of attachment devices is selected from the group consisting of:
stainless steel;
titanium; and
a nickel-titanium alloy.
8. The device of claim 1 wherein the inner sizing member comprises a biologically compatible elastomer.
9. The device of claim 1, wherein the outer attachment sheath comprises a medicament to induce tissue growth.
10. The device of claim 1, wherein the annuloplasty ring has a closed shape selected from the group consisting of:
a “D” shape;
a generally round shape; and
an oval shape.
11. An annuloplasty device for implantation in a dilated heart valve annulus, comprising:
an insertion device; and
an annuloplasty ring having a resilient inner sizing member positioned within an outer attachment sheath, the annuloplasty ring being expandable from a first diameter to a larger expanded diameter, the annuloplasty ring being positioned on the insertion device and maintained at its expanded diameter;
wherein, on the insertion device the resilient inner sizing member is biased so as to urge the annuloplasty ring toward its first diameter such that if the insertion device is removed the annuloplasty ring contracts.
12. The device of claim 11, wherein the insertion device has a size commensurate with the diameter of the dilated valve annulus.
13. The device of claim 11, further comprising support structure on the annuloplasty ring that limits inward contraction of the inner sizing member to a contracted diameter that is larger than its relaxed diameter.
14. The device of claim 13, wherein the support structure includes a series of support members positioned along the inner sizing member which engage one another to limit inward contraction of the inner sizing member.
15. The device of claim 11, wherein the annuloplasty ring further comprises a plurality of attachment devices positioned thereon and extending outward from the outer attachment sheath.
16. The device of claim 15, wherein the plurality of attachment devices is selected from the group consisting of:
needles;
barbs; and
hooks.
17. The device of claim 15, wherein the material of the plurality of attachment devices is selected from the group consisting of:
stainless steel;
titanium; and
a nickel-titanium alloy.
18. The device of claim 11 wherein the inner sizing member comprises a biologically compatible elastomer.
19. The device of claim 11, wherein the outer attachment sheath comprises a medicament to induce tissue growth.
20. The device of claim 11, wherein the annuloplasty ring has a closed shape selected from the group consisting of:
a “D” shape;
a generally round shape; and
an oval shape.
US11/403,077 2001-08-24 2006-04-12 Self-molding annuloplasty ring Abandoned US20060184241A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/403,077 US20060184241A1 (en) 2001-08-24 2006-04-12 Self-molding annuloplasty ring

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US09/938,902 US6726716B2 (en) 2001-08-24 2001-08-24 Self-molding annuloplasty ring
US10/777,343 US7063722B2 (en) 2001-08-24 2004-02-12 Method of implanting a self-molding annuloplasty ring
US11/403,077 US20060184241A1 (en) 2001-08-24 2006-04-12 Self-molding annuloplasty ring

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/777,343 Continuation US7063722B2 (en) 2001-08-24 2004-02-12 Method of implanting a self-molding annuloplasty ring

Publications (1)

Publication Number Publication Date
US20060184241A1 true US20060184241A1 (en) 2006-08-17

Family

ID=25472169

Family Applications (3)

Application Number Title Priority Date Filing Date
US09/938,902 Expired - Lifetime US6726716B2 (en) 2001-08-24 2001-08-24 Self-molding annuloplasty ring
US10/777,343 Expired - Lifetime US7063722B2 (en) 2001-08-24 2004-02-12 Method of implanting a self-molding annuloplasty ring
US11/403,077 Abandoned US20060184241A1 (en) 2001-08-24 2006-04-12 Self-molding annuloplasty ring

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US09/938,902 Expired - Lifetime US6726716B2 (en) 2001-08-24 2001-08-24 Self-molding annuloplasty ring
US10/777,343 Expired - Lifetime US7063722B2 (en) 2001-08-24 2004-02-12 Method of implanting a self-molding annuloplasty ring

Country Status (6)

Country Link
US (3) US6726716B2 (en)
EP (2) EP1418865B1 (en)
AT (1) ATE446727T1 (en)
CA (1) CA2456991A1 (en)
DE (1) DE60234189D1 (en)
WO (1) WO2003017874A1 (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030158570A1 (en) * 2000-04-13 2003-08-21 Paolo Ferrazzi Endoventicular device for the treatment and correction of cardiomyopathies
US20070008149A1 (en) * 2005-06-20 2007-01-11 Bolling Steven F Hand cleanliness
US20080086203A1 (en) * 2006-10-06 2008-04-10 Roberts Harold G Mitral and tricuspid annuloplasty rings
US20080167713A1 (en) * 2007-01-08 2008-07-10 Bolling Steven F Reconfiguring Heart Features
US20100030014A1 (en) * 2008-07-30 2010-02-04 Cube S.R.L. Intracardiac device for restoring the functional elasticity of the cardiac structures, holding tool for the intracardiac device, and method for implantation of the intracardiac device in the heart
US7666224B2 (en) 2002-11-12 2010-02-23 Edwards Lifesciences Llc Devices and methods for heart valve treatment
US7678145B2 (en) 2002-01-09 2010-03-16 Edwards Lifesciences Llc Devices and methods for heart valve treatment
US20100121433A1 (en) * 2007-01-08 2010-05-13 Millipede Llc, A Corporation Of Michigan Reconfiguring heart features
US20100249920A1 (en) * 2007-01-08 2010-09-30 Millipede Llc Reconfiguring heart features
US7883539B2 (en) 1997-01-02 2011-02-08 Edwards Lifesciences Llc Heart wall tension reduction apparatus and method
US7936275B2 (en) 2005-06-20 2011-05-03 Biovigil, Llc Hand cleanliness
WO2012027500A3 (en) * 2010-08-24 2012-05-31 Edwards Lifesciences Corporation Flexible annuloplasty ring with select control points
US8502681B2 (en) 2005-06-20 2013-08-06 Biovigil, Llc Hand cleanliness
US8529620B2 (en) 2007-05-01 2013-09-10 Ottavio Alfieri Inwardly-bowed tricuspid annuloplasty ring
US8932350B2 (en) 2010-11-30 2015-01-13 Edwards Lifesciences Corporation Reduced dehiscence annuloplasty ring
US9180005B1 (en) 2014-07-17 2015-11-10 Millipede, Inc. Adjustable endolumenal mitral valve ring
US9687346B2 (en) 2013-03-14 2017-06-27 Edwards Lifesciences Corporation Multi-stranded heat set annuloplasty rings
US9795480B2 (en) 2010-08-24 2017-10-24 Millipede, Inc. Reconfiguring tissue features of a heart annulus
US9848983B2 (en) 2015-02-13 2017-12-26 Millipede, Inc. Valve replacement using rotational anchors
CN109620474A (en) * 2018-11-24 2019-04-16 中国医学科学院阜外医院 Type of extension tricuspid valve forming ring
US10278819B2 (en) 2015-06-01 2019-05-07 Edwards Lifesciences Corporation Cardiac valve repair devices configured for percutaneous delivery
US10335275B2 (en) 2015-09-29 2019-07-02 Millipede, Inc. Methods for delivery of heart valve devices using intravascular ultrasound imaging
US10543088B2 (en) 2012-09-14 2020-01-28 Boston Scientific Scimed, Inc. Mitral valve inversion prostheses
US10548731B2 (en) 2017-02-10 2020-02-04 Boston Scientific Scimed, Inc. Implantable device and delivery system for reshaping a heart valve annulus
US10555813B2 (en) 2015-11-17 2020-02-11 Boston Scientific Scimed, Inc. Implantable device and delivery system for reshaping a heart valve annulus
US10849755B2 (en) 2012-09-14 2020-12-01 Boston Scientific Scimed, Inc. Mitral valve inversion prostheses
US11069220B2 (en) 2017-07-10 2021-07-20 Biovigil Hygiene Technologies, Llc Hand cleanliness monitoring

Families Citing this family (259)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6050936A (en) 1997-01-02 2000-04-18 Myocor, Inc. Heart wall tension reduction apparatus
WO1999000059A1 (en) * 1997-06-27 1999-01-07 The Trustees Of Columbia University In The City Of New York Method and apparatus for circulatory valve repair
FR2768324B1 (en) 1997-09-12 1999-12-10 Jacques Seguin SURGICAL INSTRUMENT FOR PERCUTANEOUSLY FIXING TWO AREAS OF SOFT TISSUE, NORMALLY MUTUALLY REMOTE, TO ONE ANOTHER
US6332893B1 (en) * 1997-12-17 2001-12-25 Myocor, Inc. Valve to myocardium tension members device and method
US6260552B1 (en) 1998-07-29 2001-07-17 Myocor, Inc. Transventricular implant tools and devices
US6752813B2 (en) 1999-04-09 2004-06-22 Evalve, Inc. Methods and devices for capturing and fixing leaflets in valve repair
US20040044350A1 (en) 1999-04-09 2004-03-04 Evalve, Inc. Steerable access sheath and methods of use
US7811296B2 (en) 1999-04-09 2010-10-12 Evalve, Inc. Fixation devices for variation in engagement of tissue
US7226467B2 (en) 1999-04-09 2007-06-05 Evalve, Inc. Fixation device delivery catheter, systems and methods of use
US7604646B2 (en) 1999-04-09 2009-10-20 Evalve, Inc. Locking mechanisms for fixation devices and methods of engaging tissue
CA2620783C (en) 1999-04-09 2011-04-05 Evalve, Inc. Methods and apparatus for cardiac valve repair
US8216256B2 (en) 1999-04-09 2012-07-10 Evalve, Inc. Detachment mechanism for implantable fixation devices
US10327743B2 (en) * 1999-04-09 2019-06-25 Evalve, Inc. Device and methods for endoscopic annuloplasty
EP1113497A3 (en) * 1999-12-29 2006-01-25 Texas Instruments Incorporated Semiconductor package with conductor impedance selected during assembly
US6723038B1 (en) 2000-10-06 2004-04-20 Myocor, Inc. Methods and devices for improving mitral valve function
US6602286B1 (en) 2000-10-26 2003-08-05 Ernst Peter Strecker Implantable valve system
ITMI20011012A1 (en) * 2001-05-17 2002-11-17 Ottavio Alfieri ANNULAR PROSTHESIS FOR MITRAL VALVE
US7935145B2 (en) * 2001-05-17 2011-05-03 Edwards Lifesciences Corporation Annuloplasty ring for ischemic mitral valve insuffuciency
US6726716B2 (en) * 2001-08-24 2004-04-27 Edwards Lifesciences Corporation Self-molding annuloplasty ring
US6908482B2 (en) 2001-08-28 2005-06-21 Edwards Lifesciences Corporation Three-dimensional annuloplasty ring and template
US7367991B2 (en) * 2001-08-28 2008-05-06 Edwards Lifesciences Corporation Conformal tricuspid annuloplasty ring and template
US6805710B2 (en) * 2001-11-13 2004-10-19 Edwards Lifesciences Corporation Mitral valve annuloplasty ring for molding left ventricle geometry
US6575971B2 (en) * 2001-11-15 2003-06-10 Quantum Cor, Inc. Cardiac valve leaflet stapler device and methods thereof
US7007698B2 (en) * 2002-04-03 2006-03-07 Boston Scientific Corporation Body lumen closure
US6752828B2 (en) 2002-04-03 2004-06-22 Scimed Life Systems, Inc. Artificial valve
US7608103B2 (en) * 2002-07-08 2009-10-27 Edwards Lifesciences Corporation Mitral valve annuloplasty ring having a posterior bow
US8758372B2 (en) * 2002-08-29 2014-06-24 St. Jude Medical, Cardiology Division, Inc. Implantable devices for controlling the size and shape of an anatomical structure or lumen
US7297150B2 (en) 2002-08-29 2007-11-20 Mitralsolutions, Inc. Implantable devices for controlling the internal circumference of an anatomic orifice or lumen
EP1553897A1 (en) 2002-10-24 2005-07-20 Boston Scientific Limited Venous valve apparatus and method
US6945957B2 (en) 2002-12-30 2005-09-20 Scimed Life Systems, Inc. Valve treatment catheter and methods
US10646229B2 (en) 2003-05-19 2020-05-12 Evalve, Inc. Fixation devices, systems and methods for engaging tissue
CA2526347C (en) * 2003-05-20 2010-07-06 The Cleveland Clinic Foundation Apparatus and methods for repair of a cardiac valve
EP1648341A4 (en) * 2003-06-25 2009-01-14 Georgia Tech Res Inst Annuloplasty chain
EP1684670B1 (en) * 2003-10-03 2016-12-07 Edwards Lifesciences Corporation Annulopasty rings for repair of abnormal mitral valves.
US20060184242A1 (en) * 2003-10-20 2006-08-17 Samuel Lichtenstein Method and apparatus for percutaneous reduction of anterior-posterior diameter of mitral valve
US7854761B2 (en) 2003-12-19 2010-12-21 Boston Scientific Scimed, Inc. Methods for venous valve replacement with a catheter
US8128681B2 (en) 2003-12-19 2012-03-06 Boston Scientific Scimed, Inc. Venous valve apparatus, system, and method
US7942927B2 (en) 2004-03-15 2011-05-17 Baker Medical Research Institute Treating valve failure
US20080183285A1 (en) * 2004-06-29 2008-07-31 Micardia Corporation Adjustable cardiac valve implant with selective dimensional adjustment
US20050288777A1 (en) * 2004-06-29 2005-12-29 Rhee Richard S Thermal conductor for adjustable cardiac valve implant
EP1768611A4 (en) * 2004-07-15 2009-11-18 Micardia Corp Implants and methods for reshaping heart valves
US7566343B2 (en) 2004-09-02 2009-07-28 Boston Scientific Scimed, Inc. Cardiac valve, system, and method
CA2748617C (en) 2004-09-27 2014-09-23 Evalve, Inc. Methods and devices for tissue grasping and assessment
US8052592B2 (en) 2005-09-27 2011-11-08 Evalve, Inc. Methods and devices for tissue grasping and assessment
US20060100697A1 (en) * 2004-11-10 2006-05-11 Casanova R M Shape memory annuloplasty ring and holder
US7854755B2 (en) 2005-02-01 2010-12-21 Boston Scientific Scimed, Inc. Vascular catheter, system, and method
CN100421632C (en) * 2005-02-01 2008-10-01 金磊 Artificial heart valve forming ring
US20060173490A1 (en) 2005-02-01 2006-08-03 Boston Scientific Scimed, Inc. Filter system and method
US7878966B2 (en) 2005-02-04 2011-02-01 Boston Scientific Scimed, Inc. Ventricular assist and support device
EP3967269A3 (en) 2005-02-07 2022-07-13 Evalve, Inc. Systems and devices for cardiac valve repair
US7780722B2 (en) 2005-02-07 2010-08-24 Boston Scientific Scimed, Inc. Venous valve apparatus, system, and method
US8470028B2 (en) 2005-02-07 2013-06-25 Evalve, Inc. Methods, systems and devices for cardiac valve repair
US7670368B2 (en) 2005-02-07 2010-03-02 Boston Scientific Scimed, Inc. Venous valve apparatus, system, and method
US7867274B2 (en) 2005-02-23 2011-01-11 Boston Scientific Scimed, Inc. Valve apparatus, system and method
JP4740963B2 (en) * 2005-02-28 2011-08-03 メドテンティア インターナショナル リミテッド オイ Heart valve function improvement device
US8608797B2 (en) 2005-03-17 2013-12-17 Valtech Cardio Ltd. Mitral valve treatment techniques
US7842085B2 (en) * 2005-03-23 2010-11-30 Vaso Adzich Annuloplasty ring and holder combination
US8864823B2 (en) 2005-03-25 2014-10-21 StJude Medical, Cardiology Division, Inc. Methods and apparatus for controlling the internal circumference of an anatomic orifice or lumen
EP1861045B1 (en) 2005-03-25 2015-03-04 St. Jude Medical, Cardiology Division, Inc. Apparatus for controlling the internal circumference of an anatomic orifice or lumen
US7722666B2 (en) 2005-04-15 2010-05-25 Boston Scientific Scimed, Inc. Valve apparatus, system and method
US20060238019A1 (en) * 2005-04-21 2006-10-26 Mark Yu Brakable wheel hub device
US20060247672A1 (en) * 2005-04-27 2006-11-02 Vidlund Robert M Devices and methods for pericardial access
US8012198B2 (en) 2005-06-10 2011-09-06 Boston Scientific Scimed, Inc. Venous valve, system, and method
US7286057B2 (en) * 2005-06-20 2007-10-23 Biovigil Llc Hand cleanliness
US8685083B2 (en) * 2005-06-27 2014-04-01 Edwards Lifesciences Corporation Apparatus, system, and method for treatment of posterior leaflet prolapse
US8951285B2 (en) 2005-07-05 2015-02-10 Mitralign, Inc. Tissue anchor, anchoring system and methods of using the same
US7776084B2 (en) * 2005-07-13 2010-08-17 Edwards Lifesciences Corporation Prosthetic mitral heart valve having a contoured sewing ring
DE602006009113D1 (en) * 2005-07-15 2009-10-22 Cleveland Clinic Foundation Device for remodeling a heart valve ring
US7927371B2 (en) 2005-07-15 2011-04-19 The Cleveland Clinic Foundation Apparatus and method for reducing cardiac valve regurgitation
CN102113922B (en) * 2005-09-07 2013-03-27 梅德坦提亚国际有限公司 A device for improving the function of a heart valve
US20070055368A1 (en) * 2005-09-07 2007-03-08 Richard Rhee Slotted annuloplasty ring
US7569071B2 (en) 2005-09-21 2009-08-04 Boston Scientific Scimed, Inc. Venous valve, system, and method with sinus pocket
CA2669195C (en) 2005-12-15 2013-06-25 Georgia Tech Research Corporation Systems and methods to control the dimension of a heart valve
WO2007100410A2 (en) 2005-12-15 2007-09-07 Georgia Tech Research Corporation Systems and methods for enabling heart valve replacement
WO2007100408A2 (en) 2005-12-15 2007-09-07 Georgia Tech Research Corporation Papillary muscle position control devices, systems & methods
US7799038B2 (en) 2006-01-20 2010-09-21 Boston Scientific Scimed, Inc. Translumenal apparatus, system, and method
US7749249B2 (en) * 2006-02-21 2010-07-06 Kardium Inc. Method and device for closing holes in tissue
DE602007012691D1 (en) 2006-05-15 2011-04-07 Edwards Lifesciences Ag SYSTEM FOR CHANGING THE GEOMETRY OF THE HEART
US20070270688A1 (en) * 2006-05-19 2007-11-22 Daniel Gelbart Automatic atherectomy system
CA2653358C (en) * 2006-06-02 2012-03-13 Medtronic, Inc. Annuloplasty ring and method
US8523939B1 (en) 2006-06-12 2013-09-03 Cardica, Inc. Method and apparatus for heart valve surgery
US8449605B2 (en) 2006-06-28 2013-05-28 Kardium Inc. Method for anchoring a mitral valve
US10028783B2 (en) 2006-06-28 2018-07-24 Kardium Inc. Apparatus and method for intra-cardiac mapping and ablation
US9119633B2 (en) 2006-06-28 2015-09-01 Kardium Inc. Apparatus and method for intra-cardiac mapping and ablation
US11389232B2 (en) 2006-06-28 2022-07-19 Kardium Inc. Apparatus and method for intra-cardiac mapping and ablation
US8920411B2 (en) 2006-06-28 2014-12-30 Kardium Inc. Apparatus and method for intra-cardiac mapping and ablation
WO2008008889A2 (en) * 2006-07-12 2008-01-17 Tigran Khalapyan Annuloplasty system and surgical method
US7837610B2 (en) * 2006-08-02 2010-11-23 Kardium Inc. System for improving diastolic dysfunction
US20080058924A1 (en) * 2006-09-01 2008-03-06 Aaron Ingle Saddle-shaped annuloplasty ring
US9943409B2 (en) 2006-11-14 2018-04-17 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Transcatheter coronary sinus mitral valve annuloplasty procedure and coronary artery and myocardial protection device
EP2091465B1 (en) 2006-11-14 2018-01-31 The Government of the United States of America as represented by the Secretary of the Department of Health and Human Services Coronary artery and myocardial protection device
US9974653B2 (en) 2006-12-05 2018-05-22 Valtech Cardio, Ltd. Implantation of repair devices in the heart
WO2010004546A1 (en) 2008-06-16 2010-01-14 Valtech Cardio, Ltd. Annuloplasty devices and methods of delivery therefor
WO2008068756A2 (en) 2006-12-05 2008-06-12 Valtech Cardio, Ltd. Segmented ring placement
US11259924B2 (en) 2006-12-05 2022-03-01 Valtech Cardio Ltd. Implantation of repair devices in the heart
MX2009007289A (en) 2007-01-03 2009-09-09 Mitralsolutions Inc Implantable devices for controlling the size and shape of an anatomical structure or lumen.
US8133270B2 (en) 2007-01-08 2012-03-13 California Institute Of Technology In-situ formation of a valve
US7967853B2 (en) 2007-02-05 2011-06-28 Boston Scientific Scimed, Inc. Percutaneous valve, system and method
WO2008097999A2 (en) 2007-02-05 2008-08-14 Mitralsolutions, Inc. Minimally invasive system for delivering and securing an annular implant
CN101605511B (en) * 2007-02-09 2013-03-13 爱德华兹生命科学公司 Progressively sized annuloplasty rings
US11660190B2 (en) 2007-03-13 2023-05-30 Edwards Lifesciences Corporation Tissue anchors, systems and methods, and devices
US8828079B2 (en) 2007-07-26 2014-09-09 Boston Scientific Scimed, Inc. Circulatory valve, system and method
US8377117B2 (en) 2007-09-07 2013-02-19 Edwards Lifesciences Corporation Active holder for annuloplasty ring delivery
US20090076597A1 (en) * 2007-09-19 2009-03-19 Jonathan Micheal Dahlgren System for mechanical adjustment of medical implants
US8906011B2 (en) 2007-11-16 2014-12-09 Kardium Inc. Medical device for use in bodily lumens, for example an atrium
US7892276B2 (en) 2007-12-21 2011-02-22 Boston Scientific Scimed, Inc. Valve with delayed leaflet deployment
US8489172B2 (en) * 2008-01-25 2013-07-16 Kardium Inc. Liposuction system
US8382829B1 (en) 2008-03-10 2013-02-26 Mitralign, Inc. Method to reduce mitral regurgitation by cinching the commissure of the mitral valve
CA2753027C (en) * 2008-04-09 2016-06-14 Georgia Tech Research Corporation Annuloplasty rings and methods for heart valve repair
US8152844B2 (en) 2008-05-09 2012-04-10 Edwards Lifesciences Corporation Quick-release annuloplasty ring holder
US20090287303A1 (en) 2008-05-13 2009-11-19 Edwards Lifesciences Corporation Physiologically harmonized tricuspid annuloplasty ring
US20090287304A1 (en) 2008-05-13 2009-11-19 Kardium Inc. Medical Device for Constricting Tissue or a Bodily Orifice, for example a mitral valve
US8163010B1 (en) 2008-06-03 2012-04-24 Cardica, Inc. Staple-based heart valve treatment
EP3517075B1 (en) * 2008-09-19 2023-02-22 Edwards Lifesciences Corporation Prosthetic heart valve configured to receive a percutaneous prosthetic heart valve implantation
US8287591B2 (en) * 2008-09-19 2012-10-16 Edwards Lifesciences Corporation Transformable annuloplasty ring configured to receive a percutaneous prosthetic heart valve implantation
US9314335B2 (en) 2008-09-19 2016-04-19 Edwards Lifesciences Corporation Prosthetic heart valve configured to receive a percutaneous prosthetic heart valve implantation
EP2344075B1 (en) * 2008-09-19 2018-12-05 Edwards Lifesciences Corporation Annuloplasty ring configured to receive a percutaneous prosthetic heart valve implantation
US8545553B2 (en) 2009-05-04 2013-10-01 Valtech Cardio, Ltd. Over-wire rotation tool
US8715342B2 (en) 2009-05-07 2014-05-06 Valtech Cardio, Ltd. Annuloplasty ring with intra-ring anchoring
US8241351B2 (en) * 2008-12-22 2012-08-14 Valtech Cardio, Ltd. Adjustable partial annuloplasty ring and mechanism therefor
CN102341063B (en) 2008-12-22 2015-11-25 瓦尔泰克卡迪欧有限公司 Adjustable annuloplasty device and governor motion thereof
US8808368B2 (en) * 2008-12-22 2014-08-19 Valtech Cardio, Ltd. Implantation of repair chords in the heart
US8926697B2 (en) 2011-06-23 2015-01-06 Valtech Cardio, Ltd. Closed band for percutaneous annuloplasty
US10517719B2 (en) 2008-12-22 2019-12-31 Valtech Cardio, Ltd. Implantation of repair devices in the heart
US9011530B2 (en) 2008-12-22 2015-04-21 Valtech Cardio, Ltd. Partially-adjustable annuloplasty structure
US8940044B2 (en) 2011-06-23 2015-01-27 Valtech Cardio, Ltd. Closure element for use with an annuloplasty structure
US8147542B2 (en) 2008-12-22 2012-04-03 Valtech Cardio, Ltd. Adjustable repair chords and spool mechanism therefor
BRPI1007540A2 (en) * 2009-01-22 2016-02-16 St Jude Medical Cardiology Div device and method for adjusting at least one of the shape and size of an anatomical or lumen orifice
EP2389121B1 (en) 2009-01-22 2020-10-07 St. Jude Medical, Cardiology Division, Inc. Post-operative adjustment tool, minimally invasive attachment apparatus, and adjustable tricuspid ring
US8353956B2 (en) 2009-02-17 2013-01-15 Valtech Cardio, Ltd. Actively-engageable movement-restriction mechanism for use with an annuloplasty structure
US9968452B2 (en) 2009-05-04 2018-05-15 Valtech Cardio, Ltd. Annuloplasty ring delivery cathethers
US8523881B2 (en) 2010-07-26 2013-09-03 Valtech Cardio, Ltd. Multiple anchor delivery tool
KR101116867B1 (en) * 2009-08-28 2012-03-06 김준홍 The device for delivering optimal tension safaely and effectively in cerclage annuloplasty procedure
EP3042615A1 (en) 2009-09-15 2016-07-13 Evalve, Inc. Methods, systems and devices for cardiac valve repair
EP2482749B1 (en) 2009-10-01 2017-08-30 Kardium Inc. Kit for constricting tissue or a bodily orifice, for example, a mitral valve
US9011520B2 (en) 2009-10-29 2015-04-21 Valtech Cardio, Ltd. Tissue anchor for annuloplasty device
US9180007B2 (en) 2009-10-29 2015-11-10 Valtech Cardio, Ltd. Apparatus and method for guide-wire based advancement of an adjustable implant
US10098737B2 (en) 2009-10-29 2018-10-16 Valtech Cardio, Ltd. Tissue anchor for annuloplasty device
EP2506777B1 (en) 2009-12-02 2020-11-25 Valtech Cardio, Ltd. Combination of spool assembly coupled to a helical anchor and delivery tool for implantation thereof
KR101231140B1 (en) * 2011-08-12 2013-02-07 부산대학교 산학협력단 Appartus for cerclage annuloplasty procedure
US8870950B2 (en) 2009-12-08 2014-10-28 Mitral Tech Ltd. Rotation-based anchoring of an implant
US20110160849A1 (en) * 2009-12-22 2011-06-30 Edwards Lifesciences Corporation Bimodal tricuspid annuloplasty ring
US8449608B2 (en) * 2010-01-22 2013-05-28 Edwards Lifesciences Corporation Tricuspid ring
US9107749B2 (en) * 2010-02-03 2015-08-18 Edwards Lifesciences Corporation Methods for treating a heart
EP2549954B1 (en) * 2010-03-23 2016-08-17 Boston Scientific Scimed, Inc. Annuloplasty device
US8579964B2 (en) 2010-05-05 2013-11-12 Neovasc Inc. Transcatheter mitral valve prosthesis
US9050066B2 (en) 2010-06-07 2015-06-09 Kardium Inc. Closing openings in anatomical tissue
US8496671B1 (en) 2010-06-16 2013-07-30 Cardica, Inc. Mitral valve treatment
US11653910B2 (en) 2010-07-21 2023-05-23 Cardiovalve Ltd. Helical anchor implantation
US8518107B2 (en) 2010-08-04 2013-08-27 Valcare, Inc. Percutaneous transcatheter repair of heart valves
BR122019025550B1 (en) 2010-08-31 2020-09-29 Edwards Lifesciences Corporation PROSTHETIC TRICUSPID ANULOPLASTY RING
US8940002B2 (en) 2010-09-30 2015-01-27 Kardium Inc. Tissue anchor system
US11259867B2 (en) 2011-01-21 2022-03-01 Kardium Inc. High-density electrode-based medical device system
US9452016B2 (en) 2011-01-21 2016-09-27 Kardium Inc. Catheter system
US9480525B2 (en) 2011-01-21 2016-11-01 Kardium, Inc. High-density electrode-based medical device system
CA2764494A1 (en) 2011-01-21 2012-07-21 Kardium Inc. Enhanced medical device for use in bodily cavities, for example an atrium
US9072511B2 (en) 2011-03-25 2015-07-07 Kardium Inc. Medical kit for constricting tissue or a bodily orifice, for example, a mitral valve
US9308087B2 (en) 2011-04-28 2016-04-12 Neovasc Tiara Inc. Sequentially deployed transcatheter mitral valve prosthesis
US9554897B2 (en) 2011-04-28 2017-01-31 Neovasc Tiara Inc. Methods and apparatus for engaging a valve prosthesis with tissue
WO2012158189A1 (en) 2011-05-17 2012-11-22 Boston Scientific Scimed, Inc. Annuloplasty ring with anchors fixed by curing polymer
US8814932B2 (en) 2011-05-17 2014-08-26 Boston Scientific Scimed, Inc. Annuloplasty ring with piercing wire and segmented wire lumen
WO2012158187A1 (en) 2011-05-17 2012-11-22 Boston Scientific Scimed, Inc. Corkscrew annuloplasty device
US9402721B2 (en) 2011-06-01 2016-08-02 Valcare, Inc. Percutaneous transcatheter repair of heart valves via trans-apical access
US9918840B2 (en) 2011-06-23 2018-03-20 Valtech Cardio, Ltd. Closed band for percutaneous annuloplasty
US10792152B2 (en) 2011-06-23 2020-10-06 Valtech Cardio, Ltd. Closed band for percutaneous annuloplasty
US9668859B2 (en) 2011-08-05 2017-06-06 California Institute Of Technology Percutaneous heart valve delivery systems
US8945177B2 (en) 2011-09-13 2015-02-03 Abbott Cardiovascular Systems Inc. Gripper pusher mechanism for tissue apposition systems
US8858623B2 (en) 2011-11-04 2014-10-14 Valtech Cardio, Ltd. Implant having multiple rotational assemblies
EP3970627B1 (en) 2011-11-08 2023-12-20 Edwards Lifesciences Innovation (Israel) Ltd. Controlled steering functionality for implant-delivery tool
USD777926S1 (en) 2012-01-20 2017-01-31 Kardium Inc. Intra-cardiac procedure device
USD777925S1 (en) 2012-01-20 2017-01-31 Kardium Inc. Intra-cardiac procedure device
US9839519B2 (en) 2012-02-29 2017-12-12 Valcare, Inc. Percutaneous annuloplasty system with anterior-posterior adjustment
US9180008B2 (en) 2012-02-29 2015-11-10 Valcare, Inc. Methods, devices, and systems for percutaneously anchoring annuloplasty rings
US9017320B2 (en) 2012-05-21 2015-04-28 Kardium, Inc. Systems and methods for activating transducers
US9198592B2 (en) 2012-05-21 2015-12-01 Kardium Inc. Systems and methods for activating transducers
US10827977B2 (en) 2012-05-21 2020-11-10 Kardium Inc. Systems and methods for activating transducers
US9345573B2 (en) 2012-05-30 2016-05-24 Neovasc Tiara Inc. Methods and apparatus for loading a prosthesis onto a delivery system
US9526610B2 (en) 2012-06-12 2016-12-27 Medtronic, Inc. Method and device for percutaneous valve annuloplasty
EP2900150B1 (en) 2012-09-29 2018-04-18 Mitralign, Inc. Plication lock delivery system
WO2014064695A2 (en) 2012-10-23 2014-05-01 Valtech Cardio, Ltd. Percutaneous tissue anchor techniques
US9949828B2 (en) 2012-10-23 2018-04-24 Valtech Cardio, Ltd. Controlled steering functionality for implant-delivery tool
US9730793B2 (en) 2012-12-06 2017-08-15 Valtech Cardio, Ltd. Techniques for guide-wire based advancement of a tool
US10543085B2 (en) 2012-12-31 2020-01-28 Edwards Lifesciences Corporation One-piece heart valve stents adapted for post-implant expansion
EP3375411A1 (en) 2012-12-31 2018-09-19 Edwards Lifesciences Corporation Surgical heart valves adapted for post-implant expansion
EP2948103B1 (en) 2013-01-24 2022-12-07 Cardiovalve Ltd Ventricularly-anchored prosthetic valves
US9724084B2 (en) 2013-02-26 2017-08-08 Mitralign, Inc. Devices and methods for percutaneous tricuspid valve repair
US10449333B2 (en) 2013-03-14 2019-10-22 Valtech Cardio, Ltd. Guidewire feeder
EP2968847B1 (en) 2013-03-15 2023-03-08 Edwards Lifesciences Corporation Translation catheter systems
WO2014144247A1 (en) 2013-03-15 2014-09-18 Arash Kheradvar Handle mechanism and functionality for repositioning and retrieval of transcatheter heart valves
EP3804646A1 (en) 2013-03-15 2021-04-14 Valcare, Inc. Systems for delivery of annuloplasty rings
US9572665B2 (en) 2013-04-04 2017-02-21 Neovasc Tiara Inc. Methods and apparatus for delivering a prosthetic valve to a beating heart
US10813751B2 (en) 2013-05-22 2020-10-27 Valcare, Inc. Transcatheter prosthetic valve for mitral or tricuspid valve replacement
US20160120642A1 (en) 2013-05-24 2016-05-05 Valcare, Inc. Heart and peripheral vascular valve replacement in conjunction with a support ring
EP3013253B1 (en) 2013-06-28 2021-01-06 ValCare, Inc. Device for securing an article to a tissue
US10070857B2 (en) 2013-08-31 2018-09-11 Mitralign, Inc. Devices and methods for locating and implanting tissue anchors at mitral valve commissure
WO2015059699A2 (en) 2013-10-23 2015-04-30 Valtech Cardio, Ltd. Anchor magazine
US9610162B2 (en) 2013-12-26 2017-04-04 Valtech Cardio, Ltd. Implantation of flexible implant
US10390943B2 (en) 2014-03-17 2019-08-27 Evalve, Inc. Double orifice device for transcatheter mitral valve replacement
EP3206629B1 (en) 2014-10-14 2021-07-14 Valtech Cardio, Ltd. Apparatus for heart valve leaflet restraining
US10368936B2 (en) 2014-11-17 2019-08-06 Kardium Inc. Systems and methods for selecting, activating, or selecting and activating transducers
US10722184B2 (en) 2014-11-17 2020-07-28 Kardium Inc. Systems and methods for selecting, activating, or selecting and activating transducers
US10188392B2 (en) 2014-12-19 2019-01-29 Abbott Cardiovascular Systems, Inc. Grasping for tissue repair
EP3253333B1 (en) 2015-02-05 2024-04-03 Cardiovalve Ltd Prosthetic valve with axially-sliding frames
US20160256269A1 (en) 2015-03-05 2016-09-08 Mitralign, Inc. Devices for treating paravalvular leakage and methods use thereof
US10524912B2 (en) 2015-04-02 2020-01-07 Abbott Cardiovascular Systems, Inc. Tissue fixation devices and methods
CN114515173A (en) 2015-04-30 2022-05-20 瓦尔泰克卡迪欧有限公司 Valvuloplasty techniques
EP4265226A3 (en) * 2015-06-08 2024-01-10 Northwestern University Annuloplasty ring for receiving a replacement valve
US10314707B2 (en) 2015-06-09 2019-06-11 Edwards Lifesciences, Llc Asymmetric mitral annuloplasty band
US10376673B2 (en) 2015-06-19 2019-08-13 Evalve, Inc. Catheter guiding system and methods
US10238494B2 (en) 2015-06-29 2019-03-26 Evalve, Inc. Self-aligning radiopaque ring
CR20170597A (en) 2015-07-02 2018-04-20 Edwards Lifesciences Corp INTEGRATED HYBRID HEART VALVES
WO2017004369A1 (en) 2015-07-02 2017-01-05 Edwards Lifesciences Corporation Hybrid heart valves adapted for post-implant expansion
US10667815B2 (en) 2015-07-21 2020-06-02 Evalve, Inc. Tissue grasping devices and related methods
US10413408B2 (en) 2015-08-06 2019-09-17 Evalve, Inc. Delivery catheter systems, methods, and devices
US10238495B2 (en) 2015-10-09 2019-03-26 Evalve, Inc. Delivery catheter handle and methods of use
WO2017117370A2 (en) 2015-12-30 2017-07-06 Mitralign, Inc. System and method for reducing tricuspid regurgitation
US10751182B2 (en) 2015-12-30 2020-08-25 Edwards Lifesciences Corporation System and method for reshaping right heart
US10433952B2 (en) 2016-01-29 2019-10-08 Neovasc Tiara Inc. Prosthetic valve for avoiding obstruction of outflow
US10531866B2 (en) 2016-02-16 2020-01-14 Cardiovalve Ltd. Techniques for providing a replacement valve and transseptal communication
US11039923B2 (en) 2016-05-06 2021-06-22 Transmural Systems Llc Annuloplasty procedures, related devices and methods
US11007059B2 (en) 2016-05-06 2021-05-18 Transmural Systems Llc Annuloplasty procedures, related devices and methods
WO2019046205A1 (en) 2017-08-26 2019-03-07 Macdonald, Stuart Cardiac annuloplasty and pacing procedures, related devices and methods
JP7097351B2 (en) 2016-05-06 2022-07-07 ザ ユナイテッド ステイツ オブ アメリカ, アズ リプレゼンテッド バイ ザ セクレタリー, デパートメント オブ ヘルス アンド ヒューマン サービス Implant
US10702274B2 (en) 2016-05-26 2020-07-07 Edwards Lifesciences Corporation Method and system for closing left atrial appendage
US10736632B2 (en) 2016-07-06 2020-08-11 Evalve, Inc. Methods and devices for valve clip excision
GB201611910D0 (en) 2016-07-08 2016-08-24 Valtech Cardio Ltd Adjustable annuloplasty device with alternating peaks and troughs
CN114587712A (en) 2016-08-10 2022-06-07 卡迪尔维尔福股份有限公司 Prosthetic valve with coaxial frame
CN107753153B (en) 2016-08-15 2022-05-31 沃卡尔有限公司 Device and method for treating heart valve insufficiency
US11071564B2 (en) 2016-10-05 2021-07-27 Evalve, Inc. Cardiac valve cutting device
US10722356B2 (en) 2016-11-03 2020-07-28 Edwards Lifesciences Corporation Prosthetic mitral valve holders
US10363138B2 (en) 2016-11-09 2019-07-30 Evalve, Inc. Devices for adjusting the curvature of cardiac valve structures
US10398553B2 (en) 2016-11-11 2019-09-03 Evalve, Inc. Opposing disk device for grasping cardiac valve tissue
US10426616B2 (en) 2016-11-17 2019-10-01 Evalve, Inc. Cardiac implant delivery system
AU2017361296B2 (en) 2016-11-21 2022-09-29 Neovasc Tiara Inc. Methods and systems for rapid retraction of a transcatheter heart valve delivery system
US10779837B2 (en) 2016-12-08 2020-09-22 Evalve, Inc. Adjustable arm device for grasping tissues
US10314586B2 (en) 2016-12-13 2019-06-11 Evalve, Inc. Rotatable device and method for fixing tricuspid valve tissue
US11065110B2 (en) * 2017-01-19 2021-07-20 Regents Of The University Of Minnesota Calcified annulus model for transcatheter aortic valve replacement
CN108618871A (en) 2017-03-17 2018-10-09 沃卡尔有限公司 Bicuspid valve with multi-direction anchor portion or tricuspid valve repair system
CN110603007A (en) * 2017-03-27 2019-12-20 维维泰生物医药有限公司 Devices and methods for transcatheter mitral and tricuspid valve repair
US11045627B2 (en) 2017-04-18 2021-06-29 Edwards Lifesciences Corporation Catheter system with linear actuation control mechanism
WO2018209313A1 (en) 2017-05-12 2018-11-15 Evalve, Inc. Long arm valve repair clip
US10856984B2 (en) 2017-08-25 2020-12-08 Neovasc Tiara Inc. Sequentially deployed transcatheter mitral valve prosthesis
US10835221B2 (en) 2017-11-02 2020-11-17 Valtech Cardio, Ltd. Implant-cinching devices and systems
US11135062B2 (en) 2017-11-20 2021-10-05 Valtech Cardio Ltd. Cinching of dilated heart muscle
CR20200194A (en) * 2018-01-23 2020-11-04 Edwards Lifesciences Corp Method for pre-stretching implantable biocompatible materials, and materials and devices produced thereby
WO2019145947A1 (en) 2018-01-24 2019-08-01 Valtech Cardio, Ltd. Contraction of an annuloplasty structure
EP3743014B1 (en) 2018-01-26 2023-07-19 Edwards Lifesciences Innovation (Israel) Ltd. Techniques for facilitating heart valve tethering and chord replacement
USD944398S1 (en) 2018-06-13 2022-02-22 Edwards Lifesciences Corporation Expanded heart valve stent
AU2019301967A1 (en) 2018-07-12 2021-01-21 Edwards Lifesciences Innovation (Israel) Ltd. Annuloplasty systems and locking tools therefor
EP3829490A1 (en) 2018-07-30 2021-06-09 Edwards Lifesciences Corporation Minimally-invasive low strain annuloplasty ring
WO2020117842A1 (en) 2018-12-03 2020-06-11 Valcare, Inc. Stabilizing and adjusting tool for controlling a minimally invasive mitral / tricuspid valve repair system
US11602429B2 (en) 2019-04-01 2023-03-14 Neovasc Tiara Inc. Controllably deployable prosthetic valve
AU2020271896B2 (en) 2019-04-10 2022-10-13 Neovasc Tiara Inc. Prosthetic valve with natural blood flow
EP3972673A4 (en) 2019-05-20 2023-06-07 Neovasc Tiara Inc. Introducer with hemostasis mechanism
WO2020257643A1 (en) 2019-06-20 2020-12-24 Neovasc Tiara Inc. Low profile prosthetic mitral valve
WO2021011702A1 (en) 2019-07-15 2021-01-21 Valcare, Inc. Transcatheter bio-prosthesis member and support structure
CR20210640A (en) 2019-10-29 2022-05-30 Valtech Cardio Ltd Annuloplasty and tissue anchor technologies
WO2021126778A1 (en) 2019-12-16 2021-06-24 Edwards Lifesciences Corporation Valve holder assembly with suture looping protection
CN114452038B (en) * 2021-09-28 2023-10-03 上海翰凌医疗器械有限公司 Mitral valve forming ring with cladding substrate

Citations (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1250153A (en) * 1914-11-05 1917-12-18 Fred S Ellis Expansible bracelet.
US2667739A (en) * 1950-10-02 1954-02-02 Flaig Max Resiliently expansible multisectional metallic bands
US3746016A (en) * 1971-01-21 1973-07-17 A Goodman Elastic snood
US4042979A (en) * 1976-07-12 1977-08-23 Angell William W Valvuloplasty ring and prosthetic method
US4290151A (en) * 1979-07-31 1981-09-22 Massana Miguel P Adjustable annular prosthesis for cardiac surgery
US4489446A (en) * 1982-07-14 1984-12-25 Reed Charles C Heart valve prosthesis
US4602911A (en) * 1982-08-19 1986-07-29 General Resorts S.A. Adjustable ringprosthesis
US4865026A (en) * 1987-04-23 1989-09-12 Barrett David M Sealing wound closure device
US4917698A (en) * 1988-12-22 1990-04-17 Baxter International Inc. Multi-segmented annuloplasty ring prosthesis
US5064431A (en) * 1991-01-16 1991-11-12 St. Jude Medical Incorporated Annuloplasty ring
US5104407A (en) * 1989-02-13 1992-04-14 Baxter International Inc. Selectively flexible annuloplasty ring
US5163953A (en) * 1992-02-10 1992-11-17 Vince Dennis J Toroidal artificial heart valve stent
US5201880A (en) * 1992-01-27 1993-04-13 Pioneering Technologies, Inc. Mitral and tricuspid annuloplasty rings
US5450860A (en) * 1993-08-31 1995-09-19 W. L. Gore & Associates, Inc. Device for tissue repair and method for employing same
US5535549A (en) * 1986-06-20 1996-07-16 Highland Supply Corporation Apparatus for providing a decorative cover for a flower pot using a collar
US5593435A (en) * 1994-07-29 1997-01-14 Baxter International Inc. Distensible annuloplasty ring for surgical remodelling of an atrioventricular valve and nonsurgical method for post-implantation distension thereof to accommodate patient growth
US5593424A (en) * 1994-08-10 1997-01-14 Segmed, Inc. Apparatus and method for reducing and stabilizing the circumference of a vascular structure
US5607471A (en) * 1993-08-03 1997-03-04 Jacques Seguin Prosthetic ring for heart surgery
US5716397A (en) * 1996-12-06 1998-02-10 Medtronic, Inc. Annuloplasty device with removable stiffening element
US5824066A (en) * 1995-12-01 1998-10-20 Medtronic, Inc. Annuloplasty prosthesis
US5843178A (en) * 1996-06-20 1998-12-01 St. Jude Medical, Inc. Suture guard for annuloplasty ring
US5855601A (en) * 1996-06-21 1999-01-05 The Trustees Of Columbia University In The City Of New York Artificial heart valve and method and device for implanting the same
US5895419A (en) * 1996-09-30 1999-04-20 St. Jude Medical, Inc. Coated prosthetic cardiac device
US6019791A (en) * 1995-07-17 2000-02-01 Wood; Alfred E. Buttress for cardiac valve reconstruction
US6183512B1 (en) * 1999-04-16 2001-02-06 Edwards Lifesciences Corporation Flexible annuloplasty system
US6187040B1 (en) * 1999-05-03 2001-02-13 John T. M. Wright Mitral and tricuspid annuloplasty rings
US6210432B1 (en) * 1999-06-29 2001-04-03 Jan Otto Solem Device and method for treatment of mitral insufficiency
US6217610B1 (en) * 1994-07-29 2001-04-17 Edwards Lifesciences Corporation Expandable annuloplasty ring
US20010049558A1 (en) * 2000-01-14 2001-12-06 Liddicoat John R. Tissue annuloplasty band and apparatus and method for fashioning, sizing and implanting the same
US6402781B1 (en) * 2000-01-31 2002-06-11 Mitralife Percutaneous mitral annuloplasty and cardiac reinforcement
US6416549B1 (en) * 1999-07-19 2002-07-09 Sulzer Carbomedics Inc. Antithrombogenic annuloplasty ring having a biodegradable insert
US20020099439A1 (en) * 2000-09-29 2002-07-25 Schwartz Robert S. Venous valvuloplasty device and method
US6726716B2 (en) * 2001-08-24 2004-04-27 Edwards Lifesciences Corporation Self-molding annuloplasty ring
US20040102840A1 (en) * 1999-06-30 2004-05-27 Solem Jan Otto Method and device for treatment of mitral insufficiency
US6955689B2 (en) * 2001-03-15 2005-10-18 Medtronic, Inc. Annuloplasty band and method
US20050261765A1 (en) * 2000-09-07 2005-11-24 Liddicoat John R Fixation band for affixing a prosthetic heart valve to tissue
US7527647B2 (en) * 2000-02-02 2009-05-05 Spence Paul A Heart valve repair apparatus and methods

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU577022A1 (en) 1976-06-25 1977-10-30 Всесоюзный Научно-Исследовательский Институт Клинической И Экспериментальной Хирургии Cardiac valve prosthesis
US5290300A (en) * 1989-07-31 1994-03-01 Baxter International Inc. Flexible suture guide and holder
FR2662074A1 (en) 1990-05-17 1991-11-22 Seguin Jacques PROSTHETIC RING FOR MITRAL OR TRICUSPID ANNULOPLASTY.
FR2710254B1 (en) * 1993-09-21 1995-10-27 Mai Christian Multi-branch osteosynthesis clip with self-retaining dynamic compression.
US6309417B1 (en) * 1999-05-12 2001-10-30 Paul A. Spence Heart valve and apparatus for replacement thereof
US6610071B1 (en) 1999-07-26 2003-08-26 Beth Israel Deaconess Medical Center Suture system
EP1330189B1 (en) * 2000-06-23 2007-12-19 Viacor Incorporated Automated annular plication for mitral valve repair
US6695878B2 (en) * 2000-06-26 2004-02-24 Rex Medical, L.P. Vascular device for valve leaflet apposition
US6419696B1 (en) * 2000-07-06 2002-07-16 Paul A. Spence Annuloplasty devices and related heart valve repair methods
US20030199974A1 (en) * 2002-04-18 2003-10-23 Coalescent Surgical, Inc. Annuloplasty apparatus and methods
CA2526347C (en) * 2003-05-20 2010-07-06 The Cleveland Clinic Foundation Apparatus and methods for repair of a cardiac valve

Patent Citations (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1250153A (en) * 1914-11-05 1917-12-18 Fred S Ellis Expansible bracelet.
US2667739A (en) * 1950-10-02 1954-02-02 Flaig Max Resiliently expansible multisectional metallic bands
US3746016A (en) * 1971-01-21 1973-07-17 A Goodman Elastic snood
US4042979A (en) * 1976-07-12 1977-08-23 Angell William W Valvuloplasty ring and prosthetic method
US4290151A (en) * 1979-07-31 1981-09-22 Massana Miguel P Adjustable annular prosthesis for cardiac surgery
US4489446A (en) * 1982-07-14 1984-12-25 Reed Charles C Heart valve prosthesis
US4602911A (en) * 1982-08-19 1986-07-29 General Resorts S.A. Adjustable ringprosthesis
US5535549A (en) * 1986-06-20 1996-07-16 Highland Supply Corporation Apparatus for providing a decorative cover for a flower pot using a collar
US4865026A (en) * 1987-04-23 1989-09-12 Barrett David M Sealing wound closure device
US4917698A (en) * 1988-12-22 1990-04-17 Baxter International Inc. Multi-segmented annuloplasty ring prosthesis
US5104407A (en) * 1989-02-13 1992-04-14 Baxter International Inc. Selectively flexible annuloplasty ring
US5104407B1 (en) * 1989-02-13 1999-09-21 Baxter Int Selectively flexible annuloplasty ring
US5064431A (en) * 1991-01-16 1991-11-12 St. Jude Medical Incorporated Annuloplasty ring
US5201880A (en) * 1992-01-27 1993-04-13 Pioneering Technologies, Inc. Mitral and tricuspid annuloplasty rings
US5163953A (en) * 1992-02-10 1992-11-17 Vince Dennis J Toroidal artificial heart valve stent
US5607471A (en) * 1993-08-03 1997-03-04 Jacques Seguin Prosthetic ring for heart surgery
US5450860A (en) * 1993-08-31 1995-09-19 W. L. Gore & Associates, Inc. Device for tissue repair and method for employing same
US5593435A (en) * 1994-07-29 1997-01-14 Baxter International Inc. Distensible annuloplasty ring for surgical remodelling of an atrioventricular valve and nonsurgical method for post-implantation distension thereof to accommodate patient growth
US6217610B1 (en) * 1994-07-29 2001-04-17 Edwards Lifesciences Corporation Expandable annuloplasty ring
US5593424A (en) * 1994-08-10 1997-01-14 Segmed, Inc. Apparatus and method for reducing and stabilizing the circumference of a vascular structure
US6019791A (en) * 1995-07-17 2000-02-01 Wood; Alfred E. Buttress for cardiac valve reconstruction
US5824066A (en) * 1995-12-01 1998-10-20 Medtronic, Inc. Annuloplasty prosthesis
US5843178A (en) * 1996-06-20 1998-12-01 St. Jude Medical, Inc. Suture guard for annuloplasty ring
US5855601A (en) * 1996-06-21 1999-01-05 The Trustees Of Columbia University In The City Of New York Artificial heart valve and method and device for implanting the same
US5895419A (en) * 1996-09-30 1999-04-20 St. Jude Medical, Inc. Coated prosthetic cardiac device
US5716397A (en) * 1996-12-06 1998-02-10 Medtronic, Inc. Annuloplasty device with removable stiffening element
US6183512B1 (en) * 1999-04-16 2001-02-06 Edwards Lifesciences Corporation Flexible annuloplasty system
US6187040B1 (en) * 1999-05-03 2001-02-13 John T. M. Wright Mitral and tricuspid annuloplasty rings
US6210432B1 (en) * 1999-06-29 2001-04-03 Jan Otto Solem Device and method for treatment of mitral insufficiency
US20040102840A1 (en) * 1999-06-30 2004-05-27 Solem Jan Otto Method and device for treatment of mitral insufficiency
US6416549B1 (en) * 1999-07-19 2002-07-09 Sulzer Carbomedics Inc. Antithrombogenic annuloplasty ring having a biodegradable insert
US20010049558A1 (en) * 2000-01-14 2001-12-06 Liddicoat John R. Tissue annuloplasty band and apparatus and method for fashioning, sizing and implanting the same
US6402781B1 (en) * 2000-01-31 2002-06-11 Mitralife Percutaneous mitral annuloplasty and cardiac reinforcement
US6537314B2 (en) * 2000-01-31 2003-03-25 Ev3 Santa Rosa, Inc. Percutaneous mitral annuloplasty and cardiac reinforcement
US7527647B2 (en) * 2000-02-02 2009-05-05 Spence Paul A Heart valve repair apparatus and methods
US20050261765A1 (en) * 2000-09-07 2005-11-24 Liddicoat John R Fixation band for affixing a prosthetic heart valve to tissue
US20020099439A1 (en) * 2000-09-29 2002-07-25 Schwartz Robert S. Venous valvuloplasty device and method
US6955689B2 (en) * 2001-03-15 2005-10-18 Medtronic, Inc. Annuloplasty band and method
US6726716B2 (en) * 2001-08-24 2004-04-27 Edwards Lifesciences Corporation Self-molding annuloplasty ring
US7063722B2 (en) * 2001-08-24 2006-06-20 Edwards Lifesciences, Llc Method of implanting a self-molding annuloplasty ring

Cited By (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8267852B2 (en) 1997-01-02 2012-09-18 Edwards Lifesciences, Llc Heart wall tension reduction apparatus and method
US8460173B2 (en) 1997-01-02 2013-06-11 Edwards Lifesciences, Llc Heart wall tension reduction apparatus and method
US7883539B2 (en) 1997-01-02 2011-02-08 Edwards Lifesciences Llc Heart wall tension reduction apparatus and method
US20030158570A1 (en) * 2000-04-13 2003-08-21 Paolo Ferrazzi Endoventicular device for the treatment and correction of cardiomyopathies
US20110066235A1 (en) * 2000-04-13 2011-03-17 Cube S.R.L. Endoventicular device for the treatment and correction of cardiomyopathies
US8622884B2 (en) 2000-04-13 2014-01-07 Cube S.R.L. Endoventicular device for the treatment and correction of cardiomyopathies
US7731649B2 (en) 2000-04-13 2010-06-08 Cube S.R.L. Endoventicular device for the treatment and correction of cardiomyopathies
US8506624B2 (en) 2002-01-09 2013-08-13 Edwards Lifesciences, Llc Devices and methods for heart valve treatment
US7678145B2 (en) 2002-01-09 2010-03-16 Edwards Lifesciences Llc Devices and methods for heart valve treatment
US8070805B2 (en) 2002-01-09 2011-12-06 Edwards Lifesciences Llc Devices and methods for heart valve treatment
US7666224B2 (en) 2002-11-12 2010-02-23 Edwards Lifesciences Llc Devices and methods for heart valve treatment
US8502681B2 (en) 2005-06-20 2013-08-06 Biovigil, Llc Hand cleanliness
US10713925B2 (en) 2005-06-20 2020-07-14 Biovigil Hygiene Technologies, Llc Hand cleanliness
US9728069B2 (en) 2005-06-20 2017-08-08 BioVigil Hygience Technologies, LLC Hand cleanliness
US9013312B2 (en) 2005-06-20 2015-04-21 Biovigil Hygiene Technologies, Llc Hand cleanliness
US20070008149A1 (en) * 2005-06-20 2007-01-11 Bolling Steven F Hand cleanliness
US7936275B2 (en) 2005-06-20 2011-05-03 Biovigil, Llc Hand cleanliness
US7982619B2 (en) 2005-06-20 2011-07-19 Biovigil, Llc Hand cleanliness
US11538329B2 (en) 2005-06-20 2022-12-27 Biovigil Hygiene Technologies, Llc Hand cleanliness
US20110093065A1 (en) * 2006-10-06 2011-04-21 Edwards Lifesciences Corporation Mitral and Tricuspid Annuloplasty Rings
US8382828B2 (en) * 2006-10-06 2013-02-26 Edwards Lifesciences Corporation Mitral annuloplasty rings
US7879087B2 (en) * 2006-10-06 2011-02-01 Edwards Lifesciences Corporation Mitral and tricuspid annuloplasty rings
US20080086203A1 (en) * 2006-10-06 2008-04-10 Roberts Harold G Mitral and tricuspid annuloplasty rings
US9192471B2 (en) 2007-01-08 2015-11-24 Millipede, Inc. Device for translumenal reshaping of a mitral valve annulus
US20100249920A1 (en) * 2007-01-08 2010-09-30 Millipede Llc Reconfiguring heart features
US20100121433A1 (en) * 2007-01-08 2010-05-13 Millipede Llc, A Corporation Of Michigan Reconfiguring heart features
WO2008086172A3 (en) * 2007-01-08 2008-09-12 Biovigil Llc Reconfiguring heart features
US20080167713A1 (en) * 2007-01-08 2008-07-10 Bolling Steven F Reconfiguring Heart Features
US8529620B2 (en) 2007-05-01 2013-09-10 Ottavio Alfieri Inwardly-bowed tricuspid annuloplasty ring
US8337390B2 (en) 2008-07-30 2012-12-25 Cube S.R.L. Intracardiac device for restoring the functional elasticity of the cardiac structures, holding tool for the intracardiac device, and method for implantation of the intracardiac device in the heart
US20100030014A1 (en) * 2008-07-30 2010-02-04 Cube S.R.L. Intracardiac device for restoring the functional elasticity of the cardiac structures, holding tool for the intracardiac device, and method for implantation of the intracardiac device in the heart
US9326858B2 (en) 2010-08-24 2016-05-03 Edwards Lifesciences Corporation Flexible annuloplasty ring
US10940003B2 (en) 2010-08-24 2021-03-09 Edwards Lifesciences Corporation Methods of delivering a flexible annuloplasty ring
WO2012027500A3 (en) * 2010-08-24 2012-05-31 Edwards Lifesciences Corporation Flexible annuloplasty ring with select control points
CN103179920A (en) * 2010-08-24 2013-06-26 爱德华兹生命科学公司 Flexible annuloplasty ring with select control points
US10524911B2 (en) 2010-08-24 2020-01-07 Edwards Lifesciences Corporation Flexible annuloplasty ring with select control points
US10182912B2 (en) 2010-08-24 2019-01-22 Edwards Lifesciences Corporation Methods of delivering a flexible annuloplasty ring
US9795480B2 (en) 2010-08-24 2017-10-24 Millipede, Inc. Reconfiguring tissue features of a heart annulus
US10543089B2 (en) 2010-11-30 2020-01-28 Edwards Lifesciences Corporation Annuloplasty ring with reduced dehiscence
US11872132B2 (en) 2010-11-30 2024-01-16 Edwards Lifesciences Corporation Methods of implanting an annuloplasty ring for reduced dehiscence
US9474607B2 (en) 2010-11-30 2016-10-25 Edwards Lifesciences Corporation Methods of implanting an annuloplasty ring for reduced dehiscence
US8932350B2 (en) 2010-11-30 2015-01-13 Edwards Lifesciences Corporation Reduced dehiscence annuloplasty ring
US10849755B2 (en) 2012-09-14 2020-12-01 Boston Scientific Scimed, Inc. Mitral valve inversion prostheses
US10543088B2 (en) 2012-09-14 2020-01-28 Boston Scientific Scimed, Inc. Mitral valve inversion prostheses
US11045319B2 (en) 2013-03-14 2021-06-29 Edwards Lifesciences Corporation Methods of forming heat set annuloplasty rings
US9687346B2 (en) 2013-03-14 2017-06-27 Edwards Lifesciences Corporation Multi-stranded heat set annuloplasty rings
US10265171B2 (en) 2013-03-14 2019-04-23 Edwards Lifesciences Corporation Multi-stranded heat set annuloplasty rings
US9180005B1 (en) 2014-07-17 2015-11-10 Millipede, Inc. Adjustable endolumenal mitral valve ring
US9622862B2 (en) 2014-07-17 2017-04-18 Millipede, Inc. Prosthetic mitral valve with adjustable support
US10695160B2 (en) 2014-07-17 2020-06-30 Boston Scientific Scimed, Inc. Adjustable endolumenal implant for reshaping the mitral valve annulus
US9615926B2 (en) 2014-07-17 2017-04-11 Millipede, Inc. Adjustable endolumenal implant for reshaping the mitral valve annulus
US10136985B2 (en) 2014-07-17 2018-11-27 Millipede, Inc. Method of reconfiguring a mitral valve annulus
US9913706B2 (en) 2014-07-17 2018-03-13 Millipede, Inc. Adjustable endolumenal implant for reshaping the mitral valve annulus
US11918462B2 (en) 2015-02-13 2024-03-05 Boston Scientific Scimed, Inc. Valve replacement using moveable restraints and angled struts
US10258466B2 (en) 2015-02-13 2019-04-16 Millipede, Inc. Valve replacement using moveable restrains and angled struts
US9848983B2 (en) 2015-02-13 2017-12-26 Millipede, Inc. Valve replacement using rotational anchors
US11166817B2 (en) 2015-06-01 2021-11-09 Edwards Lifesciences Corporation Cardiac valve repair devices configured for percutaneous delivery
US10278819B2 (en) 2015-06-01 2019-05-07 Edwards Lifesciences Corporation Cardiac valve repair devices configured for percutaneous delivery
US10335275B2 (en) 2015-09-29 2019-07-02 Millipede, Inc. Methods for delivery of heart valve devices using intravascular ultrasound imaging
US10555813B2 (en) 2015-11-17 2020-02-11 Boston Scientific Scimed, Inc. Implantable device and delivery system for reshaping a heart valve annulus
US10548731B2 (en) 2017-02-10 2020-02-04 Boston Scientific Scimed, Inc. Implantable device and delivery system for reshaping a heart valve annulus
US11069220B2 (en) 2017-07-10 2021-07-20 Biovigil Hygiene Technologies, Llc Hand cleanliness monitoring
US11704992B2 (en) 2017-07-10 2023-07-18 Biovigil Hygiene Technologies, Llc Hand cleanliness monitoring
CN109620474A (en) * 2018-11-24 2019-04-16 中国医学科学院阜外医院 Type of extension tricuspid valve forming ring

Also Published As

Publication number Publication date
US20040162611A1 (en) 2004-08-19
WO2003017874A1 (en) 2003-03-06
EP2133040A3 (en) 2012-08-15
US7063722B2 (en) 2006-06-20
ATE446727T1 (en) 2009-11-15
US20030040793A1 (en) 2003-02-27
EP1418865B1 (en) 2009-10-28
EP2133040A2 (en) 2009-12-16
CA2456991A1 (en) 2003-03-06
US6726716B2 (en) 2004-04-27
DE60234189D1 (en) 2009-12-10
EP1418865A1 (en) 2004-05-19

Similar Documents

Publication Publication Date Title
US7063722B2 (en) Method of implanting a self-molding annuloplasty ring
US11173032B2 (en) Transcatheter device for treating mitral regurgitation
US20210338427A1 (en) Axisymmetric adjustable device for treating mitral regurgitation
US10610355B2 (en) Heart valve anchoring device
US6869444B2 (en) Low invasive implantable cardiac prosthesis and method for helping improve operation of a heart valve
US7160322B2 (en) Implantable cardiac prosthesis for mitigating prolapse of a heart valve
US6231602B1 (en) Aortic annuloplasty ring
JP7111610B2 (en) Implantable Heart Valve Devices, Mitral Valve Repair Devices, and Related Systems and Methods
US6805711B2 (en) Expandable medical implant and percutaneous delivery
US8512403B2 (en) Annuloplasty ring with wing members for repair of a cardiac valve
US20080195200A1 (en) Devices and methods for heart valve treatment
WO2005055811A2 (en) Methods and apparatus for mitral valve repair
US20190365539A1 (en) Reverse ventricular remodeling and papillary muscle approximation
US20230181320A1 (en) Expandable annuloplasty rings
AU2002324750A1 (en) Self-molding annuloplasty ring
WO2023235518A1 (en) Adjustable annuloplasty ring

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION