US20060289848A1 - Reducing oxidation of phase change memory electrodes - Google Patents

Reducing oxidation of phase change memory electrodes Download PDF

Info

Publication number
US20060289848A1
US20060289848A1 US11/168,780 US16878005A US2006289848A1 US 20060289848 A1 US20060289848 A1 US 20060289848A1 US 16878005 A US16878005 A US 16878005A US 2006289848 A1 US2006289848 A1 US 2006289848A1
Authority
US
United States
Prior art keywords
chalcogenide
memory
over
threshold switch
stack
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/168,780
Inventor
Charles Dennison
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Intel Corp
Original Assignee
Intel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Intel Corp filed Critical Intel Corp
Priority to US11/168,780 priority Critical patent/US20060289848A1/en
Assigned to INTEL CORPORATION reassignment INTEL CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DENNISON, CHARLES H.
Publication of US20060289848A1 publication Critical patent/US20060289848A1/en
Priority to US11/904,557 priority patent/US7491574B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • H10B63/20Resistance change memory devices, e.g. resistive RAM [ReRAM] devices comprising selection components having two electrodes, e.g. diodes
    • H10B63/24Resistance change memory devices, e.g. resistive RAM [ReRAM] devices comprising selection components having two electrodes, e.g. diodes of the Ovonic threshold switching type
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/061Patterning of the switching material
    • H10N70/063Patterning of the switching material by etching of pre-deposited switching material layers, e.g. lithography
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • H10N70/231Multistable switching devices, e.g. memristors based on solid-state phase change, e.g. between amorphous and crystalline phases, Ovshinsky effect
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/821Device geometry
    • H10N70/826Device geometry adapted for essentially vertical current flow, e.g. sandwich or pillar type devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/882Compounds of sulfur, selenium or tellurium, e.g. chalcogenides

Definitions

  • This invention relates generally to phase change memory devices.
  • Phase change memory devices use phase change materials, i.e., materials that may be electrically switched between a generally amorphous and a generally crystalline state, for electronic memory application.
  • phase change materials i.e., materials that may be electrically switched between a generally amorphous and a generally crystalline state
  • One type of memory element utilizes a phase change material that may be, in one application, electrically switched between a structural state of generally amorphous and generally crystalline local order or between different detectable states of local order across the entire spectrum between completely amorphous and completely crystalline states.
  • the state of the phase change materials is also non-volatile in that, when set in either a crystalline, semi-crystalline, amorphous, or semi-amorphous state representing a resistance value, that value is retained until changed by another programming event, as that value represents a phase or physical state of the material (e.g., crystalline or amorphous).
  • the state is unaffected by removing electrical power.
  • phase change memories electrodes within a memory cell may oxidize, leading to significant resistance increases. These increases may result in defective products.
  • the number of cells in memories failing the high resistance tests may be reduced by taking great care in the processing steps and step sequences to minimize any opportunity for oxidation. However, such steps add to the cost of manufacturing the products and may not always be completely effective.
  • FIG. 1 is an enlarged, cross-sectional view at an early stage of manufacture in accordance with one embodiment of the present invention
  • FIG. 2 is an enlarged, cross-sectional view at a subsequent stage in accordance with one embodiment of the present invention
  • FIG. 3 is an enlarged, cross-sectional view at a subsequent stage in accordance with one embodiment of the present invention.
  • FIG. 4 is an enlarged, cross-sectional view at a subsequent stage in accordance with one embodiment of the present invention.
  • FIG. 5 is an enlarged, cross-sectional view at a subsequent stage in accordance with one embodiment of the present invention.
  • FIG. 6 is an enlarged, cross-sectional view at a subsequent stage in accordance with one embodiment of the present invention.
  • FIG. 7 is an enlarged, cross-sectional view at a subsequent stage in accordance with one embodiment of the present invention.
  • FIG. 8 is a system depiction of one embodiment of the present invention.
  • oxygen infiltration may be reduced.
  • Oxygen infiltration causes oxidation of the lower electrode, adversely affecting the performance of phase change memories.
  • One modality for such oxidation is for oxygen to diffuse through a chalcogenide layer overlying the lower electrode. When that oxygen diffuses through and reaches the lower electrode it causes oxidation of that oxidizable lower electrode.
  • a barrier layer may be utilized in one embodiment of the present invention, which is applied under appropriate circumstances to facilitate other process steps while still protecting the lower electrode, in some embodiments.
  • memory elements may comprise a phase change material.
  • the memory may be referred to as a phase change memory.
  • a phase change material may be a material having electrical properties (e.g. resistance, capacitance, etc.) that may be changed through the application of energy such as, for example, heat, light, voltage potential, or electrical current.
  • the phase change material may include a chalcogenide material.
  • a chalcogenide alloy may be used in a memory element or in an electronic switch.
  • a chalcogenide material may be a material that includes at least one element from column VI of the periodic table or may be a material that includes one or more of the chalcogen elements, e.g., any of the elements of tellurium, sulfur, or selenium.
  • a planar insulator 10 such as an interlayer dielectric, may be overlaid by a row line conductor 12 .
  • the row line conductor 12 may be chemical vapor deposited titanium silicon nitride. In one embodiment, the row line conductor may be about 2500 Angstroms in thickness.
  • Overlying the row line conductor 12 may be a planar insulator 14 .
  • the insulator 14 is blanket deposited, patterned, and etched to form openings which are filled by the resistive plugs 16 .
  • These resistive plugs 16 constitute the lower electrode of a phase change memory cell. In other words, each plug 16 may be used as the lower electrode of a different phase change memory cell.
  • the lower electrodes may be made of material which is oxidizable such as chemical vapor deposited titanium silicon nitride.
  • a stack of layers may be deposited to form a phase change memory cell and/or a select device which, in one embodiment, may be an ovonic threshold switch.
  • the phase change memory material or chalcogenide 18 may be deposited, for example, to a thickness of 500 Angstroms.
  • a top electrode 20 may be deposited, for example, to a thickness of 300 Angstroms.
  • the top electrode may be TiAlN (titanium aluminum nitride) or a composite film of Ti/TiN (titanium/titanium nitride) in one embodiment.
  • a barrier film 22 may be formed. The barrier film may be up to 100 Angstroms in thickness in some cases.
  • an ovonic threshold switch lower electrode 24 may be deposited.
  • the lower electrode 24 may be formed of carbon and may be 300 Angstroms thick.
  • the ovonic threshold switch material 26 may be deposited. It may be a chalcogenide which is 500 Angstroms thick in one embodiment. It may be formed of a material which does not change phase.
  • an upper electrode 28 may be deposited. It may be formed of TiAlN or a composite film of Ti/TiN, titanium, or titanium nitride in some embodiments. For example, it may be between 50 and 2000 Angstroms thick.
  • the structure shown in FIG. 2 may be patterned and etched to form a large number of memory array cells, although only two are shown in FIG. 3 .
  • the cells may be defined by a patterned hard mask 34 which is applied over the upper electrode 28 .
  • the upper electrode 28 is etched, using the pre-patterned hard mask 34 as a mask in some embodiments. The etch proceeds down to the uppermost layer which, in the embodiment illustrated in FIG. 3 , is the ovonic threshold switch material 26 .
  • the ovonic threshold switch material 26 By etching only partially and stopping at the layer 26 , exposure of the lower chalcogenide 18 at this stage to an oxidizing environment to remove a photoresist pattern that was utilized to patterned the memory array cells is prevented.
  • photoresist used in patterning and etching may be removed using an oxygen plasma with the chalcogenide 18 protected by the overlying layers 20 - 26 . Therefore, oxygen infiltration through the layer 18 to the lower electrode 16 is reduced or eliminated to this stage.
  • processing steps may be done in low oxygen atmospheres in order to prevent oxygen infiltration which may adversely affect the lower electrodes 16 .
  • in-process wafers can be stored in a nitrogen environment prior to processing.
  • resist stripping may be done in a process which does not use a high temperature oxygen plasma step but, rather, is done in a wet bath and/or only a low temperature oxygen plasma resist strip is utilized.
  • sidewall spacer layer 50 may be applied, as shown in FIG. 4 .
  • the sidewall spacer layer 50 may be anisotropically etched as indicated in FIG. 5 .
  • the cells may be singularized by patterning and etching down to the insulator 14 .
  • the width of the etched stack over the lower electrode 16 is increased by virtue of the provision of the sidewall spacers 50 in some embodiments.
  • an oxidation barrier 52 may be blanket deposited.
  • the oxidation barrier 52 may be silicon nitride, S i O x N y , AL 2 O 3 (aluminum oxide), or other materials of sufficient thickness to prevent oxygen infiltration through the chalcogenide 18 that would adversely affect the lower electrode 16 .
  • the wider width of the stacks may also reduce oxygen infiltration since defused oxygen must pass through a longer thickness of chalcogenide 18 to reach the lower electrode 16 .
  • wafers may be directly transferred to an oxygen barrier deposition tool while still under vacuum from the etch chamber. For example, this may be done in the same cluster tool. As another example, the wafer may be loaded into a pod that is either under vacuum or purged with argon or nitrogen.
  • silicon nitride may be deposited by plasma enhanced chemical vapor deposition. Silicon nitride may also be formed by atomic layer deposition. Likewise, aluminum oxide may be formed by atomic layer deposition.
  • the lower electrode 16 is only exposed to oxygen infiltration after an oxidation barrier has been completed.
  • an overlying oxide 54 such as a high deposition pressure (HDP) oxide, is applied in some embodiments.
  • An HDP oxide 54 application would normally cause oxidation of the lower electrode if the chalcogenide 18 were not already protected by the oxidation barrier 52 .
  • a series connected select device including the switch material 26 , may be used to access a memory element, including the chalcogenide 18 , during programming or reading of memory element.
  • a select device may be an ovonic threshold switch that can be made of a chalcogenide alloy that does not exhibit an amorphous to crystalline phase change and which undergoes rapid, electric field initiated change in electrical conductivity that persists only so long as a holding voltage is present.
  • a select device may operate as a switch that is either “off” or “on” depending on the amount of voltage potential applied across the memory cell, and more particularly whether the current through the select device exceeds its threshold current or voltage, which then triggers the device into the on state.
  • the off state may be a substantially electrically nonconductive state and the on state may be a substantially conductive state, with less resistance than the off state.
  • a select device may have threshold voltages and, if a voltage potential less than the threshold voltage of a select device is applied across the select device, then the select device may remain “off” or in a relatively high resistive state so that little or no electrical current passes through the memory cell and most of the voltage drop from selected row to selected column is across the select device.
  • the select device may “turn on,” i.e., operate in a relatively low resistive state so that electrical current passes through the memory cell.
  • one or more series connected select devices may be in a substantially electrically nonconductive state if less than a predetermined voltage potential, e.g., the threshold voltage, is applied across select devices.
  • Select devices may be in a substantially conductive state if greater than the predetermined voltage potential is applied across select devices.
  • Select devices may also be referred to as an access device, an isolation device, or a switch.
  • each select device may comprise a switching material such as, for example, a chalcogenide alloy, and may be referred to as an ovonic threshold switch, or simply an ovonic switch.
  • the switching material of select devices may be a material in a substantially amorphous state positioned between two electrodes that may be repeatedly and reversibly switched between a higher resistance “off” state (e.g., greater than about ten megaOhms) and a relatively lower resistance “on” state (e.g., about one thousand Ohms in series with V H ) by application of a predetermined electrical current or voltage potential.
  • each select device may be a two terminal device that may have a current-voltage (I-V) characteristic similar to a phase change memory element that is in the amorphous state.
  • the switching material of select devices may not change phase. That is, the switching material of select devices may not be a programmable material, and, as a result, select devices may not be a memory device capable of storing information. For example, the switching material of select devices may remain permanently amorphous and the I-V characteristic may remain the same throughout the operating life.
  • a select device In the low voltage or low electric field mode, i.e., where the voltage applied across select device is less than a threshold voltage (labeled V TH ), a select device may be “off” or nonconducting, and exhibit a relatively high resistance, e.g., greater than about 10 megaohms. The select device may remain in the off state until a sufficient voltage, e.g., V TH , is applied, or a sufficient current is applied, e.g., I TH , that may switch the select device to a conductive, relatively low resistance on state. After a voltage potential of greater than about V TH is applied across the select device, the voltage potential across the select device may drop (“snapback”) to a holding voltage potential, V H . Snapback may refer to the voltage difference between V TH and V H of a select device.
  • the voltage potential across select device may remain close to the holding voltage of V H as current passing through select device is increased.
  • the select device may remain on until the current through the select device drops below a holding current, I H . Below this value, the select device may turn off and return to a relatively high resistance, nonconductive off state until the V TH and I TH are exceeded again.
  • only one select device may be used. In other embodiments, more than two select devices may be used.
  • a single select device may have a V H about equal to its threshold voltage, V TH , (a voltage difference less than the threshold voltage of the memory element) to avoid triggering a reset bit when the select device triggers from a threshold voltage to a lower holding voltage called the snapback voltage.
  • the threshold current of the memory element may be about equal to the threshold current of the access device even though its snapback voltage is greater than the memory element's reset bit threshold voltage.
  • One or more MOS or bipolar transistors or one or more diodes may be used as the select device. If a diode is used, the bit may be selected by lowering the row line from a higher deselect level. As a further non-limiting example, if an n-channel MOS transistor is used as a select device with its source, for example, at ground, the row line may be raised to select the memory element connected between the drain of the MOS transistor and the column line. When a single MOS or single bipolar transistor is used as the select device, a control voltage level may be used on a “row line” to turn the select device on and off to access the memory element.
  • Programming of the chalcogenide 18 to alter the state or phase of the material may be accomplished by applying voltage potentials to the lower electrode 16 and upper electrode 28 , thereby generating a voltage potential across the select device and memory element.
  • the voltage potential is greater than the threshold voltages of select device and memory element, then an electrical current may flow through the chalcogenide 18 in response to the applied voltage potentials, and may result in heating of the chalcogenide 18 .
  • This heating may alter the memory state or phase of the chalcogenide 18 .
  • Altering the phase or state of the chalcogenide 18 may alter the electrical characteristic of memory material, e.g., the resistance of the material may be altered by altering the phase of the memory material.
  • Memory material may also be referred to as a programmable resistive material.
  • memory material In the “reset” state, memory material may be in an amorphous or semi-amorphous state and in the “set” state, memory material may be in an a crystalline or semi-crystalline state.
  • the resistance of memory material in the amorphous or semi-amorphous state may be greater than the resistance of memory material in the crystalline or semi-crystalline state.
  • memory material may be heated to a relatively higher temperature to amorphosize memory material and “reset” memory material (e.g., program memory material to a logic “0” value). Heating the volume of memory material to a relatively lower crystallization temperature may crystallize memory material and “set” memory material (e.g., program memory material to a logic “1” value).
  • Various resistances of memory material may be achieved to store information by varying the amount of current flow and duration through the volume of memory material.
  • System 500 may be used in wireless devices such as, for example, a personal digital assistant (PDA), a laptop or portable computer with wireless capability, a web tablet, a wireless telephone, a pager, an instant messaging device, a digital music player, a digital camera, or other devices that may be adapted to transmit and/or receive information wirelessly.
  • PDA personal digital assistant
  • System 500 may be used in any of the following systems: a wireless local area network (WLAN) system, a wireless personal area network (WPAN) system, a cellular network, although the scope of the present invention is not limited in this respect.
  • WLAN wireless local area network
  • WPAN wireless personal area network
  • cellular network although the scope of the present invention is not limited in this respect.
  • System 500 may include a controller 510 , an input/output (I/O) device 520 (e.g. a keypad, display), static random access memory (SRAM) 560 , a memory 530 , and a wireless interface 540 coupled to each other via a bus 550 .
  • I/O input/output
  • SRAM static random access memory
  • a battery 580 may be used in some embodiments. It should be noted that the scope of the present invention is not limited to embodiments having any or all of these components.
  • Controller 510 may comprise, for example, one or more microprocessors, digital signal processors, microcontrollers, or the like.
  • Memory 530 may be used to store messages transmitted to or by system 500 .
  • Memory 530 may also optionally be used to store instructions that are executed by controller 510 during the operation of system 500 , and may be used to store user data.
  • Memory 530 may be provided by one or more different types of memory.
  • memory 530 may comprise any type of random access memory, a volatile memory, a non-volatile memory such as a flash memory and/or a memory such as memory discussed herein.
  • I/O device 520 may be used by a user to generate a message.
  • System 500 may use wireless interface 540 to transmit and receive messages to and from a wireless communication network with a radio frequency (RF) signal.
  • RF radio frequency
  • Examples of wireless interface 540 may include an antenna or a wireless transceiver, although the scope of the present invention is not limited in this respect.
  • references throughout this specification to “one embodiment” or “an embodiment” mean that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one implementation encompassed within the present invention. Thus, appearances of the phrase “one embodiment” or “in an embodiment” are not necessarily referring to the same embodiment. Furthermore, the particular features, structures, or characteristics may be instituted in other suitable forms other than the particular embodiment illustrated and all such forms may be encompassed within the claims of the present application.

Abstract

A phase change memory may be formed in a way which reduces oxygen infiltration through a chalcogenide layer overlying a lower electrode. Such infiltration may cause oxidation of the lower electrode which adversely affects performance. In one such embodiment, an etch through an overlying upper electrode layer may be stopped before reaching a layer which overlies said chalcogenide layer. Then, photoresist used for such etching may be utilized in a high temperature oxygen plasma. Only after such plasma treatment has been completed is that overlying layer removed, which ultimately exposes the chalcogenide.

Description

    BACKGROUND
  • This invention relates generally to phase change memory devices.
  • Phase change memory devices use phase change materials, i.e., materials that may be electrically switched between a generally amorphous and a generally crystalline state, for electronic memory application. One type of memory element utilizes a phase change material that may be, in one application, electrically switched between a structural state of generally amorphous and generally crystalline local order or between different detectable states of local order across the entire spectrum between completely amorphous and completely crystalline states. The state of the phase change materials is also non-volatile in that, when set in either a crystalline, semi-crystalline, amorphous, or semi-amorphous state representing a resistance value, that value is retained until changed by another programming event, as that value represents a phase or physical state of the material (e.g., crystalline or amorphous). The state is unaffected by removing electrical power.
  • During the fabrication of phase change memories, electrodes within a memory cell may oxidize, leading to significant resistance increases. These increases may result in defective products. The number of cells in memories failing the high resistance tests may be reduced by taking great care in the processing steps and step sequences to minimize any opportunity for oxidation. However, such steps add to the cost of manufacturing the products and may not always be completely effective.
  • Thus, there is a need for better ways to reduce the resistance increase, product failures, or other adverse consequences of electrode oxidation in phase change memories.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is an enlarged, cross-sectional view at an early stage of manufacture in accordance with one embodiment of the present invention;
  • FIG. 2 is an enlarged, cross-sectional view at a subsequent stage in accordance with one embodiment of the present invention;
  • FIG. 3 is an enlarged, cross-sectional view at a subsequent stage in accordance with one embodiment of the present invention;
  • FIG. 4 is an enlarged, cross-sectional view at a subsequent stage in accordance with one embodiment of the present invention;
  • FIG. 5 is an enlarged, cross-sectional view at a subsequent stage in accordance with one embodiment of the present invention;
  • FIG. 6 is an enlarged, cross-sectional view at a subsequent stage in accordance with one embodiment of the present invention;
  • FIG. 7 is an enlarged, cross-sectional view at a subsequent stage in accordance with one embodiment of the present invention; and
  • FIG. 8 is a system depiction of one embodiment of the present invention.
  • DETAILED DESCRIPTION
  • In accordance with some embodiments of the present invention, oxygen infiltration may be reduced. Oxygen infiltration causes oxidation of the lower electrode, adversely affecting the performance of phase change memories. One modality for such oxidation is for oxygen to diffuse through a chalcogenide layer overlying the lower electrode. When that oxygen diffuses through and reaches the lower electrode it causes oxidation of that oxidizable lower electrode. To prevent such infiltration, a barrier layer may be utilized in one embodiment of the present invention, which is applied under appropriate circumstances to facilitate other process steps while still protecting the lower electrode, in some embodiments.
  • In one embodiment, memory elements may comprise a phase change material. In this embodiment, the memory may be referred to as a phase change memory. A phase change material may be a material having electrical properties (e.g. resistance, capacitance, etc.) that may be changed through the application of energy such as, for example, heat, light, voltage potential, or electrical current. The phase change material may include a chalcogenide material.
  • A chalcogenide alloy may be used in a memory element or in an electronic switch. A chalcogenide material may be a material that includes at least one element from column VI of the periodic table or may be a material that includes one or more of the chalcogen elements, e.g., any of the elements of tellurium, sulfur, or selenium.
  • Referring to FIG. 1, in accordance with one embodiment of the present invention, a planar insulator 10, such as an interlayer dielectric, may be overlaid by a row line conductor 12. The row line conductor 12 may be chemical vapor deposited titanium silicon nitride. In one embodiment, the row line conductor may be about 2500 Angstroms in thickness. Overlying the row line conductor 12 may be a planar insulator 14. In one embodiment, the insulator 14 is blanket deposited, patterned, and etched to form openings which are filled by the resistive plugs 16. These resistive plugs 16 constitute the lower electrode of a phase change memory cell. In other words, each plug 16 may be used as the lower electrode of a different phase change memory cell. The lower electrodes may be made of material which is oxidizable such as chemical vapor deposited titanium silicon nitride.
  • Referring to FIG. 2, a stack of layers may be deposited to form a phase change memory cell and/or a select device which, in one embodiment, may be an ovonic threshold switch. Initially, the phase change memory material or chalcogenide 18 may be deposited, for example, to a thickness of 500 Angstroms. Then, a top electrode 20 may be deposited, for example, to a thickness of 300 Angstroms. The top electrode may be TiAlN (titanium aluminum nitride) or a composite film of Ti/TiN (titanium/titanium nitride) in one embodiment. Next, in some embodiments, a barrier film 22 may be formed. The barrier film may be up to 100 Angstroms in thickness in some cases.
  • In an embodiment using an ovonic threshold switch, an ovonic threshold switch lower electrode 24 may be deposited. In one embodiment, the lower electrode 24 may be formed of carbon and may be 300 Angstroms thick. Next, the ovonic threshold switch material 26 may be deposited. It may be a chalcogenide which is 500 Angstroms thick in one embodiment. It may be formed of a material which does not change phase. Finally, an upper electrode 28 may be deposited. It may be formed of TiAlN or a composite film of Ti/TiN, titanium, or titanium nitride in some embodiments. For example, it may be between 50 and 2000 Angstroms thick.
  • Referring to FIG. 3, (showing only a portion of the structure shown in FIG. 2) the structure shown in FIG. 2 may be patterned and etched to form a large number of memory array cells, although only two are shown in FIG. 3. In one embodiment, the cells may be defined by a patterned hard mask 34 which is applied over the upper electrode 28. Next, the upper electrode 28 is etched, using the pre-patterned hard mask 34 as a mask in some embodiments. The etch proceeds down to the uppermost layer which, in the embodiment illustrated in FIG. 3, is the ovonic threshold switch material 26. By etching only partially and stopping at the layer 26, exposure of the lower chalcogenide 18 at this stage to an oxidizing environment to remove a photoresist pattern that was utilized to patterned the memory array cells is prevented.
  • Moreover, photoresist used in patterning and etching may be removed using an oxygen plasma with the chalcogenide 18 protected by the overlying layers 20-26. Therefore, oxygen infiltration through the layer 18 to the lower electrode 16 is reduced or eliminated to this stage.
  • In some embodiments, processing steps may be done in low oxygen atmospheres in order to prevent oxygen infiltration which may adversely affect the lower electrodes 16. For example, in-process wafers can be stored in a nitrogen environment prior to processing. In some embodiments, resist stripping may be done in a process which does not use a high temperature oxygen plasma step but, rather, is done in a wet bath and/or only a low temperature oxygen plasma resist strip is utilized.
  • In some embodiments of the present invention, sidewall spacer layer 50 may be applied, as shown in FIG. 4. The sidewall spacer layer 50 may be anisotropically etched as indicated in FIG. 5.
  • Then, as shown in FIG. 6, the cells may be singularized by patterning and etching down to the insulator 14. Thus, the width of the etched stack over the lower electrode 16 is increased by virtue of the provision of the sidewall spacers 50 in some embodiments.
  • Finally, as shown in FIG. 7, an oxidation barrier 52 may be blanket deposited. As examples, the oxidation barrier 52 may be silicon nitride, SiOxNy, AL2O3 (aluminum oxide), or other materials of sufficient thickness to prevent oxygen infiltration through the chalcogenide 18 that would adversely affect the lower electrode 16. Similarly, it may be appreciated that the wider width of the stacks may also reduce oxygen infiltration since defused oxygen must pass through a longer thickness of chalcogenide 18 to reach the lower electrode 16.
  • In some embodiments, wafers may be directly transferred to an oxygen barrier deposition tool while still under vacuum from the etch chamber. For example, this may be done in the same cluster tool. As another example, the wafer may be loaded into a pod that is either under vacuum or purged with argon or nitrogen.
  • In some embodiments, silicon nitride may be deposited by plasma enhanced chemical vapor deposition. Silicon nitride may also be formed by atomic layer deposition. Likewise, aluminum oxide may be formed by atomic layer deposition.
  • Thus, it may be appreciated that, in some embodiments, the lower electrode 16 is only exposed to oxygen infiltration after an oxidation barrier has been completed.
  • After applying the oxidation barrier 52, an overlying oxide 54, such as a high deposition pressure (HDP) oxide, is applied in some embodiments. An HDP oxide 54 application would normally cause oxidation of the lower electrode if the chalcogenide 18 were not already protected by the oxidation barrier 52.
  • A series connected select device, including the switch material 26, may be used to access a memory element, including the chalcogenide 18, during programming or reading of memory element. A select device may be an ovonic threshold switch that can be made of a chalcogenide alloy that does not exhibit an amorphous to crystalline phase change and which undergoes rapid, electric field initiated change in electrical conductivity that persists only so long as a holding voltage is present.
  • A select device may operate as a switch that is either “off” or “on” depending on the amount of voltage potential applied across the memory cell, and more particularly whether the current through the select device exceeds its threshold current or voltage, which then triggers the device into the on state. The off state may be a substantially electrically nonconductive state and the on state may be a substantially conductive state, with less resistance than the off state.
  • In the on state, the voltage across the select device is equal to its holding voltage VH plus IxRon, where Ron is the dynamic resistance from the extrapolated X-axis intercept, VH. For example, a select device may have threshold voltages and, if a voltage potential less than the threshold voltage of a select device is applied across the select device, then the select device may remain “off” or in a relatively high resistive state so that little or no electrical current passes through the memory cell and most of the voltage drop from selected row to selected column is across the select device. Alternatively, if a voltage potential greater than the threshold voltage of a select device is applied across the select device, then the select device may “turn on,” i.e., operate in a relatively low resistive state so that electrical current passes through the memory cell. In other words, one or more series connected select devices may be in a substantially electrically nonconductive state if less than a predetermined voltage potential, e.g., the threshold voltage, is applied across select devices. Select devices may be in a substantially conductive state if greater than the predetermined voltage potential is applied across select devices. Select devices may also be referred to as an access device, an isolation device, or a switch.
  • In one embodiment, each select device may comprise a switching material such as, for example, a chalcogenide alloy, and may be referred to as an ovonic threshold switch, or simply an ovonic switch. The switching material of select devices may be a material in a substantially amorphous state positioned between two electrodes that may be repeatedly and reversibly switched between a higher resistance “off” state (e.g., greater than about ten megaOhms) and a relatively lower resistance “on” state (e.g., about one thousand Ohms in series with VH) by application of a predetermined electrical current or voltage potential. In this embodiment, each select device may be a two terminal device that may have a current-voltage (I-V) characteristic similar to a phase change memory element that is in the amorphous state. However, unlike a phase change memory element, the switching material of select devices may not change phase. That is, the switching material of select devices may not be a programmable material, and, as a result, select devices may not be a memory device capable of storing information. For example, the switching material of select devices may remain permanently amorphous and the I-V characteristic may remain the same throughout the operating life.
  • In the low voltage or low electric field mode, i.e., where the voltage applied across select device is less than a threshold voltage (labeled VTH), a select device may be “off” or nonconducting, and exhibit a relatively high resistance, e.g., greater than about 10 megaohms. The select device may remain in the off state until a sufficient voltage, e.g., VTH, is applied, or a sufficient current is applied, e.g., ITH, that may switch the select device to a conductive, relatively low resistance on state. After a voltage potential of greater than about VTH is applied across the select device, the voltage potential across the select device may drop (“snapback”) to a holding voltage potential, VH. Snapback may refer to the voltage difference between VTH and VH of a select device.
  • In the on state, the voltage potential across select device may remain close to the holding voltage of VH as current passing through select device is increased. The select device may remain on until the current through the select device drops below a holding current, IH. Below this value, the select device may turn off and return to a relatively high resistance, nonconductive off state until the VTH and ITH are exceeded again.
  • In some embodiments, only one select device may be used. In other embodiments, more than two select devices may be used. A single select device may have a VH about equal to its threshold voltage, VTH, (a voltage difference less than the threshold voltage of the memory element) to avoid triggering a reset bit when the select device triggers from a threshold voltage to a lower holding voltage called the snapback voltage. An another example, the threshold current of the memory element may be about equal to the threshold current of the access device even though its snapback voltage is greater than the memory element's reset bit threshold voltage.
  • One or more MOS or bipolar transistors or one or more diodes (either MOS or bipolar) may be used as the select device. If a diode is used, the bit may be selected by lowering the row line from a higher deselect level. As a further non-limiting example, if an n-channel MOS transistor is used as a select device with its source, for example, at ground, the row line may be raised to select the memory element connected between the drain of the MOS transistor and the column line. When a single MOS or single bipolar transistor is used as the select device, a control voltage level may be used on a “row line” to turn the select device on and off to access the memory element.
  • Programming of the chalcogenide 18 to alter the state or phase of the material may be accomplished by applying voltage potentials to the lower electrode 16 and upper electrode 28, thereby generating a voltage potential across the select device and memory element. When the voltage potential is greater than the threshold voltages of select device and memory element, then an electrical current may flow through the chalcogenide 18 in response to the applied voltage potentials, and may result in heating of the chalcogenide 18.
  • This heating may alter the memory state or phase of the chalcogenide 18. Altering the phase or state of the chalcogenide 18 may alter the electrical characteristic of memory material, e.g., the resistance of the material may be altered by altering the phase of the memory material. Memory material may also be referred to as a programmable resistive material.
  • In the “reset” state, memory material may be in an amorphous or semi-amorphous state and in the “set” state, memory material may be in an a crystalline or semi-crystalline state. The resistance of memory material in the amorphous or semi-amorphous state may be greater than the resistance of memory material in the crystalline or semi-crystalline state. It is to be appreciated that the association of reset and set with amorphous and crystalline states, respectively, is a convention and that at least an opposite convention may be adopted.
  • Using electrical current, memory material may be heated to a relatively higher temperature to amorphosize memory material and “reset” memory material (e.g., program memory material to a logic “0” value). Heating the volume of memory material to a relatively lower crystallization temperature may crystallize memory material and “set” memory material (e.g., program memory material to a logic “1” value). Various resistances of memory material may be achieved to store information by varying the amount of current flow and duration through the volume of memory material.
  • Turning to FIG. 8, a portion of a system 500 in accordance with an embodiment of the present invention is described. System 500 may be used in wireless devices such as, for example, a personal digital assistant (PDA), a laptop or portable computer with wireless capability, a web tablet, a wireless telephone, a pager, an instant messaging device, a digital music player, a digital camera, or other devices that may be adapted to transmit and/or receive information wirelessly. System 500 may be used in any of the following systems: a wireless local area network (WLAN) system, a wireless personal area network (WPAN) system, a cellular network, although the scope of the present invention is not limited in this respect.
  • System 500 may include a controller 510, an input/output (I/O) device 520 (e.g. a keypad, display), static random access memory (SRAM) 560, a memory 530, and a wireless interface 540 coupled to each other via a bus 550. A battery 580 may be used in some embodiments. It should be noted that the scope of the present invention is not limited to embodiments having any or all of these components.
  • Controller 510 may comprise, for example, one or more microprocessors, digital signal processors, microcontrollers, or the like. Memory 530 may be used to store messages transmitted to or by system 500. Memory 530 may also optionally be used to store instructions that are executed by controller 510 during the operation of system 500, and may be used to store user data. Memory 530 may be provided by one or more different types of memory. For example, memory 530 may comprise any type of random access memory, a volatile memory, a non-volatile memory such as a flash memory and/or a memory such as memory discussed herein.
  • I/O device 520 may be used by a user to generate a message. System 500 may use wireless interface 540 to transmit and receive messages to and from a wireless communication network with a radio frequency (RF) signal. Examples of wireless interface 540 may include an antenna or a wireless transceiver, although the scope of the present invention is not limited in this respect.
  • References throughout this specification to “one embodiment” or “an embodiment” mean that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one implementation encompassed within the present invention. Thus, appearances of the phrase “one embodiment” or “in an embodiment” are not necessarily referring to the same embodiment. Furthermore, the particular features, structures, or characteristics may be instituted in other suitable forms other than the particular embodiment illustrated and all such forms may be encompassed within the claims of the present application.
  • While the present invention has been described with respect to a limited number of embodiments, those skilled in the art will appreciate numerous modifications and variations therefrom. It is intended that the appended claims cover all such modifications and variations as fall within the true spirit and scope of this present invention.

Claims (30)

1. A method comprising:
forming a chalcogenide over a lower electrode of a phase change memory; and
reducing oxygen exposure of said chalcogenide layer to reduce oxidation of said lower electrode.
2. The method of claim 1 including forming a stack including an upper electrode, the chalcogenide, and a lower electrode.
3. The method of claim 2 including using photoresist to pattern and etch said upper electrode.
4. The method of claim 3 including refraining from using a high temperature oxygen plasma treatment to remove said photoresist.
5. The method of claim 3 including stopping the etching of said stack before reaching said chalcogenide.
6. The method of claim 4 including stopping the etching of said stack before reaching a layer which overlies the chalcogenide.
7. The method of claim 6 including removing the photoresist before removing the layer overlying said chalcogenide.
8. The method of claim 7 including forming a stack including an ovonic threshold switch, as well as said upper electrode, and etching through said upper electrode down to said ovonic threshold switch.
9. The method of claim 8 including applying an oxidation barrier layer after etching through said chalcogenide.
10. The method of claim 1 including forming a stack including an upper electrode, the chalcogenide, and covering said stack with an oxidation barrier to prevent oxygen infiltration into said chalcogenide.
11. A phase change memory comprising:
a chalcogenide layer;
a lower electrode under said chalcogenide layer; and
an oxidation barrier over said chalcogenide layer and lower electrode.
12. The memory of claim 11 wherein said oxidation barrier is formed of a material selected from the group including silicon nitride, SiOxNy, and aluminum oxide.
13. The memory of claim 11 including an ovonic threshold switch.
14. The memory of claim 13 wherein said ovonic threshold switch is formed over said chalcogenide layer.
15. The memory of claim 11 including an oxide over said oxidation barrier.
16. The memory of claim 11 including a chalcogenide layer and at least one upper electrode having aligned side edges to form a stack, said oxidation barrier formed over said aligned side edges.
17. The memory of claim 16 including an ovonic threshold switch in said stack.
18. The memory of claim 11 including a stack of layers including said chalcogenide layer, a top electrode, a barrier film over said top electrode, and an ovonic threshold switch over said barrier film.
19. The memory of claim 18 wherein said ovonic threshold switch includes a chalcogenide material that does not change phase.
20. The memory of claim 19 including an electrode over said ovonic threshold switch.
21. A system comprising:
a controller;
a static random access memory coupled to said controller; and
a phase change memory including a lower electrode, a chalcogenide layer over said lower electrode, and an oxidation barrier over said chalcogenide layer and said lower electrode.
22. The system of claim 21 wherein said oxidation barrier is formed of a material selected from the group including silicon nitride, SiOxNy, and aluminum oxide.
23. The system of claim 21 wherein said phase change memory includes an ovonic threshold switch.
24. The system of claim 23 wherein said ovonic threshold switch is formed over said chalcogenide layer.
25. The system of claim 21 wherein said phase change memory includes an oxide over said oxidation barrier.
26. The system of claim 21 wherein said phase change memory includes a chalcogenide layer and at least one upper electrode having aligned side edges to form a stack, said oxidation barrier formed over said aligned side edges.
27. The system of claim 26 including an ovonic threshold switch in said stack.
28. The system of claim 21 wherein said phase change memory includes a stack of layers including said chalcogenide layer, a top electrode, a barrier film over said top electrode, and an ovonic threshold switch over said barrier film.
29. The system of claim 28 wherein said ovonic threshold switch includes a chalcogenide material that does not change phase.
30. The system of claim 29 including an electrode over said ovonic threshold switch.
US11/168,780 2005-06-28 2005-06-28 Reducing oxidation of phase change memory electrodes Abandoned US20060289848A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/168,780 US20060289848A1 (en) 2005-06-28 2005-06-28 Reducing oxidation of phase change memory electrodes
US11/904,557 US7491574B2 (en) 2005-06-28 2007-09-27 Reducing oxidation of phase change memory electrodes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/168,780 US20060289848A1 (en) 2005-06-28 2005-06-28 Reducing oxidation of phase change memory electrodes

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/904,557 Division US7491574B2 (en) 2005-06-28 2007-09-27 Reducing oxidation of phase change memory electrodes

Publications (1)

Publication Number Publication Date
US20060289848A1 true US20060289848A1 (en) 2006-12-28

Family

ID=37566272

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/168,780 Abandoned US20060289848A1 (en) 2005-06-28 2005-06-28 Reducing oxidation of phase change memory electrodes
US11/904,557 Expired - Fee Related US7491574B2 (en) 2005-06-28 2007-09-27 Reducing oxidation of phase change memory electrodes

Family Applications After (1)

Application Number Title Priority Date Filing Date
US11/904,557 Expired - Fee Related US7491574B2 (en) 2005-06-28 2007-09-27 Reducing oxidation of phase change memory electrodes

Country Status (1)

Country Link
US (2) US20060289848A1 (en)

Cited By (86)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060166471A1 (en) * 2005-01-12 2006-07-27 Thomas Happ Memory apparatus and production method
US20060237756A1 (en) * 2005-04-20 2006-10-26 Jae-Hyun Park Phase change memory devices and their methods of fabrication
US20070040191A1 (en) * 2005-05-05 2007-02-22 The Board Of Trustees Of The University Of Illinois Nanowire structures and electrical devices
US20070147105A1 (en) * 2005-11-28 2007-06-28 Macronix International Co., Ltd. Phase Change Memory Cell and Manufacturing Method
US20070154847A1 (en) * 2005-12-30 2007-07-05 Macronix International Co., Ltd. Chalcogenide layer etching method
US20080258126A1 (en) * 2007-04-17 2008-10-23 Macronix International Co., Ltd. Memory Cell Sidewall Contacting Side Electrode
US20090020740A1 (en) * 2007-07-20 2009-01-22 Macronix International Co., Ltd. Resistive memory structure with buffer layer
US20090101879A1 (en) * 2007-10-22 2009-04-23 Macronix International Co., Ltd. Method for Making Self Aligning Pillar Memory Cell Device
US20090242865A1 (en) * 2008-03-31 2009-10-01 Macronix International Co., Ltd Memory array with diode driver and method for fabricating the same
US20090279349A1 (en) * 2008-05-08 2009-11-12 Macronix International Co., Ltd. Phase change device having two or more substantial amorphous regions in high resistance state
US20090283741A1 (en) * 2006-01-20 2009-11-19 Samsung Electronics Co., Ltd. Method of forming a phase changeable structure
US7719913B2 (en) 2008-09-12 2010-05-18 Macronix International Co., Ltd. Sensing circuit for PCRAM applications
US7741636B2 (en) 2006-01-09 2010-06-22 Macronix International Co., Ltd. Programmable resistive RAM and manufacturing method
US7749854B2 (en) 2006-12-06 2010-07-06 Macronix International Co., Ltd. Method for making a self-converged memory material element for memory cell
US7786461B2 (en) 2007-04-03 2010-08-31 Macronix International Co., Ltd. Memory structure with reduced-size memory element between memory material portions
US7786460B2 (en) 2005-11-15 2010-08-31 Macronix International Co., Ltd. Phase change memory device and manufacturing method
US7785920B2 (en) 2006-07-12 2010-08-31 Macronix International Co., Ltd. Method for making a pillar-type phase change memory element
US7791057B2 (en) 2008-04-22 2010-09-07 Macronix International Co., Ltd. Memory cell having a buried phase change region and method for fabricating the same
US7825398B2 (en) 2008-04-07 2010-11-02 Macronix International Co., Ltd. Memory cell having improved mechanical stability
US7863655B2 (en) 2006-10-24 2011-01-04 Macronix International Co., Ltd. Phase change memory cells with dual access devices
US7869270B2 (en) 2008-12-29 2011-01-11 Macronix International Co., Ltd. Set algorithm for phase change memory cell
US7879645B2 (en) 2008-01-28 2011-02-01 Macronix International Co., Ltd. Fill-in etching free pore device
US7879643B2 (en) 2008-01-18 2011-02-01 Macronix International Co., Ltd. Memory cell with memory element contacting an inverted T-shaped bottom electrode
US7894254B2 (en) 2009-07-15 2011-02-22 Macronix International Co., Ltd. Refresh circuitry for phase change memory
US7897954B2 (en) 2008-10-10 2011-03-01 Macronix International Co., Ltd. Dielectric-sandwiched pillar memory device
US7903457B2 (en) 2008-08-19 2011-03-08 Macronix International Co., Ltd. Multiple phase change materials in an integrated circuit for system on a chip application
US7902538B2 (en) 2005-11-28 2011-03-08 Macronix International Co., Ltd. Phase change memory cell with first and second transition temperature portions
US7903447B2 (en) 2006-12-13 2011-03-08 Macronix International Co., Ltd. Method, apparatus and computer program product for read before programming process on programmable resistive memory cell
US7910906B2 (en) 2006-10-04 2011-03-22 Macronix International Co., Ltd. Memory cell device with circumferentially-extending memory element
US7923285B2 (en) 2005-12-27 2011-04-12 Macronix International, Co. Ltd. Method for forming self-aligned thermal isolation cell for a variable resistance memory array
US7932506B2 (en) 2008-07-22 2011-04-26 Macronix International Co., Ltd. Fully self-aligned pore-type memory cell having diode access device
US7933139B2 (en) 2009-05-15 2011-04-26 Macronix International Co., Ltd. One-transistor, one-resistor, one-capacitor phase change memory
US7956344B2 (en) 2007-02-27 2011-06-07 Macronix International Co., Ltd. Memory cell with memory element contacting ring-shaped upper end of bottom electrode
US7968876B2 (en) 2009-05-22 2011-06-28 Macronix International Co., Ltd. Phase change memory cell having vertical channel access transistor
US7972895B2 (en) 2007-02-02 2011-07-05 Macronix International Co., Ltd. Memory cell device with coplanar electrode surface and method
US7978509B2 (en) 2007-08-02 2011-07-12 Macronix International Co., Ltd. Phase change memory with dual word lines and source lines and method of operating same
US7993962B2 (en) 2005-11-15 2011-08-09 Macronix International Co., Ltd. I-shaped phase change memory cell
US8030635B2 (en) 2009-01-13 2011-10-04 Macronix International Co., Ltd. Polysilicon plug bipolar transistor for phase change memory
US8036014B2 (en) 2008-11-06 2011-10-11 Macronix International Co., Ltd. Phase change memory program method without over-reset
US8064248B2 (en) 2009-09-17 2011-11-22 Macronix International Co., Ltd. 2T2R-1T1R mix mode phase change memory array
US8064247B2 (en) 2009-01-14 2011-11-22 Macronix International Co., Ltd. Rewritable memory device based on segregation/re-absorption
US8077505B2 (en) 2008-05-07 2011-12-13 Macronix International Co., Ltd. Bipolar switching of phase change device
US8084842B2 (en) 2008-03-25 2011-12-27 Macronix International Co., Ltd. Thermally stabilized electrode structure
US8084760B2 (en) 2009-04-20 2011-12-27 Macronix International Co., Ltd. Ring-shaped electrode and manufacturing method for same
US8089137B2 (en) 2009-01-07 2012-01-03 Macronix International Co., Ltd. Integrated circuit memory with single crystal silicon on silicide driver and manufacturing method
US8097871B2 (en) 2009-04-30 2012-01-17 Macronix International Co., Ltd. Low operational current phase change memory structures
US8107283B2 (en) 2009-01-12 2012-01-31 Macronix International Co., Ltd. Method for setting PCRAM devices
US8110822B2 (en) 2009-07-15 2012-02-07 Macronix International Co., Ltd. Thermal protect PCRAM structure and methods for making
US8110430B2 (en) 2005-11-21 2012-02-07 Macronix International Co., Ltd. Vacuum jacket for phase change memory element
US8134857B2 (en) 2008-06-27 2012-03-13 Macronix International Co., Ltd. Methods for high speed reading operation of phase change memory and device employing same
US8158963B2 (en) 2006-01-09 2012-04-17 Macronix International Co., Ltd. Programmable resistive RAM and manufacturing method
US8158965B2 (en) 2008-02-05 2012-04-17 Macronix International Co., Ltd. Heating center PCRAM structure and methods for making
US8173987B2 (en) 2009-04-27 2012-05-08 Macronix International Co., Ltd. Integrated circuit 3D phase change memory array and manufacturing method
US8178405B2 (en) 2006-12-28 2012-05-15 Macronix International Co., Ltd. Resistor random access memory cell device
US8178387B2 (en) 2009-10-23 2012-05-15 Macronix International Co., Ltd. Methods for reducing recrystallization time for a phase change material
US8198619B2 (en) 2009-07-15 2012-06-12 Macronix International Co., Ltd. Phase change memory cell structure
US8238149B2 (en) 2009-06-25 2012-08-07 Macronix International Co., Ltd. Methods and apparatus for reducing defect bits in phase change memory
US20120220099A1 (en) * 2005-10-28 2012-08-30 Dennison Charles H Forming a Phase Change Memory With an Ovonic Threshold Switch
US8310864B2 (en) 2010-06-15 2012-11-13 Macronix International Co., Ltd. Self-aligned bit line under word line memory array
US8324605B2 (en) 2008-10-02 2012-12-04 Macronix International Co., Ltd. Dielectric mesh isolated phase change structure for phase change memory
US8350316B2 (en) 2009-05-22 2013-01-08 Macronix International Co., Ltd. Phase change memory cells having vertical channel access transistor and memory plane
US8363463B2 (en) 2009-06-25 2013-01-29 Macronix International Co., Ltd. Phase change memory having one or more non-constant doping profiles
US8395935B2 (en) 2010-10-06 2013-03-12 Macronix International Co., Ltd. Cross-point self-aligned reduced cell size phase change memory
US8406033B2 (en) 2009-06-22 2013-03-26 Macronix International Co., Ltd. Memory device and method for sensing and fixing margin cells
US8415651B2 (en) 2008-06-12 2013-04-09 Macronix International Co., Ltd. Phase change memory cell having top and bottom sidewall contacts
US8467238B2 (en) 2010-11-15 2013-06-18 Macronix International Co., Ltd. Dynamic pulse operation for phase change memory
US8497705B2 (en) 2010-11-09 2013-07-30 Macronix International Co., Ltd. Phase change device for interconnection of programmable logic device
US8664689B2 (en) 2008-11-07 2014-03-04 Macronix International Co., Ltd. Memory cell access device having a pn-junction with polycrystalline plug and single-crystal semiconductor regions
US8729521B2 (en) 2010-05-12 2014-05-20 Macronix International Co., Ltd. Self aligned fin-type programmable memory cell
US20140183699A1 (en) * 2012-12-31 2014-07-03 International Business Machines Corporation Phase changing on-chip thermal heat sink
US20140203236A1 (en) * 2013-01-21 2014-07-24 Taiwan Semiconductor Manufacturing Company, Ltd. One transistor and one resistive random access memory (rram) structure with spacer
US8809829B2 (en) 2009-06-15 2014-08-19 Macronix International Co., Ltd. Phase change memory having stabilized microstructure and manufacturing method
US8907316B2 (en) 2008-11-07 2014-12-09 Macronix International Co., Ltd. Memory cell access device having a pn-junction with polycrystalline and single crystal semiconductor regions
US8933536B2 (en) 2009-01-22 2015-01-13 Macronix International Co., Ltd. Polysilicon pillar bipolar transistor with self-aligned memory element
US8987700B2 (en) 2011-12-02 2015-03-24 Macronix International Co., Ltd. Thermally confined electrode for programmable resistance memory
US9336879B2 (en) 2014-01-24 2016-05-10 Macronix International Co., Ltd. Multiple phase change materials in an integrated circuit for system on a chip application
JP2017503337A (en) * 2013-12-20 2017-01-26 インテル・コーポレーション Phase change memory (PCM) array liners, related technologies and configurations
US9559113B2 (en) 2014-05-01 2017-01-31 Macronix International Co., Ltd. SSL/GSL gate oxide in 3D vertical channel NAND
US9672906B2 (en) 2015-06-19 2017-06-06 Macronix International Co., Ltd. Phase change memory with inter-granular switching
JP2019067963A (en) * 2017-10-02 2019-04-25 株式会社アルバック Method for manufacturing ots device and ots device
US11251261B2 (en) * 2019-05-17 2022-02-15 Micron Technology, Inc. Forming a barrier material on an electrode
US11289650B2 (en) * 2019-03-04 2022-03-29 International Business Machines Corporation Stacked access device and resistive memory
US11289649B2 (en) * 2020-04-13 2022-03-29 Globalfoundries Singapore Pte. Ltd. Non-volatile memory elements with a narrowed electrode
US11335853B2 (en) 2018-10-24 2022-05-17 Ulvac, Inc. Method of manufacturing OTS device, and OTS device
US20220278219A1 (en) * 2020-06-01 2022-09-01 Jiangsu Advanced Memory Technology Co., Ltd. Method of fabricating diode structure
US20230360700A1 (en) * 2022-05-03 2023-11-09 Western Digital Technologies, Inc. Cross-point array with threshold switching selector memory element

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7960216B2 (en) * 2008-05-10 2011-06-14 Intermolecular, Inc. Confinement techniques for non-volatile resistive-switching memories
US8216862B2 (en) * 2010-03-16 2012-07-10 Sandisk 3D Llc Forming and training processes for resistance-change memory cell
US8530875B1 (en) * 2010-05-06 2013-09-10 Micron Technology, Inc. Phase change memory including ovonic threshold switch with layered electrode and methods for forming same
US8409960B2 (en) 2011-04-08 2013-04-02 Micron Technology, Inc. Methods of patterning platinum-containing material
US9166158B2 (en) 2013-02-25 2015-10-20 Micron Technology, Inc. Apparatuses including electrodes having a conductive barrier material and methods of forming same
CN109119534B (en) * 2018-08-20 2019-05-31 华南理工大学 A kind of 1S1R type phase-change memory cell structure and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040114413A1 (en) * 2002-12-13 2004-06-17 Parkinson Ward D. Memory and access devices

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7314776B2 (en) * 2002-12-13 2008-01-01 Ovonyx, Inc. Method to manufacture a phase change memory
US7411208B2 (en) * 2004-05-27 2008-08-12 Samsung Electronics Co., Ltd. Phase-change memory device having a barrier layer and manufacturing method
US7354793B2 (en) * 2004-08-12 2008-04-08 Micron Technology, Inc. Method of forming a PCRAM device incorporating a resistance-variable chalocogenide element

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040114413A1 (en) * 2002-12-13 2004-06-17 Parkinson Ward D. Memory and access devices

Cited By (127)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060166471A1 (en) * 2005-01-12 2006-07-27 Thomas Happ Memory apparatus and production method
US8026123B2 (en) * 2005-01-12 2011-09-27 Qimonda Ag Integrated circuit including a memory apparatus and production method
US7598112B2 (en) * 2005-04-20 2009-10-06 Samsung Electronics Co., Ltd. Phase change memory devices and their methods of fabrication
US20060237756A1 (en) * 2005-04-20 2006-10-26 Jae-Hyun Park Phase change memory devices and their methods of fabrication
US20070040191A1 (en) * 2005-05-05 2007-02-22 The Board Of Trustees Of The University Of Illinois Nanowire structures and electrical devices
US8440535B2 (en) * 2005-10-28 2013-05-14 Ovonyx, Inc. Forming a phase change memory with an ovonic threshold switch
US20120220099A1 (en) * 2005-10-28 2012-08-30 Dennison Charles H Forming a Phase Change Memory With an Ovonic Threshold Switch
US8008114B2 (en) 2005-11-15 2011-08-30 Macronix International Co., Ltd. Phase change memory device and manufacturing method
US7993962B2 (en) 2005-11-15 2011-08-09 Macronix International Co., Ltd. I-shaped phase change memory cell
US7786460B2 (en) 2005-11-15 2010-08-31 Macronix International Co., Ltd. Phase change memory device and manufacturing method
US8110430B2 (en) 2005-11-21 2012-02-07 Macronix International Co., Ltd. Vacuum jacket for phase change memory element
US7688619B2 (en) 2005-11-28 2010-03-30 Macronix International Co., Ltd. Phase change memory cell and manufacturing method
US20070147105A1 (en) * 2005-11-28 2007-06-28 Macronix International Co., Ltd. Phase Change Memory Cell and Manufacturing Method
US7902538B2 (en) 2005-11-28 2011-03-08 Macronix International Co., Ltd. Phase change memory cell with first and second transition temperature portions
US7929340B2 (en) 2005-11-28 2011-04-19 Macronix International Co., Ltd. Phase change memory cell and manufacturing method
US7923285B2 (en) 2005-12-27 2011-04-12 Macronix International, Co. Ltd. Method for forming self-aligned thermal isolation cell for a variable resistance memory array
US20070154847A1 (en) * 2005-12-30 2007-07-05 Macronix International Co., Ltd. Chalcogenide layer etching method
US8062833B2 (en) * 2005-12-30 2011-11-22 Macronix International Co., Ltd. Chalcogenide layer etching method
US7741636B2 (en) 2006-01-09 2010-06-22 Macronix International Co., Ltd. Programmable resistive RAM and manufacturing method
US8158963B2 (en) 2006-01-09 2012-04-17 Macronix International Co., Ltd. Programmable resistive RAM and manufacturing method
US8178388B2 (en) 2006-01-09 2012-05-15 Macronix International Co., Ltd. Programmable resistive RAM and manufacturing method
US20090283741A1 (en) * 2006-01-20 2009-11-19 Samsung Electronics Co., Ltd. Method of forming a phase changeable structure
US7785920B2 (en) 2006-07-12 2010-08-31 Macronix International Co., Ltd. Method for making a pillar-type phase change memory element
US7910906B2 (en) 2006-10-04 2011-03-22 Macronix International Co., Ltd. Memory cell device with circumferentially-extending memory element
US7863655B2 (en) 2006-10-24 2011-01-04 Macronix International Co., Ltd. Phase change memory cells with dual access devices
US8110456B2 (en) 2006-10-24 2012-02-07 Macronix International Co., Ltd. Method for making a self aligning memory device
US7749854B2 (en) 2006-12-06 2010-07-06 Macronix International Co., Ltd. Method for making a self-converged memory material element for memory cell
US7903447B2 (en) 2006-12-13 2011-03-08 Macronix International Co., Ltd. Method, apparatus and computer program product for read before programming process on programmable resistive memory cell
US8178405B2 (en) 2006-12-28 2012-05-15 Macronix International Co., Ltd. Resistor random access memory cell device
US7972895B2 (en) 2007-02-02 2011-07-05 Macronix International Co., Ltd. Memory cell device with coplanar electrode surface and method
US7956344B2 (en) 2007-02-27 2011-06-07 Macronix International Co., Ltd. Memory cell with memory element contacting ring-shaped upper end of bottom electrode
US7786461B2 (en) 2007-04-03 2010-08-31 Macronix International Co., Ltd. Memory structure with reduced-size memory element between memory material portions
US7875493B2 (en) 2007-04-03 2011-01-25 Macronix International Co., Ltd. Memory structure with reduced-size memory element between memory material portions
US20080258126A1 (en) * 2007-04-17 2008-10-23 Macronix International Co., Ltd. Memory Cell Sidewall Contacting Side Electrode
US7777215B2 (en) * 2007-07-20 2010-08-17 Macronix International Co., Ltd. Resistive memory structure with buffer layer
US20090020740A1 (en) * 2007-07-20 2009-01-22 Macronix International Co., Ltd. Resistive memory structure with buffer layer
US7943920B2 (en) 2007-07-20 2011-05-17 Macronix International Co., Ltd. Resistive memory structure with buffer layer
US7978509B2 (en) 2007-08-02 2011-07-12 Macronix International Co., Ltd. Phase change memory with dual word lines and source lines and method of operating same
US7919766B2 (en) 2007-10-22 2011-04-05 Macronix International Co., Ltd. Method for making self aligning pillar memory cell device
US20090101879A1 (en) * 2007-10-22 2009-04-23 Macronix International Co., Ltd. Method for Making Self Aligning Pillar Memory Cell Device
US8222071B2 (en) 2007-10-22 2012-07-17 Macronix International Co., Ltd. Method for making self aligning pillar memory cell device
US7879643B2 (en) 2008-01-18 2011-02-01 Macronix International Co., Ltd. Memory cell with memory element contacting an inverted T-shaped bottom electrode
US7879645B2 (en) 2008-01-28 2011-02-01 Macronix International Co., Ltd. Fill-in etching free pore device
US8158965B2 (en) 2008-02-05 2012-04-17 Macronix International Co., Ltd. Heating center PCRAM structure and methods for making
US8084842B2 (en) 2008-03-25 2011-12-27 Macronix International Co., Ltd. Thermally stabilized electrode structure
US8030634B2 (en) 2008-03-31 2011-10-04 Macronix International Co., Ltd. Memory array with diode driver and method for fabricating the same
US20090242865A1 (en) * 2008-03-31 2009-10-01 Macronix International Co., Ltd Memory array with diode driver and method for fabricating the same
US7825398B2 (en) 2008-04-07 2010-11-02 Macronix International Co., Ltd. Memory cell having improved mechanical stability
US7791057B2 (en) 2008-04-22 2010-09-07 Macronix International Co., Ltd. Memory cell having a buried phase change region and method for fabricating the same
US8077505B2 (en) 2008-05-07 2011-12-13 Macronix International Co., Ltd. Bipolar switching of phase change device
US20090279349A1 (en) * 2008-05-08 2009-11-12 Macronix International Co., Ltd. Phase change device having two or more substantial amorphous regions in high resistance state
US7701750B2 (en) 2008-05-08 2010-04-20 Macronix International Co., Ltd. Phase change device having two or more substantial amorphous regions in high resistance state
US8059449B2 (en) 2008-05-08 2011-11-15 Macronix International Co., Ltd. Phase change device having two or more substantial amorphous regions in high resistance state
US8415651B2 (en) 2008-06-12 2013-04-09 Macronix International Co., Ltd. Phase change memory cell having top and bottom sidewall contacts
US8134857B2 (en) 2008-06-27 2012-03-13 Macronix International Co., Ltd. Methods for high speed reading operation of phase change memory and device employing same
US7932506B2 (en) 2008-07-22 2011-04-26 Macronix International Co., Ltd. Fully self-aligned pore-type memory cell having diode access device
US8315088B2 (en) 2008-08-19 2012-11-20 Macronix International Co., Ltd. Multiple phase change materials in an integrated circuit for system on a chip application
US7903457B2 (en) 2008-08-19 2011-03-08 Macronix International Co., Ltd. Multiple phase change materials in an integrated circuit for system on a chip application
US7719913B2 (en) 2008-09-12 2010-05-18 Macronix International Co., Ltd. Sensing circuit for PCRAM applications
US8324605B2 (en) 2008-10-02 2012-12-04 Macronix International Co., Ltd. Dielectric mesh isolated phase change structure for phase change memory
US7897954B2 (en) 2008-10-10 2011-03-01 Macronix International Co., Ltd. Dielectric-sandwiched pillar memory device
US8036014B2 (en) 2008-11-06 2011-10-11 Macronix International Co., Ltd. Phase change memory program method without over-reset
US8907316B2 (en) 2008-11-07 2014-12-09 Macronix International Co., Ltd. Memory cell access device having a pn-junction with polycrystalline and single crystal semiconductor regions
US8664689B2 (en) 2008-11-07 2014-03-04 Macronix International Co., Ltd. Memory cell access device having a pn-junction with polycrystalline plug and single-crystal semiconductor regions
US8094488B2 (en) 2008-12-29 2012-01-10 Macronix International Co., Ltd. Set algorithm for phase change memory cell
US7869270B2 (en) 2008-12-29 2011-01-11 Macronix International Co., Ltd. Set algorithm for phase change memory cell
US8089137B2 (en) 2009-01-07 2012-01-03 Macronix International Co., Ltd. Integrated circuit memory with single crystal silicon on silicide driver and manufacturing method
US8107283B2 (en) 2009-01-12 2012-01-31 Macronix International Co., Ltd. Method for setting PCRAM devices
US8237144B2 (en) 2009-01-13 2012-08-07 Macronix International Co., Ltd. Polysilicon plug bipolar transistor for phase change memory
US8030635B2 (en) 2009-01-13 2011-10-04 Macronix International Co., Ltd. Polysilicon plug bipolar transistor for phase change memory
US8064247B2 (en) 2009-01-14 2011-11-22 Macronix International Co., Ltd. Rewritable memory device based on segregation/re-absorption
US8933536B2 (en) 2009-01-22 2015-01-13 Macronix International Co., Ltd. Polysilicon pillar bipolar transistor with self-aligned memory element
US8084760B2 (en) 2009-04-20 2011-12-27 Macronix International Co., Ltd. Ring-shaped electrode and manufacturing method for same
US8173987B2 (en) 2009-04-27 2012-05-08 Macronix International Co., Ltd. Integrated circuit 3D phase change memory array and manufacturing method
US8916845B2 (en) 2009-04-30 2014-12-23 Macronix International Co., Ltd. Low operational current phase change memory structures
US8097871B2 (en) 2009-04-30 2012-01-17 Macronix International Co., Ltd. Low operational current phase change memory structures
US7933139B2 (en) 2009-05-15 2011-04-26 Macronix International Co., Ltd. One-transistor, one-resistor, one-capacitor phase change memory
US8624236B2 (en) 2009-05-22 2014-01-07 Macronix International Co., Ltd. Phase change memory cell having vertical channel access transistor
US8313979B2 (en) 2009-05-22 2012-11-20 Macronix International Co., Ltd. Phase change memory cell having vertical channel access transistor
US8350316B2 (en) 2009-05-22 2013-01-08 Macronix International Co., Ltd. Phase change memory cells having vertical channel access transistor and memory plane
US7968876B2 (en) 2009-05-22 2011-06-28 Macronix International Co., Ltd. Phase change memory cell having vertical channel access transistor
US8809829B2 (en) 2009-06-15 2014-08-19 Macronix International Co., Ltd. Phase change memory having stabilized microstructure and manufacturing method
US8406033B2 (en) 2009-06-22 2013-03-26 Macronix International Co., Ltd. Memory device and method for sensing and fixing margin cells
US8238149B2 (en) 2009-06-25 2012-08-07 Macronix International Co., Ltd. Methods and apparatus for reducing defect bits in phase change memory
US8363463B2 (en) 2009-06-25 2013-01-29 Macronix International Co., Ltd. Phase change memory having one or more non-constant doping profiles
US8779408B2 (en) 2009-07-15 2014-07-15 Macronix International Co., Ltd. Phase change memory cell structure
US8198619B2 (en) 2009-07-15 2012-06-12 Macronix International Co., Ltd. Phase change memory cell structure
US8110822B2 (en) 2009-07-15 2012-02-07 Macronix International Co., Ltd. Thermal protect PCRAM structure and methods for making
US8228721B2 (en) 2009-07-15 2012-07-24 Macronix International Co., Ltd. Refresh circuitry for phase change memory
US7894254B2 (en) 2009-07-15 2011-02-22 Macronix International Co., Ltd. Refresh circuitry for phase change memory
US8064248B2 (en) 2009-09-17 2011-11-22 Macronix International Co., Ltd. 2T2R-1T1R mix mode phase change memory array
US8178387B2 (en) 2009-10-23 2012-05-15 Macronix International Co., Ltd. Methods for reducing recrystallization time for a phase change material
US8729521B2 (en) 2010-05-12 2014-05-20 Macronix International Co., Ltd. Self aligned fin-type programmable memory cell
US8853047B2 (en) 2010-05-12 2014-10-07 Macronix International Co., Ltd. Self aligned fin-type programmable memory cell
US8310864B2 (en) 2010-06-15 2012-11-13 Macronix International Co., Ltd. Self-aligned bit line under word line memory array
US8395935B2 (en) 2010-10-06 2013-03-12 Macronix International Co., Ltd. Cross-point self-aligned reduced cell size phase change memory
US8497705B2 (en) 2010-11-09 2013-07-30 Macronix International Co., Ltd. Phase change device for interconnection of programmable logic device
US8467238B2 (en) 2010-11-15 2013-06-18 Macronix International Co., Ltd. Dynamic pulse operation for phase change memory
US8987700B2 (en) 2011-12-02 2015-03-24 Macronix International Co., Ltd. Thermally confined electrode for programmable resistance memory
US9984954B2 (en) 2012-12-31 2018-05-29 International Business Machines Corporation Phase changing on-chip thermal heat sink
US10177071B2 (en) 2012-12-31 2019-01-08 International Business Machines Corporation Phase changing on-chip thermal heat sink
US9041195B2 (en) 2012-12-31 2015-05-26 International Business Machines Corporation Phase changing on-chip thermal heat sink
US9059130B2 (en) * 2012-12-31 2015-06-16 International Business Machines Corporation Phase changing on-chip thermal heat sink
US20150243529A1 (en) * 2012-12-31 2015-08-27 International Business Machines Corporation Phase changing on-chip thermal heat sink
US9287141B2 (en) 2012-12-31 2016-03-15 International Business Machines Corporation Phase changing on-chip thermal heat sink
US9312147B2 (en) 2012-12-31 2016-04-12 International Business Machines Corporation Phase changing on-chip thermal heat sink
US11004770B2 (en) 2012-12-31 2021-05-11 International Business Machines Corporation Phase changing on-chip thermal heat sink
US10157816B2 (en) 2012-12-31 2018-12-18 International Business Machines Corporation Phase changing on-chip thermal heat sink
US10032691B2 (en) * 2012-12-31 2018-07-24 International Business Machines Corporation Phase changing on-chip thermal heat sink
US20140183699A1 (en) * 2012-12-31 2014-07-03 International Business Machines Corporation Phase changing on-chip thermal heat sink
US9911682B2 (en) 2012-12-31 2018-03-06 International Business Machines Corporation Phase changing on-chip thermal heat sink
US9704778B2 (en) 2012-12-31 2017-07-11 International Business Machines Corporation Phase changing on-chip thermal heat sink
US20140203236A1 (en) * 2013-01-21 2014-07-24 Taiwan Semiconductor Manufacturing Company, Ltd. One transistor and one resistive random access memory (rram) structure with spacer
US9331277B2 (en) * 2013-01-21 2016-05-03 Taiwan Semiconductor Manufacturing Company, Ltd. One transistor and one resistive random access memory (RRAM) structure with spacer
US10038139B2 (en) * 2013-01-21 2018-07-31 Taiwan Semiconductor Manufacturing Company, Ltd. One transistor and one resistive random access memory (RRAM) structure with spacer
US20160248008A1 (en) * 2013-01-21 2016-08-25 Taiwan Semiconductor Manufacturing Company, Ltd. One Transistor and One Resistive Random Access Memory (RRAM) Structure with Spacer
JP2017503337A (en) * 2013-12-20 2017-01-26 インテル・コーポレーション Phase change memory (PCM) array liners, related technologies and configurations
US9336879B2 (en) 2014-01-24 2016-05-10 Macronix International Co., Ltd. Multiple phase change materials in an integrated circuit for system on a chip application
US9559113B2 (en) 2014-05-01 2017-01-31 Macronix International Co., Ltd. SSL/GSL gate oxide in 3D vertical channel NAND
US9672906B2 (en) 2015-06-19 2017-06-06 Macronix International Co., Ltd. Phase change memory with inter-granular switching
JP2019067963A (en) * 2017-10-02 2019-04-25 株式会社アルバック Method for manufacturing ots device and ots device
US11335853B2 (en) 2018-10-24 2022-05-17 Ulvac, Inc. Method of manufacturing OTS device, and OTS device
US11289650B2 (en) * 2019-03-04 2022-03-29 International Business Machines Corporation Stacked access device and resistive memory
US11251261B2 (en) * 2019-05-17 2022-02-15 Micron Technology, Inc. Forming a barrier material on an electrode
US11289649B2 (en) * 2020-04-13 2022-03-29 Globalfoundries Singapore Pte. Ltd. Non-volatile memory elements with a narrowed electrode
US20220278219A1 (en) * 2020-06-01 2022-09-01 Jiangsu Advanced Memory Technology Co., Ltd. Method of fabricating diode structure
US20230360700A1 (en) * 2022-05-03 2023-11-09 Western Digital Technologies, Inc. Cross-point array with threshold switching selector memory element

Also Published As

Publication number Publication date
US7491574B2 (en) 2009-02-17
US20080020508A1 (en) 2008-01-24

Similar Documents

Publication Publication Date Title
US7491574B2 (en) Reducing oxidation of phase change memory electrodes
US8188454B2 (en) Forming a phase change memory with an ovonic threshold switch
US9159915B2 (en) Phase change memory with threshold switch select device
US20070279974A1 (en) Forming heaters for phase change memories with select devices
EP1801896B1 (en) Process for manufacturing a selection device with reduced current leakage, and selection device, in particular for phase change memory devices
US6795338B2 (en) Memory having access devices using phase change material such as chalcogenide
US7906369B2 (en) Memory and access device and method therefor
US7910904B2 (en) Multi-level phase change memory
US7638787B2 (en) Phase changeable memory cell array region and method of forming the same
US7531378B2 (en) Forming an intermediate electrode between an ovonic threshold switch and a chalcogenide memory element
US8030734B2 (en) Forming phase change memories with a breakdown layer sandwiched by phase change memory material
US9412939B2 (en) Forming sublithographic heaters for phase change memories
US7390691B2 (en) Increasing phase change memory column landing margin
GB2431043A (en) Phase changeable memory cells
KR100842903B1 (en) Phase change RAM device and method of manufacturing the same
EP1677372B1 (en) Phase change memory and manufacturing method thereof
US20090230391A1 (en) Resistance Storage Element and Method for Manufacturing the Same
KR100629265B1 (en) method of forming a conductive layer including a local high resistivity region and semiconductor device fabricated using the same
US7105408B2 (en) Phase change memory with a select device having a breakdown layer
KR100675278B1 (en) Semiconductor devices having phase change memory cells covered with an oxygen barrier layer, electronic systems employing the same and methods of fabricating the same
US20090194756A1 (en) Self-aligned eletrode phase change memory
KR100583967B1 (en) Phase change memory device having double capping layer and method of fabricating the same
US20080064198A1 (en) Chalcogenide semiconductor memory device with insulating dielectric

Legal Events

Date Code Title Description
AS Assignment

Owner name: INTEL CORPORATION, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:DENNISON, CHARLES H.;REEL/FRAME:016734/0927

Effective date: 20050627

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION