US20070018820A1 - Mobile RFID reader with integrated location awareness for material tracking and management - Google Patents

Mobile RFID reader with integrated location awareness for material tracking and management Download PDF

Info

Publication number
US20070018820A1
US20070018820A1 US11/185,121 US18512105A US2007018820A1 US 20070018820 A1 US20070018820 A1 US 20070018820A1 US 18512105 A US18512105 A US 18512105A US 2007018820 A1 US2007018820 A1 US 2007018820A1
Authority
US
United States
Prior art keywords
location
data
rfid
reader
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US11/185,121
Other versions
US7388491B2 (en
Inventor
Sujeet Chand
Vivek Bapat
Kenwood Hall
Richard Morse
Joseph Owen
Arthur Pietrzyk
Andreas Somogyi
Kenneth Tinnell
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rockwell Automation Technologies Inc
Original Assignee
Rockwell Automation Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rockwell Automation Technologies Inc filed Critical Rockwell Automation Technologies Inc
Priority to US11/185,121 priority Critical patent/US7388491B2/en
Assigned to ROCKWELL AUTOMATION TECHNOLOGIES, INC. reassignment ROCKWELL AUTOMATION TECHNOLOGIES, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: TINNELL, KENNETH A., BAPAT, VIVEK R., SOMOGYI, ANDREAS, MORSE, RICHARD A., PIETRZYK, ARTHUR P., HALL, KENWOOD H., OWEN, JOSEPH P., JR., CHAND, SUJEET
Priority to EP06015176.8A priority patent/EP1752908B1/en
Publication of US20070018820A1 publication Critical patent/US20070018820A1/en
Priority to US12/140,118 priority patent/US7932827B2/en
Application granted granted Critical
Publication of US7388491B2 publication Critical patent/US7388491B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/20Instruments for performing navigational calculations
    • G01C21/206Instruments for performing navigational calculations specially adapted for indoor navigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/48Determining position by combining or switching between position solutions derived from the satellite radio beacon positioning system and position solutions derived from a further system
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/0008General problems related to the reading of electronic memory record carriers, independent of its reading method, e.g. power transfer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/08Logistics, e.g. warehousing, loading or distribution; Inventory or stock management
    • G06Q10/087Inventory or stock management, e.g. order filling, procurement or balancing against orders

Definitions

  • This invention is related to RFID (Radio Frequency Identification) technology, and more specifically, to RFID readers that sense RFID tags.
  • RFID Radio Frequency Identification
  • PC Personal Computer
  • industrial controller e.g., a PLC-Programmable Logic Controller
  • the value to a company in knowing the location of the reader can be used to improve manufacturing and distribution efficiency, which translates to a more effective competitive presence in the marketplace.
  • the physical location of the RFID reader is usually provided by the human operator, or readers are fixed at known locations such that RFID-tagged material that passes within range of the reader can be read and its location determined based on the location of the reader.
  • portable handheld communications devices e.g., cell phones and PDAs
  • customers are demanding such portability in RFID readers.
  • a computer that captures the data from such a reader is utilized to relate the data to the known reader location for determining the approximate location of the tagged object.
  • the small and portable RFID reader can now be a mobile handheld device, and also mounted on forklift trucks, AGVs (Automated Guided Vehicles) and/or LGVs (Laser Guided Vehicles), and other mobile means in a warehouse or a factory further exacerbating the difficulty in determining the reader location at a given point in time. Accordingly, there is an unmet need in the art for an improved mobile reader location determination mechanism.
  • the invention disclosed and claimed herein in one aspect thereof, comprises a portable or mobile RFID reader (or RFID reader/writer) that also employs a location determination subsystem that facilitates determination of the reader (or reader/writer) location, from which then the location of an object or pallet can be determined for material flow and tracking.
  • the location subsystem can employ a satellite-based GPS (Global Positioning System) location technology where such signals are unimpeded by structures, etc. Additionally, the location subsystem can employ other terrestrial location technologies that operate inside structures such as warehouses and the factory automation environment.
  • data provided by the mobile reader can be used in combination with data of a PLC (programmable logic controller) to more accurately determine location for material flow and tracking.
  • PLC programmable logic controller
  • an artificial intelligence component employs a probabilistic and/or statistical-based analysis to prognose or infer an action that a user desires to be automatically performed.
  • FIG. 1 illustrates an RFID component that employs a location subsystem that facilitates location determination in accordance with the subject invention.
  • FIG. 2 illustrates an RFID component that employs a multiple types of location subsystems that facilitate location determination in accordance with the subject invention.
  • FIG. 3 illustrates a methodology of employing a location subsystem in an RFID reader in accordance with the invention.
  • FIG. 4 illustrates a methodology of utilizing both GPS and an internal location subsystem as location mechanisms in accordance with the invention.
  • FIG. 5 illustrates a data packet that includes location data in accordance with the invention.
  • FIG; 6 illustrates a system that includes triangulation and/or signal strength system for location determination in accordance with the invention.
  • FIG. 7 illustrates a system that employs filtering in accordance with the invention.
  • FIG. 8 illustrates a methodology of filtering RFID tag data based on location of interest in accordance with the invention.
  • FIG. 9 illustrates a methodology of filtering RFID tag data based on an aisle of interest, in accordance with the invention.
  • FIG. 10 illustrates a system that employs artificial intelligence (AI) which facilitates automating one or more features in accordance with the subject invention.
  • AI artificial intelligence
  • FIG. 11 illustrates a system that employs multiple readers and an AI component in accordance with the subject invention.
  • FIG. 12 illustrates a block diagram of a computer operable to execute the disclosed architecture.
  • FIG. 13 illustrates a block diagram of an RFID reader/writer in accordance with the subject invention.
  • a component can be, but is not limited to being, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and/or a computer.
  • an application running on a server and the server can be a component.
  • One or more components can reside within a process and/or thread of execution, and a component can be localized on one computer and/or distributed between two or more computers.
  • the term to “infer” or “inference” refer generally to the process of reasoning about or inferring states of the system, environment, and/or user from a set of observations as captured via events and/or data. Inference can be employed to identify a specific context or action, or can generate a probability distribution over states, for example. The inference can be probabilistic—that is, the computation of a probability distribution over states of interest based on a consideration of data and events. Inference can also refer to techniques employed for composing higher-level events from a set of events and/or data. Such inference results in the construction of new events or actions from a set of observed events and/or stored event data, whether or not the events are correlated in close temporal proximity, and whether the events and data come from one or several event and data sources.
  • FIG. 1 illustrates an RFID component 100 that employs a location subsystem 102 that facilitates location determination in accordance with the subject invention.
  • the RFID component 100 can be an mobile RFID reader (or a reader/writer) that reads RFID tags (or reads data from and writes data thereto) of an object (e.g., a pallet).
  • the RFID component 100 includes a location subsystem 102 that facilitates processing location information received in cooperation with a remote location system 104 .
  • the location system 104 is a satellite-based GPS (global positioning system) technology. For example, when the component 100 performs a read of an RFID tag, it also initiates a read of location data from the location system 104 via the location subsystem 102 .
  • GPS global positioning system
  • the RFID reader can then transmit the location coordinates with the RFID data on every read. Thereafter, the RFID tag data and the location data are transmitted for processing, to a programmable logic controller (PLC), for example.
  • PLC programmable logic controller
  • Automated material tracking software can then store the location information with the object identifier in a database for material flow and tracking, for example.
  • Location awareness can be embedded in the RFID reader through multiple means.
  • One method is to connect the reader to a conventional, wireless Wi-Fi network utilizing a IEEE 802.11b protocol.
  • schemes exist for localizing a node utilizing signal strengths or triangulation.
  • There are also other methods for location determination such as WhereNetTM, which is utilized in automotive applications.
  • any type location determination method can be integrated or designed with the RFID reader to provide location awareness.
  • Location awareness also facilitates filtering the data read by the RFID reader, since a controller and/or a database can exist that can further relate the physical location to the type of objects and associated tags.
  • a location-aware mobile RFID reader has numerous applications such as automatic scanning of warehouse shelves and cataloging the products on the shelves, automatic scanning of a distribution center and updating of inventory by location, automatic scanning of retail shelves to update inventory, etc.
  • the location subsystem 102 and RFID component 100 are fabricated as an ASIC (application-specific integrated circuit). This further reduces the size of a mobile reader, for example, thereby promoting placement of the reader not only in the hands of users, but also on machines that move through a warehouse, or up and down aisles.
  • ASIC application-specific integrated circuit
  • the RFID component 100 can also write the location data to the RFID tag such that the tag stores historical data as to where the associated object has been in the warehouse or during the assembly process, for example.
  • FIG. 2 illustrates an RFID component 200 that employs a multiple types of location subsystems that facilitate location determination in accordance with the subject invention.
  • the RFID component 200 can be an mobile RFID reader or reader/writer that reads RFID tags.
  • the RFID component 200 includes a location subsystem 202 for location determination.
  • the location subsystem 202 includes a GPS subsystem 204 that accommodates GPS signals from a GPS (or outdoor) location system 206 , and terrestrial subsystem 208 that facilitates processing indoor location information received in cooperation with a remote indoor terrestrial location system 210 .
  • the component 200 When the component 200 senses an RFID tag, it also initiates a read of location data from the either or both of the GPS location system 206 or/and the terrestrial location system 210 .
  • the RFID reader can then transmit the location coordinates with the RFID data on every read or every other read, or according to some other methodology, as desired. Thereafter, the RFID data and the location data are transmitted for processing.
  • automated material tracking software can then store the location information with the object identifier in a database for material flow and tracking.
  • both location subsystems can be employed.
  • the GPS subsystem will operate to communicate GPS location coordinates (latitude/longitude or “lat/long” data) with the tag data.
  • the terrestrial system 210 is a triangulation system or signal strength system that is also deployed for outside RFID object tracking such that the terrestrial subsystem 208 operates to determine location information in a format that is different than GPS coordinates, and that is also transmitted with the RFID tag data.
  • FIG. 3 illustrates a methodology of employing a location subsystem in an RFID reader in accordance with the invention. While, for purposes of simplicity of explanation, the one or more methodologies shown herein, e.g., in the form of a flow chart, are shown and described as a series of acts, it is to be understood and appreciated that the subject invention is not limited by the order of acts, as some acts may, in accordance with the invention, occur in a different order and/or concurrently with other acts from that shown and described herein. For example, those skilled in the art will understand and appreciate that a methodology could alternatively be represented as a series of interrelated states or events, such as in a state diagram. Moreover, not all illustrated acts may be required to implement a methodology in accordance with the invention.
  • an RFID reader is received.
  • a location subsystem is integrated into the reader.
  • the reader reads an RFID tag of an object.
  • location data related to the location of the reader is determined using the location subsystem.
  • the location data is transmitted for the reader with the RFID data.
  • the location data is processed to determine the location of the tagged objects.
  • the objects are then managed, which can include updating a database or inventory records as to the current location of the associated objects (e.g., products and pallets).
  • FIG. 4 illustrates a methodology of utilizing both GPS and an internal location subsystems as location mechanisms in accordance with the invention.
  • a mobile RFID reader is received with an integrated location subsystem that can process GPS signals and inside (also referred to as the terrestrial location system) location signals.
  • the reader is moved outside in view of a satellite-based GPS geographic location system.
  • the GPS subsystem of the mobile reader automatically receives and processes the GPS signals.
  • the GPS lat/long data and the RFID tag data are transmitted to a remote location for processing.
  • the user carries the reader inside a structure thereby prohibiting the use of the GPS location system and reads an RFID tag of an object.
  • the inside location subsystem of the mobile reader is enabled to automatically receive and process location information.
  • the handoff between the GPS location subsystem and the inside location subsystem can occur based on the GPS subsystem not receiving GPS signals. If no GPS signals are received, the reader automatically defaults to the inside location subsystem for location data.
  • the reader transmits the location data and the RFID data for processing.
  • the location data associated with the terrestrial location subsystem is determined by the remote terrestrial location system, and not by the mobile reader. Once the tag is read, a trigger signal can be sent that automatically passes the associated location data to a data base for association with the tag data. Alternatively, again, the tag data is transmitted to the remote terrestrial location system and associated there for subsequent transmission to a database.
  • FIG. 5 illustrates a data packet 500 that includes location data in accordance with the invention.
  • the packet 500 includes a packet identifier 502 that uniquely identifiers that packets among a plurality of the other data packets. For example, the identifier can be associated with the mobile reader such that only packets transmitted therefrom have the identifier data 502 .
  • the packet 500 can also include some check bits 504 that are used for error correction (e.g., cyclic redundancy check-CRC).
  • Location data 506 is included that represents the approximate location of the reader when the read operation was performed.
  • the packet 500 can also include tag data 508 of the RFID tag that was read. This can comprise environmental data (e.g., temperature, humidity, pressure, . . . ) received from one or more sensors and object data of the product to which the tag is associated, for example.
  • the system 600 includes a network 602 on which is disposed a triangulation location system 604 and/or a signal strength location system 606 .
  • the triangulation system 604 can further include at least two wireless transceivers (not shown) that receive reader signals from an RFID reader 608 , process the reader signals having the same identifier data, and determine an approximate location of the reader 608 relative to a floor plan of a building (e.g., warehouse, distribution center, . . . ).
  • the location data can then be communicated back to the reader 608 for processing by a reader location subsystem 612 and transmission with the tag data to a data store 610 .
  • the location data can also be transmitted from the mobile reader to a PLC 614 and therefrom to the data store 610 .
  • the location data can be communicated from the triangulation system 604 to the data store 610 and combined with the tag data at the data store 610 .
  • the signal strength location system 606 processes signals from the reader 608 to approximate the reader location based on signal strength.
  • the location data can then be communicated back to the reader 608 for processing by the reader location subsystem 612 and transmission with the tag data to a data store 610 .
  • FIG. 7 illustrates a system 700 that employs filtering in accordance with the invention.
  • a reader 702 reads RFID tags
  • a read signal is broadcast from the reader 702 that energizes and/or causes to be received RFID tag data from all tags in a given range thereof.
  • the reader 702 can receive data from a large number of tags for which data is not desired. Not only does this impose additional processing requirements on the reader 702 , but it can also negatively impact network bandwidth between the reader and a remote system.
  • the reader 702 includes a location subsystem 704 that interacts with a remote location system 706 (e.g., GPS, triangulation, signal strength, . . .
  • a remote location system 706 e.g., GPS, triangulation, signal strength, . . .
  • a filter component 708 that interfaces to the reader 702 and processes the RFID tag data and the location data to filter out tag signals that are unwanted.
  • the filter component 708 can also be made internal to the reader 702 .
  • the system can also include a network 710 on which is disposed a data store 712 that stores at least tag data, reader data, and location data.
  • a controller 714 e.g., a PLC
  • a transceiver 716 provides wireless network communications between the network 710 and the reader 702 such that location data and tag data can be communicated to the data store 712 and/or the controller 714 .
  • the user desires to read a tag 720 of a first object 722 in Location A, yet receives in addition thereto data from a second tag 724 of a second object 726 in Location B and a third tag 728 of a third object 730 in a Location C.
  • the location system 706 facilitates determination of location data of the reader 702 such that in this example, the user is determined to be closer to Location A.
  • any other tag data received by the reader 702 indicating that the tag ( 724 and 728 ) is associated with an object that is not in Location A can be filtered without further processing.
  • the tag data that is received from object tags in Location A and Location C can be filtered out from further consideration.
  • FIG. 8 illustrates a methodology of filtering RFID tag data based on location of interest in accordance with the invention.
  • a mobile RFID reader is provided with an internal location subsystem.
  • the user initiates a read of RFID tags at a first area of interest.
  • the reader receives tag data in the area of interest and tag data from outside the area of interest.
  • the reader location data is determined using the internal location subsystem.
  • tag data from the outside areas of interest is filtered out based on location data.
  • tag data is processed from the area of interest.
  • FIG. 9 illustrates a methodology of filtering RFID tag data based on an aisle of interest, in accordance with the invention.
  • the mobile reader and internal location subsystem is provided.
  • a read operation is initiated at an aisle of a store or warehouse, for example.
  • the reader receives tag data from tags in the existing aisle of interest, tag data from tags outside the aisle of interest, and location data.
  • the tag data from outside the aisle of interest is filtered out based on the location data associated with the reader.
  • the location data is transmitted to a database to determine the associated aisle.
  • the database is updated with tagged items, location data, and aisle data.
  • the location information of the mobile reader need not be the sole means by which material flow and tracking can be determined.
  • the mobile RFD reader can transmit information to the PLC, which PLC then uses its information in combination with the reader data to determine material location. If, for example, the PLC interfaces to a bar code scanner (a fixed device at a known location), it is then known where the material is (e.g., a pallet), when the bar code is scanned. Additionally, when the mobile RFID reader subsequently transmits data about the pallet which it read, and its location to the PLC (relative to there mobile reader, since it just read one or more tags), the PLC can then confirm that this is the same pallet it processed just previously. This helps validate the location of the pallet or object.
  • a pallet typically follows a sequential movement or known path through a distribution center.
  • a PLC is fixed, as is a bar code reader that interface to the PLC.
  • the mobile RFID reader reads the material, and transmits the reader location to the PLC (e.g., “the pallet was read in Zone 22 )
  • the PLC can precisely know which pallet it is, and know exactly where it is in Zone 22 based on the information the PLC had from a bar code read, etc.
  • the PLC can have additional information about location of the pallet or object based on prior reads. This information can be combined with the location information provided by the reader with its own internal knowledge of the location to better determine exactly where the pallet or object is, or can initiate diagnostics that indicates this is the wrong pallet or object.
  • FIG. 10 illustrates a system 1000 that employs artificial intelligence (AI) which facilitates automating one or more features in accordance with the subject invention.
  • an RFID reader 1002 includes a location subsystem 1004 and an AI component 1006 .
  • the location subsystem 1004 interacts with a remote location system 1008 that together, facilitate determination of location data of the reader 1002 .
  • the subject invention can employ various AI-based schemes for carrying out various aspects thereof. For example, a process for determining what tag data is consider to outside an area of interest can be facilitated via an automatic classifier system and process.
  • Such classification can employ a probabilistic and/or statistical-based analysis (e.g., factoring into the analysis utilities and costs) to prognose or infer an action that a user desires to be automatically performed.
  • a support vector machine is an example of a classifier that can be employed.
  • the SVM operates by finding a hypersurface in the space of possible inputs, which hypersurface attempts to split the triggering criteria from the non-triggering events. Intuitively, this makes the classification correct for testing data that is near, but not identical to training data.
  • Other directed and undirected model classification approaches include, e.g., na ⁇ ve Bayes, Bayesian networks, decision trees, neural networks, fuzzy logic models, and probabilistic classification models providing different patterns of independence can be employed. Classification as used herein also is inclusive of statistical regression that is utilized to develop models of priority.
  • the subject invention can employ classifiers that are explicitly trained (e.g., via a generic training data) as well as implicitly trained (e.g., via observing user behavior, receiving extrinsic information).
  • SVM's are configured via a learning or training phase within a classifier constructor and feature selection module.
  • the classifier(s) can be used to automatically learn and perform a number of functions, including but not limited to determining according to a predetermined criteria what RFID tagged objects are or should be associated with a given location. For example, if over a period of time, the mobile reader 1002 routinely senses an object type in a certain area, the AI component 1006 will learn that, unless otherwise instructed, the object type will be expected to be in that area during read operations in the future.
  • the AI component 1006 can learn that the user will routinely take a certain route to scanning the area, and operate accordingly by, for example, cause the caching of object and/or tag data (e.g., at the reader 1002 and/or a remote database) in preparation for updating and/or interacting with data normally associated with the area.
  • object and/or tag data e.g., at the reader 1002 and/or a remote database
  • the AI component 1006 can facilitate storing sets of location and tag data locally in memory, and then transmitting sets or blocks of the location and tag data when desired. This block transmission can be according to parameters related to network usage, time of day, location of read, importance of the objects needing to be located, and many other parameters as desired for the particular application.
  • FIG. 11 illustrates a system 1100 that employs multiple readers 1102 and an AI component 1104 in accordance with the subject invention.
  • the AI component 1004 can be located external to the reader 1002 , such as part of a network 1106 that includes a remote database system 1108 (e.g., a database management system (DBMS) and an associated data store 1110 ).
  • the AI component 1104 can interface to the database system 1108 as an external component or be an internal component thereof.
  • the database system 1108 stores at least location data, tag data, and object data for all objects of a location.
  • a first mobile reader 1112 includes a first location subsystem 1114 (denoted LOCATION SUBSYSTEM 1 )
  • a second mobile reader 1116 includes a second location subsystem 1118 (denoted LOCATION SUBSYSTEM 2 )
  • a third mobile reader 1120 includes a third location subsystem 1122 (denoted LOCATION SUBSYSTEM 3 ), each of which can communicate with a remote location system 1124 that facilitates determining location data of the readers ( 1112 , 1116 and 1120 ) using GPS and/or a indoor location technology, for example.
  • the remote location system 1124 can also be disposed as a node on the network 1106 .
  • Each of the readers ( 1112 , 1116 and 1120 ) also communicates wirelessly with the network 1106 and any network services via a transceiver system 1126 such that reader data can be downloaded to the database system 1108 and uploaded therefrom, as desired.
  • the database system 1108 can include material tracking software and other applications related to material handling and logistics, for example.
  • the AI component 1104 can be utilized to monitor packet traffic and manage data caching in memory of the database system 1108 according to, for example, the most active readers at a given time.
  • the AI component 1104 can also be employed to compute location parameters associated with one or more of the readers ( 1112 , 1116 and 1120 ) based on criteria described supra.
  • each of the readers ( 1112 , 1116 and 1120 ) can be configured separately over aisles of tagged objects such that as the reader moves down an overhead rail system (e.g., in a warehouse).
  • linear movement of the reader down the rail can occur under control of the AI component 1104 at a speed based on, for example, the processing capability of the database system 1108 , the reader itself, and network traffic.
  • data handling and processing of the system 1100 can be based on the importance of scanning certain objects. If the database system 1108 has tagged certain types of objects as high priority, then when the reader (e.g., reader 1112 ) enters the location of the objects, or where the objects are expected to be, the location data can be employed as a trigger that reading thereof now takes a higher priority over other objects whose tag data may also be received.
  • the reader e.g., reader 1112
  • FIG. 12 there is illustrated a block diagram of a computer operable to execute the disclosed AI component 1104 and dataset system 1108 of the subject invention.
  • FIG. 12 and the following discussion are intended to provide a brief, general description of a suitable computing environment 1200 in which the various aspects of the invention can be implemented. While the invention has been described above in the general context of computer-executable instructions that may run on one or more computers, those skilled in the art will recognize that the invention also can be implemented in combination with other program modules and/or as a combination of hardware and software.
  • program modules include routines, programs, components, data structures, etc., that perform particular tasks or implement particular abstract data types.
  • inventive methods can be practiced with other computer system configurations, including single-processor or multiprocessor computer systems, minicomputers, mainframe computers, as well as personal computers, hand-held computing devices, microprocessor-based or programmable consumer electronics, and the like, each of which can be operatively coupled to one or more associated devices.
  • the illustrated aspects of the invention may also be practiced in distributed computing environments where certain tasks are performed by remote processing devices that are linked through a communications network.
  • program modules can be located in both local and remote memory storage devices.
  • a computer typically includes a variety of computer-readable media.
  • Computer-readable media can be any available media that can be accessed by the computer and includes both volatile and nonvolatile media, removable and non-removable media.
  • Computer readable media can comprise computer storage media and communication media.
  • Computer storage media includes both volatile and nonvolatile, removable and non-removable media implemented in any method or technology for storage of information such as computer readable instructions, data structures, program modules or other data.
  • Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital video disk (DVD) or other optical disk storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or any other medium which can be used to store the desired information and which can be accessed by the computer.
  • Communication media typically embodies computer-readable instructions, data structures, program modules or other data in a modulated data signal such as a carrier wave or other transport mechanism, and includes any information delivery media.
  • modulated data signal means a signal that has one or more of its characteristics set or changed in such a manner as to encode information in the signal.
  • communication media includes wired media such as a wired network or direct-wired connection, and wireless media such as acoustic, RF, infrared and other wireless media. Combinations of the any of the above should also be included within the scope of computer-readable media.
  • the exemplary computing environment 1200 for implementing various aspects of the invention includes a computer 1202 , the computer 1202 including a processing unit 1204 , a system memory 1206 and a system bus 1208 .
  • the system bus 1208 couples system components including, but not limited to, the system memory 1206 to the processing unit 1204 .
  • the processing unit 1204 can be any of various commercially available processors. Dual microprocessors and other multi-processor architectures may also be employed as the processing unit 1204 .
  • the system bus 1208 can be any of several types of bus structure that may further interconnect to a memory bus (with or without a memory controller), a peripheral bus, and a local bus using any of a variety of commercially available bus architectures.
  • the system memory 1206 includes read only memory (ROM) 1210 and random access memory (RAM) 1212 .
  • ROM read only memory
  • RAM random access memory
  • a basic input/output system (BIOS) is stored in a non-volatile memory 1210 such as ROM, EPROM, EEPROM, which BIOS contains the basic routines that help to transfer information between elements within the computer 1202 , such as during start-up.
  • the RAM 1212 can also include a high-speed RAM such as static RAM for caching data.
  • the computer 1202 further includes an internal hard disk drive (HDD) 1214 (e.g., EIDE, SATA), which internal hard disk drive 1214 may also be configured for external use in a suitable chassis (not shown), a magnetic floppy disk drive (FDD) 1216 , (e.g., to read from or write to a removable diskette 1218 ) and an optical disk drive 1220 , (e.g., reading a CD-ROM disk 1222 or, to read from or write to other high capacity optical media such as the DVD).
  • the hard disk drive 1214 , magnetic disk drive 1216 and optical disk drive 1220 can be connected to the system bus 1208 by a hard disk drive interface 1224 , a magnetic disk drive interface 1226 and an optical drive interface 1228 , respectively.
  • the interface 1224 for external drive implementations includes at least one or both of Universal Serial Bus (USB) and IEEE 1394 interface technologies. Other external drive connection technologies are within contemplation of the subject invention.
  • the drives and their associated computer-readable media provide nonvolatile storage of data, data structures, computer-executable instructions, and so forth.
  • the drives and media accommodate the storage of any data in a suitable digital format.
  • computer-readable media refers to a HDD, a removable magnetic diskette, and a removable optical media such as a CD or DVD, it should be appreciated by those skilled in the art that other types of media which are readable by a computer, such as zip drives, magnetic cassettes, flash memory cards, cartridges, and the like, may also be used in the exemplary operating environment, and further, that any such media may contain computer-executable instructions for performing the methods of the invention.
  • a number of program modules can be stored in the drives and RAM 1212 , including an operating system 1230 , one or more application programs 1232 , other program modules 1234 and program data 1236 . All or portions of the operating system, applications, modules, and/or data can also be cached in the RAM 1212 . It is appreciated that the invention can be implemented with various commercially available operating systems or combinations of operating systems.
  • a user can enter commands and information into the computer 1202 through one or more wired/wireless input devices, e.g., a keyboard 1238 and a pointing device, such as a mouse 1240 .
  • Other input devices may include a microphone, an IR remote control, a joystick, a game pad, a stylus pen, touch screen, or the like.
  • These and other input devices are often connected to the processing unit 1204 through an input device interface 1242 that is coupled to the system bus 1208 , but can be connected by other interfaces, such as a parallel port, an IEEE 1394 serial port, a game port, a USB port, an IR interface, etc.
  • a monitor 1244 or other type of display device is also connected to the system bus 1208 via an interface, such as a video adapter 1246 .
  • a computer typically includes other peripheral output devices (not shown), such as speakers, printers, etc.
  • the computer 1202 may operate in a networked environment using logical connections via wired and/or wireless communications to one or more remote computers, such as a remote computer(s) 1248 .
  • the remote computer(s) 1248 can be a workstation, a server computer, a router, a personal computer, portable computer, microprocessor-based entertainment appliance, a peer device or other common network node, and typically includes many or all of the elements described relative to the computer 1202 , although, for purposes of brevity, only a memory storage device 1250 is illustrated.
  • the logical connections depicted include wired/wireless connectivity to a local area network (LAN) 1252 and/or larger networks, e.g., a wide area network (WAN) 1254 .
  • LAN and WAN networking environments are commonplace in offices, and companies, and facilitate enterprise-wide computer networks, such as intranets, all of which may connect to a global communication network, e.g., the Internet.
  • the computer 1202 When used in a LAN networking environment, the computer 1202 is connected to the local network 1252 through a wired and/or wireless communication network interface or adapter 1256 .
  • the adaptor 1256 may facilitate wired or wireless communication to the LAN 1252 , which may also include a wireless access point disposed thereon for communicating with the wireless adaptor 1256 .
  • the computer 1202 can include a modem 1258 , or is connected to a communications server on the WAN 1254 , or has other means for establishing communications over the WAN 1254 , such as by way of the Internet.
  • the modem 1258 which can be internal or external and a wired or wireless device, is connected to the system bus 1208 via the serial port interface 1242 .
  • program modules depicted relative to the computer 1202 can be stored in the remote memory/storage device 1250 . It will be appreciated that the network connections shown are exemplary and other means of establishing a communications link between the computers can be used.
  • the computer 1202 is operable to communicate with any wireless devices or entities operatively disposed in wireless communication, e.g., a printer, scanner, desktop and/or portable computer, portable data assistant, communications satellite, any piece of equipment or location associated with a wirelessly detectable tag (e.g., a kiosk, news stand, restroom), and telephone.
  • any wireless devices or entities operatively disposed in wireless communication e.g., a printer, scanner, desktop and/or portable computer, portable data assistant, communications satellite, any piece of equipment or location associated with a wirelessly detectable tag (e.g., a kiosk, news stand, restroom), and telephone.
  • the communication can be a predefined structure as with a conventional network or simply an ad hoc communication between at least two devices.
  • Wi-Fi Wireless Fidelity
  • Wi-Fi is a wireless technology similar to that used in a cell phone that enables such devices, e.g., computers, to send and receive data indoors and out; anywhere within the range of a base station.
  • Wi-Fi networks use radio technologies called IEEE 802.11(a, b, g, etc.) to provide secure, reliable, fast wireless connectivity.
  • a Wi-Fi network can be used to connect computers to each other, to the Internet, and to wired networks (which use IEEE 802.3 or Ethernet).
  • Wi-Fi networks operate in the unlicensed 2.4 and 5 GHz radio bands, at an 11 Mbps (802.11a) or 54 Mbps (802.11b) data rate, for example, or with products that contain both bands (dual band), so the networks can provide real-world performance similar to the basic 10BaseT wired Ethernet networks used in many offices.
  • FIG. 13 illustrates a block diagram of an RFID reader/writer device 1300 in accordance with the subject invention.
  • the device 1300 includes a processor 1302 that manages all onboard processes and executes instructions of one or more applications 1304 that facilitate RFID tag reading and writing, location data processing, and any data and signal processing required for operation thereof.
  • a display 1306 is provided that allows a user to view data and information, and input commands or instructions for operation of the device 1300 .
  • a memory 1308 is provided for data storage, program storage, and execution, and can include volatile and/or non-volatile memory architectures (e.g., RAM, DRAM, ROM, EEPROM, and flash).
  • a user interface block 1310 provides electrical, mechanical and software interface capabilities such as keypad, voice activation via a microphone, touch screen, trackball, mouse, and pen inputs, for example, for user interaction with the device 1300 .
  • the device 1300 includes RF capabilities supported by an antenna 1312 , a transceiver subsystem 1314 for transmitting and receiving data and signals in one of or both an analog and digital format, and as data packets.
  • the transceiver subsystem 1314 interfaces to a matching network block 1316 that provides the circuits and logic in support of RF communications to both active and passive RFID transponders, and digital communications therebetween, and to IP networks, for example.
  • a triggers and indicators block 1318 provides and supports indicators and outputs such as audio devices and signals (e.g., speaker, beeps, tones), visual devices and signals (e.g., LED's, colors) and other types of outputs. Additionally, triggers can be provided to the processor 1302 based on internal hardware and/or software events that occur in the device 1300 .
  • a CODEC 1320 interfaces to the processor 1302 to facilitate coding and decoding operations on data and signals, where needed.
  • a location subsystem 1322 facilitates location determination of the device 1300 in accordance with the invention, anywhere inside a building or structure, as well as outside using GPS, for example.
  • An I/O ports block 1324 provided hardware interfaces to the device 1300 such as by USB (universal serial bus) technology, IEEE 1394 technology, or other conventional communications technologies (e.g., infrared, BlueTooth, Wi-Fi, Wi-Max, . . . ).
  • a power source/interface block 1326 facilitates standalone power (e.g., batteries and/or fuel cells) or external power to the device 1300 and all onboard components and subsystems via a power converter, for example.

Abstract

A portable RFID reader (or reader/writer) that also employs a location determination subsystem that facilitates determination of the reader (or reader/writer) location. The location subsystem can employ a satellite-based GPS (Global Positioning System) location technology where such signals are unimpeded by structures. Additionally, the location subsystem can employ other terrestrial location technologies that operate inside structures such as warehouses and the factory automation environment.

Description

    TECHNICAL FIELD
  • This invention is related to RFID (Radio Frequency Identification) technology, and more specifically, to RFID readers that sense RFID tags.
  • BACKGROUND OF THE INVENTION
  • In today's highly sophisticated, complex and intelligent industrial automation systems, RFID (Radio Frequency Identification) technology is becoming an increasingly important presence for logistics concerns, material handling and inventory management. Simply knowing that an object exists in a large warehouse is no longer sufficient. When implementing an RFID solution in a distribution center or a factory, it is customary to utilize three distinct platforms: an RFID reader/antenna (e.g., a fixed implementation), RFID “middleware” software running on a standard PC (Personal Computer), and an industrial controller (e.g., a PLC-Programmable Logic Controller). A traditional communications approach is to have the RFID reader connect to the controller via a network using, for example, RS-232 serial communications, Ethernet, or any of the field buses such as DeviceNet, ControlNet, etc.
  • The value to a company in knowing the location of the reader can be used to improve manufacturing and distribution efficiency, which translates to a more effective competitive presence in the marketplace. In conventional RFID implementations, the physical location of the RFID reader is usually provided by the human operator, or readers are fixed at known locations such that RFID-tagged material that passes within range of the reader can be read and its location determined based on the location of the reader. However, given the rapid technological advances in portable handheld communications devices (e.g., cell phones and PDAs), customers are demanding such portability in RFID readers.
  • When a mobile RFID reader is utilized for reading RFID tags on objects in a distribution center or a factory, a computer that captures the data from such a reader is utilized to relate the data to the known reader location for determining the approximate location of the tagged object. However, the small and portable RFID reader can now be a mobile handheld device, and also mounted on forklift trucks, AGVs (Automated Guided Vehicles) and/or LGVs (Laser Guided Vehicles), and other mobile means in a warehouse or a factory further exacerbating the difficulty in determining the reader location at a given point in time. Accordingly, there is an unmet need in the art for an improved mobile reader location determination mechanism.
  • SUMMARY OF THE INVENTION
  • The following presents a simplified summary of the invention in order to provide a basic understanding of some aspects of the invention. This summary is not an extensive overview of the invention. It is not intended to identify key/critical elements of the invention or to delineate the scope of the invention. Its sole purpose is to present some concepts of the invention in a simplified form as a prelude to the more detailed description that is presented later.
  • The invention disclosed and claimed herein, in one aspect thereof, comprises a portable or mobile RFID reader (or RFID reader/writer) that also employs a location determination subsystem that facilitates determination of the reader (or reader/writer) location, from which then the location of an object or pallet can be determined for material flow and tracking. The location subsystem can employ a satellite-based GPS (Global Positioning System) location technology where such signals are unimpeded by structures, etc. Additionally, the location subsystem can employ other terrestrial location technologies that operate inside structures such as warehouses and the factory automation environment.
  • In another aspect of the invention, data provided by the mobile reader can be used in combination with data of a PLC (programmable logic controller) to more accurately determine location for material flow and tracking.
  • In yet another aspect thereof, an artificial intelligence component is provided that employs a probabilistic and/or statistical-based analysis to prognose or infer an action that a user desires to be automatically performed.
  • To the accomplishment of the foregoing and related ends, certain illustrative aspects of the invention are described herein in connection with the following description and the annexed drawings. These aspects are indicative, however, of but a few of the various ways in which the principles of the invention can be employed and the subject invention is intended to include all such aspects and their equivalents. Other advantages and novel features of the invention will become apparent from the following detailed description of the invention when considered in conjunction with the drawings.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 illustrates an RFID component that employs a location subsystem that facilitates location determination in accordance with the subject invention.
  • FIG. 2 illustrates an RFID component that employs a multiple types of location subsystems that facilitate location determination in accordance with the subject invention.
  • FIG. 3 illustrates a methodology of employing a location subsystem in an RFID reader in accordance with the invention.
  • FIG. 4 illustrates a methodology of utilizing both GPS and an internal location subsystem as location mechanisms in accordance with the invention.
  • FIG. 5 illustrates a data packet that includes location data in accordance with the invention.
  • FIG; 6 illustrates a system that includes triangulation and/or signal strength system for location determination in accordance with the invention.
  • FIG. 7 illustrates a system that employs filtering in accordance with the invention.
  • FIG. 8 illustrates a methodology of filtering RFID tag data based on location of interest in accordance with the invention.
  • FIG. 9 illustrates a methodology of filtering RFID tag data based on an aisle of interest, in accordance with the invention.
  • FIG. 10 illustrates a system that employs artificial intelligence (AI) which facilitates automating one or more features in accordance with the subject invention.
  • FIG. 11 illustrates a system that employs multiple readers and an AI component in accordance with the subject invention.
  • FIG. 12 illustrates a block diagram of a computer operable to execute the disclosed architecture.
  • FIG. 13 illustrates a block diagram of an RFID reader/writer in accordance with the subject invention.
  • DETAILED DESCRIPTION OF THE INVENTION
  • The invention is now described with reference to the drawings, wherein like reference numerals are used to refer to like elements throughout. In the following description, for purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of the subject invention. It may be evident, however, that the invention can be practiced without these specific details. In other instances, well-known structures and devices are shown in block diagram form in order to facilitate describing the invention.
  • As used in this application, the terms “component” and “system” are intended to refer to a computer-related entity, either hardware, a combination of hardware and software, software, or software in execution. For example, a component can be, but is not limited to being, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and/or a computer. By way of illustration, both an application running on a server and the server can be a component. One or more components can reside within a process and/or thread of execution, and a component can be localized on one computer and/or distributed between two or more computers.
  • As used herein, the term to “infer” or “inference” refer generally to the process of reasoning about or inferring states of the system, environment, and/or user from a set of observations as captured via events and/or data. Inference can be employed to identify a specific context or action, or can generate a probability distribution over states, for example. The inference can be probabilistic—that is, the computation of a probability distribution over states of interest based on a consideration of data and events. Inference can also refer to techniques employed for composing higher-level events from a set of events and/or data. Such inference results in the construction of new events or actions from a set of observed events and/or stored event data, whether or not the events are correlated in close temporal proximity, and whether the events and data come from one or several event and data sources.
  • Referring initially to the drawings, FIG. 1 illustrates an RFID component 100 that employs a location subsystem 102 that facilitates location determination in accordance with the subject invention. The RFID component 100 can be an mobile RFID reader (or a reader/writer) that reads RFID tags (or reads data from and writes data thereto) of an object (e.g., a pallet). The RFID component 100 includes a location subsystem 102 that facilitates processing location information received in cooperation with a remote location system 104. In one implementation, the location system 104 is a satellite-based GPS (global positioning system) technology. For example, when the component 100 performs a read of an RFID tag, it also initiates a read of location data from the location system 104 via the location subsystem 102. The RFID reader can then transmit the location coordinates with the RFID data on every read. Thereafter, the RFID tag data and the location data are transmitted for processing, to a programmable logic controller (PLC), for example. Automated material tracking software can then store the location information with the object identifier in a database for material flow and tracking, for example.
  • Location awareness can be embedded in the RFID reader through multiple means. One method is to connect the reader to a conventional, wireless Wi-Fi network utilizing a IEEE 802.11b protocol. In such a network, schemes exist for localizing a node utilizing signal strengths or triangulation. There are also other methods for location determination such as WhereNet™, which is utilized in automotive applications. Essentially, any type location determination method can be integrated or designed with the RFID reader to provide location awareness.
  • Location awareness also facilitates filtering the data read by the RFID reader, since a controller and/or a database can exist that can further relate the physical location to the type of objects and associated tags. A location-aware mobile RFID reader has numerous applications such as automatic scanning of warehouse shelves and cataloging the products on the shelves, automatic scanning of a distribution center and updating of inventory by location, automatic scanning of retail shelves to update inventory, etc.
  • In another implementation, the location subsystem 102 and RFID component 100 are fabricated as an ASIC (application-specific integrated circuit). This further reduces the size of a mobile reader, for example, thereby promoting placement of the reader not only in the hands of users, but also on machines that move through a warehouse, or up and down aisles.
  • The RFID component 100 can also write the location data to the RFID tag such that the tag stores historical data as to where the associated object has been in the warehouse or during the assembly process, for example.
  • FIG. 2 illustrates an RFID component 200 that employs a multiple types of location subsystems that facilitate location determination in accordance with the subject invention. The RFID component 200 can be an mobile RFID reader or reader/writer that reads RFID tags. The RFID component 200 includes a location subsystem 202 for location determination. Here, the location subsystem 202 includes a GPS subsystem 204 that accommodates GPS signals from a GPS (or outdoor) location system 206, and terrestrial subsystem 208 that facilitates processing indoor location information received in cooperation with a remote indoor terrestrial location system 210.
  • When the component 200 senses an RFID tag, it also initiates a read of location data from the either or both of the GPS location system 206 or/and the terrestrial location system 210. The RFID reader can then transmit the location coordinates with the RFID data on every read or every other read, or according to some other methodology, as desired. Thereafter, the RFID data and the location data are transmitted for processing. For example, automated material tracking software can then store the location information with the object identifier in a database for material flow and tracking.
  • When employing both location subsystems (204 and 208) in the RFID component 200, one or both subsystems can be employed. For example, if the user were to walk among tagged objects outside a warehouse, the GPS subsystem will operate to communicate GPS location coordinates (latitude/longitude or “lat/long” data) with the tag data. It is to be appreciated that the terrestrial system 210 is a triangulation system or signal strength system that is also deployed for outside RFID object tracking such that the terrestrial subsystem 208 operates to determine location information in a format that is different than GPS coordinates, and that is also transmitted with the RFID tag data.
  • FIG. 3 illustrates a methodology of employing a location subsystem in an RFID reader in accordance with the invention. While, for purposes of simplicity of explanation, the one or more methodologies shown herein, e.g., in the form of a flow chart, are shown and described as a series of acts, it is to be understood and appreciated that the subject invention is not limited by the order of acts, as some acts may, in accordance with the invention, occur in a different order and/or concurrently with other acts from that shown and described herein. For example, those skilled in the art will understand and appreciate that a methodology could alternatively be represented as a series of interrelated states or events, such as in a state diagram. Moreover, not all illustrated acts may be required to implement a methodology in accordance with the invention.
  • At 300 an RFID reader is received. At 302, a location subsystem is integrated into the reader. At 304, the reader reads an RFID tag of an object. At 306, location data related to the location of the reader is determined using the location subsystem. At 308, the location data is transmitted for the reader with the RFID data. At 310, the location data is processed to determine the location of the tagged objects. At 312, the objects are then managed, which can include updating a database or inventory records as to the current location of the associated objects (e.g., products and pallets).
  • FIG. 4 illustrates a methodology of utilizing both GPS and an internal location subsystems as location mechanisms in accordance with the invention. At 400, a mobile RFID reader is received with an integrated location subsystem that can process GPS signals and inside (also referred to as the terrestrial location system) location signals. At 402, the reader is moved outside in view of a satellite-based GPS geographic location system. At 404, the GPS subsystem of the mobile reader automatically receives and processes the GPS signals. At 406, the GPS lat/long data and the RFID tag data are transmitted to a remote location for processing. At 408, the user carries the reader inside a structure thereby prohibiting the use of the GPS location system and reads an RFID tag of an object. At 410, the inside location subsystem of the mobile reader is enabled to automatically receive and process location information. The handoff between the GPS location subsystem and the inside location subsystem can occur based on the GPS subsystem not receiving GPS signals. If no GPS signals are received, the reader automatically defaults to the inside location subsystem for location data. At 412, the reader then transmits the location data and the RFID data for processing.
  • In one alternative implementation, the location data associated with the terrestrial location subsystem is determined by the remote terrestrial location system, and not by the mobile reader. Once the tag is read, a trigger signal can be sent that automatically passes the associated location data to a data base for association with the tag data. Alternatively, again, the tag data is transmitted to the remote terrestrial location system and associated there for subsequent transmission to a database.
  • FIG. 5 illustrates a data packet 500 that includes location data in accordance with the invention. The packet 500 includes a packet identifier 502 that uniquely identifiers that packets among a plurality of the other data packets. For example, the identifier can be associated with the mobile reader such that only packets transmitted therefrom have the identifier data 502. The packet 500 can also include some check bits 504 that are used for error correction (e.g., cyclic redundancy check-CRC). Location data 506 is included that represents the approximate location of the reader when the read operation was performed. The packet 500 can also include tag data 508 of the RFID tag that was read. This can comprise environmental data (e.g., temperature, humidity, pressure, . . . ) received from one or more sensors and object data of the product to which the tag is associated, for example.
  • Referring now to FIG. 6, there is illustrated a system 600 that includes triangulation and/or signal strength system for location determination in accordance with the invention. The system 600 includes a network 602 on which is disposed a triangulation location system 604 and/or a signal strength location system 606. The triangulation system 604 can further include at least two wireless transceivers (not shown) that receive reader signals from an RFID reader 608, process the reader signals having the same identifier data, and determine an approximate location of the reader 608 relative to a floor plan of a building (e.g., warehouse, distribution center, . . . ). The location data can then be communicated back to the reader 608 for processing by a reader location subsystem 612 and transmission with the tag data to a data store 610. The location data can also be transmitted from the mobile reader to a PLC 614 and therefrom to the data store 610. Alternatively, the location data can be communicated from the triangulation system 604 to the data store 610 and combined with the tag data at the data store 610.
  • In an alternative location system implementation, the signal strength location system 606 processes signals from the reader 608 to approximate the reader location based on signal strength. The location data can then be communicated back to the reader 608 for processing by the reader location subsystem 612 and transmission with the tag data to a data store 610.
  • FIG. 7 illustrates a system 700 that employs filtering in accordance with the invention. When a reader 702 reads RFID tags, a read signal is broadcast from the reader 702 that energizes and/or causes to be received RFID tag data from all tags in a given range thereof. Thus, the reader 702 can receive data from a large number of tags for which data is not desired. Not only does this impose additional processing requirements on the reader 702, but it can also negatively impact network bandwidth between the reader and a remote system. As a means of addressing this problem, the reader 702 includes a location subsystem 704 that interacts with a remote location system 706 (e.g., GPS, triangulation, signal strength, . . . ) to provide location data representative of the location of the reader 702, and a filter component 708 that interfaces to the reader 702 and processes the RFID tag data and the location data to filter out tag signals that are unwanted. Note that the filter component 708 can also be made internal to the reader 702.
  • The system can also include a network 710 on which is disposed a data store 712 that stores at least tag data, reader data, and location data. A controller 714 (e.g., a PLC) can also be disposed on the network 710 in control of an automated process such as moving product down an assembly line. A transceiver 716 provides wireless network communications between the network 710 and the reader 702 such that location data and tag data can be communicated to the data store 712 and/or the controller 714.
  • Illustrated are objects 718 (denoted OBJECT1, OBJECT2, and OBJECT3) and associated RFID tags (denoted RFID TAG1, RFID TAG2, and RFID TAG3) in respective locations (LOCATION A, LOCATION B, AND LOCATION C). The user desires to read a tag 720 of a first object 722 in Location A, yet receives in addition thereto data from a second tag 724 of a second object 726 in Location B and a third tag 728 of a third object 730 in a Location C. The location system 706 facilitates determination of location data of the reader 702 such that in this example, the user is determined to be closer to Location A.
  • It can already be known from prior tag scans and/or user input information, for example, that the first object 722 is associated with Location A, the second object 726 is associated with Location B, and the third object 730 is associated with Location C. Accordingly, any other tag data received by the reader 702 indicating that the tag (724 and 728) is associated with an object that is not in Location A can be filtered without further processing. Similarly, as the user moves the mobile reader that contains the RFID component 702 closer to Location B, the tag data that is received from object tags in Location A and Location C can be filtered out from further consideration.
  • FIG. 8 illustrates a methodology of filtering RFID tag data based on location of interest in accordance with the invention. At 800, a mobile RFID reader is provided with an internal location subsystem. At 802, the user initiates a read of RFID tags at a first area of interest. At 804, the reader receives tag data in the area of interest and tag data from outside the area of interest. At 806, the reader location data is determined using the internal location subsystem. At 808, tag data from the outside areas of interest is filtered out based on location data. At 810, tag data is processed from the area of interest.
  • FIG. 9 illustrates a methodology of filtering RFID tag data based on an aisle of interest, in accordance with the invention. At 900, the mobile reader and internal location subsystem is provided. At 902, a read operation is initiated at an aisle of a store or warehouse, for example. At 904, the reader receives tag data from tags in the existing aisle of interest, tag data from tags outside the aisle of interest, and location data. At 906, the tag data from outside the aisle of interest is filtered out based on the location data associated with the reader. At 908, the location data is transmitted to a database to determine the associated aisle. At 910, the database is updated with tagged items, location data, and aisle data.
  • It is noted that the location information of the mobile reader need not be the sole means by which material flow and tracking can be determined. For example, the mobile RFD reader can transmit information to the PLC, which PLC then uses its information in combination with the reader data to determine material location. If, for example, the PLC interfaces to a bar code scanner (a fixed device at a known location), it is then known where the material is (e.g., a pallet), when the bar code is scanned. Additionally, when the mobile RFID reader subsequently transmits data about the pallet which it read, and its location to the PLC (relative to there mobile reader, since it just read one or more tags), the PLC can then confirm that this is the same pallet it processed just previously. This helps validate the location of the pallet or object.
  • A pallet (or material), for example, typically follows a sequential movement or known path through a distribution center. Additionally, a PLC is fixed, as is a bar code reader that interface to the PLC. Thus, if the mobile RFID reader reads the material, and transmits the reader location to the PLC (e.g., “the pallet was read in Zone 22), the PLC can precisely know which pallet it is, and know exactly where it is in Zone 22 based on the information the PLC had from a bar code read, etc. The PLC can have additional information about location of the pallet or object based on prior reads. This information can be combined with the location information provided by the reader with its own internal knowledge of the location to better determine exactly where the pallet or object is, or can initiate diagnostics that indicates this is the wrong pallet or object.
  • FIG. 10 illustrates a system 1000 that employs artificial intelligence (AI) which facilitates automating one or more features in accordance with the subject invention. Here, an RFID reader 1002 includes a location subsystem 1004 and an AI component 1006. The location subsystem 1004 interacts with a remote location system 1008 that together, facilitate determination of location data of the reader 1002.
  • The subject invention can employ various AI-based schemes for carrying out various aspects thereof. For example, a process for determining what tag data is consider to outside an area of interest can be facilitated via an automatic classifier system and process.
  • A classifier is a function that maps an input attribute vector, x=(x1, x2, x3, x4, xn), to a confidence that the input belongs to a class, that is, f(x)=confidence(class). Such classification can employ a probabilistic and/or statistical-based analysis (e.g., factoring into the analysis utilities and costs) to prognose or infer an action that a user desires to be automatically performed.
  • A support vector machine (SVM) is an example of a classifier that can be employed. The SVM operates by finding a hypersurface in the space of possible inputs, which hypersurface attempts to split the triggering criteria from the non-triggering events. Intuitively, this makes the classification correct for testing data that is near, but not identical to training data. Other directed and undirected model classification approaches include, e.g., naïve Bayes, Bayesian networks, decision trees, neural networks, fuzzy logic models, and probabilistic classification models providing different patterns of independence can be employed. Classification as used herein also is inclusive of statistical regression that is utilized to develop models of priority.
  • As will be readily appreciated from the subject specification, the subject invention can employ classifiers that are explicitly trained (e.g., via a generic training data) as well as implicitly trained (e.g., via observing user behavior, receiving extrinsic information). For example, SVM's are configured via a learning or training phase within a classifier constructor and feature selection module. Thus, the classifier(s) can be used to automatically learn and perform a number of functions, including but not limited to determining according to a predetermined criteria what RFID tagged objects are or should be associated with a given location. For example, if over a period of time, the mobile reader 1002 routinely senses an object type in a certain area, the AI component 1006 will learn that, unless otherwise instructed, the object type will be expected to be in that area during read operations in the future.
  • In another example, where a given user is assigned to scan certain areas on routine basis, the AI component 1006 can learn that the user will routinely take a certain route to scanning the area, and operate accordingly by, for example, cause the caching of object and/or tag data (e.g., at the reader 1002 and/or a remote database) in preparation for updating and/or interacting with data normally associated with the area.
  • In yet another example, when the RFID component 1002 reads an RFID tag, instead of automatically transmitting location data and the tag data right away, the AI component 1006 can facilitate storing sets of location and tag data locally in memory, and then transmitting sets or blocks of the location and tag data when desired. This block transmission can be according to parameters related to network usage, time of day, location of read, importance of the objects needing to be located, and many other parameters as desired for the particular application.
  • FIG. 11 illustrates a system 1100 that employs multiple readers 1102 and an AI component 1104 in accordance with the subject invention. The AI component 1004 can be located external to the reader 1002, such as part of a network 1106 that includes a remote database system 1108 (e.g., a database management system (DBMS) and an associated data store 1110). The AI component 1104 can interface to the database system 1108 as an external component or be an internal component thereof. The database system 1108 stores at least location data, tag data, and object data for all objects of a location.
  • In this example implementation, a first mobile reader 1112 (denoted RFID READER1) includes a first location subsystem 1114 (denoted LOCATION SUBSYSTEM1), a second mobile reader 1116 (denoted RFID READER2) includes a second location subsystem 1118 (denoted LOCATION SUBSYSTEM2), and a third mobile reader 1120 (denoted RFID READER3) includes a third location subsystem 1122 (denoted LOCATION SUBSYSTEM3), each of which can communicate with a remote location system 1124 that facilitates determining location data of the readers (1112, 1116 and 1120) using GPS and/or a indoor location technology, for example. Note that the remote location system 1124 can also be disposed as a node on the network 1106.
  • Each of the readers (1112, 1116 and 1120) also communicates wirelessly with the network 1106 and any network services via a transceiver system 1126 such that reader data can be downloaded to the database system 1108 and uploaded therefrom, as desired. The database system 1108 can include material tracking software and other applications related to material handling and logistics, for example.
  • When multiple readers (e.g., 1112, 1116 and 1120) are employed and communicating data and signals to the network 1106, the AI component 1104 can be utilized to monitor packet traffic and manage data caching in memory of the database system 1108 according to, for example, the most active readers at a given time. The AI component 1104 can also be employed to compute location parameters associated with one or more of the readers (1112, 1116 and 1120) based on criteria described supra. For example, in an implementation where a reader is mobile by way of a machine, each of the readers (1112, 1116 and 1120) can be configured separately over aisles of tagged objects such that as the reader moves down an overhead rail system (e.g., in a warehouse). Here, linear movement of the reader down the rail can occur under control of the AI component 1104 at a speed based on, for example, the processing capability of the database system 1108, the reader itself, and network traffic.
  • In another example, data handling and processing of the system 1100 can be based on the importance of scanning certain objects. If the database system 1108 has tagged certain types of objects as high priority, then when the reader (e.g., reader 1112) enters the location of the objects, or where the objects are expected to be, the location data can be employed as a trigger that reading thereof now takes a higher priority over other objects whose tag data may also be received.
  • Referring now to FIG. 12, there is illustrated a block diagram of a computer operable to execute the disclosed AI component 1104 and dataset system 1108 of the subject invention. In order to provide additional context for various aspects of the subject invention, FIG. 12 and the following discussion are intended to provide a brief, general description of a suitable computing environment 1200 in which the various aspects of the invention can be implemented. While the invention has been described above in the general context of computer-executable instructions that may run on one or more computers, those skilled in the art will recognize that the invention also can be implemented in combination with other program modules and/or as a combination of hardware and software.
  • Generally, program modules include routines, programs, components, data structures, etc., that perform particular tasks or implement particular abstract data types. Moreover, those skilled in the art will appreciate that the inventive methods can be practiced with other computer system configurations, including single-processor or multiprocessor computer systems, minicomputers, mainframe computers, as well as personal computers, hand-held computing devices, microprocessor-based or programmable consumer electronics, and the like, each of which can be operatively coupled to one or more associated devices.
  • The illustrated aspects of the invention may also be practiced in distributed computing environments where certain tasks are performed by remote processing devices that are linked through a communications network. In a distributed computing environment, program modules can be located in both local and remote memory storage devices.
  • A computer typically includes a variety of computer-readable media. Computer-readable media can be any available media that can be accessed by the computer and includes both volatile and nonvolatile media, removable and non-removable media. By way of example, and not limitation, computer readable media can comprise computer storage media and communication media. Computer storage media includes both volatile and nonvolatile, removable and non-removable media implemented in any method or technology for storage of information such as computer readable instructions, data structures, program modules or other data. Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital video disk (DVD) or other optical disk storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or any other medium which can be used to store the desired information and which can be accessed by the computer.
  • Communication media typically embodies computer-readable instructions, data structures, program modules or other data in a modulated data signal such as a carrier wave or other transport mechanism, and includes any information delivery media. The term “modulated data signal” means a signal that has one or more of its characteristics set or changed in such a manner as to encode information in the signal. By way of example, and not limitation, communication media includes wired media such as a wired network or direct-wired connection, and wireless media such as acoustic, RF, infrared and other wireless media. Combinations of the any of the above should also be included within the scope of computer-readable media.
  • With reference again to FIG. 12, the exemplary computing environment 1200 for implementing various aspects of the invention includes a computer 1202, the computer 1202 including a processing unit 1204, a system memory 1206 and a system bus 1208. The system bus 1208 couples system components including, but not limited to, the system memory 1206 to the processing unit 1204. The processing unit 1204 can be any of various commercially available processors. Dual microprocessors and other multi-processor architectures may also be employed as the processing unit 1204.
  • The system bus 1208 can be any of several types of bus structure that may further interconnect to a memory bus (with or without a memory controller), a peripheral bus, and a local bus using any of a variety of commercially available bus architectures. The system memory 1206 includes read only memory (ROM) 1210 and random access memory (RAM) 1212. A basic input/output system (BIOS) is stored in a non-volatile memory 1210 such as ROM, EPROM, EEPROM, which BIOS contains the basic routines that help to transfer information between elements within the computer 1202, such as during start-up. The RAM 1212 can also include a high-speed RAM such as static RAM for caching data.
  • The computer 1202 further includes an internal hard disk drive (HDD) 1214 (e.g., EIDE, SATA), which internal hard disk drive 1214 may also be configured for external use in a suitable chassis (not shown), a magnetic floppy disk drive (FDD) 1216, (e.g., to read from or write to a removable diskette 1218) and an optical disk drive 1220, (e.g., reading a CD-ROM disk 1222 or, to read from or write to other high capacity optical media such as the DVD). The hard disk drive 1214, magnetic disk drive 1216 and optical disk drive 1220 can be connected to the system bus 1208 by a hard disk drive interface 1224, a magnetic disk drive interface 1226 and an optical drive interface 1228, respectively. The interface 1224 for external drive implementations includes at least one or both of Universal Serial Bus (USB) and IEEE 1394 interface technologies. Other external drive connection technologies are within contemplation of the subject invention.
  • The drives and their associated computer-readable media provide nonvolatile storage of data, data structures, computer-executable instructions, and so forth. For the computer 1202, the drives and media accommodate the storage of any data in a suitable digital format. Although the description of computer-readable media above refers to a HDD, a removable magnetic diskette, and a removable optical media such as a CD or DVD, it should be appreciated by those skilled in the art that other types of media which are readable by a computer, such as zip drives, magnetic cassettes, flash memory cards, cartridges, and the like, may also be used in the exemplary operating environment, and further, that any such media may contain computer-executable instructions for performing the methods of the invention.
  • A number of program modules can be stored in the drives and RAM 1212, including an operating system 1230, one or more application programs 1232, other program modules 1234 and program data 1236. All or portions of the operating system, applications, modules, and/or data can also be cached in the RAM 1212. It is appreciated that the invention can be implemented with various commercially available operating systems or combinations of operating systems.
  • A user can enter commands and information into the computer 1202 through one or more wired/wireless input devices, e.g., a keyboard 1238 and a pointing device, such as a mouse 1240. Other input devices (not shown) may include a microphone, an IR remote control, a joystick, a game pad, a stylus pen, touch screen, or the like. These and other input devices are often connected to the processing unit 1204 through an input device interface 1242 that is coupled to the system bus 1208, but can be connected by other interfaces, such as a parallel port, an IEEE 1394 serial port, a game port, a USB port, an IR interface, etc.
  • A monitor 1244 or other type of display device is also connected to the system bus 1208 via an interface, such as a video adapter 1246. In addition to the monitor 1244, a computer typically includes other peripheral output devices (not shown), such as speakers, printers, etc.
  • The computer 1202 may operate in a networked environment using logical connections via wired and/or wireless communications to one or more remote computers, such as a remote computer(s) 1248. The remote computer(s) 1248 can be a workstation, a server computer, a router, a personal computer, portable computer, microprocessor-based entertainment appliance, a peer device or other common network node, and typically includes many or all of the elements described relative to the computer 1202, although, for purposes of brevity, only a memory storage device 1250 is illustrated. The logical connections depicted include wired/wireless connectivity to a local area network (LAN) 1252 and/or larger networks, e.g., a wide area network (WAN) 1254. Such LAN and WAN networking environments are commonplace in offices, and companies, and facilitate enterprise-wide computer networks, such as intranets, all of which may connect to a global communication network, e.g., the Internet.
  • When used in a LAN networking environment, the computer 1202 is connected to the local network 1252 through a wired and/or wireless communication network interface or adapter 1256. The adaptor 1256 may facilitate wired or wireless communication to the LAN 1252, which may also include a wireless access point disposed thereon for communicating with the wireless adaptor 1256.
  • When used in a WAN networking environment, the computer 1202 can include a modem 1258, or is connected to a communications server on the WAN 1254, or has other means for establishing communications over the WAN 1254, such as by way of the Internet. The modem 1258, which can be internal or external and a wired or wireless device, is connected to the system bus 1208 via the serial port interface 1242. In a networked environment, program modules depicted relative to the computer 1202, or portions thereof, can be stored in the remote memory/storage device 1250. It will be appreciated that the network connections shown are exemplary and other means of establishing a communications link between the computers can be used.
  • The computer 1202 is operable to communicate with any wireless devices or entities operatively disposed in wireless communication, e.g., a printer, scanner, desktop and/or portable computer, portable data assistant, communications satellite, any piece of equipment or location associated with a wirelessly detectable tag (e.g., a kiosk, news stand, restroom), and telephone. This includes at least Wi-Fi and Bluetooth™ wireless technologies. Thus, the communication can be a predefined structure as with a conventional network or simply an ad hoc communication between at least two devices.
  • Wi-Fi, or Wireless Fidelity, allows connection to the Internet from a couch at home, a bed in a hotel room, or a conference room at work, without wires. Wi-Fi is a wireless technology similar to that used in a cell phone that enables such devices, e.g., computers, to send and receive data indoors and out; anywhere within the range of a base station. Wi-Fi networks use radio technologies called IEEE 802.11(a, b, g, etc.) to provide secure, reliable, fast wireless connectivity. A Wi-Fi network can be used to connect computers to each other, to the Internet, and to wired networks (which use IEEE 802.3 or Ethernet). Wi-Fi networks operate in the unlicensed 2.4 and 5 GHz radio bands, at an 11 Mbps (802.11a) or 54 Mbps (802.11b) data rate, for example, or with products that contain both bands (dual band), so the networks can provide real-world performance similar to the basic 10BaseT wired Ethernet networks used in many offices.
  • FIG. 13 illustrates a block diagram of an RFID reader/writer device 1300 in accordance with the subject invention. The device 1300 includes a processor 1302 that manages all onboard processes and executes instructions of one or more applications 1304 that facilitate RFID tag reading and writing, location data processing, and any data and signal processing required for operation thereof. A display 1306 is provided that allows a user to view data and information, and input commands or instructions for operation of the device 1300. A memory 1308 is provided for data storage, program storage, and execution, and can include volatile and/or non-volatile memory architectures (e.g., RAM, DRAM, ROM, EEPROM, and flash). A user interface block 1310 provides electrical, mechanical and software interface capabilities such as keypad, voice activation via a microphone, touch screen, trackball, mouse, and pen inputs, for example, for user interaction with the device 1300.
  • The device 1300 includes RF capabilities supported by an antenna 1312, a transceiver subsystem 1314 for transmitting and receiving data and signals in one of or both an analog and digital format, and as data packets. The transceiver subsystem 1314 interfaces to a matching network block 1316 that provides the circuits and logic in support of RF communications to both active and passive RFID transponders, and digital communications therebetween, and to IP networks, for example. A triggers and indicators block 1318 provides and supports indicators and outputs such as audio devices and signals (e.g., speaker, beeps, tones), visual devices and signals (e.g., LED's, colors) and other types of outputs. Additionally, triggers can be provided to the processor 1302 based on internal hardware and/or software events that occur in the device 1300. A CODEC 1320 interfaces to the processor 1302 to facilitate coding and decoding operations on data and signals, where needed.
  • A location subsystem 1322 facilitates location determination of the device 1300 in accordance with the invention, anywhere inside a building or structure, as well as outside using GPS, for example. An I/O ports block 1324 provided hardware interfaces to the device 1300 such as by USB (universal serial bus) technology, IEEE 1394 technology, or other conventional communications technologies (e.g., infrared, BlueTooth, Wi-Fi, Wi-Max, . . . ). A power source/interface block 1326 facilitates standalone power (e.g., batteries and/or fuel cells) or external power to the device 1300 and all onboard components and subsystems via a power converter, for example.
  • What has been described above includes examples of the invention. It is, of course, not possible to describe every conceivable combination of components or methodologies for purposes of describing the subject invention, but one of ordinary skill in the art may recognize that many further combinations and permutations of the invention are possible. Accordingly, the invention is intended to embrace all such alterations, modifications and variations that fall within the spirit and scope of the appended claims. Furthermore, to the extent that the term “includes” is used in either the detailed description or the claims, such term is intended to be inclusive in a manner similar to the term “comprising” as “comprising” is interpreted when employed as a transitional word in a claim.

Claims (34)

1. A radio frequency identification (RFID) system, comprising:
an RFID component that senses an RFID tag associated with an object; and
a location component integral to the RFID component that facilitates determination of a location of the RFID component.
2. The system of claim 1, wherein the location component utilizes at least one of triangulation technology and signal strength technology to determine the location of the RFID component.
3. The system of claim 1, wherein the location component utilizes GPS (global positioning system) technology to determine the location of the RFID component.
4. The system of claim 1, wherein the location component generates location data that is transmitted from the reader with RFID data.
5. The system of claim 1, wherein location data associated with the location is used for object flow and tracking.
6. The system of claim 1, wherein the RFID component is one of a mobile reader and a mobile reader/writer.
7. The system of claim 6, wherein the mobile reader is one of a handheld portable reader and a mechanically motivated reader.
8. The system of claim 1, wherein data representative of the location is transmitted to a PLC (programmable logic controller) and utilized in combination with PLC data to determine location of material.
9. The system of claim 8, wherein PLC data includes bar code data.
10. The system of claim 1, further comprising an artificial intelligence (AI) component that employs a probabilistic and/or statistical-based analysis to prognose or infer an action that a user desires to be automatically performed.
11. A computer-readable medium having stored thereon computer-executable instructions for carrying out the system of claim 1.
12. A handheld portable RFID reader that employs the system of claim 1.
13. An RFID system, comprising:
a mobile RFID reader that reads an RFID tag associated with an object; and
a location component as part of the RFID reader that facilitates determination of location data of a location of the mobile RFID reader.
14. The system of claim 13, wherein the location component utilizes at least one of triangulation technology and signal strength technology to determine the location data of the RFID reader.
15. The system of claim 13, wherein the location component interfaces with a remote GPS technology to determine the GPS location data of the RFID reader, which GPS location data is transmitted from the RFID reader with RFID tag data.
16. The system of claim 13, wherein the location component includes both a GPS location subsystem that receives and processes GPS location data and an inside location subsystem that interfaces to remote location system which operates inside a structure.
17. The system of claim 13, further comprising a filter component that filters received RFID tag data according to the location data.
18. The system of claim 17, wherein the location data resides in at least one of a database and the RFID reader.
19. The system of claim 13, further comprising an AI component as part of the RFID reader that employs a probabilistic and/or statistical-based analysis to prognose or infer an action that a user desires to be automatically performed.
20. The system of claim 13, wherein the RFID reader interfaces to a remote database system that employs an AI component facilitates probabilistic and/or statistical-based analysis to prognose or infer an action that a user desires to be automatically performed.
21. The system of claim 13, wherein the location data is also representative of material location, and which location data is processed with bar code data to determine a more accurate material location.
22. A method of determining location of a portable RFID reader, comprising:
receiving a portable reading device that performs at least one of reading from and writing to an RFID tag of an object; and
providing a location subsystem as part of the portable reading device that communicates with an external location system to determine location data that represents the location of the portable reading device and an RFID tag read by the portable reading device.
23. The method of claim 22, further comprising acts of:
receiving the location data into the location subsystem; and
transmitting the location data to a remote location for storage in response to reading the RFID tag.
24. The method of claim 22, further comprising acts of:
receiving the location data into the location subsystem; and
transmitting the location data and tag data to a remote location for storage as sets of data at a time other than when the RFID tag is read.
25. The method of claim 22, further comprising an act of writing the location data to the RFID tag in response to reading the RFID tag.
26. The method of claim 22, further comprising an act of automatically switching from a first location mode of the location subsystem to a second location mode of the location subsystem when the first location mode is inoperative.
27. The method of claim 26, wherein the first location mode processes GPS data and the second location mode processes indoor location information.
28. The method of claim 27, wherein the indoor location information is derived from one of a triangulation technology and a signal strength measurement technology.
29. The method of claim 22, further comprising an act of automatically caching data related to objects associated the location data.
30. The method of claim 22, further comprising acts of:
automatically transmitting the location data and RFID tag data of the RFID tag to a PLC; and
processing the location data and PLC data to determine new location data associated with a new location of the RFID tag.
31. A portable RFID reader, comprising:
means for reading RFID data of an RFID tag; and
means for interfacing to a remote geographic location system;
means for processing location data received from the remote geographic location system; and
means for transmitting the RFID data and the location data for storage.
32. The reader of claim 31, further comprising means for writing to the RFID tag.
33. The reader of claim 31, wherein the remote geographic location system performs triangulation to generate the location data.
34. The reader of claim 31, wherein the remote geographic location system performs signal strength analysis to generate the location data.
US11/185,121 2005-07-20 2005-07-20 Mobile RFID reader with integrated location awareness for material tracking and management Active 2026-05-10 US7388491B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US11/185,121 US7388491B2 (en) 2005-07-20 2005-07-20 Mobile RFID reader with integrated location awareness for material tracking and management
EP06015176.8A EP1752908B1 (en) 2005-07-20 2006-07-20 Portable RFID reader having a location determination system
US12/140,118 US7932827B2 (en) 2005-07-20 2008-06-16 Mobile RFID reader with integrated location awareness for material tracking and management

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/185,121 US7388491B2 (en) 2005-07-20 2005-07-20 Mobile RFID reader with integrated location awareness for material tracking and management

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/140,118 Continuation US7932827B2 (en) 2005-07-20 2008-06-16 Mobile RFID reader with integrated location awareness for material tracking and management

Publications (2)

Publication Number Publication Date
US20070018820A1 true US20070018820A1 (en) 2007-01-25
US7388491B2 US7388491B2 (en) 2008-06-17

Family

ID=37502483

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/185,121 Active 2026-05-10 US7388491B2 (en) 2005-07-20 2005-07-20 Mobile RFID reader with integrated location awareness for material tracking and management
US12/140,118 Active US7932827B2 (en) 2005-07-20 2008-06-16 Mobile RFID reader with integrated location awareness for material tracking and management

Family Applications After (1)

Application Number Title Priority Date Filing Date
US12/140,118 Active US7932827B2 (en) 2005-07-20 2008-06-16 Mobile RFID reader with integrated location awareness for material tracking and management

Country Status (2)

Country Link
US (2) US7388491B2 (en)
EP (1) EP1752908B1 (en)

Cited By (112)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070066289A1 (en) * 2005-09-19 2007-03-22 Silverbrook Research Pty Ltd Print subscribed content on a mobile device
US20070066351A1 (en) * 2005-09-19 2007-03-22 Silverbrook Research Pty Ltd Printing a receipt using a mobile device
US20070064130A1 (en) * 2005-09-19 2007-03-22 Silverbrook Research Pty Ltd Link object to form field on surface
US20070066342A1 (en) * 2005-09-19 2007-03-22 Silverbrook Research Pty Ltd Printing an almanac using a mobile device
US20070066291A1 (en) * 2005-09-19 2007-03-22 Silverbrook Research Pty Ltd. Retrieving a program via a coded surface
US20070064075A1 (en) * 2005-09-19 2007-03-22 Silverbrook Research Pty Ltd Printing a membership using a mobile device
US20070066341A1 (en) * 2005-09-19 2007-03-22 Silverbrook Research Pty Ltd Printing an advertisement using a mobile device
US20070067824A1 (en) * 2005-09-19 2007-03-22 Silverbrook Research Pty Ltd Retrieving an access token via a coded surface
US20070064261A1 (en) * 2005-09-19 2007-03-22 Silverbrook Research Pty Ltd Printing a position using a mobile device
US20070065206A1 (en) * 2005-09-19 2007-03-22 Silverbrook Research Pty Ltd Printing a coupon using a mobile device
US20070064263A1 (en) * 2005-09-19 2007-03-22 Silverbrook Research Pty Ltd Printing a map using a mobile device
US20070070391A1 (en) * 2005-09-19 2007-03-29 Silverbrook Research Pty Ltd Reprint card on a mobile device
US20070075873A1 (en) * 2005-09-30 2007-04-05 Samsung Electro-Mechanics Co., Ltd. Location awareness system using rfid and wireless connectivity apparatus for location awareness system used therein
US20070085332A1 (en) * 2005-09-19 2007-04-19 Silverbrook Research Pty Ltd Link object to sticker and location on surface
US20080101400A1 (en) * 2006-10-30 2008-05-01 Nokia Corporation Managing attachment of a wireless terminal to local area networks
US20080136605A1 (en) * 2006-12-07 2008-06-12 International Business Machines Corporation Communication and filtering of events among peer controllers in the same spatial region of a sensor network
US20080231449A1 (en) * 2007-03-20 2008-09-25 Radiofy Llc Method and apparatus for power management for a radio frequency identification system
US20080234000A1 (en) * 2005-09-19 2008-09-25 Silverbrook Research Pty Ltd Method For Playing A Request On A Player Device
US20080245859A1 (en) * 2007-04-05 2008-10-09 Motonobu Saito Information provision intermediation apparatus
US20080249899A1 (en) * 2007-04-05 2008-10-09 Nasser Gabriel G System and Method for Inventory
US20080254832A1 (en) * 2005-09-19 2008-10-16 Silverbrook Research Pty Ltd Method for playing a routed request on a player device
US20080256110A1 (en) * 2007-04-16 2008-10-16 Microsoft Corporation Storage media tracking and managment
US20080272185A1 (en) * 2004-04-28 2008-11-06 Sarosh Vesuna System and Method For Providing Location Information in Transaction Processing
US20080278772A1 (en) * 2005-09-19 2008-11-13 Silverbrook Research Pty Ltd Mobile telecommunications device
US20080297855A1 (en) * 2005-09-19 2008-12-04 Silverbrook Research Pty Ltd Mobile phone handset
US20080316508A1 (en) * 2005-09-19 2008-12-25 Silverbrook Research Pty Ltd Online association of a digital photograph with an indicator
US20090043502A1 (en) * 2007-08-10 2009-02-12 Cisco Technology, Inc. System and Method for Navigating Using Multiple Modalities
US20090088206A1 (en) * 2005-09-19 2009-04-02 Silverbrook Research Pty Ltd Mobile telecommunications device with printing and sensing modules
US20090098909A1 (en) * 2005-09-19 2009-04-16 Silverbrook Research Pty Ltd Printing Educational Material Using A Mobile Device
US20090146800A1 (en) * 2007-08-29 2009-06-11 Seeonic, Inc. Inventory monitoring system
US20090152342A1 (en) * 2005-09-19 2009-06-18 Silverbrook Research Pty Ltd Method Of Performing An Action In Relation To A Software Object
US20090160645A1 (en) * 2007-12-20 2009-06-25 Symbol Technologies, Inc. Voice Over RFID
US20090231135A1 (en) * 2008-03-11 2009-09-17 Chaves Leonardo Weiss F Enhanced item tracking using selective querying
US20090243808A1 (en) * 2004-11-10 2009-10-01 Rockwell Automation Technologies, Inc. Systems and methods that integrate radio frequency identification (rfid) technology with agent-based control systems
US20100069116A1 (en) * 2005-09-19 2010-03-18 Silverbrook Research Ply Ltd. Printing system using a cellular telephone
US20100081472A1 (en) * 2005-09-19 2010-04-01 Silverbrook Research Pty Ltd Performing an Action in a Mobile Telecommunication Device
US20100116892A1 (en) * 2005-09-19 2010-05-13 Silverbrook Research Pty Ltd Reusable sticker
US20100134815A1 (en) * 2005-09-19 2010-06-03 Silverbrook Research Pty Ltd Printing a List on a Print Medium
US20100134843A1 (en) * 2005-09-19 2010-06-03 Silverbrook Research Pty Ltd Printing Content on a Print Medium
US20100165401A1 (en) * 2005-09-19 2010-07-01 Silverbrook Research Pty Ltd Mobile device for printing a security identification
US20100181375A1 (en) * 2005-09-19 2010-07-22 Silverbrook Research Pty Ltd Sticker including a first and second region
US20100188703A1 (en) * 2005-09-19 2010-07-29 Silverbrook Research Pty Ltd Associating an Electronic Document with a Print Medium
US20100223393A1 (en) * 2005-09-19 2010-09-02 Silverbrook Research Pty Ltd Method of downloading a Software Object
US20100219953A1 (en) * 2009-02-27 2010-09-02 Rf Controls, Llc Radio Frequency Environment Object Monitoring System and Methods of Use
US20100222103A1 (en) * 2005-09-19 2010-09-02 Silverbrook Research Pty Ltd Printing Content on a Print Medium based upon the Authenticity of the Print Medium
US20100225949A1 (en) * 2005-09-19 2010-09-09 Silverbrook Research Pty Ltd Retrieve information by sensing data encoded on a card
US20100225480A1 (en) * 2007-09-11 2010-09-09 Rf Controls, Llc Radio frequency signal acquisition and source location system
US20100234069A1 (en) * 2005-09-19 2010-09-16 Silverbrook Research Pty Ltd Method of linking object to sticker print medium
US20100231981A1 (en) * 2005-09-19 2010-09-16 Silverbrook Research Pty Ltd Retrieving location data by sensing coded data on a surface
US20100248686A1 (en) * 2005-09-19 2010-09-30 Silverbrook Research Pty Ltd Method of printing and retrieving information using a mobile telecommunications device
US20100257100A1 (en) * 2005-09-19 2010-10-07 Silverbrook Research Pty Ltd System for Product Retrieval using a Coded Surface
US20100273527A1 (en) * 2005-09-19 2010-10-28 Silverbrook Research Pty Ltd Mobile phone system for printing webpage and retrieving content
US20100273525A1 (en) * 2005-09-19 2010-10-28 Silverbrook Research Pty Ltd Link object to position on surface
US20100279735A1 (en) * 2005-09-19 2010-11-04 Silverbrook Research Pty Ltd Printing content on a mobile device
US7843595B2 (en) 2005-09-19 2010-11-30 Silverbrook Research Pty Ltd Printing a calendar using a mobile device
US7841527B2 (en) 2005-09-19 2010-11-30 Silverbrook Research Pty Ltd Method and system for associating a sticker and an object in a computer system
US7843596B2 (en) 2005-09-19 2010-11-30 Silverbrook Research Pty Ltd Printing a ticket using a mobile device
US7848777B2 (en) 2005-09-19 2010-12-07 Silverbrook Research Pty Ltd Printing a puzzle using a mobile device
US7855805B2 (en) 2005-09-19 2010-12-21 Silverbrook Research Pty Ltd Printing a competition entry form using a mobile device
US7856225B2 (en) 2005-09-19 2010-12-21 Silverbrook Research Pty Ltd Retrieving a program state via a coded surface
US7857217B2 (en) 2005-09-19 2010-12-28 Silverbrook Research Pty Ltd Link software object to sticker
US20110032101A1 (en) * 2005-08-10 2011-02-10 Cias Inc. Sequenced antenna array for determining where gaming chips with embedded rfid tags are located on a blackjack, poker or other gaming table & for myriad of other rfid applications
US20110032079A1 (en) * 2009-08-10 2011-02-10 Rf Controls, Llc Antenna switching arrangement
US20110063113A1 (en) * 2009-09-10 2011-03-17 Rf Controls, Llc Calibration and Operational Assurance Method and Apparatus for RFID Object Monitoring System
US7953386B2 (en) 2005-09-19 2011-05-31 Silverbrook Research Pty Ltd Bill per card print
US20110163160A1 (en) * 2005-10-14 2011-07-07 Aethon, Inc. Robotic Ordering and Delivery System Software and Methods
US7992213B2 (en) 2005-09-19 2011-08-02 Silverbrook Research Pty Ltd Gaining access via a coded surface
US7997475B2 (en) 2004-11-10 2011-08-16 Rockwell Automation Technologies, Inc. Systems and methods that integrate radio frequency identification (RFID) technology with industrial controllers
US8016202B2 (en) 2005-09-19 2011-09-13 Silverbrook Research Pty Ltd Archiving printed content
US8025227B2 (en) 2005-09-30 2011-09-27 Rockwell Automation Technologies, Inc. Access to distributed databases via pointer stored in RFID tag
US20110241833A1 (en) * 2010-04-06 2011-10-06 Jean-Christophe Martin Handheld device for on-site datacenter management
WO2011143748A1 (en) * 2010-05-19 2011-11-24 Sidney Madisen Holdings Ltd. System and method for tracking items
US8152053B2 (en) 2005-09-08 2012-04-10 Rockwell Automation Technologies, Inc. RFID architecture in an industrial controller environment
US20120105208A1 (en) * 2007-02-06 2012-05-03 Jacob George TRANSPONDER SYSTEMS AND METHODS FOR RADIO-OVER-FIBER (RoF) WIRELESS PICOCELLULAR SYSTEMS
US8260948B2 (en) 2005-08-10 2012-09-04 Rockwell Automation Technologies, Inc. Enhanced controller utilizing RFID technology
US20120268250A1 (en) * 2011-04-19 2012-10-25 Qualcomm Incorporated Rfid device with wide area connectivity
CN103093325A (en) * 2011-11-02 2013-05-08 珠海普天慧科信息技术有限公司 Electric power measure device management system and management method
TWI405140B (en) * 2009-10-30 2013-08-11 Univ Chienkuo Technology Method for goods-delivering guiding and goods-identification
TWI426459B (en) * 2007-10-26 2014-02-11 Hon Hai Prec Ind Co Ltd System and method for judging inputting and outputting operations of a mold automatically
US8718478B2 (en) 2007-10-12 2014-05-06 Corning Cable Systems Llc Hybrid wireless/wired RoF transponder and hybrid RoF communication system using same
US20140163867A1 (en) * 2012-02-24 2014-06-12 Netclearance Systems, Inc. Way Finder Using Proximity Events
US20140166740A1 (en) * 2012-12-13 2014-06-19 Airbus Operations Gmbh System and method for identifying a component
US8867919B2 (en) 2007-07-24 2014-10-21 Corning Cable Systems Llc Multi-port accumulator for radio-over-fiber (RoF) wireless picocellular systems
US20150077230A1 (en) * 2013-09-13 2015-03-19 Rocco D. Pochy Protection System for Instrument Service and Calibration
US20150149837A1 (en) * 2013-06-06 2015-05-28 Zih Corp. Method, apparatus, and computer program product for collecting and displaying sporting event data based on real time data for proximity and movement of objects
US20150206096A1 (en) * 2012-02-24 2015-07-23 Netclearance Systems, Inc. Automated logistics management using proximity events
US20150356326A1 (en) * 2012-12-27 2015-12-10 Touchpac Holdings, Llc Method for capacitively identifying a container which comprises an electrically conductive material
US9580285B2 (en) 2011-08-26 2017-02-28 Crown Equipment Corporation Method and apparatus for using unique landmarks to locate industrial vehicles at start-up
US20170142543A1 (en) * 2015-11-18 2017-05-18 Discovery Limited Tracking and theft-recovery system for mobile assets
US9958873B2 (en) 2011-04-11 2018-05-01 Crown Equipment Corporation System for efficient scheduling for multiple automated non-holonomic vehicles using a coordinated path planner
US9959435B1 (en) * 2015-11-25 2018-05-01 Impinj, Inc. Location-based access to RFID tag information
USRE47013E1 (en) * 2007-05-23 2018-08-28 Sk Telecom Co., Ltd. Method for measuring location of radio frequency identification reader by using beacon
US20190053774A1 (en) * 2017-08-15 2019-02-21 Siemens Healthcare Gmbh Method for operating an x-ray device with an articulated arm, and x-ray device with an articulated arm
US10292005B2 (en) * 2015-01-09 2019-05-14 Twych Innovation, Inc. Object location tracking using mobile communication device
US10333568B2 (en) 2013-06-06 2019-06-25 Zebra Technologies Corporation Method and apparatus for associating radio frequency identification tags with participants
US20190333002A1 (en) * 2013-03-13 2019-10-31 Promega Corporation Radio frequency identification system
US10509099B2 (en) 2013-06-06 2019-12-17 Zebra Technologies Corporation Method, apparatus and computer program product improving real time location systems with multiple location technologies
US10609762B2 (en) 2013-06-06 2020-03-31 Zebra Technologies Corporation Method, apparatus, and computer program product improving backhaul of sensor and other data to real time location system network
US11037196B2 (en) 2012-02-24 2021-06-15 Netclearance Systems, Inc. Interactive advertising using proximity events
US20210284445A1 (en) * 2013-03-13 2021-09-16 Symbotic Llc Storage and retrieval system rover interface
US11151534B2 (en) 2016-11-29 2021-10-19 Netclearance Systems, Inc. Consumer interaction module for point-of-sale (POS) systems
WO2021217440A1 (en) * 2020-04-28 2021-11-04 Robert Bosch Gmbh Mobile device, indoor positioning system and method
US11200535B1 (en) * 2020-10-08 2021-12-14 Glas, Inc. Systems and methods of wireless communication for inventory management
US11287511B2 (en) 2013-06-06 2022-03-29 Zebra Technologies Corporation Method, apparatus, and computer program product improving real time location systems with multiple location technologies
US20220109805A1 (en) * 2016-10-01 2022-04-07 Intel Corporation Technologies for structured media playback
US11334889B2 (en) 2016-11-29 2022-05-17 Netclearance Systems, Inc. Mobile ticketing based on proximity
US11391571B2 (en) 2014-06-05 2022-07-19 Zebra Technologies Corporation Method, apparatus, and computer program for enhancement of event visualizations based on location data
US20220245369A1 (en) * 2021-01-29 2022-08-04 Target Brands, Inc. Rfid-based positioning system for indoor environments
US11423464B2 (en) 2013-06-06 2022-08-23 Zebra Technologies Corporation Method, apparatus, and computer program product for enhancement of fan experience based on location data
US11442134B1 (en) * 2006-09-22 2022-09-13 Daedalus Technology Group, Inc. System for location in environment and identification tag
EP4239547A3 (en) * 2022-02-09 2023-10-18 Checkpoint Systems, Inc. Virtual shielding system and method for inventory tracking
US11856497B2 (en) 2015-11-18 2023-12-26 Discovery Limited Tracking and theft-recovery system for mobile assets

Families Citing this family (101)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7388491B2 (en) 2005-07-20 2008-06-17 Rockwell Automation Technologies, Inc. Mobile RFID reader with integrated location awareness for material tracking and management
US7764191B2 (en) 2005-07-26 2010-07-27 Rockwell Automation Technologies, Inc. RFID tag data affecting automation controller with internal database
US7931197B2 (en) 2005-09-20 2011-04-26 Rockwell Automation Technologies, Inc. RFID-based product manufacturing and lifecycle management
US7446662B1 (en) 2005-09-26 2008-11-04 Rockwell Automation Technologies, Inc. Intelligent RFID tag for magnetic field mapping
US8107446B2 (en) * 2005-11-07 2012-01-31 Radiofy Llc Wireless RFID networking systems and methods
EP1986068A1 (en) * 2006-01-26 2008-10-29 Fujitsu Ltd. Information processing device parts history management system
US7741967B2 (en) * 2006-02-13 2010-06-22 Xerox Corporation Locating system for items having RFID tags
US7813870B2 (en) * 2006-03-03 2010-10-12 Inrix, Inc. Dynamic time series prediction of future traffic conditions
US8700296B2 (en) 2006-03-03 2014-04-15 Inrix, Inc. Dynamic prediction of road traffic conditions
US7899611B2 (en) * 2006-03-03 2011-03-01 Inrix, Inc. Detecting anomalous road traffic conditions
US7912628B2 (en) 2006-03-03 2011-03-22 Inrix, Inc. Determining road traffic conditions using data from multiple data sources
US20070208498A1 (en) * 2006-03-03 2007-09-06 Inrix, Inc. Displaying road traffic condition information and user controls
US7940169B2 (en) * 2006-06-15 2011-05-10 General Electric Company System and method for installed base data maintenance
US7908076B2 (en) * 2006-08-18 2011-03-15 Inrix, Inc. Representative road traffic flow information based on historical data
US20080079577A1 (en) * 2006-09-29 2008-04-03 Symbol Technologies, Inc. Methods and apparatus for opportunistic locationing of RF tags
US9519876B2 (en) * 2006-10-05 2016-12-13 Trimble Navigation Limited Method for providing maintenance to an asset
US9041561B2 (en) * 2006-10-05 2015-05-26 Trimble Navigation Limited Method for controlling power usage of a reporting device
US8965841B2 (en) * 2006-10-05 2015-02-24 Trimble Navigation Limited Method for automatic asset classification
US9747329B2 (en) 2006-10-05 2017-08-29 Trimble Inc. Limiting access to asset management information
US9536405B2 (en) 2006-10-05 2017-01-03 Trimble Inc. Unreported event status change determination and alerting
US9111234B2 (en) * 2006-10-05 2015-08-18 Trimble Navigation Limited Enabling notifications pertaining to an asset
US9811949B2 (en) 2006-10-05 2017-11-07 Trimble Inc. Method for providing status information pertaining to an asset
US20080086391A1 (en) * 2006-10-05 2008-04-10 Kurt Maynard Impromptu asset tracking
US8645176B2 (en) * 2006-10-05 2014-02-04 Trimble Navigation Limited Utilizing historical data in an asset management environment
US9773222B2 (en) 2006-10-05 2017-09-26 Trimble Inc. Externally augmented asset management
US8666936B2 (en) * 2006-10-05 2014-03-04 Trimble Navigation Limited System and method for asset management
US9747571B2 (en) * 2006-10-05 2017-08-29 Trimble Inc. Integrated asset management
US20080136623A1 (en) * 2006-12-06 2008-06-12 Russell Calvarese Audio trigger for mobile devices
US8344949B2 (en) 2008-03-31 2013-01-01 Golba Llc Wireless positioning approach using time-delay of signals with a known transmission pattern
US8314736B2 (en) * 2008-03-31 2012-11-20 Golba Llc Determining the position of a mobile device using the characteristics of received signals and a reference database
US8294554B2 (en) 2006-12-18 2012-10-23 Radiofy Llc RFID location systems and methods
US7734181B2 (en) * 2007-04-09 2010-06-08 Ajang Bahar Devices, systems and methods for ad hoc wireless communication
US20080247759A1 (en) * 2007-04-09 2008-10-09 Ajang Bahar Devices, systems and methods for ad hoc wireless communication
US8600932B2 (en) 2007-05-07 2013-12-03 Trimble Navigation Limited Telematic asset microfluidic analysis
DE102007021744A1 (en) * 2007-05-09 2008-11-13 Siemens Ag Method and device for transporting objects to distribution points
JP2009015443A (en) * 2007-07-02 2009-01-22 Toshiba Tec Corp Radio tag reader-writer
US9119050B1 (en) 2007-08-13 2015-08-25 David Metcalf Apparatus and process for mobile comic serialization using messaging on the moving knowledge engine platform
US20090231138A1 (en) * 2008-03-14 2009-09-17 Chung Nam Electronics Co. Ltd. RFID Technology
US7800541B2 (en) 2008-03-31 2010-09-21 Golba Llc Methods and systems for determining the location of an electronic device
US9829560B2 (en) 2008-03-31 2017-11-28 Golba Llc Determining the position of a mobile device using the characteristics of received signals and a reference database
US10336603B2 (en) * 2008-04-21 2019-07-02 C.H. & I. Technologies, Inc. Aerosol refill cartridge with RFID chip
US8301330B2 (en) * 2008-05-02 2012-10-30 General Electric Company Method and system for providing supplemental services to telematics systems
FR2931615B1 (en) * 2008-05-22 2010-09-24 Mobilitech GEOLOCATION SYSTEM USING ELECTRONIC LABELS
US20100073481A1 (en) * 2008-09-19 2010-03-25 Christopher Kaltenbach Ceiling and wall surface mounted data management, remote monitoring and information display system
US8188863B2 (en) * 2008-11-26 2012-05-29 Symbol Technologies, Inc. Detecting loading and unloading of material
US8718669B2 (en) 2008-12-19 2014-05-06 At&T Mobility Ii Llc Tracking objects utilizing RFID tags
US20100236598A1 (en) * 2009-03-18 2010-09-23 Solar Semiconductor Pvt. Ltd. Embedded rfid solution for solar panels
BRPI1014364A2 (en) 2009-04-22 2019-09-24 Inrix Inc prediction of expected road traffic conditions based on current and historical data
US20110074555A1 (en) * 2009-09-29 2011-03-31 Electronics And Telecommunications Research Institute Mobile rfid device and data communication method thereof
US8229962B1 (en) 2009-10-19 2012-07-24 Quest Software, Inc. Location-aware task management systems and methods
US8767066B2 (en) * 2009-12-23 2014-07-01 Empire Technology Development Llc Information provision device using retro-reflecting article
US20110298657A1 (en) * 2010-06-01 2011-12-08 Electronics And Telecommunications Research Institute Transmitting apparatus and receiving apparatus for tracking position using gps and the method thereof
US20120278134A1 (en) * 2011-03-03 2012-11-01 The Cleveland Clinic Foundation System and method for operational and behavioral business intelligence
US8698598B2 (en) * 2011-03-11 2014-04-15 Google Inc. Digital punch card for mobile device
US8839135B2 (en) * 2011-03-29 2014-09-16 Nelson Irrigation Corporation Method and apparatus for irrigation system design registration and on-site sprinkler package configuration verification
US9760685B2 (en) 2011-05-16 2017-09-12 Trimble Inc. Telematic microfluidic analysis using handheld device
US9739763B2 (en) 2011-05-16 2017-08-22 Trimble Inc. Telematic locomotive microfluidic analysis
US9958280B2 (en) 2011-08-16 2018-05-01 Inrix, Inc. Assessing inter-modal passenger travel options
CA2845834C (en) 2011-08-29 2019-04-23 Crown Equipment Corporation Forklift navigation system
EP3495908B1 (en) 2011-08-29 2022-12-07 Crown Equipment Corporation Multimode vehicular navigation control
RU2621401C2 (en) * 2011-08-29 2017-06-05 Краун Эквипмент Корпорейшн Vehicle navigation control system (versions) and vehicle based thereon (versions)
US9086470B2 (en) 2011-11-29 2015-07-21 Shalom Daskal Method and apparatus for mapping buildings
US9747480B2 (en) 2011-12-05 2017-08-29 Adasa Inc. RFID and robots for multichannel shopping
US9780435B2 (en) 2011-12-05 2017-10-03 Adasa Inc. Aerial inventory antenna
US10050330B2 (en) 2011-12-05 2018-08-14 Adasa Inc. Aerial inventory antenna
US10846497B2 (en) 2011-12-05 2020-11-24 Adasa Inc. Holonomic RFID reader
US10476130B2 (en) 2011-12-05 2019-11-12 Adasa Inc. Aerial inventory antenna
US11093722B2 (en) 2011-12-05 2021-08-17 Adasa Inc. Holonomic RFID reader
TWI470474B (en) * 2012-01-02 2015-01-21 Univ Nat Central Teaching apparatus and teaching method based on digital board game
US9225383B2 (en) 2012-03-14 2015-12-29 Geoforce, Inc. System and method for implementation of a direct sequence spread spectrum transmitter
TWI452536B (en) * 2012-03-22 2014-09-11 Sung Tsun Shih Barreled gas delivery and managment method
US9049641B2 (en) 2012-04-10 2015-06-02 Geoforce, Inc. Apparatus and method for radio frequency silencing in oil and gas operations, excavation sites, and other environments
US9082102B2 (en) 2012-04-10 2015-07-14 Geoforce, Inc. System and method for remote equipment data management
US9916555B2 (en) 2012-04-10 2018-03-13 Geoforce, Inc. Location tracking with integrated identification of cargo carrier contents and related system and method
US9779596B2 (en) * 2012-10-24 2017-10-03 Apple Inc. Devices and methods for locating accessories of an electronic device
US9235823B2 (en) * 2012-11-05 2016-01-12 Bernsten International, Inc. Underground asset management system
WO2014128234A2 (en) * 2013-02-22 2014-08-28 Ekvr Ag Method for registering, making an inventory of, managing, checking and monitoring tangible and intangible rights and/or goods
US8942897B2 (en) * 2013-03-18 2015-01-27 Cnh Industrial America Llc System and method for determining a location of an unloaded unit of agricultural product and locating a desired unit of agricultural product
TWI502514B (en) * 2013-05-31 2015-10-01 Wistron Corp Electronic apparatus, method and system for measuring location
US8991692B2 (en) * 2013-06-10 2015-03-31 The Boeing Company Managing component information during component lifecycle
WO2015000499A1 (en) * 2013-07-01 2015-01-08 Abb Technology Ag Distributed control system with a location management unit and location aware field devices
WO2015078926A1 (en) * 2013-11-29 2015-06-04 Icon Clinical Research Limited Clinical trial data capture
WO2015149107A1 (en) * 2014-03-31 2015-10-08 Datadot Technology Limited Method and system for tracking assets
US9759803B2 (en) 2014-06-06 2017-09-12 Zih Corp. Method, apparatus, and computer program product for employing a spatial association model in a real time location system
US11075819B2 (en) 2014-08-07 2021-07-27 Ca, Inc. Identifying unauthorized changes to network elements and determining the impact of unauthorized changes to network elements on network services
US10339619B2 (en) * 2015-08-25 2019-07-02 Scott Arthur William Muirhead Method and apparatus for presenting supply chain information to a consumer
CA2999759A1 (en) * 2015-09-25 2017-03-30 Walmart Apollo, Llc Method and apparatus to facilitate a planned automated route through a warehouse
US9510157B2 (en) * 2015-12-29 2016-11-29 Caterpillar Inc. Tracking mobile resource at manufacturing site
US10127420B2 (en) 2016-08-04 2018-11-13 Industrial Technology Research Institute Location based situation awareness system and method thereof
US10643039B2 (en) 2016-08-04 2020-05-05 Industrial Technology Research Institute Location based situation awareness system and method thereof
RU2665914C1 (en) * 2017-08-14 2018-09-04 Публичное акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королева" Moved objects on the space craft storage and identification device
US10397759B1 (en) 2018-05-18 2019-08-27 Zebra Technologies Corporation System, method and apparatus for collecting inventory scan data
US11641563B2 (en) 2018-09-28 2023-05-02 Apple Inc. System and method for locating wireless accessories
US10891582B2 (en) * 2018-10-23 2021-01-12 Sap Se Smart inventory for logistics
WO2020091687A1 (en) * 2018-11-01 2020-05-07 Lim Heng Cong Louis Iot smart label system for storage of articles
US20220200789A1 (en) * 2019-04-17 2022-06-23 Apple Inc. Sharing keys for a wireless accessory
US11863671B1 (en) 2019-04-17 2024-01-02 Apple Inc. Accessory assisted account recovery
IT201900010017A1 (en) * 2019-06-25 2020-12-25 Ingfor S R L REAL-TIME OBJECT LOCATION SYSTEM
WO2021178963A1 (en) * 2020-03-06 2021-09-10 Proxy, Inc. Authorized off-line access methods and apparatus
US11889302B2 (en) 2020-08-28 2024-01-30 Apple Inc. Maintenance of wireless devices
US11620468B2 (en) * 2021-05-25 2023-04-04 Infinite Peripherals, Inc. Remotely managing a ring scanner device, and applications thereof

Citations (96)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5621199A (en) * 1995-04-03 1997-04-15 Datalogic, Inc. RFID reader
US5629981A (en) * 1994-07-29 1997-05-13 Texas Instruments Incorporated Information management and security system
US5785181A (en) * 1995-11-02 1998-07-28 Clothestrak, Inc. Permanent RFID garment tracking system
US5874896A (en) * 1996-08-26 1999-02-23 Palomar Technologies Corporation Electronic anti-shoplifting system employing an RFID tag
US5874724A (en) * 1997-01-10 1999-02-23 International Business Machines Corporation Light selectable radio frequency identification tag and method therefor
US5905249A (en) * 1991-11-04 1999-05-18 Spectra-Physics Scanning Systems, Inc. Multiple-interface selection system for computer peripherals
US5910776A (en) * 1994-10-24 1999-06-08 Id Technologies, Inc. Method and apparatus for identifying locating or monitoring equipment or other objects
US6049745A (en) * 1997-02-10 2000-04-11 Fmc Corporation Navigation system for automatic guided vehicle
US6170059B1 (en) * 1998-07-10 2001-01-02 International Business Machines Corporation Tracking memory modules within a computer system
US6169483B1 (en) * 1999-05-04 2001-01-02 Sensormatic Electronics Corporation Self-checkout/self-check-in RFID and electronics article surveillance system
US6172609B1 (en) * 1997-05-14 2001-01-09 Avid Identification Systems, Inc. Reader for RFID system
US20010000019A1 (en) * 1997-07-24 2001-03-15 Bowers John H. Inventory system using articles with RFID tags
US6263440B1 (en) * 1998-07-10 2001-07-17 International Business Machines Corporation Tracking and protection of display monitors by reporting their identity
US20010008390A1 (en) * 2000-01-14 2001-07-19 3M Innovative Properties Company User interface for portable rfid reader
US6264106B1 (en) * 1999-12-27 2001-07-24 Symbol Technologies, Inc. Combination bar code scanner/RFID circuit
US6265976B1 (en) * 2000-06-23 2001-07-24 Single Chip Systems Corporation Method and apparatus for providing receiver dual channel coupling in a reader for RFID tags
US6272321B1 (en) * 1996-09-13 2001-08-07 Temic Semiconductor Gmbh Method for tuning an oscillating receiver circuit of a transponder built into a RFID system
US6275681B1 (en) * 1998-04-16 2001-08-14 Motorola, Inc. Wireless electrostatic charging and communicating system
US6282407B1 (en) * 1998-04-16 2001-08-28 Motorola, Inc. Active electrostatic transceiver and communicating system
US20020005774A1 (en) * 2000-03-24 2002-01-17 Rudolph Richard F. RFID Tag For Authentication And Identification
US6342839B1 (en) * 1998-03-09 2002-01-29 Aginfolink Holdings Inc. Method and apparatus for a livestock data collection and management system
US6354493B1 (en) * 1999-12-23 2002-03-12 Sensormatic Electronics Corporation System and method for finding a specific RFID tagged article located in a plurality of RFID tagged articles
US6362738B1 (en) * 1998-04-16 2002-03-26 Motorola, Inc. Reader for use in a radio frequency identification system and method thereof
US6377203B1 (en) * 2000-02-01 2002-04-23 3M Innovative Properties Company Collision arbitration method and apparatus for reading multiple radio frequency identification tags
US6377176B1 (en) * 2000-06-13 2002-04-23 Applied Wireless Identifications Group, Inc. Metal compensated radio frequency identification reader
US6392544B1 (en) * 2000-09-25 2002-05-21 Motorola, Inc. Method and apparatus for selectively activating radio frequency identification tags that are in close proximity
US6400272B1 (en) * 1999-04-01 2002-06-04 Presto Technologies, Inc. Wireless transceiver for communicating with tags
US6401936B1 (en) * 1999-04-30 2002-06-11 Siemens Electrocom, L.P. Divert apparatus for conveyor system
US6409401B1 (en) * 2000-03-30 2002-06-25 Zih Corp. Portable printer with RFID encoder
US6415978B1 (en) * 1999-05-03 2002-07-09 Psc Scanning, Inc. Multiple technology data reader for bar code labels and RFID tags
US6429776B1 (en) * 2001-02-07 2002-08-06 Sensormatic Electronics Corporation RFID reader with integrated display for use in a product tag system
US6505780B1 (en) * 2001-12-05 2003-01-14 Koninklijke Philips Electronics N.V. Personalize vehicle settings using RF tags
US6517000B1 (en) * 1999-05-03 2003-02-11 Psc Scanning, Inc. Dual ended cable for connecting electronic article surveillance antenna with RFID equipment
US6523752B2 (en) * 2000-02-23 2003-02-25 Matsushita Electric Industrial Co., Ltd. RFID reader and communications apparatus, and delivery article sorting method and system using RFID reader and communications apparatus
US6529880B1 (en) * 1999-12-01 2003-03-04 Intermec Ip Corp. Automatic payment system for a plurality of remote merchants
US6547040B2 (en) * 2001-04-02 2003-04-15 Ncr Corporation Self-service checkout system with RFID capability
US6554187B2 (en) * 2001-03-23 2003-04-29 Ncr Corporation Method of detecting and managing RFID labels on items brought into a store by a customer
US6563425B2 (en) * 2000-08-11 2003-05-13 Escort Memory Systems RFID passive repeater system and apparatus
US6566997B1 (en) * 1999-12-03 2003-05-20 Hid Corporation Interference control method for RFID systems
US6585165B1 (en) * 1999-06-29 2003-07-01 Sony Chemicals Corp. IC card having a mica capacitor
US6593853B1 (en) * 2000-02-18 2003-07-15 Brady Worldwide, Inc. RFID label printing system
US6607123B1 (en) * 1998-03-19 2003-08-19 S World Golf Systems Ltd. Identifying golf balls
US6608561B2 (en) * 1998-05-19 2003-08-19 Meat Processing Service Corp., Inc. Method for making a radio frequency identification device
US6608551B1 (en) * 1999-09-13 2003-08-19 Intermec Ip Corp Low-cost radio replacement utilizing RFID technology
US6677852B1 (en) * 1999-09-22 2004-01-13 Intermec Ip Corp. System and method for automatically controlling or configuring a device, such as an RFID reader
US6687293B1 (en) * 2000-06-23 2004-02-03 Microchip Technology Incorporated Method, system and apparatus for calibrating a pulse position modulation (PPM) decoder to a PPM signal
US20040032443A1 (en) * 2002-08-16 2004-02-19 Moylan Peter Francis Portable printer with RFID read/write capability
US6700931B1 (en) * 2000-07-06 2004-03-02 Microchip Technology Incorporated Method, system and apparatus for initiating and maintaining synchronization of a pulse position modulation (PPM) decoder with a received PPM signal
US6707376B1 (en) * 2002-08-09 2004-03-16 Sensormatic Electronics Corporation Pulsed power method for increased read range for a radio frequency identification reader
US6712276B1 (en) * 1999-01-29 2004-03-30 International Business Machines Corporation Method and apparatus for automated measurement of properties of perishable consumer products
US6714121B1 (en) * 1999-08-09 2004-03-30 Micron Technology, Inc. RFID material tracking method and apparatus
US20040066281A1 (en) * 2002-10-02 2004-04-08 Hughes Michael A. System and method to identify multiple RFID tags
US20040069851A1 (en) * 2001-03-13 2004-04-15 Grunes Mitchell B. Radio frequency identification reader with removable media
US6724308B2 (en) * 2000-08-11 2004-04-20 Escort Memory Systems RFID tracking method and system
US6726099B2 (en) * 2002-09-05 2004-04-27 Honeywell International Inc. RFID tag having multiple transceivers
US20040095910A1 (en) * 2002-11-18 2004-05-20 Bryan Metts PLC based wireless communications
US6745008B1 (en) * 2000-06-06 2004-06-01 Battelle Memorial Institute K1-53 Multi-frequency communication system and method
US6747560B2 (en) * 2002-06-27 2004-06-08 Ncr Corporation System and method of detecting movement of an item
US6750769B1 (en) * 2002-12-12 2004-06-15 Sun Microsystems, Inc. Method and apparatus for using RFID tags to determine the position of an object
US6752277B1 (en) * 2002-08-20 2004-06-22 Masters Of Branding, Inc. Product display system using radio frequency identification
US20040124988A1 (en) * 2002-11-21 2004-07-01 Leonard Stephen B. Products having RFID tags to provide information to product consumers
US6784813B2 (en) * 2001-02-12 2004-08-31 Matrics, Inc. Method, system, and apparatus for remote data calibration of a RFID tag population
US6784789B2 (en) * 1999-07-08 2004-08-31 Intermec Ip Corp. Method and apparatus for verifying RFID tags
US6842106B2 (en) * 2002-10-04 2005-01-11 Battelle Memorial Institute Challenged-based tag authentication model
US20050012613A1 (en) * 2003-05-19 2005-01-20 Checkpoints Systems, Inc. Article identification and tracking using electronic shadows created by RFID tags
US6847856B1 (en) * 2003-08-29 2005-01-25 Lucent Technologies Inc. Method for determining juxtaposition of physical components with use of RFID tags
US20050021369A1 (en) * 2003-07-21 2005-01-27 Mark Cohen Systems and methods for context relevant information management and display
US6853294B1 (en) * 2000-07-26 2005-02-08 Intermec Ip Corp. Networking applications for automated data collection
US6853303B2 (en) * 2002-11-21 2005-02-08 Kimberly-Clark Worldwide, Inc. RFID system and method for ensuring personnel safety
US20050035849A1 (en) * 2003-08-12 2005-02-17 Yadgar Yizhack Method and system for inventory count of articles with RFID tags
US20050040934A1 (en) * 2003-08-22 2005-02-24 Kenneth Shanton Point-of-purchase display with RFID inventory control
US20050052283A1 (en) * 2003-09-09 2005-03-10 Collins Timothy J. Method and apparatus for multiple frequency RFID tag architecture
US20050058483A1 (en) * 2003-09-12 2005-03-17 Chapman Theodore A. RFID tag and printer system
US6870797B2 (en) * 2001-01-04 2005-03-22 Hewlett-Packard Development Company, L.P. Media storage system using a transponder for transmitting data signal
US6873260B2 (en) * 2000-09-29 2005-03-29 Kenneth J. Lancos System and method for selectively allowing the passage of a guest through a region within a coverage area
US6879809B1 (en) * 1998-04-16 2005-04-12 Motorola, Inc. Wireless electrostatic charging and communicating system
US20050083180A1 (en) * 2000-01-06 2005-04-21 Horwitz Clifford A. System for multi-standard RFID tags
US20050088299A1 (en) * 2003-10-24 2005-04-28 Bandy William R. Radio frequency identification (RFID) based sensor networks
US6888459B2 (en) * 2003-02-03 2005-05-03 Louis A. Stilp RFID based security system
US20050092825A1 (en) * 2003-11-04 2005-05-05 Captech Ventures, Inc. System and method for RFID system integration
US20050093678A1 (en) * 2003-11-04 2005-05-05 Forster Ian J. RFID tag with enhanced readability
US20050110641A1 (en) * 2002-03-18 2005-05-26 Greg Mendolia RFID tag reading system and method
US6901304B2 (en) * 2002-01-11 2005-05-31 Sap Aktiengesellschaft Item tracking system architectures providing real-time visibility to supply chain
US6903656B1 (en) * 2003-05-27 2005-06-07 Applied Wireless Identifications Group, Inc. RFID reader with multiple antenna selection and automated antenna matching
US20050140511A1 (en) * 2003-12-29 2005-06-30 Clayton Bonnell System for tracking items
US20050143916A1 (en) * 2003-12-26 2005-06-30 In-Jun Kim Positioning apparatus and method combining RFID, GPS and INS
US20050149414A1 (en) * 2003-12-30 2005-07-07 Kimberly-Clark Worldwide, Inc. RFID system and method for managing out-of-stock items
US6917291B2 (en) * 1998-10-26 2005-07-12 Identec Solutions Inc. Interrogation, monitoring and data exchange using RFID tags
US20050154572A1 (en) * 2004-01-14 2005-07-14 Sweeney Patrick J.Ii Radio frequency identification simulator and tester
US20050159913A1 (en) * 2004-01-20 2005-07-21 Tomonori Ariyoshi Read-write processing device for RFID tag
US20050155213A1 (en) * 2004-01-12 2005-07-21 Symbol Technologies, Inc. Radio frequency identification tag inlay sortation and assembly
US20050162256A1 (en) * 2004-01-27 2005-07-28 Nec Infrontia Corporation Method and system for acquiring maintenance information by an RFID tag
US20050170784A1 (en) * 2004-01-27 2005-08-04 Omron Corporation Read-write processing apparatus and method for RFID tag
US20050177423A1 (en) * 2004-02-06 2005-08-11 Capital One Financial Corporation System and method of using RFID devices to analyze customer traffic patterns in order to improve a merchant's layout
US20060006231A1 (en) * 2004-07-09 2006-01-12 Psc Scanning, Inc. Portable data reading device with integrated web server for configuration and data extraction
US20070159311A1 (en) * 2006-01-06 2007-07-12 Scott Schober Vehicle separation warning device

Family Cites Families (200)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2999499A (en) * 1958-07-11 1961-09-12 Cutter Lab Flexible check valve
US3858212A (en) 1972-08-29 1974-12-31 L Tompkins Multi-purpose information gathering and distribution system
GB2060785B (en) * 1979-09-26 1983-11-23 Hamworthy Engineering Opposed piston machinery
US4722372A (en) * 1985-08-02 1988-02-02 Louis Hoffman Associates Inc. Electrically operated dispensing apparatus and disposable container useable therewith
US4949299A (en) 1987-12-04 1990-08-14 Allen-Bradley Company, Inc. Industrial control communication network and method
US4967940A (en) * 1989-02-21 1990-11-06 Minnesota Mining And Manufacturing Co. Method and apparatus for precision squeeze tube valving, pumping and dispensing of work fluid(s)
US5494193A (en) * 1990-06-06 1996-02-27 The Coca-Cola Company Postmix beverage dispensing system
US5947167A (en) * 1992-05-11 1999-09-07 Cytologix Corporation Dispensing assembly with interchangeable cartridge pumps
US5300875A (en) 1992-06-08 1994-04-05 Micron Technology, Inc. Passive (non-contact) recharging of secondary battery cell(s) powering RFID transponder tags
GB9211539D0 (en) 1992-06-01 1992-07-15 Ducost Eng Ltd Control of paint spraying machines and the like
US5613228A (en) 1992-07-06 1997-03-18 Micron Technology, Inc. Gain adjustment method in two-way communication systems
US5402477A (en) 1992-07-31 1995-03-28 Mcmahan; Michael L. System and method for configuring a telephone
US5701127A (en) 1993-02-23 1997-12-23 Texas Instruments Incorporated Automatic vehicle identification system capable of vehicle lane discrimination
US20050192727A1 (en) 1994-05-09 2005-09-01 Automotive Technologies International Inc. Sensor Assemblies
US5798693A (en) 1995-06-07 1998-08-25 Engellenner; Thomas J. Electronic locating systems
US5952935A (en) 1996-05-03 1999-09-14 Destron-Fearing Corporation Programmable channel search reader
US6802659B2 (en) 1996-08-07 2004-10-12 Mats Cremon Arrangement for automatic setting of programmable devices and materials therefor
US5983200A (en) 1996-10-09 1999-11-09 Slotznick; Benjamin Intelligent agent for executing delegated tasks
US6812824B1 (en) * 1996-10-17 2004-11-02 Rf Technologies, Inc. Method and apparatus combining a tracking system and a wireless communication system
US6353406B1 (en) * 1996-10-17 2002-03-05 R.F. Technologies, Inc. Dual mode tracking system
US6445969B1 (en) 1997-01-27 2002-09-03 Circuit Image Systems Statistical process control integration systems and methods for monitoring manufacturing processes
US6144301A (en) 1997-02-10 2000-11-07 Safetrac Control Systems, Inc. Electronic tracking tag
US6441854B2 (en) 1997-02-20 2002-08-27 Eastman Kodak Company Electronic camera with quick review of last captured image
US5822714A (en) 1997-03-05 1998-10-13 International Business Machines Corporation Data processing system and method for accessing a plurality of radio frequency identification tags
US5971587A (en) 1997-08-01 1999-10-26 Kato; Kiroku Package and mail delivery system
CA2301640C (en) 1997-09-11 2005-05-03 Precision Dynamics Corporation Laminated radio frequency identification device
US7028899B2 (en) 1999-06-07 2006-04-18 Metrologic Instruments, Inc. Method of speckle-noise pattern reduction and apparatus therefore based on reducing the temporal-coherence of the planar laser illumination beam before it illuminates the target object by applying temporal phase modulation techniques during the transmission of the plib towards the target
US6205362B1 (en) 1997-11-24 2001-03-20 Agilent Technologies, Inc. Constructing applications in distributed control systems using components having built-in behaviors
US6664897B2 (en) 1998-03-09 2003-12-16 William R. Pape Method and system for livestock data collection and management
US6211789B1 (en) 1998-03-09 2001-04-03 Courtney A. Oldham Method and system for manual entry of data into integrated electronic database for livestock data collection
US6476708B1 (en) 1998-03-20 2002-11-05 Hid Corporation Detection of an RFID device by an RF reader unit operating in a reduced power state
US5949335A (en) 1998-04-14 1999-09-07 Sensormatic Electronics Corporation RFID tagging system for network assets
US6121878A (en) 1998-05-01 2000-09-19 Intermec Ip Corp. System for controlling assets
US5964656A (en) 1998-05-19 1999-10-12 Meat Processing Service Corp. Inc. Radio frequency identification device and method of use
US6115616A (en) 1998-05-28 2000-09-05 International Business Machines Corporation Hand held telephone set with separable keyboard
WO2000002236A2 (en) 1998-07-07 2000-01-13 Memc Electronic Materials, Inc. Radio frequency identification system and method for tracking silicon wafers
US6154790A (en) 1998-07-10 2000-11-28 International Business Machines Monitoring and reporting hard disk drives identification using radio frequency
US6116505A (en) 1998-07-21 2000-09-12 Gilbarco Inc. Fuel transaction system for enabling the purchase of fuel and non-fuel items on a single authorization
ATE352829T1 (en) 1998-08-14 2007-02-15 3M Innovative Properties Co APPLICATION FOR RADIO FREQUENCY IDENTIFICATION SYSTEMS
JP4013350B2 (en) 1998-09-18 2007-11-28 株式会社日立製作所 Recycling system for waste industrial products
US6091998A (en) 1998-09-30 2000-07-18 Rockwell Technologies, Llc Self organizing industrial control system using bidding process
US5992096A (en) 1998-10-19 1999-11-30 Pooch Pass, Inc. Controllable pet access system
US6282455B1 (en) 1998-10-19 2001-08-28 Rockwell Technologies, Llc Walk-through human/machine interface for industrial control
US6587856B1 (en) 1998-12-07 2003-07-01 Oracle International Corporation Method and system for representing and accessing object-oriented data in a relational database system
US6828902B2 (en) * 1998-12-14 2004-12-07 Soundcraft, Inc. Wireless data input to RFID reader
US6285295B1 (en) 1998-12-14 2001-09-04 Martin S. Casden Passive remote programmer for induction type RFID readers
US6317027B1 (en) 1999-01-12 2001-11-13 Randy Watkins Auto-tunning scanning proximity reader
US6622567B1 (en) 1999-03-01 2003-09-23 Microstrain, Inc. Micropower peak strain detection system for remote interrogation
US6236911B1 (en) * 1999-04-20 2001-05-22 Supersensor (Proprietary) Limited Load monitoring system and method utilizing transponder tags
US6999955B1 (en) 1999-04-20 2006-02-14 Microsoft Corporation Systems and methods for estimating and integrating measures of human cognitive load into the behavior of computational applications and services
US6150948A (en) 1999-04-24 2000-11-21 Soundcraft, Inc. Low-power radio frequency identification reader
US6700533B1 (en) * 1999-05-06 2004-03-02 Rf Technologies, Inc. Asset and personnel tagging system utilizing GPS
US6366206B1 (en) 1999-06-02 2002-04-02 Ball Semiconductor, Inc. Method and apparatus for attaching tags to medical and non-medical devices
DE19940403A1 (en) 1999-08-25 2001-03-01 Sick Ag Method and device for identifying and determining the position of objects
US6286762B1 (en) 1999-09-21 2001-09-11 Intermec Ip Corp. Method and apparatus to perform a predefined search on data carriers, such as RFID tags
US6318636B1 (en) 1999-09-21 2001-11-20 Intermec Ip Corp. Method and apparatus to read different types of data carriers, such RFID tags and machine-readable symbols, and a user interface for the same
US6286763B1 (en) 1999-09-21 2001-09-11 Intermac Ip Corp. Method and apparatus to automatically search data carriers, such as RFID tags and machine-readable symbols
US6297734B1 (en) 1999-09-23 2001-10-02 Northrop Grumman Corporation Randomization of transmit time
US7411921B2 (en) 1999-10-21 2008-08-12 Rf Technologies, Inc. Method and apparatus for integrating wireless communication and asset location
US6400372B1 (en) 1999-11-29 2002-06-04 Xerox Corporation Methods and apparatuses for selecting levels of detail for objects having multi-resolution models in graphics displays
US6650227B1 (en) 1999-12-08 2003-11-18 Hid Corporation Reader for a radio frequency identification system having automatic tuning capability
US6943678B2 (en) 2000-01-24 2005-09-13 Nextreme, L.L.C. Thermoformed apparatus having a communications device
US6451154B1 (en) 2000-02-18 2002-09-17 Moore North America, Inc. RFID manufacturing concepts
GB0004456D0 (en) 2000-02-26 2000-04-19 Glaxo Group Ltd Medicament dispenser
GB0004455D0 (en) 2000-02-26 2000-04-19 Glaxo Group Ltd Manufacturing method
US6865509B1 (en) 2000-03-10 2005-03-08 Smiths Detection - Pasadena, Inc. System for providing control to an industrial process using one or more multidimensional variables
CA2402677A1 (en) 2000-03-15 2001-09-20 International Paper Intelligent package for controlled product distribution
EP1360619A2 (en) 2000-04-07 2003-11-12 The Procter & Gamble Company Method and apparatus for monitoring the effective velocity of items through a store or warehouse
US7194072B2 (en) 2000-04-19 2007-03-20 Gamble Oliver W Method and system for remotely accessing and controlling remote devices
AU2001254551A1 (en) 2000-04-20 2001-11-07 Cogiscan Inc. Automated manufacturing control system
US6377764B1 (en) 2000-06-26 2002-04-23 Xerox Corporation Method and apparatus for communication, without a solid medium, among control boards in a printing apparatus
US6816817B1 (en) 2000-09-28 2004-11-09 Rockwell Automation Technologies, Inc. Networked control system with real time monitoring
US6685059B2 (en) * 2000-09-29 2004-02-03 Pepsico, Inc. Brewed iced tea or non-carbonated drink dispenser
MXPA03003121A (en) 2000-10-10 2005-06-30 Escort Memory Systems Modular rfid antenna system.
US6883710B2 (en) 2000-10-11 2005-04-26 Amerasia International Technology, Inc. Article tracking system and method
DE10061299A1 (en) 2000-12-08 2002-06-27 Siemens Ag Device for determining and / or forwarding at least one environmental influence, production method and use thereof
US6600418B2 (en) 2000-12-12 2003-07-29 3M Innovative Properties Company Object tracking and management system and method using radio-frequency identification tags
US7155264B2 (en) 2000-12-22 2006-12-26 Terahop Networks, Inc. Systems and methods having LPRF device wake up using wireless tag
US6885860B2 (en) * 2001-01-19 2005-04-26 Microsoft Corporation Information management and processing in a wireless network
US6480100B1 (en) 2001-03-09 2002-11-12 Sat Corporation Radio frequency identification tag formatting method
US6861954B2 (en) 2001-03-30 2005-03-01 Bruce H. Levin Tracking medical products with integrated circuits
US6793127B2 (en) 2001-04-04 2004-09-21 Koninklijke Philips Electronics N.V. Internet enabled resource constrained terminal for processing tags
US6812838B1 (en) 2001-04-26 2004-11-02 Key-Trak, Inc. Key control system using separate ID and location detection mechanisms
US7076441B2 (en) * 2001-05-03 2006-07-11 International Business Machines Corporation Identification and tracking of persons using RFID-tagged items in store environments
US6703935B1 (en) 2001-05-14 2004-03-09 Amerasia International Technology, Inc. Antenna arrangement for RFID smart tags
US7588185B2 (en) 2001-06-07 2009-09-15 3M Innovative Properties Company RFID data collection and use
US6501382B1 (en) 2001-06-11 2002-12-31 Timken Company Bearing with data storage device
US6621417B2 (en) 2001-08-09 2003-09-16 Edgar Alan Duncan Passive RFID transponder/reader system and method for hidden obstacle detection and avoidance
US7127507B1 (en) 2001-09-27 2006-10-24 Sprint Communications Company L.P. Method and apparatus for network-level monitoring of queue-based messaging systems
US6737973B2 (en) 2001-10-15 2004-05-18 3M Innovative Properties Company Amplifier modulation
US6669089B2 (en) 2001-11-12 2003-12-30 3M Innovative Properties Co Radio frequency identification systems for asset tracking
US7644863B2 (en) 2001-11-14 2010-01-12 Sap Aktiengesellschaft Agent using detailed predictive model
US7398232B2 (en) 2001-11-14 2008-07-08 Sap Aktiengesellschaft Inventory early warning agent in a supply chain management system
US6809646B1 (en) 2001-12-06 2004-10-26 Applied Wireless Identifications Group, Inc. Thin implantable RFID transponder suitable for use in an identification badge
US6614392B2 (en) 2001-12-07 2003-09-02 Delaware Capital Formation, Inc. Combination RFID and GPS functionality on intelligent label
US7380213B2 (en) 2001-12-28 2008-05-27 Kimberly-Clark Worldwide, Inc. User interface for reporting event-based production information in product manufacturing
EP1470613A4 (en) 2002-01-09 2005-10-05 Meadwestvaco Corp Intelligent station using multiple rf antennae and inventory control system and method incorporating same
US8321302B2 (en) 2002-01-23 2012-11-27 Sensormatic Electronics, LLC Inventory management system
US6812841B2 (en) 2002-01-23 2004-11-02 Intermec Ip Corp. Passive RFID tag that retains state after temporary loss of power
US6935560B2 (en) 2002-02-26 2005-08-30 Safety Syringes, Inc. Systems and methods for tracking pharmaceuticals within a facility
JP4434549B2 (en) 2002-03-07 2010-03-17 株式会社日立製作所 Management apparatus and management method
US7183922B2 (en) 2002-03-18 2007-02-27 Paratek Microwave, Inc. Tracking apparatus, system and method
US20030203730A1 (en) 2002-04-11 2003-10-30 Dadong Wan Location-based remote monitoring
US6774797B2 (en) * 2002-05-10 2004-08-10 On Guard Plus Limited Wireless tag and monitoring center system for tracking the activities of individuals
US6808116B1 (en) 2002-05-29 2004-10-26 At&T Corp. Fiber jumpers with data storage method and apparatus
US7075412B1 (en) 2002-05-30 2006-07-11 Thingmagic L.L.C. Methods and apparatus for operating a radio device
US20040008123A1 (en) 2002-07-15 2004-01-15 Battelle Memorial Institute System and method for tracking medical devices
US6878896B2 (en) * 2002-07-24 2005-04-12 United Parcel Service Of America, Inc. Synchronous semi-automatic parallel sorting
US6859757B2 (en) 2002-07-31 2005-02-22 Sap Aktiengesellschaft Complex article tagging with maintenance related information
US8219466B2 (en) 2002-08-05 2012-07-10 John Yupeng Gui System and method for providing asset management and tracking capabilities
US6975229B2 (en) 2002-08-09 2005-12-13 Battelle Memorial Institute K1-53 System and method for acquisition management of subject position information
US20040046642A1 (en) 2002-09-05 2004-03-11 Honeywell International Inc. Protocol for addressing groups of RFID tags
US7079023B2 (en) 2002-10-04 2006-07-18 Sap Aktiengesellschaft Active object identification and data collection
US7230730B2 (en) 2002-10-29 2007-06-12 Hewlett-Packard Development Company, L.P. Selective printing after consumable exhaustion
US6866195B2 (en) 2002-10-31 2005-03-15 United Parcel Service Of America, Inc. Systems and methods of inventory management utilizing unattended facilities
US7278571B2 (en) 2002-11-15 2007-10-09 Sensitech Inc. Methods and apparatus for communicating condition information associated with an item
US7061379B2 (en) 2002-11-21 2006-06-13 Kimberly-Clark Worldwide, Inc. RFID system and method for ensuring safety of hazardous or dangerous substances
US7221258B2 (en) 2002-11-23 2007-05-22 Kathleen Lane Hierarchical electronic watermarks and method of use
US6791603B2 (en) 2002-12-03 2004-09-14 Sensormatic Electronics Corporation Event driven video tracking system
US6840445B2 (en) 2002-12-09 2005-01-11 Caterpillar Inc. System and method for compiling a machine service history
US7066388B2 (en) 2002-12-18 2006-06-27 Symbol Technologies, Inc. System and method for verifying RFID reads
US20040220860A1 (en) 2002-12-20 2004-11-04 Michael Persky Self-checkout system having integrated RFID reader
US6940408B2 (en) 2002-12-31 2005-09-06 Avery Dennison Corporation RFID device and method of forming
US7053764B2 (en) 2003-02-03 2006-05-30 Ingrid, Inc. Controller for a security system
US7373087B2 (en) 2003-02-27 2008-05-13 Oplink Communications, Inc. Adaptive optical transponder
US7248159B2 (en) 2003-03-01 2007-07-24 User-Centric Ip, Lp User-centric event reporting
US7212637B2 (en) 2003-03-11 2007-05-01 Rimage Corporation Cartridge validation with radio frequency identification
US20040181467A1 (en) 2003-03-14 2004-09-16 Samir Raiyani Multi-modal warehouse applications
DE10314260A1 (en) 2003-03-29 2004-10-07 Abb Patent Gmbh Individual identification of transportable objects during manufacturing processes, whereby objects are identified with detachable identification means that can be written to or read from by read-write units during the process
US7103087B2 (en) 2003-03-31 2006-09-05 Intermec Ip Corp. Frequency hopping spread spectrum scheme for RFID reader
US20050179521A1 (en) 2004-02-12 2005-08-18 Intermec Ip Corp. Frequency hopping method for RFID tag
US7135976B2 (en) 2003-03-31 2006-11-14 Rftrax, Inc. Wireless monitoring device
FR2853982B1 (en) 2003-04-17 2009-05-22 Alcea METHOD AND DEVICE FOR DETECTION AND IDENTIFICATION OF OBJECTS, SECURE CONTAINERS AND SYSTEMS HAVING SUCH DEVICE, AND OBJECTS ADAPTED FOR THIS METHOD
US7336243B2 (en) 2003-05-29 2008-02-26 Sky Cross, Inc. Radio frequency identification tag
US6992574B2 (en) 2003-07-02 2006-01-31 International Business Machines Corporation Object matching via RFID
US6868630B2 (en) * 2003-08-04 2005-03-22 Paul T. Kim Picture holding system
US7073712B2 (en) 2003-08-06 2006-07-11 Clintrak Clinical Labeling Services, Llc RFID encoding/verifying apparatus
US20050062603A1 (en) 2003-08-06 2005-03-24 Oren Fuerst Secure, networked and wireless access, storage and retrival system and method utilizing tags and modular nodes
US6897763B2 (en) 2003-08-07 2005-05-24 Eastman Kodak Company Retail signage management system
US7023342B2 (en) 2003-09-17 2006-04-04 The United States Of America As Represented By The Secretary Of The Navy Continuous wave (CW)—fixed multiple frequency triggered, radio frequency identification (RFID) tag and system and method employing same
KR100540194B1 (en) 2003-09-23 2006-01-10 한국전자통신연구원 Establishment System of RFID Tag Using Vehicle and Method Using It
US7026936B2 (en) 2003-09-30 2006-04-11 Id Solutions, Inc. Distributed RF coupled system
US7298243B2 (en) 2003-11-12 2007-11-20 Rsa Security Inc. Radio frequency identification system with privacy policy implementation based on device classification
ATE475949T1 (en) 2003-12-09 2010-08-15 Sap Ag INDUSTRIAL CONTROL SYSTEM AND DATA PROCESSING METHOD THEREOF
US7319633B2 (en) 2003-12-19 2008-01-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US7180422B2 (en) 2003-12-29 2007-02-20 Intel Corporation Asset management methods and apparatus
US7394372B2 (en) 2003-12-30 2008-07-01 G2 Microsystems Pty. Ltd. Method and apparatus for aggregating and communicating tracking information
US20050177466A1 (en) 2003-12-31 2005-08-11 Willins Bruce A. Method and apparatus for aggregation reconciliation through hierarchical tag checksums
US7239858B2 (en) 2003-12-31 2007-07-03 Wj Communications, Inc. Integrated switching device for routing radio frequency signals
US20060055564A1 (en) 2004-01-09 2006-03-16 United Parcel Service Of America, Inc. System, method, and apparatus for capturing telematics data with an active RFID tag
US7038985B2 (en) 2004-02-17 2006-05-02 Sony Corporation System using radio frequency identification (RFID) for copy management of digital media
US20050188095A1 (en) 2004-02-19 2005-08-25 Jeffrey Gardiner System for managing server user operation sessions
US20060071774A1 (en) 2004-02-26 2006-04-06 Brown Katherine A Item monitoring system and methods using an item monitoring system
US7119738B2 (en) * 2004-03-01 2006-10-10 Symbol Technologies, Inc. Object location system and method using RFID
WO2005091889A2 (en) 2004-03-05 2005-10-06 Seknion, Inc. Method and apparatus for improving the efficiency and accuracy of rfid systems
US6967579B1 (en) 2004-03-05 2005-11-22 Single Chip Systems Corporation Radio frequency identification for advanced security screening and sortation of baggage
US7165722B2 (en) 2004-03-10 2007-01-23 Microsoft Corporation Method and system for communicating with identification tags
US20050200457A1 (en) 2004-03-11 2005-09-15 Raj Bridgelall Inventory transport device with integrated RFID reader
US7030761B2 (en) 2004-03-16 2006-04-18 Symbol Technologies Multi-resolution object location system and method
DE102004013156B4 (en) 2004-03-17 2009-07-23 Atmel Germany Gmbh Method for data transmission in RFID or remote sensor systems
US7199719B2 (en) * 2004-03-24 2007-04-03 Dan Alan Steinberg RFID tag reader with tag location indicated by visible light beam
US7088248B2 (en) 2004-03-24 2006-08-08 Avery Dennison Corporation System and method for selectively reading RFID devices
US7520429B2 (en) 2004-03-31 2009-04-21 United Parcel Service Of America, Inc. Systems and methods for an electronic programmable merchandise tag
US20050228528A1 (en) 2004-04-01 2005-10-13 Farchmin David W Location based material handling and processing
US7973643B2 (en) 2004-04-13 2011-07-05 Impinj, Inc. RFID readers transmitting preambles denoting data rate and methods
US7114655B2 (en) 2004-04-15 2006-10-03 Printronix EPC data manager
EP1749246A4 (en) 2004-04-24 2011-11-02 Inrange Systems Inc Integrated, non-sequential, remote medication management and compliance system
WO2005104739A2 (en) 2004-04-28 2005-11-10 Precision Dynamics Corporation Rfid reader/writer device
US7789308B2 (en) 2004-05-13 2010-09-07 Cisco Technology, Inc. Locating and provisioning devices in a network
US7325734B2 (en) 2004-05-13 2008-02-05 Cisco Technology, Inc. Methods and devices for assigning RFID device personality
US7198227B2 (en) 2004-06-10 2007-04-03 Goodrich Corporation Aircraft cargo locating system
US7057509B2 (en) 2004-06-29 2006-06-06 Hewlett-Packard Development Company, L.P. Monitoring an object with identification data and tracking data
WO2006015265A2 (en) * 2004-07-30 2006-02-09 G2 Microsystems Pty Ltd. Method and system for asset tracking devices
WO2006015349A2 (en) 2004-07-30 2006-02-09 Reva Systems Corporation Rfid tag data acquisition system
US7374103B2 (en) 2004-08-03 2008-05-20 Siemens Corporate Research, Inc. Object localization
US7342497B2 (en) 2004-08-26 2008-03-11 Avante International Technology, Inc Object monitoring, locating, and tracking system employing RFID devices
US7701341B2 (en) 2004-09-01 2010-04-20 Microsoft Corporation Device service provider interface
US7382260B2 (en) 2004-09-01 2008-06-03 Microsoft Corporation Hot swap and plug-and-play for RFID devices
US7161489B2 (en) 2004-09-09 2007-01-09 The Gillette Company RFID system performance monitoring
AU2004323369A1 (en) 2004-09-17 2006-03-23 Siang Beng Chng System and method for batch conversion of RFID tag to RFID label
US7195159B2 (en) 2004-10-22 2007-03-27 Symbol Technologies, Inc. Radio frequency identification (RFID) material tracking and apparatus
ATE435156T1 (en) 2004-11-02 2009-07-15 Sensormatic Electronics Corp PACKAGING SYSTEM FOR RADIO FREQUENCY IDENTIFICATIONS
US7339476B2 (en) 2004-11-10 2008-03-04 Rockwell Automation Technologies, Inc. Systems and methods that integrate radio frequency identification (RFID) technology with industrial controllers
US7323988B2 (en) 2004-12-17 2008-01-29 Alcatel Lucent Personal item reminder
US7336167B2 (en) 2005-02-09 2008-02-26 United Parcel Service Of America Interrogating RFID transponders during rotation of palletized items, systems and methods
US7389921B2 (en) 2005-02-28 2008-06-24 Sap Aktiengesellschaft Dynamic component management
US20060200256A1 (en) 2005-03-04 2006-09-07 Mason Robert C Programming of industrial automation equipment using RFID technology
US7583178B2 (en) 2005-03-16 2009-09-01 Datalogic Mobile, Inc. System and method for RFID reader operation
US7443282B2 (en) 2005-05-05 2008-10-28 Industrial Technology Research Institute System and a method, including software and hardware, for providing real-time and synchronization views of supply chain information
US20060279412A1 (en) 2005-06-13 2006-12-14 Holland Joshua H System for using RFID tags as data storage devices
US7336153B2 (en) 2005-06-30 2008-02-26 Hewlett-Packard Development Company, L.P. Wireless temperature monitoring for an electronics system
US7733216B2 (en) 2005-07-12 2010-06-08 Intel Corporation Radio frequency identification tags capable of embedding receiver signal strength indications
US7388491B2 (en) 2005-07-20 2008-06-17 Rockwell Automation Technologies, Inc. Mobile RFID reader with integrated location awareness for material tracking and management
US7295118B2 (en) 2005-08-19 2007-11-13 Ensyc Technologies Low cost RFID system
US8260948B2 (en) 2005-08-10 2012-09-04 Rockwell Automation Technologies, Inc. Enhanced controller utilizing RFID technology
US7510110B2 (en) 2005-09-08 2009-03-31 Rockwell Automation Technologies, Inc. RFID architecture in an industrial controller environment
US7931197B2 (en) 2005-09-20 2011-04-26 Rockwell Automation Technologies, Inc. RFID-based product manufacturing and lifecycle management
US20070159331A1 (en) * 2006-01-03 2007-07-12 Symbol Technologies, Inc. System and method for saving battery power prior to deploying an asset tag
US7932809B2 (en) * 2006-02-23 2011-04-26 Rockwell Automation Technologies, Inc. RFID/biometric area protection
US7616095B2 (en) * 2006-02-23 2009-11-10 Rockwell Automation Technologies, Inc. Electronic token to provide sequential event control and monitoring

Patent Citations (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5905249A (en) * 1991-11-04 1999-05-18 Spectra-Physics Scanning Systems, Inc. Multiple-interface selection system for computer peripherals
US5629981A (en) * 1994-07-29 1997-05-13 Texas Instruments Incorporated Information management and security system
US5910776A (en) * 1994-10-24 1999-06-08 Id Technologies, Inc. Method and apparatus for identifying locating or monitoring equipment or other objects
US5621199A (en) * 1995-04-03 1997-04-15 Datalogic, Inc. RFID reader
US5785181A (en) * 1995-11-02 1998-07-28 Clothestrak, Inc. Permanent RFID garment tracking system
US5874896A (en) * 1996-08-26 1999-02-23 Palomar Technologies Corporation Electronic anti-shoplifting system employing an RFID tag
US6272321B1 (en) * 1996-09-13 2001-08-07 Temic Semiconductor Gmbh Method for tuning an oscillating receiver circuit of a transponder built into a RFID system
US5874724A (en) * 1997-01-10 1999-02-23 International Business Machines Corporation Light selectable radio frequency identification tag and method therefor
US6049745A (en) * 1997-02-10 2000-04-11 Fmc Corporation Navigation system for automatic guided vehicle
US6172609B1 (en) * 1997-05-14 2001-01-09 Avid Identification Systems, Inc. Reader for RFID system
US6693539B2 (en) * 1997-07-24 2004-02-17 Checkpoint Systems, Inc. Inventory system using articles with RFID tags
US20010000019A1 (en) * 1997-07-24 2001-03-15 Bowers John H. Inventory system using articles with RFID tags
US6342839B1 (en) * 1998-03-09 2002-01-29 Aginfolink Holdings Inc. Method and apparatus for a livestock data collection and management system
US6607123B1 (en) * 1998-03-19 2003-08-19 S World Golf Systems Ltd. Identifying golf balls
US6362738B1 (en) * 1998-04-16 2002-03-26 Motorola, Inc. Reader for use in a radio frequency identification system and method thereof
US6879809B1 (en) * 1998-04-16 2005-04-12 Motorola, Inc. Wireless electrostatic charging and communicating system
US6282407B1 (en) * 1998-04-16 2001-08-28 Motorola, Inc. Active electrostatic transceiver and communicating system
US6275681B1 (en) * 1998-04-16 2001-08-14 Motorola, Inc. Wireless electrostatic charging and communicating system
US6608561B2 (en) * 1998-05-19 2003-08-19 Meat Processing Service Corp., Inc. Method for making a radio frequency identification device
US6263440B1 (en) * 1998-07-10 2001-07-17 International Business Machines Corporation Tracking and protection of display monitors by reporting their identity
US6170059B1 (en) * 1998-07-10 2001-01-02 International Business Machines Corporation Tracking memory modules within a computer system
US6917291B2 (en) * 1998-10-26 2005-07-12 Identec Solutions Inc. Interrogation, monitoring and data exchange using RFID tags
US6712276B1 (en) * 1999-01-29 2004-03-30 International Business Machines Corporation Method and apparatus for automated measurement of properties of perishable consumer products
US6400272B1 (en) * 1999-04-01 2002-06-04 Presto Technologies, Inc. Wireless transceiver for communicating with tags
US6401936B1 (en) * 1999-04-30 2002-06-11 Siemens Electrocom, L.P. Divert apparatus for conveyor system
US6415978B1 (en) * 1999-05-03 2002-07-09 Psc Scanning, Inc. Multiple technology data reader for bar code labels and RFID tags
US6517000B1 (en) * 1999-05-03 2003-02-11 Psc Scanning, Inc. Dual ended cable for connecting electronic article surveillance antenna with RFID equipment
US6169483B1 (en) * 1999-05-04 2001-01-02 Sensormatic Electronics Corporation Self-checkout/self-check-in RFID and electronics article surveillance system
US6585165B1 (en) * 1999-06-29 2003-07-01 Sony Chemicals Corp. IC card having a mica capacitor
US6784789B2 (en) * 1999-07-08 2004-08-31 Intermec Ip Corp. Method and apparatus for verifying RFID tags
US6714121B1 (en) * 1999-08-09 2004-03-30 Micron Technology, Inc. RFID material tracking method and apparatus
US6608551B1 (en) * 1999-09-13 2003-08-19 Intermec Ip Corp Low-cost radio replacement utilizing RFID technology
US6677852B1 (en) * 1999-09-22 2004-01-13 Intermec Ip Corp. System and method for automatically controlling or configuring a device, such as an RFID reader
US6529880B1 (en) * 1999-12-01 2003-03-04 Intermec Ip Corp. Automatic payment system for a plurality of remote merchants
US6566997B1 (en) * 1999-12-03 2003-05-20 Hid Corporation Interference control method for RFID systems
US6354493B1 (en) * 1999-12-23 2002-03-12 Sensormatic Electronics Corporation System and method for finding a specific RFID tagged article located in a plurality of RFID tagged articles
US6264106B1 (en) * 1999-12-27 2001-07-24 Symbol Technologies, Inc. Combination bar code scanner/RFID circuit
US6672512B2 (en) * 1999-12-27 2004-01-06 Symbol Technologies, Inc. Combined biometric reader/RFID circuit
US20050083180A1 (en) * 2000-01-06 2005-04-21 Horwitz Clifford A. System for multi-standard RFID tags
US20010008390A1 (en) * 2000-01-14 2001-07-19 3M Innovative Properties Company User interface for portable rfid reader
US6377203B1 (en) * 2000-02-01 2002-04-23 3M Innovative Properties Company Collision arbitration method and apparatus for reading multiple radio frequency identification tags
US6593853B1 (en) * 2000-02-18 2003-07-15 Brady Worldwide, Inc. RFID label printing system
US6523752B2 (en) * 2000-02-23 2003-02-25 Matsushita Electric Industrial Co., Ltd. RFID reader and communications apparatus, and delivery article sorting method and system using RFID reader and communications apparatus
US20020005774A1 (en) * 2000-03-24 2002-01-17 Rudolph Richard F. RFID Tag For Authentication And Identification
US6409401B1 (en) * 2000-03-30 2002-06-25 Zih Corp. Portable printer with RFID encoder
US6745008B1 (en) * 2000-06-06 2004-06-01 Battelle Memorial Institute K1-53 Multi-frequency communication system and method
US6377176B1 (en) * 2000-06-13 2002-04-23 Applied Wireless Identifications Group, Inc. Metal compensated radio frequency identification reader
US6687293B1 (en) * 2000-06-23 2004-02-03 Microchip Technology Incorporated Method, system and apparatus for calibrating a pulse position modulation (PPM) decoder to a PPM signal
US6265976B1 (en) * 2000-06-23 2001-07-24 Single Chip Systems Corporation Method and apparatus for providing receiver dual channel coupling in a reader for RFID tags
US6700931B1 (en) * 2000-07-06 2004-03-02 Microchip Technology Incorporated Method, system and apparatus for initiating and maintaining synchronization of a pulse position modulation (PPM) decoder with a received PPM signal
US6853294B1 (en) * 2000-07-26 2005-02-08 Intermec Ip Corp. Networking applications for automated data collection
US6563425B2 (en) * 2000-08-11 2003-05-13 Escort Memory Systems RFID passive repeater system and apparatus
US6724308B2 (en) * 2000-08-11 2004-04-20 Escort Memory Systems RFID tracking method and system
US6392544B1 (en) * 2000-09-25 2002-05-21 Motorola, Inc. Method and apparatus for selectively activating radio frequency identification tags that are in close proximity
US6873260B2 (en) * 2000-09-29 2005-03-29 Kenneth J. Lancos System and method for selectively allowing the passage of a guest through a region within a coverage area
US6870797B2 (en) * 2001-01-04 2005-03-22 Hewlett-Packard Development Company, L.P. Media storage system using a transponder for transmitting data signal
US6429776B1 (en) * 2001-02-07 2002-08-06 Sensormatic Electronics Corporation RFID reader with integrated display for use in a product tag system
US6784813B2 (en) * 2001-02-12 2004-08-31 Matrics, Inc. Method, system, and apparatus for remote data calibration of a RFID tag population
US20040069851A1 (en) * 2001-03-13 2004-04-15 Grunes Mitchell B. Radio frequency identification reader with removable media
US6554187B2 (en) * 2001-03-23 2003-04-29 Ncr Corporation Method of detecting and managing RFID labels on items brought into a store by a customer
US6547040B2 (en) * 2001-04-02 2003-04-15 Ncr Corporation Self-service checkout system with RFID capability
US6505780B1 (en) * 2001-12-05 2003-01-14 Koninklijke Philips Electronics N.V. Personalize vehicle settings using RF tags
US6901304B2 (en) * 2002-01-11 2005-05-31 Sap Aktiengesellschaft Item tracking system architectures providing real-time visibility to supply chain
US20050110641A1 (en) * 2002-03-18 2005-05-26 Greg Mendolia RFID tag reading system and method
US6747560B2 (en) * 2002-06-27 2004-06-08 Ncr Corporation System and method of detecting movement of an item
US6707376B1 (en) * 2002-08-09 2004-03-16 Sensormatic Electronics Corporation Pulsed power method for increased read range for a radio frequency identification reader
US20040032443A1 (en) * 2002-08-16 2004-02-19 Moylan Peter Francis Portable printer with RFID read/write capability
US6752277B1 (en) * 2002-08-20 2004-06-22 Masters Of Branding, Inc. Product display system using radio frequency identification
US6726099B2 (en) * 2002-09-05 2004-04-27 Honeywell International Inc. RFID tag having multiple transceivers
US20040066281A1 (en) * 2002-10-02 2004-04-08 Hughes Michael A. System and method to identify multiple RFID tags
US6842106B2 (en) * 2002-10-04 2005-01-11 Battelle Memorial Institute Challenged-based tag authentication model
US20040095910A1 (en) * 2002-11-18 2004-05-20 Bryan Metts PLC based wireless communications
US6853303B2 (en) * 2002-11-21 2005-02-08 Kimberly-Clark Worldwide, Inc. RFID system and method for ensuring personnel safety
US20040124988A1 (en) * 2002-11-21 2004-07-01 Leonard Stephen B. Products having RFID tags to provide information to product consumers
US6750769B1 (en) * 2002-12-12 2004-06-15 Sun Microsystems, Inc. Method and apparatus for using RFID tags to determine the position of an object
US6888459B2 (en) * 2003-02-03 2005-05-03 Louis A. Stilp RFID based security system
US20050012613A1 (en) * 2003-05-19 2005-01-20 Checkpoints Systems, Inc. Article identification and tracking using electronic shadows created by RFID tags
US6903656B1 (en) * 2003-05-27 2005-06-07 Applied Wireless Identifications Group, Inc. RFID reader with multiple antenna selection and automated antenna matching
US20050021369A1 (en) * 2003-07-21 2005-01-27 Mark Cohen Systems and methods for context relevant information management and display
US20050035849A1 (en) * 2003-08-12 2005-02-17 Yadgar Yizhack Method and system for inventory count of articles with RFID tags
US20050040934A1 (en) * 2003-08-22 2005-02-24 Kenneth Shanton Point-of-purchase display with RFID inventory control
US6847856B1 (en) * 2003-08-29 2005-01-25 Lucent Technologies Inc. Method for determining juxtaposition of physical components with use of RFID tags
US20050052283A1 (en) * 2003-09-09 2005-03-10 Collins Timothy J. Method and apparatus for multiple frequency RFID tag architecture
US20050058483A1 (en) * 2003-09-12 2005-03-17 Chapman Theodore A. RFID tag and printer system
US6899476B1 (en) * 2003-09-12 2005-05-31 Printronix, Inc. RFID tag, antenna, and printer system
US20050088299A1 (en) * 2003-10-24 2005-04-28 Bandy William R. Radio frequency identification (RFID) based sensor networks
US20050092825A1 (en) * 2003-11-04 2005-05-05 Captech Ventures, Inc. System and method for RFID system integration
US20050093678A1 (en) * 2003-11-04 2005-05-05 Forster Ian J. RFID tag with enhanced readability
US20050143916A1 (en) * 2003-12-26 2005-06-30 In-Jun Kim Positioning apparatus and method combining RFID, GPS and INS
US20050140511A1 (en) * 2003-12-29 2005-06-30 Clayton Bonnell System for tracking items
US20050149414A1 (en) * 2003-12-30 2005-07-07 Kimberly-Clark Worldwide, Inc. RFID system and method for managing out-of-stock items
US20050155213A1 (en) * 2004-01-12 2005-07-21 Symbol Technologies, Inc. Radio frequency identification tag inlay sortation and assembly
US20050154572A1 (en) * 2004-01-14 2005-07-14 Sweeney Patrick J.Ii Radio frequency identification simulator and tester
US20050159913A1 (en) * 2004-01-20 2005-07-21 Tomonori Ariyoshi Read-write processing device for RFID tag
US20050162256A1 (en) * 2004-01-27 2005-07-28 Nec Infrontia Corporation Method and system for acquiring maintenance information by an RFID tag
US20050170784A1 (en) * 2004-01-27 2005-08-04 Omron Corporation Read-write processing apparatus and method for RFID tag
US20050177423A1 (en) * 2004-02-06 2005-08-11 Capital One Financial Corporation System and method of using RFID devices to analyze customer traffic patterns in order to improve a merchant's layout
US20060006231A1 (en) * 2004-07-09 2006-01-12 Psc Scanning, Inc. Portable data reading device with integrated web server for configuration and data extraction
US20070159311A1 (en) * 2006-01-06 2007-07-12 Scott Schober Vehicle separation warning device

Cited By (192)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080272185A1 (en) * 2004-04-28 2008-11-06 Sarosh Vesuna System and Method For Providing Location Information in Transaction Processing
US8384544B2 (en) 2004-11-10 2013-02-26 Rockwell Automation Technologies, Inc. Systems and methods that integrate radio frequency identification (RFID) technology with agent-based control systems
US7997475B2 (en) 2004-11-10 2011-08-16 Rockwell Automation Technologies, Inc. Systems and methods that integrate radio frequency identification (RFID) technology with industrial controllers
US7994919B2 (en) 2004-11-10 2011-08-09 Rockwell Automation Technologies, Inc. Systems and methods that integrate radio frequency identification (RFID) technology with agent-based control systems
US20090243808A1 (en) * 2004-11-10 2009-10-01 Rockwell Automation Technologies, Inc. Systems and methods that integrate radio frequency identification (rfid) technology with agent-based control systems
US8260948B2 (en) 2005-08-10 2012-09-04 Rockwell Automation Technologies, Inc. Enhanced controller utilizing RFID technology
US20110032101A1 (en) * 2005-08-10 2011-02-10 Cias Inc. Sequenced antenna array for determining where gaming chips with embedded rfid tags are located on a blackjack, poker or other gaming table & for myriad of other rfid applications
US8152053B2 (en) 2005-09-08 2012-04-10 Rockwell Automation Technologies, Inc. RFID architecture in an industrial controller environment
US20110230233A1 (en) * 2005-09-19 2011-09-22 Silverbrook Research Pty Ltd Telephone for printing encoded form
US8286858B2 (en) 2005-09-19 2012-10-16 Silverbrook Research Pty Ltd Telephone having printer and sensor
US20070064263A1 (en) * 2005-09-19 2007-03-22 Silverbrook Research Pty Ltd Printing a map using a mobile device
US20070070391A1 (en) * 2005-09-19 2007-03-29 Silverbrook Research Pty Ltd Reprint card on a mobile device
US20070066351A1 (en) * 2005-09-19 2007-03-22 Silverbrook Research Pty Ltd Printing a receipt using a mobile device
US20070085332A1 (en) * 2005-09-19 2007-04-19 Silverbrook Research Pty Ltd Link object to sticker and location on surface
US8290512B2 (en) 2005-09-19 2012-10-16 Silverbrook Research Pty Ltd Mobile phone for printing and interacting with webpages
US20070064130A1 (en) * 2005-09-19 2007-03-22 Silverbrook Research Pty Ltd Link object to form field on surface
US8220708B2 (en) 2005-09-19 2012-07-17 Silverbrook Research Pty Ltd. Performing an action in a mobile telecommunication device
US20080234000A1 (en) * 2005-09-19 2008-09-25 Silverbrook Research Pty Ltd Method For Playing A Request On A Player Device
US20070066342A1 (en) * 2005-09-19 2007-03-22 Silverbrook Research Pty Ltd Printing an almanac using a mobile device
US8116813B2 (en) 2005-09-19 2012-02-14 Silverbrook Research Pty Ltd System for product retrieval using a coded surface
US20080254832A1 (en) * 2005-09-19 2008-10-16 Silverbrook Research Pty Ltd Method for playing a routed request on a player device
US8103307B2 (en) 2005-09-19 2012-01-24 Silverbrook Research Pty Ltd Linking an object to a position on a surface
US20070064261A1 (en) * 2005-09-19 2007-03-22 Silverbrook Research Pty Ltd Printing a position using a mobile device
US20080278772A1 (en) * 2005-09-19 2008-11-13 Silverbrook Research Pty Ltd Mobile telecommunications device
US20080297855A1 (en) * 2005-09-19 2008-12-04 Silverbrook Research Pty Ltd Mobile phone handset
US20080316508A1 (en) * 2005-09-19 2008-12-25 Silverbrook Research Pty Ltd Online association of a digital photograph with an indicator
US8091774B2 (en) 2005-09-19 2012-01-10 Silverbrook Research Pty Ltd Printing system using a cellular telephone
US20090088206A1 (en) * 2005-09-19 2009-04-02 Silverbrook Research Pty Ltd Mobile telecommunications device with printing and sensing modules
US20090098909A1 (en) * 2005-09-19 2009-04-16 Silverbrook Research Pty Ltd Printing Educational Material Using A Mobile Device
US8090403B2 (en) 2005-09-19 2012-01-03 Silverbrook Research Pty Ltd Mobile telecommunications device
US20090152342A1 (en) * 2005-09-19 2009-06-18 Silverbrook Research Pty Ltd Method Of Performing An Action In Relation To A Software Object
US8079511B2 (en) 2005-09-19 2011-12-20 Silverbrook Research Pty Ltd Online association of a digital photograph with an indicator
US8081351B2 (en) 2005-09-19 2011-12-20 Silverbrook Research Pty Ltd Mobile phone handset
US8072629B2 (en) 2005-09-19 2011-12-06 Silverbrook Research Pty Ltd Print subscribed content on a mobile device
US20070067824A1 (en) * 2005-09-19 2007-03-22 Silverbrook Research Pty Ltd Retrieving an access token via a coded surface
US20100069116A1 (en) * 2005-09-19 2010-03-18 Silverbrook Research Ply Ltd. Printing system using a cellular telephone
US20100081472A1 (en) * 2005-09-19 2010-04-01 Silverbrook Research Pty Ltd Performing an Action in a Mobile Telecommunication Device
US20100116892A1 (en) * 2005-09-19 2010-05-13 Silverbrook Research Pty Ltd Reusable sticker
US20100134815A1 (en) * 2005-09-19 2010-06-03 Silverbrook Research Pty Ltd Printing a List on a Print Medium
US20100134843A1 (en) * 2005-09-19 2010-06-03 Silverbrook Research Pty Ltd Printing Content on a Print Medium
US20100165401A1 (en) * 2005-09-19 2010-07-01 Silverbrook Research Pty Ltd Mobile device for printing a security identification
US20100181375A1 (en) * 2005-09-19 2010-07-22 Silverbrook Research Pty Ltd Sticker including a first and second region
US20100188703A1 (en) * 2005-09-19 2010-07-29 Silverbrook Research Pty Ltd Associating an Electronic Document with a Print Medium
US20100223393A1 (en) * 2005-09-19 2010-09-02 Silverbrook Research Pty Ltd Method of downloading a Software Object
US20070065206A1 (en) * 2005-09-19 2007-03-22 Silverbrook Research Pty Ltd Printing a coupon using a mobile device
US20100222103A1 (en) * 2005-09-19 2010-09-02 Silverbrook Research Pty Ltd Printing Content on a Print Medium based upon the Authenticity of the Print Medium
US20100225949A1 (en) * 2005-09-19 2010-09-09 Silverbrook Research Pty Ltd Retrieve information by sensing data encoded on a card
US7894855B2 (en) 2005-09-19 2011-02-22 Silverbrook Research Pty Ltd Printing content on a print medium based upon the authenticity of the print medium
US20100234069A1 (en) * 2005-09-19 2010-09-16 Silverbrook Research Pty Ltd Method of linking object to sticker print medium
US20100231981A1 (en) * 2005-09-19 2010-09-16 Silverbrook Research Pty Ltd Retrieving location data by sensing coded data on a surface
US20100248686A1 (en) * 2005-09-19 2010-09-30 Silverbrook Research Pty Ltd Method of printing and retrieving information using a mobile telecommunications device
US20100257100A1 (en) * 2005-09-19 2010-10-07 Silverbrook Research Pty Ltd System for Product Retrieval using a Coded Surface
US20100273527A1 (en) * 2005-09-19 2010-10-28 Silverbrook Research Pty Ltd Mobile phone system for printing webpage and retrieving content
US20100273525A1 (en) * 2005-09-19 2010-10-28 Silverbrook Research Pty Ltd Link object to position on surface
US20100279735A1 (en) * 2005-09-19 2010-11-04 Silverbrook Research Pty Ltd Printing content on a mobile device
US7843595B2 (en) 2005-09-19 2010-11-30 Silverbrook Research Pty Ltd Printing a calendar using a mobile device
US7841527B2 (en) 2005-09-19 2010-11-30 Silverbrook Research Pty Ltd Method and system for associating a sticker and an object in a computer system
US7843596B2 (en) 2005-09-19 2010-11-30 Silverbrook Research Pty Ltd Printing a ticket using a mobile device
US7848777B2 (en) 2005-09-19 2010-12-07 Silverbrook Research Pty Ltd Printing a puzzle using a mobile device
US7855805B2 (en) 2005-09-19 2010-12-21 Silverbrook Research Pty Ltd Printing a competition entry form using a mobile device
US7856225B2 (en) 2005-09-19 2010-12-21 Silverbrook Research Pty Ltd Retrieving a program state via a coded surface
US7857204B2 (en) 2005-09-19 2010-12-28 Silverbrook Research Pty Ltd Reusable sticker
US7860531B2 (en) 2005-09-19 2010-12-28 Silverbrook Research Pty Ltd Retrieving content via a coded surface
US7860533B2 (en) 2005-09-19 2010-12-28 Silverbrook Research Pty Ltd Mobile device for printing a security identification
US7857217B2 (en) 2005-09-19 2010-12-28 Silverbrook Research Pty Ltd Link software object to sticker
US20070066289A1 (en) * 2005-09-19 2007-03-22 Silverbrook Research Pty Ltd Print subscribed content on a mobile device
US7880911B2 (en) 2005-09-19 2011-02-01 Silverbrook Research Pty Ltd Printing a position using a mobile device
US20070066341A1 (en) * 2005-09-19 2007-03-22 Silverbrook Research Pty Ltd Printing an advertisement using a mobile device
US8023935B2 (en) 2005-09-19 2011-09-20 Silverbrook Research Pty Ltd Printing a list on a print medium
US8016202B2 (en) 2005-09-19 2011-09-13 Silverbrook Research Pty Ltd Archiving printed content
US7894629B2 (en) 2005-09-19 2011-02-22 Silverbrook Research Pty Ltd Sticker including a first and second region
US8010155B2 (en) 2005-09-19 2011-08-30 Silverbrook Research Pty Ltd Associating an electronic document with a print medium
US7917171B2 (en) 2005-09-19 2011-03-29 Silverbrook Research Pty Ltd Printing a receipt using a mobile device
US7918390B2 (en) 2005-09-19 2011-04-05 Silverbrook Research Pty Ltd Printing educational material using a mobile device
US7920855B2 (en) 2005-09-19 2011-04-05 Silverbrook Research Pty Ltd Printing content on a print medium
US7920854B2 (en) 2005-09-19 2011-04-05 Silverbrook Research Pty Ltd Printing a map using a mobile device
US7920896B2 (en) 2005-09-19 2011-04-05 Kia Silverbrook Printing an almanac using a mobile device
US7925300B2 (en) 2005-09-19 2011-04-12 Silverbrook Research Pty Ltd Printing content on a mobile device
US7924450B2 (en) 2005-09-19 2011-04-12 Silverbrook Research Pty Ltd Reprint card on a mobile device
US7937108B2 (en) 2005-09-19 2011-05-03 Silverbrook Research Pty Ltd Linking an object to a position on a surface
US7945943B2 (en) 2005-09-19 2011-05-17 Silverbrook Research Pty Ltd Retrieving an access token via a coded surface
US7953387B2 (en) 2005-09-19 2011-05-31 Silverbrook Research Pty Ltd Retrieving a program via a coded surface
US7953386B2 (en) 2005-09-19 2011-05-31 Silverbrook Research Pty Ltd Bill per card print
US7970435B2 (en) 2005-09-19 2011-06-28 Silverbrook Research Pty Ltd Printing an advertisement using a mobile device
US7973978B2 (en) 2005-09-19 2011-07-05 Silverbrook Research Pty Ltd Method of associating a software object using printed code
US8010128B2 (en) 2005-09-19 2011-08-30 Silverbrook Research Pty Ltd Mobile phone system for printing webpage and retrieving content
US7983715B2 (en) 2005-09-19 2011-07-19 Silverbrook Research Pty Ltd Method of printing and retrieving information using a mobile telecommunications device
US7982904B2 (en) 2005-09-19 2011-07-19 Silverbrook Research Pty Ltd Mobile telecommunications device for printing a competition form
US7988042B2 (en) 2005-09-19 2011-08-02 Silverbrook Research Pty Ltd Method for playing a request on a player device
US7992213B2 (en) 2005-09-19 2011-08-02 Silverbrook Research Pty Ltd Gaining access via a coded surface
US20070064075A1 (en) * 2005-09-19 2007-03-22 Silverbrook Research Pty Ltd Printing a membership using a mobile device
US20070066291A1 (en) * 2005-09-19 2007-03-22 Silverbrook Research Pty Ltd. Retrieving a program via a coded surface
US8025227B2 (en) 2005-09-30 2011-09-27 Rockwell Automation Technologies, Inc. Access to distributed databases via pointer stored in RFID tag
US20070075873A1 (en) * 2005-09-30 2007-04-05 Samsung Electro-Mechanics Co., Ltd. Location awareness system using rfid and wireless connectivity apparatus for location awareness system used therein
US9679270B2 (en) 2005-10-14 2017-06-13 Aethon, Inc. Robotic ordering and delivery system software and methods
US9020679B2 (en) * 2005-10-14 2015-04-28 Aethon, Inc. Robotic ordering and delivery system software and methods
US20110163160A1 (en) * 2005-10-14 2011-07-07 Aethon, Inc. Robotic Ordering and Delivery System Software and Methods
US20230005349A1 (en) * 2006-09-22 2023-01-05 Daedalus Technology Group, Inc. System for Location in Environment and Identification Tag
US11442134B1 (en) * 2006-09-22 2022-09-13 Daedalus Technology Group, Inc. System for location in environment and identification tag
US20080101400A1 (en) * 2006-10-30 2008-05-01 Nokia Corporation Managing attachment of a wireless terminal to local area networks
US8035490B2 (en) * 2006-12-07 2011-10-11 International Business Machines Corporation Communication and filtering of events among peer controllers in the same spatial region of a sensor network
US20080136605A1 (en) * 2006-12-07 2008-06-12 International Business Machines Corporation Communication and filtering of events among peer controllers in the same spatial region of a sensor network
US20120105208A1 (en) * 2007-02-06 2012-05-03 Jacob George TRANSPONDER SYSTEMS AND METHODS FOR RADIO-OVER-FIBER (RoF) WIRELESS PICOCELLULAR SYSTEMS
US8305190B2 (en) * 2007-03-20 2012-11-06 Golba Llc Method and apparatus for power management for a radio frequency identification system
US8810372B2 (en) 2007-03-20 2014-08-19 Golba Llc Method and apparatus for power management for a radio frequency identification system
US20080231449A1 (en) * 2007-03-20 2008-09-25 Radiofy Llc Method and apparatus for power management for a radio frequency identification system
US8629764B2 (en) 2007-03-20 2014-01-14 Golba Llc Method and apparatus for power management for a radio frequency identification system
US20080249899A1 (en) * 2007-04-05 2008-10-09 Nasser Gabriel G System and Method for Inventory
US8123129B2 (en) * 2007-04-05 2012-02-28 Hitachi, Ltd. Information provision intermediation apparatus
US20080245859A1 (en) * 2007-04-05 2008-10-09 Motonobu Saito Information provision intermediation apparatus
US20080256110A1 (en) * 2007-04-16 2008-10-16 Microsoft Corporation Storage media tracking and managment
US7882366B2 (en) 2007-04-16 2011-02-01 Microsoft Corporation Storage media tracking and managment
USRE47013E1 (en) * 2007-05-23 2018-08-28 Sk Telecom Co., Ltd. Method for measuring location of radio frequency identification reader by using beacon
US8867919B2 (en) 2007-07-24 2014-10-21 Corning Cable Systems Llc Multi-port accumulator for radio-over-fiber (RoF) wireless picocellular systems
US20090043502A1 (en) * 2007-08-10 2009-02-12 Cisco Technology, Inc. System and Method for Navigating Using Multiple Modalities
US9250084B2 (en) * 2007-08-10 2016-02-02 Cisco Technology, Inc. System and method for navigating using multiple modalities
US8319607B2 (en) * 2007-08-29 2012-11-27 Seeonic, Inc. Inventory monitoring system
US20090146800A1 (en) * 2007-08-29 2009-06-11 Seeonic, Inc. Inventory monitoring system
US8421631B2 (en) 2007-09-11 2013-04-16 Rf Controls, Llc Radio frequency signal acquisition and source location system
US8742896B2 (en) 2007-09-11 2014-06-03 Rf Controls, Llc Steerable phase array antenna RFID tag locater and tracking system and methods
US8659430B2 (en) 2007-09-11 2014-02-25 Rf Controls, Llc Radio frequency signal acquisition and source location system
US20100225480A1 (en) * 2007-09-11 2010-09-09 Rf Controls, Llc Radio frequency signal acquisition and source location system
US8718478B2 (en) 2007-10-12 2014-05-06 Corning Cable Systems Llc Hybrid wireless/wired RoF transponder and hybrid RoF communication system using same
TWI426459B (en) * 2007-10-26 2014-02-11 Hon Hai Prec Ind Co Ltd System and method for judging inputting and outputting operations of a mold automatically
US8217757B2 (en) 2007-12-20 2012-07-10 Symbol Technologies, Inc. Voice over RFID
US20090160645A1 (en) * 2007-12-20 2009-06-25 Symbol Technologies, Inc. Voice Over RFID
WO2009082619A1 (en) * 2007-12-20 2009-07-02 Symbol Technologies, Inc. Voice over rfid
US20090231135A1 (en) * 2008-03-11 2009-09-17 Chaves Leonardo Weiss F Enhanced item tracking using selective querying
US8599024B2 (en) 2009-02-27 2013-12-03 Rf Controls, Llc Radio frequency environment object monitoring system and methods of use
US8120488B2 (en) 2009-02-27 2012-02-21 Rf Controls, Llc Radio frequency environment object monitoring system and methods of use
US20100219953A1 (en) * 2009-02-27 2010-09-02 Rf Controls, Llc Radio Frequency Environment Object Monitoring System and Methods of Use
US8344823B2 (en) 2009-08-10 2013-01-01 Rf Controls, Llc Antenna switching arrangement
US8698575B2 (en) 2009-08-10 2014-04-15 Rf Controls, Llc Antenna switching arrangement
US20110032079A1 (en) * 2009-08-10 2011-02-10 Rf Controls, Llc Antenna switching arrangement
US20110063113A1 (en) * 2009-09-10 2011-03-17 Rf Controls, Llc Calibration and Operational Assurance Method and Apparatus for RFID Object Monitoring System
US8451121B2 (en) 2009-09-10 2013-05-28 PF Controls, LLC Calibration and operational assurance method and apparatus for RFID object monitoring system
TWI405140B (en) * 2009-10-30 2013-08-11 Univ Chienkuo Technology Method for goods-delivering guiding and goods-identification
US8803660B2 (en) * 2010-04-06 2014-08-12 Ebay Inc. Handheld device for on-site datacenter management
US20110241833A1 (en) * 2010-04-06 2011-10-06 Jean-Christophe Martin Handheld device for on-site datacenter management
US9674050B2 (en) 2010-04-06 2017-06-06 Paypal, Inc. Handheld device for on-site datacenter management
WO2011143748A1 (en) * 2010-05-19 2011-11-24 Sidney Madisen Holdings Ltd. System and method for tracking items
US9958873B2 (en) 2011-04-11 2018-05-01 Crown Equipment Corporation System for efficient scheduling for multiple automated non-holonomic vehicles using a coordinated path planner
US20120268250A1 (en) * 2011-04-19 2012-10-25 Qualcomm Incorporated Rfid device with wide area connectivity
US9197984B2 (en) * 2011-04-19 2015-11-24 Qualcomm Incorporated RFID device with wide area connectivity
US10611613B2 (en) 2011-08-26 2020-04-07 Crown Equipment Corporation Systems and methods for pose development using retrieved position of a pallet or product load to be picked up
US9580285B2 (en) 2011-08-26 2017-02-28 Crown Equipment Corporation Method and apparatus for using unique landmarks to locate industrial vehicles at start-up
CN103093325A (en) * 2011-11-02 2013-05-08 珠海普天慧科信息技术有限公司 Electric power measure device management system and management method
US9933265B2 (en) * 2012-02-24 2018-04-03 Netclearance Systems, Inc. Way finder using proximity events
US20150206096A1 (en) * 2012-02-24 2015-07-23 Netclearance Systems, Inc. Automated logistics management using proximity events
US11062258B2 (en) * 2012-02-24 2021-07-13 Netclearance Systems, Inc. Automated logistics management using proximity events
US11037196B2 (en) 2012-02-24 2021-06-15 Netclearance Systems, Inc. Interactive advertising using proximity events
US20140163867A1 (en) * 2012-02-24 2014-06-12 Netclearance Systems, Inc. Way Finder Using Proximity Events
US9341703B2 (en) * 2012-12-13 2016-05-17 Airbus Operations Gmbh System and method for identifying a component
US20140166740A1 (en) * 2012-12-13 2014-06-19 Airbus Operations Gmbh System and method for identifying a component
US20150356326A1 (en) * 2012-12-27 2015-12-10 Touchpac Holdings, Llc Method for capacitively identifying a container which comprises an electrically conductive material
US20230391551A1 (en) * 2013-03-13 2023-12-07 Symbotic Llc Storage and retrieval system rover interface
US11718475B2 (en) * 2013-03-13 2023-08-08 Symbotic Llc Storage and retrieval system rover interface
US11164144B2 (en) * 2013-03-13 2021-11-02 Promega Corporation Radio frequency identification system
US20210284445A1 (en) * 2013-03-13 2021-09-16 Symbotic Llc Storage and retrieval system rover interface
US20190333002A1 (en) * 2013-03-13 2019-10-31 Promega Corporation Radio frequency identification system
US10437658B2 (en) * 2013-06-06 2019-10-08 Zebra Technologies Corporation Method, apparatus, and computer program product for collecting and displaying sporting event data based on real time data for proximity and movement of objects
US10509099B2 (en) 2013-06-06 2019-12-17 Zebra Technologies Corporation Method, apparatus and computer program product improving real time location systems with multiple location technologies
US10609762B2 (en) 2013-06-06 2020-03-31 Zebra Technologies Corporation Method, apparatus, and computer program product improving backhaul of sensor and other data to real time location system network
US20150149837A1 (en) * 2013-06-06 2015-05-28 Zih Corp. Method, apparatus, and computer program product for collecting and displaying sporting event data based on real time data for proximity and movement of objects
US11423464B2 (en) 2013-06-06 2022-08-23 Zebra Technologies Corporation Method, apparatus, and computer program product for enhancement of fan experience based on location data
US11023303B2 (en) 2013-06-06 2021-06-01 Zebra Technologies Corporation Methods and apparatus to correlate unique identifiers and tag-individual correlators based on status change indications
US11287511B2 (en) 2013-06-06 2022-03-29 Zebra Technologies Corporation Method, apparatus, and computer program product improving real time location systems with multiple location technologies
US10333568B2 (en) 2013-06-06 2019-06-25 Zebra Technologies Corporation Method and apparatus for associating radio frequency identification tags with participants
US20150077230A1 (en) * 2013-09-13 2015-03-19 Rocco D. Pochy Protection System for Instrument Service and Calibration
US11391571B2 (en) 2014-06-05 2022-07-19 Zebra Technologies Corporation Method, apparatus, and computer program for enhancement of event visualizations based on location data
US10292005B2 (en) * 2015-01-09 2019-05-14 Twych Innovation, Inc. Object location tracking using mobile communication device
US10015654B2 (en) * 2015-11-18 2018-07-03 Discoery Limited Tracking and theft-recovery system for mobile assets
US20180324569A1 (en) * 2015-11-18 2018-11-08 Discovery Limited Tracking and theft-recovery system for mobile assets
US11240651B2 (en) 2015-11-18 2022-02-01 Discovery Limited Tracking and theft-recovery system for mobile assets
US20170142543A1 (en) * 2015-11-18 2017-05-18 Discovery Limited Tracking and theft-recovery system for mobile assets
US11856497B2 (en) 2015-11-18 2023-12-26 Discovery Limited Tracking and theft-recovery system for mobile assets
US10771945B2 (en) * 2015-11-18 2020-09-08 Discovery Limited Tracking and theft-recovery system for mobile assets
US9959435B1 (en) * 2015-11-25 2018-05-01 Impinj, Inc. Location-based access to RFID tag information
US10733395B1 (en) 2015-11-25 2020-08-04 Impinj, Inc. Location-based access to RFID tag information
US10204245B1 (en) 2015-11-25 2019-02-12 Impinj, Inc. Location-based access to RFID tag information
US20220109805A1 (en) * 2016-10-01 2022-04-07 Intel Corporation Technologies for structured media playback
US20220217297A1 (en) * 2016-10-01 2022-07-07 Intel Corporation Technologies for structured media playback
US11151534B2 (en) 2016-11-29 2021-10-19 Netclearance Systems, Inc. Consumer interaction module for point-of-sale (POS) systems
US11334889B2 (en) 2016-11-29 2022-05-17 Netclearance Systems, Inc. Mobile ticketing based on proximity
US11076818B2 (en) * 2017-08-15 2021-08-03 Siemens Healthcare Gmbh Method for operating an x-ray device with an articulated arm, and x-ray device with an articulated arm
US20190053774A1 (en) * 2017-08-15 2019-02-21 Siemens Healthcare Gmbh Method for operating an x-ray device with an articulated arm, and x-ray device with an articulated arm
WO2021217440A1 (en) * 2020-04-28 2021-11-04 Robert Bosch Gmbh Mobile device, indoor positioning system and method
US11200535B1 (en) * 2020-10-08 2021-12-14 Glas, Inc. Systems and methods of wireless communication for inventory management
US11887053B2 (en) 2020-10-08 2024-01-30 Glas, Inc. Systems and methods of wireless communication for inventory management
US20220245369A1 (en) * 2021-01-29 2022-08-04 Target Brands, Inc. Rfid-based positioning system for indoor environments
US11907798B2 (en) * 2021-01-29 2024-02-20 Target Brands Inc. RFID-based positioning system for indoor environments
EP4239547A3 (en) * 2022-02-09 2023-10-18 Checkpoint Systems, Inc. Virtual shielding system and method for inventory tracking

Also Published As

Publication number Publication date
US7932827B2 (en) 2011-04-26
US20080278328A1 (en) 2008-11-13
EP1752908A2 (en) 2007-02-14
US7388491B2 (en) 2008-06-17
EP1752908A3 (en) 2011-11-09
EP1752908B1 (en) 2014-11-05

Similar Documents

Publication Publication Date Title
US7388491B2 (en) Mobile RFID reader with integrated location awareness for material tracking and management
US9288619B2 (en) Real-time location information system using multiple positioning technologies
CN108029069B (en) Event monitoring of event candidates related to ID nodes in a wireless node network
US10037445B2 (en) Systems and methods for managing coverage area of wireless communication devices
US7961098B2 (en) Methods and apparatus for a pervasive locationing and presence-detection system
EP1913540B1 (en) Enhanced controller utilizing rfid technology
US7119687B2 (en) System for tracking object locations using self-tracking tags
US20130170378A1 (en) Method and a system for localization in industrial wireless sensor network
US8102264B2 (en) Methods and apparatus for inventory location compliance
US20080079577A1 (en) Methods and apparatus for opportunistic locationing of RF tags
US10410176B2 (en) Product and equipment location and automation system and method
US20170308845A1 (en) Asset tag and method and device for asset tracking
US20220141619A1 (en) Method and system for locating objects within a master space using machine learning on rf radiolocation
US8098136B2 (en) Integrated switch systems and methods for locating identification tags
US7587200B2 (en) Computer system and base transceiver stations
US20100156601A1 (en) LLRP-Based Flexible Reader System And Method
CN109347979B (en) Query method and server
Dupare et al. A novel data cleaning algorithm using RFID and WSN integration
US20090088166A1 (en) Methods and apparatus for communicating an interference quotient to improve preemptive roaming
EP1623585A2 (en) Two-way sms/xml position location api

Legal Events

Date Code Title Description
AS Assignment

Owner name: ROCKWELL AUTOMATION TECHNOLOGIES, INC., OHIO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CHAND, SUJEET;BAPAT, VIVEK R.;HALL, KENWOOD H.;AND OTHERS;REEL/FRAME:016799/0112;SIGNING DATES FROM 20050613 TO 20050719

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 12