US20070043449A1 - Artificial ankle-foot system with spring, variable-damping, and series-elastic actuator components - Google Patents

Artificial ankle-foot system with spring, variable-damping, and series-elastic actuator components Download PDF

Info

Publication number
US20070043449A1
US20070043449A1 US11/495,140 US49514006A US2007043449A1 US 20070043449 A1 US20070043449 A1 US 20070043449A1 US 49514006 A US49514006 A US 49514006A US 2007043449 A1 US2007043449 A1 US 2007043449A1
Authority
US
United States
Prior art keywords
ankle
foot
artificial
set forth
shin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/495,140
Inventor
Hugh Herr
Samuel Au
Peter Dilworth
Daniel Paluska
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Massachusetts Institute of Technology
Original Assignee
Massachusetts Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/395,448 external-priority patent/US20060249315A1/en
Application filed by Massachusetts Institute of Technology filed Critical Massachusetts Institute of Technology
Priority to US11/495,140 priority Critical patent/US20070043449A1/en
Assigned to MASSACHUSETTS INSTITUTE OF TECHNOLOGY reassignment MASSACHUSETTS INSTITUTE OF TECHNOLOGY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DILWORTH, PETER, PALUSKA, DANIEL JOSEPH, AU, SAMUEL K, HERR, HUGH M.
Priority to US11/600,291 priority patent/US20070123997A1/en
Priority to US11/642,993 priority patent/US20070162152A1/en
Publication of US20070043449A1 publication Critical patent/US20070043449A1/en
Priority to US12/157,727 priority patent/US8512415B2/en
Priority to US12/608,627 priority patent/US8870967B2/en
Priority to US12/697,894 priority patent/US8500823B2/en
Priority to US12/698,128 priority patent/US8864846B2/en
Priority to US12/859,765 priority patent/US10485681B2/en
Priority to US13/348,570 priority patent/US20120209405A1/en
Priority to US13/723,743 priority patent/US8734528B2/en
Priority to US13/959,495 priority patent/US9149370B2/en
Priority to US13/970,094 priority patent/US10137011B2/en
Priority to US14/283,323 priority patent/US9339397B2/en
Priority to US14/520,091 priority patent/US9539117B2/en
Priority to US15/091,895 priority patent/US10342681B2/en
Priority to US15/342,661 priority patent/US10307272B2/en
Priority to US16/182,298 priority patent/US11278433B2/en
Priority to US16/458,421 priority patent/US11273060B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/50Prostheses not implantable in the body
    • A61F2/60Artificial legs or feet or parts thereof
    • A61F2/66Feet; Ankle joints
    • A61F2/6607Ankle joints
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/50Prostheses not implantable in the body
    • A61F2/60Artificial legs or feet or parts thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/50Prostheses not implantable in the body
    • A61F2/68Operating or control means
    • A61F2/70Operating or control means electrical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/0008Balancing devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D57/00Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track
    • B62D57/02Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members
    • B62D57/032Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members with alternately or sequentially lifted supporting base and legs; with alternately or sequentially lifted feet or skid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/50Prostheses not implantable in the body
    • A61F2/60Artificial legs or feet or parts thereof
    • A61F2/605Hip joints
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/50Prostheses not implantable in the body
    • A61F2/60Artificial legs or feet or parts thereof
    • A61F2/64Knee joints
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/50Prostheses not implantable in the body
    • A61F2/68Operating or control means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/50Prostheses not implantable in the body
    • A61F2002/5003Prostheses not implantable in the body having damping means, e.g. shock absorbers
    • A61F2002/5004Prostheses not implantable in the body having damping means, e.g. shock absorbers operated by electro- or magnetorheological fluids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/50Prostheses not implantable in the body
    • A61F2002/5003Prostheses not implantable in the body having damping means, e.g. shock absorbers
    • A61F2002/5006Dampers, e.g. hydraulic damper
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/50Prostheses not implantable in the body
    • A61F2002/5016Prostheses not implantable in the body adjustable
    • A61F2002/503Prostheses not implantable in the body adjustable for adjusting elasticity, flexibility, spring rate or mechanical tension
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/50Prostheses not implantable in the body
    • A61F2002/5016Prostheses not implantable in the body adjustable
    • A61F2002/5033Prostheses not implantable in the body adjustable for adjusting damping
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/50Prostheses not implantable in the body
    • A61F2002/5072Prostheses not implantable in the body having spring elements
    • A61F2002/5073Helical springs, e.g. having at least one helical spring
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/50Prostheses not implantable in the body
    • A61F2002/5072Prostheses not implantable in the body having spring elements
    • A61F2002/5073Helical springs, e.g. having at least one helical spring
    • A61F2002/5075Multiple spring systems including two or more helical springs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/50Prostheses not implantable in the body
    • A61F2002/5072Prostheses not implantable in the body having spring elements
    • A61F2002/5079Leaf springs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/50Prostheses not implantable in the body
    • A61F2002/5081Additional features
    • A61F2002/509Additional features specially designed for children, e.g. having means for adjusting to their growth
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/50Prostheses not implantable in the body
    • A61F2/60Artificial legs or feet or parts thereof
    • A61F2/66Feet; Ankle joints
    • A61F2002/6614Feet
    • A61F2002/6657Feet having a plate-like or strip-like spring element, e.g. an energy-storing cantilever spring keel
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/50Prostheses not implantable in the body
    • A61F2/60Artificial legs or feet or parts thereof
    • A61F2/66Feet; Ankle joints
    • A61F2002/6614Feet
    • A61F2002/6657Feet having a plate-like or strip-like spring element, e.g. an energy-storing cantilever spring keel
    • A61F2002/6678L-shaped
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/50Prostheses not implantable in the body
    • A61F2/68Operating or control means
    • A61F2002/6818Operating or control means for braking
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/50Prostheses not implantable in the body
    • A61F2/68Operating or control means
    • A61F2/70Operating or control means electrical
    • A61F2002/701Operating or control means electrical operated by electrically controlled means, e.g. solenoids or torque motors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/50Prostheses not implantable in the body
    • A61F2/68Operating or control means
    • A61F2/70Operating or control means electrical
    • A61F2002/704Operating or control means electrical computer-controlled, e.g. robotic control
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/50Prostheses not implantable in the body
    • A61F2/76Means for assembling, fitting or testing prostheses, e.g. for measuring or balancing, e.g. alignment means
    • A61F2002/7615Measuring means
    • A61F2002/7625Measuring means for measuring angular position
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/50Prostheses not implantable in the body
    • A61F2/76Means for assembling, fitting or testing prostheses, e.g. for measuring or balancing, e.g. alignment means
    • A61F2002/7615Measuring means
    • A61F2002/763Measuring means for measuring spatial position, e.g. global positioning system [GPS]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/50Prostheses not implantable in the body
    • A61F2/76Means for assembling, fitting or testing prostheses, e.g. for measuring or balancing, e.g. alignment means
    • A61F2002/7615Measuring means
    • A61F2002/7635Measuring means for measuring force, pressure or mechanical tension
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/50Prostheses not implantable in the body
    • A61F2/76Means for assembling, fitting or testing prostheses, e.g. for measuring or balancing, e.g. alignment means
    • A61F2002/7615Measuring means
    • A61F2002/764Measuring means for measuring acceleration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/50Prostheses not implantable in the body
    • A61F2/76Means for assembling, fitting or testing prostheses, e.g. for measuring or balancing, e.g. alignment means
    • A61F2002/7615Measuring means
    • A61F2002/7645Measuring means for measuring torque, e.g. hinge or turning moment, moment of force

Definitions

  • This invention relates generally to prosthetic devices and artificial limb and joint systems, including robotic, orthotic, exoskeletal limbs, and more particularly, although in its broader aspects not exclusively, to artificial feet and ankle joints.
  • an artificial ankle-foot system ideally needs to fulfill a diverse set of requirements.
  • the artificial system must be a reasonable weight and have a natural morphological shape, but still have an operational time between refueling or battery recharges of at least one full day.
  • the system must also be capable of varying its position, impedance, and motive power in a comparable manner to that of a normal, healthy biological limb.
  • the system must be adaptive, changing its characteristics given such environmental disturbances as walking speed and terrain variation.
  • the ankle behaves as a variable stiffness device during the early to midstance period, storing and releasing impact energies. Throughout terminal stance, the ankle acts as a torque source to power the body forward. In distinction, the ankle varies damping rather than stiffness during the early stance period of stair descent.
  • a level-ground walking gait cycle is typically defined as beginning with the heel strike of one foot and ending at the next heel strike of the same foot ⁇ 8 ⁇ .
  • the main subdivisions of the gait cycle are the stance phase (about 60% of the cycle) and the subsequent swing phase (about 40% of the cycle) as shown in FIG. 1 .
  • the swing phase represents the portion of the gait cycle when the foot is off the ground.
  • the stance phase begins at heel-strike when the heel touches the floor and ends at toe-off when the same foot rises from the ground surface. Additionally, we can further divide the stance phase into three sub-phases: Controlled Plantar flexion (CP), Controlled Dorsiflexion (CD), and Powered Plantar flexion (PP).
  • CP Controlled Plantar flexion
  • CD Controlled Dorsiflexion
  • PP Powered Plantar flexion
  • FIG. 1 Each phase and the corresponding ankle functions which occur when walking on level ground are illustrated in FIG. 1 .
  • the subdivisions of the stance phase of walking, in order from first to last, are: the Controlled Plantar flexion (CP) phase, the Controlled Dorsiflexion (CD) phase, and the Powered Plantar flexion (PP) phase.
  • CP Controlled Plantar flexion
  • CD Controlled Dorsiflexion
  • PP Powered Plantar flexion
  • CP begins at heel-strike illustrated at 103 and ends at foot-flat at 105 .
  • CP describes the process by which the heel and forefoot initially make contact with the ground.
  • ⁇ 1, 12 ⁇ researchers showed that CP ankle joint behavior was consistent with a linear spring response where joint torque is proportional to joint position. The spring behavior is, however, variable; joint stiffness is continuously modulated by the body from step to step.
  • the CD phase continues until the ankle reaches a state of maximum dorsiflexion and begins powered plantarflexion PP as illustrated at 107 .
  • Ankle torque versus position during the CD period can often be described as a nonlinear spring where stiffness increases with increasing ankle position.
  • the main function of the ankle during CD is to store the elastic energy necessary to propel the body upwards and forwards during the PP phase ⁇ 9 ⁇ ⁇ 3 ⁇ .
  • the PP phase begins after CD and ends at the instant of toe-off illustrated at 109 .
  • the ankle can be modeled as a catapult in series or in parallel with the CD spring or springs.
  • the catapult component includes a motor that does work on a series spring during the latter half of the CD phase and/or during the first half of the PP phase.
  • the catapult energy is then released along with the spring energy stored during the CD phase to achieve the high plantar flexion power during late stance.
  • This catapult behavior is necessary because the work generated during PP is more than the negative work absorbed during the CP and CD phases for moderate to fast walking speeds ⁇ 1 ⁇ ⁇ 2 ⁇ ⁇ 3 ⁇ ⁇ 9 ⁇ .
  • FIGS. 2 and 3 a separate description of the ankle-foot biomechanics is presented in FIGS. 2 and 3 .
  • FIG. 2 shows the human ankle biomechanics during stair ascent.
  • the first phase of stair ascent is called Controlled Dorsiflexion 1 (CD 1), which begins with foot strike in a dorsiflexed position seen at 201 and continues to dorsiflex until the heel contacts the step surface at 203 .
  • CD 1 Controlled Dorsiflexion 1
  • the ankle can be modeled as a linear spring.
  • the second phase is Powered Plantar flexion 1 (PP 1), which begins at the instant of foot flat (when the ankle reaches its maximum dorsiflexion at 203 ) and ends when dorsiflexion begins once again at 205 .
  • PP 1 Powered Plantar flexion 1
  • the human ankle behaves as a torque actuator to provide extra energy to support the body weight.
  • the third phase is Controlled Dorsiflexion 2 (CD 2), in which the ankle dorsiflexes until heel-off at 207 .
  • CD 2 Controlled Dorsiflexion 2
  • the ankle can be modeled as a linear spring.
  • the fourth and final phase is Powered Plantar flexion 2 (PP 2) which begins at heel-off 207 and continues as the foot pushes off the step, acting as a torque actuator in parallel with the CD 2 spring to propel the body upwards and forwards, and ends when the toe leaves the surface at 209 to being the swing phase that ends at 213 .
  • PP 2 Powered Plantar flexion 2
  • FIG. 3 shows the human ankle-foot biomechanics for stair descent.
  • the stance phase of stair descent is divided into three sub-phases: Controlled Dorsiflexion 1 (CD1), Controlled Dorsiflexion 2 (CD2), and Powered Plantar flexion (PP).
  • CD1 Controlled Dorsiflexion 1
  • CD2 Controlled Dorsiflexion 2
  • PP Powered Plantar flexion
  • CD1 begins at foot strike illustrated at 303 and ends at foot-flat 305 .
  • the human ankle can be modeled as a variable damper.
  • the ankle continues to dorsiflex forward until it reaches a maximum dorsiflexion posture seen at 307 .
  • the ankle acts as a linear spring, storing energy throughout CD2.
  • PP which begins at 307 , the ankle plantar flexes until the foot lifts from the step at 309 .
  • the ankle releases stored CD2 energy, propelling the body upwards and forwards.
  • the foot is positioned controlled through the swing phase until the next foot strike at 313 .
  • the human ankle-foot can be effectively modeled using a combination of an actuator and a variable stiffness mechanism.
  • a variable damper needs also to be included for modeling the ankle-foot complex; the power absorbed by the human ankle is much greater during stair descent than the power released by 2.3 to 11.2 J/kg ⁇ 2 ⁇ .
  • the preferred embodiments of the present invention take the form of an artificial ankle system capable of providing biologically-realistic dynamic behaviors.
  • the key mechanical components of these embodiments, and their general functions, may be summarized as follows:
  • an artificial ankle may employ an elastic member operatively connected in series with the motor between the shin member and the foot member to store energy when the relative motion of the foot and shin members is being arrested by a controllable variable damping element and to thereafter apply an additional torque to the ankle joint when the variable damping element no longer arrests the relative motion of the two members.
  • An artificial ankle may include an elastic member operatively connected in series with the motor between the shin and foot members to store energy when the foot member is moved toward the shin member and to release energy and apply an additional torque to the ankle joint that assists the motor to move the foot member away from the shin member.
  • a controllable damping member may be employed to arrest the motion of the motor to control the amount of energy absorbed by the motor when the foot member is moved toward the shin member.
  • the Flex-Foot made by ⁇ ssur of Reykjavik, Iceland, is a passive carbon-fiber energy storage device that replicates the ankle joint for amputees.
  • the Flex-Foot is described in U.S. Pat. No. 6,071,313 issued to Van L. Phillips entitled “Split foot prosthesis” and in Phillips' earlier U.S. Pat. Nos. 5,776,205, 5,514,185 and No. 5,181,933, the disclosures of which are incorporated herein by reference.
  • the Flex-foot is a foot prosthesis for supporting an amputee relative to a support surface and consists of a leaf spring having multiple flexing portions configured to flex substantially independently of one another substantially completely along their length.
  • the Flex-Foot has an equilibrium position of 90 degrees and a single nominal stiffness value.
  • a hybrid actuator mechanism of the kind described in the above-noted application Ser. No. 11/395,448 is used to augment a flexing foot member such as the Flex-Foot by allowing the equilibrium position to be set to an arbitrary angle by a motor and locking, or arresting the relative movement of, the foot member with respect to the shin member using a clutch or variable damper.
  • the embodiment of the invention to be described can also change the stiffness and damping of the prosthesis dynamically.
  • Preferred embodiments of the present invention take the form of an artificial ankle and foot system in which a foot and ankle structure is mounted for rotation with respect to a shin member at an ankle joint.
  • the foot and ankle structure preferably comprises a curved flexible elastic foot member that defines an arch between a heel extremity and a toe extremity, and a flexible elastic ankle member that connects said foot member for rotation at the ankle joint.
  • a variable damper is employed to arresting the motion of said foot and ankle structure with respect to said shin member under predetermined conditions, and preferably includes a stop mechanism that prevents the foot and ankle structure from rotating with respect to the shin member beyond a predetermined limit position.
  • variable damper may further include a controllable damper, such as a magnetorheological (MR) brake, which arrests the rotation of the ankle joint by controllable amount at controlled times during the walking cycle.
  • a controllable damper such as a magnetorheological (MR) brake
  • MR magnetorheological
  • Preferred embodiments of the ankle and foot system further include an actuator motor for applying torque to the ankle joint to rotate said foot and ankle structure with respect to said shin member.
  • embodiments of the invention may include a catapult mechanism comprising a series elastic member operatively connected in series with the motor between the shin member and the foot and ankle structure.
  • the series elastic member stores energy from the motor during a first portion of each walking cycle and then releases the stored energy to help propel the user forward over the walking surface at a later time in each walking cycle.
  • the preferred embodiments of the invention may employ a controller for operating both the motor and the controllable damper such that the motor stores energy in the series elastic member as the shin member is being arrested by the controllable damper.
  • the actuator motor which applies torque to the ankle joint may be employed to adjust the position of the foot and ankle structure relative to the shin member when the foot and ankle member is not in contact with a support surface.
  • Inertial sensing means are preferably employed to determine the relative elevation of the foot and angle structure and to actuate the motor in response to changes in the relative elevation, thereby automatically positioning the foot member for toe first engagement if the wearer is descending stairs.
  • FIG. 1 illustrates the different phases of a walking cycle experienced by a human ankle and foot during level ground walking
  • FIG. 2 depicts the phases of a walking cycle experienced by a human ankle and foot when ascending stairs
  • FIG. 3 depicts the phases of a walking cycle experienced by a human ankle and foot during stair descent
  • FIG. 4 shows the mechanical design of an anterior view of embodiment 1
  • FIG. 5 shows a posterior view of embodiment 1
  • FIG. 6 shows a side elevational view of embodiment 1
  • FIG. 7 is a schematic depiction of embodiment 1
  • FIG. 8 depicts a lumped parameter model of embodiment 1
  • FIGS. 9-12 show the control sequence for embodiment 1 during ground level walking
  • FIGS. 13-15 show the control sequence for embodiment 1 during stair ascent
  • FIGS. 16-19 show the control sequence for embodiment 1 during stair descent
  • FIG. 20 shows the mechanical design of an anterior view of embodiment 2
  • FIG. 21 shows a posterior view of embodiment 2
  • FIG. 22 shows a side elevational view of embodiment 2
  • FIG. 23 is a schematic depiction of embodiment 2
  • FIG. 24 depicts a lumped parameter model of embodiment 2
  • FIGS. 25-28 show the control sequence for embodiment 1 during ground level walking
  • FIG. 29 is a schematic block diagram of a sensing and control mechanism used to control the operation of the motors and dampers in ankle foot systems embodying the invention.
  • the first embodiment (Embodiment 1) provides for elastic energy storage, variable-damping and a variable-orientation foot control.
  • the second embodiment to be described includes a motor in series with a spring for providing joint spring stiffness control during the CP and CD phases, and a motive torque control during the PP phase of the walking cycle as described above.
  • FIGS. 4-6 The mechanical design of embodiment 1 is seen in FIGS. 4-6 and the corresponding schematic and lumped parameter model of embodiment 1 are shown in FIGS. 7 and 8 , respectively.
  • an elastic leaf spring structure 601 As seen in the side elevation view of FIG. 6 , there are four main mechanical elements in this embodiment: an elastic leaf spring structure 601 , a dorsiflexion clutch (Ribbon Stop) seen at 603 , a variable damper (MR brake) seen at 605 , and an actuator system comprising a small motor seen at 607 .
  • these four main mechanical elements are shown as an elastic leaf spring structure 701 , a dorsiflexion clutch (Ribbon Stop) 703 , a variable damper 705 , and a motor actuator system 707 .
  • the elastic leaf spring seen at 601 and 701 can be made from a lightweight, efficient spring material such as carbon composite, fiberglass or a material of similar properties.
  • the elastic leaf spring structure includes a heel, portion seen at 609 and a toe portion seen at 660 .
  • a curved, flexible ankle section 680 is attached at its upper end to a brake mount member 690 which is mounts the flexible foot for rotation about the axis of the ankle joint which, in FIG. 6 , is located at the center of the MR brake 605 .
  • variable-damper mechanism seen at 605 and 705 can be implemented using magnetorheological (MR), electrorheological (ER), dry magnetic particles, hydraulic, pneumatic, friction, or any similar strategy to control joint damping.
  • MR magnetorheological
  • ER electrorheological
  • dry magnetic particles hydraulic, pneumatic, friction, or any similar strategy to control joint damping.
  • MR fluid is used in the shear mode where a set of rotary plates shear thin layers of MR fluid.
  • iron particles suspended in carrier fluid form chains, increasing the shear viscosity and joint damping.
  • the ribbon stop seen at 603 and 703 prevents the ankle joint from dorsiflexing beyond a certain maximum dorsiflexion limit, ranging from 0 to 30 degrees depending on ankle performance requirements.
  • the ribbon stop is uni-directional, preventing dorsiflexion but not impeding plantarflexion movements.
  • the actuator motor seen at 607 and 707 is a small, low-power electromagnetic motor that provides foot orientation control.
  • the motor can exert a torque about the ankle joint (indicated at 711 ) to re-position the foot (the elastic leaf spring 601 , 701 ) relative to the shank depicted at 713 when the foot is not in contact with the ground.
  • the shank frame for the ankle-foot assembly attaches to a shin member (not shown) using a standard pyramid mount seen at 613 which may be used to attach the shank frame to the shin portion of an artificial limb or the wearer's stump.
  • both of the artificial foot and ankle joint embodiments described in this specification may be used in combination with artificial limb structures such as the artificial knees and hips described in the above-noted U.S. patent application Ser. No. 11/395,448.
  • a simplified 1D lumped parameter model of embodiment 1 seen in FIG. 8 is used to explain the behavior of the ankle-foot system under different walking conditions.
  • the bending angle of the elastic leaf spring 701 is independent of the ankle angle of the pin joint, therefore the lumped parameter model includes two degrees of freedom: one for the displacement of the foot, X 1 , and the other for the displacement of the shank X 2 as shown in FIG. 8 .
  • the leaf spring structure, seen at 601 in FIG. 6 and at 701 in FIG. 7 is modeled as a nonlinear spring shown at 801 in FIG. 8 with a stiffness that varies with X 1 , the foot bending angle (displacement of the foot).
  • the actuator motor seen at 807 , the variable-damper 805 , and the ribbon stop seen at 803 act between the mass of the shank at 820 and the mass of the foot at 830 .
  • the loading force F load (t) due to body weight varies dynamically during the stance phase of each gait cycle.
  • Embodiment 1 for level-ground walking is depicted in FIGS. 9-12 .
  • the variable-damper is set at a high damping level to essentially lock the ankle joint during early to midstance, allowing the leaf spring structure to store and release elastic energy.
  • a critical dorsiflexion angle is achieved (between 0 to 30 degrees)
  • the ribbon stop becomes taught during the remainder of the CD phase.
  • the spring structure releases its stored elastic energy, rotating in a plantar flexion direction and propelling the body upwards and forwards ( FIG. 11 ).
  • the actuator controls the equilibrium position of the foot to achieve foot clearance during the swing phase and to maintain a proper landing of the foot for the next gait cycle ( FIG. 12 ).
  • the maximum dorsiflexion ankle torque during level-ground walking is in the range from 1.5 Ng to 2 Nm/kg, i.e. around 150 Nm for a 100 kg person ⁇ 2 ⁇ .
  • a variable-damper that can provide such high damping torque and additionally very low damping levels is difficult to build at a reasonable weight and size.
  • the maximum controlled plantar flexion torque is small, typically in the range of 0.3 Nm/kg to 0.4 Ng. Because of these factors, a ribbon stop that engages at a small dorsiflexion angle such as 5 degrees would lower the peak torque requirements of the variable-damper since the peak controlled plantar flexion torque is considerably smaller than the peak dorsiflexion torque.
  • the human ankle behaves like a damper from foot strike to 90° of dorsiflexion ⁇ 11 ⁇ . Beyond that, the ankle behaves like a non-linear spring, storing elastic energy during controlled dorsiflexion.
  • a passive clutch for resisting dorsiflexion movements beyond 90°, thus allowing for a smaller sized variable damper.
  • a ribbon stop is preferred as a unidirectional clutch because it is lightweight with considerable strength in tension.
  • FIGS. 13-15 depict the control sequence of embodiment 1 for stair ascent. It is noted here that there are only three control phases/modes for stair ascent, although the gait cycle for stair ascent can be divided into 5 sub-phases, including Controlled Dorsiflexion 1 (CD1), Powered Plantarflexion 1 (PP1), Controlled Dorsiflexion 2 (CD2), Powered Plantarflexion 1 (PP1), and Swing Phase.
  • the main-reason is that in terms of control, we can combine phases PP1, CD2, and PP2 into one single phase since all three phases may be described using the same control law.
  • the clutch is engaged and the leaf spring is compressed throughout ground contact ( FIG.
  • the variable damper may be activated to control the process of energy release from the leaf spring, but in general, the damper is turned off so that all the stored elastic energy is used to propel the body upwards and forwards (Ax, 0, & 2 0). After toe-off, the actuator controls the equilibrium position of the ankle in preparation for the next step ( FIG. 15 ).
  • FIGS. 16-19 The control sequence for embodiment 1 for stair descent is depicted in FIGS. 16-19 .
  • the toe leaf spring releases its energy, propelling the body upwards and forwards ( FIG. 18 ).
  • Controlled Dorsiflexion 1 ( FIG. 16 )
  • the ankle foot system preferably employs an inertial navigation system (INS) for the control of an active artificial ankle joint to achieve a more natural gait and improved comfort over the range of human walking and climbing activities.
  • INS inertial navigation system
  • an artificial ankle joint must be controlled to behave like a normal human ankle. For instance, during normal level ground walking, the heel strikes the ground first; but when descending stairs, it is the toe which first touches the ground. Walking up or down an incline, either the toe or the heel may strike the ground first, depending upon the steepness of the incline.
  • a difficult aspect of the artificial ankle control problem is that the ankle joint angle must be established before the foot reaches the ground, so that the heel or toe will strike first, as appropriate to the activity. Reliable determination of which activity is underway while the foot is still in the air presents implacable difficulties for sensor systems presently employed on lower leg artificial devices.
  • the present invention addresses this difficulty by attaching an inertial navigation system below the knee joint, either on the lower leg segment or on the artificial foot. This system is then used to determine the foot's change in elevation since it last left the ground. This change in elevation may be used to discriminate between level ground walking and descending stairs or steep inclines.
  • the ankle joint angle may then be controlled during the foot's aerial phase to provide heel strike for level ground walking or toe strike upon detection of negative elevation, as would be encountered descending stairs or walking down a steep incline.
  • Inertial navigation systems rely upon accelerometers and gyroscopes jointly attached to a rigid assembly to detect the assembly's motion and change of orientation. In accordance with the laws of mechanics, these changes may be integrated to measure changes of the system's position and orientation, relative to its initial position and orientation. In practice, however, it is found that errors of the accelerometers and gyros produce ever-increasing errors in the system's estimated position. Inertial navigation systems can address this problem in one of two ways: by the use of expensive, high precision accelerometers and gyroscopes, and by incorporating other, external sources of information about position and orientation, for instance GPS, to augment the purely inertial information. But using either of these alternatives would make the resulting system unattractive for an artificial ankle device.
  • Control of an actuated artificial ankle joint may be implemented as follows:
  • the foot flat phase may be detected by the absence of non-centrifugal, non-gravitational, linear acceleration along the length axis,of the lower leg.
  • Push off phase may be detected by the upward acceleration along the axis of the,lower leg. Elevation >0 and elevation ⁇ 0 phases are recognized from the change in relative elevation computed by the INS since the end of foot flat phase.
  • the foot and ankle system includes an elastic leaf spring structure that provides a heel spring as seen at 2201 and a toe spring as seen at 2206 , the elastic leaf spring structure attaches to a brake mount member 2202 that rotates with respect to an ankle joint shank frame 2203 and a tibial side bracket 2204 about a pivot axis at the center of the MR brake seen at 2205 .
  • the actuator motor 2207 is mounted within the tibial side bracket 2204 and its drive shaft is coupled through a drive gear (not shown) to rotate the elastic leaf spring structure 2201 and 2206 with respect to the shank frame 2203 and side bracket 2204 about the ankle joint.
  • a catapult mechanism to provide powered plantar flexion during late stance consists of a series elastic spring element seen at 2210 having an internal slider 2212 that attaches to the brake mount 2202 at the lower actuator mount 2213 , and the spring element 2210 attaches to the upper actuator mount 2216 at the top of the tibial side bracket 2204 .
  • a standard pyramid mount 2230 at the top of the tibial side bracket 2294 provides a connection to the shin member (not shown).
  • Embodiment 2 The corresponding schematic of Embodiment 2 is seen in FIG. 23 and is similar to that of Embodiment 1, including the heel and toe leaf spring 2301 , variable damper 2305 , and ribbon stop 2303 .
  • the series elastic spring element is seen at 2310 connected in series with the actuator motor 2307 to form the catapult.
  • One of the main challenges in the design of an artificial ankle is to have a relatively low-mass actuation system that can provide a large instantaneous output power upwards of 200 Watts during Powered Plantar Flexion (PP) ⁇ 2,11 ⁇ Fortunately, the duration of PP is only 15% of the entire gait cycle, and the average power output of the human ankle during the stance phase is much lower than the instantaneous output power during PP. Hence, a catapult mechanism is a compelling solution to this problem.
  • the catapult mechanism is mainly composed of three components: an actuator motor, a variable damper and/or clutch and an energy storage element.
  • the actuator can be any type of motor system, including electric, shape memory alloy, hydraulic or pneumatic devices, and the series energy storage element can be any elastic element capable of storing elastic energy when compressed or stretched.
  • the damper can be any type of device including hydraulic, magnetorheological, pneumatic, or electrorheological.
  • the series elastic spring element 2310 can be compressed or stretched by the actuator 2307 in series to the spring 2310 without the joint rotating.
  • the spring 2310 will provide a large amount of instantaneous output power once the parallel damping device 2305 or clutch 2303 is deactivated, allowing the elastic element 2310 to release its energy. If the actuator 2307 has a relatively long period of time to compress or stretch the elastic element 2310 , its mass can be kept relatively low, decreasing the overall weight of the artificial ankle device.
  • the catapult system comprises a magnetorheological variable damper 2305 placed in parallel to the series elastic electric motor system.
  • the lumped parameter model of Embodiment 2 is shown in FIG. 24 . It is basically the same as the model of Embodiment 1 as depicted in FIG. 8 , except that we now place a spring element 2410 in series with the actuator 2407 and the foot mass structure 2430 .
  • the main idea here is that if the variable MR damper seen at 2405 outputs high damping, locking the ankle joint, the foot and the shank become one single component. Once the joint is locked, the actuator 2407 compresses or stretches the spring element 2310 . Once joint damping is minimized, the spring element 2410 will then push against the shank 2420 to provide forward propulsion during powered plantar flexion.
  • Embodiment 2 for level-ground walking will be discussed in the next section.
  • Stair ascent/descent can be deduced from the earlier descriptions for embodiment 1, and thus, will not be described herein.
  • Embodiment 2 for level-ground walking is depicted in FIGS. 25-28 .
  • the actuator controls the stiffness of the ankle by controlling the displacement of the series spring ( FIG. 25 ).
  • the toe carbon fiber leaf spring 2206 is compressed due to the loading of body weight, while the actuator compresses the series spring to store additional elastic energy in the system ( FIG. 26 ).
  • inertia and body weight hold the joint in a dorsiflexed posture, enabling the motor to elongate the series spring.
  • the MR variable damper In a second control approach, where body weight and inertia are insufficient to lock the joint, the MR variable damper would output a high damping value to essentially lock the ankle joint while the motor stores elastic energy in the series spring.
  • both the leaf spring and the series catapult spring Independent of the catapult control approach, during PP as seen in FIG. 27 , as the load from body weight decreases, both the leaf spring and the series catapult spring begin releasing stored elastic energy, supplying high ankle output powers.
  • the actuator controls the position of the foot while both the series spring and the leaf springs are slack as depicted in FIG. 28 .
  • an inertial navigation system for the control of the active artificial ankle joint will be employed to achieve a more natural gait and improved comfort over the range of human walking and climbing activities.
  • the manner in which these navigation sensors will be used is similar to that described for Embodiment 1.
  • FIG. 29 depicts the general form of a typical control mechanism in which a multiple sensors are employed to determine the dynamic status of the skeletal structure and the components of the hybrid actuator and deliver data indicative of that status to a processor seen at 2900 which produces control outputs to operate the motor actuator and to control the variable dampers.
  • the sensors used to enable general actuator operation and control can include:
  • the processor 2900 preferably comprises a microprocessor which is carried on the ankle-foot system and typically operated from the same battery power source 2920 used to power the motor 2930 and the controllable dampers 2932 and 2934 .
  • a non-volatile program memory 2941 stores the executable programs that control the processing of the data from the sensors and input controls to produce the timed control signals which govern the operation of the actuator motor and the dampers.
  • An additional data memory seen at 2942 may be used to supplement the available random access memory in the microprocessor 2900 .
  • the motor series spring displacement sensor can be used to measure the torque borne by the joint because joint torque can be calculated from the motor series output force.

Abstract

An artificial foot and ankle joint consisting of a curved leaf spring foot member that defines a heel extremity and a toe extremity, and a flexible elastic ankle member that connects said foot member for rotation at the ankle joint. An actuator motor applies torque to the ankle joint to orient the foot when it is not in contact with the support surface and to store energy in a catapult spring that is released along with the energy stored in the leaf spring to propel the wearer forward. A ribbon clutch prevents the foot member from rotating in one direction beyond a predetermined limit position, and a controllable damper is employed to lock the ankle joint or to absorb mechanical energy as needed. The controller and a sensing mechanisms control both the actuator motor and the controllable damper at different times during the walking cycle for level walking, stair ascent and stair descent.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation in part of, and claims the benefit of the filing date of, U.S. patent application Ser. No. 11/395,448 filed on Mar. 31, 2006. application Ser. No. 11/395,448 was a non-provisional of, and claimed the benefit of the filing date of, U.S. Provisional Patent Application Ser. No. 60/666,876 filed on Mar. 3, 2005 and U.S. Provisional Patent Application Ser. No. 60/704,517 filed on Aug. 1. 2005.
  • This application is a non-provisional of, and also claims the benefit of the filing date of U.S. Provisional Patent Application Ser. No. 60/704,517 filed on Aug. 1, 2005.
  • This application incorporates the disclosures of each of the foregoing application herein by reference.
  • FIELD OF THE INVENTION
  • This invention relates generally to prosthetic devices and artificial limb and joint systems, including robotic, orthotic, exoskeletal limbs, and more particularly, although in its broader aspects not exclusively, to artificial feet and ankle joints.
  • BACKGROUND OF THE INVENTION
  • In the course of the following description, reference will be made to the papers, patents and publications presented in a list of references at the conclusion of this specification. When cited, each listed reference will be identified by a numeral within curly-braces indicating its position within this list.
  • As noted in {1} {2} {3}, an artificial ankle-foot system ideally needs to fulfill a diverse set of requirements. The artificial system must be a reasonable weight and have a natural morphological shape, but still have an operational time between refueling or battery recharges of at least one full day. The system must also be capable of varying its position, impedance, and motive power in a comparable manner to that of a normal, healthy biological limb. Still further, the system must be adaptive, changing its characteristics given such environmental disturbances as walking speed and terrain variation. The embodiments of the invention which are described in this specification employ novel architectures capable of achieving these many requirements.
  • From recent biomechanical studies {1} {2} {3}, researchers have determined researchers have determined that early stance period ankle stiffness varies from step-to-step in wag. Furthermore, researchers have discovered that the human ankle performs more positive mechanical work than negative work, especially at moderate to fast wag speeds {1} {2}{3}. The added ankle power is important for providing adequate forward progression of the body at the end of each stance period. In distinction, for stair descent, the ankle behaves as a variable damper during the first half of stance, absorbing impact energies {2}. These biomechanical findings suggest that in order to mimic the actual behavior of the human ankle, joint stiffness, motive power, and damping must be actively controlled in the context of an efficient, high cycle-life, quiet and cosmetic ankle-foot artificial joint.
  • For level ground ambulation, the ankle behaves as a variable stiffness device during the early to midstance period, storing and releasing impact energies. Throughout terminal stance, the ankle acts as a torque source to power the body forward. In distinction, the ankle varies damping rather than stiffness during the early stance period of stair descent. These biomechanical findings suggest that in order to mimic the actual behavior of a human joint or joints, stiffness, damping, and nonconservative, motive power must be actively controlled in the context of an efficient, high cycle-life, quiet and cosmetic biomimetic limb system, be it for a prosthetic or orthotic device. This is also the case for a biomimetic robotic limb since it will need to satisfy the same mechanical and physical laws as its biological counterpart, and will benefit from the same techniques for power and weight savings.
  • In the discussion immediately below, the biomechanical properties of the ankle will be described in some detail to explain the insights that have guided the design and development of the specific embodiments of the invention and to define selected terms that will be used in this specification.
  • Joint Biomechanics: The Human Ankle
  • Understanding normal walking biomechanics provides the basis for the design and development of the artificial ankle joint and ankle-foot structures that embody the invention. Specifically, the function of human ankle under sagittal plane rotation is described below for different locomotor conditions including level-ground walking and stair/slope ascent and descent. From these biomechanical descriptions, the justifications for key mechanical components and configurations of the artificial ankle structures and functions embodying the invention may be better understood.
  • Level-Ground Walking
  • A level-ground walking gait cycle is typically defined as beginning with the heel strike of one foot and ending at the next heel strike of the same foot {8}. The main subdivisions of the gait cycle are the stance phase (about 60% of the cycle) and the subsequent swing phase (about 40% of the cycle) as shown in FIG. 1. The swing phase represents the portion of the gait cycle when the foot is off the ground. The stance phase begins at heel-strike when the heel touches the floor and ends at toe-off when the same foot rises from the ground surface. Additionally, we can further divide the stance phase into three sub-phases: Controlled Plantar flexion (CP), Controlled Dorsiflexion (CD), and Powered Plantar flexion (PP).
  • Each phase and the corresponding ankle functions which occur when walking on level ground are illustrated in FIG. 1. The subdivisions of the stance phase of walking, in order from first to last, are: the Controlled Plantar flexion (CP) phase, the Controlled Dorsiflexion (CD) phase, and the Powered Plantar flexion (PP) phase.
  • CP begins at heel-strike illustrated at 103 and ends at foot-flat at 105. Simply speaking, CP describes the process by which the heel and forefoot initially make contact with the ground. In {1, 12}, researchers showed that CP ankle joint behavior was consistent with a linear spring response where joint torque is proportional to joint position. The spring behavior is, however, variable; joint stiffness is continuously modulated by the body from step to step.
  • After the CP period, the CD phase continues until the ankle reaches a state of maximum dorsiflexion and begins powered plantarflexion PP as illustrated at 107. Ankle torque versus position during the CD period can often be described as a nonlinear spring where stiffness increases with increasing ankle position. The main function of the ankle during CD is to store the elastic energy necessary to propel the body upwards and forwards during the PP phase {9} {3}.
  • The PP phase begins after CD and ends at the instant of toe-off illustrated at 109. During PP, the ankle can be modeled as a catapult in series or in parallel with the CD spring or springs. Here the catapult component includes a motor that does work on a series spring during the latter half of the CD phase and/or during the first half of the PP phase. The catapult energy is then released along with the spring energy stored during the CD phase to achieve the high plantar flexion power during late stance. This catapult behavior is necessary because the work generated during PP is more than the negative work absorbed during the CP and CD phases for moderate to fast walking speeds {1} {2} {3} {9}.
  • During he swing phase, the final 40% of the gait cycle, which extends from toe-off at 109 until the next heel strike at 113, the foot is lifted off the ground.
  • Stair Ascent and Descent
  • Because the kinematic and kinetic patterns at the ankle during stair ascent/descent are significantly different from that of level-ground walking {2}, a separate description of the ankle-foot biomechanics is presented in FIGS. 2 and 3.
  • FIG. 2 shows the human ankle biomechanics during stair ascent. The first phase of stair ascent is called Controlled Dorsiflexion 1 (CD 1), which begins with foot strike in a dorsiflexed position seen at 201 and continues to dorsiflex until the heel contacts the step surface at 203. In this phase, the ankle can be modeled as a linear spring.
  • The second phase is Powered Plantar flexion 1 (PP 1), which begins at the instant of foot flat (when the ankle reaches its maximum dorsiflexion at 203) and ends when dorsiflexion begins once again at 205. The human ankle behaves as a torque actuator to provide extra energy to support the body weight.
  • The third phase is Controlled Dorsiflexion 2 (CD 2), in which the ankle dorsiflexes until heel-off at 207. For the CD 2 phase, the ankle can be modeled as a linear spring.
  • The fourth and final phase is Powered Plantar flexion 2 (PP 2) which begins at heel-off 207 and continues as the foot pushes off the step, acting as a torque actuator in parallel with the CD 2 spring to propel the body upwards and forwards, and ends when the toe leaves the surface at 209 to being the swing phase that ends at 213.
  • FIG. 3 shows the human ankle-foot biomechanics for stair descent. The stance phase of stair descent is divided into three sub-phases: Controlled Dorsiflexion 1 (CD1), Controlled Dorsiflexion 2 (CD2), and Powered Plantar flexion (PP).
  • CD1 begins at foot strike illustrated at 303 and ends at foot-flat 305. In this phase, the human ankle can be modeled as a variable damper. In CD2, the ankle continues to dorsiflex forward until it reaches a maximum dorsiflexion posture seen at 307. Here the ankle acts as a linear spring, storing energy throughout CD2. During PP, which begins at 307, the ankle plantar flexes until the foot lifts from the step at 309. In this final PP phase, the ankle releases stored CD2 energy, propelling the body upwards and forwards. After toe-off at 309, the foot is positioned controlled through the swing phase until the next foot strike at 313.
  • For stair ascent depicted in FIG. 2, the human ankle-foot can be effectively modeled using a combination of an actuator and a variable stiffness mechanism. However, for stair descent, depicted in FIG. 3, a variable damper needs also to be included for modeling the ankle-foot complex; the power absorbed by the human ankle is much greater during stair descent than the power released by 2.3 to 11.2 J/kg {2}. Hence, it is reasonable to model the ankle as a combination of a variable-damper and spring for stair descent {2}.
  • SUMMARY OF THE INVENTION
  • The preferred embodiments of the present invention take the form of an artificial ankle system capable of providing biologically-realistic dynamic behaviors. The key mechanical components of these embodiments, and their general functions, may be summarized as follows:
      • 1. One or more passive springs—to store and release elastic energy for propulsion;
      • 2. One or more series-elastic actuators (muscle-tendon)—to control the position of the ankle, provide additional elastic energy storage for propulsion, and to control joint stiffness; and
      • 3. One or more variable dampers—to absorb mechanical energy during stair and slope descent.
  • The above-identified U.S. patent application Ser. No. 11/395,448 filed on Mar. 31, 2006 describes related artificial limbs and joints that employ passive and series-elastic elements and variable-damping elements, and in addition employ active motor elements in arrangements called “Biomimetic Hybrid Actuators” forming biologically-inspired musculoskeletal architectures. The electric motor used in the hybrid actuators supply positive energy to and store negative energy from one or more joints which connect skeletal members, as well as elastic elements such as springs, and controllable variable damper components, for passively storing and releasing energy and providing adaptive impedance to accommodate level ground walking as well as movement on stairs and surfaces having different slopes.
  • As described in application Ser. No. 11/395,448, an artificial ankle may employ an elastic member operatively connected in series with the motor between the shin member and the foot member to store energy when the relative motion of the foot and shin members is being arrested by a controllable variable damping element and to thereafter apply an additional torque to the ankle joint when the variable damping element no longer arrests the relative motion of the two members.
  • As further described in application Ser. No. 11/395,448, An artificial ankle may include an elastic member operatively connected in series with the motor between the shin and foot members to store energy when the foot member is moved toward the shin member and to release energy and apply an additional torque to the ankle joint that assists the motor to move the foot member away from the shin member. A controllable damping member may be employed to arrest the motion of the motor to control the amount of energy absorbed by the motor when the foot member is moved toward the shin member.
  • The Flex-Foot, made by Össur of Reykjavik, Iceland, is a passive carbon-fiber energy storage device that replicates the ankle joint for amputees. The Flex-Foot is described in U.S. Pat. No. 6,071,313 issued to Van L. Phillips entitled “Split foot prosthesis” and in Phillips' earlier U.S. Pat. Nos. 5,776,205, 5,514,185 and No. 5,181,933, the disclosures of which are incorporated herein by reference. The Flex-foot is a foot prosthesis for supporting an amputee relative to a support surface and consists of a leaf spring having multiple flexing portions configured to flex substantially independently of one another substantially completely along their length. The Flex-Foot has an equilibrium position of 90 degrees and a single nominal stiffness value. In the embodiments described below, a hybrid actuator mechanism of the kind described in the above-noted application Ser. No. 11/395,448 is used to augment a flexing foot member such as the Flex-Foot by allowing the equilibrium position to be set to an arbitrary angle by a motor and locking, or arresting the relative movement of, the foot member with respect to the shin member using a clutch or variable damper. Furthermore, the embodiment of the invention to be described can also change the stiffness and damping of the prosthesis dynamically.
  • Preferred embodiments of the present invention take the form of an artificial ankle and foot system in which a foot and ankle structure is mounted for rotation with respect to a shin member at an ankle joint. The foot and ankle structure preferably comprises a curved flexible elastic foot member that defines an arch between a heel extremity and a toe extremity, and a flexible elastic ankle member that connects said foot member for rotation at the ankle joint. A variable damper is employed to arresting the motion of said foot and ankle structure with respect to said shin member under predetermined conditions, and preferably includes a stop mechanism that prevents the foot and ankle structure from rotating with respect to the shin member beyond a predetermined limit position. The variable damper may further include a controllable damper, such as a magnetorheological (MR) brake, which arrests the rotation of the ankle joint by controllable amount at controlled times during the walking cycle. Preferred embodiments of the ankle and foot system further include an actuator motor for applying torque to the ankle joint to rotate said foot and ankle structure with respect to said shin member.
  • In addition, embodiments of the invention may include a catapult mechanism comprising a series elastic member operatively connected in series with the motor between the shin member and the foot and ankle structure. The series elastic member stores energy from the motor during a first portion of each walking cycle and then releases the stored energy to help propel the user forward over the walking surface at a later time in each walking cycle. The preferred embodiments of the invention may employ a controller for operating both the motor and the controllable damper such that the motor stores energy in the series elastic member as the shin member is being arrested by the controllable damper.
  • The actuator motor which applies torque to the ankle joint may be employed to adjust the position of the foot and ankle structure relative to the shin member when the foot and ankle member is not in contact with a support surface. Inertial sensing means are preferably employed to determine the relative elevation of the foot and angle structure and to actuate the motor in response to changes in the relative elevation, thereby automatically positioning the foot member for toe first engagement if the wearer is descending stairs.
  • These and other features and advantages of the present invention will be better understood by considering the following detailed description of two illustrative embodiments of the invention. In course of this description, frequent reference will be made to the attached drawings which are briefly described below.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 illustrates the different phases of a walking cycle experienced by a human ankle and foot during level ground walking;
  • FIG. 2 depicts the phases of a walking cycle experienced by a human ankle and foot when ascending stairs;
  • FIG. 3 depicts the phases of a walking cycle experienced by a human ankle and foot during stair descent;
  • FIG. 4 shows the mechanical design of an anterior view of embodiment 1;
  • FIG. 5 shows a posterior view of embodiment 1;
  • FIG. 6 shows a side elevational view of embodiment 1;
  • FIG. 7 is a schematic depiction of embodiment 1;
  • FIG. 8 depicts a lumped parameter model of embodiment 1;
  • FIGS. 9-12 show the control sequence for embodiment 1 during ground level walking;
  • FIGS. 13-15 show the control sequence for embodiment 1 during stair ascent;
  • FIGS. 16-19 show the control sequence for embodiment 1 during stair descent;
  • FIG. 20 shows the mechanical design of an anterior view of embodiment 2;
  • FIG. 21 shows a posterior view of embodiment 2;
  • FIG. 22 shows a side elevational view of embodiment 2;
  • FIG. 23 is a schematic depiction of embodiment 2;
  • FIG. 24 depicts a lumped parameter model of embodiment 2;
  • FIGS. 25-28 show the control sequence for embodiment 1 during ground level walking;
  • FIG. 29 is a schematic block diagram of a sensing and control mechanism used to control the operation of the motors and dampers in ankle foot systems embodying the invention.
  • DETAILED DESCRIPTION
  • Two embodiments of an ankle-foot system contemplated by the present invention are described in detail below. The first embodiment (Embodiment 1) provides for elastic energy storage, variable-damping and a variable-orientation foot control. In addition to these capabilities, the second embodiment to be described includes a motor in series with a spring for providing joint spring stiffness control during the CP and CD phases, and a motive torque control during the PP phase of the walking cycle as described above.
  • Embodiment 1
  • Mechanical Components
  • The mechanical design of embodiment 1 is seen in FIGS. 4-6 and the corresponding schematic and lumped parameter model of embodiment 1 are shown in FIGS. 7 and 8, respectively. As seen in the side elevation view of FIG. 6, there are four main mechanical elements in this embodiment: an elastic leaf spring structure 601, a dorsiflexion clutch (Ribbon Stop) seen at 603, a variable damper (MR brake) seen at 605, and an actuator system comprising a small motor seen at 607. As seen in the schematic of FIG. 7, these four main mechanical elements are shown as an elastic leaf spring structure 701, a dorsiflexion clutch (Ribbon Stop) 703, a variable damper 705, and a motor actuator system 707.
  • The elastic leaf spring seen at 601 and 701 can be made from a lightweight, efficient spring material such as carbon composite, fiberglass or a material of similar properties. As seen in FIG. 6, and as described in Phillips' U.S. Pat. No. 6,071,313 issued on Jun. 6, 2000, the elastic leaf spring structure includes a heel, portion seen at 609 and a toe portion seen at 660. A curved, flexible ankle section 680 is attached at its upper end to a brake mount member 690 which is mounts the flexible foot for rotation about the axis of the ankle joint which, in FIG. 6, is located at the center of the MR brake 605.
  • The variable-damper mechanism seen at 605 and 705 can be implemented using magnetorheological (MR), electrorheological (ER), dry magnetic particles, hydraulic, pneumatic, friction, or any similar strategy to control joint damping. For embodiment 1, a MR system is employed. Here MR fluid is used in the shear mode where a set of rotary plates shear thin layers of MR fluid. When a magnetic field is induced across the MR layers, iron particles suspended in carrier fluid form chains, increasing the shear viscosity and joint damping.
  • The ribbon stop seen at 603 and 703 prevents the ankle joint from dorsiflexing beyond a certain maximum dorsiflexion limit, ranging from 0 to 30 degrees depending on ankle performance requirements. The ribbon stop is uni-directional, preventing dorsiflexion but not impeding plantarflexion movements.
  • The actuator motor seen at 607 and 707 is a small, low-power electromagnetic motor that provides foot orientation control. The motor can exert a torque about the ankle joint (indicated at 711) to re-position the foot (the elastic leaf spring 601, 701) relative to the shank depicted at 713 when the foot is not in contact with the ground. As seen in FIGS. 4-6, the shank frame for the ankle-foot assembly attaches to a shin member (not shown) using a standard pyramid mount seen at 613 which may be used to attach the shank frame to the shin portion of an artificial limb or the wearer's stump. As will be understood, both of the artificial foot and ankle joint embodiments described in this specification may be used in combination with artificial limb structures such as the artificial knees and hips described in the above-noted U.S. patent application Ser. No. 11/395,448.
  • Control System
  • For a better understanding of the control sequence of the artificial ankle, a simplified 1D lumped parameter model of embodiment 1 seen in FIG. 8 is used to explain the behavior of the ankle-foot system under different walking conditions.
  • From FIG. 7, it may be noted that the bending angle of the elastic leaf spring 701 is independent of the ankle angle of the pin joint, therefore the lumped parameter model includes two degrees of freedom: one for the displacement of the foot, X1, and the other for the displacement of the shank X2 as shown in FIG. 8. The leaf spring structure, seen at 601 in FIG. 6 and at 701 in FIG. 7, is modeled as a nonlinear spring shown at 801 in FIG. 8 with a stiffness that varies with X1, the foot bending angle (displacement of the foot). The actuator motor seen at 807, the variable-damper 805, and the ribbon stop seen at 803 act between the mass of the shank at 820 and the mass of the foot at 830. The loading force Fload(t) due to body weight varies dynamically during the stance phase of each gait cycle.
  • Level-Ground Walking
  • The control sequence of Embodiment 1 for level-ground walking is depicted in FIGS. 9-12. During level-ground walking, the variable-damper is set at a high damping level to essentially lock the ankle joint during early to midstance, allowing the leaf spring structure to store and release elastic energy. Once a critical dorsiflexion angle is achieved (between 0 to 30 degrees), the ribbon stop becomes taught during the remainder of the CD phase. When the ribbon is engaged, the leaf spring and shank can be treated as one single component because the ribbon behaves as a clutch (FIG. 10). From heel strike to maximum dorisflexion, the leaf spring structure stores elastic energy (Ax, 0, &2=0). In PP, as the loading from the body weight decreases, the spring structure releases its stored elastic energy, rotating in a plantar flexion direction and propelling the body upwards and forwards (FIG. 11). After toe-off, the actuator controls the equilibrium position of the foot to achieve foot clearance during the swing phase and to maintain a proper landing of the foot for the next gait cycle (FIG. 12).
  • The state of each element of the ankle-foot system during the four phases of a level ground walking cycle are listed below:
  • Controlled Plantar Flexion (FIG. 9)
      • 1. Actuator motor is OFF
      • 2. Ribbon clutch is OFF
      • 3. Damper is ON
      • 4. Leaf spring heel portion at 609 is being compressed
  • Controlled Dorsiflexion (FIG. 10)
      • 1. Actuator motor is OFF
      • 2. Ribbon clutch is ON
      • 3. Damper is OFF
      • 4. Leaf spring toe section 660 is being compressed
  • Powered Plantar Flexion (FIG. 11)
      • 1. Actuator motor is OFF
      • 2. Ribbon clutch is ON
      • 3. Damper is OFF
      • 4. Leaf spring ankle section 660 is releasing energy
  • Swing Phase (FIG. 12)
      • 1. Actuator motor is ON (changing foot orientation)
      • 2. Ribbon clutch is OFF
      • 3. Damper is OFF
      • 4. Foot leaf spring is slack
  • The maximum dorsiflexion ankle torque during level-ground walking is in the range from 1.5 Ng to 2 Nm/kg, i.e. around 150 Nm for a 100 kg person {2}. With current technology, a variable-damper that can provide such high damping torque and additionally very low damping levels is difficult to build at a reasonable weight and size. Fortunately, the maximum controlled plantar flexion torque is small, typically in the range of 0.3 Nm/kg to 0.4 Ng. Because of these factors, a ribbon stop that engages at a small dorsiflexion angle such as 5 degrees would lower the peak torque requirements of the variable-damper since the peak controlled plantar flexion torque is considerably smaller than the peak dorsiflexion torque.
  • During stair descent/downhill walking, the human ankle behaves like a damper from foot strike to 90° of dorsiflexion {11}. Beyond that, the ankle behaves like a non-linear spring, storing elastic energy during controlled dorsiflexion. Taking advantage of the biomechanics of the human ankle, it is reasonable to add a passive clutch for resisting dorsiflexion movements beyond 90°, thus allowing for a smaller sized variable damper. A ribbon stop is preferred as a unidirectional clutch because it is lightweight with considerable strength in tension.
  • Stair Ascent
  • FIGS. 13-15 depict the control sequence of embodiment 1 for stair ascent. It is noted here that there are only three control phases/modes for stair ascent, although the gait cycle for stair ascent can be divided into 5 sub-phases, including Controlled Dorsiflexion 1 (CD1), Powered Plantarflexion 1 (PP1), Controlled Dorsiflexion 2 (CD2), Powered Plantarflexion 1 (PP1), and Swing Phase. The main-reason is that in terms of control, we can combine phases PP1, CD2, and PP2 into one single phase since all three phases may be described using the same control law. For ascending a stair, the clutch is engaged and the leaf spring is compressed throughout ground contact (FIG. 13) because the toe strikes the ground first, engaging the ribbon stop during CD (Ax, 0, &2=0). After the heel strikes the ground and then lifts off the ground, the toe leaf spring begins releasing its energy, supplying forward propulsion to the body (FIG. 14). The variable damper may be activated to control the process of energy release from the leaf spring, but in general, the damper is turned off so that all the stored elastic energy is used to propel the body upwards and forwards (Ax, 0, &2 0). After toe-off, the actuator controls the equilibrium position of the ankle in preparation for the next step (FIG. 15).
  • The state of each element of the ankle-foot system during these three phases of a stair ascent are listed below:
  • Controlled Dorsiflexion (FIG. 13)
      • 1. Actuator motor is OFF
      • 2. Ribbon clutch is ON
      • 3. Damper is OFF
      • 4. Leaf spring toe section 660 is being compressed
  • Powered Plantar Flexion (FIG. 14)
      • 1. Actuator motor is OFF
      • 2. Ribbon clutch is-ON
      • 3. Damper is OFF
      • 4. Leaf spring toe section 660 is releasing energy
  • Swing Phase (FIG. 15)
      • 1. Actuator motor is ON (changing foot orientation)
      • 2. Ribbon clutch is OFF
      • 3. Damper is OFF
      • 4. Foot leaf spring is slack
  • Stair Descent
  • The control sequence for embodiment 1 for stair descent is depicted in FIGS. 16-19. After forefoot contact, the body has to be lowered until the heel makes contact with the stair tread {11} (FIG. 16). Therefore, the variable damper is activated as energy is dissipated during controlled dorsiflexion (ΔX1<=0, ΔX2<=0). As is shown in FIG. 17, when the foot becomes flat on the ground, the ribbon stop becomes taunt, compressing the toe leaf spring (ΔX1<=0, ΔX2=0). During PP, the toe leaf spring releases its energy, propelling the body upwards and forwards (FIG. 18).
  • The state of each element of the ankle-foot system during the four phases of stair descent are listed below:
  • Controlled Dorsiflexion 1 (FIG. 16)
      • 1. Actuator motor is OFF
      • 2. Ribbon clutch is OFF
      • 3. Damper is ON
      • 4. Leaf spring toe section 660 is being compressed
  • Controlled Dorsiflexion 2 (FIG. 17)
      • 1. Actuator motor is OFF
      • 2. Ribbon clutch is ON
      • 3. Damper is OFF
      • 4. Leaf spring toe section 660 is being compressed
  • Powered Plantar Flexion (FIG. 18)
      • 1. Actuator motor is OFF
      • 2. Ribbon clutch is ON
      • 3. Damper is OFF
      • 4. Leaf spring toe section 660 is releasing energy
  • Swing Phase (FIG. 19)
      • 1. Actuator motor is ON (changing foot orientation)
      • 2. Ribbon clutch is OFF
      • 3. Damper is OFF
      • 4. Foot leaf spring is slack
    Sensing for Embodiment 1
  • The ankle foot system preferably employs an inertial navigation system (INS) for the control of an active artificial ankle joint to achieve a more natural gait and improved comfort over the range of human walking and climbing activities.
  • To achieve these advantages, an artificial ankle joint must be controlled to behave like a normal human ankle. For instance, during normal level ground walking, the heel strikes the ground first; but when descending stairs, it is the toe which first touches the ground. Walking up or down an incline, either the toe or the heel may strike the ground first, depending upon the steepness of the incline.
  • A difficult aspect of the artificial ankle control problem is that the ankle joint angle must be established before the foot reaches the ground, so that the heel or toe will strike first, as appropriate to the activity. Reliable determination of which activity is underway while the foot is still in the air presents implacable difficulties for sensor systems presently employed on lower leg artificial devices.
  • The present invention addresses this difficulty by attaching an inertial navigation system below the knee joint, either on the lower leg segment or on the artificial foot. This system is then used to determine the foot's change in elevation since it last left the ground. This change in elevation may be used to discriminate between level ground walking and descending stairs or steep inclines. The ankle joint angle may then be controlled during the foot's aerial phase to provide heel strike for level ground walking or toe strike upon detection of negative elevation, as would be encountered descending stairs or walking down a steep incline.
  • Inertial navigation systems rely upon accelerometers and gyroscopes jointly attached to a rigid assembly to detect the assembly's motion and change of orientation. In accordance with the laws of mechanics, these changes may be integrated to measure changes of the system's position and orientation, relative to its initial position and orientation. In practice, however, it is found that errors of the accelerometers and gyros produce ever-increasing errors in the system's estimated position. Inertial navigation systems can address this problem in one of two ways: by the use of expensive, high precision accelerometers and gyroscopes, and by incorporating other, external sources of information about position and orientation, for instance GPS, to augment the purely inertial information. But using either of these alternatives would make the resulting system unattractive for an artificial ankle device.
  • However, we have found that an unaugmented, purely inertial system based on available low cost accelerometers and rate gyros can provide sufficiently accurate trajectory information to support proper control of the angle of an actuated artificial ankle system.
  • An Illustrative Control Algorithm
  • Control of an actuated artificial ankle joint may be implemented as follows:
      • A. During the foot flat (controlled dorsiflexion) phase of the walking cycle, reset and maintain the measured elevation to zero. When the foot is flat on the ground, its velocity and acceleration are zero. Thus, this particular foot posture serves as a reset point for the integration of angular and linear velocities in the estimation of absolute positions.
      • B. During the push off phase, when powered plantarflexion begins, measure the upward and downward movements to determine the current elevation relative to the initial zero elevation during the flat foot phase;
      • C. As long as the elevation remains above zero, maintain the foot orientation that will provide heelstrike; and
      • D. If the elevation decreases below zero, reorient the angle ankle to provide toe-first contact.
  • The foot flat phase may be detected by the absence of non-centrifugal, non-gravitational, linear acceleration along the length axis,of the lower leg. Push off phase may be detected by the upward acceleration along the axis of the,lower leg. Elevation >0 and elevation <0 phases are recognized from the change in relative elevation computed by the INS since the end of foot flat phase.
  • Embodiment 2
  • Mechanical Design
  • The mechanical design of Embodiment 2 is shown in FIGS. 20-23. As seen in FIG. 22, the foot and ankle system includes an elastic leaf spring structure that provides a heel spring as seen at 2201 and a toe spring as seen at 2206, the elastic leaf spring structure attaches to a brake mount member 2202 that rotates with respect to an ankle joint shank frame 2203 and a tibial side bracket 2204 about a pivot axis at the center of the MR brake seen at 2205. The actuator motor 2207 is mounted within the tibial side bracket 2204 and its drive shaft is coupled through a drive gear (not shown) to rotate the elastic leaf spring structure 2201 and 2206 with respect to the shank frame 2203 and side bracket 2204 about the ankle joint. A catapult mechanism to provide powered plantar flexion during late stance is employed that consists of a series elastic spring element seen at 2210 having an internal slider 2212 that attaches to the brake mount 2202 at the lower actuator mount 2213, and the spring element 2210 attaches to the upper actuator mount 2216 at the top of the tibial side bracket 2204. A standard pyramid mount 2230 at the top of the tibial side bracket 2294 provides a connection to the shin member (not shown).
  • The corresponding schematic of Embodiment 2 is seen in FIG. 23 and is similar to that of Embodiment 1, including the heel and toe leaf spring 2301, variable damper 2305, and ribbon stop 2303. The series elastic spring element is seen at 2310 connected in series with the actuator motor 2307 to form the catapult.
  • One of the main challenges in the design of an artificial ankle is to have a relatively low-mass actuation system that can provide a large instantaneous output power upwards of 200 Watts during Powered Plantar Flexion (PP) {2,11} Fortunately, the duration of PP is only 15% of the entire gait cycle, and the average power output of the human ankle during the stance phase is much lower than the instantaneous output power during PP. Hence, a catapult mechanism is a compelling solution to this problem.
  • The catapult mechanism is mainly composed of three components: an actuator motor, a variable damper and/or clutch and an energy storage element. The actuator can be any type of motor system, including electric, shape memory alloy, hydraulic or pneumatic devices, and the series energy storage element can be any elastic element capable of storing elastic energy when compressed or stretched. The damper can be any type of device including hydraulic, magnetorheological, pneumatic, or electrorheological.
  • With the parallel damper seen at 2305 in FIG. 23 activated to a high damping level or with the parallel clutch 2303 activated, the series elastic spring element 2310 can be compressed or stretched by the actuator 2307 in series to the spring 2310 without the joint rotating. The spring 2310 will provide a large amount of instantaneous output power once the parallel damping device 2305 or clutch 2303 is deactivated, allowing the elastic element 2310 to release its energy. If the actuator 2307 has a relatively long period of time to compress or stretch the elastic element 2310, its mass can be kept relatively low, decreasing the overall weight of the artificial ankle device. In Embodiment 2, the catapult system comprises a magnetorheological variable damper 2305 placed in parallel to the series elastic electric motor system.
  • Control System
  • The lumped parameter model of Embodiment 2 is shown in FIG. 24. It is basically the same as the model of Embodiment 1 as depicted in FIG. 8, except that we now place a spring element 2410 in series with the actuator 2407 and the foot mass structure 2430. The main idea here is that if the variable MR damper seen at 2405 outputs high damping, locking the ankle joint, the foot and the shank become one single component. Once the joint is locked, the actuator 2407 compresses or stretches the spring element 2310. Once joint damping is minimized, the spring element 2410 will then push against the shank 2420 to provide forward propulsion during powered plantar flexion.
  • The control sequence of Embodiment 2 for level-ground walking will be discussed in the next section. Stair ascent/descent can be deduced from the earlier descriptions for embodiment 1, and thus, will not be described herein.
  • Level-Ground Walking
  • The control sequence of Embodiment 2 for level-ground walking is depicted in FIGS. 25-28. During CP, the actuator controls the stiffness of the ankle by controlling the displacement of the series spring (FIG. 25). During CD, the toe carbon fiber leaf spring 2206 is compressed due to the loading of body weight, while the actuator compresses the series spring to store additional elastic energy in the system (FIG. 26). In this control scheme, inertia and body weight hold the joint in a dorsiflexed posture, enabling the motor to elongate the series spring. In a second control approach, where body weight and inertia are insufficient to lock the joint, the MR variable damper would output a high damping value to essentially lock the ankle joint while the motor stores elastic energy in the series spring. Independent of the catapult control approach, during PP as seen in FIG. 27, as the load from body weight decreases, both the leaf spring and the series catapult spring begin releasing stored elastic energy, supplying high ankle output powers. After toe-off, the actuator controls the position of the foot while both the series spring and the leaf springs are slack as depicted in FIG. 28.
  • The state of each element of Embodiment 2 of the ankle foot system during the four phases of a level ground walking cycle are listed below:
  • Controlled Plantar Flexion (FIG. 25)
      • 1. Actuator motor is ON
      • 2. Ribbon clutch is OFF
      • 3. Damper is OFF
      • 4. Leaf spring heel portion at 2201 is being compressed
  • Controlled Dorsiflexion (FIG. 26)
      • 1. Actuator motor is ON
      • 2. Ribbon clutch is ON
      • 3. Damper is OFF
      • 4. Leaf spring toe section 2206 is being compressed
  • Powered Plantar Flexion (FIG. 27)
      • 1. Actuator motor is ON
      • 2. Ribbon clutch is OFF
      • 3. Damper is OFF
      • 4. Leaf spring toe section 2206 is releasing energy
  • Swing Phase (FIG. 28)
      • 1. Actuator motor is ON (changing foot orientation)
      • 2. Ribbon clutch is OFF
      • 3. Damper is OFF
      • 4. Foot leaf spring structure is slack
    Sensing for Embodiment 2
  • As with Embodiment 1, an inertial navigation system for the control of the active artificial ankle joint will be employed to achieve a more natural gait and improved comfort over the range of human walking and climbing activities. The manner in which these navigation sensors will be used is similar to that described for Embodiment 1.
  • Sensing and Control
  • As described above, investigations of the biomechanics of human limbs have revealed the functions performed by the ankle during normal walking over level ground, and when ascending or descending a slope or stairs. As discussed above, these functions may be performed in an artificial ankle joint using motors to act as torque actuators and to position the foot relative to the shin member during a specific times of walking cycle, using springs in combination with controllable dampers to act as linear springs and provide controllable damping at other times in the walking cycle. The timing of these different functions occurs during the walking cycle at times described in detail above. The specific mechanical structures, that is the combinations of motors, springs and controllable dampers used in these embodiments are specifically adapted to perform the functions needed, a variety of techniques may be employed to automatically control the motor and controllable dampers at the times needed to perform the functions illustrated, and any suitable control mechanism may be employed. FIG. 29 depicts the general form of a typical control mechanism in which a multiple sensors are employed to determine the dynamic status of the skeletal structure and the components of the hybrid actuator and deliver data indicative of that status to a processor seen at 2900 which produces control outputs to operate the motor actuator and to control the variable dampers.
  • The sensors used to enable general actuator operation and control can include:
      • (1) Position sensors seen at 2902 in FIG. 29 located at the ankle joint axis to measure joint angle (a rotary potentiometer), and at the motor rotor to measure total displacement of the motor's drive shaft (as indicated at 2904) and additionally the motor's velocity (as indicated at 2906). A single shaft encoder may be employed to sense instantaneous position, from which motor displacement and velocity may be calculated by the processor 2900.
      • (2) A force sensor (strain gauges) to measure the actual torque borne by the joint as indicated at 2908.
      • (3) Velocity sensors on each of the dampers (rotary encoders) as indicated at 2910 in order to get a true reading of damper velocity.
      • (4) A displacement sensor on each spring (motor series spring and global damper spring) as indicated at 2912 in order to measure the amount of energy stored.
      • (5) One or more Inertial Measurement Units (IMUs) seen at 2914 which can take the form of accelerometers positioned on skeletal members from which the processor 2900 can compute absolute orientations and displacements of the artificial joint system. For example, the IMU may sense the relative vertical movement of the foot member relative to its foot flat position during the walking cycle to control foot orientation as discussed above.
      • (6) One or more control inputs manipulatable by a person, such a wearer of a prosthetic joint or the operator of a robotic system, to control such things as walking speed, terrain changes, etc.
  • The processor 2900 preferably comprises a microprocessor which is carried on the ankle-foot system and typically operated from the same battery power source 2920 used to power the motor 2930 and the controllable dampers 2932 and 2934. A non-volatile program memory 2941 stores the executable programs that control the processing of the data from the sensors and input controls to produce the timed control signals which govern the operation of the actuator motor and the dampers. An additional data memory seen at 2942 may be used to supplement the available random access memory in the microprocessor 2900.
  • Instead of directly measuring the deflection of the motor series springs as noted at (4) above, sensory information from the position sensors (1) can be employed. By subtracting the ankle joint angle from the motor output shaft angle, it is possible to calculate the amount of energy stored in the motor series spring. Also, the motor series spring displacement sensor can be used to measure the torque borne by the joint because joint torque can be calculated from the motor series output force.
  • Many variations exist in the particular sensing methodologies employed in the measurement of the listed parameters. Although this specification describes preferred sensing methods, each has the goal of determining the energy state of the spring elements, the velocities of interior points, and the absolute movement pattern of the ankle joint itself.
  • REFERENCES
  • The following published materials provide background information relating to the invention. Individual items are cited above by using the reference numerals which appear below and in the citations in curley brackets.
      • {1} Palmer, Michael. Sagittal Plane Characterization of Normal Human Ankle Function across a Range of Walking Gait Speeds. Massachusetts Institute of Technology Master's Thesis, 2002.
      • {2} Gates Deanna H., Characterizing ankle function during stair ascent, descent, and level walking for ankle prosthesis and orthosis design. Master thesis, Boston University, 2004.
      • {3} Hansen, A., Childress, D. Miff, S. Gard, S. and Mesplay, K., The human ankle during walking: implication for the design of biomimetric ankle prosthesis, Journal of Biomechanics (In Press).
      • {4} Koganezawa, K. and Kato, I., Control aspects of artifical leg, IFAC Control Aspects of Biomedical Engineering, 1987, pp. 71-85.
      • {5} Herr H, Wilkenfeld A. User-Adaptive Control of a Magnetorheological Prosthetic Knee. Industrial Robot: An International Journal 2003; 30: 42-55.
      • {6} Seymour Ron, Prosthetics and Orthotics: Lower limb and Spinal, Lippincott Williams & Wilkins, 2002.
      • {7} G. A. Pratt and M. M. Williamson, “Series Elastic Actuators,” presented at 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems, Pittsburgh, Pa.,
      • {8} Inman V T, Ralston H J, Todd F. Human walking. Baltimore: Williams and Wilkins; 1981.
      • {9} Hof. A. L. Geelen B. A., and Berg, J w. Van den, “Calf muscle moment, work and efficiency in level walking; role of series elasticity,” Journal of Biomechanics, Vol 16, No. 7, pp. 523-537, 1983.
      • {10} Gregoire, L., and et al, Role of mono- and bi-articular muscles in explosive movements, International Journal of Sports Medicine 5, 614-630.
      • {11} Koganezawa, K. and Kato, I., Control aspects of artifical leg, IFAC Control Aspects of Biomedical Engineering, 1987, pp. 71-85.
      • {12} U.S. Pat. No. 6,517,503 issued Feb. 11, 203.
    CONCLUSION
  • It is to be understood that the methods and apparatus which have been described above are merely illustrative applications of the principles of the invention. Numerous modifications may be made by those skilled in the art without departing from the true spirit and scope of the invention.

Claims (25)

1. An artificial ankle comprising, in combination,
a shin member,
a foot and ankle structure coupled for rotation with respect to said shin member at an ankle joint, said foot and ankle structure comprising:
a curved flexible elastic foot member that defines a heel extremity and a toe extremity, and
a flexible elastic ankle member that connects said foot member to said ankle joint, and
a variable damper element for arresting the motion of said foot and ankle structure with respect to said shin member under predetermined conditions.
2. An artificial ankle as set forth in claim 1 further comprising a motor for applying torque to said ankle joint to rotate said foot and ankle structure with respect to said shin member.
3. An artificial ankle as set forth in claim 2 further including an elastic member operatively connected in series with said motor between said shin member and said foot and ankle structure to store energy when the relative motion of said foot and ankle structure and said shin member is being arrested by said variable damper and to thereafter apply an additional torque to said ankle joint when the relative motion of said foot and ankle structure with respect to said shin member is no longer arrested by said controllable variable damping element.
4. An artificial ankle as set forth in claim 3 further including a controller for operating said motor to store energy in said elastic member when the relative motion of said foot and ankle structure and said shin member is being arrested by said variable damper.
5. An artificial ankle as set forth in claim 2 wherein said variable damper includes a stop mechanism for preventing said ankle and foot structure from rotating beyond a maximum limiting rotational position.
6. An artificial ankle as set forth in claim 2 wherein said motor adjusts the position of said foot and ankle structure relative to said shin member when said foot and ankle member is not in contact with a support surface.
7. An artificial ankle as set forth in claim 6 further comprising a inertial sensing means for determining the relative elevation of said foot and angle structure and for actuating said motor in response to changes in said relative elevation.
8. An artificial ankle as set forth in claim 1 further including an elastic member operatively connected in series with said motor between said shin member and said foot and ankle structure to store energy when the relative motion of said foot and ankle structure and said shin member is being arrested by said controllable variable damping element and to thereafter apply an additional torque to said ankle joint when the relative motion of said foot and ankle structure with respect to said shin member is no longer arrested by said controllable variable damping element.
9. An artificial ankle as set forth in claim 8 wherein said variable damper includes a stop mechanism for preventing said ankle and foot structure from rotating beyond a maximum limiting rotational position.
10. An artificial ankle as set forth in claim 1, wherein said variable damper includes a stop mechanism for preventing said ankle and foot structure from rotating beyond a maximum limiting rotational position.
11. An artificial ankle as set forth in claim 10 wherein said variable damper further includes a controllable damping element for arresting the motion of said foot and ankle structure with respect to said shin member when said foot and ankle structure is storing and releasing energy.
12. An artificial ankle as set forth in claim 1 wherein said variable damper element includes a controllable variable damper and a controller for actuating said controllable variable damper to arrest the motion of said foot and ankle structure with respect to said shin member under predetermined conditions.
13. An artificial ankle as set forth in claim 12 wherein said controller actuates said controllable variable damper to arrest the motion of said foot and ankle structure when said foot and ankle structure is storing and releasing energy.
14. An artificial ankle as set forth in claim 13 further comprising a motor for applying torque to said ankle joint to rotate said foot and ankle structure with respect to said shin and wherein said motor adjusts the position of said foot and ankle structure relative to said shin member when said foot and ankle member is not in contact with a support surface.
15. An artificial ankle comprising, in combination,
a shin member,
a foot and ankle structure coupled for rotation with respect to said shin member at an ankle joint, said foot and ankle structure comprising:
a curved flexible elastic foot member that defines a heel extremity and a toe extremity, and
a flexible elastic ankle member that connects said foot member to said ankle joint, and
a motor connected for applying torque to said ankle joint to rotate said foot and ankle structure with respect to said shin member at controllable times.
16. An artificial ankle as set forth in claim 15 further including an elastic member operatively connected in series with said motor between said shin member and said foot and ankle structure to store energy when the relative motion of said foot and ankle structure and said shin member is being arrested by said controllable variable damping element and to thereafter apply an additional torque to said ankle joint when the relative motion of said foot and ankle structure with respect to said shin member is no longer arrested by said controllable variable damping element.
17. An artificial ankle as set forth in claim 16 further including a stop mechanism for preventing said ankle and foot structure from rotating beyond a maximum limiting rotational position.
18. An artificial ankle as set forth in claim 16 further including a controller for operating said motor to store energy in said elastic member when the relative motion of said foot and ankle structure and said shin member is being arrested by said variable damper.
19. An artificial ankle and foot system for supporting a human wearer as said wearer walks on a support surface comprising, in combination,
an elastic ankle and foot structure for storing energy during a dorsiflexion period as the weight of said wearer displaces said elastic ankle and foot structure and for releasing energy during a powered plantarflexion period as said elastic foot and ankle structure urges said wearer in a forward direction with respect to said support surface,
a shin member,
an ankle joint for connecting said ankle and shin structure for rotational motion with respect to said shin member,
a motor for applying a torque to said ankle joint tending to move said ankle and foot structure with respect to said shin member,
a stop mechanism coupled between said ankle and foot structure and said shin member for preventing the rotation of said ankle and foot structure with respect to said shin member beyond a limiting position,
a controllable variable damper coupled to said ankle joint for arresting the motion of said ankle and foot structure with respect to said shin member under predetermined conditions,
and a controller connected to operate said motor and said controllable variable damper at predetermined times relative to said dorsiflexion period and said plantarflexion period.
20. An artificial ankle and foot system as set forth in claim 19 wherein said controller operates said controllable variable damper to arrest the motion of said ankle and foot structure with respect to said shin member during said powered plantarflexion period.
21. An artificial ankle and foot system as set forth in claim 20 wherein said controller operates said motor to reorient said foot and ankle structure with respect to said shin member when said ankle and foot structure is not in contact with said support surface.
22. An artificial ankle and foot system as set forth in claim 21 further including an additional elastic member for storing energy from said electric motor prior to each,powered plantarflexion period and for releasing energy during said powered plantarflexion period.
23. An artificial ankle and foot system as set forth in claim 19 wherein said controller operates said motor to reorient said foot and ankle structure with respect to said shin member when said ankle and foot structure is not in contact with said support surface.
24. An artificial ankle and foot system as set forth in claim 23 further including an additional elastic member for storing energy from said electric motor prior to each powered plantarflexion period and for releasing energy during said powered plantarflexion period.
25. An artificial ankle and foot system as set forth in claim 19 further including an additional elastic member for storing energy from said electric motor prior to each powered plantarflexion period and for releasing energy during said powered plantarflexion period.
US11/495,140 2005-03-31 2006-07-29 Artificial ankle-foot system with spring, variable-damping, and series-elastic actuator components Abandoned US20070043449A1 (en)

Priority Applications (18)

Application Number Priority Date Filing Date Title
US11/495,140 US20070043449A1 (en) 2005-03-31 2006-07-29 Artificial ankle-foot system with spring, variable-damping, and series-elastic actuator components
US11/600,291 US20070123997A1 (en) 2005-03-31 2006-11-15 Exoskeletons for running and walking
US11/642,993 US20070162152A1 (en) 2005-03-31 2006-12-19 Artificial joints using agonist-antagonist actuators
US12/157,727 US8512415B2 (en) 2005-03-31 2008-06-12 Powered ankle-foot prothesis
US12/608,627 US8870967B2 (en) 2005-03-31 2009-10-29 Artificial joints using agonist-antagonist actuators
US12/697,894 US8500823B2 (en) 2005-03-31 2010-02-01 Powered artificial knee with agonist-antagonist actuation
US12/698,128 US8864846B2 (en) 2005-03-31 2010-02-01 Model-based neuromechanical controller for a robotic leg
US12/859,765 US10485681B2 (en) 2005-03-31 2010-08-19 Exoskeletons for running and walking
US13/348,570 US20120209405A1 (en) 2005-03-31 2012-01-11 Artificial Ankle-Foot System with Spring, Variable-Damping, and Series-Elastic Actuator Components
US13/723,743 US8734528B2 (en) 2005-03-31 2012-12-21 Artificial ankle-foot system with spring, variable-damping, and series-elastic actuator components
US13/959,495 US9149370B2 (en) 2005-03-31 2013-08-05 Powered artificial knee with agonist-antagonist actuation
US13/970,094 US10137011B2 (en) 2005-03-31 2013-08-19 Powered ankle-foot prosthesis
US14/283,323 US9339397B2 (en) 2005-03-31 2014-05-21 Artificial ankle-foot system with spring, variable-damping, and series-elastic actuator components
US14/520,091 US9539117B2 (en) 2005-03-31 2014-10-21 Method for controlling a robotic limb joint
US15/091,895 US10342681B2 (en) 2005-03-31 2016-04-06 Artificial ankle-foot system with spring, variable-damping, and series-elastic actuator components
US15/342,661 US10307272B2 (en) 2005-03-31 2016-11-03 Method for using a model-based controller for a robotic leg
US16/182,298 US11278433B2 (en) 2005-03-31 2018-11-06 Powered ankle-foot prosthesis
US16/458,421 US11273060B2 (en) 2005-03-31 2019-07-01 Artificial ankle-foot system with spring, variable-damping, and series-elastic actuator components

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US66687605P 2005-03-31 2005-03-31
US70451705P 2005-08-01 2005-08-01
US11/395,448 US20060249315A1 (en) 2005-03-31 2006-03-31 Artificial human limbs and joints employing actuators, springs, and variable-damper elements
US11/495,140 US20070043449A1 (en) 2005-03-31 2006-07-29 Artificial ankle-foot system with spring, variable-damping, and series-elastic actuator components

Related Parent Applications (6)

Application Number Title Priority Date Filing Date
US11/395,448 Continuation-In-Part US20060249315A1 (en) 2005-03-31 2006-03-31 Artificial human limbs and joints employing actuators, springs, and variable-damper elements
US11/499,853 Continuation-In-Part US7313463B2 (en) 2005-03-31 2006-08-04 Biomimetic motion and balance controllers for use in prosthetics, orthotics and robotics
US11/600,291 Continuation-In-Part US20070123997A1 (en) 2005-03-31 2006-11-15 Exoskeletons for running and walking
US11/642,993 Continuation-In-Part US20070162152A1 (en) 2005-03-31 2006-12-19 Artificial joints using agonist-antagonist actuators
US12/697,894 Continuation-In-Part US8500823B2 (en) 2005-03-31 2010-02-01 Powered artificial knee with agonist-antagonist actuation
US12/698,128 Continuation-In-Part US8864846B2 (en) 2005-03-31 2010-02-01 Model-based neuromechanical controller for a robotic leg

Related Child Applications (8)

Application Number Title Priority Date Filing Date
US11/395,448 Continuation-In-Part US20060249315A1 (en) 2005-03-31 2006-03-31 Artificial human limbs and joints employing actuators, springs, and variable-damper elements
US11/499,853 Continuation-In-Part US7313463B2 (en) 2005-03-31 2006-08-04 Biomimetic motion and balance controllers for use in prosthetics, orthotics and robotics
US11/600,291 Continuation-In-Part US20070123997A1 (en) 2005-03-31 2006-11-15 Exoskeletons for running and walking
US11/642,993 Continuation-In-Part US20070162152A1 (en) 2005-03-31 2006-12-19 Artificial joints using agonist-antagonist actuators
US12/157,727 Continuation-In-Part US8512415B2 (en) 2005-03-31 2008-06-12 Powered ankle-foot prothesis
US12/697,894 Continuation-In-Part US8500823B2 (en) 2005-03-31 2010-02-01 Powered artificial knee with agonist-antagonist actuation
US12/698,128 Continuation-In-Part US8864846B2 (en) 2005-03-31 2010-02-01 Model-based neuromechanical controller for a robotic leg
US13/348,570 Continuation US20120209405A1 (en) 2005-03-31 2012-01-11 Artificial Ankle-Foot System with Spring, Variable-Damping, and Series-Elastic Actuator Components

Publications (1)

Publication Number Publication Date
US20070043449A1 true US20070043449A1 (en) 2007-02-22

Family

ID=46325804

Family Applications (6)

Application Number Title Priority Date Filing Date
US11/495,140 Abandoned US20070043449A1 (en) 2005-03-31 2006-07-29 Artificial ankle-foot system with spring, variable-damping, and series-elastic actuator components
US13/348,570 Abandoned US20120209405A1 (en) 2005-03-31 2012-01-11 Artificial Ankle-Foot System with Spring, Variable-Damping, and Series-Elastic Actuator Components
US13/723,743 Active US8734528B2 (en) 2005-03-31 2012-12-21 Artificial ankle-foot system with spring, variable-damping, and series-elastic actuator components
US14/283,323 Active US9339397B2 (en) 2005-03-31 2014-05-21 Artificial ankle-foot system with spring, variable-damping, and series-elastic actuator components
US15/091,895 Active 2026-08-09 US10342681B2 (en) 2005-03-31 2016-04-06 Artificial ankle-foot system with spring, variable-damping, and series-elastic actuator components
US16/458,421 Active 2026-12-31 US11273060B2 (en) 2005-03-31 2019-07-01 Artificial ankle-foot system with spring, variable-damping, and series-elastic actuator components

Family Applications After (5)

Application Number Title Priority Date Filing Date
US13/348,570 Abandoned US20120209405A1 (en) 2005-03-31 2012-01-11 Artificial Ankle-Foot System with Spring, Variable-Damping, and Series-Elastic Actuator Components
US13/723,743 Active US8734528B2 (en) 2005-03-31 2012-12-21 Artificial ankle-foot system with spring, variable-damping, and series-elastic actuator components
US14/283,323 Active US9339397B2 (en) 2005-03-31 2014-05-21 Artificial ankle-foot system with spring, variable-damping, and series-elastic actuator components
US15/091,895 Active 2026-08-09 US10342681B2 (en) 2005-03-31 2016-04-06 Artificial ankle-foot system with spring, variable-damping, and series-elastic actuator components
US16/458,421 Active 2026-12-31 US11273060B2 (en) 2005-03-31 2019-07-01 Artificial ankle-foot system with spring, variable-damping, and series-elastic actuator components

Country Status (1)

Country Link
US (6) US20070043449A1 (en)

Cited By (103)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040064195A1 (en) * 2002-07-15 2004-04-01 Hugh Herr Variable-mechanical-impedance artificial legs
US20040181289A1 (en) * 2002-08-22 2004-09-16 Stephane Bedard Actuated prosthesis for amputees
US20050107889A1 (en) * 2003-11-18 2005-05-19 Stephane Bedard Instrumented prosthetic foot
US20060122711A1 (en) * 2002-08-22 2006-06-08 Stephane Bedard Actuated leg prosthesis for above-knee amputees
US20060135883A1 (en) * 2004-12-22 2006-06-22 Jonsson Helgi Systems and methods for processing limb motion
US20060173552A1 (en) * 2005-02-02 2006-08-03 Roy Kim D Prosthetic and orthotic systems usable for rehabilitation
US20060184252A1 (en) * 2005-02-16 2006-08-17 Magnus Oddsson System and method for data communication with a mechatronic device
US20060224246A1 (en) * 2004-02-12 2006-10-05 Clausen Arinbjorn V Systems and methods for adjusting the angle of a prosthetic ankle based on a measured surface angle
US20070050045A1 (en) * 2005-09-01 2007-03-01 Clausen Arinbjorn V Sensing system and method for motion-controlled foot unit
US20070056592A1 (en) * 2005-04-13 2007-03-15 The Regents Of University Of California Semi-powered lower extremity exoskeleton
US20070233279A1 (en) * 2006-03-09 2007-10-04 The Regents Of The University Of California Power generating leg
US20080262635A1 (en) * 2006-12-14 2008-10-23 Chas. A. Blatchford & Sons Limited Prosthetic Ankle Joint Mechanism
US20080277943A1 (en) * 2005-08-10 2008-11-13 Donelan James M Method and apparatus for harvesting biomechanical energy
US20080300692A1 (en) * 2006-12-14 2008-12-04 Chas. A. Blatchford & Sons Limited Prosthetic Ankle and Foot Combination
EP2087859A1 (en) * 2008-02-07 2009-08-12 Otto Bock HealthCare GmbH Orthopaedic foot component and method for controlling an artificial foot
US20090210091A1 (en) * 2004-03-23 2009-08-20 Honda Motor Co., Ltd. Legged mobile robot and control system thereof
US20090222105A1 (en) * 2004-02-12 2009-09-03 Ossur Hf. Transfemoral prosthetic systems and methods for operating the same
US20090265018A1 (en) * 2008-04-21 2009-10-22 Vanderbilt University Powered leg prosthesis and control methodologies for obtaining near normal gait
US20090292369A1 (en) * 2008-05-20 2009-11-26 Berkeley Bionics Device and Method for Decreasing Energy Consumption of a Person by Use of a Lower Extremity Exoskeleton
US20090299489A1 (en) * 2005-04-19 2009-12-03 Lisa Gramnaes Combined Active and Passive Leg Prosthesis System and a Method for Performing a Movement With Such a System
US20090299480A1 (en) * 2007-01-05 2009-12-03 Victhom Human Bionics Inc. Joint Actuation Mechanism for a Prosthetic and/or Orthotic Device Having a Compliant Transmission
US20100023133A1 (en) * 2008-06-16 2010-01-28 Berkeley Bionics Semi-actuated transfemoral prosthetic knee
US20100076346A1 (en) * 2005-06-30 2010-03-25 University Of Virginia Patent Foundation Method and System for Energy Returning Ankle Foot Orthosis (ERAFO)
US20100094185A1 (en) * 2008-05-20 2010-04-15 University Of California At Berkeley Device and Method for Decreasing Oxygen Consumption of a Person During Steady Walking by Use of a Load-Carrying Exoskeleton
US20100113980A1 (en) * 2008-09-04 2010-05-06 Iwalk, Inc. Hybrid Terrain-Adaptive Lower-Extremity Systems
US20100114329A1 (en) * 2005-03-31 2010-05-06 Iwalk, Inc. Hybrid terrain-adaptive lower-extremity systems
DE102008058604A1 (en) * 2008-11-20 2010-05-27 Friedrich-Schiller-Universität Jena For Natural muscle's movement behavior simulation device for e.g. robot arm, has mechanical energy source arranged parallel to damping member, where damping member regulates force delivered by device to load
US20100160844A1 (en) * 2007-01-05 2010-06-24 Benoit Gilbert High Torque Active Mechanism for Orthotic and/or Prosthetic Devices
US20100185301A1 (en) * 2006-10-17 2010-07-22 Andrew H Hansen Equilibrium-point prosthetic and orthotic ankle-foot systems, devices, and methods of use
US20100185124A1 (en) * 2004-03-10 2010-07-22 Ossur Engineering, Inc. Control system and method for a prosthetic knee
US20100241242A1 (en) * 2005-03-31 2010-09-23 Massachusetts Institute Of Technology Artificial Joints Using Agonist-Antagonist Actuators
US7815689B2 (en) 2003-11-18 2010-10-19 Victhom Human Bionics Inc. Instrumented prosthetic foot
US20100280629A1 (en) * 2007-11-08 2010-11-04 Advensys, Llc Neuromorphic controlled powered orthotic and prosthetic system
US20100324699A1 (en) * 2005-03-31 2010-12-23 Massachusetts Institute Of Technology Model-Based Neuromechanical Controller for a Robotic Leg
US20110040216A1 (en) * 2005-03-31 2011-02-17 Massachusetts Institute Of Technology Exoskeletons for running and walking
US20110082566A1 (en) * 2008-09-04 2011-04-07 Herr Hugh M Implementing a stand-up sequence using a lower-extremity prosthesis or orthosis
US20110098606A1 (en) * 2005-02-02 2011-04-28 Ossur Hf Sensing systems and methods for monitoring gait dynamics
US20110106274A1 (en) * 2004-02-12 2011-05-05 Ossur Hf System and method for motion-controlled foot unit
US8048172B2 (en) 2005-09-01 2011-11-01 össur hf Actuator assembly for prosthetic or orthotic joint
US20120153875A1 (en) * 2009-06-22 2012-06-21 Brian Glaister Controllable transverse rotation adaptor
CN102700648A (en) * 2012-06-14 2012-10-03 西北工业大学 Adaptive deformation foot of kangaroo-simulated hopping robot
US8287477B1 (en) 2003-09-25 2012-10-16 Massachusetts Institute Of Technology Active ankle foot orthosis
CN102745274A (en) * 2012-06-28 2012-10-24 东南大学 Bouncing device of robot and bouncing method thereof
US20130046218A1 (en) * 2011-08-15 2013-02-21 North Carolina State University Apparatus and clutch for using controlled storage and release of mechanical energy to aid locomotion
WO2013049080A1 (en) * 2011-09-26 2013-04-04 össur hf Frictionless vertical suspension mechanism for prosthetic feet
CN103029126A (en) * 2012-12-21 2013-04-10 北京大学 Flexibly controllable joint driver
US8480760B2 (en) 2010-04-12 2013-07-09 Northwestern University Passive ankle-foot prosthesis and orthosis capable of automatic adaptation to sloped walking surfaces and method of use
US8500823B2 (en) 2005-03-31 2013-08-06 Massachusetts Institute Of Technology Powered artificial knee with agonist-antagonist actuation
US8512415B2 (en) 2005-03-31 2013-08-20 Massachusetts Institute Of Technology Powered ankle-foot prothesis
US8628585B2 (en) 2007-12-14 2014-01-14 Blatchford Products Limited Lower limb prosthesis
CN103587606A (en) * 2012-08-14 2014-02-19 中国科学院合肥物质科学研究院 Foot vibration attenuation method of double-foot running robot
US20140088730A1 (en) * 2009-04-13 2014-03-27 U.S. Department Of Veterans Affairs Ankle-Foot Prosthesis for Automatic Adaptation to Sloped Walking Surfaces
US8696764B2 (en) 2011-01-20 2014-04-15 Northwestern University Further improvements to ankle-foot prosthesis and orthosis capable of automatic adaptation to sloped walking surfaces
US8702811B2 (en) 2005-09-01 2014-04-22 össur hf System and method for determining terrain transitions
US8736087B2 (en) 2011-09-01 2014-05-27 Bionic Power Inc. Methods and apparatus for control of biomechanical energy harvesting
US8734528B2 (en) 2005-03-31 2014-05-27 Massachusetts Institute Of Technology Artificial ankle-foot system with spring, variable-damping, and series-elastic actuator components
US8915968B2 (en) 2010-09-29 2014-12-23 össur hf Prosthetic and orthotic devices and methods and systems for controlling the same
US9017419B1 (en) 2012-03-09 2015-04-28 össur hf Linear actuator
US9032635B2 (en) 2011-12-15 2015-05-19 Massachusetts Institute Of Technology Physiological measurement device or wearable device interface simulator and method of use
US9060883B2 (en) 2011-03-11 2015-06-23 Iwalk, Inc. Biomimetic joint actuators
US9060884B2 (en) 2011-05-03 2015-06-23 Victhom Human Bionics Inc. Impedance simulating motion controller for orthotic and prosthetic applications
US9078734B2 (en) 2011-09-06 2015-07-14 össur hf Prosthetic and orthotic devices having magnetorheological elastomer spring with controllable stiffness
US9180025B2 (en) 2008-04-21 2015-11-10 Vanderbilt University Powered leg prosthesis and control methodologies for obtaining near normal gait
US9221177B2 (en) 2012-04-18 2015-12-29 Massachusetts Institute Of Technology Neuromuscular model-based sensing and control paradigm for a robotic leg
US9333097B2 (en) 2005-03-31 2016-05-10 Massachusetts Institute Of Technology Artificial human limbs and joints employing actuators, springs, and variable-damper elements
US9351855B2 (en) 2008-06-16 2016-05-31 Ekso Bionics, Inc. Powered lower extremity orthotic and method of operation
US9439786B2 (en) 2012-08-01 2016-09-13 össur hf Prosthetic ankle module
CN106255477A (en) * 2014-04-30 2016-12-21 奥托·博克保健有限公司 Artificial limb
US9561118B2 (en) 2013-02-26 2017-02-07 össur hf Prosthetic foot with enhanced stability and elastic energy return
US9687377B2 (en) 2011-01-21 2017-06-27 Bionx Medical Technologies, Inc. Terrain adaptive powered joint orthosis
WO2017109198A1 (en) * 2015-12-24 2017-06-29 Safran Electronics & Defense Foot portion for an exoskeleton structure
US9693883B2 (en) 2010-04-05 2017-07-04 Bionx Medical Technologies, Inc. Controlling power in a prosthesis or orthosis based on predicted walking speed or surrogate for same
US9707104B2 (en) 2013-03-14 2017-07-18 össur hf Prosthetic ankle and method of controlling same based on adaptation to speed
US9737419B2 (en) 2011-11-02 2017-08-22 Bionx Medical Technologies, Inc. Biomimetic transfemoral prosthesis
US9808357B2 (en) 2007-01-19 2017-11-07 Victhom Laboratory Inc. Reactive layer control system for prosthetic and orthotic devices
US9839552B2 (en) 2011-01-10 2017-12-12 Bionx Medical Technologies, Inc. Powered joint orthosis
CN107595555A (en) * 2017-08-29 2018-01-19 中国科学院深圳先进技术研究院 A kind of exoskeleton robot and its foot support section
US9895240B2 (en) 2012-03-29 2018-02-20 Ösur hf Powered prosthetic hip joint
CN107933735A (en) * 2017-11-27 2018-04-20 华中科技大学 A kind of biped robot's foot mechanism with main passive compliance
US9949850B2 (en) 2015-09-18 2018-04-24 Össur Iceland Ehf Magnetic locking mechanism for prosthetic or orthotic joints
US9994269B1 (en) * 2015-11-12 2018-06-12 Schaft Inc. Rotatable extension for robot foot
US10016290B2 (en) 2012-09-17 2018-07-10 Vanderbilt University Walking controller for powered ankle prostheses
CN108583726A (en) * 2018-07-18 2018-09-28 吉林大学 A kind of more husky machinery foot of bionical tendon bone collaboration Coupled Rigid-flexible
CN109199653A (en) * 2018-10-09 2019-01-15 广东兰湾智能科技有限公司 Artificial limb foot
US10195099B2 (en) 2016-01-11 2019-02-05 Bionic Power Inc. Method and system for intermittently assisting body motion
CN109625119A (en) * 2019-02-21 2019-04-16 北京钢铁侠科技有限公司 It is a kind of to put sufficient peace and convert lower limb structure completely
US10307272B2 (en) 2005-03-31 2019-06-04 Massachusetts Institute Of Technology Method for using a model-based controller for a robotic leg
US10390974B2 (en) 2014-04-11 2019-08-27 össur hf. Prosthetic foot with removable flexible members
US20190344431A1 (en) * 2015-12-24 2019-11-14 Safran Electronics & Defense Exoskeleton structure that provides force assistance to the user
US10531965B2 (en) 2012-06-12 2020-01-14 Bionx Medical Technologies, Inc. Prosthetic, orthotic or exoskeleton device
US10537449B2 (en) 2011-01-12 2020-01-21 Bionx Medical Technologies, Inc. Controlling powered human augmentation devices
US10543109B2 (en) 2011-11-11 2020-01-28 Össur Iceland Ehf Prosthetic device and method with compliant linking member and actuating linking member
RU2712576C2 (en) * 2018-06-28 2020-01-29 Федеральное государственное бюджетное образовательное учреждение высшего образования "Калмыцкий государственный университет имени Б.Б. Городовикова" Device for facilitating walking using frame from high-carbon plastic
CN110786975A (en) * 2018-08-03 2020-02-14 先健科技(深圳)有限公司 Handle assembly of conveyor, conveyor and conveying system
US10575970B2 (en) 2011-11-11 2020-03-03 Össur Iceland Ehf Robotic device and method of using a parallel mechanism
US10610384B2 (en) 2015-03-04 2020-04-07 Freedom Innovations, Llc Lower limb prosthesis
US10918558B2 (en) 2013-08-10 2021-02-16 Imobilities Incorporated Portable human exoskeleton system
US11185460B2 (en) 2007-12-26 2021-11-30 Rex Bionics Limited Self contained powered exoskeleton walker for a disabled user
US20220017165A1 (en) * 2018-12-03 2022-01-20 Sony Group Corporation Robot leg structure
US11278433B2 (en) 2005-03-31 2022-03-22 Massachusetts Institute Of Technology Powered ankle-foot prosthesis
CN114506401A (en) * 2022-04-20 2022-05-17 之江实验室 Humanoid robot with variable length and vibration reduction foot thereof
CN115214818A (en) * 2022-07-29 2022-10-21 哈尔滨工业大学 Humanoid foot plate system with integral structure for biped robot
CN115339543A (en) * 2022-09-21 2022-11-15 吉林大学 Bionic mechanical leg with buffering, energy-saving and stabilizing functions and suitable for slope ground

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009052895A1 (en) * 2009-11-13 2011-05-19 Otto Bock Healthcare Products Gmbh Method and device for controlling an artificial orthotic or prosthetic knee joint
US9604368B2 (en) 2011-11-11 2017-03-28 Springactive, Inc. Active compliant parallel mechanism
US10307271B2 (en) 2012-02-17 2019-06-04 Össur Iceland Ehf Control system and method for non-gait ankle and foot motion in human assistance device
US9622884B2 (en) 2012-02-17 2017-04-18 Springactive, Inc. Control systems and methods for gait devices
US9682005B2 (en) * 2012-02-24 2017-06-20 Massachusetts Institute Of Technology Elastic element exoskeleton and method of using same
US9289316B2 (en) 2013-05-03 2016-03-22 Springactive, Inc. Quasi-active prosthetic joint system
ITTO20130551A1 (en) * 2013-07-02 2015-01-03 Fond Istituto Italiano Di Tecnologia PERFECTED JOINT WITH AGONIST ACTUATION - ANTAGONIST
JP6344032B2 (en) * 2013-09-26 2018-06-20 富士通株式会社 Gesture input device, gesture input method, and gesture input program
US9568075B2 (en) * 2013-10-28 2017-02-14 Seiko Epson Corporation Robot, robot control device, and robot system
WO2015095211A2 (en) 2013-12-16 2015-06-25 Massachusetts Institute Of Technology Optimal design of a lower limb exoskeleton or orthosis
DE102014006571B3 (en) 2014-05-07 2015-08-06 Otto Bock Healthcare Gmbh prosthetic
CN104015825B (en) * 2014-05-31 2017-01-18 华南理工大学 Robot walking device
US9517561B2 (en) * 2014-08-25 2016-12-13 Google Inc. Natural pitch and roll
EP3193789B1 (en) 2014-09-19 2019-08-21 Össur HF Variable stiffness prosthetic foot
US9789920B2 (en) * 2015-04-01 2017-10-17 Oregon State University Apparatus and method for energy regulation and leg control for spring-mass walking machine
US10765536B2 (en) * 2015-10-14 2020-09-08 Rehabilitation Institute Of Chicago Catapult ankle and related methods
US10118696B1 (en) 2016-03-31 2018-11-06 Steven M. Hoffberg Steerable rotating projectile
JP6762576B2 (en) * 2016-11-10 2020-09-30 国立大学法人 東京大学 Knee joint
CN106777794B (en) * 2017-01-12 2019-09-10 山东理工大学 The calculation method of the main spring amount of deflection of high-intensitive two-stage progressive rate leaf spring
CN106777797B (en) * 2017-01-12 2019-09-10 山东理工大学 The design method of the offset frequencys type progressive rate leaf spring auxiliary spring cutting length such as non-
CN106777806B (en) * 2017-01-12 2019-09-10 山东理工大学 The Method for Checking of the offset frequencys three-level progressive rate leaf spring contact load such as high intensity
CN106777803B (en) * 2017-01-12 2019-09-10 山东理工大学 The emulated computation method of the contact load of high-intensitive two-stage progressive rate leaf spring
CN107089275B (en) * 2017-03-27 2019-03-26 西北工业大学 It is a kind of aerial posture adjustment and the sufficient roll-type interval hopping robot of energy regenerating to be landed
CN108721009B (en) 2017-04-14 2019-08-16 香港中文大学 Magnetorheological series elastic driver
CN107323564B (en) * 2017-07-04 2019-03-29 西北工业大学 The leg mechanism of hydraulic-driven hopping robot
US11712637B1 (en) 2018-03-23 2023-08-01 Steven M. Hoffberg Steerable disk or ball
WO2020086721A2 (en) 2018-10-23 2020-04-30 Massachusetts Institute Of Technology Neural efferent and afferent control of spring equilibrium, damping, and power in backdrivable and non-backdrivable series-elastic actuators comprising variable series stiffness mechanisms
CN109292022B (en) * 2018-11-07 2020-11-06 西北工业大学 Bionic mechanism for continuous jumping
DE102018131852A1 (en) * 2018-12-12 2020-06-18 Ottobock Se & Co. Kgaa Orthosis and method for controlling an orthosis
CN110320940B (en) * 2019-07-03 2022-07-05 西北工业大学 Flexible under-actuated system control method based on energy analysis
CN110329390B (en) * 2019-07-18 2021-04-06 哈尔滨首捷智能科技有限公司 Humanoid mechanical foot
CN111437082B (en) * 2020-05-12 2023-09-08 吉林大学 Active and passive hybrid hydraulic driving ankle joint prosthesis and driving method
US11298287B2 (en) 2020-06-02 2022-04-12 Dephy, Inc. Systems and methods for a compressed controller for an active exoskeleton
US11148279B1 (en) 2020-06-04 2021-10-19 Dephy, Inc. Customized configuration for an exoskeleton controller
US11147733B1 (en) 2020-06-04 2021-10-19 Dephy, Inc. Systems and methods for bilateral wireless communication
US11389367B2 (en) 2020-06-05 2022-07-19 Dephy, Inc. Real-time feedback-based optimization of an exoskeleton
CN111891254B (en) * 2020-09-02 2023-12-15 上海微电机研究所(中国电子科技集团公司第二十一研究所) Four-legged robot and foot structure of foot robot
US11173093B1 (en) 2020-09-16 2021-11-16 Dephy, Inc. Systems and methods for an active exoskeleton with local battery
CN112407095B (en) * 2020-10-30 2022-02-22 深圳市优必选科技股份有限公司 Joint energy storage power assisting mechanism, robot joint structure and robot
US11883305B2 (en) 2020-11-23 2024-01-30 Massachusetts Institute Of Technology Computer-controlled ankle-foot prosthesis with series J-spring actuation
CN113146605B (en) * 2021-05-06 2022-08-26 吉林大学 Compact artificial muscle module with mechanical flexibility
AT525602A1 (en) 2021-11-02 2023-05-15 Edera Safety Gmbh & Co Kg Dynamically dependent movement blockade system
WO2023204982A2 (en) * 2022-04-07 2023-10-26 University Of Utah Research Foundation Semi-active ankle and foot prosthesis powered by a lockable series-elastic actuator
CN114948357B (en) * 2022-05-24 2023-08-04 哈尔滨工业大学 Bionic knee joint with variable rigidity

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020138153A1 (en) * 2001-03-23 2002-09-26 Wayne Koniuk Self-adjusting prosthetic ankle apparatus
US7029500B2 (en) * 2002-04-12 2006-04-18 James Jay Martin Electronically controlled prosthetic system
US7431737B2 (en) * 2004-02-12 2008-10-07 össur hf. System and method for motion-controlled foot unit

Family Cites Families (290)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2529968A (en) 1948-06-15 1950-11-14 Sartin Hansel Mechanism for artificial legs
US2489291A (en) 1948-07-09 1949-11-29 Ulrich K Henschke Leg prosthesis
US2921480A (en) 1956-01-30 1960-01-19 Pacific Scientific Co Control line regulator
US3098645A (en) 1961-01-11 1963-07-23 Walter J Owens Laminated torsion bar suspension
US3207497A (en) 1963-07-02 1965-09-21 Dura Corp Torsion spring assembly
US3449769A (en) 1966-06-27 1969-06-17 Cornell Aeronautical Labor Inc Powered exoskeletal apparatus for amplifying human strength in response to normal body movements
US3844279A (en) 1973-05-14 1974-10-29 R Konvalin Adjustable leg brace
AT334521B (en) 1974-03-08 1976-01-25 Forsch Orthopadie Technik ANKLE
US3916450A (en) 1975-03-06 1975-11-04 Orval L Minor Simplified artificial leg structure with articulated knee joint
US4463291A (en) 1979-12-31 1984-07-31 Andale Company Automatic control system and valve actuator
US4921293A (en) 1982-04-02 1990-05-01 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Multi-fingered robotic hand
US4442390A (en) 1982-07-06 1984-04-10 Davis Kenneth W Feedback system for a linear actuator
US4518307A (en) 1982-09-29 1985-05-21 The Boeing Company Compliant robot arm adapter assembly
US4546298A (en) 1983-05-12 1985-10-08 Westinghouse Brake & Signal Co. Electric actuators
IN161425B (en) 1983-05-12 1987-11-28 Westinghouse Brake & Signal
IN161427B (en) 1983-05-12 1987-11-28 Westinghouse Brake & Signal
IN160902B (en) 1983-05-12 1987-08-15 Westinghouse Brake & Signal
US4546296A (en) 1983-05-12 1985-10-08 Westinghouse Brake & Signal Electric actuators
US4569352A (en) 1983-05-13 1986-02-11 Wright State University Feedback control system for walking
CA1276710C (en) 1983-11-30 1990-11-20 Kazuo Asakawa Robot force controlling system
US4600357A (en) 1984-02-21 1986-07-15 Heath Company Gripper force sensor/controller for robotic arm
US4657470A (en) 1984-11-15 1987-04-14 Westinghouse Electric Corp. Robotic end effector
FR2589360B1 (en) 1985-10-30 1987-12-24 Chareire Jean Louis APPARATUS FOR MECHANICAL ASSISTANCE OF LEG PROPULSION
US4672955A (en) 1986-06-02 1987-06-16 United Technologies Corporation Orthosis, method of making and kit therefor
SE454943B (en) 1986-06-26 1988-06-13 Ossur Hf ACCESSORIES, SPECIAL FOR AMPUTATION STUMP
JP2645004B2 (en) 1987-02-27 1997-08-25 株式会社東芝 Control device for multi-degree-of-freedom manipulator
JPS6471686A (en) 1987-09-09 1989-03-16 Komatsu Mfg Co Ltd Flexible arm robot
US4936295A (en) 1987-09-22 1990-06-26 Crane Larry A Lateral support for ankle
US4865376A (en) 1987-09-25 1989-09-12 Leaver Scott O Mechanical fingers for dexterity and grasping
DE3889329T2 (en) 1988-01-20 1994-11-17 Moog Inc VEHICLE SUSPENSION SYSTEM AND ITS OPERATION.
US4921393A (en) 1988-03-09 1990-05-01 Sri International Articulatable structure with adjustable end-point compliance
US4843921A (en) 1988-04-18 1989-07-04 Kremer Stephen R Twisted cord actuator
USRE34661E (en) 1988-05-10 1994-07-12 Royce Medical Company Gel and air cushion ankle brace
US5088478A (en) 1988-05-10 1992-02-18 Royce Medical Company Gel and air cushion ankle brace
US4964402A (en) 1988-08-17 1990-10-23 Royce Medical Company Orthopedic device having gel pad with phase change material
US5062673A (en) 1988-12-28 1991-11-05 Kabushiki Kaisha Toyota Chuo Kenkyusho Articulated hand
US5252102A (en) 1989-01-24 1993-10-12 Electrobionics Corporation Electronic range of motion apparatus, for orthosis, prosthesis, and CPM machine
US4923475A (en) 1989-02-21 1990-05-08 Gosthnian Barry M Inflatable limb prosthesis with preformed inner surface
US5049797A (en) 1990-07-02 1991-09-17 Utah State University Foundation Device and method for control of flexible link robot manipulators
US5092902A (en) 1990-08-16 1992-03-03 Mauch Laboratories, Inc. Hydraulic control unit for prosthetic leg
US5181933A (en) 1991-02-28 1993-01-26 Phillips L Van Split foot prosthesis
US6071313A (en) 1991-02-28 2000-06-06 Phillips; Van L. Split foot prosthesis
US5112296A (en) 1991-04-30 1992-05-12 The Board Of Supervisors Of Louisiana State University Biofeedback activated orthosis for foot-drop rehabilitation
US5367790A (en) 1991-07-08 1994-11-29 Gamow; Rustem I. Shoe and foot prosthesis with a coupled spring system
US5701686A (en) 1991-07-08 1997-12-30 Herr; Hugh M. Shoe and foot prosthesis with bending beam spring structures
CA2057108C (en) 1991-12-05 1996-12-31 Kelvin B. James System for controlling artificial knee joint action in an above knee prosthesis
JPH05216504A (en) 1992-02-06 1993-08-27 Fanuc Ltd Adaptive sliding mode control system for control object including spring system
US5327790A (en) 1992-06-19 1994-07-12 Massachusetts Institute Of Technology Reaction sensing torque actuator
US5294873A (en) 1992-10-27 1994-03-15 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Kinematic functions for redundancy resolution using configuration control
US5358513A (en) 1992-12-09 1994-10-25 Medtronic, Inc. Parameter selection and electrode placement of neuromuscular electrical stimulation apparatus
US5405409A (en) 1992-12-21 1995-04-11 Knoth; Donald E. Hydraulic control unit for prosthetic leg
US5443521A (en) 1992-12-21 1995-08-22 Mauch Laboratories, Inc. Hydraulic control unit for prosthetic leg
US5329705A (en) 1993-02-16 1994-07-19 Royce Medical Company Footgear with pressure relief zones
US5456341A (en) 1993-04-23 1995-10-10 Moog Inc. Method and apparatus for actively adjusting and controlling a resonant mass-spring system
EP0707467B1 (en) 1993-07-09 2005-06-01 Kinetecs, Inc. Exercise apparatus and technique
US5476441A (en) 1993-09-30 1995-12-19 Massachusetts Institute Of Technology Controlled-brake orthosis
US5502363A (en) 1994-01-04 1996-03-26 University Of Maryland-Baltimore County Apparatus for controlling angular positioning and stiffness modulations of joint of robotic manipulator
US5458143A (en) 1994-06-09 1995-10-17 Herr; Hugh M. Crutch with elbow and shank springs
US6206934B1 (en) 1998-04-10 2001-03-27 Flex-Foot, Inc. Ankle block with spring inserts
US6144385A (en) 1994-08-25 2000-11-07 Michael J. Girard Step-driven character animation derived from animation data without footstep information
US5662693A (en) 1995-06-05 1997-09-02 The United States Of America As Represented By The Secretary Of The Air Force Mobility assist for the paralyzed, amputeed and spastic person
US5650704A (en) 1995-06-29 1997-07-22 Massachusetts Institute Of Technology Elastic actuator for precise force control
US5748845A (en) 1995-07-31 1998-05-05 Motorola, Inc. FES method and system for controlling the movement of a limb
US5643332A (en) 1995-09-20 1997-07-01 Neuromotion Inc. Assembly for functional electrical stimulation during movement
US6056712A (en) 1995-10-31 2000-05-02 Grim; Tracy E. Multi-functional orthosis for the foot, heel, ankle and lower leg
US5718925A (en) 1995-11-15 1998-02-17 Ossur Hf. Apparatus for making a prosthesis socket
US5865770A (en) 1995-12-06 1999-02-02 Schectman; Leonard A. Device to counteract paralysis
US7311686B1 (en) 1995-12-28 2007-12-25 Ossur Hf Molded orthopaedic devices
DK0799894T3 (en) 1996-02-09 2004-08-09 Degussa Process for the preparation of (S) -cyanhydrins
US6113642A (en) 1996-06-27 2000-09-05 Mauch, Inc. Computer controlled hydraulic resistance device for a prosthesis and other apparatus
US5888212A (en) 1997-06-26 1999-03-30 Mauch, Inc. Computer controlled hydraulic resistance device for a prosthesis and other apparatus
US7288076B2 (en) 1996-08-29 2007-10-30 Ossur Hf Self-equalizing resilient orthopaedic support
US5898948A (en) 1996-10-31 1999-05-04 Graham M. Kelly Support/sport sock
US6064912A (en) 1997-03-28 2000-05-16 Kenney; John P. Orthotic/electrotherapy for treating contractures due to immobility
US6136039A (en) 1997-05-06 2000-10-24 Ossur Hf Dual durometer silicone liner for prosthesis
US5932230A (en) 1997-05-20 1999-08-03 Degrate; Frenchell Topical analgesic formulation containing fruits, oils and aspirin
US5888213A (en) 1997-06-06 1999-03-30 Motion Control, Inc. Method and apparatus for controlling an externally powered prosthesis
US5944760A (en) 1997-08-04 1999-08-31 Roland J. Christensen Family Limited Partnership Prosthetic foot with reinforcing member
US6202806B1 (en) 1997-10-29 2001-03-20 Lord Corporation Controllable device having a matrix medium retaining structure
AU3007299A (en) 1998-03-17 1999-10-11 Gary S. Kochamba Method and apparatus for stabilizing tissue
US6067892A (en) 1998-03-18 2000-05-30 Erickson; Joel R. Artificial muscle actuator assembly
DE69914730T2 (en) 1998-04-10 2005-01-27 Phillips, Van Lehn, Rancho Santa Fe SHOCK ABSORBER MODULE WITH SCREW SPRING FOR PROSTHESIS
US6511512B2 (en) 1998-04-10 2003-01-28 Ossur Hf Active shock module prosthesis
US6517503B1 (en) 1998-09-18 2003-02-11 Becker Orthopedic Appliance Company Orthosis knee joint
US6267742B1 (en) 1998-09-29 2001-07-31 Brown Medical Industries Biplanar foot dorsiflexion collapsible posterior splint
JP2000145914A (en) 1998-11-17 2000-05-26 Tsubakimoto Chain Co Bearing linear actuator with backstop mechanism
JP2002537900A (en) 1999-03-01 2002-11-12 オスール・エイチエフ Orthodontic and prosthetic sleeves comprising a plurality of elastic fiber sections each having a different elastic stiffness
US20050038525A1 (en) 1999-05-24 2005-02-17 The Ohio Willow Wood Company Shock absorbing prosthetic foot for use with prosthetic ankle
US6666796B1 (en) 1999-09-16 2003-12-23 Aerovironment, Inc. Walking assisting apparatus
FI110159B (en) 1999-12-17 2002-12-13 Respecta Oy Lower extremity prosthesis
DE60112403T2 (en) 2000-01-20 2006-06-01 Massachusetts Institute Of Technology, Cambridge ELECTRONICALLY CONTROLLED KNEE PROTECTION
ATE433310T1 (en) 2000-03-14 2009-06-15 Ossur Hf ELASTIC COMPOSITE MATERIAL
KR20030011074A (en) 2000-03-15 2003-02-06 오서 에이치에프 Apparatus and process for making prosthetic suction sleeve
US6532400B1 (en) 2000-03-24 2003-03-11 Intelligent Inference Systems Corporation Biologically-inspired multi-segmented robot
EP1267756B1 (en) 2000-03-29 2007-11-14 Massachusetts Institute of Technology Speed-adaptive and patient-adaptive prosthetic knee
US6585774B2 (en) 2000-04-25 2003-07-01 Simbex, Llc Dynamic variable geometry fitting system for use with a body appliance
US6811571B1 (en) 2000-05-02 2004-11-02 Van L. Phillips Universal prosthesis with cushioned ankle
US20030195439A1 (en) 2000-05-30 2003-10-16 Caselnova Ronald J. Thermal pad and boot designed for applying hot or cold treatment
GB2368017B (en) 2000-06-20 2004-05-12 Bournemouth University Higher Apparatus for electrical stimulation of the leg
FR2811220B1 (en) 2000-07-04 2003-01-31 Francis Artigue MODULAR ACTIVE PROSTHESIS FOR ARMS AND FOREARM
US6923834B2 (en) 2000-10-04 2005-08-02 Ossur Hf Artificial limb socket containing volume control pad
JP2004510495A (en) 2000-10-04 2004-04-08 オスール・エイチエフ Prosthetic socket and socket component assembly
RU2003112210A (en) 2000-10-26 2004-12-10 Оссур Норс Америка, Инк. (Us) KNIFE PROSTHESIS WITH SHOCK ABSORBER
US6702076B2 (en) 2001-01-16 2004-03-09 Michael T. Koleda Shaft vibration damping system
US6660042B1 (en) 2001-02-02 2003-12-09 Rutgers, The State University Of New Jersey Methods of biomimetic finger control by filtering of distributed forelimib pressures
US7153242B2 (en) 2001-05-24 2006-12-26 Amit Goffer Gait-locomotor apparatus
JP3760186B2 (en) 2001-06-07 2006-03-29 独立行政法人科学技術振興機構 Biped walking type moving device, walking control device thereof, and walking control method
US6752774B2 (en) 2001-06-08 2004-06-22 Townsend Design Tension assisted ankle joint and orthotic limb braces incorporating same
US7650204B2 (en) 2001-06-29 2010-01-19 Honda Motor Co., Ltd. Active control of an ankle-foot orthosis
US6952687B2 (en) 2001-07-10 2005-10-04 California Institute Of Technology Cognitive state machine for prosthetic systems
AU2002322712A1 (en) 2001-07-26 2003-02-17 Van L. Phillips Socket insert having a bladder system
DE10142492A1 (en) 2001-08-30 2003-04-03 Carstens Orthopaedie Und Mediz Prosthetic socket with seal
DE10142491B4 (en) 2001-08-30 2004-10-07 össur h.f. Sealing arrangement with lips for a prosthetic socket
US7260436B2 (en) 2001-10-16 2007-08-21 Case Western Reserve University Implantable networked neural system
US6921376B2 (en) 2001-10-23 2005-07-26 The Jerome Group, Inc. Cervical brace
DE10164892B4 (en) 2001-11-05 2009-08-27 össur h.f. Stocking liner for use with a cup-shaped prosthesis stem
JP3790816B2 (en) 2002-02-12 2006-06-28 国立大学法人 東京大学 Motion generation method for humanoid link system
JP2003236783A (en) 2002-02-18 2003-08-26 Japan Science & Technology Corp Bipedal walking transfer device
JP4182726B2 (en) 2002-02-20 2008-11-19 日本精工株式会社 Linear actuator
JP3976129B2 (en) 2002-02-28 2007-09-12 本田技研工業株式会社 Parallel link mechanism and artificial joint device using the same
US20090030530A1 (en) 2002-04-12 2009-01-29 Martin James J Electronically controlled prosthetic system
WO2003090981A1 (en) 2002-04-26 2003-11-06 Honda Giken Kogyo Kabushiki Kaisha System for estimating attitude of leg type moving robot itself
DE60221717T2 (en) 2002-05-06 2008-06-05 Somas Orthopaedie B.V. DEVICE FOR BELATED FOOT
CA2488733C (en) 2002-07-08 2013-09-17 Hilmar Br. Janusson Socket liner incorporating sensors to monitor amputee progress
US20040064195A1 (en) * 2002-07-15 2004-04-01 Hugh Herr Variable-mechanical-impedance artificial legs
US7303538B2 (en) 2002-07-23 2007-12-04 Ossur Hf Versatile orthopaedic leg mounted walkers
US7597674B2 (en) 2002-07-23 2009-10-06 össur hf Versatile orthopaedic leg mounted walker
US7094058B2 (en) 2002-08-16 2006-08-22 Ossur Hf Educational prosthesis device and method for using the same
US20050004472A1 (en) 2002-08-17 2005-01-06 Greg Pratt Medical socket contour scanning system
US7736394B2 (en) 2002-08-22 2010-06-15 Victhom Human Bionics Inc. Actuated prosthesis for amputees
EP2535024B2 (en) 2002-08-22 2019-01-16 Victhom Human Bionics Inc. Actuated prosthesis for above-knee amputees
JP4129862B2 (en) 2002-08-30 2008-08-06 本田技研工業株式会社 Prosthetic joint device
AU2002951193A0 (en) 2002-09-04 2002-09-19 Northern Sydney Area Health Service Movement faciliatation device
US6968246B2 (en) 2002-10-04 2005-11-22 Fourroux Orthotics & Prosthetics, Inc. Method for automated design of orthotic and prosthetic devices
US7105122B2 (en) 2002-10-08 2006-09-12 Ossur Hf Prosthesis socket direct casting device having multiple compression chambers
US7094212B2 (en) 2002-10-11 2006-08-22 Ossur Hf Rigid dressing
US7037283B2 (en) 2002-10-18 2006-05-02 Ossur Hf Casting product and method for forming the same
KR20050083814A (en) 2002-10-24 2005-08-26 록히드 마틴 코포레이션 Systems and methods for treating movement disorders
AU2003290526A1 (en) 2002-11-07 2004-06-03 Ossur Hf Ankle-foot orthosis
US6966882B2 (en) 2002-11-25 2005-11-22 Tibion Corporation Active muscle assistance device and method
US7025793B2 (en) 2002-12-20 2006-04-11 Ossur Hf Suspension liner with seal
US8034120B2 (en) 2002-12-20 2011-10-11 Ossur Hf Suspension liner system with seal
US7909884B2 (en) 2002-12-20 2011-03-22 Ossur Hf Suspension liner system with seal
US7295892B2 (en) 2002-12-31 2007-11-13 Massachusetts Institute Of Technology Speed-adaptive control scheme for legged running robots
US7304202B2 (en) 2002-12-31 2007-12-04 Ossur Hf Wound dressing
US7465281B2 (en) 2003-04-18 2008-12-16 Ossur, Hf Versatile hardenable cast or support
WO2004096905A2 (en) 2003-04-24 2004-11-11 Arizona Board Of Regents, Acting For And On Behalf Of Arizona State University Adjustable compliant mechanism
WO2004096083A2 (en) 2003-04-24 2004-11-11 Arizona Board Of Regents Acting On Behalf Of Arizona State University Spring-over-muscle actuator
US7101487B2 (en) 2003-05-02 2006-09-05 Ossur Engineering, Inc. Magnetorheological fluid compositions and prosthetic knees utilizing same
US7198071B2 (en) 2003-05-02 2007-04-03 Össur Engineering, Inc. Systems and methods of loading fluid in a prosthetic knee
JP4315766B2 (en) 2003-05-21 2009-08-19 本田技研工業株式会社 Walking assist device
WO2005000155A2 (en) 2003-06-20 2005-01-06 Ossur Hf Prosthetic socket with self-contained vacuum reservoir
JP4290494B2 (en) 2003-07-08 2009-07-08 株式会社ルネサステクノロジ Semiconductor memory device
US8007544B2 (en) 2003-08-15 2011-08-30 Ossur Hf Low profile prosthetic foot
US7657299B2 (en) 2003-08-21 2010-02-02 Ischem Corporation Automated methods and systems for vascular plaque detection and analysis
US20050049652A1 (en) 2003-08-25 2005-03-03 Kai-Yu Tong Functional electrical stimulation system
US7266910B2 (en) 2003-09-05 2007-09-11 Ossur Hf Orthotic footplate
US7549969B2 (en) 2003-09-11 2009-06-23 The Cleveland Clinic Foundation Apparatus for assisting body movement
US7531711B2 (en) 2003-09-17 2009-05-12 Ossur Hf Wound dressing and method for manufacturing the same
CA2539945C (en) 2003-09-17 2015-04-21 Ossur Hf Wound dressing and method for manufacturing the same
US8075633B2 (en) 2003-09-25 2011-12-13 Massachusetts Institute Of Technology Active ankle foot orthosis
US7534220B2 (en) 2003-09-29 2009-05-19 Ossur Hf Adjustable ergonomic brace
US6969408B2 (en) 2003-09-30 2005-11-29 Ossur Engineering, Inc. Low profile active shock module prosthesis
US6942629B2 (en) 2003-10-02 2005-09-13 Dynasplint Systems, Inc. Adjustable splint device for relieving contractures
SE526430C2 (en) 2003-10-17 2005-09-13 Oessur Hf Artificial multi-axis knee joint
US20070282480A1 (en) 2003-11-10 2007-12-06 Pannese Patrick D Methods and systems for controlling a semiconductor fabrication process
US7107180B2 (en) 2003-11-14 2006-09-12 Ossur Hf Method and system for determining an activity level in an individual
US20050107889A1 (en) 2003-11-18 2005-05-19 Stephane Bedard Instrumented prosthetic foot
US7162322B2 (en) 2003-11-28 2007-01-09 The Ohio Willow Wood Company Custom prosthetic liner manufacturing system and method
US7896927B2 (en) 2004-02-12 2011-03-01 össur hf. Systems and methods for actuating a prosthetic ankle based on a relaxed position
WO2005092185A2 (en) 2004-03-22 2005-10-06 California Institute Of Technology Cognitive control signals for neural prosthetics
USD503480S1 (en) 2004-04-22 2005-03-29 Ossur Hf Ankle-foot orthosis
US7217060B2 (en) 2004-04-30 2007-05-15 Ossur Hf Prosthesis locking assembly
US7455696B2 (en) 2004-05-07 2008-11-25 össur hf Dynamic seals for a prosthetic knee
CN101292916B (en) 2004-05-28 2013-04-24 奥苏尔公司 Prosthetic or orthotic sleeve having external surface peripheral profiles
US7581454B2 (en) 2004-05-28 2009-09-01 össur hf Method of measuring the performance of a prosthetic foot
US7347877B2 (en) 2004-05-28 2008-03-25 össur hf Foot prosthesis with resilient multi-axial ankle
USD503802S1 (en) 2004-05-28 2005-04-05 Ossur Hf Prosthesis liner
US7770842B2 (en) 2004-08-24 2010-08-10 Honeywell International Inc. Aircraft flight control surface actuation system communication architecture
WO2006034210A2 (en) 2004-09-21 2006-03-30 Thomas Sugar Adjustable stiffness jack spring actuator
US7429253B2 (en) 2004-09-21 2008-09-30 Honda Motor Co., Ltd. Walking assistance system
US7896827B2 (en) 2004-12-22 2011-03-01 Ossur Hf Knee brace and method for securing the same
EP1848380B1 (en) 2004-12-22 2015-04-15 Össur hf Systems and methods for processing limb motion
US7198610B2 (en) 2004-12-22 2007-04-03 Ossur Hf Knee brace and method for securing the same
US7794418B2 (en) 2004-12-22 2010-09-14 Ossur Hf Knee brace and method for securing the same
US7762973B2 (en) 2004-12-22 2010-07-27 Ossur Hf Spacer element for prosthetic and orthotic devices
US7597675B2 (en) 2004-12-22 2009-10-06 össur hf Knee brace and method for securing the same
US7713225B2 (en) 2004-12-22 2010-05-11 Ossur Hf Knee brace and method for securing the same
US7513881B1 (en) 2005-01-12 2009-04-07 Ossur Hf Knee immobilizer
US7465283B2 (en) 2005-01-12 2008-12-16 Ossur, Hf Cast assembly with breathable double knit type padding
JP4178187B2 (en) 2005-01-26 2008-11-12 国立大学法人 筑波大学 Wearable motion assist device and control program
US7161056B2 (en) 2005-01-28 2007-01-09 Ossur Hf Wound dressing and method for manufacturing the same
CN101155557B (en) 2005-02-02 2012-11-28 奥瑟Hf公司 Sensing systems and methods for monitoring gait dynamics
EP1843823B1 (en) 2005-02-02 2016-10-26 Össur hf Prosthetic and orthotic systems usable for rehabilitation
US10307272B2 (en) 2005-03-31 2019-06-04 Massachusetts Institute Of Technology Method for using a model-based controller for a robotic leg
US20070162152A1 (en) 2005-03-31 2007-07-12 Massachusetts Institute Of Technology Artificial joints using agonist-antagonist actuators
US7313463B2 (en) 2005-03-31 2007-12-25 Massachusetts Institute Of Technology Biomimetic motion and balance controllers for use in prosthetics, orthotics and robotics
US8864846B2 (en) 2005-03-31 2014-10-21 Massachusetts Institute Of Technology Model-based neuromechanical controller for a robotic leg
US8512415B2 (en) 2005-03-31 2013-08-20 Massachusetts Institute Of Technology Powered ankle-foot prothesis
US20070043449A1 (en) 2005-03-31 2007-02-22 Massachusetts Institute Of Technology Artificial ankle-foot system with spring, variable-damping, and series-elastic actuator components
US8500823B2 (en) 2005-03-31 2013-08-06 Massachusetts Institute Of Technology Powered artificial knee with agonist-antagonist actuation
US11278433B2 (en) 2005-03-31 2022-03-22 Massachusetts Institute Of Technology Powered ankle-foot prosthesis
US20060249315A1 (en) 2005-03-31 2006-11-09 Massachusetts Institute Of Technology Artificial human limbs and joints employing actuators, springs, and variable-damper elements
US20070123997A1 (en) 2005-03-31 2007-05-31 Massachusetts Institute Of Technology Exoskeletons for running and walking
US7526402B2 (en) 2005-04-19 2009-04-28 Jaymart Sensors, Llc Miniaturized inertial measurement unit and associated methods
US7240876B2 (en) 2005-04-21 2007-07-10 Ossur, Hf Dispenser box
NL1029086C2 (en) 2005-05-20 2006-11-27 Somas Groep B V Hip portese, method for preventing hip dislocation and use of a hip portese.
USD523149S1 (en) 2005-05-24 2006-06-13 Ossur Hf Prosthetic or orthotic sleeve
JP4332136B2 (en) 2005-06-03 2009-09-16 本田技研工業株式会社 Limb body assist device and limb body assist program
US7527253B2 (en) 2005-06-09 2009-05-05 Arizona Board Of Regents Adjustable stiffness leaf spring actuators
US7618463B2 (en) 2005-07-11 2009-11-17 össur hf Energy returning prosthetic joint
WO2007023625A1 (en) 2005-08-23 2007-03-01 Matsushita Electric Industrial Co., Ltd. Polymer actuator
US7485152B2 (en) 2005-08-26 2009-02-03 The Ohio Willow Wood Company Prosthetic leg having electronically controlled prosthetic knee with regenerative braking feature
US8048172B2 (en) 2005-09-01 2011-11-01 össur hf Actuator assembly for prosthetic or orthotic joint
US7531006B2 (en) 2005-09-01 2009-05-12 össur hf Sensing system and method for motion-controlled foot unit
US7431708B2 (en) 2005-09-19 2008-10-07 Ossur Hf Knee brace having lateral/medial width adjustment
US7959589B2 (en) 2005-09-19 2011-06-14 Ossur Hf Adjustable orthotic device
US7704218B2 (en) 2005-10-12 2010-04-27 Ossur, Hf Knee brace
US7449005B2 (en) 2005-11-07 2008-11-11 Ossur Hf. Traction collar and method of use
USD527825S1 (en) 2005-12-21 2006-09-05 Ossur Hf Knee brace
JP4818716B2 (en) 2005-12-27 2011-11-16 富士通株式会社 Robot controller
USD529180S1 (en) 2006-03-01 2006-09-26 Ossur Hf Knee brace
USD533280S1 (en) 2006-03-22 2006-12-05 Ossur Hf Wrist brace
US7914475B2 (en) 2006-03-22 2011-03-29 Ossur Hf Orthopedic brace
US7488349B2 (en) 2006-03-24 2009-02-10 Ossur Hf Ventilated prosthesis system
CN101061984B (en) 2006-04-29 2012-02-08 香港理工大学 Recovery robot system for providing mechanical assistant by using myoelectric signal
US7578799B2 (en) 2006-06-30 2009-08-25 Ossur Hf Intelligent orthosis
US7438843B2 (en) 2006-06-30 2008-10-21 Ossur Hf Method and kit for making prosthetic socket
US7662191B2 (en) 2006-06-30 2010-02-16 össur hf Liner donning and doffing device
US7503937B2 (en) 2006-07-03 2009-03-17 Ossur Hf Prosthetic foot
JP2008087143A (en) 2006-10-05 2008-04-17 Sony Corp Actuator control device
US7632315B2 (en) 2006-10-10 2009-12-15 össur hf Vacuum chamber socket system
WO2008048658A2 (en) 2006-10-17 2008-04-24 Northwestern University Equilibrium-point prosthetic and orthotic ankle-foot systems
US7842848B2 (en) 2006-11-13 2010-11-30 Ossur Hf Absorbent structure in an absorbent article
DE102006059206B4 (en) 2006-12-13 2010-12-30 Otto Bock Healthcare Gmbh Orthopedic device
WO2008100486A2 (en) 2007-02-12 2008-08-21 Ossur Hf Orthopedic brace and component for use therewith
USD558884S1 (en) 2007-02-12 2008-01-01 Ossur Hf Knee brace
USD567072S1 (en) 2007-02-12 2008-04-22 Ossur Hf Strap retainer
CN101668447B (en) 2007-04-26 2012-01-11 奥索集团公司 Orthopedic shoe providing access to wound site
US7973446B2 (en) 2007-05-09 2011-07-05 Motor Excellence, Llc Electrical devices having tape wound core laminate rotor or stator elements
WO2008141198A1 (en) 2007-05-09 2008-11-20 Motor Excellence, Llc Electrical output generating and driven devices using disk and non-disk shaped rotors, and methods of making and using the same
WO2008153675A1 (en) 2007-05-21 2008-12-18 Ossur Hf Orthopedic device
USD576781S1 (en) 2007-07-03 2008-09-16 Ossur Hf Orthotic device
WO2009014644A1 (en) 2007-07-20 2009-01-29 Ossur Hf Prosthetic or orthopedic device having feedback
WO2009029191A2 (en) 2007-08-23 2009-03-05 Ossur Hf Adjustable orthopedic or prosthetic support device
US8043244B2 (en) 2007-09-13 2011-10-25 Ossur Hf Wearable device
CN101827568A (en) 2007-10-15 2010-09-08 奥索集团公司 Orthopedic device having a patient compliance system
USD583956S1 (en) 2007-12-11 2008-12-30 Ossur, Hf Orthotic device
DE102008008282B4 (en) 2008-02-07 2014-04-03 Otto Bock Healthcare Gmbh Orthopedic foot and method for controlling an artificial foot
USD588753S1 (en) 2008-02-12 2009-03-17 Ossur Hf Patella protector assembly
WO2009120637A1 (en) 2008-03-24 2009-10-01 Ossur Hf Transfemoral prosthetic systems and methods for operating the same
US8652218B2 (en) 2008-04-21 2014-02-18 Vanderbilt University Powered leg prosthesis and control methodologies for obtaining near normal gait
USD596301S1 (en) 2008-04-25 2009-07-14 Ossur Hf Orthopedic device
WO2009139893A1 (en) 2008-05-15 2009-11-19 Ossur Hf Circumferential walker
CA2736079A1 (en) 2008-09-04 2010-03-11 Iwalk, Inc. Hybrid terrain-adaptive lower-extremity systems
USD627079S1 (en) 2008-09-09 2010-11-09 Ossur Hf Container
USD611322S1 (en) 2008-09-09 2010-03-09 össur hf Handle
JP5095581B2 (en) 2008-11-05 2012-12-12 本田技研工業株式会社 Walking assist device
CN102227196B (en) 2008-12-03 2013-09-11 欧苏尔公司 Cervical collar having height and circumferential adjustment
GB0822590D0 (en) 2008-12-11 2009-01-21 Materialise Nv Orthotic prosthetic cushioned device and method of making the same
JP2012516717A (en) 2009-01-30 2012-07-26 マサチューセッツ インスティテュート オブ テクノロジー Actuator-powered knee prosthesis with antagonistic muscle action
ATE531313T1 (en) 2009-04-07 2011-11-15 Syco Di Hedvig Haberl & C S A S SYSTEM FOR CONTROLLING A HAPTIC EXOSKELETON DEVICE FOR REHABILITATION PURPOSES AND CORRESPONDING HAPTIC EXOSKELETON DEVICE
TWM378398U (en) 2009-07-07 2010-04-11 Xiu-Wen Qiu Secondary lens apparatus
USD629115S1 (en) 2009-08-28 2010-12-14 Ossur Hf Back brace
USD628696S1 (en) 2009-08-28 2010-12-07 Ossur Hf Handle
USD616555S1 (en) 2009-09-14 2010-05-25 Ossur Hf Orthopedic device
USD618359S1 (en) 2009-09-14 2010-06-22 Ossur Hf Expansion part for orthopedic device
USD616997S1 (en) 2009-09-14 2010-06-01 Ossur Hf Orthopedic device
USD620124S1 (en) 2009-09-14 2010-07-20 Ossur Hf Orthopedic device
USD616996S1 (en) 2009-09-14 2010-06-01 Ossur Hf Orthopedic device
USD634852S1 (en) 2009-09-22 2011-03-22 Ossur Hf Sole for orthopedic device
USD643537S1 (en) 2009-09-22 2011-08-16 Ossur Hf Pump for an orthopedic device
USD616556S1 (en) 2009-09-22 2010-05-25 Ossur Hf Orthopedic device
USD640381S1 (en) 2009-11-13 2011-06-21 Ossur Hf Rehabilitative vest component
USD640380S1 (en) 2009-11-13 2011-06-21 Ossur Hf Rehabilitative vest component
USD646394S1 (en) 2009-11-13 2011-10-04 Ossur Hf Rehabilitative vest component
CN102859484B (en) 2010-04-21 2015-11-25 黑莓有限公司 With the method that the scrollable field on portable electric appts is mutual
US8716877B2 (en) 2010-05-14 2014-05-06 Thomas Sugar Method and apparatus for harvesting energy from ankle motion
USD641483S1 (en) 2010-05-25 2011-07-12 Ossur Hf Orthosis component
USD641482S1 (en) 2010-05-25 2011-07-12 Ossur Hf Orthosis component
USD634438S1 (en) 2010-06-14 2011-03-15 Ossur Hf Orthopedic walker
USD647624S1 (en) 2010-08-06 2011-10-25 Ossur Hf Cervical collar
USD647623S1 (en) 2010-08-06 2011-10-25 Ossur Hf Height adjustment mechanism for cervical collar
USD647622S1 (en) 2010-08-20 2011-10-25 Ossur Hf Orthopedic device
USD637942S1 (en) 2010-08-20 2011-05-17 Ossur Hf Strap retainer
US8876743B2 (en) 2011-04-20 2014-11-04 Vivonics, Inc. Conformable material for an orthotic device and method of making same
US9032635B2 (en) 2011-12-15 2015-05-19 Massachusetts Institute Of Technology Physiological measurement device or wearable device interface simulator and method of use
US9498401B2 (en) 2011-12-20 2016-11-22 Massachusetts Institute Of Technology Robotic system for simulating a wearable device and method of use
US9221177B2 (en) 2012-04-18 2015-12-29 Massachusetts Institute Of Technology Neuromuscular model-based sensing and control paradigm for a robotic leg
US9339097B2 (en) 2013-12-20 2016-05-17 Tessy Plastics Corporation Deodorant package with expanding platform

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020138153A1 (en) * 2001-03-23 2002-09-26 Wayne Koniuk Self-adjusting prosthetic ankle apparatus
US7029500B2 (en) * 2002-04-12 2006-04-18 James Jay Martin Electronically controlled prosthetic system
US7393364B2 (en) * 2002-04-12 2008-07-01 James J. Martin Electronically controlled prosthetic system
US7431737B2 (en) * 2004-02-12 2008-10-07 össur hf. System and method for motion-controlled foot unit

Cited By (256)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8551184B1 (en) 2002-07-15 2013-10-08 Iwalk, Inc. Variable mechanical-impedance artificial legs
US20040064195A1 (en) * 2002-07-15 2004-04-01 Hugh Herr Variable-mechanical-impedance artificial legs
US7736394B2 (en) 2002-08-22 2010-06-15 Victhom Human Bionics Inc. Actuated prosthesis for amputees
US20110137429A1 (en) * 2002-08-22 2011-06-09 Victhom Human Bionics, Inc. Control device and system for controlling an actuated prosthesis
US20060122710A1 (en) * 2002-08-22 2006-06-08 Stephane Bedard Control device and system for controlling an actuated prosthesis
US7867284B2 (en) 2002-08-22 2011-01-11 Victhom Human Bionics Inc. Control device and system for controlling an actuated prosthesis
US20100262260A1 (en) * 2002-08-22 2010-10-14 Victhom Human Bionics, Inc. Actuated prosthesis for amputess
US8231687B2 (en) 2002-08-22 2012-07-31 Victhom Human Bionics, Inc. Actuated leg prosthesis for above-knee amputees
US9649206B2 (en) 2002-08-22 2017-05-16 Victhom Laboratory Inc. Control device and system for controlling an actuated prosthesis
US20060122711A1 (en) * 2002-08-22 2006-06-08 Stephane Bedard Actuated leg prosthesis for above-knee amputees
US9358137B2 (en) 2002-08-22 2016-06-07 Victhom Laboratory Inc. Actuated prosthesis for amputees
US20040181289A1 (en) * 2002-08-22 2004-09-16 Stephane Bedard Actuated prosthesis for amputees
US10695256B2 (en) 2003-09-25 2020-06-30 Massachusetts Institute Of Technology Motorized limb assistance device
US8551029B1 (en) 2003-09-25 2013-10-08 Massachusetts Institute Of Technology Active ankle foot orthosis
US9668888B2 (en) 2003-09-25 2017-06-06 Massachusetts Institute Of Technology Active ankle foot orthosis
US8808214B2 (en) 2003-09-25 2014-08-19 Massachusetts Institute Of Technology Active ankle foot orthosis
US8376971B1 (en) 2003-09-25 2013-02-19 Massachusetts Institute Of Technology Active ankle foot orthosis
US8287477B1 (en) 2003-09-25 2012-10-16 Massachusetts Institute Of Technology Active ankle foot orthosis
US20080058959A1 (en) * 2003-11-18 2008-03-06 Stephane Bedard Instrumented prosthetic foot
US20080046096A1 (en) * 2003-11-18 2008-02-21 Stephane Bedard Instrumented prosthetic foot
US7955398B2 (en) 2003-11-18 2011-06-07 Victhom Human Bionics, Inc. Instrumented prosthetic foot
US20050107889A1 (en) * 2003-11-18 2005-05-19 Stephane Bedard Instrumented prosthetic foot
US9526636B2 (en) 2003-11-18 2016-12-27 Victhom Laboratory Inc. Instrumented prosthetic foot
US7815689B2 (en) 2003-11-18 2010-10-19 Victhom Human Bionics Inc. Instrumented prosthetic foot
US8323354B2 (en) 2003-11-18 2012-12-04 Victhom Human Bionics Inc. Instrumented prosthetic foot
US8057550B2 (en) 2004-02-12 2011-11-15 össur hf. Transfemoral prosthetic systems and methods for operating the same
US20060224247A1 (en) * 2004-02-12 2006-10-05 Clausen Arinbjorn V Systems and methods for actuating a prosthetic ankle based on a relaxed position
US10195057B2 (en) 2004-02-12 2019-02-05 össur hf. Transfemoral prosthetic systems and methods for operating the same
US20090222105A1 (en) * 2004-02-12 2009-09-03 Ossur Hf. Transfemoral prosthetic systems and methods for operating the same
US8657886B2 (en) 2004-02-12 2014-02-25 össur hf Systems and methods for actuating a prosthetic ankle
US7896927B2 (en) 2004-02-12 2011-03-01 össur hf. Systems and methods for actuating a prosthetic ankle based on a relaxed position
US20110224804A1 (en) * 2004-02-12 2011-09-15 Ossur Hf Systems and methods for actuating a prosthetic ankle
US20110106274A1 (en) * 2004-02-12 2011-05-05 Ossur Hf System and method for motion-controlled foot unit
US9271851B2 (en) 2004-02-12 2016-03-01 össur hf. Systems and methods for actuating a prosthetic ankle
US20060224246A1 (en) * 2004-02-12 2006-10-05 Clausen Arinbjorn V Systems and methods for adjusting the angle of a prosthetic ankle based on a measured surface angle
US20100185124A1 (en) * 2004-03-10 2010-07-22 Ossur Engineering, Inc. Control system and method for a prosthetic knee
US8617254B2 (en) 2004-03-10 2013-12-31 Ossur Hf Control system and method for a prosthetic knee
US9345591B2 (en) 2004-03-10 2016-05-24 össur hf Control system and method for a prosthetic knee
US20090210091A1 (en) * 2004-03-23 2009-08-20 Honda Motor Co., Ltd. Legged mobile robot and control system thereof
US8583283B2 (en) * 2004-03-23 2013-11-12 Honda Motor Co., Ltd. Legged mobile robot and control system thereof
US9078774B2 (en) 2004-12-22 2015-07-14 össur hf Systems and methods for processing limb motion
US20060135883A1 (en) * 2004-12-22 2006-06-22 Jonsson Helgi Systems and methods for processing limb motion
US7811333B2 (en) 2004-12-22 2010-10-12 Ossur Hf Systems and methods for processing limb motion
US20100324456A1 (en) * 2004-12-22 2010-12-23 Ossur Hf Systems and methods for processing limb motion
US8048007B2 (en) 2005-02-02 2011-11-01 össur hf Prosthetic and orthotic systems usable for rehabilitation
US8122772B2 (en) 2005-02-02 2012-02-28 össur hf Sensing systems and methods for monitoring gait dynamics
US8869626B2 (en) 2005-02-02 2014-10-28 össur hf Sensing systems and methods for monitoring gait dynamics
US20060173552A1 (en) * 2005-02-02 2006-08-03 Roy Kim D Prosthetic and orthotic systems usable for rehabilitation
US9462966B2 (en) 2005-02-02 2016-10-11 össur hf Sensing systems and methods for monitoring gait dynamics
US10369025B2 (en) 2005-02-02 2019-08-06 Össur Iceland Ehf Sensing systems and methods for monitoring gait dynamics
US8858648B2 (en) 2005-02-02 2014-10-14 össur hf Rehabilitation using a prosthetic device
US10290235B2 (en) 2005-02-02 2019-05-14 össur hf Rehabilitation using a prosthetic device
US20110098606A1 (en) * 2005-02-02 2011-04-28 Ossur Hf Sensing systems and methods for monitoring gait dynamics
US20060184252A1 (en) * 2005-02-16 2006-08-17 Magnus Oddsson System and method for data communication with a mechatronic device
US8801802B2 (en) 2005-02-16 2014-08-12 össur hf System and method for data communication with a mechatronic device
US11278433B2 (en) 2005-03-31 2022-03-22 Massachusetts Institute Of Technology Powered ankle-foot prosthesis
US20100114329A1 (en) * 2005-03-31 2010-05-06 Iwalk, Inc. Hybrid terrain-adaptive lower-extremity systems
US20110040216A1 (en) * 2005-03-31 2011-02-17 Massachusetts Institute Of Technology Exoskeletons for running and walking
US10307272B2 (en) 2005-03-31 2019-06-04 Massachusetts Institute Of Technology Method for using a model-based controller for a robotic leg
US10137011B2 (en) 2005-03-31 2018-11-27 Massachusetts Institute Of Technology Powered ankle-foot prosthesis
US8734528B2 (en) 2005-03-31 2014-05-27 Massachusetts Institute Of Technology Artificial ankle-foot system with spring, variable-damping, and series-elastic actuator components
US10342681B2 (en) 2005-03-31 2019-07-09 Massachusetts Institute Of Technology Artificial ankle-foot system with spring, variable-damping, and series-elastic actuator components
US8512415B2 (en) 2005-03-31 2013-08-20 Massachusetts Institute Of Technology Powered ankle-foot prothesis
US20100324699A1 (en) * 2005-03-31 2010-12-23 Massachusetts Institute Of Technology Model-Based Neuromechanical Controller for a Robotic Leg
US8500823B2 (en) 2005-03-31 2013-08-06 Massachusetts Institute Of Technology Powered artificial knee with agonist-antagonist actuation
US8864846B2 (en) 2005-03-31 2014-10-21 Massachusetts Institute Of Technology Model-based neuromechanical controller for a robotic leg
US8870967B2 (en) 2005-03-31 2014-10-28 Massachusetts Institute Of Technology Artificial joints using agonist-antagonist actuators
US9339397B2 (en) 2005-03-31 2016-05-17 Massachusetts Institute Of Technology Artificial ankle-foot system with spring, variable-damping, and series-elastic actuator components
US9333097B2 (en) 2005-03-31 2016-05-10 Massachusetts Institute Of Technology Artificial human limbs and joints employing actuators, springs, and variable-damper elements
US10080672B2 (en) 2005-03-31 2018-09-25 Bionx Medical Technologies, Inc. Hybrid terrain-adaptive lower-extremity systems
US20100241242A1 (en) * 2005-03-31 2010-09-23 Massachusetts Institute Of Technology Artificial Joints Using Agonist-Antagonist Actuators
US9539117B2 (en) 2005-03-31 2017-01-10 Massachusetts Institute Of Technology Method for controlling a robotic limb joint
US10485681B2 (en) 2005-03-31 2019-11-26 Massachusetts Institute Of Technology Exoskeletons for running and walking
US9149370B2 (en) 2005-03-31 2015-10-06 Massachusetts Institute Of Technology Powered artificial knee with agonist-antagonist actuation
US10588759B2 (en) 2005-03-31 2020-03-17 Massachusetts Institute Of Technology Artificial human limbs and joints employing actuators, springs and variable-damper elements
US11273060B2 (en) 2005-03-31 2022-03-15 Massachusetts Institute Of Technology Artificial ankle-foot system with spring, variable-damping, and series-elastic actuator components
US11491032B2 (en) 2005-03-31 2022-11-08 Massachusetts Institute Of Technology Artificial joints using agonist-antagonist actuators
US8057410B2 (en) 2005-04-13 2011-11-15 The Regents Of The University Of California Semi-powered lower extremity exoskeleton
US20070056592A1 (en) * 2005-04-13 2007-03-15 The Regents Of University Of California Semi-powered lower extremity exoskeleton
US9066819B2 (en) 2005-04-19 2015-06-30 össur hf Combined active and passive leg prosthesis system and a method for performing a movement with such a system
US8814949B2 (en) 2005-04-19 2014-08-26 össur hf Combined active and passive leg prosthesis system and a method for performing a movement with such a system
US20090299489A1 (en) * 2005-04-19 2009-12-03 Lisa Gramnaes Combined Active and Passive Leg Prosthesis System and a Method for Performing a Movement With Such a System
US9717606B2 (en) 2005-04-19 2017-08-01 össur hf Combined active and passive leg prosthesis system and a method for performing a movement with such a system
US20100076346A1 (en) * 2005-06-30 2010-03-25 University Of Virginia Patent Foundation Method and System for Energy Returning Ankle Foot Orthosis (ERAFO)
US7652386B2 (en) 2005-08-10 2010-01-26 Bionic Power Inc. Method and apparatus for harvesting biomechanical energy
US8487456B2 (en) 2005-08-10 2013-07-16 Bionic Power Inc. Methods and apparatus for harvesting biomechanical energy
US20100276944A1 (en) * 2005-08-10 2010-11-04 Simon Fraser University Methods and apparatus for harvesting biomechanical energy
US20080277943A1 (en) * 2005-08-10 2008-11-13 Donelan James M Method and apparatus for harvesting biomechanical energy
US7659636B2 (en) 2005-08-10 2010-02-09 Bionic Power Inc. Methods and apparatus for harvesting biomechanical energy
US8299634B2 (en) 2005-08-10 2012-10-30 Bionic Power Inc. Methods and apparatus for harvesting biomechanical energy
US9057361B2 (en) 2005-08-10 2015-06-16 Bionic Power Inc. Methods and apparatus for harvesting biomechanical energy
US8048172B2 (en) 2005-09-01 2011-11-01 össur hf Actuator assembly for prosthetic or orthotic joint
US8852292B2 (en) 2005-09-01 2014-10-07 Ossur Hf System and method for determining terrain transitions
US8702811B2 (en) 2005-09-01 2014-04-22 össur hf System and method for determining terrain transitions
US8709097B2 (en) 2005-09-01 2014-04-29 össur hf Actuator assembly for prosthetic or orthotic joint
US20070050045A1 (en) * 2005-09-01 2007-03-01 Clausen Arinbjorn V Sensing system and method for motion-controlled foot unit
US9351854B2 (en) 2005-09-01 2016-05-31 össur hf Actuator assembly for prosthetic or orthotic joint
US20070233279A1 (en) * 2006-03-09 2007-10-04 The Regents Of The University Of California Power generating leg
US7883546B2 (en) 2006-03-09 2011-02-08 The Regents Of The University Of California Power generating leg
US8597369B2 (en) * 2006-10-17 2013-12-03 Northwestern University Equilibrium-point prosthetic and orthotic ankle-foot systems and devices
US20100185301A1 (en) * 2006-10-17 2010-07-22 Andrew H Hansen Equilibrium-point prosthetic and orthotic ankle-foot systems, devices, and methods of use
US9999526B2 (en) 2006-12-14 2018-06-19 Blatchford Products Limited Prosthetic ankle joint mechanism
US9132023B2 (en) 2006-12-14 2015-09-15 Blatchford Products Limited Prosthetic ankle and foot combination
US7985265B2 (en) * 2006-12-14 2011-07-26 Chas. A. Blatchford & Sons Limited Prosthetic ankle and foot combination
US20110230975A1 (en) * 2006-12-14 2011-09-22 Chas. A. Blatchford & Sons Limited prosthetic ankle and foot combination
US11529246B2 (en) 2006-12-14 2022-12-20 Blatchford Products Limited Prosthetic ankle and foot combination
US20080300692A1 (en) * 2006-12-14 2008-12-04 Chas. A. Blatchford & Sons Limited Prosthetic Ankle and Foot Combination
US20080262635A1 (en) * 2006-12-14 2008-10-23 Chas. A. Blatchford & Sons Limited Prosthetic Ankle Joint Mechanism
US10130495B2 (en) 2006-12-14 2018-11-20 Blatchford Products Limited Prosthetic ankle and foot combination
US8740991B2 (en) 2006-12-14 2014-06-03 Blatchford Products Limited Prosthetic ankle joint mechanism
US9433513B2 (en) 2006-12-14 2016-09-06 Blatchford Products Limited Prosthetic ankle joint mechanism
US11679008B2 (en) 2006-12-14 2023-06-20 Blatchford Products Limited Prosthetic ankle joint mechanism
US8574312B2 (en) * 2006-12-14 2013-11-05 Blatchford Products Limited Prosthetic ankle joint mechanism
US20090299480A1 (en) * 2007-01-05 2009-12-03 Victhom Human Bionics Inc. Joint Actuation Mechanism for a Prosthetic and/or Orthotic Device Having a Compliant Transmission
US11007072B2 (en) 2007-01-05 2021-05-18 Victhom Laboratory Inc. Leg orthotic device
US8211042B2 (en) 2007-01-05 2012-07-03 Victom Human Bionics Inc. High torque active mechanism for orthotic and/or prosthetic devices
US20100160844A1 (en) * 2007-01-05 2010-06-24 Benoit Gilbert High Torque Active Mechanism for Orthotic and/or Prosthetic Devices
US8435309B2 (en) 2007-01-05 2013-05-07 Victhom Human Bionics Joint actuation mechanism for a prosthetic and/or orthotic device having a compliant transmission
US9066817B2 (en) 2007-01-05 2015-06-30 Victhom Human Bionics Inc. High torque active mechanism for orthotic and/or prosthetic devices
US9526635B2 (en) 2007-01-05 2016-12-27 Victhom Laboratory Inc. Actuated leg orthotics or prosthetics for amputees
US9808357B2 (en) 2007-01-19 2017-11-07 Victhom Laboratory Inc. Reactive layer control system for prosthetic and orthotic devices
US11607326B2 (en) 2007-01-19 2023-03-21 Victhom Laboratory Inc. Reactive layer control system for prosthetic devices
US10405996B2 (en) 2007-01-19 2019-09-10 Victhom Laboratory Inc. Reactive layer control system for prosthetic and orthotic devices
US20100280629A1 (en) * 2007-11-08 2010-11-04 Advensys, Llc Neuromorphic controlled powered orthotic and prosthetic system
US8790282B2 (en) 2007-11-08 2014-07-29 Advensys, Llc Neuromorphic controlled powered orthotic and prosthetic system
US8628585B2 (en) 2007-12-14 2014-01-14 Blatchford Products Limited Lower limb prosthesis
US11185460B2 (en) 2007-12-26 2021-11-30 Rex Bionics Limited Self contained powered exoskeleton walker for a disabled user
RU2473323C2 (en) * 2008-02-07 2013-01-27 Отто Бок Хелскеа Гмбх Orthopedic part of foot and method of artificial foot control
EP2649968A2 (en) * 2008-02-07 2013-10-16 Otto Bock HealthCare GmbH Method for controlling an orthopaedic foot component and orthopaedic foot component
EP2649968A3 (en) * 2008-02-07 2014-03-12 Otto Bock HealthCare GmbH Method for controlling an orthopaedic foot component and orthopaedic foot component
US8728171B2 (en) 2008-02-07 2014-05-20 Otto Bock Healthcare Gmbh Orthopedic foot part
US8298294B2 (en) 2008-02-07 2012-10-30 Otto Bock Healthcare Gmbh Method for controlling an orthopedic foot
EP2087859A1 (en) * 2008-02-07 2009-08-12 Otto Bock HealthCare GmbH Orthopaedic foot component and method for controlling an artificial foot
CN101569567A (en) * 2008-02-07 2009-11-04 奥托·博克保健有限公司 Orthopaedic foot component and method for controlling an artificial foot
US10299943B2 (en) 2008-03-24 2019-05-28 össur hf Transfemoral prosthetic systems and methods for operating the same
US20110224803A1 (en) * 2008-04-21 2011-09-15 Vanderbilt University Powered leg prosthesis and control methodologies for obtaining near normal gait
US9180025B2 (en) 2008-04-21 2015-11-10 Vanderbilt University Powered leg prosthesis and control methodologies for obtaining near normal gait
US20090265018A1 (en) * 2008-04-21 2009-10-22 Vanderbilt University Powered leg prosthesis and control methodologies for obtaining near normal gait
US8652218B2 (en) * 2008-04-21 2014-02-18 Vanderbilt University Powered leg prosthesis and control methodologies for obtaining near normal gait
US8986396B2 (en) 2008-04-21 2015-03-24 Vanderbilt University Powered leg prosthesis and control methodologies for obtaining near normal gait
US10639169B2 (en) 2008-04-21 2020-05-05 Vanderbilt University Powered leg prosthesis and control methodologies for obtaining near normal gait
US9289315B2 (en) 2008-04-21 2016-03-22 Vanderbilt University Powered leg prosthesis and control methodologies for obtaining near normal gait
US8894592B2 (en) 2008-05-20 2014-11-25 University of California at Berkekey Device and method for decreasing oxygen consumption of a person during steady walking by use of a load-carrying exoskeleton
US8945028B2 (en) 2008-05-20 2015-02-03 Ekso Bionics, Inc. Device and method for decreasing energy consumption of a person by use of a lower extremity exoskeleton
US20100094185A1 (en) * 2008-05-20 2010-04-15 University Of California At Berkeley Device and Method for Decreasing Oxygen Consumption of a Person During Steady Walking by Use of a Load-Carrying Exoskeleton
US9610208B2 (en) 2008-05-20 2017-04-04 Ekso Bionics, Inc. Device and method for decreasing energy consumption of a person by use of a lower extremity exoskeleton
US20090292369A1 (en) * 2008-05-20 2009-11-26 Berkeley Bionics Device and Method for Decreasing Energy Consumption of a Person by Use of a Lower Extremity Exoskeleton
US8231688B2 (en) 2008-06-16 2012-07-31 Berkeley Bionics Semi-actuated transfemoral prosthetic knee
US9351855B2 (en) 2008-06-16 2016-05-31 Ekso Bionics, Inc. Powered lower extremity orthotic and method of operation
US20100023133A1 (en) * 2008-06-16 2010-01-28 Berkeley Bionics Semi-actuated transfemoral prosthetic knee
US10105244B2 (en) 2008-09-04 2018-10-23 Bionx Medical Technologies, Inc. Hybrid terrain-adaptive lower-extremity systems
US20100174385A1 (en) * 2008-09-04 2010-07-08 Iwalk, Inc. Hybrid Terrain-Adaptive Lower-Extremity Systems
US20230380995A1 (en) * 2008-09-04 2023-11-30 Otto Bock Healthcare Lp Implementing a stand-up sequence using a lower-extremity prosthesis or orthosis
US9351856B2 (en) 2008-09-04 2016-05-31 Iwalk, Inc. Hybrid terrain-adaptive lower-extremity systems
US20100179668A1 (en) * 2008-09-04 2010-07-15 Iwalk, Inc. Hybrid Terrain-Adaptive Lower-Extremity Systems
US11701244B2 (en) * 2008-09-04 2023-07-18 Otto Bock Healthcare Lp Implementing a stand-up sequence using a lower-extremity prosthesis or orthosis
US9345592B2 (en) 2008-09-04 2016-05-24 Bionx Medical Technologies, Inc. Hybrid terrain-adaptive lower-extremity systems
US8419804B2 (en) 2008-09-04 2013-04-16 Iwalk, Inc. Hybrid terrain-adaptive lower-extremity systems
US20100113980A1 (en) * 2008-09-04 2010-05-06 Iwalk, Inc. Hybrid Terrain-Adaptive Lower-Extremity Systems
US20110082566A1 (en) * 2008-09-04 2011-04-07 Herr Hugh M Implementing a stand-up sequence using a lower-extremity prosthesis or orthosis
US9554922B2 (en) 2008-09-04 2017-01-31 Bionx Medical Technologies, Inc. Hybrid terrain-adaptive lower-extremity systems
US10070974B2 (en) 2008-09-04 2018-09-11 Bionx Medical Technologies, Inc. Hybrid terrain-adaptive lower-extremity systems
US9211201B2 (en) 2008-09-04 2015-12-15 Iwalk, Inc. Hybrid terrain-adaptive lower-extremity systems
US20140081420A1 (en) * 2008-09-04 2014-03-20 Iwalk, Inc. Implementing a stand-up sequence using a lower-extremity prosthesis or orthosis
US8900325B2 (en) 2008-09-04 2014-12-02 Iwalk, Inc. Hybrid terrain-adaptive lower-extremity systems
US10285828B2 (en) * 2008-09-04 2019-05-14 Bionx Medical Technologies, Inc. Implementing a stand-up sequence using a lower-extremity prosthesis or orthosis
EP3219295A1 (en) * 2008-09-04 2017-09-20 Iwalk, Inc. Hybrid terrain-adaptive lower-extremity systems
US20100174384A1 (en) * 2008-09-04 2010-07-08 Iwalk, Inc. Hybrid terrain-adaptive lower-extremity systems
DE102008058604A1 (en) * 2008-11-20 2010-05-27 Friedrich-Schiller-Universität Jena For Natural muscle's movement behavior simulation device for e.g. robot arm, has mechanical energy source arranged parallel to damping member, where damping member regulates force delivered by device to load
US20140088730A1 (en) * 2009-04-13 2014-03-27 U.S. Department Of Veterans Affairs Ankle-Foot Prosthesis for Automatic Adaptation to Sloped Walking Surfaces
US10105243B2 (en) 2009-04-13 2018-10-23 U.S. Department Of Veterans Affairs Ankle-foot prosthesis for automatic adaptation to sloped walking surfaces
US9549827B2 (en) * 2009-04-13 2017-01-24 U.S. Department Of Veterans Affairs Ankle-foot prosthesis for automatic adaptation to sloped walking surfaces
US10376388B2 (en) 2009-04-13 2019-08-13 The United States Government As Represented By The Department Of Veterans Affairs Ankle-foot prosthesis for automatic adaptation to sloped walking surfaces
US20120153875A1 (en) * 2009-06-22 2012-06-21 Brian Glaister Controllable transverse rotation adaptor
US8598815B2 (en) * 2009-06-22 2013-12-03 University Of Washington Through Its Center For Commercialization Controllable transverse rotation adaptor
US10406002B2 (en) 2010-04-05 2019-09-10 Bionx Medical Technologies, Inc. Controlling torque in a prosthesis or orthosis based on a deflection of series elastic element
US9693883B2 (en) 2010-04-05 2017-07-04 Bionx Medical Technologies, Inc. Controlling power in a prosthesis or orthosis based on predicted walking speed or surrogate for same
US8480760B2 (en) 2010-04-12 2013-07-09 Northwestern University Passive ankle-foot prosthesis and orthosis capable of automatic adaptation to sloped walking surfaces and method of use
US11020250B2 (en) 2010-09-29 2021-06-01 Össur Iceland Ehf Prosthetic and orthotic devices and methods and systems for controlling the same
US9925071B2 (en) 2010-09-29 2018-03-27 össur hf Prosthetic and orthotic devices and methods and systems for controlling the same
US8915968B2 (en) 2010-09-29 2014-12-23 össur hf Prosthetic and orthotic devices and methods and systems for controlling the same
US9839552B2 (en) 2011-01-10 2017-12-12 Bionx Medical Technologies, Inc. Powered joint orthosis
US10537449B2 (en) 2011-01-12 2020-01-21 Bionx Medical Technologies, Inc. Controlling powered human augmentation devices
US8696764B2 (en) 2011-01-20 2014-04-15 Northwestern University Further improvements to ankle-foot prosthesis and orthosis capable of automatic adaptation to sloped walking surfaces
US9687377B2 (en) 2011-01-21 2017-06-27 Bionx Medical Technologies, Inc. Terrain adaptive powered joint orthosis
US9872782B2 (en) 2011-03-11 2018-01-23 Bionx Medical Technologies, Inc. Biomimetic joint actuators
US9060883B2 (en) 2011-03-11 2015-06-23 Iwalk, Inc. Biomimetic joint actuators
US9060884B2 (en) 2011-05-03 2015-06-23 Victhom Human Bionics Inc. Impedance simulating motion controller for orthotic and prosthetic applications
US10251762B2 (en) 2011-05-03 2019-04-09 Victhom Laboratory Inc. Impedance simulating motion controller for orthotic and prosthetic applications
US11185429B2 (en) 2011-05-03 2021-11-30 Victhom Laboratory Inc. Impedance simulating motion controller for orthotic and prosthetic applications
US20130046218A1 (en) * 2011-08-15 2013-02-21 North Carolina State University Apparatus and clutch for using controlled storage and release of mechanical energy to aid locomotion
US9492302B2 (en) * 2011-08-15 2016-11-15 North Carolina State University Apparatus and clutch for using controlled storage and release of mechanical energy to aid locomotion
US9222468B2 (en) 2011-09-01 2015-12-29 Bionic Power Inc. Methods and apparatus for control of biomechanical energy harvesting
US8736087B2 (en) 2011-09-01 2014-05-27 Bionic Power Inc. Methods and apparatus for control of biomechanical energy harvesting
US9724210B2 (en) 2011-09-06 2017-08-08 össur hf Prosthetic and orthotic devices having magnetorheological elastomer spring with controllable stiffness
US9078734B2 (en) 2011-09-06 2015-07-14 össur hf Prosthetic and orthotic devices having magnetorheological elastomer spring with controllable stiffness
US10010434B2 (en) 2011-09-06 2018-07-03 Össur Iceland Ehf Prosthetic and orthotic devices having magnetorheological elastomer spring with controllable stiffness
US10758377B2 (en) 2011-09-26 2020-09-01 Össur Iceland Ehf Frictionless vertical suspension mechanism for prosthetic feet
US11478364B2 (en) 2011-09-26 2022-10-25 Össur Iceland Ehf Frictionless vertical suspension mechanism for prosthetic feet
WO2013049080A1 (en) * 2011-09-26 2013-04-04 össur hf Frictionless vertical suspension mechanism for prosthetic feet
US9028559B2 (en) 2011-09-26 2015-05-12 össur hf Frictionless vertical suspension mechanism for prosthetic feet
US9999523B2 (en) 2011-09-26 2018-06-19 össur hf Frictionless vertical suspension mechanism for prosthetic feet
US9737419B2 (en) 2011-11-02 2017-08-22 Bionx Medical Technologies, Inc. Biomimetic transfemoral prosthesis
US10575970B2 (en) 2011-11-11 2020-03-03 Össur Iceland Ehf Robotic device and method of using a parallel mechanism
US10543109B2 (en) 2011-11-11 2020-01-28 Össur Iceland Ehf Prosthetic device and method with compliant linking member and actuating linking member
US9032635B2 (en) 2011-12-15 2015-05-19 Massachusetts Institute Of Technology Physiological measurement device or wearable device interface simulator and method of use
US9017419B1 (en) 2012-03-09 2015-04-28 össur hf Linear actuator
US9895240B2 (en) 2012-03-29 2018-02-20 Ösur hf Powered prosthetic hip joint
US10940027B2 (en) 2012-03-29 2021-03-09 Össur Iceland Ehf Powered prosthetic hip joint
US9221177B2 (en) 2012-04-18 2015-12-29 Massachusetts Institute Of Technology Neuromuscular model-based sensing and control paradigm for a robotic leg
US9975249B2 (en) 2012-04-18 2018-05-22 Massachusetts Institute Of Technology Neuromuscular model-based sensing and control paradigm for a robotic leg
US10531965B2 (en) 2012-06-12 2020-01-14 Bionx Medical Technologies, Inc. Prosthetic, orthotic or exoskeleton device
CN102700648A (en) * 2012-06-14 2012-10-03 西北工业大学 Adaptive deformation foot of kangaroo-simulated hopping robot
CN102745274A (en) * 2012-06-28 2012-10-24 东南大学 Bouncing device of robot and bouncing method thereof
US10342680B2 (en) * 2012-08-01 2019-07-09 Ossur Iceland Ehf Prosthetic ankle module
US9439786B2 (en) 2012-08-01 2016-09-13 össur hf Prosthetic ankle module
US20160287412A1 (en) * 2012-08-01 2016-10-06 Ossur Iceland Ehf Prosthetic ankle module
CN103587606A (en) * 2012-08-14 2014-02-19 中国科学院合肥物质科学研究院 Foot vibration attenuation method of double-foot running robot
US10016290B2 (en) 2012-09-17 2018-07-10 Vanderbilt University Walking controller for powered ankle prostheses
US11129734B2 (en) 2012-09-21 2021-09-28 U.S. Department Of Veterans Affairs Ankle-foot prosthesis for automatic adaptation to sloped walking surfaces
CN103029126A (en) * 2012-12-21 2013-04-10 北京大学 Flexibly controllable joint driver
US9561118B2 (en) 2013-02-26 2017-02-07 össur hf Prosthetic foot with enhanced stability and elastic energy return
US11285024B2 (en) 2013-02-26 2022-03-29 Össur Iceland Ehf Prosthetic foot with enhanced stability and elastic energy return
US10369019B2 (en) 2013-02-26 2019-08-06 Ossur Hf Prosthetic foot with enhanced stability and elastic energy return
US10695197B2 (en) 2013-03-14 2020-06-30 Össur Iceland Ehf Prosthetic ankle and method of controlling same based on weight-shifting
US11576795B2 (en) 2013-03-14 2023-02-14 össur hf Prosthetic ankle and method of controlling same based on decreased loads
US9707104B2 (en) 2013-03-14 2017-07-18 össur hf Prosthetic ankle and method of controlling same based on adaptation to speed
US10918558B2 (en) 2013-08-10 2021-02-16 Imobilities Incorporated Portable human exoskeleton system
US11446166B2 (en) 2014-04-11 2022-09-20 Össur Iceland Ehf Prosthetic foot with removable flexible members
US10390974B2 (en) 2014-04-11 2019-08-27 össur hf. Prosthetic foot with removable flexible members
CN106255477A (en) * 2014-04-30 2016-12-21 奥托·博克保健有限公司 Artificial limb
US10441440B2 (en) 2014-04-30 2019-10-15 Ottobock Se & Co. Kgaa Prosthesis with a passive release device
US10610384B2 (en) 2015-03-04 2020-04-07 Freedom Innovations, Llc Lower limb prosthesis
US11786383B2 (en) 2015-03-04 2023-10-17 Ottobock Prosthetics, Llc Lower limb prosthesis
US11707365B2 (en) 2015-09-18 2023-07-25 Össur Iceland Ehf Magnetic locking mechanism for prosthetic or orthotic joints
US10722386B2 (en) 2015-09-18 2020-07-28 Össur Iceland Ehf Magnetic locking mechanism for prosthetic or orthotic joints
US9949850B2 (en) 2015-09-18 2018-04-24 Össur Iceland Ehf Magnetic locking mechanism for prosthetic or orthotic joints
US9994269B1 (en) * 2015-11-12 2018-06-12 Schaft Inc. Rotatable extension for robot foot
US10639784B2 (en) * 2015-12-24 2020-05-05 Safran Electronics & Defense Exoskeleton structure that provides force assistance to the user
US10661435B2 (en) 2015-12-24 2020-05-26 Safran Electronics & Defense Foot portion for an exoskeleton structure
JP2019509185A (en) * 2015-12-24 2019-04-04 サフラン・エレクトロニクス・アンド・デファンス Foot module for exoskeleton structure
FR3046053A1 (en) * 2015-12-24 2017-06-30 Sagem Defense Securite FOOT MODULE FOR AN EXOSQUELET STRUCTURE
US20190344431A1 (en) * 2015-12-24 2019-11-14 Safran Electronics & Defense Exoskeleton structure that provides force assistance to the user
WO2017109198A1 (en) * 2015-12-24 2017-06-29 Safran Electronics & Defense Foot portion for an exoskeleton structure
US10195099B2 (en) 2016-01-11 2019-02-05 Bionic Power Inc. Method and system for intermittently assisting body motion
CN107595555A (en) * 2017-08-29 2018-01-19 中国科学院深圳先进技术研究院 A kind of exoskeleton robot and its foot support section
CN107933735A (en) * 2017-11-27 2018-04-20 华中科技大学 A kind of biped robot's foot mechanism with main passive compliance
RU2712576C2 (en) * 2018-06-28 2020-01-29 Федеральное государственное бюджетное образовательное учреждение высшего образования "Калмыцкий государственный университет имени Б.Б. Городовикова" Device for facilitating walking using frame from high-carbon plastic
CN108583726A (en) * 2018-07-18 2018-09-28 吉林大学 A kind of more husky machinery foot of bionical tendon bone collaboration Coupled Rigid-flexible
CN110786975A (en) * 2018-08-03 2020-02-14 先健科技(深圳)有限公司 Handle assembly of conveyor, conveyor and conveying system
CN109199653A (en) * 2018-10-09 2019-01-15 广东兰湾智能科技有限公司 Artificial limb foot
US20220017165A1 (en) * 2018-12-03 2022-01-20 Sony Group Corporation Robot leg structure
CN109625119A (en) * 2019-02-21 2019-04-16 北京钢铁侠科技有限公司 It is a kind of to put sufficient peace and convert lower limb structure completely
CN114506401A (en) * 2022-04-20 2022-05-17 之江实验室 Humanoid robot with variable length and vibration reduction foot thereof
CN115214818A (en) * 2022-07-29 2022-10-21 哈尔滨工业大学 Humanoid foot plate system with integral structure for biped robot
CN115339543A (en) * 2022-09-21 2022-11-15 吉林大学 Bionic mechanical leg with buffering, energy-saving and stabilizing functions and suitable for slope ground

Also Published As

Publication number Publication date
US20130110256A1 (en) 2013-05-02
US20190321201A1 (en) 2019-10-24
US20140257519A1 (en) 2014-09-11
US10342681B2 (en) 2019-07-09
US20120209405A1 (en) 2012-08-16
US9339397B2 (en) 2016-05-17
US11273060B2 (en) 2022-03-15
US20160338857A1 (en) 2016-11-24
US8734528B2 (en) 2014-05-27

Similar Documents

Publication Publication Date Title
US11273060B2 (en) Artificial ankle-foot system with spring, variable-damping, and series-elastic actuator components
US10588759B2 (en) Artificial human limbs and joints employing actuators, springs and variable-damper elements
US10792169B2 (en) Hybrid terrain-adaptive lower-extremity systems
US11529247B2 (en) Hybrid terrain—adaptive lower-extremity systems
US8870967B2 (en) Artificial joints using agonist-antagonist actuators
US10285828B2 (en) Implementing a stand-up sequence using a lower-extremity prosthesis or orthosis
US20160158032A1 (en) Quasi-Active Prosthetic Joint System
Bartlett et al. Design of a power-asymmetric actuator for a transtibial prosthesis
Sugar et al. Ankle prosthetics and orthotics: Trends from passive to active systems
LeMoyne et al. Transtibial powered prostheses: Single and dual actuator configurations

Legal Events

Date Code Title Description
AS Assignment

Owner name: MASSACHUSETTS INSTITUTE OF TECHNOLOGY, MASSACHUSET

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HERR, HUGH M.;AU, SAMUEL K;PALUSKA, DANIEL JOSEPH;AND OTHERS;REEL/FRAME:018474/0062;SIGNING DATES FROM 20060907 TO 20061030

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION