US20060207760A1 - Collapsible expansion cone - Google Patents

Collapsible expansion cone Download PDF

Info

Publication number
US20060207760A1
US20060207760A1 US10/517,755 US51775505A US2006207760A1 US 20060207760 A1 US20060207760 A1 US 20060207760A1 US 51775505 A US51775505 A US 51775505A US 2006207760 A1 US2006207760 A1 US 2006207760A1
Authority
US
United States
Prior art keywords
expansion cone
support member
tubular
tubular support
coupled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/517,755
Inventor
Brock Watson
David Brisco
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US10/517,755 priority Critical patent/US20060207760A1/en
Publication of US20060207760A1 publication Critical patent/US20060207760A1/en
Priority to US11/552,703 priority patent/US7546881B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B33/00Sealing or packing boreholes or wells
    • E21B33/10Sealing or packing boreholes or wells in the borehole
    • E21B33/12Packers; Plugs
    • E21B33/126Packers; Plugs with fluid-pressure-operated elastic cup or skirt
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/02Subsoil filtering
    • E21B43/10Setting of casings, screens, liners or the like in wells
    • E21B43/103Setting of casings, screens, liners or the like in wells of expandable casings, screens, liners, or the like
    • E21B43/105Expanding tools specially adapted therefor

Definitions

  • This invention relates generally to oil and gas exploration, and in particular to forming and repairing wellbore casings to facilitate oil and gas exploration.
  • a relatively large borehole diameter is required at the upper part of the wellbore.
  • Such a large borehole diameter involves increased costs due to heavy casing handling equipment, large drill bits and increased volumes of drilling fluid and drill cuttings.
  • increased drilling rig time is involved due to required cement pumping, cement hardening, required equipment changes due to large variations in hole diameters drilled in the course of the well, and the large volume of cuttings drilled and removed.
  • the present invention is directed to overcoming one or more of the limitations of the existing procedures for forming new sections of casing in a wellbore.
  • an apparatus for radially expanding and plastically deforming an expandable tubular member includes an upper tubular support member defining a first passage, one or more cup seals coupled to the exterior surface of the upper tubular support member for sealing an interface between the upper tubular support member and the expandable tubular member, an upper cam assembly coupled to the upper tubular support member comprising: a tubular base coupled to the upper tubular support member, and a plurality of cam arms extending from the tubular base in a downward longitudinal direction, each cam arm defining an inclined surface, a plurality of upper expansion cone segments interleaved with the cam arms of the upper cam assembly and pivotally coupled to the tubular support member, a lower tubular support member defining a second passage fluidicly coupled to the first passage releasably coupled to the upper tubular support member, and a lower cam assembly coupled to the lower tubular support member comprising: a tubular base coupled to the lower tubular support member, and a plurality of cam arms extending from the tub
  • a collapsible expansion cone assembly includes an upper tubular support member comprising an internal flange, an upper cam assembly coupled to the upper tubular support member comprising: a tubular base coupled to the upper support member, and a plurality of cam arms extending from the tubular base in a downward longitudinal direction, each cam arm defining an inclined surface, a plurality of upper expansion cone segments interleaved with the cam arms of the upper cam assembly and pivotally coupled to the internal flange of the upper tubular support member, a lower tubular support member comprising an internal flange, one or more frangible couplings for releasably coupling the upper and lower tubular support members, a lower cam assembly coupled to the lower tubular support member comprising: a tubular base coupled to the lower tubular support member, and a plurality of cam arms extending from the tubular base in an upward longitudinal direction, each cam arm defining an inclined surface that mates with the inclined surface of a corresponding one of the upper expansion cone
  • an apparatus for radially expanding and plastically deforming an expandable tubular member includes a tubular support member, a collapsible expansion cone coupled to the tubular support member, an expandable tubular member coupled to the collapsible expansion cone, means for displacing the collapsible expansion cone relative to the expandable tubular member, and means for collapsing the expansion cone.
  • a collapsible expansion cone that includes an upper cam assembly comprising: a tubular base, and a plurality of cam arms extending from the tubular base in a downward longitudinal direction, each cam arm defining an inclined surface, a plurality of upper expansion cone segments interleaved with the cam arms of the upper cam assembly, a lower cam assembly comprising: a tubular base, and a plurality of cam arms extending from the tubular base in an upward longitudinal direction, each cam arm defining an inclined surface that mates with the inclined surface of a corresponding one of the upper expansion cone segments, wherein the cams arms of the upper cam assembly are interleaved with and overlap the cam arms of the lower cam assembly, a plurality of lower expansion cone segments interleaved with cam arms of the lower cam assembly, each lower expansion cone segment mating with the inclined surface of a corresponding one of the cam arms of the upper cam assembly, means for moving the upper cam assembly away from the lower expansion cone segments, and means for moving the lower cam assembly
  • an apparatus for radially expanding and plastically deforming an expandable tubular member includes a tubular support member, a collapsible expansion cone coupled to the tubular support member, an expandable tubular member coupled to the collapsible expansion cone, means for displacing the collapsible expansion cone relative to the expandable tubular member, and means for collapsing the expansion cone.
  • a collapsible expansion cone that includes an upper cam assembly comprising: a tubular base, and a plurality of cam arms extending from the tubular base in a downward longitudinal direction, each cam arm defining an inclined surface, a plurality of upper expansion cone segments interleaved with the cam arms of the upper cam assembly, a lower cam assembly comprising: a tubular base, and a plurality of cam arms extending from the tubular base in an upward longitudinal direction, each cam arm defining an inclined surface that mates with the inclined surface of a corresponding one of the upper expansion cone segments, wherein the cams arms of the upper cam assembly are interleaved with and overlap the cam arms of the lower cam assembly, a plurality of lower expansion cone segments interleaved with cam arms of the lower cam assembly, each lower expansion cone segment mating with the inclined surface of a corresponding one of the cam arms of the upper cam assembly, means for moving the upper cam assembly away from the lower expansion cone segments, and means for moving the lower cam assembly away
  • a method of radially expanding and plastically deforming an expandable tubular member includes supporting the expandable tubular member using a tubular support member and a collapsible expansion cone, injecting a fluidic material into the tubular support member, sensing the operating pressure of the injected fluidic material within a first interior portion of the tubular support member, displacing the collapsible expansion cone relative to the expandable tubular member when the sensed operating pressure of the injected fluidic material exceeds a predetermined level within the first interior portion of the tubular support member, sensing the operating pressure of the injected fluidic material within a second interior portion of the tubular support member, and collapsing the collapsible expansion cone when the sensed operating pressure of the injected fluidic material exceeds a predetermined level within the second interior portion of the tubular support member.
  • FIG. 1 a is a fragmentary cross-sectional illustration of the placement of a portion of an exemplary embodiment of an apparatus for radially expanding and plastically deforming a tubular member that includes a collapsible expansion cone within a preexisting structure.
  • FIG. 1 b is a fragmentary cross-sectional illustration of another portion of the apparatus of FIG. 1 a.
  • FIGS. 2 a and 2 b are fragmentary cross-sectional illustration of a portion of the apparatus of FIGS. 1 a and 1 b.
  • FIG. 3 is a fragmentary cross-sectional illustration of a portion of the apparatus of FIGS. 1 a and 1 b.
  • FIG. 3 a is a fragmentary cross-sectional illustration of a portion of the apparatus of FIG. 3 .
  • FIG. 3 b is a fragmentary cross-sectional illustration of a portion of the apparatus of FIG. 3 .
  • FIG. 4 is a fragmentary cross-sectional illustration of a portion of the apparatus of FIGS. 1 a and 1 b.
  • FIG. 4 a is a fragmentary cross-sectional illustration of a portion of the apparatus of FIG. 4 .
  • FIG. 5 is a fragmentary cross-sectional illustration of a portion of the apparatus of FIGS. 1 a and 1 b.
  • FIG. 6 is a fragmentary cross-sectional illustration of a portion of the apparatus of FIGS. 1 a and 1 b.
  • FIGS. 7 a - 7 e are fragmentary cross-sectional and perspective illustrations of the upper cam assembly of the apparatus of FIGS. 1 a and 1 b.
  • FIG. 7 f is a fragmentary cross-sectional illustration of the lower cam assembly of the apparatus of FIGS. 1 a and 1 b.
  • FIGS. 8 a - 8 d are fragmentary cross-sectional and perspective illustrations of one of the upper cone segments of the apparatus of FIGS. 1 a and 1 b.
  • FIG. 8 e is a fragmentary cross-sectional illustration of one of the lower cone segments of the apparatus of FIGS. 1 a and 1 b.
  • FIG. 9 is a side view of a portion of the apparatus of FIGS. 1 a and 1 b.
  • FIG. 10 a is a fragmentary cross sectional illustration of a portion of the apparatus of FIGS. 1 a and 1 b during the radial expansion of the expandable tubular member.
  • FIG. 10 b is a fragmentary cross sectional illustration of another portion of the apparatus of FIG. 10 a.
  • FIG. 11 a is a fragmentary cross sectional illustration of a portion of the apparatus of FIGS. 10 a and 10 b during the adjustment of the expansion cone to a collapsed position.
  • FIG. 11 b is a fragmentary cross sectional illustration of another portion of the apparatus of FIG. 11 a.
  • FIG. 12 is a fragmentary cross sectional illustration of a portion of the apparatus of FIGS. 11 a and 11 b.
  • FIG. 13 is a fragmentary cross sectional illustration of a portion of the apparatus of FIGS. 11 a and 11 b.
  • FIG. 14 is a fragmentary cross sectional illustration of a portion of the apparatus of FIGS. 11 a and 11 b with the expansion cone in a half collapsed position.
  • FIG. 15 is a fragmentary cross sectional illustration of a portion of the apparatus of FIGS. 11 a and 11 b with the expansion cone in a fully collapsed position.
  • FIG. 16 is a side view of a portion of the apparatus of FIGS. 10 a and 10 b.
  • FIG. 17 a is a fragmentary cross sectional illustration of a portion of the apparatus of FIGS. 11 a and 11 b after the removal of the apparatus from interior of the expandable tubular member.
  • FIG. 17 b is a fragmentary cross sectional illustration of another portion of the apparatus of FIG. 17 a.
  • FIG. 18 is a fragmentary cross sectional illustration of a cup seal.
  • FIG. 19 a is a fragmentary cross sectional illustration of an alternative embodiment of a cup seal.
  • FIG. 19 b is a fragmentary cross sectional illustration of an alternative embodiment of a cup seal.
  • FIG. 19 c is a fragmentary cross sectional illustration of an alternative embodiment of a cup seal.
  • FIG. 19 d is a fragmentary cross sectional illustration of an alternative embodiment of a cup seal.
  • FIG. 19 e is a fragmentary cross sectional illustration of an alternative embodiment of a cup seal.
  • an exemplary embodiment of an apparatus 10 for radially expanding and plastically deforming a tubular member includes a tubular support member 12 that defines a passage 12 a .
  • An end of the tubular support member 12 is coupled to an end of a safety collar 14 that defines a passage 14 a , a recess 14 b at one end for receiving the end of the tubular support member, and recesses 14 c and 14 d at another end.
  • a torque plate 16 is received within and is coupled to the recess 14 c of the safety collar 14 that defines a passage 16 a and a plurality of meshing teeth 16 b at one end.
  • An end of an upper mandrel collar 18 is received with and is coupled to the recess 14 d of the safety collar 14 proximate and end of the torque plate 16 that defines a passage 18 a .
  • Torque pins 20 a and 20 b further couple the end of the upper mandrel collar 18 to the end of the safety collar 14 .
  • An end of an upper mandrel 22 is received within and is coupled to the upper mandrel collar 18 that defines a passage 22 a , a plurality of meshing teeth 22 b that mate with and transmit torque to and from the meshing teeth 16 b of the torque plate 16 , and an external flange 22 c at another end.
  • An upper cup seal or packer cup 24 mates with, receives and is coupled to the upper mandrel 22 proximate the end of the upper mandrel collar 18 .
  • An upper spacer sleeve 26 mates with, receives, and is coupled to the upper mandrel 22 proximate an end of the upper packer cup 24 .
  • a lower cup seal or packer cup 28 mates with, receives and is coupled to the upper mandrel 22 proximate an end of the upper spacer sleeve 26 .
  • the packer cups 24 and 28 may be GuibersonTM packer cups.
  • Guiberson packer cup is discussed in detail below in reference to FIG. 18 .
  • Alternative embodiments of packer cups 24 and 28 are discussed below in reference to FIGS. 19 a - 19 e.
  • a lower spacer sleeve 30 mates with, receives, and is coupled to the upper mandrel 22 proximate an end of the lower packer cup 28 and the external flange 22 c of the upper mandrel.
  • a retaining sleeve 32 mates with, receives, and is coupled to an end of the lower spacer sleeve proximate the external flange 22 c of the upper mandrel 22 .
  • An end of a lower mandrel 34 defines a recess 34 a that mates with, receives, and is coupled to the external flange 22 c of the upper mandrel 22 , a recess 34 b that mates with, receives, and is coupled to the end of the upper mandrel, a passage 34 c , and an external flange 34 d including circumferentially spaced apart meshing teeth 34 da on an end face of the external flange.
  • Torque pins 36 a and 36 b further couple the recess 34 a of the end of the lower mandrel 34 to the external flange 22 c of the upper mandrel 22 .
  • the torque pins 36 a and 36 b transmit torque loads between the recess 34 a of the end of the lower mandrel 34 and the external flange 22 c of the upper mandrel 22 .
  • An upper cam assembly 38 includes a tubular base 38 a for receiving and mating with the lower mandrel 34 that includes an external flange 38 aa , a plurality of circumferentially spaced apart meshing teeth 38 b that extend from one end of the tubular base in the longitudinal and radial directions for engaging the meshing teeth 34 da of the end face of the external flange 34 d of the lower mandrel, and a plurality of circumferentially spaced apart cam arms 38 c that extend from the other end of the tubular base in the opposite longitudinal direction and mate with and receive the lower mandrel.
  • each of the cam arms 38 c include an inner portion 38 ca extending from the tubular base 38 a that has arcuate cylindrical inner and outer surfaces, 38 caa and 38 cab , a tapered intermediate portion 38 cb extending from the inner portion that has an arcuate cylindrical inner surface 38 cba and an arcuate conical outer surface 38 cbb , and an outer portion 38 cc extending from the intermediate portion that has arcuate cylindrical inner and outer surfaces, 38 cca and 38 ccb .
  • the radius of curvatures of the arcuate outer cylindrical surfaces 38 cab are greater than the radius of curvatures of the arcuate outer cylindrical surfaces 38 ccb .
  • the radius of curvatures of the arcuate inner cylindrical surfaces, 38 caa , 38 cba , and 38 cca are equal.
  • a lower cam assembly 40 includes a tubular base 40 a for receiving and mating with the lower mandrel 34 that includes an external flange 40 aa , a plurality of circumferentially spaced apart meshing teeth 40 b that extend from one end of the tubular base in the longitudinal and radial directions, and a plurality of circumferentially spaced apart cam arms 40 c that extend from the other end of the tubular base in the opposite longitudinal direction and mate with and receive the lower mandrel.
  • Each of the cam arms 40 c include an inner portion 40 ca extending from the tubular base 40 a that has arcuate cylindrical inner and outer surfaces, 40 caa and 40 cab , a tapered intermediate portion 40 cb extending from the inner portion 40 ca that has an arcuate cylindrical inner surface 40 cba and an arcuate conical outer surface 40 cbb , and an outer portion 40 cc extending from the intermediate portion that has arcuate cylindrical inner and outer surfaces, 40 cca and 40 ccb .
  • the radius of curvatures of the arcuate outer cylindrical surfaces 40 cab are greater than the radius of curvatures the arcuate outer cylindrical surfaces 40 ccb .
  • the radius of curvatures of the arcuate inner cylindrical surfaces, 40 caa , 40 cba , and 40 cca are equal.
  • the upper and lower cam assemblies, 38 and 40 are substantially identical.
  • the cam arms 38 c of the upper cam assembly 38 interleave the cam arms 40 c of the lower cam assembly 40 .
  • the cam arms 38 c of the upper cam assembly also overlap with the cam arms 40 c of the lower cam assembly 40 in the longitudinal direction thereby permitting torque loads to be transmitted between the upper and lower cam assemblies.
  • An end of an upper retaining sleeve 42 receives and is threadably coupled to the external flange 34 d of the lower mandrel 34 that defines a passage 42 a for receiving and mating with the outer circumferential surfaces of the external flange 38 aa and the meshing teeth 38 b of the upper cam assembly 38 , and an inner annular recess 42 b , and includes an internal flange 42 c for retaining the external flange 38 aa of the upper cam assembly, and an internal flange 42 d at one end of the upper retaining sleeve that includes a rounded interior end face.
  • An o-ring seal 44 is received within the annular recess 42 b for sealing the interface between the upper retaining sleeve 42 and the external flange 34 d of the lower mandrel 34 .
  • a disc shaped shim 43 is positioned within the upper retaining sleeve 42 between the opposing end faces of the internal flange 42 c of the retaining sleeve and the meshing teeth 38 b of the upper cam assembly 38 .
  • the arcuate inner cylindrical surfaces 44 aaa mate with and receive the lower mandrel 34
  • the arcuate inner cylindrical surfaces 44 aab mate with and receive the arcuate cylindrical outer surfaces 40 ccb of the outer portions 40 cc of the corresponding cam arms 40 c of the lower cam assembly 40
  • the arcuate inner conical surfaces 44 ba mate with and receive the arcuate conical outer surfaces 40 cbb of the intermediate portions 40 cb of the corresponding cam arms of the lower cam assembly.
  • the radius of curvature of the arcuate cylindrical inner surface 44 aaa is less than the radius of curvature of the arcuate cylindrical inner surface 44 aab . In an exemplary embodiment, the radius of curvature of the arcuate cylindrical inner surface 44 ca is greater than the radius of curvature of the arcuate cylindrical surface 44 aab . In an exemplary embodiment, the arcuate cylindrical inner surfaces, 44 aaa and 44 aab , are parallel. In an exemplary embodiment, the arcuate cylindrical outer surface 44 ab is inclined relative to the arcuate cylindrical inner surface 44 aaa .
  • the arcuate cylindrical outer surface 44 bba is parallel to the arcuate cylindrical inner surfaces, 44 aaa and 44 aab .
  • the arcuate cylindrical outer surface 44 cb is inclined relative to the arcuate cylindrical inner surface 44 ca.
  • a plurality of lower expansion cone segments 46 are interleaved among, and overlap, the upper expansion cone segments 44 and the cam arms 38 c of the lower cam assembly 38 . In this manner, torque loads may be transmitted between the upper and lower expansion cone segments, 44 and 46 .
  • Each of the lower expansion cone segments 46 include inner portions 46 a having arcuate cylindrical inner surfaces, 46 aaa and 46 aab , and an arcuate cylindrical outer surface 46 ab , intermediate portions 46 b extending from the interior portions that have an arcuate conical inner surface 46 ba and arcuate cylindrical and spherical outer surfaces, 46 bba and 46 bbb , and outer portions 46 c having arcuate cylindrical inner and outer surfaces, 46 ca and 46 cb .
  • the outer surfaces 46 ab of the inner portions 46 a of the upper expansion cone segments 46 define hinge grooves 46 aba.
  • the arcuate inner cylindrical surfaces 46 aaa mate with and receive the lower mandrel 34
  • the arcuate inner cylindrical surfaces 46 aab mate with and receive the arcuate cylindrical outer surfaces 38 ccb of the outer portions 38 cc of the corresponding cam arms 38 c of the upper cam assembly 38
  • the arcuate inner conical surfaces 46 ba mate with and receive the arcuate conical outer surfaces 38 cbb of the intermediate portions 38 cb of the corresponding cam arms of the lower cam assembly.
  • the radius of curvature of the arcuate cylindrical inner surface 46 aaa is less than the radius of curvature of the arcuate cylindrical inner surface 46 aab .
  • the radius of curvature of the arcuate cylindrical inner surface 46 ca is greater than the radius of curvature of the arcuate cylindrical surface 46 aab .
  • the arcuate cylindrical inner surfaces, 46 aaa and 46 aab are parallel.
  • the arcuate cylindrical outer surface 46 ab is inclined relative to the arcuate cylindrical inner surface 46 aaa .
  • the arcuate cylindrical outer surface 46 bba is parallel to the arcuate cylindrical inner surfaces, 46 aaa and 46 aab .
  • the arcuate cylindrical outer surface 46 cb is inclined relative to the arcuate cylindrical inner surface 46 ca.
  • the geometries of the upper and lower expansion cone segments 44 and 46 are substantially identical.
  • the upper expansion cone segments 44 are tapered in the longitudinal direction from the ends of the intermediate portions 44 b to the ends of the outer portions 44 c
  • the lower expansion cone segments 46 are tapered in the longitudinal direction from the ends of the intermediate portions 46 b to the ends of the outer portions 46 c .
  • the arcuate cylindrical outer surfaces, 44 bba and 46 cb , of the upper and lower expansion cone segments define a contiguous cylindrical surface
  • the arcuate spherical outer surfaces, 44 bbb and 46 bbb , of the upper and lower expansion cone segments define an contiguous arcuate spherical surface
  • the arcuate cylindrical outer surfaces, 44 cb and 46 bba , of the upper and lower expansion cone segments define a contiguous cylindrical surface.
  • An end of a lower retaining sleeve 48 defines a passage 48 a for receiving and mating with the outer circumferential surfaces of the external flange 40 aa and the meshing teeth 40 b of the lower cam assembly 40 , and an inner annular recess 48 b , and includes an internal flange 48 c for retaining the external flange of the lower cam assembly, and an internal flange 48 d at one end of the lower retaining sleeve that includes a rounded interior end face for mating with the hinge grooves 46 aba of the lower expansion cone segments 46 thereby pivotally coupling the lower expansion cone segments to the lower retaining sleeve.
  • An o-ring seal 50 is received within the annular recess 48 b .
  • a disc shaped shim 49 is positioned within the lower retaining sleeve 48 between the opposing end faces of the internal flange 48 c of the retaining sleeve and the external flange 40 aa of the lower cam assembly 40 .
  • the arcuate cylindrical outer surfaces 44 bba of the upper expansion cone segments 44 and the arcuate cylindrical outer surfaces 46 cb of the lower expansion cone segments 46 are aligned with the outer surface of the upper retaining sleeve 42 .
  • the arcuate cylindrical outer surfaces 44 cb of the upper expansion cone segments 44 and the arcuate cylindrical outer surfaces 46 bba of the lower expansion cone segments are aligned with the outer surface of the lower retaining sleeve 48 .
  • An end of a retaining sleeve 52 abuts the end face of the tubular base 40 a of the lower cam assembly 40 and is received within and mates with the passage 50 b of the float shoe adaptor 50 that defines a passage 52 a for receiving an end of the lower mandrel 34 , a throat passage 52 b including a ball valve seat 52 c , and includes a flange 52 d , and another end of the retaining sleeve, having a reduced outside diameter, is received within and mates with the passage 50 c of the float shoe adaptor 50 .
  • An end of a float shoe 64 mates with and is releasably coupled to the torsional coupling members 50 fa of the torsional coupling 50 f of the float shoe adaptor 50 that defines a passage 64 a and a valveable passage 64 b . In this manner torsional loads may be transmitted between the float shoe adaptor 50 and the float shoe 64 .
  • An end of an expandable tubular member 66 that surrounds the tubular support member 12 , the safety collar 14 , the upper mandrel collar 18 , the upper packer cup 24 , the lower packer cup 28 , the lower mandrel 34 , the upper expansion cone segments 44 , the lower expansion cone segments 46 , and the float shoe adaptor 50 , is coupled to and receives an end of the float shoe 64 and is movably coupled to and supported by the arcuate spherical external surfaces, 44 bbb and 46 bbb , of the upper and lower expansion cone segments, 44 and 46 .
  • the continued injection of the fluidic material 108 thereby pressurizes the interior of the expandable tubular member 66 below the lower packer cup 28 thereby displacing the upper and lower expansion cone segments, 44 and 46 , upwardly relative to the float shoe 64 and the expandable tubular member 66 .
  • the expandable tubular member 66 is plastically deformed and radially expanded.
  • the burst discs 62 sense the operating pressure of the injected fluidic material 108 within the passage 50 c and thereby control the initiation of the radial expansion and plastic deformation of the expandable tubular member 66 .
  • the interface between the arcuate spherical external surfaces, 44 bbb and 46 bbb , of the upper and lower expansion cone segments, 44 and 46 , and the interior surface of the expandable tubular member 66 is not fluid tight.
  • the fluidic material 108 may provide lubrication to the entire extent of the interface between the cylindrical external surfaces, 44 bba and 46 cb , and the arcuate spherical external surfaces, 44 bbb and 46 bbb , of the upper and lower expansion cone segments, 44 and 46 , and the interior surface of the expandable tubular member 66 .
  • the retaining sleeve 52 is displaced in the downward longitudinal direction relative to the float shoe adaptor 50 thereby permitting the locking dogs 58 to be displaced outwardly in the radial direction.
  • the outward radial displacement of the locking dogs 58 disengages the locking dogs from engagement with the lower mandrel 34 .
  • the shear pins 56 sense the operating pressure of the injected fluidic material 108 within the throat passage 52 b and thereby controling the initiation of the collapsing of the upper and lower expansion cone segments, 44 and 46 .
  • the lower packer cup 28 may be used to provide a primary fluidic seal against the interior surface of the expandable tubular member 66
  • the upper packer cup 24 provides a secondary, back-up, fluidic seal against the interior surface of the expandable tubular member.
  • the lower packer cup 28 and/or the upper packer cup 24 provide a fluid tight seal against the interior surface of the expandable tubular member 66 , when the region is pressurized, the upper and lower expansion cone segments, 44 and 46 , are pulled upwardly through the expandable tubular member by the axial forces created by the packer cups.
  • the packer cups may be made from an elastomer, the type of which depends on design pressures, fluids and temperatures.
  • the packer cups 24 and 28 are coupled to annular reinforcing elements or supports which are bonded to the elastomer to hold the elastomer in place when running in and out of the casing and when pressurized.
  • the support may be wire or a single insert, such as used in the “TP” cup from Halliburton of Duncan, Okla.
  • the support may be more complicated, for instance, it may comprise a bushing and a plurality of overlapping springs, such as used in the GW-HD cup from Guiberson Oil Tools of Alberta Canada.
  • Conventional packer cups are intended to remain stationary when pressurized. Any significant movement of a conventional packer cup when the cup has been pressurized may destroy the packer cup. Additionally, conventional packer cups may not be designed to hold the high pressures necessary for a casing expansion when moving through the casing. Pressure cycling and movement which occurs during casing expansion procedures may cause degradation of the elastomer and the bond between the elastomer and inserts. Eventually the elastomer disintegrates and the packer cup is unable to hold pressure. What is needed, therefore is a packer cup which can withstand the movement and pressures associated with the casing expansion procedure.
  • FIG. 18 one side of a conventional cup seal or packer cup 70 is illustrated in detail.
  • the opposing side is symmetrical about the center line of the packer cup.
  • the packer cup 70 is shown located outside of the casing. Therefore, dashed lines represent the position of an expandable casing 71 relative to the packer cup 70 .
  • the packer cup 70 may be used as the upper packer cup 24 or lower packer cup 28 as described previously in reference to FIGS. 1 a and 10 a .
  • the central mandrel 72 has an external flange 74 , which may provide longitudinal support for a retaining sleeve or adjusting ring 76 .
  • the adjusting ring 76 receives and is coupled to the central mandrel 72 .
  • a spacer sleeve 78 also receives and is coupled to the central mandrel 72 and is longitudinally positioned between the packer cup 70 and the adjusting ring 76 .
  • the adjusting ring 76 threadingly engages the spacer sleeve 78 so that the longitudinal position of the spacer sleeve may be adjusted by rotating the spacer sleeve relative to the adjusting ring 76 .
  • the spacer sleeve 78 longitudinally positions and supports the packer cup 70 .
  • the packer cup 70 comprises one or more springs 80 a and 80 b which are bonded to and radially support an elastomeric sealing cup 82 to form a cup assembly 83 .
  • the elastomeric sealing cup 82 is generally conical in shape, having a substantially unrestricted lip portion 85 for sealingly engaging the interior ID of the expandable casing 71 .
  • Opposite the lip portion 85 is a base portion 87 which is supported by a conical bushing 84 positioned between the interior side of the cup assembly 83 and the central mandrel 72 .
  • a radial thimble 86 surrounds the base portion 87 of the cup assembly 83 .
  • the radial thimble 86 has an exterior diameter which is smaller than the interior diameter of the casing by a distance “A.”
  • the elastomeric sealing cup 82 is unsupported in a region “B” which may be generally defined as the region between a support, such as a radial thimble 86 , and a point of contact “C” with the expandable casing 71 .
  • FIG. 19 a illustrates an alternative embodiment of a packer cup 90 .
  • the packer cup 90 comprises one or more springs 92 a and 92 b which are bonded to and radially support an elastomeric sealing cup 94 to form a cup assembly 95 .
  • the elastomeric sealing cup 94 is generally conical in shape, having a substantially unrestricted lip portion 93 for sealingly engaging the interior ID of the expandable casing 71 .
  • Opposite the lip portion 93 is a base portion 97 which is supported by a conical bushing 96 positioned between the cup assembly and the central mandrel 72 .
  • the supported end of the cup assembly 95 is surrounded by a radial thimble 98 .
  • the radial thimble 98 has an exterior diameter which is slightly smaller than the interior diameter, causing the distance “A” to be reduced when compared to a conventional packer cup, such as illustrated in FIG. 18 .
  • the elastomeric sealing cup 94 is unsupported in a region “B” which may be generally defined as the region between a support, such as the radial thimble 98 , and a point of contact “C” with the expandable casing 71 .
  • the longitudinal length of the radial thimble 98 has been increased, which reduces the unsupported region “B” of the elastomeric sealing cup 94 when compared to a conventional packer cup.
  • FIG. 19 b illustrates an alternative embodiment of a packer cup 100 .
  • the packer cup 100 comprises one or more springs 102 a and 102 b which are bonded to an elastomeric sealing cup 104 to form a cup assembly 105 .
  • the elastomeric sealing cup 104 is generally conical in shape, having a substantially unrestricted lip portion 103 for sealingly engaging the interior ID of the expandable casing 71 .
  • Opposite the lip portion 103 is a base portion 107 which is supported by a conical bushing 106 positioned between the elastoermic seal 104 and the central mandrel 72 .
  • a pliant backup member 108 is position between the elastomeric sealing cup 104 and a radial thimble 110 .
  • the backup member 108 may be made from any suitable pliant material, such as a fluoropolymer or fluoroelastomer (e.g., Teflon or PEEK).
  • a fluoropolymer or fluoroelastomer e.g., Teflon or PEEK
  • the use of the backup member 108 significantly reduces the unsupported region of the elastomeric sealing cup 104 . Additionally, the backup member 108 easily extrudes when pressurized to expand into any gap between the outside diameter of the backup support and the ID of the casing providing a secondary seal.
  • the radial thimble 110 is similar to the radial thimble 98 ( FIG. 19 a ) in that it has an exterior diameter which is slightly smaller than the interior diameter, causing the distance “A” to be reduced. Similarly, the longitudinal length of the radial thimble 110 has been increased which reduces the unsupported length of the elastomeric sealing cup. Reducing the unsupported-region of the elastomeric sealing cup and the distance between the exterior diameter of the thimble 98 and the ID of the casing limits movement of the elastomeric sealing cup 94 when the packer cup is pressurized. This reduced movement improves the durability of the packer seal.
  • FIG. 19 c illustrates an alternative embodiment of a packer cup 120 .
  • the packer cup 120 comprises one or more springs 122 a and 122 b which are bonded to an elastomeric sealing cup 124 to form a cup assembly 125 .
  • the elastomeric sealing cup 124 is generally conical in shape, having a substantially unrestricted lip portion 123 for sealingly engaging the interior ID of the expandable casing 71 .
  • Opposite the lip portion 123 is a base portion 127 which is supported by a conical bushing 126 positioned between the elastomeric sealing cup 124 and the central mandrel 72 .
  • a pliant backup member 128 is positioned between the elastomeric sealing cup 124 and a radial shoe 130 .
  • the backup member 128 may be made from any suitable pliant material, such as a fluoropolymer or fluoroelastomer (e.g., Teflon or PEEK). Additionally, the backup member 128 extrudes when pressurized to expand into a gap between the outside diameter of the backup member 128 and the ID of the casing. However, the use of the radial shoe 130 and the cross-sectional shape of the backup member 128 reduces the degree of extrusion when compared to packer cup 100 ( FIG. 19 b ).
  • the radial shoe 130 may be made from steel or another harden material to provide support and protection for the pliant backup member 128 .
  • the pliant backup member 128 reduces the unsupported length of the elastomeric sealing cup 124 which limits the movement of the elastomeric sealing cup 124 when the packer cup is pressurized. This reduced movement improves the durability of the packer cup.
  • FIG. 19 d illustrates an alternative embodiment of a packer cup 140 .
  • the packer cup 140 comprises one or more springs 142 a and 142 b which are bonded to an elastomeric sealing cup 144 to form a cup assembly 145 .
  • the elastomeric sealing cup 144 is generally conical in shape, having a substantially unrestricted lip portion 143 for sealingly engaging the interior ID of the expandable casing 71 .
  • Opposite the lip portion 143 is a base portion 149 which is supported by a conical bushing 146 positioned between the elastomeric sealing cup 144 and the central mandrel 72 .
  • a support member 147 provides additional stiffness and support by surrounding the supported end of cup assembly 145 .
  • the support member 147 may be made of steel or another suitable material. The use of the support member 147 provides a stiff support for the elastomeric sealing cup 144 which reduces the movement of the elastomeric sealing cup 144 . Similar to the packer cup 120 discussed in reference to FIG. 19 c , a pliant backup member 148 is positioned between the support member 147 and a radial shoe 150 . The backup member 148 extrudes when pressurized to expand into a gap between the outside diameter of the backup support and the ID of the casing. However, the use of the radial shoe 150 reduces the degree of extrusion when compared to packer cup 100 ( FIG. 19 b ).
  • the radial shoe 150 may be made from steel or another harden material to provide support and protection for the pliant backup member 148 .
  • the use of a pliant backup member 148 also reduces the unsupported region of the elastomeric sealing cup 144 which limits the movement of the elastomeric sealing cup 144 when the packer cup is pressurized. This reduced movement improves the durability of the packer cup.
  • FIG. 19 e illustrates an alternative embodiment of a packer cup 160 .
  • the packer cup 160 comprises one or more springs 162 a and 162 b which are bonded to an elastomeric sealing cup 164 to form a cup assembly 165 .
  • the elastomeric sealing cup 164 is generally conical in shape, having a substantially unrestricted lip portion 163 for sealingly engaging the interior ID of the expandable casing 71 .
  • the lip portion 163 is a base portion 167 which is supported by a conical bushing 166 positioned between the elastomeric sealing cup 164 and the central mandrel 72 .
  • the supported end of the cup assembly is also surrounded by a radial thimble 168 .
  • the elastomeric sealing cup 164 has additional elastomeric material molded proximate to the radial thimble 168 at a point “D”. Because of the use of additional elastomeric material and a longer longitudinal length of the radial thimble 98 , the unsupported region of the elastomeric sealing cup 164 is significantly reduced. Reducing the unsupported region of the elastomeric sealing cup 164 and the distance between the exterior diameter of the thimble 168 and the ID of the casing 71 limits movement of the elastomeric sealing cup 164 when the packer cup is pressurized.
  • the radial thimble 168 has an exterior diameter which is slightly smaller than the interior diameter, causing the gap between the radial thimble 168 and the ID of the casing 71 to be reduced.
  • the reduced gap also limits movement of the elastomeric sealing cup 164 . This reduced movement improves the durability of the packer seal.
  • An apparatus for radially expanding and plastically deforming an expandable tubular member includes an upper tubular support member defining a first passage, one or more cup seals coupled to the exterior surface of the upper tubular support member for sealing an interface between the upper tubular support member and the expandable tubular member, an upper cam assembly coupled to the upper tubular support member comprising: a tubular base coupled to the upper tubular support member, and a plurality of cam arms extending from the tubular base in a downward longitudinal direction, each cam arm defining an inclined surface, a plurality of upper expansion cone segments interleaved with the cam arms of the upper cam assembly and pivotally coupled to the tubular support member, a lower tubular support member defining a second passage fluidicly coupled to the first passage releasably coupled to the upper tubular support member, a lower cam assembly coupled to the lower tubular support member comprising: a tubular base coupled to the lower tubular support member, and a plurality of cam arms extending from the tubular base in an upward longitudinal direction, each
  • the upper tubular support member includes: a safety collar, a torque plate coupled to the safety collar including a plurality of circumferentially spaced apart meshing teeth at an end, an upper mandrel including a plurality of circumferentially spaced apart meshing teeth at one end for engaging the meshing teeth of the torque plate and an external flange at another end, and a lower mandrel coupled to the external flange of the upper mandrel including an external flange including a plurality of circumferentially spaced apart meshing teeth.
  • the tubular base of the upper cam assembly includes a plurality of circumferentially spaced apart meshing teeth for engaging the meshing teeth of the external flange of the lower mandrel.
  • the apparatus further includes a stop nut coupled to an end of the lower mandrel for limiting the movement of the lower tubular member relative to the lower mandrel.
  • the apparatus further includes locking dogs coupled to the lower mandrel.
  • the lower tubular support member includes: a float shoe adapter including a plurality of circumferentially spaced apart meshing teeth at one end, an internal flange, and a torsional coupling at another end, a lower retaining sleeve coupled to an end of the float shoe adapter including an internal flange for pivotally engaging the lower expansion cone segments, and a retaining sleeve received within the float shoe adapter releasably coupled to the upper tubular support member.
  • an end of the retaining sleeve abuts an end of the tubular base of the lower cam assembly.
  • the tubular base of the lower cam assembly includes a plurality of circumferentially spaced apart meshing teeth for engaging the meshing teeth of the float shoe adaptor.
  • the apparatus further includes a float shoe releasably coupled to the torsional coupling of the float shoe adaptor, and an expandable tubular member coupled to the float shoe and supported by and movably coupled to the upper and lower expansion cone segments.
  • the apparatus further includes: one or more shear pins coupled between the upper tubular support member and the lower tubular support member.
  • the apparatus further includes: a stop member coupled to the upper tubular support member for limiting movement of the upper tubular support member relative to the lower tubular support member.
  • the apparatus further includes: a float shoe releasably coupled to the lower tubular support member that defines a valveable passage, and an expandable tubular member coupled to the float shoe and supported by and movably coupled to the upper and lower expansion cone segments.
  • each upper expansion cone segment includes: an inner portion defining an arcuate cylindrical upper surface including a hinge groove for pivotally coupling the upper expansion cone segment to the upper tubular support member and arcuate cylindrical lower surfaces, an intermediate portion defining arcuate cylindrical and spherical upper surfaces and an arcuate conical lower surface, and an outer portion defining arcuate cylindrical upper and lower surfaces
  • each lower expansion cone segment includes: an inner portion defining an arcuate cylindrical upper surface including a hinge groove for pivotally coupling the lower expansion cone segment to the lower tubular support member and arcuate cylindrical lower surfaces, an intermediate portion defining arcuate cylindrical and spherical upper surfaces and an arcuate conical lower surface, and an outer portion defining arcuate cylindrical upper and lower surfaces.
  • each upper expansion cone segment is tapered in the longitudinal direction from the intermediate portion to the outer portion; and wherein each lower expansion cone segment is tapered in the longitudinal direction from the intermediate portion to the outer portion.
  • An apparatus for radially expanding and plastically deforming an expandable tubular member includes a safety collar, a torque plate coupled to the safety collar including a plurality of circumferentially spaced apart meshing teeth at an end, an upper mandrel including a plurality of circumferentially spaced apart meshing teeth at one end for engaging the meshing teeth of the torque plate and an external flange at another end, a lower mandrel coupled to the external flange of the upper mandrel including an external flange including a plurality of circumferentially spaced apart meshing teeth, a stop nut coupled to an end of the lower mandrel, an upper retaining sleeve coupled to the lower mandrel including an internal flange, one or more cup seals coupled to the upper mandrel for sealing an interface between the upper mandrel and the expandable tubular member, an upper cam assembly coupled to the lower mandrel including: a tubular base including a plurality of circumferentially spaced apart meshing
  • a collapsible expansion cone assembly includes an upper tubular support member including an internal flange, an upper cam assembly coupled to the upper tubular support member including: a tubular base coupled to the upper support member, and a plurality of cam arms extending from the tubular base in a downward longitudinal direction, each cam arm defining an inclined surface, a plurality of upper expansion cone segments interleaved with the cam arms of the upper cam assembly and pivotally coupled to the internal flange of the upper tubular support member, a lower tubular support member including an internal flange, one or more frangible couplings for releasably coupling the upper and lower tubular support members, a lower cam assembly coupled to the lower tubular support member including: a tubular base coupled to the lower tubular support member, and a plurality of cam arms extending from the tubular base in an upward longitudinal direction, each cam arm defining an inclined surface that mates with the inclined surface of a corresponding one of the upper expansion cone segments, wherein the cams arms of the upper cam
  • each upper expansion cone segment includes: an inner portion defining an arcuate cylindrical upper surface including a hinge groove for pivotally coupling the upper expansion cone segment to the upper tubular support member and arcuate cylindrical lower surfaces, an intermediate portion defining arcuate cylindrical and spherical upper surfaces and an arcuate conical lower surface, and an outer portion defining arcuate cylindrical upper and lower surfaces
  • each lower expansion cone segment includes: an inner portion defining an arcuate cylindrical upper surface including a hinge groove for pivotally coupling the lower expansion cone segment to the lower tubular support member and arcuate cylindrical lower surfaces, an intermediate portion defining arcuate cylindrical and spherical upper surfaces and an arcuate conical lower surface, and an outer portion defining arcuate cylindrical upper and lower surfaces.
  • each upper expansion cone segment is tapered in the longitudinal direction from the intermediate portion to the outer portion
  • each lower expansion cone segment is tapered in the longitudinal direction from the intermediate portion to the outer portion.
  • a collapsible expansion cone assembly includes an upper tubular support member including an internal flange, an upper cam assembly coupled to the upper tubular support member including: a tubular base coupled to the upper support member, and a plurality of cam arms extending from the tubular base in a downward longitudinal direction, each cam arm defining an inclined surface, a plurality of upper expansion cone segments interleaved with the cam arms of the upper cam assembly and pivotally coupled to the internal flange of the upper tubular support member, a lower tubular support member including an internal flange, one or more frangible couplings for releasably coupling the upper and lower tubular support members, a lower cam assembly coupled to the lower tubular support member including: a tubular base coupled to the lower tubular support member, and a plurality of cam arms extending from the tubular base in an upward longitudinal direction, each cam arm defining an inclined surface that mates with the inclined surface of a corresponding one of the upper expansion cone segments, wherein the cams arms of the upper cam
  • An apparatus for radially expanding and plastically deforming an expandable tubular member includes a tubular support member, a collapsible expansion cone coupled to the tubular support member, an expandable tubular member coupled to the collapsible expansion cone, means for displacing the collapsible expansion cone relative to the expandable tubular member, and means for collapsing the expansion cone.
  • the tubular support member includes an upper tubular support member including an internal flange and a lower tubular support member including an internal flange
  • the expansion cone includes: an upper cam assembly coupled to the upper tubular support member including: a tubular base coupled to the upper support member, and a plurality of cam arms extending from the tubular base in a downward longitudinal direction, each cam arm defining an inclined surface, a plurality of upper expansion cone segments interleaved with the cam arms of the upper cam assembly and pivotally coupled to the internal flange of the upper tubular support member, a lower cam assembly coupled to the lower tubular support member including: a tubular base coupled to the lower tubular support member, and a plurality of cam arms extending from the tubular base in an upward longitudinal direction, each cam arm defining an inclined surface that mates with the inclined surface of a corresponding one of the upper expansion cone segments, wherein the cams arms of the upper cam assembly are interleaved with and overlap the cam arms of the lower cam assembly, and a plurality of cam arms extending
  • a collapsible expansion cone has also been described that includes an upper cam assembly including: a tubular base, and a plurality of cam arms extending from the tubular base in a downward longitudinal direction, each cam arm defining an inclined surface, a plurality of upper expansion cone segments interleaved with the cam arms of the upper cam assembly, a lower cam assembly including: a tubular base, and a plurality of cam arms extending from the tubular base in an upward longitudinal direction, each cam arm defining an inclined surface that mates with the inclined surface of a corresponding one of the upper expansion cone segments, wherein the cams arms of the upper cam assembly are interleaved with and overlap the cam arms of the lower cam assembly, a plurality of lower expansion cone segments interleaved with cam arms of the lower cam assembly, each lower expansion cone segment mating with the inclined surface of a corresponding one of the cam arms of the upper cam assembly, means for moving the upper cam assembly away from the lower expansion cone segments, and means for moving the lower cam assembly away from the upper expansion cone segments.
  • each upper expansion cone segment includes: an inner portion defining an arcuate upper surface and arcuate cylindrical lower surfaces, an intermediate portion defining arcuate cylindrical and spherical upper surfaces and an arcuate conical lower surface, and an outer portion defining arcuate cylindrical upper and lower surfaces
  • each lower expansion cone segment includes: an inner portion defining an arcuate cylindrical upper surface and arcuate cylindrical lower surfaces, an intermediate portion defining arcuate cylindrical and spherical upper surfaces and an arcuate conical lower surface, and an outer portion defining arcuate cylindrical upper and lower surfaces.
  • each upper expansion cone segment is tapered in the longitudinal direction from the intermediate portion to the outer portion
  • each lower expansion cone segment is tapered in the longitudinal direction from the intermediate portion to the outer portion.
  • a packer cup apparatus comprising a central mandrel, a sealing cup comprising a substantially unrestricted lip for sealing engaging a tubular member, and a base portion for sealingly engaging the central mandrel, a protecting member positioned longitudinally along the central mandrel, and a pliant backup member positioned between the protecting member and the sealing cup, a conical bushing positioned partially between the sealing cup and the tubular support member for supporting the base portion of the sealing cup.
  • a method of radially expanding and plastically deforming an expandable tubular member includes supporting the expandable tubular member using a tubular support member and a collapsible expansion cone, injecting a fluidic material into the tubular support member, sensing the operating pressure of the injected fluidic material within a first interior portion of the tubular support member, displacing the collapsible expansion cone relative to the expandable tubular member when the sensed operating pressure of the injected fluidic material exceeds a predetermined level within the first interior portion of the tubular support member, sensing the operating pressure of the injected fluidic material within a second interior portion of the tubular support member, and collapsing the collapsible expansion cone when the sensed operating pressure of the injected fluidic material exceeds a predetermined level within the second interior portion of the tubular support member.
  • the method further includes: pulling the collapsible expansion cone through the expandable tubular member when the sensed operating pressure of the injected fluidic material exceeds a predetermined level within the first interior portion of the tubular support member.
  • pulling the collapsible expansion cone through the expandable tubular member includes: coupling one or more cup seals to the tubular support member above the collapsible expansion cone, pressuring the interior of the expandable tubular member below the cup seals, and pulling the collapsible expansion cone through the expandable tubular member using the cup seals.
  • the tubular support member includes an upper tubular support member and a lower tubular support member, and wherein collapsing the collapsible expansion cone includes displacing the upper tubular member relative to the lower tubular support member.
  • the collapsible expansion cone includes: an upper cam assembly including: a tubular base, and a plurality of cam arms extending from the tubular base in a downward longitudinal direction, each cam arm defining an inclined surface, a plurality of upper expansion cone segments interleaved with the cam arms of the upper cam assembly and pivotally coupled to the upper tubular support member, a lower cam assembly including: a tubular base, and a plurality of cam arms extending from the tubular base in an upward longitudinal direction, each cam arm defining an inclined surface that mates with the inclined surface of a corresponding one of the upper expansion cone segments, wherein the cams arms of the upper cam assembly are interleaved with and overlap the cam arms of the lower cam assembly, and a plurality of lower expansion

Abstract

An apparatus for radially expanding and plastically deforming an expandable tubular member includes a collapsible expansion cone.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • The present application is the National Stage for PCT patent application serial no. PCT/US2003/018530, attorney docket no. 25791.108.02, filed on 12 Jun. 2003, which claimed the benefit of the filing date of U.S. provisional patent application Ser. No. 60/387,961, attorney docket no 25791.108, filed on Jun. 12, 2002, the disclosures of which are incorporated herein by reference.
  • The present application is a continuation-in-part of U.S. utility patent application Ser. No. 10/507,567, attorney docket no. 25791.95.03, filed on , Feb. 19, 2003 which claimed the benefit of the filing date of U.S. provisional patent application serial no. 60/363,829, attorney docket no. 25791.95, filed on Mar. 13, 2002, which was a continuation-in-part of each of the following: U.S. utility patent application Ser. No. 10/495,347, attorney docket no. 25791.87.05, filed on Nov. 12, 2002, which claimed the benefit of the filing date of U.S. provisional patent application Ser. No. 60/338,996, attorney docket no. 25791.87, filed on Nov. 12, 2001, and U.S. utility patent application Ser. No. 10/495,344, attorney docket no. 25791.88.05, filed on Nov. 12, 2002, which claimed the benefit of the filing date of U.S. provisional patent application Ser. No. 60/339,013, attorney docket no. 25791.88 filed on Nov. 12, 2001, the disclosures of which are incorporated herein by reference.
  • The present application is related to the following: (1) U.S. patent application Ser. No. 09/454,139, attorney docket no. 25791.03.02, filed on Dec. 3, 1999, (2) U.S. patent application Ser. No. 09/510,913, attorney docket no. 25791.7.02, filed on Feb. 23, 2000, (3) U.S. patent application Ser. No. 09/502,350, attorney docket no. 25791.8.02, filed on Feb. 10, 2000, (4) U.S. patent application Ser. No. 09/440,338, attorney docket no. 25791.9.02, filed on Nov. 15, 1999, (5) U.S. patent application Ser. No. 09/523,460, attorney docket no. 25791.11.02, filed on Mar. 10, 2000, (6) U.S. patent application Ser. No. 09/512,895, attorney docket no. 25791.12.02, filed on Feb. 24, 2000, (7) U.S. patent application Ser. No. 09/511,941, attorney docket no. 25791.16.02, filed on Feb. 24, 2000, (8) U.S. patent application Ser. No. 09/588,946, attorney docket no. 25791.17.02, filed on Jun. 7, 2000, (9) U.S. patent application Ser. No. 09/559,122, attorney docket no. 25791.23.02, filed on Apr. 26, 2000, (10) PCT patent application serial no. PCT/US00/18635, attorney docket no. 25791.25.02, filed on Jul. 9, 2000, (11) U.S. provisional patent application Ser. No. 60/162,671, attorney docket no. 25791.27, filed on Nov. 1, 1999, (12) U.S. provisional patent application Ser. No. 60/154,047, attorney docket no. 25791.29, filed on Sep. 16, 1999, (13) U.S. provisional patent application Ser. No. 60/159,082, attorney docket no. 25791.34, filed on Oct. 12, 1999, (14) U.S. provisional patent application Ser. No. 60/159,039, attorney docket no. 25791.36, filed on Oct. 12, 1999, (15) U.S. provisional patent application Ser. No. 60/159,033, attorney docket no. 25791.37, filed on Oct. 12, 1999, (16) U.S. provisional patent application Ser. No. 60/212,359, attorney docket no. 25791.38, filed on Jun. 19, 2000, (17) U.S. provisional patent application Ser. No. 60/165,228, attorney docket no. 25791.39, filed on Nov. 12, 1999, (18) U.S. provisional patent application Ser. No. 60/221,443, attorney docket no. 25791.45, filed on Jul. 28, 2000, (19) U.S. provisional patent application Ser. No. 60/221,645, attorney docket no. 25791.46, filed on Jul. 28, 2000, (20) U.S. provisional patent application Ser. No. 60/233,638, attorney docket no. 25791.47, filed on Sep. 18, 2000, (21) U.S. provisional patent application Ser. No. 60/237,334, attorney docket no. 25791.48, filed on Oct. 2, 2000, (22) U.S. provisional patent application Ser. No. 60/270,007, attorney docket no. 25791.50, filed on Feb. 20, 2001, (23) U.S. provisional patent application Ser. No. 60/262,434, attorney docket no. 25791.51, filed on Jan. 17, 2001, (24) U.S. provisional patent application Ser. No. 60/259,486, attorney docket no. 25791.52, filed on Jan. 3, 2001, (25) U.S. provisional patent application Ser. No. 60/303,740, attorney docket no. 25791.61, filed on Jul. 6, 2001, (26) U.S. provisional patent application Ser. No. 60/313,453, attorney docket no. 25791.59, filed on Aug. 20, 2001, (27) U.S. provisional patent application Ser. No. 60/317,985, attorney docket no. 25791.67, filed on Sep. 6, 2001, (28) U.S. provisional patent application Ser. No. 60/3318,386, attorney docket no. 25791.67.02, filed on Sep. 10, 2001, (29) U.S. utility patent application Ser. No. 09/969,922, attorney docket no. 25791.69, filed on Oct. 3, 2001, (30) U.S. utility patent application Ser. No. 10/016,467, attorney docket no. 25791.70, filed on Dec. 10, 2001; (31) U.S. provisional patent application Ser. No. 60/343,674, attorney docket no. 25791.68, filed on Dec. 27, 2001; (32) U.S. provisional patent application Ser. No. 60/346,309, attorney docket no. 25791.92, filed on Jan. 7, 2002; (33) U.S. provisional patent application Ser. No. 60/372,048, attorney docket no. 25791.93, filed on Apr. 12, 2002; (34) U.S. provisional patent application Ser. No. 60/363,829, attorney docket no. 25791.95, filed on Mar. 13, 2002; (35) U.S. provisional patent application Ser. No. 60/372,632, attorney docket no. 25791.101, filed on Apr. 15, 2002; (36) U.S. provisional patent application Ser. No. 60/380,147, attorney docket no. 25791.104, filed on May 6, 2002; and (37) U.S. provisional patent application Ser. No. 60/387,486, attorney docket no. 25791.107, filed on Jun. 10, 2002, the disclosures of which are incorporated herein by reference.
  • BACKGROUND OF THE INVENTION
  • This invention relates generally to oil and gas exploration, and in particular to forming and repairing wellbore casings to facilitate oil and gas exploration.
  • Conventionally, when a wellbore is created, a number of casings are installed in the borehole to prevent collapse of the borehole wall and to prevent undesired outflow of drilling fluid into the formation or inflow of fluid from the formation into the borehole. The borehole is drilled in intervals whereby a casing which is to be installed in a lower borehole interval is lowered through a previously installed casing of an upper borehole interval. As a consequence of this procedure the casing of the lower interval is of smaller diameter than the casing of the upper interval. Thus, the casings are in a nested arrangement with casing diameters decreasing in downward direction. Cement annuli are provided between the outer surfaces of the casings and the borehole wall to seal the casings from the borehole wall. As a consequence of this nested arrangement a relatively large borehole diameter is required at the upper part of the wellbore. Such a large borehole diameter involves increased costs due to heavy casing handling equipment, large drill bits and increased volumes of drilling fluid and drill cuttings. Moreover, increased drilling rig time is involved due to required cement pumping, cement hardening, required equipment changes due to large variations in hole diameters drilled in the course of the well, and the large volume of cuttings drilled and removed.
  • The present invention is directed to overcoming one or more of the limitations of the existing procedures for forming new sections of casing in a wellbore.
  • SUMMARY OF THE INVENTION
  • According to one aspect of the present invention, an apparatus for radially expanding and plastically deforming an expandable tubular member is provided that includes an upper tubular support member defining a first passage, one or more cup seals coupled to the exterior surface of the upper tubular support member for sealing an interface between the upper tubular support member and the expandable tubular member, an upper cam assembly coupled to the upper tubular support member comprising: a tubular base coupled to the upper tubular support member, and a plurality of cam arms extending from the tubular base in a downward longitudinal direction, each cam arm defining an inclined surface, a plurality of upper expansion cone segments interleaved with the cam arms of the upper cam assembly and pivotally coupled to the tubular support member, a lower tubular support member defining a second passage fluidicly coupled to the first passage releasably coupled to the upper tubular support member, and a lower cam assembly coupled to the lower tubular support member comprising: a tubular base coupled to the lower tubular support member, and a plurality of cam arms extending from the tubular base in an upward longitudinal direction, each cam arm defining an inclined surface that mates with the inclined surface of a corresponding one of the upper expansion cone segments, wherein the cams arms of the upper cam assembly are interleaved with and overlap the cam arms of the lower cam assembly, a plurality of lower expansion cone segments interleaved with cam arms of the lower cam assembly, each lower expansion cone segment pivotally coupled to the lower tubular support member and mating with the inclined surface of a corresponding one of the cam arms of the upper cam assembly, wherein the lower expansion cone segments interleave and overlap the upper expansion cone segments, and wherein the upper and lower expansion cone segments together define an arcuate spherical external surface for plastically deforming and radially expanding the expandable tubular member.
  • According to another aspect of the present invention, a collapsible expansion cone assembly is provided that includes an upper tubular support member comprising an internal flange, an upper cam assembly coupled to the upper tubular support member comprising: a tubular base coupled to the upper support member, and a plurality of cam arms extending from the tubular base in a downward longitudinal direction, each cam arm defining an inclined surface, a plurality of upper expansion cone segments interleaved with the cam arms of the upper cam assembly and pivotally coupled to the internal flange of the upper tubular support member, a lower tubular support member comprising an internal flange, one or more frangible couplings for releasably coupling the upper and lower tubular support members, a lower cam assembly coupled to the lower tubular support member comprising: a tubular base coupled to the lower tubular support member, and a plurality of cam arms extending from the tubular base in an upward longitudinal direction, each cam arm defining an inclined surface that mates with the inclined surface of a corresponding one of the upper expansion cone segments, wherein the cams arms of the upper cam assembly are interleaved with and overlap the cam arms of the lower cam assembly, and a plurality of lower expansion cone segments interleaved with cam arms of the lower cam assembly, each lower expansion cone segment pivotally coupled to the internal flange of the lower tubular support member and mating with the inclined surface of a corresponding one of the cam arms of the upper cam assembly, wherein the lower expansion cone segments interleave and overlap the upper expansion cone segments, and wherein the upper and lower expansion cone segments together define an arcuate spherical external surface for plastically deforming and radially expanding the expandable tubular member.
  • According to another aspect of the present invention, an apparatus for radially expanding and plastically deforming an expandable tubular member is provided that includes a tubular support member, a collapsible expansion cone coupled to the tubular support member, an expandable tubular member coupled to the collapsible expansion cone, means for displacing the collapsible expansion cone relative to the expandable tubular member, and means for collapsing the expansion cone.
  • According to another aspect of the present invention, a collapsible expansion cone is provided that includes an upper cam assembly comprising: a tubular base, and a plurality of cam arms extending from the tubular base in a downward longitudinal direction, each cam arm defining an inclined surface, a plurality of upper expansion cone segments interleaved with the cam arms of the upper cam assembly, a lower cam assembly comprising: a tubular base, and a plurality of cam arms extending from the tubular base in an upward longitudinal direction, each cam arm defining an inclined surface that mates with the inclined surface of a corresponding one of the upper expansion cone segments, wherein the cams arms of the upper cam assembly are interleaved with and overlap the cam arms of the lower cam assembly, a plurality of lower expansion cone segments interleaved with cam arms of the lower cam assembly, each lower expansion cone segment mating with the inclined surface of a corresponding one of the cam arms of the upper cam assembly, means for moving the upper cam assembly away from the lower expansion cone segments, and means for moving the lower cam assembly away from the upper expansion cone segments.
  • According to another aspect of the invention, an apparatus for radially expanding and plastically deforming an expandable tubular member is provided that includes a tubular support member, a collapsible expansion cone coupled to the tubular support member, an expandable tubular member coupled to the collapsible expansion cone, means for displacing the collapsible expansion cone relative to the expandable tubular member, and means for collapsing the expansion cone.
  • According to another aspect of the invention, a collapsible expansion cone is provided that includes an upper cam assembly comprising: a tubular base, and a plurality of cam arms extending from the tubular base in a downward longitudinal direction, each cam arm defining an inclined surface, a plurality of upper expansion cone segments interleaved with the cam arms of the upper cam assembly, a lower cam assembly comprising: a tubular base, and a plurality of cam arms extending from the tubular base in an upward longitudinal direction, each cam arm defining an inclined surface that mates with the inclined surface of a corresponding one of the upper expansion cone segments, wherein the cams arms of the upper cam assembly are interleaved with and overlap the cam arms of the lower cam assembly, a plurality of lower expansion cone segments interleaved with cam arms of the lower cam assembly, each lower expansion cone segment mating with the inclined surface of a corresponding one of the cam arms of the upper cam assembly, means for moving the upper cam assembly away from the lower expansion cone segments, and means for moving the lower cam assembly away from the upper expansion cone segments.
  • According to another aspect of the invention, a method of radially expanding and plastically deforming an expandable tubular member is provided that includes supporting the expandable tubular member using a tubular support member and a collapsible expansion cone, injecting a fluidic material into the tubular support member, sensing the operating pressure of the injected fluidic material within a first interior portion of the tubular support member, displacing the collapsible expansion cone relative to the expandable tubular member when the sensed operating pressure of the injected fluidic material exceeds a predetermined level within the first interior portion of the tubular support member, sensing the operating pressure of the injected fluidic material within a second interior portion of the tubular support member, and collapsing the collapsible expansion cone when the sensed operating pressure of the injected fluidic material exceeds a predetermined level within the second interior portion of the tubular support member.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 a is a fragmentary cross-sectional illustration of the placement of a portion of an exemplary embodiment of an apparatus for radially expanding and plastically deforming a tubular member that includes a collapsible expansion cone within a preexisting structure.
  • FIG. 1 b is a fragmentary cross-sectional illustration of another portion of the apparatus of FIG. 1 a.
  • FIGS. 2 a and 2 b are fragmentary cross-sectional illustration of a portion of the apparatus of FIGS. 1 a and 1 b.
  • FIG. 3 is a fragmentary cross-sectional illustration of a portion of the apparatus of FIGS. 1 a and 1 b.
  • FIG. 3 a is a fragmentary cross-sectional illustration of a portion of the apparatus of FIG. 3.
  • FIG. 3 b is a fragmentary cross-sectional illustration of a portion of the apparatus of FIG. 3.
  • FIG. 4 is a fragmentary cross-sectional illustration of a portion of the apparatus of FIGS. 1 a and 1 b.
  • FIG. 4 a is a fragmentary cross-sectional illustration of a portion of the apparatus of FIG. 4.
  • FIG. 5 is a fragmentary cross-sectional illustration of a portion of the apparatus of FIGS. 1 a and 1 b.
  • FIG. 6 is a fragmentary cross-sectional illustration of a portion of the apparatus of FIGS. 1 a and 1 b.
  • FIGS. 7 a-7 e are fragmentary cross-sectional and perspective illustrations of the upper cam assembly of the apparatus of FIGS. 1 a and 1 b.
  • FIG. 7 f is a fragmentary cross-sectional illustration of the lower cam assembly of the apparatus of FIGS. 1 a and 1 b.
  • FIGS. 8 a-8 d are fragmentary cross-sectional and perspective illustrations of one of the upper cone segments of the apparatus of FIGS. 1 a and 1 b.
  • FIG. 8 e is a fragmentary cross-sectional illustration of one of the lower cone segments of the apparatus of FIGS. 1 a and 1 b.
  • FIG. 9 is a side view of a portion of the apparatus of FIGS. 1 a and 1 b.
  • FIG. 10 a is a fragmentary cross sectional illustration of a portion of the apparatus of FIGS. 1 a and 1 b during the radial expansion of the expandable tubular member.
  • FIG. 10 b is a fragmentary cross sectional illustration of another portion of the apparatus of FIG. 10 a.
  • FIG. 11 a. is a fragmentary cross sectional illustration of a portion of the apparatus of FIGS. 10 a and 10 b during the adjustment of the expansion cone to a collapsed position.
  • FIG. 11 b is a fragmentary cross sectional illustration of another portion of the apparatus of FIG. 11 a.
  • FIG. 12 is a fragmentary cross sectional illustration of a portion of the apparatus of FIGS. 11 a and 11 b.
  • FIG. 13 is a fragmentary cross sectional illustration of a portion of the apparatus of FIGS. 11 a and 11 b.
  • FIG. 14 is a fragmentary cross sectional illustration of a portion of the apparatus of FIGS. 11 a and 11 b with the expansion cone in a half collapsed position.
  • FIG. 15 is a fragmentary cross sectional illustration of a portion of the apparatus of FIGS. 11 a and 11 b with the expansion cone in a fully collapsed position.
  • FIG. 16 is a side view of a portion of the apparatus of FIGS. 10 a and 10 b.
  • FIG. 17 a. is a fragmentary cross sectional illustration of a portion of the apparatus of FIGS. 11 a and 11 b after the removal of the apparatus from interior of the expandable tubular member.
  • FIG. 17 b is a fragmentary cross sectional illustration of another portion of the apparatus of FIG. 17 a.
  • FIG. 18 is a fragmentary cross sectional illustration of a cup seal.
  • FIG. 19 a is a fragmentary cross sectional illustration of an alternative embodiment of a cup seal.
  • FIG. 19 b is a fragmentary cross sectional illustration of an alternative embodiment of a cup seal.
  • FIG. 19 c is a fragmentary cross sectional illustration of an alternative embodiment of a cup seal.
  • FIG. 19 d is a fragmentary cross sectional illustration of an alternative embodiment of a cup seal.
  • FIG. 19 e is a fragmentary cross sectional illustration of an alternative embodiment of a cup seal.
  • DETAILED DESCRIPTION OF THE ILLUSTRATIVE EMBODIMENTS
  • Referring to FIGS. 1 a, 1 b, 2 a, 2 b, 3, 3 a, 4, 4 a, 5, 6, 7 a, 7 b, 7 c, 7 d, 7 e, 7 f, 8 a, 8 b, 8 c, 8 d, 8 e, and 9, an exemplary embodiment of an apparatus 10 for radially expanding and plastically deforming a tubular member includes a tubular support member 12 that defines a passage 12 a. An end of the tubular support member 12 is coupled to an end of a safety collar 14 that defines a passage 14 a, a recess 14 b at one end for receiving the end of the tubular support member, and recesses 14 c and 14 d at another end.
  • A torque plate 16 is received within and is coupled to the recess 14 c of the safety collar 14 that defines a passage 16 a and a plurality of meshing teeth 16 b at one end. An end of an upper mandrel collar 18 is received with and is coupled to the recess 14 d of the safety collar 14 proximate and end of the torque plate 16 that defines a passage 18 a. Torque pins 20 a and 20 b further couple the end of the upper mandrel collar 18 to the end of the safety collar 14.
  • An end of an upper mandrel 22 is received within and is coupled to the upper mandrel collar 18 that defines a passage 22 a, a plurality of meshing teeth 22 b that mate with and transmit torque to and from the meshing teeth 16 b of the torque plate 16, and an external flange 22 c at another end.
  • An upper cup seal or packer cup 24 mates with, receives and is coupled to the upper mandrel 22 proximate the end of the upper mandrel collar 18. An upper spacer sleeve 26 mates with, receives, and is coupled to the upper mandrel 22 proximate an end of the upper packer cup 24. A lower cup seal or packer cup 28 mates with, receives and is coupled to the upper mandrel 22 proximate an end of the upper spacer sleeve 26. In an exemplary embodiment, the packer cups 24 and 28 may be Guiberson™ packer cups. One embodiment of a Guiberson packer cup is discussed in detail below in reference to FIG. 18. Alternative embodiments of packer cups 24 and 28 are discussed below in reference to FIGS. 19 a-19 e.
  • Turning back to FIG. 1, a lower spacer sleeve 30 mates with, receives, and is coupled to the upper mandrel 22 proximate an end of the lower packer cup 28 and the external flange 22 c of the upper mandrel. A retaining sleeve 32 mates with, receives, and is coupled to an end of the lower spacer sleeve proximate the external flange 22 c of the upper mandrel 22.
  • An end of a lower mandrel 34 defines a recess 34 a that mates with, receives, and is coupled to the external flange 22 c of the upper mandrel 22, a recess 34 b that mates with, receives, and is coupled to the end of the upper mandrel, a passage 34 c, and an external flange 34 d including circumferentially spaced apart meshing teeth 34 da on an end face of the external flange. Torque pins 36 a and 36 b further couple the recess 34 a of the end of the lower mandrel 34 to the external flange 22 c of the upper mandrel 22. During operation, the torque pins 36 a and 36 b transmit torque loads between the recess 34 a of the end of the lower mandrel 34 and the external flange 22 c of the upper mandrel 22.
  • An upper cam assembly 38 includes a tubular base 38 a for receiving and mating with the lower mandrel 34 that includes an external flange 38 aa, a plurality of circumferentially spaced apart meshing teeth 38 b that extend from one end of the tubular base in the longitudinal and radial directions for engaging the meshing teeth 34 da of the end face of the external flange 34 d of the lower mandrel, and a plurality of circumferentially spaced apart cam arms 38 c that extend from the other end of the tubular base in the opposite longitudinal direction and mate with and receive the lower mandrel. During operation, the meshing teeth 34 da of the end face of the external flange 34 d of the lower mandrel 34 transmit torque loads to the meshing teeth 38 b of the upper cam assembly 38. Each of the cam arms 38 c include an inner portion 38 ca extending from the tubular base 38 a that has arcuate cylindrical inner and outer surfaces, 38 caa and 38 cab, a tapered intermediate portion 38 cb extending from the inner portion that has an arcuate cylindrical inner surface 38 cba and an arcuate conical outer surface 38 cbb, and an outer portion 38 cc extending from the intermediate portion that has arcuate cylindrical inner and outer surfaces, 38 cca and 38 ccb. In an exemplary embodiment, the radius of curvatures of the arcuate outer cylindrical surfaces 38 cab are greater than the radius of curvatures of the arcuate outer cylindrical surfaces 38 ccb. In an exemplary embodiment, the radius of curvatures of the arcuate inner cylindrical surfaces, 38 caa, 38 cba, and 38 cca are equal.
  • A lower cam assembly 40 includes a tubular base 40 a for receiving and mating with the lower mandrel 34 that includes an external flange 40 aa, a plurality of circumferentially spaced apart meshing teeth 40 b that extend from one end of the tubular base in the longitudinal and radial directions, and a plurality of circumferentially spaced apart cam arms 40 c that extend from the other end of the tubular base in the opposite longitudinal direction and mate with and receive the lower mandrel. Each of the cam arms 40 c include an inner portion 40 ca extending from the tubular base 40 a that has arcuate cylindrical inner and outer surfaces, 40 caa and 40 cab, a tapered intermediate portion 40 cb extending from the inner portion 40 ca that has an arcuate cylindrical inner surface 40 cba and an arcuate conical outer surface 40 cbb, and an outer portion 40 cc extending from the intermediate portion that has arcuate cylindrical inner and outer surfaces, 40 cca and 40 ccb. In an exemplary embodiment, the radius of curvatures of the arcuate outer cylindrical surfaces 40 cab are greater than the radius of curvatures the arcuate outer cylindrical surfaces 40 ccb. In an exemplary embodiment, the radius of curvatures of the arcuate inner cylindrical surfaces, 40 caa, 40 cba, and 40 cca are equal. In an exemplary embodiment, the upper and lower cam assemblies, 38 and 40, are substantially identical. In an exemplary embodiment, the cam arms 38 c of the upper cam assembly 38 interleave the cam arms 40 c of the lower cam assembly 40. Furthermore, in an exemplary embodiment, the cam arms 38 c of the upper cam assembly also overlap with the cam arms 40 c of the lower cam assembly 40 in the longitudinal direction thereby permitting torque loads to be transmitted between the upper and lower cam assemblies.
  • An end of an upper retaining sleeve 42 receives and is threadably coupled to the external flange 34 d of the lower mandrel 34 that defines a passage 42 a for receiving and mating with the outer circumferential surfaces of the external flange 38 aa and the meshing teeth 38 b of the upper cam assembly 38, and an inner annular recess 42 b, and includes an internal flange 42 c for retaining the external flange 38 aa of the upper cam assembly, and an internal flange 42 d at one end of the upper retaining sleeve that includes a rounded interior end face. An o-ring seal 44 is received within the annular recess 42 b for sealing the interface between the upper retaining sleeve 42 and the external flange 34 d of the lower mandrel 34. A disc shaped shim 43 is positioned within the upper retaining sleeve 42 between the opposing end faces of the internal flange 42 c of the retaining sleeve and the meshing teeth 38 b of the upper cam assembly 38.
  • A plurality of upper expansion cone segments 44 are interleaved among the cam arms 38 c of the upper cam assembly 38. Each of the upper expansion cone segments 44 include inner portions 44 a having arcuate cylindrical inner surfaces, 44 aaa and 44 aab, and an arcuate cylindrical outer surface 44 ab, intermediate portions 44 b extending from the interior portions that have an arcuate conical inner surface 44 ba and arcuate cylindrical and spherical outer surfaces, 44 bba and 44 bbb, and outer portions 44 c having arcuate cylindrical inner and outer surfaces, 44 ca and 44 cb. In an exemplary embodiment, the outer surfaces 44 ab of the inner portions 44 a of the upper expansion cone segments define hinge grooves 44 aba that receive and are pivotally mounted upon the internal flange 42 d of the upper retaining sleeve 42.
  • The arcuate inner cylindrical surfaces 44 aaa mate with and receive the lower mandrel 34, the arcuate inner cylindrical surfaces 44 aab mate with and receive the arcuate cylindrical outer surfaces 40 ccb of the outer portions 40 cc of the corresponding cam arms 40 c of the lower cam assembly 40, and the arcuate inner conical surfaces 44 ba mate with and receive the arcuate conical outer surfaces 40 cbb of the intermediate portions 40 cb of the corresponding cam arms of the lower cam assembly.
  • In an exemplary embodiment, the radius of curvature of the arcuate cylindrical inner surface 44 aaa is less than the radius of curvature of the arcuate cylindrical inner surface 44 aab. In an exemplary embodiment, the radius of curvature of the arcuate cylindrical inner surface 44 ca is greater than the radius of curvature of the arcuate cylindrical surface 44 aab. In an exemplary embodiment, the arcuate cylindrical inner surfaces, 44 aaa and 44 aab, are parallel. In an exemplary embodiment, the arcuate cylindrical outer surface 44 ab is inclined relative to the arcuate cylindrical inner surface 44 aaa. In an exemplary embodiment, the arcuate cylindrical outer surface 44 bba is parallel to the arcuate cylindrical inner surfaces, 44 aaa and 44 aab. In an exemplary embodiment, the arcuate cylindrical outer surface 44 cb is inclined relative to the arcuate cylindrical inner surface 44 ca.
  • A plurality of lower expansion cone segments 46 are interleaved among, and overlap, the upper expansion cone segments 44 and the cam arms 38 c of the lower cam assembly 38. In this manner, torque loads may be transmitted between the upper and lower expansion cone segments, 44 and 46. Each of the lower expansion cone segments 46 include inner portions 46 a having arcuate cylindrical inner surfaces, 46 aaa and 46 aab, and an arcuate cylindrical outer surface 46 ab, intermediate portions 46 b extending from the interior portions that have an arcuate conical inner surface 46 ba and arcuate cylindrical and spherical outer surfaces, 46 bba and 46 bbb, and outer portions 46 c having arcuate cylindrical inner and outer surfaces, 46 ca and 46 cb. In an exemplary embodiment, the outer surfaces 46 ab of the inner portions 46 a of the upper expansion cone segments 46 define hinge grooves 46 aba.
  • The arcuate inner cylindrical surfaces 46 aaa mate with and receive the lower mandrel 34, the arcuate inner cylindrical surfaces 46 aab mate with and receive the arcuate cylindrical outer surfaces 38 ccb of the outer portions 38 cc of the corresponding cam arms 38 c of the upper cam assembly 38, and the arcuate inner conical surfaces 46 ba mate with and receive the arcuate conical outer surfaces 38 cbb of the intermediate portions 38 cb of the corresponding cam arms of the lower cam assembly.
  • In an exemplary embodiment, the radius of curvature of the arcuate cylindrical inner surface 46 aaa is less than the radius of curvature of the arcuate cylindrical inner surface 46 aab. In an exemplary embodiment, the radius of curvature of the arcuate cylindrical inner surface 46 ca is greater than the radius of curvature of the arcuate cylindrical surface 46 aab. In an exemplary embodiment, the arcuate cylindrical inner surfaces, 46 aaa and 46 aab, are parallel. In an exemplary embodiment, the arcuate cylindrical outer surface 46 ab is inclined relative to the arcuate cylindrical inner surface 46 aaa. In an exemplary embodiment, the arcuate cylindrical outer surface 46 bba is parallel to the arcuate cylindrical inner surfaces, 46 aaa and 46 aab. In an exemplary embodiment, the arcuate cylindrical outer surface 46 cb is inclined relative to the arcuate cylindrical inner surface 46 ca.
  • In an exemplary embodiment; the geometries of the upper and lower expansion cone segments 44 and 46 are substantially identical. In an exemplary embodiment, the upper expansion cone segments 44 are tapered in the longitudinal direction from the ends of the intermediate portions 44 b to the ends of the outer portions 44 c, and the lower expansion cone segments 46 are tapered in the longitudinal direction from the ends of the intermediate portions 46 b to the ends of the outer portions 46 c. In an exemplary embodiment, when the upper and lower expansion segments, 44 and 46, are positioned in a fully expanded position, the arcuate cylindrical outer surfaces, 44 bba and 46 cb, of the upper and lower expansion cone segments define a contiguous cylindrical surface, the arcuate spherical outer surfaces, 44 bbb and 46 bbb, of the upper and lower expansion cone segments define an contiguous arcuate spherical surface, and the arcuate cylindrical outer surfaces, 44 cb and 46 bba, of the upper and lower expansion cone segments define a contiguous cylindrical surface.
  • An end of a lower retaining sleeve 48 defines a passage 48 a for receiving and mating with the outer circumferential surfaces of the external flange 40 aa and the meshing teeth 40 b of the lower cam assembly 40, and an inner annular recess 48 b, and includes an internal flange 48 c for retaining the external flange of the lower cam assembly, and an internal flange 48 d at one end of the lower retaining sleeve that includes a rounded interior end face for mating with the hinge grooves 46 aba of the lower expansion cone segments 46 thereby pivotally coupling the lower expansion cone segments to the lower retaining sleeve. An o-ring seal 50 is received within the annular recess 48 b. A disc shaped shim 49 is positioned within the lower retaining sleeve 48 between the opposing end faces of the internal flange 48 c of the retaining sleeve and the external flange 40 aa of the lower cam assembly 40.
  • In an exemplary embodiment, the arcuate cylindrical outer surfaces 44 bba of the upper expansion cone segments 44 and the arcuate cylindrical outer surfaces 46 cb of the lower expansion cone segments 46 are aligned with the outer surface of the upper retaining sleeve 42. In an exemplary embodiment, the arcuate cylindrical outer surfaces 44 cb of the upper expansion cone segments 44 and the arcuate cylindrical outer surfaces 46 bba of the lower expansion cone segments are aligned with the outer surface of the lower retaining sleeve 48.
  • An end of a float shoe adaptor 50 that includes a plurality of circumferentially spaced apart meshing teeth 50 a for engaging the meshing teeth 40 b of the lower cam assembly 40 is received within and threadably coupled to an end of the lower retaining sleeve 48 that defines a passage 50 b at one end for receiving an end of the lower mandrel 34, a passage 50 c having a reduced inside diameter at another end, a plurality of radial passages 50 d at the other end, and includes an internal flange 50 e, and a torsional coupling 50 f at the other end that includes a plurality of torsional coupling members 50 fa. During operation, the meshing teeth 40 b of the lower cam assembly 40 transmit toque loads to and from the meshing teeth 50 a of the float shoe adaptor.
  • An end of a retaining sleeve 52 abuts the end face of the tubular base 40 a of the lower cam assembly 40 and is received within and mates with the passage 50 b of the float shoe adaptor 50 that defines a passage 52 a for receiving an end of the lower mandrel 34, a throat passage 52 b including a ball valve seat 52 c, and includes a flange 52 d, and another end of the retaining sleeve, having a reduced outside diameter, is received within and mates with the passage 50 c of the float shoe adaptor 50.
  • A stop nut 54 receives and is threadably coupled to the end of the lower mandrel 34 within the passage 52 a of the retaining sleeve 52, and shear pins 56 releasably couple the stop nut 54 to the retaining sleeve 52. Locking dogs 58 are positioned within an end of the retaining sleeve 52 that receive and are releasably coupled to the lower mandrel 34, and a disc shaped adjustment shim 60 receives the lower mandrel 34 and is positioned within an end of the retaining sleeve 52 between the opposing ends of the tubular base 40 a of the upper cam assembly 40 and the locking dogs 58. Burst discs 62 are releasably coupled to and positioned within the radial passages 50 d of the float shoe adaptor 50.
  • An end of a float shoe 64 mates with and is releasably coupled to the torsional coupling members 50 fa of the torsional coupling 50 f of the float shoe adaptor 50 that defines a passage 64 a and a valveable passage 64 b. In this manner torsional loads may be transmitted between the float shoe adaptor 50 and the float shoe 64. An end of an expandable tubular member 66 that surrounds the tubular support member 12, the safety collar 14, the upper mandrel collar 18, the upper packer cup 24, the lower packer cup 28, the lower mandrel 34, the upper expansion cone segments 44, the lower expansion cone segments 46, and the float shoe adaptor 50, is coupled to and receives an end of the float shoe 64 and is movably coupled to and supported by the arcuate spherical external surfaces, 44 bbb and 46 bbb, of the upper and lower expansion cone segments, 44 and 46.
  • During operation, as illustrated in FIGS. 1 a and 1 b, the apparatus 10 is at least partially positioned within a preexisting structure such as, for example, a borehole 100 that traverses a subterranean formation that may include a preexisting wellbore casing 102. The borehole 100 may be oriented in any position, for example, from vertical to horizontal. A fluidic material 104 is then injected into the apparatus 10 through the passages 12 a, 14 a, 22 a, 34 c, 50 c, 64 a, and 64 b into the annulus between the expandable tubular member 66 and the borehole 100. In an exemplary embodiment, the fluidic material 104 is a hardenable fluidic sealing material. In this manner, an annular sealing layer may be formed within the annulus between the expandable tubular member 66 and the borehole 100.
  • As illustrated in FIGS. 10 a and 10 b, a ball 106 is then be positioned within and blocking the valveable passage 64 b of the float shoe 64 by injecting a fluidic material 108 into the apparatus 10 through the passages 12 a, 14 a, 22 a, 34 c, and 50 c. As a result, the increased operating pressure within the passage 50 c bursts open the burst discs 62 positioned within the radial passages 50 d of the float shoe adaptor 50. The continued injection of the fluidic material 108 thereby pressurizes the interior of the expandable tubular member 66 below the lower packer cup 28 thereby displacing the upper and lower expansion cone segments, 44 and 46, upwardly relative to the float shoe 64 and the expandable tubular member 66. As a result, the expandable tubular member 66 is plastically deformed and radially expanded. Thus, the burst discs 62 sense the operating pressure of the injected fluidic material 108 within the passage 50 c and thereby control the initiation of the radial expansion and plastic deformation of the expandable tubular member 66.
  • In an exemplary embodiment, any leakage of the pressurized fluidic material 108 past the lower packer cup 28 is captured and sealed against further leakage by the upper packer cup 24. In this manner, the lower packer cup 28 provides the primary fluidic seal against the interior surface of the expandable tubular member 66, and the upper packer cup 24 provides a secondary, back-up, fluidic seal against the interior surface of the expandable tubular member. Furthermore, because the lower packer cup 28 and/or the upper packer cup 24 provide a fluid tight seal against the interior surface of the expandable tubular member 66, the upper and lower expansion cone segments, 44 and 46, are pulled upwardly through the expandable tubular member by the axial forces created by the packer cups.
  • In an exemplary embodiment, during the radial expansion process, the interface between the arcuate spherical external surfaces, 44 bbb and 46 bbb, of the upper and lower expansion cone segments, 44 and 46, and the interior surface of the expandable tubular member 66 is not fluid tight. As a result, the fluidic material 108 may provide lubrication to the entire extent of the interface between the cylindrical external surfaces, 44 bba and 46 cb, and the arcuate spherical external surfaces, 44 bbb and 46 bbb, of the upper and lower expansion cone segments, 44 and 46, and the interior surface of the expandable tubular member 66. Moreover, experimental test results have indicated the unexpected result that the required operating pressure of the fluidic material 108 for radial expansion of the expandable tubular member 66 is less when the interface between the cylindrical external surfaces, 44 bba and 46 cb, and the arcuate spherical external surfaces, 44 bbb and 46 bbb, of the upper and lower expansion cone segments, 44 and 46, and the interior surface of the expandable tubular member 66 is not fluid tight. Furthermore, experimental test results have also demonstrated that the arcuate spherical external surface provided by the arcuate spherical external surfaces, 44 bbb and 46 bbb, of the upper and lower expansion cone segments, 44 and 46, provides radial expansion and plastic deformation of the expandable tubular member 66 using lower operating pressures versus an expansion cone having a conical outer surface.
  • In an exemplary embodiment, as illustrated in FIGS. 11 a, 11 b, 12, 13, 14, 15, and 16, the upper and lower expansion cone segments, 44 and 46, may then be adjusted to a collapsed position by placing a ball 110 within the ball valve seat 52 c of the throat passage 52 b of the retaining sleeve 52. The continued injection of the fluidic material 108, after the placement of the ball 110 within the ball valve seat 52 c, creates a differential pressure across the ball 110 thereby applying a downward longitudinal force onto the retaining sleeve 52 thereby shearing the shear pins 56. As a result, the retaining sleeve 52 is displaced in the downward longitudinal direction relative to the float shoe adaptor 50 thereby permitting the locking dogs 58 to be displaced outwardly in the radial direction. The outward radial displacement of the locking dogs 58 disengages the locking dogs from engagement with the lower mandrel 34. Thus, the shear pins 56 sense the operating pressure of the injected fluidic material 108 within the throat passage 52 b and thereby controling the initiation of the collapsing of the upper and lower expansion cone segments, 44 and 46.
  • The continued injection of the fluidic material 108 continues to displace the retaining sleeve 52 in the downward longitudinal direction relative to the float shoe adaptor 50 until the external flange 52 d of the retaining sleeve 52 impacts, and applies a downward longitudinal force to, the internal flange 50 e of the float shoe adaptor. As a result, the float shoe adaptor 50 is then also displaced in the downward longitudinal direction relative to the lower mandrel 34. The downward longitudinal displacement of the float shoe adaptor 50 relative to the lower mandrel 34 causes the lower cam assembly 40, the lower expansion cone segments 46, and the lower retaining sleeve 48, which are rigidly attached to the float shoe adaptor, to also be displaced downwardly in the longitudinal direction relative to the lower mandrel 34, the upper cam assembly 38, and the upper expansion cone segments 44.
  • The downward longitudinal displacement of the lower cam assembly 40 relative to the upper expansion cone segments 44 causes the upper expansion cone segments to slide off of the conical external surfaces 40 cbb of the lower cam assembly and thereby pivot inwardly in the radial direction about the internal flange 42 d of the upper retaining sleeve 42. The downward longitudinal displacement of the lower expansion cone segments 46 relative to the upper cam assembly 38 causes the lower expansion cone segments 46 to slide off of the external conical surfaces 38 cbb of the upper cam assembly and thereby pivot inwardly in the radial direction about the internal flange 48 d of the lower retaining sleeve. As a result of the inward radial movement of the upper and lower expansion cone segments, 44 and 46, the arcuate external spherical surfaces, 44 bbb and 46 bbb, of the upper and lower expansion cone segments, 44 and 46, no longer provide a substantially contiguous outer arcuate spherical surface.
  • The downward longitudinal movement of the retaining sleeve 42 and float shoe adaptor 50 relative to the lower mandrel 34 is stopped when the stop nut 54 impacts the locking dogs 58. At this point, as illustrated in FIGS. 17 a and 17 b, the apparatus 10 may then be removed from the interior of the expandable tubular member 66.
  • Thus, the apparatus 10 may be removed from the expandable tubular member 66 prior to the complete radial expansion and plastic deformation of the expandable tubular member by controllably collapsing the upper and lower expansion cone segments, 44 and 46. As a result, the apparatus 10 provides the following benefits: (1) the apparatus is removable when expansion problems are encountered; (2) lower expansion forces are required because the portion of the expandable tubular member 66 between the packer cups, 24 and 28, and the expansion cone segments is exposed to the expansion fluid pressure; and (3) the expansion cone segments can be run down through the expandable tubular member, prior to radial expansion, and then the expansion cone segments can be expanded.
  • In several alternative embodiments, resilient members such as, for example, spring elements are coupled to the upper and lower expansion cone segments, 44 and 46, for resiliently biasing the expansion cone segments towards the expanded or collapsed position.
  • In several alternative embodiments, the placement of the upper and lower expansion cone segments, 44 and 46, in an expanded or collapsed position is reversible.
  • In several alternative embodiments, a small gap is provided between the upper and lower expansion cone segments, 44 and 46, when positioned in the expanded condition that varies from about 0.005 to 0.030 inches.
  • Turning back to FIG. 10 a, as previously discussed, the lower packer cup 28 may be used to provide a primary fluidic seal against the interior surface of the expandable tubular member 66, and the upper packer cup 24 provides a secondary, back-up, fluidic seal against the interior surface of the expandable tubular member. Furthermore, because the lower packer cup 28 and/or the upper packer cup 24 provide a fluid tight seal against the interior surface of the expandable tubular member 66, when the region is pressurized, the upper and lower expansion cone segments, 44 and 46, are pulled upwardly through the expandable tubular member by the axial forces created by the packer cups.
  • The packer cups may be made from an elastomer, the type of which depends on design pressures, fluids and temperatures. In several embodiments, the packer cups 24 and 28 are coupled to annular reinforcing elements or supports which are bonded to the elastomer to hold the elastomer in place when running in and out of the casing and when pressurized. Conventionally, the support may be wire or a single insert, such as used in the “TP” cup from Halliburton of Duncan, Okla. The support may be more complicated, for instance, it may comprise a bushing and a plurality of overlapping springs, such as used in the GW-HD cup from Guiberson Oil Tools of Alberta Canada.
  • Conventional packer cups are intended to remain stationary when pressurized. Any significant movement of a conventional packer cup when the cup has been pressurized may destroy the packer cup. Additionally, conventional packer cups may not be designed to hold the high pressures necessary for a casing expansion when moving through the casing. Pressure cycling and movement which occurs during casing expansion procedures may cause degradation of the elastomer and the bond between the elastomer and inserts. Eventually the elastomer disintegrates and the packer cup is unable to hold pressure. What is needed, therefore is a packer cup which can withstand the movement and pressures associated with the casing expansion procedure.
  • Turning now to FIG. 18, one side of a conventional cup seal or packer cup 70 is illustrated in detail. The opposing side is symmetrical about the center line of the packer cup. In the illustrated configuration, the packer cup 70 is shown located outside of the casing. Therefore, dashed lines represent the position of an expandable casing 71 relative to the packer cup 70. The packer cup 70 may be used as the upper packer cup 24 or lower packer cup 28 as described previously in reference to FIGS. 1 a and 10 a. In several alternative embodiments, the central mandrel 72 has an external flange 74, which may provide longitudinal support for a retaining sleeve or adjusting ring 76. The adjusting ring 76 receives and is coupled to the central mandrel 72. A spacer sleeve 78 also receives and is coupled to the central mandrel 72 and is longitudinally positioned between the packer cup 70 and the adjusting ring 76. In several embodiments, the adjusting ring 76 threadingly engages the spacer sleeve 78 so that the longitudinal position of the spacer sleeve may be adjusted by rotating the spacer sleeve relative to the adjusting ring 76. In turn, the spacer sleeve 78 longitudinally positions and supports the packer cup 70.
  • In several exemplary embodiments, the packer cup 70 comprises one or more springs 80 a and 80 b which are bonded to and radially support an elastomeric sealing cup 82 to form a cup assembly 83. The elastomeric sealing cup 82 is generally conical in shape, having a substantially unrestricted lip portion 85 for sealingly engaging the interior ID of the expandable casing 71. Opposite the lip portion 85 is a base portion 87 which is supported by a conical bushing 84 positioned between the interior side of the cup assembly 83 and the central mandrel 72. A radial thimble 86 surrounds the base portion 87 of the cup assembly 83. The radial thimble 86 has an exterior diameter which is smaller than the interior diameter of the casing by a distance “A.” In the embodiment illustrated in FIG. 18, the elastomeric sealing cup 82 is unsupported in a region “B” which may be generally defined as the region between a support, such as a radial thimble 86, and a point of contact “C” with the expandable casing 71.
  • FIG. 19 a illustrates an alternative embodiment of a packer cup 90. In several exemplary embodiments, the packer cup 90 comprises one or more springs 92 a and 92 b which are bonded to and radially support an elastomeric sealing cup 94 to form a cup assembly 95. The elastomeric sealing cup 94 is generally conical in shape, having a substantially unrestricted lip portion 93 for sealingly engaging the interior ID of the expandable casing 71. Opposite the lip portion 93 is a base portion 97 which is supported by a conical bushing 96 positioned between the cup assembly and the central mandrel 72. The supported end of the cup assembly 95 is surrounded by a radial thimble 98. The radial thimble 98 has an exterior diameter which is slightly smaller than the interior diameter, causing the distance “A” to be reduced when compared to a conventional packer cup, such as illustrated in FIG. 18.
  • In the embodiment illustrated in FIG. 19 a, the elastomeric sealing cup 94 is unsupported in a region “B” which may be generally defined as the region between a support, such as the radial thimble 98, and a point of contact “C” with the expandable casing 71. In this embodiment, the longitudinal length of the radial thimble 98 has been increased, which reduces the unsupported region “B” of the elastomeric sealing cup 94 when compared to a conventional packer cup.
  • Reducing the length “B” of the unsupported region and the distance “A” between the exterior diameter of the thimble 98 and the ID of the casing limits movement of the elastomeric sealing cup 94 when the packer cup is pressurized. This reduced movement improves the durability of the packer seal under greater pressures than conventional packer cups.
  • FIG. 19 b illustrates an alternative embodiment of a packer cup 100. In several exemplary embodiments, the packer cup 100 comprises one or more springs 102 a and 102 b which are bonded to an elastomeric sealing cup 104 to form a cup assembly 105. The elastomeric sealing cup 104 is generally conical in shape, having a substantially unrestricted lip portion 103 for sealingly engaging the interior ID of the expandable casing 71. Opposite the lip portion 103 is a base portion 107 which is supported by a conical bushing 106 positioned between the elastoermic seal 104 and the central mandrel 72. A pliant backup member 108 is position between the elastomeric sealing cup 104 and a radial thimble 110. The backup member 108 may be made from any suitable pliant material, such as a fluoropolymer or fluoroelastomer (e.g., Teflon or PEEK). The use of the backup member 108 significantly reduces the unsupported region of the elastomeric sealing cup 104. Additionally, the backup member 108 easily extrudes when pressurized to expand into any gap between the outside diameter of the backup support and the ID of the casing providing a secondary seal.
  • The radial thimble 110 is similar to the radial thimble 98 (FIG. 19 a) in that it has an exterior diameter which is slightly smaller than the interior diameter, causing the distance “A” to be reduced. Similarly, the longitudinal length of the radial thimble 110 has been increased which reduces the unsupported length of the elastomeric sealing cup. Reducing the unsupported-region of the elastomeric sealing cup and the distance between the exterior diameter of the thimble 98 and the ID of the casing limits movement of the elastomeric sealing cup 94 when the packer cup is pressurized. This reduced movement improves the durability of the packer seal.
  • FIG. 19 c illustrates an alternative embodiment of a packer cup 120. In several exemplary embodiments, the packer cup 120 comprises one or more springs 122 a and 122 b which are bonded to an elastomeric sealing cup 124 to form a cup assembly 125. The elastomeric sealing cup 124 is generally conical in shape, having a substantially unrestricted lip portion 123 for sealingly engaging the interior ID of the expandable casing 71. Opposite the lip portion 123 is a base portion 127 which is supported by a conical bushing 126 positioned between the elastomeric sealing cup 124 and the central mandrel 72. A pliant backup member 128 is positioned between the elastomeric sealing cup 124 and a radial shoe 130. The backup member 128 may be made from any suitable pliant material, such as a fluoropolymer or fluoroelastomer (e.g., Teflon or PEEK). Additionally, the backup member 128 extrudes when pressurized to expand into a gap between the outside diameter of the backup member 128 and the ID of the casing. However, the use of the radial shoe 130 and the cross-sectional shape of the backup member 128 reduces the degree of extrusion when compared to packer cup 100 (FIG. 19 b).
  • The radial shoe 130 may be made from steel or another harden material to provide support and protection for the pliant backup member 128. The pliant backup member 128 reduces the unsupported length of the elastomeric sealing cup 124 which limits the movement of the elastomeric sealing cup 124 when the packer cup is pressurized. This reduced movement improves the durability of the packer cup.
  • FIG. 19 d illustrates an alternative embodiment of a packer cup 140. In several exemplary embodiments, the packer cup 140 comprises one or more springs 142 a and 142 b which are bonded to an elastomeric sealing cup 144 to form a cup assembly 145. The elastomeric sealing cup 144 is generally conical in shape, having a substantially unrestricted lip portion 143 for sealingly engaging the interior ID of the expandable casing 71. Opposite the lip portion 143 is a base portion 149 which is supported by a conical bushing 146 positioned between the elastomeric sealing cup 144 and the central mandrel 72. A support member 147 provides additional stiffness and support by surrounding the supported end of cup assembly 145. The support member 147 may be made of steel or another suitable material. The use of the support member 147 provides a stiff support for the elastomeric sealing cup 144 which reduces the movement of the elastomeric sealing cup 144. Similar to the packer cup 120 discussed in reference to FIG. 19 c, a pliant backup member 148 is positioned between the support member 147 and a radial shoe 150. The backup member 148 extrudes when pressurized to expand into a gap between the outside diameter of the backup support and the ID of the casing. However, the use of the radial shoe 150 reduces the degree of extrusion when compared to packer cup 100 (FIG. 19 b).
  • The radial shoe 150 may be made from steel or another harden material to provide support and protection for the pliant backup member 148. The use of a pliant backup member 148 also reduces the unsupported region of the elastomeric sealing cup 144 which limits the movement of the elastomeric sealing cup 144 when the packer cup is pressurized. This reduced movement improves the durability of the packer cup.
  • FIG. 19 e illustrates an alternative embodiment of a packer cup 160. In several exemplary embodiments, the packer cup 160 comprises one or more springs 162 a and 162 b which are bonded to an elastomeric sealing cup 164 to form a cup assembly 165. The elastomeric sealing cup 164 is generally conical in shape, having a substantially unrestricted lip portion 163 for sealingly engaging the interior ID of the expandable casing 71. Opposite the lip portion 163 is a base portion 167 which is supported by a conical bushing 166 positioned between the elastomeric sealing cup 164 and the central mandrel 72. The supported end of the cup assembly is also surrounded by a radial thimble 168.
  • In this embodiment, the elastomeric sealing cup 164 has additional elastomeric material molded proximate to the radial thimble 168 at a point “D”. Because of the use of additional elastomeric material and a longer longitudinal length of the radial thimble 98, the unsupported region of the elastomeric sealing cup 164 is significantly reduced. Reducing the unsupported region of the elastomeric sealing cup 164 and the distance between the exterior diameter of the thimble 168 and the ID of the casing 71 limits movement of the elastomeric sealing cup 164 when the packer cup is pressurized. Additionally, the radial thimble 168 has an exterior diameter which is slightly smaller than the interior diameter, causing the gap between the radial thimble 168 and the ID of the casing 71 to be reduced. The reduced gap also limits movement of the elastomeric sealing cup 164. This reduced movement improves the durability of the packer seal.
  • An apparatus for radially expanding and plastically deforming an expandable tubular member has been described that includes an upper tubular support member defining a first passage, one or more cup seals coupled to the exterior surface of the upper tubular support member for sealing an interface between the upper tubular support member and the expandable tubular member, an upper cam assembly coupled to the upper tubular support member comprising: a tubular base coupled to the upper tubular support member, and a plurality of cam arms extending from the tubular base in a downward longitudinal direction, each cam arm defining an inclined surface, a plurality of upper expansion cone segments interleaved with the cam arms of the upper cam assembly and pivotally coupled to the tubular support member, a lower tubular support member defining a second passage fluidicly coupled to the first passage releasably coupled to the upper tubular support member, a lower cam assembly coupled to the lower tubular support member comprising: a tubular base coupled to the lower tubular support member, and a plurality of cam arms extending from the tubular base in an upward longitudinal direction, each cam arm defining an inclined surface that mates with the inclined surface of a corresponding one of the upper expansion cone segments, wherein the cams arms of the upper cam assembly are interleaved with and overlap the cam arms of the lower cam assembly, and a plurality of lower expansion cone segments interleaved with cam arms of the lower cam assembly, each lower expansion cone segment pivotally coupled to the lower tubular support member and mating with the inclined surface of a corresponding one of the cam arms of the upper cam assembly, wherein the lower expansion cone segments interleave and overlap the upper expansion cone segments, and wherein the upper and lower expansion cone segments together define an arcuate spherical external surface for plastically deforming and radially expanding the expandable tubular member. In an exemplary embodiment, the upper tubular support member includes: a safety collar, a torque plate coupled to the safety collar including a plurality of circumferentially spaced apart meshing teeth at an end, an upper mandrel including a plurality of circumferentially spaced apart meshing teeth at one end for engaging the meshing teeth of the torque plate and an external flange at another end, and a lower mandrel coupled to the external flange of the upper mandrel including an external flange including a plurality of circumferentially spaced apart meshing teeth. In an exemplary embodiment, the tubular base of the upper cam assembly includes a plurality of circumferentially spaced apart meshing teeth for engaging the meshing teeth of the external flange of the lower mandrel. In an exemplary embodiment, the apparatus further includes a stop nut coupled to an end of the lower mandrel for limiting the movement of the lower tubular member relative to the lower mandrel. In an exemplary embodiment, the apparatus further includes locking dogs coupled to the lower mandrel. In an exemplary embodiment, the lower tubular support member includes: a float shoe adapter including a plurality of circumferentially spaced apart meshing teeth at one end, an internal flange, and a torsional coupling at another end, a lower retaining sleeve coupled to an end of the float shoe adapter including an internal flange for pivotally engaging the lower expansion cone segments, and a retaining sleeve received within the float shoe adapter releasably coupled to the upper tubular support member. In an exemplary embodiment, an end of the retaining sleeve abuts an end of the tubular base of the lower cam assembly. In an exemplary embodiment, the tubular base of the lower cam assembly includes a plurality of circumferentially spaced apart meshing teeth for engaging the meshing teeth of the float shoe adaptor. In an exemplary embodiment, the apparatus further includes a float shoe releasably coupled to the torsional coupling of the float shoe adaptor, and an expandable tubular member coupled to the float shoe and supported by and movably coupled to the upper and lower expansion cone segments. In an exemplary embodiment, the apparatus further includes: one or more shear pins coupled between the upper tubular support member and the lower tubular support member. In an exemplary embodiment, the apparatus further includes: a stop member coupled to the upper tubular support member for limiting movement of the upper tubular support member relative to the lower tubular support member. In an exemplary embodiment, the apparatus further includes: a float shoe releasably coupled to the lower tubular support member that defines a valveable passage, and an expandable tubular member coupled to the float shoe and supported by and movably coupled to the upper and lower expansion cone segments. In an exemplary embodiment, each upper expansion cone segment includes: an inner portion defining an arcuate cylindrical upper surface including a hinge groove for pivotally coupling the upper expansion cone segment to the upper tubular support member and arcuate cylindrical lower surfaces, an intermediate portion defining arcuate cylindrical and spherical upper surfaces and an arcuate conical lower surface, and an outer portion defining arcuate cylindrical upper and lower surfaces, and wherein each lower expansion cone segment includes: an inner portion defining an arcuate cylindrical upper surface including a hinge groove for pivotally coupling the lower expansion cone segment to the lower tubular support member and arcuate cylindrical lower surfaces, an intermediate portion defining arcuate cylindrical and spherical upper surfaces and an arcuate conical lower surface, and an outer portion defining arcuate cylindrical upper and lower surfaces. In an exemplary embodiment, each upper expansion cone segment is tapered in the longitudinal direction from the intermediate portion to the outer portion; and wherein each lower expansion cone segment is tapered in the longitudinal direction from the intermediate portion to the outer portion.
  • An apparatus for radially expanding and plastically deforming an expandable tubular member has also been described that includes a safety collar, a torque plate coupled to the safety collar including a plurality of circumferentially spaced apart meshing teeth at an end, an upper mandrel including a plurality of circumferentially spaced apart meshing teeth at one end for engaging the meshing teeth of the torque plate and an external flange at another end, a lower mandrel coupled to the external flange of the upper mandrel including an external flange including a plurality of circumferentially spaced apart meshing teeth, a stop nut coupled to an end of the lower mandrel, an upper retaining sleeve coupled to the lower mandrel including an internal flange, one or more cup seals coupled to the upper mandrel for sealing an interface between the upper mandrel and the expandable tubular member, an upper cam assembly coupled to the lower mandrel including: a tubular base including a plurality of circumferentially spaced apart meshing teeth for engaging the meshing teeth of the external flange of the lower mandrel, and a plurality of cam arms extending from the tubular base in a downward longitudinal direction, each cam arm defining an inclined surface, a plurality of upper expansion cone segments interleaved with the cam arms of the upper cam assembly and pivotally coupled to the internal flange of the upper retaining sleeve, a float shoe adapter including a plurality of circumferentially spaced apart meshing teeth at one end, an internal flange, and a torsional coupling at another end, a lower retaining sleeve coupled to an end of the float shoe adapter including an internal flange, a retaining sleeve received within the float shoe adapter, one or more shear pins for releasably coupling the retaining sleeve to the stop nut, a lower cam assembly coupled to the float shoe adapter including: a tubular base including a plurality of circumferentially spaced apart meshing teeth for engaging the meshing teeth of the float shoe adapter, and a plurality of cam arms extending from the tubular base in an upward longitudinal direction, each cam arm defining an inclined surface that mates with the inclined surface of a corresponding one of the upper expansion cone segments, wherein the cams arms of the upper cam assembly are interleaved with and overlap the cam arms of the lower cam assembly, a plurality of lower expansion cone segments interleaved with cam arms of the lower cam assembly, each lower expansion cone segment pivotally coupled to the internal flange of the lower retaining sleeve and mating with the inclined surface of a corresponding one of the cam arms of the upper cam assembly, a float shoe releasably coupled to the torsional coupling of the float shoe adaptor, and an expandable tubular member coupled to the float shoe and supported by and movably coupled to the upper and lower expansion cone segments, wherein the lower expansion cone segments interleave and overlap the upper expansion cone segments, wherein the upper and lower expansion cone segments together define an arcuate spherical external surface for plastically deforming and radially expanding the expandable tubular member, wherein each upper expansion cone segment includes: an inner portion defining an arcuate cylindrical upper surface including a hinge groove for pivotally coupling the upper expansion cone segment to the upper tubular support member and arcuate cylindrical lower surfaces, an intermediate portion defining arcuate cylindrical and spherical upper surfaces and an arcuate conical lower surface, and an outer portion defining arcuate cylindrical upper and lower surfaces, wherein each lower expansion cone segment includes: an inner portion defining an arcuate cylindrical upper surface including a hinge groove for pivotally coupling the lower expansion cone segment to the lower tubular support member and arcuate cylindrical lower surfaces, an intermediate portion defining arcuate cylindrical and spherical upper surfaces and an arcuate conical lower surface, and an outer portion defining arcuate cylindrical upper and lower surfaces, wherein each upper expansion cone segment is tapered in the longitudinal direction from the intermediate portion to the outer portion, and wherein each lower expansion cone segment is tapered in the longitudinal direction from the intermediate portion to the outer portion.
  • A collapsible expansion cone assembly has also been described that includes an upper tubular support member including an internal flange, an upper cam assembly coupled to the upper tubular support member including: a tubular base coupled to the upper support member, and a plurality of cam arms extending from the tubular base in a downward longitudinal direction, each cam arm defining an inclined surface, a plurality of upper expansion cone segments interleaved with the cam arms of the upper cam assembly and pivotally coupled to the internal flange of the upper tubular support member, a lower tubular support member including an internal flange, one or more frangible couplings for releasably coupling the upper and lower tubular support members, a lower cam assembly coupled to the lower tubular support member including: a tubular base coupled to the lower tubular support member, and a plurality of cam arms extending from the tubular base in an upward longitudinal direction, each cam arm defining an inclined surface that mates with the inclined surface of a corresponding one of the upper expansion cone segments, wherein the cams arms of the upper cam assembly are interleaved with and overlap the cam arms of the lower cam assembly, and a plurality of lower expansion cone segments interleaved with cam arms of the lower cam assembly, each lower expansion cone segment pivotally coupled to the internal flange of the lower tubular support member and mating with the inclined surface of a corresponding one of the cam arms of the upper cam assembly, wherein the lower expansion cone segments interleave and overlap the upper expansion cone segments, and wherein the upper and lower expansion cone segments together define an arcuate spherical external surface for plastically deforming and radially expanding the expandable tubular member. In an exemplary embodiment, each upper expansion cone segment includes: an inner portion defining an arcuate cylindrical upper surface including a hinge groove for pivotally coupling the upper expansion cone segment to the upper tubular support member and arcuate cylindrical lower surfaces, an intermediate portion defining arcuate cylindrical and spherical upper surfaces and an arcuate conical lower surface, and an outer portion defining arcuate cylindrical upper and lower surfaces, and wherein each lower expansion cone segment includes: an inner portion defining an arcuate cylindrical upper surface including a hinge groove for pivotally coupling the lower expansion cone segment to the lower tubular support member and arcuate cylindrical lower surfaces, an intermediate portion defining arcuate cylindrical and spherical upper surfaces and an arcuate conical lower surface, and an outer portion defining arcuate cylindrical upper and lower surfaces. In an exemplary embodiment, each upper expansion cone segment is tapered in the longitudinal direction from the intermediate portion to the outer portion, and wherein each lower expansion cone segment is tapered in the longitudinal direction from the intermediate portion to the outer portion.
  • A collapsible expansion cone assembly has also been described that includes an upper tubular support member including an internal flange, an upper cam assembly coupled to the upper tubular support member including: a tubular base coupled to the upper support member, and a plurality of cam arms extending from the tubular base in a downward longitudinal direction, each cam arm defining an inclined surface, a plurality of upper expansion cone segments interleaved with the cam arms of the upper cam assembly and pivotally coupled to the internal flange of the upper tubular support member, a lower tubular support member including an internal flange, one or more frangible couplings for releasably coupling the upper and lower tubular support members, a lower cam assembly coupled to the lower tubular support member including: a tubular base coupled to the lower tubular support member, and a plurality of cam arms extending from the tubular base in an upward longitudinal direction, each cam arm defining an inclined surface that mates with the inclined surface of a corresponding one of the upper expansion cone segments, wherein the cams arms of the upper cam assembly are interleaved with and overlap the cam arms of the lower cam assembly, and a plurality of lower expansion cone segments interleaved with cam arms of the lower cam assembly, each lower expansion cone segment pivotally coupled to the internal flange of the lower tubular support member and mating with the inclined surface of a corresponding one of the cam arms of the upper cam assembly, wherein the lower expansion cone segments interleave and overlap the upper expansion cone segments, wherein the upper and lower expansion cone segments together define an arcuate spherical external surface for plastically deforming and radially expanding the expandable tubular member, wherein each upper expansion cone segment includes: an inner portion defining an arcuate cylindrical upper surface including a hinge groove for pivotally coupling the upper expansion cone segment to the upper tubular support member and arcuate cylindrical lower surfaces, an intermediate portion defining arcuate cylindrical and spherical upper surfaces and an arcuate conical lower surface, and an outer portion defining arcuate cylindrical upper and lower surfaces, wherein each lower expansion cone segment includes: an inner portion defining an arcuate cylindrical upper surface including a hinge groove for pivotally coupling the lower expansion cone segment to the lower tubular support member and arcuate cylindrical lower surfaces, an intermediate portion defining arcuate cylindrical and spherical upper surfaces and an arcuate conical lower surface, and an outer portion defining arcuate cylindrical upper and lower surfaces, wherein each upper expansion cone segment is tapered in the longitudinal direction from the intermediate portion to the outer portion, and wherein each lower expansion cone segment is tapered in the longitudinal direction from the intermediate portion to the outer portion.
  • An apparatus for radially expanding and plastically deforming an expandable tubular member has also been described that includes a tubular support member, a collapsible expansion cone coupled to the tubular support member, an expandable tubular member coupled to the collapsible expansion cone, means for displacing the collapsible expansion cone relative to the expandable tubular member, and means for collapsing the expansion cone. In an exemplary embodiment, the tubular support member includes an upper tubular support member including an internal flange and a lower tubular support member including an internal flange, wherein the expansion cone includes: an upper cam assembly coupled to the upper tubular support member including: a tubular base coupled to the upper support member, and a plurality of cam arms extending from the tubular base in a downward longitudinal direction, each cam arm defining an inclined surface, a plurality of upper expansion cone segments interleaved with the cam arms of the upper cam assembly and pivotally coupled to the internal flange of the upper tubular support member, a lower cam assembly coupled to the lower tubular support member including: a tubular base coupled to the lower tubular support member, and a plurality of cam arms extending from the tubular base in an upward longitudinal direction, each cam arm defining an inclined surface that mates with the inclined surface of a corresponding one of the upper expansion cone segments, wherein the cams arms of the upper cam assembly are interleaved with and overlap the cam arms of the lower cam assembly, and a plurality of lower expansion cone segments interleaved with cam arms of the lower cam assembly, each lower expansion cone segment pivotally coupled to the internal flange of the lower tubular support member and mating with the inclined surface of a corresponding one of the cam arms of the upper cam assembly; and wherein the apparatus further includes: means for releasably coupling the upper tubular support member to the lower tubular support member, and means for limiting movement of the upper tubular support member relative to the lower tubular support member. In an exemplary embodiment, the apparatus further includes: means for pivoting the upper expansion cone segments, and means for pivoting the lower expansion cone segments. In an exemplary embodiment, the apparatus further includes: means for pulling the collapsible expansion cone through the expandable tubular member.
  • A collapsible expansion cone has also been described that includes an upper cam assembly including: a tubular base, and a plurality of cam arms extending from the tubular base in a downward longitudinal direction, each cam arm defining an inclined surface, a plurality of upper expansion cone segments interleaved with the cam arms of the upper cam assembly, a lower cam assembly including: a tubular base, and a plurality of cam arms extending from the tubular base in an upward longitudinal direction, each cam arm defining an inclined surface that mates with the inclined surface of a corresponding one of the upper expansion cone segments, wherein the cams arms of the upper cam assembly are interleaved with and overlap the cam arms of the lower cam assembly, a plurality of lower expansion cone segments interleaved with cam arms of the lower cam assembly, each lower expansion cone segment mating with the inclined surface of a corresponding one of the cam arms of the upper cam assembly, means for moving the upper cam assembly away from the lower expansion cone segments, and means for moving the lower cam assembly away from the upper expansion cone segments. In an exemplary embodiment, the upper and lower expansion cone segments together define an arcuate spherical external surface. In an exemplary embodiment, each upper expansion cone segment includes: an inner portion defining an arcuate upper surface and arcuate cylindrical lower surfaces, an intermediate portion defining arcuate cylindrical and spherical upper surfaces and an arcuate conical lower surface, and an outer portion defining arcuate cylindrical upper and lower surfaces, and wherein each lower expansion cone segment includes: an inner portion defining an arcuate cylindrical upper surface and arcuate cylindrical lower surfaces, an intermediate portion defining arcuate cylindrical and spherical upper surfaces and an arcuate conical lower surface, and an outer portion defining arcuate cylindrical upper and lower surfaces. In an exemplary embodiment, each upper expansion cone segment is tapered in the longitudinal direction from the intermediate portion to the outer portion, and each lower expansion cone segment is tapered in the longitudinal direction from the intermediate portion to the outer portion.
  • Also disclosed is a packer cup apparatus comprising a central mandrel, a sealing cup comprising a substantially unrestricted lip for sealing engaging a tubular member, and a base portion for sealingly engaging the central mandrel, a protecting member positioned longitudinally along the central mandrel, and a pliant backup member positioned between the protecting member and the sealing cup, a conical bushing positioned partially between the sealing cup and the tubular support member for supporting the base portion of the sealing cup.
  • A method of radially expanding and plastically deforming an expandable tubular member has also been described that includes supporting the expandable tubular member using a tubular support member and a collapsible expansion cone, injecting a fluidic material into the tubular support member, sensing the operating pressure of the injected fluidic material within a first interior portion of the tubular support member, displacing the collapsible expansion cone relative to the expandable tubular member when the sensed operating pressure of the injected fluidic material exceeds a predetermined level within the first interior portion of the tubular support member, sensing the operating pressure of the injected fluidic material within a second interior portion of the tubular support member, and collapsing the collapsible expansion cone when the sensed operating pressure of the injected fluidic material exceeds a predetermined level within the second interior portion of the tubular support member. In an exemplary embodiment, the method further includes: pulling the collapsible expansion cone through the expandable tubular member when the sensed operating pressure of the injected fluidic material exceeds a predetermined level within the first interior portion of the tubular support member. In an exemplary embodiment, pulling the collapsible expansion cone through the expandable tubular member includes: coupling one or more cup seals to the tubular support member above the collapsible expansion cone, pressuring the interior of the expandable tubular member below the cup seals, and pulling the collapsible expansion cone through the expandable tubular member using the cup seals. In an exemplary embodiment, the tubular support member includes an upper tubular support member and a lower tubular support member, and wherein collapsing the collapsible expansion cone includes displacing the upper tubular member relative to the lower tubular support member. In an exemplary embodiment, the collapsible expansion cone includes: an upper cam assembly including: a tubular base, and a plurality of cam arms extending from the tubular base in a downward longitudinal direction, each cam arm defining an inclined surface, a plurality of upper expansion cone segments interleaved with the cam arms of the upper cam assembly and pivotally coupled to the upper tubular support member, a lower cam assembly including: a tubular base, and a plurality of cam arms extending from the tubular base in an upward longitudinal direction, each cam arm defining an inclined surface that mates with the inclined surface of a corresponding one of the upper expansion cone segments, wherein the cams arms of the upper cam assembly are interleaved with and overlap the cam arms of the lower cam assembly, and a plurality of lower expansion cone segments interleaved with cam arms of the lower cam assembly, each lower expansion cone segment pivotally coupled to the lower tubular support member and mating with the inclined surface of a corresponding one of the cam arms of the upper cam assembly.
  • It is understood that variations may be made in the foregoing without departing from the scope of the invention. For example, the teachings of the present illustrative embodiments may be used to provide a wellbore casing, a pipeline, or a structural support. Furthermore, the elements and teachings of the various illustrative embodiments may be combined in whole or in part in some or all of the illustrative embodiments.
  • Although illustrative embodiments of the invention have been shown and described, a wide range of modification, changes and substitution is contemplated in the foregoing disclosure. In some instances, some features of the present invention may be employed without a corresponding use of the other features. Accordingly, it is appropriate that the appended claims be construed broadly and in a manner consistent with the scope of the invention.

Claims (51)

1. An apparatus for radially expanding and plastically deforming an expandable tubular member, comprising:
an upper tubular support member defining a first passage;
one or more cup seals coupled to the exterior surface of the upper tubular support member for sealing an interface between the upper tubular support member and the expandable tubular member;
an upper cam assembly coupled to the upper tubular support member comprising:
a tubular base coupled to the upper tubular support member; and
a plurality of cam arms extending from the tubular base in a downward longitudinal direction, each cam arm defining an inclined surface;
a plurality of upper expansion cone segments interleaved with the cam arms of the upper cam assembly and pivotally coupled to the tubular support member;
a lower tubular support member defining a second passage fluidicly coupled to the first passage releasably coupled to the upper tubular support member;
a lower cam assembly coupled to the lower tubular support member comprising:
a tubular base coupled to the lower tubular support member; and
a plurality of cam arms extending from the tubular base in an upward longitudinal direction, each cam arm defining an inclined surface that mates with the inclined surface of a corresponding one of the upper expansion cone segments;
wherein the cams arms of the upper cam assembly are interleaved with and overlap the cam arms of the lower cam assembly; and
a plurality of lower expansion cone segments interleaved with cam arms of the lower cam assembly, each lower expansion cone segment pivotally coupled to the lower tubular support member and mating with the inclined surface of a corresponding one of the cam arms of the upper cam assembly;
wherein the lower expansion cone segments interleave and overlap the upper expansion cone segments; and
wherein the upper and lower expansion cone segments together define an arcuate spherical external surface for plastically deforming and radially expanding the expandable tubular member.
2. The apparatus of claim 1, wherein the upper tubular support member comprises:
a safety collar;
a torque plate coupled to the safety collar comprising a plurality of circumferentially spaced apart meshing teeth at an end;
an upper mandrel comprising a plurality of circumferentially spaced apart meshing teeth at one end for engaging the meshing teeth of the torque plate and an external flange at another end; and
a lower mandrel coupled to the external flange of the upper mandrel comprising an external flange comprising a plurality of circumferentially spaced apart meshing teeth.
3. The apparatus of claim 2, wherein the tubular base of the upper cam assembly comprises a plurality of circumferentially spaced apart meshing teeth for engaging the meshing teeth of the external flange of the lower mandrel.
4. The apparatus of claim 2, further comprising:
a stop nut coupled to an end of the lower mandrel for limiting the movement of the lower tubular member relative to the lower mandrel.
5. The apparatus of claim 2, further comprising:
locking dogs coupled to the lower mandrel.
6. The apparatus of claim 1, wherein the lower tubular support member comprises:
a float shoe adapter comprising a plurality of circumferentially spaced apart meshing teeth at one end, an internal flange, and a torsional coupling at another end;
a lower retaining sleeve coupled to an end of the float shoe adapter comprising an internal flange for pivotally engaging the lower expansion cone segments; and
a retaining sleeve received within the float shoe adapter releasably coupled to the upper tubular support member.
7. The apparatus of claim 6, wherein an end of the retaining sleeve abuts an end of the tubular base of the lower cam assembly.
8. The apparatus of claim 6, wherein the tubular base of the lower cam assembly comprises a plurality of circumferentially spaced apart meshing teeth for engaging the meshing teeth of the float shoe adaptor.
9. The apparatus of claim 6, further comprising:
a float shoe releasably coupled to the torsional coupling of the float shoe adaptor; and
an expandable tubular member coupled to the float shoe and supported by and movably coupled to the upper and lower expansion cone segments.
10. The apparatus of claim 1, further comprising:
one or more shear pins coupled between the upper tubular support member and the lower tubular support member.
11. The apparatus of claim 1, further comprising:
a stop member coupled to the upper tubular support member for limiting movement of the upper tubular support member relative to the lower tubular support member.
12. The apparatus of claim 1, further comprising:
a float shoe releasably coupled to the lower tubular support member that defines a valveable passage; and
an expandable tubular member coupled to the float shoe and supported by and movably coupled to the upper and lower expansion cone segments.
13. The apparatus of claim 1, wherein each upper expansion cone segment comprises:
an inner portion defining an arcuate cylindrical upper surface including a hinge groove for pivotally coupling the upper expansion cone segment to the upper tubular support member and arcuate cylindrical lower surfaces;
an intermediate portion defining arcuate cylindrical and spherical upper surfaces and an arcuate conical lower surface; and
an outer portion defining arcuate cylindrical upper and lower surfaces; and
wherein each lower expansion cone segment comprises:
an inner portion defining an arcuate cylindrical upper surface including a hinge groove for pivotally coupling the lower expansion cone segment to the lower tubular support member and arcuate cylindrical lower surfaces;
an intermediate portion defining arcuate cylindrical and spherical upper surfaces and an arcuate conical lower surface; and
an outer portion defining arcuate cylindrical upper and lower surfaces.
14. The apparatus of claim 13, wherein each upper expansion cone segment is tapered in the longitudinal direction from the intermediate portion to the outer portion; and wherein each lower expansion cone segment is tapered in the longitudinal direction from the intermediate portion to the outer portion.
15. The apparatus of claim 1, wherein each of the one or more cup seals comprise:
a sealing cup comprising
a substantially unrestricted lip for sealing engaging the expandable tubular member, and
a base portion for sealingly engaging the tubular support member,
a protecting member positioned longitudinally along the tubular support member, and
a conical bushing positioned partially between the sealing cup and the tubular support member for supporting the base portion of the sealing cup.
16. The apparatus of claim 15 further comprising a pliant backup member positioned between the protecting member and the sealing cup.
17. The apparatus of claim 16 wherein the pliant backup member is made from a material selected from the group consisting of fluropolymer, fluoroelastomer, Telflon, or PEEK.
18. The apparatus of claim 15 further comprising a restraining member surrounding the base portion of the sealing cup for restraining the sealing cup.
19. The apparatus of claim 15 wherein the protecting member is a thimble surrounding the base portion of the sealing cup.
20. The apparatus of claim 19 wherein the sealing cup further comprises an unsupported portion between the thimble and a point of engagement with the expandable tubular member, and a means for reducing the unsupported portion of the sealing cup.
21. An apparatus for radially expanding and plastically deforming an expandable tubular member, comprising:
a safety collar;
a torque plate coupled to the safety collar comprising a plurality of circumferentially spaced apart meshing teeth at an end;
an upper mandrel comprising a plurality of circumferentially spaced apart meshing teeth at one end for engaging the meshing teeth of the torque plate and an external flange at another end;
a lower mandrel coupled to the external flange of the upper mandrel comprising an external flange comprising a plurality of circumferentially spaced apart meshing teeth;
a stop nut coupled to an end of the lower mandrel;
an upper retaining sleeve coupled to the lower mandrel comprising an internal flange;
one or more cup seals coupled to the upper mandrel for sealing an interface between the upper mandrel and the expandable tubular member;
an upper cam assembly coupled to the lower mandrel comprising:
a tubular base comprising a plurality of circumferentially spaced apart meshing teeth for engaging the meshing teeth of the external flange of the lower mandrel; and
a plurality of cam arms extending from the tubular base in a downward longitudinal direction, each cam arm defining an inclined surface;
a plurality of upper expansion cone segments interleaved with the cam arms of the upper cam assembly and pivotally coupled to the internal flange of the upper retaining sleeve;
a float shoe adapter comprising a plurality of circumferentially spaced apart meshing teeth at one end, an internal flange, and a torsional coupling at another end;
a lower retaining sleeve coupled to an end of the float shoe adapter comprising an internal flange;
a retaining sleeve received within the float shoe adapter;
one or more shear pins for releasably coupling the retaining sleeve to the stop nut;
a lower cam assembly coupled to the float shoe adapter comprising:
a tubular base comprising a plurality of circumferentially spaced apart meshing teeth for engaging the meshing teeth of the float shoe adapter; and
a plurality of cam arms extending from the tubular base in an upward longitudinal direction, each cam arm defining an inclined surface that mates with the inclined surface of a corresponding one of the upper expansion cone segments;
wherein the cams arms of the upper cam assembly are interleaved with and overlap the cam arms of the lower cam assembly;
a plurality of lower expansion cone segments interleaved with cam arms of the lower cam assembly, each lower expansion cone segment pivotally coupled to the internal flange of the lower retaining sleeve and mating with the inclined surface of a corresponding one of the cam arms of the upper cam assembly;
a float shoe releasably coupled to the torsional coupling of the float shoe adaptor; and
an expandable tubular member coupled to the float shoe and supported by and movably coupled to the upper and lower expansion cone segments;
wherein the lower expansion cone segments interleave and overlap the upper expansion cone segments;
wherein the upper and lower expansion cone segments together define an arcuate spherical external surface for plastically deforming and radially expanding the expandable tubular member;
wherein each upper expansion cone segment comprises:
an inner portion defining an arcuate cylindrical upper surface including a hinge groove for pivotally coupling the upper expansion cone segment to the upper tubular support member and arcuate cylindrical lower surfaces;
an intermediate portion defining arcuate cylindrical and spherical upper surfaces and an arcuate conical lower surface; and
an outer portion defining arcuate cylindrical upper and lower surfaces;
wherein each lower expansion cone segment comprises:
an inner portion defining an arcuate cylindrical upper surface including a hinge groove for pivotally coupling the lower expansion cone segment to the lower tubular support member and arcuate cylindrical lower surfaces;
an intermediate portion defining arcuate cylindrical and spherical upper surfaces and an arcuate conical lower surface; and
an outer portion defining arcuate cylindrical upper and lower surfaces;
wherein each upper expansion cone segment is tapered in the longitudinal direction from the intermediate portion to the outer portion; and
wherein each lower expansion cone segment is tapered in the longitudinal direction from the intermediate portion to the outer portion.
22. A collapsible expansion cone assembly comprising:
an upper tubular support member comprising an internal flange;
an upper cam assembly coupled to the upper tubular support member comprising:
a tubular base coupled to the upper support member; and
a plurality of cam arms extending from the tubular base in a downward longitudinal direction, each cam arm defining an inclined surface;
a plurality of upper expansion cone segments interleaved with the cam arms of the upper cam assembly and pivotally coupled to the internal flange of the upper tubular support member;
a lower tubular support member comprising an internal flange;
one or more frangible couplings for releasably coupling the upper and lower tubular support members;
a lower cam assembly coupled to the lower tubular support member comprising:
a tubular base coupled to the lower tubular support member; and
a plurality of cam arms extending from the tubular base in an upward longitudinal direction, each cam arm defining an inclined surface that mates with the inclined surface of a corresponding one of the upper expansion cone segments;
wherein the cams arms of the upper cam assembly are interleaved with and overlap the cam arms of the lower cam assembly; and
a plurality of lower expansion cone segments interleaved with cam arms of the lower cam assembly, each lower expansion cone segment pivotally coupled to the internal flange of the lower tubular support member and mating with the inclined surface of a corresponding one of the cam arms of the upper cam assembly;
wherein the lower expansion cone segments interleave and overlap the upper expansion cone segments; and
wherein the upper and lower expansion cone segments together define an arcuate spherical external surface for plastically deforming and radially expanding the expandable tubular member.
23. The assembly of claim 22, wherein each upper expansion cone segment comprises:
an inner portion defining an arcuate cylindrical upper surface including a hinge groove for pivotally coupling the upper expansion cone segment to the upper tubular support member and arcuate cylindrical lower surfaces;
an intermediate portion defining arcuate cylindrical and spherical upper surfaces and an arcuate conical lower surface; and
an outer portion defining arcuate cylindrical upper and lower surfaces; and
wherein each lower expansion cone segment comprises:
an inner portion defining an arcuate cylindrical upper surface including a hinge groove for pivotally coupling the lower expansion cone segment to the lower tubular support member and arcuate cylindrical lower surfaces;
an intermediate portion defining arcuate cylindrical and spherical upper surfaces and an arcuate conical lower surface; and
an outer portion defining arcuate cylindrical upper and lower surfaces.
24. The assembly of claim 22, wherein each upper expansion cone segment is tapered in the longitudinal direction from the intermediate portion to the outer portion; and
wherein each lower expansion cone segment is tapered in the longitudinal direction from the intermediate portion to the outer portion.
25. A collapsible expansion cone assembly, comprising:
an upper tubular support member comprising an internal flange;
an upper cam assembly coupled to the upper tubular support member comprising:
a tubular base coupled to the upper support member; and
a plurality of cam arms extending from the tubular base in a downward longitudinal direction, each cam arm defining an inclined surface;
a plurality of upper expansion cone segments interleaved with the cam arms of the upper cam assembly and pivotally coupled to the internal flange of the upper tubular support member;
a lower tubular support member comprising an internal flange;
one or more frangible couplings for releasably coupling the upper and lower tubular support members;
a lower cam assembly coupled to the lower tubular support member comprising:
a tubular base coupled to the lower tubular support member; and
a plurality of cam arms extending from the tubular base in an upward longitudinal direction, each cam arm defining an inclined surface that mates with the inclined surface of a corresponding one of the upper expansion cone segments;
wherein the cams arms of the upper cam assembly are interleaved with and overlap the cam arms of the lower cam assembly; and
a plurality of lower expansion cone segments interleaved with cam arms of the lower cam assembly, each lower expansion cone segment pivotally coupled to the internal flange of the lower tubular support member and mating with the inclined surface of a corresponding one of the cam arms of the upper cam assembly;
wherein the lower expansion cone segments interleave and overlap the upper expansion cone segments;
wherein the upper and lower expansion cone segments together define an arcuate spherical external surface for plastically deforming and radially expanding the expandable tubular member;
wherein each upper expansion cone segment comprises:
an inner portion defining an arcuate cylindrical upper surface including a hinge groove for pivotally coupling the upper expansion cone segment to the upper tubular support member and arcuate cylindrical lower surfaces;
an intermediate portion defining arcuate cylindrical and spherical upper surfaces and an arcuate conical lower surface; and
an outer portion defining arcuate cylindrical upper and lower surfaces;
wherein each lower expansion cone segment comprises:
an inner portion defining an arcuate cylindrical upper surface including a hinge groove for pivotally coupling the lower expansion cone segment to the lower tubular support member and arcuate cylindrical lower surfaces;
an intermediate portion defining arcuate cylindrical and spherical upper surfaces and an arcuate conical lower surface; and
an outer portion defining arcuate cylindrical upper and lower surfaces;
wherein each upper expansion cone segment is tapered in the longitudinal direction from the intermediate portion to the outer portion; and
wherein each lower expansion cone segment is tapered in the longitudinal direction from the intermediate portion to the outer portion.
26. An apparatus for radially expanding and plastically deforming an expandable tubular member, comprising:
a tubular support member;
a collapsible expansion cone coupled to the tubular support member;
an expandable tubular member coupled to the collapsible expansion cone;
means for displacing the collapsible expansion cone relative to the expandable tubular member using fluid pressure; and
means for collapsing the expansion cone.
27. The apparatus of claim 26, wherein the tubular support member comprises an upper tubular support member comprising an internal flange and a lower tubular support member comprising an internal flange; wherein the expansion cone comprises:
an upper cam assembly coupled to the upper tubular support member comprising:
a tubular base coupled to the upper support member; and
a plurality of cam arms extending from the tubular base in a downward longitudinal direction, each cam arm defining an inclined surface;
a plurality of upper expansion cone segments interleaved with the cam arms of the upper cam assembly and pivotally coupled to the internal flange of the upper tubular support member;
a lower cam assembly coupled to the lower tubular support member comprising:
a tubular base coupled to the lower tubular support member; and
a plurality of cam arms extending from the tubular base in an upward longitudinal direction, each cam arm defining an inclined surface that mates with the inclined surface of a corresponding one of the upper expansion cone segments;
wherein the cams arms of the upper cam assembly are interleaved with and overlap the cam arms of the lower cam assembly; and
a plurality of lower expansion cone segments interleaved with cam arms of the lower cam assembly, each lower expansion cone segment pivotally coupled to the internal flange of the lower tubular support member and mating with the inclined surface of a corresponding one of the cam arms of the upper cam assembly; and wherein the apparatus further comprises:
means for releasably coupling the upper tubular support member to the lower tubular support member; and
means for limiting movement of the upper tubular support member relative to the lower tubular support member.
28. The apparatus of claim 26, further comprising:
means for pivoting the upper expansion cone segments; and
means for pivoting the lower expansion cone segments.
29. The apparatus of claim 26, further comprising:
means for pulling the collapsible expansion cone through the expandable tubular member using fluid pressure.
30. A collapsible expansion cone, comprising:
an upper cam assembly comprising:
a tubular base; and
a plurality of cam arms extending from the tubular base in a downward longitudinal direction, each cam arm defining an inclined surface;
a plurality of upper expansion cone segments interleaved with the cam arms of the upper cam assembly;
a lower cam assembly comprising:
a tubular base; and
a plurality of cam arms extending from the tubular base in an upward longitudinal direction, each cam arm defining an inclined surface that mates with the inclined surface of a corresponding one of the upper expansion cone segments;
wherein the cams arms of the upper cam assembly are interleaved with and overlap the cam arms of the lower cam assembly;
a plurality of lower expansion cone segments interleaved with cam arms of the lower cam assembly, each lower expansion cone segment mating with the inclined surface of a corresponding one of the cam arms of the upper cam assembly;
means for moving the upper cam assembly away from the lower expansion cone segments; and
means for moving the lower cam assembly away from the upper expansion cone segments.
31. The apparatus of claim 30, wherein the upper and lower expansion cone segments together define an arcuate spherical external surface.
32. The apparatus of claim 30, wherein each upper expansion cone segment comprises:
an inner portion defining an arcuate cylindrical upper surface and arcuate cylindrical lower surfaces;
an intermediate portion defining arcuate cylindrical and spherical upper surfaces and an arcuate conical lower surface; and
an outer portion defining arcuate cylindrical upper and lower surfaces; and wherein each lower expansion cone segment comprises:
an inner portion defining an arcuate cylindrical upper surface and arcuate cylindrical lower surfaces;
an intermediate portion defining arcuate cylindrical and spherical upper surfaces and an arcuate conical lower surface; and
an outer portion defining arcuate cylindrical upper and lower surfaces.
33. The apparatus of claim 30, wherein each upper expansion cone segment is tapered
in the longitudinal direction from the intermediate portion to the outer portion; and wherein each lower expansion cone segment is tapered in the longitudinal direction from the intermediate portion to the outer portion.
34. A packer cup apparatus comprising:
a central mandrel,
a sealing cup comprising
a substantially unrestricted lip for sealing engaging a tubular member, and
a base portion for sealingly engaging the central mandrel,
a protecting member positioned longitudinally along the central mandrel,
a pliant backup member positioned between the protecting member and the sealing cup,
a conical bushing positioned partially between the sealing cup and the central mandrel for supporting the base portion of the sealing cup.
35. The apparatus of claim 34 wherein the pliant backup member is made from a material selected from the group consisting of fluropolymer, fluoroelastomer, Telflon, or PEEK.
36. The apparatus of claim 34 further comprising a restraining member surrounding the base portion of the sealing cup for restraining the sealing cup.
37. The apparatus of claim 34 wherein the protecting member is a thimble surrounding the base portion of the sealing cup.
38. The apparatus of claim 37 wherein the sealing cup further comprises an unsupported portion between the thimble and a point of engagement with the expandable tubular member, and a means for reducing the unsupported portion of the sealing cup.
39. A method of radially expanding and plastically deforming an expandable tubular member, comprising:
supporting the expandable tubular member using a tubular support member and a collapsible expansion cone;
injecting a fluidic material into the tubular support member;
sensing the operating pressure of the injected fluidic material within a first interior portion of the tubular support member;
displacing the collapsible expansion cone relative to the expandable tubular member when the sensed operating pressure of the injected fluidic material exceeds a predetermined level within the first interior portion of the tubular support member;
sensing the operating pressure of the injected fluidic material within a second interior portion of the tubular support member; and
collapsing the collapsible expansion cone when the sensed operating pressure of the injected fluidic material exceeds a predetermined level within the second interior portion of the tubular support member.
40. The method of claim 39, further comprising:
pulling the collapsible expansion cone through the expandable tubular member when the sensed operating pressure of the injected fluidic material exceeds a predetermined level within the first interior portion of the tubular support member.
41. The method of claim 40, wherein pulling the collapsible expansion cone through the expandable tubular member comprises:
coupling one or more cup seals to the tubular support member above the collapsible expansion cone;
pressuring the interior of the expandable tubular member below the cup seals; and
pulling the collapsible expansion cone through the expandable tubular member using the cup seals.
42. The method of claim 39, wherein the tubular support member comprises an upper tubular support member and a lower tubular support member; and wherein collapsing the collapsible expansion cone comprises displacing the upper tubular member relative to the lower tubular support member.
43. The method of claim 42, wherein the collapsible expansion cone comprises:
an upper cam assembly comprising:
a tubular base; and
a plurality of cam arms extending from the tubular base in a downward longitudinal direction, each cam arm defining an inclined surface;
a plurality of upper expansion cone segments interleaved with the cam arms of the upper cam assembly and pivotally coupled to the upper tubular support member;
a lower cam assembly comprising:
a tubular base; and
a plurality of cam arms extending from the tubular base in an upward longitudinal direction, each cam arm defining an inclined surface that mates with the inclined surface of a corresponding one of the upper expansion cone segments;
wherein the cams arms of the upper cam assembly are interleaved with and overlap the cam arms of the lower cam assembly; and
a plurality of lower expansion cone segments interleaved with cam arms of the lower cam assembly, each lower expansion cone segment pivotally coupled to the lower tubular support member and mating with the inclined surface of a corresponding one of the cam arms of the upper cam assembly.
44. An apparatus for radially expanding and plastically deforming an expandable tubular member, comprising:
a tubular support member;
a collapsible expansion device coupled to the tubular support member;
an expandable tubular member coupled to the collapsible expansion cone;
means for displacing the collapsible expansion device relative to the expandable tubular member using fluid pressure; and
means for collapsing the expansion cone.
45. The apparatus of claim 44, further comprising:
means for pulling the collapsible expansion device through the expandable tubular member using fluid pressure.
46. A method of radially expanding and plastically deforming an expandable tubular member, comprising:
supporting the expandable tubular member using a tubular support member and a collapsible expansion device;
injecting a fluidic material into the tubular support member;
sensing the operating pressure of the injected fluidic material within a first interior portion of the tubular support member;
displacing the collapsible expansion device relative to the expandable tubular member when the sensed operating pressure of the injected fluidic material exceeds a predetermined level within the first interior portion of the tubular support member;
sensing the operating pressure of the injected fluidic material within a second interior portion of the tubular support member; and
collapsing the collapsible expansion device when the sensed operating pressure of the injected fluidic material exceeds a predetermined level within the second interior portion of the tubular support member.
47. The method of claim 46, further comprising:
pulling the collapsible expansion device through the expandable tubular member when the sensed operating pressure of the injected fluidic material exceeds a predetermined level within the first interior portion of the tubular support member.
48. The method of claim 47, wherein pulling the collapsible expansion device through the expandable tubular member comprises:
coupling one or more cup seals to the tubular support member above the collapsible expansion device;
pressuring the interior of the expandable tubular member below the cup seals; and
pulling the collapsible expansion device through the expandable tubular member using the cup seals.
49. The method of claim 46, wherein the tubular support member comprises an upper tubular support member and a lower tubular support member; and wherein collapsing the collapsible expansion device comprises displacing the upper tubular member relative to the lower tubular support member.
50. A packer cup, comprising:
a base member;
one or more tubular elastomeric elements coupled to and extending from the base member in a radial direction; and
one or more tubular springs coupled to the base member that extend from the base member in a radial direction that each receive and support at least a portion of one or more of the elastomeric elements.
51. A packer cup, comprising:
a base member;
one or more tubular elastomeric elements coupled to and extending from the base member in a radial direction; and
means for supporting one or more of the elastomeric elements.
US10/517,755 2001-09-07 2003-06-12 Collapsible expansion cone Abandoned US20060207760A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/517,755 US20060207760A1 (en) 2002-06-12 2003-06-12 Collapsible expansion cone
US11/552,703 US7546881B2 (en) 2001-09-07 2006-10-25 Apparatus for radially expanding and plastically deforming a tubular member

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US38796102P 2002-06-12 2002-06-12
US10/517,755 US20060207760A1 (en) 2002-06-12 2003-06-12 Collapsible expansion cone
PCT/US2003/018530 WO2003106130A2 (en) 2002-06-12 2003-06-12 Collapsible expansion cone

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2003/018530 A-371-Of-International WO2003106130A2 (en) 2001-09-07 2003-06-12 Collapsible expansion cone

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/552,703 Continuation-In-Part US7546881B2 (en) 2001-09-07 2006-10-25 Apparatus for radially expanding and plastically deforming a tubular member

Publications (1)

Publication Number Publication Date
US20060207760A1 true US20060207760A1 (en) 2006-09-21

Family

ID=29736392

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/517,755 Abandoned US20060207760A1 (en) 2001-09-07 2003-06-12 Collapsible expansion cone

Country Status (5)

Country Link
US (1) US20060207760A1 (en)
AU (1) AU2003275962A1 (en)
CA (1) CA2489283A1 (en)
GB (5) GB2418216B (en)
WO (1) WO2003106130A2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070227746A1 (en) * 2006-03-29 2007-10-04 Zheng Rong Xu Packer cup systems for use inside a wellbore
US20090200041A1 (en) * 2008-02-07 2009-08-13 Halliburton Energy Services, Inc. Expansion Cone for Expandable Liner Hanger
US7712522B2 (en) 2003-09-05 2010-05-11 Enventure Global Technology, Llc Expansion cone and system
US7819185B2 (en) 2004-08-13 2010-10-26 Enventure Global Technology, Llc Expandable tubular
US20110024135A1 (en) * 2009-07-29 2011-02-03 Enventure Global Technology, Llc Liner Expansion System with a Recoverable Shoe Assembly
US7886831B2 (en) 2003-01-22 2011-02-15 Enventure Global Technology, L.L.C. Apparatus for radially expanding and plastically deforming a tubular member
US20110079383A1 (en) * 2009-10-05 2011-04-07 Porter Jesse C Interchangeable drillable tool
US8261842B2 (en) 2009-12-08 2012-09-11 Halliburton Energy Services, Inc. Expandable wellbore liner system
US20140110136A1 (en) * 2012-10-18 2014-04-24 Drilling Technology Research Institute of Sinopec Oilfield Service Shengli Corporation Downhole casing expansion tool and method of expanding casings using the same
CN104612614A (en) * 2013-11-05 2015-05-13 天津大港油田钻采技术开发公司 Arc-shaped reducing expansion device for expansion pipe
CN107542428A (en) * 2017-09-06 2018-01-05 中法渤海地质服务有限公司 One kind opens the anti-apical organ of sliding sleeve and its control method
SE545263C2 (en) * 2020-01-13 2023-06-13 Lamminranta Oy Method for rehabilitating a drilled well
RU223196U1 (en) * 2023-08-18 2024-02-06 Сергей Викторович Меньщиков Cup packer

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7357188B1 (en) 1998-12-07 2008-04-15 Shell Oil Company Mono-diameter wellbore casing
GB0304335D0 (en) 2003-02-26 2003-04-02 Weatherford Lamb Tubing expansion
WO2004081346A2 (en) 2003-03-11 2004-09-23 Enventure Global Technology Apparatus for radially expanding and plastically deforming a tubular member
NL1019368C2 (en) 2001-11-14 2003-05-20 Nutricia Nv Preparation for improving receptor performance.
CA2482743C (en) 2002-04-12 2011-05-24 Enventure Global Technology Protective sleeve for threaded connections for expandable liner hanger
EP1501645A4 (en) 2002-04-15 2006-04-26 Enventure Global Technology Protective sleeve for threaded connections for expandable liner hanger
US7739917B2 (en) 2002-09-20 2010-06-22 Enventure Global Technology, Llc Pipe formability evaluation for expandable tubulars
CA2523862C (en) 2003-04-17 2009-06-23 Enventure Global Technology Apparatus for radially expanding and plastically deforming a tubular member
GB0525410D0 (en) 2005-12-14 2006-01-25 Weatherford Lamb Expanding Multiple Tubular Portions
GB2475434B (en) * 2005-12-14 2011-09-14 Weatherford Lamb Expanding multiple tubular portions
CN116771298B (en) * 2023-08-17 2023-10-24 西南石油大学 Hydraulic control synchronous telescopic torque-variable type oil-gas well casing shaping tool

Citations (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1613461A (en) * 1926-06-01 1927-01-04 Edwin A Johnson Connection between well-pipe sections of different materials
US2145168A (en) * 1935-10-21 1939-01-24 Flagg Ray Method of making pipe joint connections
US2187275A (en) * 1937-01-12 1940-01-16 Amos N Mclennan Means for locating and cementing off leaks in well casings
US2273017A (en) * 1939-06-30 1942-02-17 Boynton Alexander Right and left drill pipe
US2583316A (en) * 1947-12-09 1952-01-22 Clyde E Bannister Method and apparatus for setting a casing structure in a well hole or the like
US2627891A (en) * 1950-11-28 1953-02-10 Paul B Clark Well pipe expander
US2664952A (en) * 1948-03-15 1954-01-05 Guiberson Corp Casing packer cup
US2734580A (en) * 1956-02-14 layne
US2919741A (en) * 1955-09-22 1960-01-05 Blaw Knox Co Cold pipe expanding apparatus
US3015500A (en) * 1959-01-08 1962-01-02 Dresser Ind Drill string joint
US3015362A (en) * 1958-12-15 1962-01-02 Johnston Testers Inc Well apparatus
US3018547A (en) * 1952-07-30 1962-01-30 Babcock & Wilcox Co Method of making a pressure-tight mechanical joint for operation at elevated temperatures
US3167122A (en) * 1962-05-04 1965-01-26 Pan American Petroleum Corp Method and apparatus for repairing casing
US3233315A (en) * 1962-12-04 1966-02-08 Plastic Materials Inc Pipe aligning and joining apparatus
US3297092A (en) * 1964-07-15 1967-01-10 Pan American Petroleum Corp Casing patch
US3364993A (en) * 1964-06-26 1968-01-23 Wilson Supply Company Method of well casing repair
US3422902A (en) * 1966-02-21 1969-01-21 Herschede Hall Clock Co The Well pack-off unit
US3424244A (en) * 1967-09-14 1969-01-28 Kinley Co J C Collapsible support and assembly for casing or tubing liner or patch
US3427707A (en) * 1965-12-16 1969-02-18 Connecticut Research & Mfg Cor Method of joining a pipe and fitting
US3489220A (en) * 1968-08-02 1970-01-13 J C Kinley Method and apparatus for repairing pipe in wells
US3631926A (en) * 1969-12-31 1972-01-04 Schlumberger Technology Corp Well packer
US3709306A (en) * 1971-02-16 1973-01-09 Baker Oil Tools Inc Threaded connector for impact devices
US3711123A (en) * 1971-01-15 1973-01-16 Hydro Tech Services Inc Apparatus for pressure testing annular seals in an oversliding connector
US3712376A (en) * 1971-07-26 1973-01-23 Gearhart Owen Industries Conduit liner for wellbore and method and apparatus for setting same
US3781966A (en) * 1972-12-04 1974-01-01 Whittaker Corp Method of explosively expanding sleeves in eroded tubes
US3785193A (en) * 1971-04-10 1974-01-15 Kinley J Liner expanding apparatus
US3866954A (en) * 1973-06-18 1975-02-18 Bowen Tools Inc Joint locking device
US3935910A (en) * 1973-06-25 1976-02-03 Compagnie Francaise Des Petroles Method and apparatus for moulding protective tubing simultaneously with bore hole drilling
US4069573A (en) * 1976-03-26 1978-01-24 Combustion Engineering, Inc. Method of securing a sleeve within a tube
US4076287A (en) * 1975-05-01 1978-02-28 Caterpillar Tractor Co. Prepared joint for a tube fitting
US4190108A (en) * 1978-07-19 1980-02-26 Webber Jack C Swab
US4366971A (en) * 1980-09-17 1983-01-04 Allegheny Ludlum Steel Corporation Corrosion resistant tube assembly
US4368571A (en) * 1980-09-09 1983-01-18 Westinghouse Electric Corp. Sleeving method
US4423986A (en) * 1980-09-08 1984-01-03 Atlas Copco Aktiebolag Method and installation apparatus for rock bolting
US4423889A (en) * 1980-07-29 1984-01-03 Dresser Industries, Inc. Well-tubing expansion joint
US4424865A (en) * 1981-09-08 1984-01-10 Sperry Corporation Thermally energized packer cup
US4429741A (en) * 1981-10-13 1984-02-07 Christensen, Inc. Self powered downhole tool anchor
US4491001A (en) * 1981-12-21 1985-01-01 Kawasaki Jukogyo Kabushiki Kaisha Apparatus for processing welded joint parts of pipes
US4501327A (en) * 1982-07-19 1985-02-26 Philip Retz Split casing block-off for gas or water in oil drilling
US4634317A (en) * 1979-03-09 1987-01-06 Atlas Copco Aktiebolag Method of rock bolting and tube-formed expansion bolt
US4635333A (en) * 1980-06-05 1987-01-13 The Babcock & Wilcox Company Tube expanding method
US4637436A (en) * 1983-11-15 1987-01-20 Raychem Corporation Annular tube-like driver
US4796668A (en) * 1984-01-09 1989-01-10 Vallourec Device for protecting threadings and butt-type joint bearing surfaces of metallic tubes
US4892337A (en) * 1988-06-16 1990-01-09 Exxon Production Research Company Fatigue-resistant threaded connector
US4893658A (en) * 1987-05-27 1990-01-16 Sumitomo Metal Industries, Ltd. FRP pipe with threaded ends
US4904136A (en) * 1986-12-26 1990-02-27 Mitsubishi Denki Kabushiki Kaisha Thread securing device using adhesive
US4981250A (en) * 1988-09-06 1991-01-01 Exploweld Ab Explosion-welded pipe joint
US4995464A (en) * 1989-08-25 1991-02-26 Dril-Quip, Inc. Well apparatus and method
US5079837A (en) * 1989-03-03 1992-01-14 Siemes Aktiengesellschaft Repair lining and method for repairing a heat exchanger tube with the repair lining
US5083608A (en) * 1988-11-22 1992-01-28 Abdrakhmanov Gabdrashit S Arrangement for patching off troublesome zones in a well
US5181571A (en) * 1989-08-31 1993-01-26 Union Oil Company Of California Well casing flotation device and method
US5275242A (en) * 1992-08-31 1994-01-04 Union Oil Company Of California Repositioned running method for well tubulars
US5282508A (en) * 1991-07-02 1994-02-01 Petroleo Brasilero S.A. - Petrobras Process to increase petroleum recovery from petroleum reservoirs
US5289393A (en) * 1991-08-06 1994-02-22 Sharp Kabushiki Kaisha Portable electronic apparatus
US5388648A (en) * 1993-10-08 1995-02-14 Baker Hughes Incorporated Method and apparatus for sealing the juncture between a vertical well and one or more horizontal wells using deformable sealing means
US5390735A (en) * 1992-08-24 1995-02-21 Halliburton Company Full bore lock system
US5390742A (en) * 1992-09-24 1995-02-21 Halliburton Company Internally sealable perforable nipple for downhole well applications
US5492173A (en) * 1993-03-10 1996-02-20 Halliburton Company Plug or lock for use in oil field tubular members and an operating system therefor
US5494106A (en) * 1994-03-23 1996-02-27 Drillflex Method for sealing between a lining and borehole, casing or pipeline
US5718288A (en) * 1993-03-25 1998-02-17 Drillflex Method of cementing deformable casing inside a borehole or a conduit
US5857524A (en) * 1997-02-27 1999-01-12 Harris; Monty E. Liner hanging, sealing and cementing tool
US5862866A (en) * 1994-05-25 1999-01-26 Roxwell International Limited Double walled insulated tubing and method of installing same
US6012522A (en) * 1995-11-08 2000-01-11 Shell Oil Company Deformable well screen
US6012523A (en) * 1995-11-24 2000-01-11 Petroline Wellsystems Limited Downhole apparatus and method for expanding a tubing
US6012521A (en) * 1998-02-09 2000-01-11 Etrema Products, Inc. Downhole pressure wave generator and method for use thereof
US6012874A (en) * 1997-03-14 2000-01-11 Dbm Contractors, Inc. Micropile casing and method
US6015012A (en) * 1996-08-30 2000-01-18 Camco International Inc. In-situ polymerization method and apparatus to seal a junction between a lateral and a main wellbore
US6017168A (en) * 1997-12-22 2000-01-25 Abb Vetco Gray Inc. Fluid assist bearing for telescopic joint of a RISER system
US6021850A (en) * 1997-10-03 2000-02-08 Baker Hughes Incorporated Downhole pipe expansion apparatus and method
US6029748A (en) * 1997-10-03 2000-02-29 Baker Hughes Incorporated Method and apparatus for top to bottom expansion of tubulars
US6167970B1 (en) * 1998-04-30 2001-01-02 B J Services Company Isolation tool release mechanism
US6182775B1 (en) * 1998-06-10 2001-02-06 Baker Hughes Incorporated Downhole jar apparatus for use in oil and gas wells
US6334351B1 (en) * 1999-11-08 2002-01-01 Daido Tokushuko Kabushiki Kaisha Metal pipe expander
US20020011339A1 (en) * 2000-07-07 2002-01-31 Murray Douglas J. Through-tubing multilateral system
US6343657B1 (en) * 1997-11-21 2002-02-05 Superior Energy Services, Llc. Method of injecting tubing down pipelines
US6343495B1 (en) * 1999-03-23 2002-02-05 Sonats-Societe Des Nouvelles Applications Des Techniques De Surfaces Apparatus for surface treatment by impact
US6345373B1 (en) * 1999-03-29 2002-02-05 The University Of California System and method for testing high speed VLSI devices using slower testers
US20020014339A1 (en) * 1999-12-22 2002-02-07 Richard Ross Apparatus and method for packing or anchoring an inner tubular within a casing
US6345431B1 (en) * 1994-03-22 2002-02-12 Lattice Intellectual Property Ltd. Joining thermoplastic pipe to a coupling
US20020020524A1 (en) * 2000-05-04 2002-02-21 Halliburton Energy Services, Inc. Expandable liner and associated methods of regulating fluid flow in a well
US20020020531A1 (en) * 1996-03-13 2002-02-21 Herve Ohmer Method and apparatus for cementing branch wells from a parent well
US20030024711A1 (en) * 2001-04-06 2003-02-06 Simpson Neil Andrew Abercrombie Tubing expansion
US20030024708A1 (en) * 1998-12-07 2003-02-06 Shell Oil Co. Structral support
US6517126B1 (en) * 2000-09-22 2003-02-11 General Electric Company Internal swage fitting
US6516887B2 (en) * 2001-01-26 2003-02-11 Cooper Cameron Corporation Method and apparatus for tensioning tubular members
US20030034177A1 (en) * 2001-08-19 2003-02-20 Chitwood James E. High power umbilicals for subterranean electric drilling machines and remotely operated vehicles
US6672759B2 (en) * 1997-07-11 2004-01-06 International Business Machines Corporation Method for accounting for clamp expansion in a coefficient of thermal expansion measurement
US6679328B2 (en) * 1999-07-27 2004-01-20 Baker Hughes Incorporated Reverse section milling method and apparatus
US20040011534A1 (en) * 2002-07-16 2004-01-22 Simonds Floyd Randolph Apparatus and method for completing an interval of a wellbore while drilling
US6681862B2 (en) * 2002-01-30 2004-01-27 Halliburton Energy Services, Inc. System and method for reducing the pressure drop in fluids produced through production tubing
US6684947B2 (en) * 1999-02-26 2004-02-03 Shell Oil Company Apparatus for radially expanding a tubular member
US6688397B2 (en) * 2001-12-17 2004-02-10 Schlumberger Technology Corporation Technique for expanding tubular structures
US6695012B1 (en) * 1999-10-12 2004-02-24 Shell Oil Company Lubricant coating for expandable tubular members
US6695065B2 (en) * 2001-06-19 2004-02-24 Weatherford/Lamb, Inc. Tubing expansion
US6843322B2 (en) * 2002-05-31 2005-01-18 Baker Hughes Incorporated Monobore shoe
US20050011641A1 (en) * 1998-12-07 2005-01-20 Shell Oil Co. Wellhead
US20050015963A1 (en) * 2002-01-07 2005-01-27 Scott Costa Protective sleeve for threaded connections for expandable liner hanger
US20050028988A1 (en) * 1998-11-16 2005-02-10 Cook Robert Lance Radial expansion of tubular members
US20050039910A1 (en) * 2001-11-28 2005-02-24 Lohbeck Wilhelmus Christianus Maria Expandable tubes with overlapping end portions

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2305282A (en) * 1941-03-22 1942-12-15 Guiberson Corp Swab cup construction and method of making same
US2609258A (en) * 1947-02-06 1952-09-02 Guiberson Corp Well fluid holding device
US2691418A (en) * 1951-06-23 1954-10-12 John A Connolly Combination packing cup and slips
US2723721A (en) * 1952-07-14 1955-11-15 Seanay Inc Packer construction
US3691624A (en) * 1970-01-16 1972-09-19 John C Kinley Method of expanding a liner
US3999605A (en) * 1976-02-18 1976-12-28 Texas Iron Works, Inc. Well tool for setting and supporting liners
GB2421258B (en) * 2001-11-12 2006-08-09 Enventure Global Technology Mono diameter wellbore casing
US20030098153A1 (en) * 2001-11-23 2003-05-29 Serafin Witold P. Composite packer cup
GB2420579B (en) * 2002-02-11 2006-09-06 Baker Hughes Inc Method of repair of collapsed or damaged tubulars downhole
GB0318573D0 (en) * 2003-08-08 2003-09-10 Weatherford Lamb Tubing expansion tool

Patent Citations (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2734580A (en) * 1956-02-14 layne
US1613461A (en) * 1926-06-01 1927-01-04 Edwin A Johnson Connection between well-pipe sections of different materials
US2145168A (en) * 1935-10-21 1939-01-24 Flagg Ray Method of making pipe joint connections
US2187275A (en) * 1937-01-12 1940-01-16 Amos N Mclennan Means for locating and cementing off leaks in well casings
US2273017A (en) * 1939-06-30 1942-02-17 Boynton Alexander Right and left drill pipe
US2583316A (en) * 1947-12-09 1952-01-22 Clyde E Bannister Method and apparatus for setting a casing structure in a well hole or the like
US2664952A (en) * 1948-03-15 1954-01-05 Guiberson Corp Casing packer cup
US2627891A (en) * 1950-11-28 1953-02-10 Paul B Clark Well pipe expander
US3018547A (en) * 1952-07-30 1962-01-30 Babcock & Wilcox Co Method of making a pressure-tight mechanical joint for operation at elevated temperatures
US2919741A (en) * 1955-09-22 1960-01-05 Blaw Knox Co Cold pipe expanding apparatus
US3015362A (en) * 1958-12-15 1962-01-02 Johnston Testers Inc Well apparatus
US3015500A (en) * 1959-01-08 1962-01-02 Dresser Ind Drill string joint
US3167122A (en) * 1962-05-04 1965-01-26 Pan American Petroleum Corp Method and apparatus for repairing casing
US3233315A (en) * 1962-12-04 1966-02-08 Plastic Materials Inc Pipe aligning and joining apparatus
US3364993A (en) * 1964-06-26 1968-01-23 Wilson Supply Company Method of well casing repair
US3297092A (en) * 1964-07-15 1967-01-10 Pan American Petroleum Corp Casing patch
US3427707A (en) * 1965-12-16 1969-02-18 Connecticut Research & Mfg Cor Method of joining a pipe and fitting
US3422902A (en) * 1966-02-21 1969-01-21 Herschede Hall Clock Co The Well pack-off unit
US3424244A (en) * 1967-09-14 1969-01-28 Kinley Co J C Collapsible support and assembly for casing or tubing liner or patch
US3489220A (en) * 1968-08-02 1970-01-13 J C Kinley Method and apparatus for repairing pipe in wells
US3631926A (en) * 1969-12-31 1972-01-04 Schlumberger Technology Corp Well packer
US3711123A (en) * 1971-01-15 1973-01-16 Hydro Tech Services Inc Apparatus for pressure testing annular seals in an oversliding connector
US3709306A (en) * 1971-02-16 1973-01-09 Baker Oil Tools Inc Threaded connector for impact devices
US3785193A (en) * 1971-04-10 1974-01-15 Kinley J Liner expanding apparatus
US3712376A (en) * 1971-07-26 1973-01-23 Gearhart Owen Industries Conduit liner for wellbore and method and apparatus for setting same
US3781966A (en) * 1972-12-04 1974-01-01 Whittaker Corp Method of explosively expanding sleeves in eroded tubes
US3866954A (en) * 1973-06-18 1975-02-18 Bowen Tools Inc Joint locking device
US3935910A (en) * 1973-06-25 1976-02-03 Compagnie Francaise Des Petroles Method and apparatus for moulding protective tubing simultaneously with bore hole drilling
US4076287A (en) * 1975-05-01 1978-02-28 Caterpillar Tractor Co. Prepared joint for a tube fitting
US4069573A (en) * 1976-03-26 1978-01-24 Combustion Engineering, Inc. Method of securing a sleeve within a tube
US4190108A (en) * 1978-07-19 1980-02-26 Webber Jack C Swab
US4634317A (en) * 1979-03-09 1987-01-06 Atlas Copco Aktiebolag Method of rock bolting and tube-formed expansion bolt
US4635333A (en) * 1980-06-05 1987-01-13 The Babcock & Wilcox Company Tube expanding method
US4423889A (en) * 1980-07-29 1984-01-03 Dresser Industries, Inc. Well-tubing expansion joint
US4423986A (en) * 1980-09-08 1984-01-03 Atlas Copco Aktiebolag Method and installation apparatus for rock bolting
US4368571A (en) * 1980-09-09 1983-01-18 Westinghouse Electric Corp. Sleeving method
US4366971A (en) * 1980-09-17 1983-01-04 Allegheny Ludlum Steel Corporation Corrosion resistant tube assembly
US4424865A (en) * 1981-09-08 1984-01-10 Sperry Corporation Thermally energized packer cup
US4429741A (en) * 1981-10-13 1984-02-07 Christensen, Inc. Self powered downhole tool anchor
US4491001A (en) * 1981-12-21 1985-01-01 Kawasaki Jukogyo Kabushiki Kaisha Apparatus for processing welded joint parts of pipes
US4501327A (en) * 1982-07-19 1985-02-26 Philip Retz Split casing block-off for gas or water in oil drilling
US4637436A (en) * 1983-11-15 1987-01-20 Raychem Corporation Annular tube-like driver
US4796668A (en) * 1984-01-09 1989-01-10 Vallourec Device for protecting threadings and butt-type joint bearing surfaces of metallic tubes
US4904136A (en) * 1986-12-26 1990-02-27 Mitsubishi Denki Kabushiki Kaisha Thread securing device using adhesive
US4893658A (en) * 1987-05-27 1990-01-16 Sumitomo Metal Industries, Ltd. FRP pipe with threaded ends
US4892337A (en) * 1988-06-16 1990-01-09 Exxon Production Research Company Fatigue-resistant threaded connector
US4981250A (en) * 1988-09-06 1991-01-01 Exploweld Ab Explosion-welded pipe joint
US5083608A (en) * 1988-11-22 1992-01-28 Abdrakhmanov Gabdrashit S Arrangement for patching off troublesome zones in a well
US5079837A (en) * 1989-03-03 1992-01-14 Siemes Aktiengesellschaft Repair lining and method for repairing a heat exchanger tube with the repair lining
US4995464A (en) * 1989-08-25 1991-02-26 Dril-Quip, Inc. Well apparatus and method
US5181571A (en) * 1989-08-31 1993-01-26 Union Oil Company Of California Well casing flotation device and method
US5282508A (en) * 1991-07-02 1994-02-01 Petroleo Brasilero S.A. - Petrobras Process to increase petroleum recovery from petroleum reservoirs
US5289393A (en) * 1991-08-06 1994-02-22 Sharp Kabushiki Kaisha Portable electronic apparatus
US5390735A (en) * 1992-08-24 1995-02-21 Halliburton Company Full bore lock system
US5275242A (en) * 1992-08-31 1994-01-04 Union Oil Company Of California Repositioned running method for well tubulars
US5390742A (en) * 1992-09-24 1995-02-21 Halliburton Company Internally sealable perforable nipple for downhole well applications
US5492173A (en) * 1993-03-10 1996-02-20 Halliburton Company Plug or lock for use in oil field tubular members and an operating system therefor
US5718288A (en) * 1993-03-25 1998-02-17 Drillflex Method of cementing deformable casing inside a borehole or a conduit
US5388648A (en) * 1993-10-08 1995-02-14 Baker Hughes Incorporated Method and apparatus for sealing the juncture between a vertical well and one or more horizontal wells using deformable sealing means
US6345431B1 (en) * 1994-03-22 2002-02-12 Lattice Intellectual Property Ltd. Joining thermoplastic pipe to a coupling
US5494106A (en) * 1994-03-23 1996-02-27 Drillflex Method for sealing between a lining and borehole, casing or pipeline
US5862866A (en) * 1994-05-25 1999-01-26 Roxwell International Limited Double walled insulated tubing and method of installing same
US6012522A (en) * 1995-11-08 2000-01-11 Shell Oil Company Deformable well screen
US6012523A (en) * 1995-11-24 2000-01-11 Petroline Wellsystems Limited Downhole apparatus and method for expanding a tubing
US20020020531A1 (en) * 1996-03-13 2002-02-21 Herve Ohmer Method and apparatus for cementing branch wells from a parent well
US6015012A (en) * 1996-08-30 2000-01-18 Camco International Inc. In-situ polymerization method and apparatus to seal a junction between a lateral and a main wellbore
US5857524A (en) * 1997-02-27 1999-01-12 Harris; Monty E. Liner hanging, sealing and cementing tool
US6012874A (en) * 1997-03-14 2000-01-11 Dbm Contractors, Inc. Micropile casing and method
US6672759B2 (en) * 1997-07-11 2004-01-06 International Business Machines Corporation Method for accounting for clamp expansion in a coefficient of thermal expansion measurement
US6029748A (en) * 1997-10-03 2000-02-29 Baker Hughes Incorporated Method and apparatus for top to bottom expansion of tubulars
US6021850A (en) * 1997-10-03 2000-02-08 Baker Hughes Incorporated Downhole pipe expansion apparatus and method
US6343657B1 (en) * 1997-11-21 2002-02-05 Superior Energy Services, Llc. Method of injecting tubing down pipelines
US6017168A (en) * 1997-12-22 2000-01-25 Abb Vetco Gray Inc. Fluid assist bearing for telescopic joint of a RISER system
US6012521A (en) * 1998-02-09 2000-01-11 Etrema Products, Inc. Downhole pressure wave generator and method for use thereof
US6167970B1 (en) * 1998-04-30 2001-01-02 B J Services Company Isolation tool release mechanism
US6182775B1 (en) * 1998-06-10 2001-02-06 Baker Hughes Incorporated Downhole jar apparatus for use in oil and gas wells
US20050028988A1 (en) * 1998-11-16 2005-02-10 Cook Robert Lance Radial expansion of tubular members
US20050011641A1 (en) * 1998-12-07 2005-01-20 Shell Oil Co. Wellhead
US20030024708A1 (en) * 1998-12-07 2003-02-06 Shell Oil Co. Structral support
US6684947B2 (en) * 1999-02-26 2004-02-03 Shell Oil Company Apparatus for radially expanding a tubular member
US6343495B1 (en) * 1999-03-23 2002-02-05 Sonats-Societe Des Nouvelles Applications Des Techniques De Surfaces Apparatus for surface treatment by impact
US6345373B1 (en) * 1999-03-29 2002-02-05 The University Of California System and method for testing high speed VLSI devices using slower testers
US6679328B2 (en) * 1999-07-27 2004-01-20 Baker Hughes Incorporated Reverse section milling method and apparatus
US6695012B1 (en) * 1999-10-12 2004-02-24 Shell Oil Company Lubricant coating for expandable tubular members
US6334351B1 (en) * 1999-11-08 2002-01-01 Daido Tokushuko Kabushiki Kaisha Metal pipe expander
US20020014339A1 (en) * 1999-12-22 2002-02-07 Richard Ross Apparatus and method for packing or anchoring an inner tubular within a casing
US20020020524A1 (en) * 2000-05-04 2002-02-21 Halliburton Energy Services, Inc. Expandable liner and associated methods of regulating fluid flow in a well
US20020011339A1 (en) * 2000-07-07 2002-01-31 Murray Douglas J. Through-tubing multilateral system
US6517126B1 (en) * 2000-09-22 2003-02-11 General Electric Company Internal swage fitting
US6516887B2 (en) * 2001-01-26 2003-02-11 Cooper Cameron Corporation Method and apparatus for tensioning tubular members
US20030024711A1 (en) * 2001-04-06 2003-02-06 Simpson Neil Andrew Abercrombie Tubing expansion
US6695065B2 (en) * 2001-06-19 2004-02-24 Weatherford/Lamb, Inc. Tubing expansion
US20030034177A1 (en) * 2001-08-19 2003-02-20 Chitwood James E. High power umbilicals for subterranean electric drilling machines and remotely operated vehicles
US20050039910A1 (en) * 2001-11-28 2005-02-24 Lohbeck Wilhelmus Christianus Maria Expandable tubes with overlapping end portions
US6688397B2 (en) * 2001-12-17 2004-02-10 Schlumberger Technology Corporation Technique for expanding tubular structures
US20050015963A1 (en) * 2002-01-07 2005-01-27 Scott Costa Protective sleeve for threaded connections for expandable liner hanger
US6681862B2 (en) * 2002-01-30 2004-01-27 Halliburton Energy Services, Inc. System and method for reducing the pressure drop in fluids produced through production tubing
US6843322B2 (en) * 2002-05-31 2005-01-18 Baker Hughes Incorporated Monobore shoe
US20040011534A1 (en) * 2002-07-16 2004-01-22 Simonds Floyd Randolph Apparatus and method for completing an interval of a wellbore while drilling

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7886831B2 (en) 2003-01-22 2011-02-15 Enventure Global Technology, L.L.C. Apparatus for radially expanding and plastically deforming a tubular member
US7712522B2 (en) 2003-09-05 2010-05-11 Enventure Global Technology, Llc Expansion cone and system
US7819185B2 (en) 2004-08-13 2010-10-26 Enventure Global Technology, Llc Expandable tubular
US20070227746A1 (en) * 2006-03-29 2007-10-04 Zheng Rong Xu Packer cup systems for use inside a wellbore
US7735568B2 (en) 2006-03-29 2010-06-15 Schlumberger Technology Corporation Packer cup systems for use inside a wellbore
US20090200041A1 (en) * 2008-02-07 2009-08-13 Halliburton Energy Services, Inc. Expansion Cone for Expandable Liner Hanger
US7779910B2 (en) 2008-02-07 2010-08-24 Halliburton Energy Services, Inc. Expansion cone for expandable liner hanger
US20110024135A1 (en) * 2009-07-29 2011-02-03 Enventure Global Technology, Llc Liner Expansion System with a Recoverable Shoe Assembly
US20110079383A1 (en) * 2009-10-05 2011-04-07 Porter Jesse C Interchangeable drillable tool
US8408290B2 (en) * 2009-10-05 2013-04-02 Halliburton Energy Services, Inc. Interchangeable drillable tool
US8261842B2 (en) 2009-12-08 2012-09-11 Halliburton Energy Services, Inc. Expandable wellbore liner system
US20140110136A1 (en) * 2012-10-18 2014-04-24 Drilling Technology Research Institute of Sinopec Oilfield Service Shengli Corporation Downhole casing expansion tool and method of expanding casings using the same
US9347297B2 (en) * 2012-10-18 2016-05-24 China Petroleum & Chemical Corporation Downhole casing expansion tool and method of expanding casings using the same
CN104612614A (en) * 2013-11-05 2015-05-13 天津大港油田钻采技术开发公司 Arc-shaped reducing expansion device for expansion pipe
CN107542428A (en) * 2017-09-06 2018-01-05 中法渤海地质服务有限公司 One kind opens the anti-apical organ of sliding sleeve and its control method
SE545263C2 (en) * 2020-01-13 2023-06-13 Lamminranta Oy Method for rehabilitating a drilled well
RU223196U1 (en) * 2023-08-18 2024-02-06 Сергей Викторович Меньщиков Cup packer

Also Published As

Publication number Publication date
GB2405893A (en) 2005-03-16
GB2418216A (en) 2006-03-22
WO2003106130A3 (en) 2004-09-23
GB2417273A (en) 2006-02-22
GB2417273B (en) 2006-10-11
GB0523075D0 (en) 2005-12-21
AU2003275962A1 (en) 2003-12-31
GB0523076D0 (en) 2005-12-21
WO2003106130A2 (en) 2003-12-24
GB2418217A (en) 2006-03-22
GB0523132D0 (en) 2005-12-21
AU2003275962A8 (en) 2003-12-31
GB2405893B (en) 2006-10-11
CA2489283A1 (en) 2003-12-24
GB0500275D0 (en) 2005-02-16
GB2418217B (en) 2006-10-11
GB2418216B (en) 2006-10-11
WO2003106130B1 (en) 2004-12-16
GB2419907B (en) 2006-10-11
GB2419907A (en) 2006-05-10
GB0523078D0 (en) 2005-12-21

Similar Documents

Publication Publication Date Title
US20060207760A1 (en) Collapsible expansion cone
US7559365B2 (en) Collapsible expansion cone
US20050103502A1 (en) Collapsible expansion cone
US7290616B2 (en) Liner hanger
CA2714411C (en) Expansion cone for expandable liner hanger
US10487614B2 (en) Packing element back-up system incorporating iris mechanism
US7398832B2 (en) Mono-diameter wellbore casing
US6857473B2 (en) Method of coupling a tubular member to a preexisting structure
US20060054330A1 (en) Mono diameter wellbore casing
US20050269107A1 (en) Mono-diameter wellbore casing
US20040238181A1 (en) Liner hanger
GB2410518A (en) Collapsible expansion cone assembly
GB2415979A (en) Collapsible expansion cone

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION