US20070031132A1 - Porous ceramic carrier having a far infrared function - Google Patents

Porous ceramic carrier having a far infrared function Download PDF

Info

Publication number
US20070031132A1
US20070031132A1 US11/179,946 US17994605A US2007031132A1 US 20070031132 A1 US20070031132 A1 US 20070031132A1 US 17994605 A US17994605 A US 17994605A US 2007031132 A1 US2007031132 A1 US 2007031132A1
Authority
US
United States
Prior art keywords
porous ceramic
substrate
ceramic carrier
fan motor
accordance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/179,946
Inventor
Ching-Yi Lee
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US11/179,946 priority Critical patent/US20070031132A1/en
Publication of US20070031132A1 publication Critical patent/US20070031132A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H3/00Air heaters
    • F24H3/02Air heaters with forced circulation
    • F24H3/04Air heaters with forced circulation the air being in direct contact with the heating medium, e.g. electric heating element
    • F24H3/0405Air heaters with forced circulation the air being in direct contact with the heating medium, e.g. electric heating element using electric energy supply, e.g. the heating medium being a resistive element; Heating by direct contact, i.e. with resistive elements, electrodes and fins being bonded together without additional element in-between
    • F24H3/0411Air heaters with forced circulation the air being in direct contact with the heating medium, e.g. electric heating element using electric energy supply, e.g. the heating medium being a resistive element; Heating by direct contact, i.e. with resistive elements, electrodes and fins being bonded together without additional element in-between for domestic or space-heating systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/18Arrangement or mounting of grates or heating means
    • F24H9/1854Arrangement or mounting of grates or heating means for air heaters
    • F24H9/1863Arrangement or mounting of electric heating means
    • F24H9/1872PTC
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/0033Heating devices using lamps
    • H05B3/0071Heating devices using lamps for domestic applications
    • H05B3/008Heating devices using lamps for domestic applications for heating of inner spaces
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • H05B3/14Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic
    • H05B3/141Conductive ceramics, e.g. metal oxides, metal carbides, barium titanate, ferrites, zirconia, vitrous compounds
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/032Heaters specially adapted for heating by radiation heating

Definitions

  • the present invention relates to a porous ceramic carrier, and more particularly to a porous ceramic carrier having a far infrared function.
  • a porous ceramic carrier is used in a catalyst, such as a far infrared catalyst, a heating element or an electrically conduction element.
  • the porous ceramic carrier does not need secondary heat transfer when in use, so that the porous ceramic carrier is heated rapidly, evenly and safely with a higher thermal efficiency.
  • a conventional porous ceramic carrier in accordance with the prior art shown in FIG. 6 comprises a main body “A” having an inside formed with a plurality of through holes “B”.
  • the main body “A” cannot emit the far infrared rays when in use, thereby greatly limiting the versatility of the conventional porous ceramic carrier.
  • a conventional heating device includes a heating element consisting of a nickel-chromium coil or a quartz tube disposed at a proper position.
  • the heating element is heated in a heat convection manner with the air as a medium of heat transfer.
  • the heat transfer efficiency in the air is poor, so that the heating temperature of the heating element is not evenly distributed.
  • the conventional heating device has a larger volume, and the heating temperature of the heating element cannot be controlled easily.
  • Another conventional heating device comprises a PTC heating body formed by a pressing or extruding process.
  • the PTC heating body is made of PTC material.
  • the PTC material has expensive price, thereby greatly increasing the costs of fabrication.
  • a porous ceramic carrier comprising at least one substrate integrally formed with a functional far infrared material and having an inside formed with a plurality of through holes, and an electrothermal film layer coated on a surface of each of the through holes of the substrate.
  • the primary objective of the present invention is to provide a porous ceramic carrier having a far infrared function.
  • Another objective of the present invention is to provide a porous ceramic carrier that has a rapid heat circulation effect by provision of the electrothermal film layer, thereby enhancing the heat circulation efficiency of the porous ceramic carrier.
  • a further objective of the present invention is to provide a porous ceramic carrier that is available for various heating elements.
  • a further objective of the present invention is to provide a porous ceramic carrier that can emit the far infrared rays when in use.
  • a further objective of the present invention is to provide a porous ceramic carrier, wherein the functional far infrared material has a function of converting the far infrared rays, thereby enhancing the heating efficiency of the heating element.
  • FIG. 1 is a plan cross-sectional view of a porous ceramic carrier in accordance with the preferred embodiment of the present invention
  • FIG. 2 is a locally enlarged view of the porous ceramic carrier as shown in FIG. 1 ;
  • FIG. 3 is a plan view showing operation of the porous ceramic carrier as shown in FIG. 1 ;
  • FIG. 4 is a plan cross-sectional view of the porous ceramic carrier having a single substrate
  • FIG. 5 is a plan view of the porous ceramic carrier having a plurality of substrates.
  • FIG. 6 is a plan cross-sectional view of a conventional porous ceramic carrier in accordance with the prior art.
  • a porous ceramic carrier in accordance with the preferred embodiment of the present invention comprises a substrate 1 integrally formed with a functional far infrared material 10 and having an inside formed with a plurality of through holes 11 , and an electrothermal film layer 12 coated on a surface of each of the through holes 11 of the substrate 1 .
  • the substrate 1 is formed integrally by a mold extruding process and has a proper shape, such as circular or square. In the preferred embodiment of the present invention, the substrate 1 has a circular shape.
  • the surface of each of the through holes 20 is used to function as a bed for attaching the functional far infrared material 10 .
  • the functional far infrared material 10 is a material, such as a ceramic material, that can convert the far infrared rays.
  • the functional far infrared material 10 is mixed with the substrate 1 before the molding process of the substrate 1 , so that the substrate 1 is integrally formed with the functional far infrared material 10 without needing a high temperature sintering process, thereby simplifying the manufacturing process.
  • the substrate 1 can emit the far infrared rays when in use.
  • the electrothermal film layer 12 is a resistor material.
  • the electrothermal film layer 12 is preferably made of tin, nickel and chromium alloy, copper and nickel alloy, copper, nickel and manganese alloy or the like.
  • the electrothermal film layer 12 is coated on the surface of each of the through holes 11 of the substrate 1 by a thermal chemical reaction method, such as a high temperature atomized growth method.
  • a thermal chemical reaction method such as a high temperature atomized growth method.
  • the porous ceramic carrier functions as a cooling/heating fan and further comprises a fan motor 2 having a front end provided with a propeller shaft 20 , a protective hood 3 mounted on the front end of the fan motor 2 , a plurality of fan blades 4 mounted on a distal end of the propeller shaft 20 of the fan motor 2 , and an auxiliary fan 21 mounted on a rear end of the fan motor 2 .
  • the propeller shaft 20 of the fan motor 2 is extended into the protective hood 3 .
  • the porous ceramic carrier comprises at least one substrate 1 mounted on the propeller shaft 20 of the fan motor 2 and located between the fan motor 2 and the fan blades 4 .
  • the substrate 1 is positioned in the protective hood 3 by a fixing seat 30 .
  • auxiliary fan 21 is used to carry the ambient air toward the substrate 1 and to cool the fan motor 2 .
  • the substrate 1 has a central portion formed with a mounting hole 13 to allow passage of the propeller shaft 20 of the fan motor 2 .
  • the porous ceramic carrier comprises a plurality of substrates 1 mounted on the propeller shaft 20 of the fan motor 2 and located between the fan motor 2 and the fan blades 4 .
  • Each of the substrates 1 is positioned in the protective hood 3 by a fixing seat 30 .
  • the substrates 1 are arranged in an annular manner and have a central portion formed with a void “C”, and the propeller shaft 20 of the fan motor 2 is extended through the void “C” formed between the substrates 1 .
  • the porous ceramic carrier has a rapid heat circulation effect by provision of the electrothermal film layer 12 , thereby enhancing the heat circulation efficiency of the porous ceramic carrier.
  • the porous ceramic carrier is available for various heating elements.
  • the porous ceramic carrier can emit the far infrared rays when in use.
  • the functional far infrared material 10 has a function of converting the far infrared rays, thereby enhancing the heating efficiency of the heating element.

Abstract

A porous ceramic carrier includes at least one substrate integrally formed with a functional far infrared material and having an inside formed with a plurality of through holes, and an electrothermal film layer coated on a surface of each of the through holes of the substrate. Thus, the porous ceramic carrier has a rapid heat circulation effect by provision of the electrothermal film layer, thereby enhancing the heat circulation efficiency of the porous ceramic carrier.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention relates to a porous ceramic carrier, and more particularly to a porous ceramic carrier having a far infrared function.
  • 2. Description of the Related Art
  • A porous ceramic carrier is used in a catalyst, such as a far infrared catalyst, a heating element or an electrically conduction element. The porous ceramic carrier does not need secondary heat transfer when in use, so that the porous ceramic carrier is heated rapidly, evenly and safely with a higher thermal efficiency.
  • A conventional porous ceramic carrier in accordance with the prior art shown in FIG. 6 comprises a main body “A” having an inside formed with a plurality of through holes “B”. However, the main body “A” cannot emit the far infrared rays when in use, thereby greatly limiting the versatility of the conventional porous ceramic carrier.
  • A conventional heating device includes a heating element consisting of a nickel-chromium coil or a quartz tube disposed at a proper position. The heating element is heated in a heat convection manner with the air as a medium of heat transfer. However, the heat transfer efficiency in the air is poor, so that the heating temperature of the heating element is not evenly distributed. In addition, the conventional heating device has a larger volume, and the heating temperature of the heating element cannot be controlled easily.
  • Another conventional heating device comprises a PTC heating body formed by a pressing or extruding process. The PTC heating body is made of PTC material. However, the PTC material has expensive price, thereby greatly increasing the costs of fabrication.
  • SUMMARY OF THE INVENTION
  • In accordance with the present invention, there is provided a porous ceramic carrier, comprising at least one substrate integrally formed with a functional far infrared material and having an inside formed with a plurality of through holes, and an electrothermal film layer coated on a surface of each of the through holes of the substrate.
  • The primary objective of the present invention is to provide a porous ceramic carrier having a far infrared function.
  • Another objective of the present invention is to provide a porous ceramic carrier that has a rapid heat circulation effect by provision of the electrothermal film layer, thereby enhancing the heat circulation efficiency of the porous ceramic carrier.
  • A further objective of the present invention is to provide a porous ceramic carrier that is available for various heating elements.
  • A further objective of the present invention is to provide a porous ceramic carrier that can emit the far infrared rays when in use.
  • A further objective of the present invention is to provide a porous ceramic carrier, wherein the functional far infrared material has a function of converting the far infrared rays, thereby enhancing the heating efficiency of the heating element.
  • Further benefits and advantages of the present invention will become apparent after a careful reading of the detailed description with appropriate reference to the accompanying drawings.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a plan cross-sectional view of a porous ceramic carrier in accordance with the preferred embodiment of the present invention;
  • FIG. 2 is a locally enlarged view of the porous ceramic carrier as shown in FIG. 1;
  • FIG. 3 is a plan view showing operation of the porous ceramic carrier as shown in FIG. 1;
  • FIG. 4 is a plan cross-sectional view of the porous ceramic carrier having a single substrate;
  • FIG. 5 is a plan view of the porous ceramic carrier having a plurality of substrates; and
  • FIG. 6 is a plan cross-sectional view of a conventional porous ceramic carrier in accordance with the prior art.
  • DETAILED DESCRIPTION OF THE INVENTION
  • Referring to the drawings and initially to FIGS. 1 and 2, a porous ceramic carrier in accordance with the preferred embodiment of the present invention comprises a substrate 1 integrally formed with a functional far infrared material 10 and having an inside formed with a plurality of through holes 11, and an electrothermal film layer 12 coated on a surface of each of the through holes 11 of the substrate 1.
  • The substrate 1 is formed integrally by a mold extruding process and has a proper shape, such as circular or square. In the preferred embodiment of the present invention, the substrate 1 has a circular shape. The surface of each of the through holes 20 is used to function as a bed for attaching the functional far infrared material 10.
  • The functional far infrared material 10 is a material, such as a ceramic material, that can convert the far infrared rays. The functional far infrared material 10 is mixed with the substrate 1 before the molding process of the substrate 1, so that the substrate 1 is integrally formed with the functional far infrared material 10 without needing a high temperature sintering process, thereby simplifying the manufacturing process. Thus, the substrate 1 can emit the far infrared rays when in use.
  • The electrothermal film layer 12 is a resistor material. The electrothermal film layer 12 is preferably made of tin, nickel and chromium alloy, copper and nickel alloy, copper, nickel and manganese alloy or the like. In addition, the electrothermal film layer 12 is coated on the surface of each of the through holes 11 of the substrate 1 by a thermal chemical reaction method, such as a high temperature atomized growth method. Thus, the electrothermal film layer 12 is used to provide a heating effect.
  • Referring to FIG. 3, the porous ceramic carrier functions as a cooling/heating fan and further comprises a fan motor 2 having a front end provided with a propeller shaft 20, a protective hood 3 mounted on the front end of the fan motor 2, a plurality of fan blades 4 mounted on a distal end of the propeller shaft 20 of the fan motor 2, and an auxiliary fan 21 mounted on a rear end of the fan motor 2. The propeller shaft 20 of the fan motor 2 is extended into the protective hood 3. The porous ceramic carrier comprises at least one substrate 1 mounted on the propeller shaft 20 of the fan motor 2 and located between the fan motor 2 and the fan blades 4. The substrate 1 is positioned in the protective hood 3 by a fixing seat 30.
  • When in use, when the ambient air carried by the fan blades 4 passes through the through holes 11 of the substrate 1, the ambient air is heated by the electrothermal film layer 12 coated on the surface of each of the through holes 11 of the substrate 1, and the heated air is blown outward from the protective hood 3, thereby providing a heating circulation effect to a space, such as a room. In such a manner, the electrothermal film layer 12 does not need secondary heat transfer when in use, so that the electrothermal film layer 12 is used to heat the ambient air rapidly, evenly and safely with a higher thermal efficiency, thereby enhancing the heat circulation efficiency of the porous ceramic carrier. In addition, auxiliary fan 21 is used to carry the ambient air toward the substrate 1 and to cool the fan motor 2.
  • Referring to FIG. 4, the substrate 1 has a central portion formed with a mounting hole 13 to allow passage of the propeller shaft 20 of the fan motor 2.
  • Referring to FIG. 5, the porous ceramic carrier comprises a plurality of substrates 1 mounted on the propeller shaft 20 of the fan motor 2 and located between the fan motor 2 and the fan blades 4. Each of the substrates 1 is positioned in the protective hood 3 by a fixing seat 30. The substrates 1 are arranged in an annular manner and have a central portion formed with a void “C”, and the propeller shaft 20 of the fan motor 2 is extended through the void “C” formed between the substrates 1.
  • Accordingly, the porous ceramic carrier has a rapid heat circulation effect by provision of the electrothermal film layer 12, thereby enhancing the heat circulation efficiency of the porous ceramic carrier. In addition, the porous ceramic carrier is available for various heating elements. Further, the porous ceramic carrier can emit the far infrared rays when in use. Further, the functional far infrared material 10 has a function of converting the far infrared rays, thereby enhancing the heating efficiency of the heating element.
  • Although the invention has been explained in relation to its preferred embodiment(s) as mentioned above, it is to be understood that many other possible modifications and variations can be made without departing from the scope of the present invention. It is, therefore, contemplated that the appended claim or claims will cover such modifications and variations that fall within the true scope of the invention.

Claims (17)

1. A porous ceramic carrier, comprising:
a fan motor having a front end provided with a propeller shaft;
a plurality of fan blades mounted on a distal end of the propeller shaft of the fan motor;
at least one substrate made of ceramic material having a peripheral wall integrally formed with a functional far infrared material and having an inside formed with a plurality of axially extending through holes, wherein the at least one substrate is located between the fan motor and the fan blades;
an electrothermal film layer coated on a peripheral wall of each of the through holes of the substrate to provide a heating function;
wherein, the electro-thermal plating film layer coated on the peripheral wall of each of the through holes of the substrate is extended axially through a whole length of the substrate so that an air from the ambient environment is introduced by the fan motor to pass through the substrate and is heated by the electro-thermal plating film layer of each of the through holes of the substrate to produce a hot air which is carried outward by the impeller to provide a warming effect.
2. (canceled)
3. The porous ceramic carrier in accordance with claim 1, further comprising a protective hood mounted on the front end of the fan motor.
4. The porous ceramic carrier in accordance with claim 3, wherein the propeller shaft of the fan motor is extended into the protective hood.
5. The porous ceramic carrier in accordance with claim 1, further comprising an auxiliary fan mounted on a rear end of the fan motor, wherein the fan motor is located between the auxiliary fan and the substrate.
6. The porous ceramic carrier in accordance with claim 1, wherein the at least one substrate is mounted on the propeller shaft of the fan motor.
7. The porous ceramic carrier in accordance with claim 1, wherein the porous ceramic carrier comprises a single substrate mounted on the propeller shaft of the fan motor.
8. The porous ceramic carrier in accordance with claim 7, wherein the substrate has a central portion formed with a mounting hole to allow passage of the propeller shaft of the fan motor and having a size greater than that of each of the through holes of the substrate.
9. The porous ceramic carrier in accordance with claim 7, further comprising a protective hood mounted on the front end of the fan motor, wherein the substrate is positioned in the protective hood by a fixing seat which is mounted in a peripheral wall of the protective shade for fixing and supporting the substrate.
10. The porous ceramic carrier in accordance with claim 1, wherein the porous ceramic carrier comprises a plurality of symmetrically arranged substrates surrounding the propeller shaft of the fan motor and located between the fan motor and the fan blades.
11. The porous ceramic carrier in accordance with claim 10, wherein the substrates have a central portion formed with an axially extending void, and the propeller shaft of the fan motor is located at the central portion of the substrates and is extended through the void formed between the substrates.
12. The porous ceramic carrier in accordance with claim 11, wherein the substrates are arranged in an annular manner and abutting each other.
13. The porous ceramic carrier in accordance with claim 10, further comprising a protective hood mounted on the front end of the fan motor, wherein each of the substrates is positioned in the protective hood by a fixing seat which is mounted in a peripheral wall of the protective shade for fixing and supporting each of the substrates.
14. (canceled)
15. The porous ceramic carrier in accordance with claim 8, wherein the through holes of the substrate surround the mounting hole of the substrate and the propeller shaft of the fan motor.
16. The porous ceramic carrier in accordance with claim 1, wherein each of the through holes of the substrate has a square shape.
17. The porous ceramic carrier in accordance with claim 1, wherein the through holes of the substrate are extended axially through the whole length of the substrate.
US11/179,946 2005-07-12 2005-07-12 Porous ceramic carrier having a far infrared function Abandoned US20070031132A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/179,946 US20070031132A1 (en) 2005-07-12 2005-07-12 Porous ceramic carrier having a far infrared function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/179,946 US20070031132A1 (en) 2005-07-12 2005-07-12 Porous ceramic carrier having a far infrared function

Publications (1)

Publication Number Publication Date
US20070031132A1 true US20070031132A1 (en) 2007-02-08

Family

ID=37717694

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/179,946 Abandoned US20070031132A1 (en) 2005-07-12 2005-07-12 Porous ceramic carrier having a far infrared function

Country Status (1)

Country Link
US (1) US20070031132A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070033825A1 (en) * 2005-04-18 2007-02-15 Beauty-Gear International Limited Hot air blower with ceramic heating element
US20180042424A1 (en) * 2015-02-11 2018-02-15 Foshan Shunde Midea Electrical Heating Appliances Manufacturing Co., Limited Electrothermal film layer manufacturing method, electrothermal film layer, electrically-heating plate, and cooking utensil

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US783057A (en) * 1904-11-26 1905-02-21 Timothy Mahoney Electric air-diffusing device.
US4264888A (en) * 1979-05-04 1981-04-28 Texas Instruments Incorporated Multipassage resistor and method of making
US4570046A (en) * 1983-09-09 1986-02-11 Gte Products Corporation Method of processing PTC heater
US4654510A (en) * 1979-10-11 1987-03-31 Tdk Electronics Co., Ltd. PTC heating apparatus
US4703153A (en) * 1985-06-24 1987-10-27 Pelko Electric Inc. Electric heater employing semiconductor heating elements
US5413587A (en) * 1993-11-22 1995-05-09 Hochstein; Peter A. Infrared heating apparatus and methods
US6397002B1 (en) * 2000-11-28 2002-05-28 King Of Fans, Inc. Combination fan and heater
US20040142145A1 (en) * 2001-06-29 2004-07-22 Shigeharu Hashimoto Honeycomb structure body
US7049561B1 (en) * 2005-01-19 2006-05-23 Cheng Ping Lin Far infrared tubular porous ceramic heating element

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US783057A (en) * 1904-11-26 1905-02-21 Timothy Mahoney Electric air-diffusing device.
US4264888A (en) * 1979-05-04 1981-04-28 Texas Instruments Incorporated Multipassage resistor and method of making
US4654510A (en) * 1979-10-11 1987-03-31 Tdk Electronics Co., Ltd. PTC heating apparatus
US4570046A (en) * 1983-09-09 1986-02-11 Gte Products Corporation Method of processing PTC heater
US4703153A (en) * 1985-06-24 1987-10-27 Pelko Electric Inc. Electric heater employing semiconductor heating elements
US5413587A (en) * 1993-11-22 1995-05-09 Hochstein; Peter A. Infrared heating apparatus and methods
US6397002B1 (en) * 2000-11-28 2002-05-28 King Of Fans, Inc. Combination fan and heater
US20040142145A1 (en) * 2001-06-29 2004-07-22 Shigeharu Hashimoto Honeycomb structure body
US7049561B1 (en) * 2005-01-19 2006-05-23 Cheng Ping Lin Far infrared tubular porous ceramic heating element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070033825A1 (en) * 2005-04-18 2007-02-15 Beauty-Gear International Limited Hot air blower with ceramic heating element
US20180042424A1 (en) * 2015-02-11 2018-02-15 Foshan Shunde Midea Electrical Heating Appliances Manufacturing Co., Limited Electrothermal film layer manufacturing method, electrothermal film layer, electrically-heating plate, and cooking utensil

Similar Documents

Publication Publication Date Title
US5641421A (en) Amorphous metallic alloy electrical heater systems
US6389710B1 (en) Structure of an infrared hair drier
KR101277784B1 (en) Hair dryer having ceramic heater
JP3534672B2 (en) Independent and portable radiator
US20070031132A1 (en) Porous ceramic carrier having a far infrared function
EP1729072B1 (en) Fan combined with an electrical ceramical heater
CN1041052C (en) Hot gas blower
US7194198B2 (en) Sauna far infrared heat emitting article and method
ES2311675T3 (en) ELECTRIC HEATING ELEMENT.
KR100608923B1 (en) An electric heat radiation plate heater
US20060257126A1 (en) Cooling/heating fan apparatus
KR102351852B1 (en) Heater and heating system including thereof
KR100630330B1 (en) Electric heater
JP2527016Y2 (en) Seat heater
KR200391217Y1 (en) an electric heat radiation plate heater
JP3113014U (en) Cooling and heating fan
CN218626971U (en) Electric ceramic stove
KR200252935Y1 (en) Far-infrared heater of fan shape
CN209013252U (en) A kind of heat dissipation type electron radiation stone or metal plate for standing a stove on as a precaution against fire
JP4060364B2 (en) Electric heating device for amorphous metal alloys
US20060076325A1 (en) Heating device having electrothermal film
JPH11314224A (en) Uniformly heating apparatus
JP3114202U (en) Porous ceramic carrier with far infrared function
JP2707915B2 (en) Cooling device for heating stove
KR200393430Y1 (en) Electric fan

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION