US20070048249A1 - Hydrophilized bactericidal polymers - Google Patents

Hydrophilized bactericidal polymers Download PDF

Info

Publication number
US20070048249A1
US20070048249A1 US11/509,915 US50991506A US2007048249A1 US 20070048249 A1 US20070048249 A1 US 20070048249A1 US 50991506 A US50991506 A US 50991506A US 2007048249 A1 US2007048249 A1 US 2007048249A1
Authority
US
United States
Prior art keywords
comonomer
bactericidal
medium
polymeric composition
treated medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/509,915
Inventor
Jeffrey Youngblood
Philippe Sellenet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Purdue Research Foundation
Original Assignee
Purdue Research Foundation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Purdue Research Foundation filed Critical Purdue Research Foundation
Priority to US11/509,915 priority Critical patent/US20070048249A1/en
Assigned to PURDUE RESEARCH FOUNDATION reassignment PURDUE RESEARCH FOUNDATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: YOUNGBLOOD, JEFFREY P., SELLENET, PHILIPPE
Publication of US20070048249A1 publication Critical patent/US20070048249A1/en
Priority to US12/549,004 priority patent/US8343473B2/en
Priority to US13/682,159 priority patent/US20130079481A1/en
Priority to US13/748,290 priority patent/US20130136783A1/en
Priority to US14/087,188 priority patent/US20140080977A1/en
Priority to US14/837,900 priority patent/US20160053038A1/en
Priority to US15/163,285 priority patent/US11134684B2/en
Priority to US17/115,709 priority patent/US11459415B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/28Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety
    • C08F220/285Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety and containing a polyether chain in the alcohol moiety
    • C08F220/286Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety and containing a polyether chain in the alcohol moiety and containing polyethylene oxide in the alcohol moiety, e.g. methoxy polyethylene glycol (meth)acrylate
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/34Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one nitrogen atom as the only ring hetero atom
    • A01N43/40Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one nitrogen atom as the only ring hetero atom six-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F226/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen
    • C08F226/06Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen by a heterocyclic ring containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • C12Q1/18Testing for antimicrobial activity of a material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/28Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety
    • C08F220/281Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety and containing only one oxygen, e.g. furfuryl (meth)acrylate or 2-methoxyethyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F226/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen
    • C08F226/06Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen by a heterocyclic ring containing nitrogen
    • C08F226/08N-Vinyl-pyrrolidine

Definitions

  • bactericidal properties can be strongly influenced by whether the polycation or a composition containing the polycation is soluble. In some instances the bactericidal property is most apparent in an insoluble form, which is not particularly amenable to killing microorganisms. In other instances the bactericidal activity is lost when the polycation is cross-linked or otherwise rendered insoluble.
  • Application of bactericidal polymers may also be limited by their use in brushes, their insolubility in solution, or by their unfavorable biocompatibility characteristics.
  • bactericidal formulations possessing having improved bactericidal, hydrophilicity/wettability and biocompatibility characteristics suitable for rendering materials or areas bactericidal and for killing airborne and/or waterborne microorganisms.
  • the present invention is directed to polymeric compositions providing improved bactericidal, hydrophilicity/wettability, and biocompatibility characteristics.
  • the present invention provides a bactericidal composition, including a hydrophilic first comonomer polymerized to a second comonomer to form a polymeric composition, where the polymeric composition is more soluble and/or more bactericidal in an aqueous solution than either of the first comonomer or the second comonomer alone.
  • the present invention provides a quaternized bactericidal composition, in which poly(4-vinylpyridine) (PVP) is copolymerized with hydroxyethylmethacrylate (HEMA) or poly(ethyleneglycol) methacrylate (PEGMA).
  • PVP poly(4-vinylpyridine)
  • HEMA hydroxyethylmethacrylate
  • PEGMA poly(ethyleneglycol) methacrylate
  • the present invention provides a method for rendering a material or area bactericidal in which a bactericidal composition of the present invention is applied to a medium or device in an amount suitable for killing or significantly reducing the number of bacteria in or on the treated medium or device compared to an untreated medium or device.
  • the present invention provides a method for killing or significantly reducing the number of bacteria on a material or area treated with a bactericidal composition of the present invention.
  • the present invention provides a method for identifying a polymer having suitable bactericidal activity in which a hydrophilic first comonomer is polymerized to a second comonomer to form a bactericidal polymeric composition, where the polymeric composition is determined to have suitable bactericidal activity if the polymeric composition has a higher bactericidal activity in an aqueous solution than either of the hydrophilic first comonomer or second comonomer alone (or treated similarly as the polymeric composition).
  • compositions include their use in catheters, needles, sutures, stents and other implantable medical devices, contact lenses, root canal fillers, wound dressings, burn dressings, tissue culture plates, and the like.
  • FIG. 1 is a schematic showing (A) the radical polymerization of P(VP-co-HEMA) and (B) quaternization of P(VP-co-HEMA)-HB.
  • FIG. 2 is graph of bactericidal results for surface testing of P(VP-co-HEMA)-HB.
  • FIG. 3 is a graph of advancing and receding contact angles for P(VP-co-HEMA).
  • FIG. 4 is a graph of bactericidal results for testing of P(VP-co-PEGMA1100).
  • the term “monomer” refers to a relatively simple compound, usually containing carbon and of low molecular weight, which can react to form a polymer by combining with itself or with other monomers.
  • polymer and “polymeric composition” are used interchangeably to denote a product of a polymerization reaction, and are inclusive of homopolymers, copolymers, terpolymers, etc.
  • polymerization and “polymerization reaction” are inclusive of homopolymerizations, copolymerizations, terpolymerizations, and the like, and include all types of copolymerizations such as random, graft, block, and the like.
  • the polymers in the bactericidal composition on may be prepared in accordance with any suitable polymerization process, including slurry polymerization, solution polymerization, emulsion polymerization, gas phase polymerization, and high pressure polymerization and the like.
  • nonomer refers to a monomer, copolymer, or polymer which can copolymerize with itself or with at least one different monomer, copolymer, or polymer in a copolymerization reaction, the result of which can be a polymer, copolymer or polymeric composition.
  • copolymer refers to a polymer which can copolymerize with itself or with at least one different comonomer, polymer, or copolymer in a polymerization reaction or it can refer to a product resulting from a polymerization reaction of two comonomers.
  • the copolymer may be identified or named in terms of the monomer(s) from which the copolymer is produced.
  • corresponding comonomer “corresponding copolymer,” and “corresponding polymer” are used to relate comonomers, copolymers, or polymers, respectively, sharing a common set of monomeric units between e.g. distinct polymeric compositions.
  • the common comonomers, copolymers, or polymer need not be identical in terms of the molecular weight(s) or molar ratio(s) of commonly shared monomeric units.
  • corresponding molecular weight is used to relate molecular weight(s) of corresponding comonomers, copolymers, or polymers, respectively, in distinct polymeric compositions in which the common comonomers, copolymers, or polymers differ from one another by molecular weight(s) or commonly shared monomeric units within the corresponding comonomer, copolymer or polymer.
  • corresponding molar ratio is used to relate molar ratio(s) of corresponding comonomers, copolymers, or polymers, respectively, in distinct polymeric compositions in which the common comonomers, copolymers, or polymers differ from one another by molar ratio(s) or commonly shared monomeric units within the corresponding comonomer, copolymer or polymer.
  • bactericidal is used to interchangeably denote any one of the following: (i) a comonomer, polymer, copolymer, polymeric composition suitably formulated to kill, reduce the growth, number, viability and/or metabolic activity of one or more bacteria; (ii) a material, substance, medium, device, or area treated with a bactericidal comonomer, polymer, copolymer, polymeric composition so as to kill, reduce the growth, number, viability and/or metabolic activity of one or more bacteria.
  • aqueous solution refers to a solution in which water is the solvent.
  • a treatable medium refers to a treatable material, treatable substance, treatable device, or treatable area in which “treatable” refers to a capacity to be rendered bactericidal by a bactericidal comonomer, polymer, or copolymer.
  • a treatable medium may have a defined physical form, but may include liquid (e.g., water, aqueous solution) or gaseous materials (e.g., air) also.
  • the phrases “significantly reducing the growth of bacteria” and “significantly reducing bacterial growth” are used interchangeably to denote one or more of the following conditions, including (i) a condition in which the metabolic activity of at least 50% of the microorganisms of a particular type exposed to a treated medium is terminated or reduced compared to bacteria of that particular type exposed to an untreated medium over a fixed period of time; (ii) a condition where there is 50% or less of one or more bacterial types present in and/or on a treated medium compared to the number of bacteria exposed to an untreated medium; and/or (iii) a condition resulting when one or more types of bacteria adhere 50% less to a treated medium compared to an untreated medium.
  • the degree of bacterial growth reduction with respective to conditions (i)-(iii) may range from 50% to greater 99.9%.
  • significantly bactericidal denotes a comonomer, polymer, copolymer, composition, polymeric composition, material, substance or treated area in which the bactericidal comonomer, polymer, copolymer, composition, polymeric composition, material, substance or treated area is suitably formulated to significantly reduce the growth, number, viability and/or metabolic activity of bacteria by at least 50%.
  • biocompatible refers to a material that is substantially non-toxic in the in vivo environment of its intended use, and that is not substantially rejected by the patient's physiological system (i.e., is non-antigenic). This can be gauged by the ability of a material to pass the biocompatibility tests set forth in International Standards Organization (ISO) Standard No. 10993 and/or the U.S. Pharmacopeia (USP) 23 and/or the U.S. Food and Drug Administration (FDA) blue book memorandum No.
  • ISO International Standards Organization
  • USP U.S. Pharmacopeia
  • FDA U.S. Food and Drug Administration
  • G95-1 entitled “Use of International Standard ISO-10993, Biological Evaluation of Medical Devices Part-1: Evaluation and Testing.” Typically, these tests measure a material's toxicity, infectivity, pyrogenicity, irritation potential, reactivity, hemolytic activity, carcinogenicity and/or immunogenicity.
  • a biocompatible structure or material when introduced into a majority of patients, will not cause a significantly adverse, long-lived or escalating biological reaction or response, and is distinguished from a mild, transient inflammation which typically accompanies surgery or implantation of foreign objects into a living organism.
  • a bactericidal polymeric composition of the present invention includes a hydrophilic first comonomer polymerized to a second comonomer, where the polymeric composition is more soluble and/or more bactericidal in an aqueous solution than either of the first comonomer or the second comonomer alone.
  • the polymeric composition of the present invention were found to have unexpected hydophilizing and/or wettabiliy properties providing enhanced bactericidal activity compared to either comonomer alone.
  • the second comonomer may be inherently bactericidal or it may be rendered bactericidal after a subsequent step (e.g., polymerization) and/or chemical modification (e.g., quaternization) of alkyl groups.
  • a subsequent step e.g., polymerization
  • chemical modification e.g., quaternization
  • the polymeric composition is further modified by chemical modification, such as quaternization, preferably, the polymeric composition is more hydrophilic and/or bactericidal than a similarly modified (by e.g., quaternization) second comonomer alone.
  • Bactericidal comonomers or those capable of being rendered bactericidal are copolymerized to a hydrophilizing comonomer.
  • Exemplary second comonomers for polymerization to a hydrophilizing comonomer may include a variety of vinyl monomers capable of free radical polymerization and/or quaternization. Accordingly, these comonomers may include, but are not limited to, vinyl amines, such as N,N-dimethylvinylamine; allyl amines; vinyl esters, such as vinyl acetate; alkyl acrylates; and vinyl chloride.
  • a pyridinium-type comonomer such as vinyl pyridine or 4-vinylpyridine, is quaternized after polymerization to a hydrophilizing comonomer.
  • the second comonomer composition may include or be chemically linked to a suitable bactericidal moiety, including, but not limited to polycationic species, polycationic derivatives or combinations therefrom.
  • Polycationic species may contain two or more quaternary ammonium groups with a molecular weight ranging from several hundred Daltons to a few hundred thousand Daltons.
  • the quaternary ammonium groups may be part of a ring or they may be acyclic. Examples include but are not limited to: polyionenes, poly(diallyldimethylammonium chloride), dimethylamine-epichlorohydrin copolymers and imidazole-epichlorohydrin copolymers.
  • Suitable bactericidal comonomers for use in the present invention may include the quaternary ammonium group-containing polymers disclosed in U.S. Pat. No. 4,482,680, which are incorporated by reference herein.
  • Polycationic species may contain two or more amine groups.
  • the amine groups can be primary, secondary, tertiary, or mixtures thereof.
  • the amine groups may be part of a ring or they may be acyclic. Examples include but are not limited to: polyethyleneimines, polypropyleneimines, polyvinylamines, polyallylamines, polydiallylamines, polyamidoamines, polyaminoalkylmethacrylates, polylysines, and mixtures thereof.
  • the polycationic species may also be a modified polyamine with at least one amine group substituted with at least one other functional group. Examples include ethoxylated and alkoxylated polyamines and alkylated polyamines. Other suitable bactericidal comonomers or those that may be rendered bactericidal may be identified and/or used in accordance with the applications and objectives set forth in the specification and claims.
  • Quaternization may be carried out using alkylating agents, including but not limited to alkyl halides (such as hexyl bromide), alkyl sulfonates, alkyl mesylates, alkyl tosylates, or other alkylating agents possessing a suitable leaving group. Quaternization reduces self-polymerization of the bactericidal comonomer upon polymerization with the hydrophilizing comonomer. Quaternization may confer increased bactericidal activity and is typically carried out after polymerization, since quaternized polymers are unpolymerizable.
  • alkylating agents including but not limited to alkyl halides (such as hexyl bromide), alkyl sulfonates, alkyl mesylates, alkyl tosylates, or other alkylating agents possessing a suitable leaving group. Quaternization reduces self-polymerization of the bactericidal comono
  • Quaternized alkyl groups and/or other cationic chains may be attracted to and/or promote interaction and penetration negatively charged bacterial cell walls on account of their lipophilic nature.
  • Alkyl chain lengths of quaternizing agents and overall hydrophilic/lipophilic balance may affect bactericidal activity of the polymeric compositions of the present invention. Accordingly, these variables may be modified to optimize or improve bactericidal activity of the polymeric compositions.
  • Hydrophilizing comonomers of the present invention confer increased wettability or hydrophilicity to one or more surfaces of the polymeric composition in aqueous solutions, including water.
  • the polymeric composition is more wettable than a bactericidal comonomer or a comonomer rendered bactericidal by quaternization, such as poly(4-vinylpyridine).
  • Suitable hydrophilizing monomers or copolymers may include, but are not limited to, ethylene glycol (ethylyene oxide); polyethylene glycol derivatives, including poly(ethyleneglycol) methacrylate (PEGMA), poly(ethyleneglycol) acrylate, and vinyl polyethylene glycol; vinyl acetate; poly(vinyl alcohol); vinyl pyrrolidone and poly(vinyl pyrrolidone); vinyl pyrrolidinone and poly(vinyl pyrrolininone); vinyl oxazoline and poly(vinyl oxazoline); vinyl foramide and poly(vinyl foramide); hydroxyalkyl acrylates and hydroxyalkyl methacrylates, such as hydroxyethyl methacrylate (HEMA) and hydroxyethyl acrylate; methacrylamide; acrylamide and methacrylamide based monomers, such as acrylamide, N,N-dimethyl acrylamide, N-ethyl acrylamide, N-isoprop
  • Hydrophilic polymeric compositions and methods for hydrophilizing polymeric materials, including the use of high energy treatments, are disclosed in U.S. Pat. Appl. No. 20050008839, the contents of which are expressly incorporated by reference in their entirety, also may be used.
  • the hydrophilizing comonomer is biocompatible.
  • Standard assays may be utilized to evaluate biocompatibility, including but not limited to viability/cytotoxicity mammalian cell assays and the like.
  • Representative hydrophilizing comonomers or copolymers include hydroxyethylmethacrylate (HEMA) and poly(ethyleneglycol) methacrylate (PEGMA).
  • HEMA is widely used in biomedical applications and devices, most prominently soft contact lenses. HEMA, with 37.8% water per weight, is typical of hydrogels. Preferably, the molar ratio of HEMA comonomer in the polymeric composition is equal to or greater than about 90 to 1.
  • PEGMA is a biocompatible polymer which possesses several important properties, such as good solubility in both organic and aqueous media, low toxicity, immunogenicity and nonbiodegradability.
  • the molar molecular weight of PEGMA comonomer in the bactericidal composition is equal to or greater than 300, more preferably between about 300 and about 2000, including but not limited to 1100.
  • the molar ratio of PEGMA comonomer in the polymeric composition is equal to or less than about 10 to 1; equal to or less than about 25 to 1; equal to or greater than about 75 to 1; equal to or greater than about 95 to 1; equal to or greater than about 99 to 1.
  • Hydrophilicity or wettability can be evaluated by any suitable methodology known in the art, including contact angle testing and tensionometry testing.
  • Contact angle testing of polymeric compositions may be carried out by dip coating microscope slides in solutions with copolymer dissolved in chloroform and methanol and obtaining contact angle measurements using e.g., a Ramé-Hart Advanced Goniometer.
  • Contact angles may be characterized as advancing or receding, the difference being whether or not the angle is taken when moving onto a dry surface or moving off a wet surface. Advancing angles may be used for surface energy determinations, receding angles for characterizing other surface characteristics.
  • the disclosed bactericidal compositions are suitably formulated to significantly reduce the growth, number, viability and/or metabolic activity of bacteria.
  • a bactericidal composition may be formulated to significantly reduce bacterial growth from a treated medium by a factor of at least 50%. Further, a bactericidal composition may be formulated to significantly reduce bacterial growth from a treated medium by at least 60%, by at least 70%, by at least 80%, by at least 90%, by at least 95%, by at least 99%, or by at least 99.9%.
  • the bactericidal composition may be applied as a coating to at least one portion or surface of a medium or medical device, including but not limited to catheters, needles, stents, and other implantable medical devices.
  • a medium or medical device including but not limited to catheters, needles, stents, and other implantable medical devices.
  • Various methods may be used to apply the comonomers or bactericidal polymers as a coating to the surface of the medical device. Suitable methods for applying coatings may include, but are not limited to the methods disclosed in U.S. Pat. No. 5,509,899 and U.S. Pat. No. 6,221,425, the contents of which are expressly incorporated by reference in their entirety.
  • Comonomers may be applied to a surface and subsequently polymerized.
  • the bactericidal polymer composition may be applied directly to the surface of the medical device.
  • one or more comonomers or bactericidal polymers may be combined with water and sprayed onto the medical device.
  • the medical device may be dipped into a solution containing the bactericidal polymer.
  • the comonomer or bactericidal polymer may be present in the solution in an amount from about 50% to about 98% by weight, particularly from about 70% to about 90% by weight, and applied to the surface of the medical device.
  • the viscosity of the monomeric or polymeric solution can be adjusted depending upon the particular application and circumstances. In general, when dipping the medical device into the solution, higher viscosities will cause more of the bactericidal polymer to remain on the surface of the device. Thus, if thicker coatings are desired, the viscosity can be increased. The viscosity of the solution can be increased by minimizing the amount of water in the solution. Additionally, thickeners, such as a polyacrylamide, can be added to the solution. The viscosity of the solution may also be increased by partially polymerizing the monomer.
  • the present invention provides methods for rendering a material or area bactericidal. In a further example, the present invention provides a method for killing or significantly reducing the number of bacteria on a material or area treated with a bactericidal composition of the present invention.
  • a bactericidal composition of the present invention is applied to a medium or medical device in an amount sufficient to kill or significantly reducing the number of bacteria in or on the treated medium compared to an untreated medium.
  • a bactericidal composition according to the present invention is applied to a medium or medical device in an amount sufficient to kill at least one bacterium or significantly reduce bacterial growth compared to an untreated medium.
  • the bacteria may be Gram-positive or Gram-negative.
  • the bactericidal composition may be is included in or coated onto a catheter, stent, implantable medical device, contact lens, root canal filler, or wound dressing.
  • the treated medium may include natural or synthetic materials, implantable devices, or bodily surfaces.
  • the treated medium may be contact with an aqueous environment, such as water or the inside of a patient or other vertebrate organism.
  • the treated medium may be contact with air or air and/or air borne bacteria in an external environment or an enclosed bodily organ, such as lung.
  • Biocompatibility may be evaluated by any suitable methodology known in the art, including biocompatibility tests set forth in International Standards Organization (ISO) Standard No. 10993 and/or the U.S. Pharmacopeia (USP) 23 and/or the U.S. Food and Drug Administration (FDA) blue book memorandum No. G95-1, entitled “Use of International Standard ISO-10993, Biological Evaluation of Medical Devices Part-1: Evaluation and Testing.”
  • ISO International Standards Organization
  • USP U.S. Pharmacopeia
  • FDA Food and Drug Administration
  • G95-1 entitled “Use of International Standard ISO-10993, Biological Evaluation of Medical Devices Part-1: Evaluation and Testing.”
  • any of the viability/cytotoxicity assays known to those of ordinary skill in the art may be used to evaluate lack of toxicity for normal human cells.
  • the present invention provides a method for identifying a polymer having suitable bactericidal activity.
  • a hydrophilizing first comonomer may be polymerized to a second comonomer and a bactericidal polymeric composition is formed.
  • the bactericidal polymeric composition may be applied to a medium to form a first treated medium and the medium may be separately treated with the second comonomer used in the first treated medium.
  • the first treated medium and the second treated medium may be separately contacted with a plurality of bacteria. Whether the first treated medium is more bactericidal than the second treated medium may be determined.
  • a first polymeric composition and a second polymeric composition differing by molecular weight with regard to one or more corresponding comonomers may be separately applied to a medium and tested to identify a polymeric composition having improved bactericidal activity.
  • a first polymeric composition and a second polymeric composition differing by molar ratio of their corresponding comonomers may be varied and may be separately applied to a medium and tested to identify a polymeric composition having improved bactericidal activity.
  • a given polymeric composition may be rendered bactericidal by quaternization after polymerizing the hydrophilizing first comonomer to the second comonomer. Accordingly, the quaternized polymeric composition would be deemed suitable for use in a bactericidal composition if a medium containing or treated with the quaternized polymeric composition is more hydrophilic and/or bactericidal than the same medium containing or treated with the quaternized second comonomer alone.
  • Bactericidal activity may be evaluated using any suitable testing methodology used in the art, including, but not limited to, luminescence, optical density, or microscopic evaluation of bacterial growth or viability of coated and/or stained microscopic slides, plates or cultures.
  • Copolymers possessing suitable bactericidal properties and a suitable hydrophilicity/biocompatibility profile were obtained using a quaternized polymeric composition synthesized from 4-vinylpyridine and a biocompatible, hydrophilic comonomer, such as hydroxyethylmethacrylate (HEMA) or poly(ethyleneglycol) methacrylate.
  • HEMA hydroxyethylmethacrylate
  • poly(ethyleneglycol) methacrylate such as poly(ethyleneglycol) methacrylate.
  • Copolymers were synthesized by radical copolymerization with AIBN as initiator. The reactants were stirred at 70° C. for 48 hours under flowing N 2 to prevent oxidation. As the monomer contents were varied, the AIBN proportion was held constant to a massic ratio VP+PEGMA:AIBN equal to 22:1. To investigate the effects of hydrophilization, seven different compositions of VP with PEGMA300, PEGMA 1100 and HEMA were synthesized, containing a molar percentage of VP of 10, 25, 50, 75, 90, 95 and 99.
  • Copolymers were quaternized with a 3-fold excess of hexyl bromide (HB) in a mixture of chloroform and methanol by reflux for 48 hr. They were precipitated in hexane, recovered and dried under vacuum.
  • HB hexyl bromide
  • VP, HEMA and PEGMA were purchased from Sigma Aldrich Co. (Milwaukee, USA). To avoid polymerization through heat or light, these monomers were inhibited with hydroquinone (HQ), 4-Methoxyphenol (MEHQ), and 2,6-di-tert-butyl-4-methylphenol (BHT) respectively.
  • HQ hydroquinone
  • MEHQ 4-Methoxyphenol
  • BHT 2,6-di-tert-butyl-4-methylphenol
  • the HQ and MEHQ inhibitors were removed by means of trap to trap while BHT was purified from PEGMA by column chromatography on silica gel (70-270 mesh) stationary phase.
  • Bactericidal tests were performed with a small quantity of the bacteria Escherichia coli O157:H7 in which the lux gene was added for luminescence, which provides a measure of metabolic growth or activity.
  • a sample was taken from a culture and placed in contact with the coated slides, by means of a pipette. The intensity of the bioluminescence was recorded as a function of time for two hours with a photomultiplier tube. Reduced bioluminescence correlates with enhanced bactericidal activity.
  • P(VP-co-HEMA)-HB 95/5 and P(VP-co-HEMA)-HB 90/10 exhibited enhanced bactericidal activity compared to PVP-HB alone.
  • the luminescence recorded for P(VP-co-HEMA)-HB 99/1 is similar to, but slightly less than that observed for PVP-HB alone. Accordingly, this copolymer, having one molar percent HEMA, displays properties similar to PVP-HB alone. However, a slide coated with P(VP-co-HEMA)-HB 99/1 kills bacteria faster than one coated with PVP-HB.
  • bactericidal activity in the polymer facilitates enhances bacterial killing, in part because of the water-loving nature of bacteria: a hydrophilic growth medium is better able to support uptake and killing by a hydrophilized bactericidal polymer compared to an unhydrophilized bactericidal polymer. Moreover, it is believed that the bactericidal polymers are electrostatically attracted to the bacterial cell wall whereby lipophilic side chains insert into the bacterial cell membrane, disrupting it so that holes form therein.
  • P(VP-co-HEMA)-HB 90/10 the wettability effect is particularly evident.
  • This polymer exhibits a more optimal bactericidal activity, reflected in the fact that all bacteria were killed in 30 minutes. This further illustrates that that a slide coated with P(VP-co-HEMA)-HB 90/10 copolymer is significantly more bactericidal than pure PVP-HB.
  • P(VP-co-PEGMA1100)-HB 25/75 and 10/90 displayed a surprisingly high antibacterial activity. Although counterintuitive, this fact can have several explanations.
  • the molecular weight of P(VP-co-PEGMA1100)-HB 10/90 is much higher than other copolymer formulations of this system. This could increase bactericidal activity, because the copolymer possesses more alkyl tails to traverse the bacterial membranes.
  • the enhanced water wettability of the polymer may enable the polymer to better dissolve in and/or surround the bacteria in an aqueous medium, so as to facilitate more efficient bacterial killing.
  • PPEGMA300 (graph not shown) alone does not kill bacteria and actually improves growth due to its biocompatibility and hydrophilicity.
  • the improved biocompatibility and hydrophilicity is carried over into the P(VP-co-PEGMA300) copolymers with ratios from 0/100 to 50/50 thereby improving bacterial growth.
  • ratios greater 50/50 bactericidal activity was observed.
  • the optimum balance between spreading and VP content was found to be 75/25, in which half the bacteria were killed in the first 15 minutes. Overall, the bactericidal behavior of the PEGMA300 based polymers were reduced compared to PEGMA1100 based polymers.
  • PEGMA1100 has a significantly larger PEG size than PEGMA300. A smaller fraction of PEGMA 1100 is thus necessary to hydrophilize P(VP-co-PEGMA 1100). However, even for some similarly hydrophilized polymers, the PEGMA 1100 materials exhibit superior bactericidal activity, possibly due to the enhanced protein resistance imparted by longer PEG chains in the polymers.
  • the enhanced bactericidal activity exhibited by the HEMA and PEGMA copolymers appears to result from enhanced wettability in aqueous solutions, allowing the polymer to better surround and/or gain access to the bacteria, so as to enhance bacterial killing.
  • FIG. 5 shows that an exemplary bactericidal PEGMA 1100 copolymer is non-toxic to mammalian cells.
  • Corneal epithelial cells were seeded onto polystyrene culture plates in phosphobuffered saline solution (PBS; pH 7.2) at a density of 3,500 cells/cm 2 for 24 hrs at 37° C. The cells were co-incubated for 4 hrs. with quaternized P(VP-co-PEGMA 1100) copolymer or PPEGMA control polymer in PBS at a concentration of 2.5 mg/ml, along with a PBS negative control media.
  • PBS phosphobuffered saline solution
  • Live cells were distinguished from dead cells using a fluorescence-based LIVE/DEAD viability/cytotoxicity assay system (Molecular Probes, Invitrogen Detection Technologies).
  • the assay system includes two probes, calcein AM, a fluorogenic esterase substrate producing a green fluorescent product in live cells having intracellular esterase activity, and ethidium homodimer-1, a high-affinity, red fluorescent dye only able to pass through and stain the compromised membranes of dead cells.
  • FIG. 5 plots the fraction of dead epithelial cells as a function of added bactericidal polymer or polymer control. As shown in FIG. 5 , treatment of epithelial cells with the bactericidal P(VP-co-PEGMA) polymer did not exhibit a statistically significant level of epithelial cell killing over that of the PEGMA polymer or PBS negative controls.

Abstract

A bactericidal polymeric composition includes a hydrophilic first comonomer copolymerized to a second comonomer to produce a polymeric composition that is more hydrophilic or more bactericidal in an aqueous solution than either of the comonomers alone. Methods for identifying bactericidal polymers, methods for rendering materials bactericidal, and methods for using bactericidal compositions to kill or reduce bacterial growth are also described. Applications for the inventive compositions include their use in catheters, stents, medical devices, contact lenses; root canal fillers; and/or wound dressings.

Description

  • This application claims the benefit of priority under 35 U.S.C. § 119(e) to U.S. Provisional Application No. 60/711,234, filed Aug. 24, 2005, which is hereby incorporated by reference in its entirety.
  • BACKGROUND
  • There is an ever-growing demand for materials suitable for killing harmful microorganisms. Such materials could be used to coat surfaces of common objects touched by people to render them antiseptic so as to prevent transmission of bacterial infections or to facilitate the killing of microorganisms in solution.
  • Various polycations are known to have bactericidal properties. However, their bactericidal properties can be strongly influenced by whether the polycation or a composition containing the polycation is soluble. In some instances the bactericidal property is most apparent in an insoluble form, which is not particularly amenable to killing microorganisms. In other instances the bactericidal activity is lost when the polycation is cross-linked or otherwise rendered insoluble. Application of bactericidal polymers may also be limited by their use in brushes, their insolubility in solution, or by their unfavorable biocompatibility characteristics. Accordingly, there is a need for bactericidal formulations possessing having improved bactericidal, hydrophilicity/wettability and biocompatibility characteristics suitable for rendering materials or areas bactericidal and for killing airborne and/or waterborne microorganisms.
  • BRIEF SUMMARY
  • The present invention is directed to polymeric compositions providing improved bactericidal, hydrophilicity/wettability, and biocompatibility characteristics. In particular, the present invention provides a bactericidal composition, including a hydrophilic first comonomer polymerized to a second comonomer to form a polymeric composition, where the polymeric composition is more soluble and/or more bactericidal in an aqueous solution than either of the first comonomer or the second comonomer alone.
  • In a particular example, the present invention provides a quaternized bactericidal composition, in which poly(4-vinylpyridine) (PVP) is copolymerized with hydroxyethylmethacrylate (HEMA) or poly(ethyleneglycol) methacrylate (PEGMA).
  • In another example, the present invention provides a method for rendering a material or area bactericidal in which a bactericidal composition of the present invention is applied to a medium or device in an amount suitable for killing or significantly reducing the number of bacteria in or on the treated medium or device compared to an untreated medium or device.
  • In another example, the present invention provides a method for killing or significantly reducing the number of bacteria on a material or area treated with a bactericidal composition of the present invention.
  • In a further example, the present invention provides a method for identifying a polymer having suitable bactericidal activity in which a hydrophilic first comonomer is polymerized to a second comonomer to form a bactericidal polymeric composition, where the polymeric composition is determined to have suitable bactericidal activity if the polymeric composition has a higher bactericidal activity in an aqueous solution than either of the hydrophilic first comonomer or second comonomer alone (or treated similarly as the polymeric composition).
  • Applications for the inventive compositions include their use in catheters, needles, sutures, stents and other implantable medical devices, contact lenses, root canal fillers, wound dressings, burn dressings, tissue culture plates, and the like.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a schematic showing (A) the radical polymerization of P(VP-co-HEMA) and (B) quaternization of P(VP-co-HEMA)-HB.
  • FIG. 2 is graph of bactericidal results for surface testing of P(VP-co-HEMA)-HB.
  • FIG. 3 is a graph of advancing and receding contact angles for P(VP-co-HEMA).
  • FIG. 4 is a graph of bactericidal results for testing of P(VP-co-PEGMA1100).
  • DETAILED DESCRIPTION
  • In order to provide a more clear and consistent understanding of the specification and claims, the following definitions are provided. Unless defined otherwise, all technical and scientific terms have the same meaning as is commonly understood by one of skill in the art to which this invention belongs.
  • The term “monomer” refers to a relatively simple compound, usually containing carbon and of low molecular weight, which can react to form a polymer by combining with itself or with other monomers.
  • The terms “polymer” and “polymeric composition” are used interchangeably to denote a product of a polymerization reaction, and are inclusive of homopolymers, copolymers, terpolymers, etc.
  • The terms “polymerization” and “polymerization reaction” are inclusive of homopolymerizations, copolymerizations, terpolymerizations, and the like, and include all types of copolymerizations such as random, graft, block, and the like. In general, the polymers in the bactericidal composition on may be prepared in accordance with any suitable polymerization process, including slurry polymerization, solution polymerization, emulsion polymerization, gas phase polymerization, and high pressure polymerization and the like.
  • The term “comonomer” refers to a monomer, copolymer, or polymer which can copolymerize with itself or with at least one different monomer, copolymer, or polymer in a copolymerization reaction, the result of which can be a polymer, copolymer or polymeric composition.
  • The term “copolymer” refers to a polymer which can copolymerize with itself or with at least one different comonomer, polymer, or copolymer in a polymerization reaction or it can refer to a product resulting from a polymerization reaction of two comonomers. The copolymer may be identified or named in terms of the monomer(s) from which the copolymer is produced.
  • The terms “corresponding comonomer,” “corresponding copolymer,” and “corresponding polymer” are used to relate comonomers, copolymers, or polymers, respectively, sharing a common set of monomeric units between e.g. distinct polymeric compositions. The common comonomers, copolymers, or polymer need not be identical in terms of the molecular weight(s) or molar ratio(s) of commonly shared monomeric units.
  • The phrase “corresponding molecular weight” is used to relate molecular weight(s) of corresponding comonomers, copolymers, or polymers, respectively, in distinct polymeric compositions in which the common comonomers, copolymers, or polymers differ from one another by molecular weight(s) or commonly shared monomeric units within the corresponding comonomer, copolymer or polymer.
  • The phrase “corresponding molar ratio” is used to relate molar ratio(s) of corresponding comonomers, copolymers, or polymers, respectively, in distinct polymeric compositions in which the common comonomers, copolymers, or polymers differ from one another by molar ratio(s) or commonly shared monomeric units within the corresponding comonomer, copolymer or polymer.
  • The term “bactericidal” is used to interchangeably denote any one of the following: (i) a comonomer, polymer, copolymer, polymeric composition suitably formulated to kill, reduce the growth, number, viability and/or metabolic activity of one or more bacteria; (ii) a material, substance, medium, device, or area treated with a bactericidal comonomer, polymer, copolymer, polymeric composition so as to kill, reduce the growth, number, viability and/or metabolic activity of one or more bacteria.
  • The term “aqueous solution” refers to a solution in which water is the solvent.
  • The term “medium” refers to a treatable material, treatable substance, treatable device, or treatable area in which “treatable” refers to a capacity to be rendered bactericidal by a bactericidal comonomer, polymer, or copolymer. A treatable medium may have a defined physical form, but may include liquid (e.g., water, aqueous solution) or gaseous materials (e.g., air) also.
  • The phrases “significantly reducing the growth of bacteria” and “significantly reducing bacterial growth” are used interchangeably to denote one or more of the following conditions, including (i) a condition in which the metabolic activity of at least 50% of the microorganisms of a particular type exposed to a treated medium is terminated or reduced compared to bacteria of that particular type exposed to an untreated medium over a fixed period of time; (ii) a condition where there is 50% or less of one or more bacterial types present in and/or on a treated medium compared to the number of bacteria exposed to an untreated medium; and/or (iii) a condition resulting when one or more types of bacteria adhere 50% less to a treated medium compared to an untreated medium. The degree of bacterial growth reduction with respective to conditions (i)-(iii) may range from 50% to greater 99.9%.
  • The phrase “significantly bactericidal” denotes a comonomer, polymer, copolymer, composition, polymeric composition, material, substance or treated area in which the bactericidal comonomer, polymer, copolymer, composition, polymeric composition, material, substance or treated area is suitably formulated to significantly reduce the growth, number, viability and/or metabolic activity of bacteria by at least 50%.
  • The term “biocompatible” refers to a material that is substantially non-toxic in the in vivo environment of its intended use, and that is not substantially rejected by the patient's physiological system (i.e., is non-antigenic). This can be gauged by the ability of a material to pass the biocompatibility tests set forth in International Standards Organization (ISO) Standard No. 10993 and/or the U.S. Pharmacopeia (USP) 23 and/or the U.S. Food and Drug Administration (FDA) blue book memorandum No. G95-1, entitled “Use of International Standard ISO-10993, Biological Evaluation of Medical Devices Part-1: Evaluation and Testing.” Typically, these tests measure a material's toxicity, infectivity, pyrogenicity, irritation potential, reactivity, hemolytic activity, carcinogenicity and/or immunogenicity. A biocompatible structure or material, when introduced into a majority of patients, will not cause a significantly adverse, long-lived or escalating biological reaction or response, and is distinguished from a mild, transient inflammation which typically accompanies surgery or implantation of foreign objects into a living organism.
  • A bactericidal polymeric composition of the present invention includes a hydrophilic first comonomer polymerized to a second comonomer, where the polymeric composition is more soluble and/or more bactericidal in an aqueous solution than either of the first comonomer or the second comonomer alone. The polymeric composition of the present invention were found to have unexpected hydophilizing and/or wettabiliy properties providing enhanced bactericidal activity compared to either comonomer alone.
  • The second comonomer may be inherently bactericidal or it may be rendered bactericidal after a subsequent step (e.g., polymerization) and/or chemical modification (e.g., quaternization) of alkyl groups. Where the polymeric composition is further modified by chemical modification, such as quaternization, preferably, the polymeric composition is more hydrophilic and/or bactericidal than a similarly modified (by e.g., quaternization) second comonomer alone.
  • Bactericidal comonomers or those capable of being rendered bactericidal are copolymerized to a hydrophilizing comonomer. Exemplary second comonomers for polymerization to a hydrophilizing comonomer may include a variety of vinyl monomers capable of free radical polymerization and/or quaternization. Accordingly, these comonomers may include, but are not limited to, vinyl amines, such as N,N-dimethylvinylamine; allyl amines; vinyl esters, such as vinyl acetate; alkyl acrylates; and vinyl chloride. In a preferred embodiment, a pyridinium-type comonomer, such as vinyl pyridine or 4-vinylpyridine, is quaternized after polymerization to a hydrophilizing comonomer.
  • The second comonomer composition may include or be chemically linked to a suitable bactericidal moiety, including, but not limited to polycationic species, polycationic derivatives or combinations therefrom. Polycationic species may contain two or more quaternary ammonium groups with a molecular weight ranging from several hundred Daltons to a few hundred thousand Daltons. The quaternary ammonium groups may be part of a ring or they may be acyclic. Examples include but are not limited to: polyionenes, poly(diallyldimethylammonium chloride), dimethylamine-epichlorohydrin copolymers and imidazole-epichlorohydrin copolymers. Suitable bactericidal comonomers for use in the present invention may include the quaternary ammonium group-containing polymers disclosed in U.S. Pat. No. 4,482,680, which are incorporated by reference herein.
  • Polycationic species may contain two or more amine groups. The amine groups can be primary, secondary, tertiary, or mixtures thereof. The amine groups may be part of a ring or they may be acyclic. Examples include but are not limited to: polyethyleneimines, polypropyleneimines, polyvinylamines, polyallylamines, polydiallylamines, polyamidoamines, polyaminoalkylmethacrylates, polylysines, and mixtures thereof.
  • The polycationic species may also be a modified polyamine with at least one amine group substituted with at least one other functional group. Examples include ethoxylated and alkoxylated polyamines and alkylated polyamines. Other suitable bactericidal comonomers or those that may be rendered bactericidal may be identified and/or used in accordance with the applications and objectives set forth in the specification and claims.
  • Quaternization may be carried out using alkylating agents, including but not limited to alkyl halides (such as hexyl bromide), alkyl sulfonates, alkyl mesylates, alkyl tosylates, or other alkylating agents possessing a suitable leaving group. Quaternization reduces self-polymerization of the bactericidal comonomer upon polymerization with the hydrophilizing comonomer. Quaternization may confer increased bactericidal activity and is typically carried out after polymerization, since quaternized polymers are unpolymerizable.
  • Quaternized alkyl groups and/or other cationic chains may be attracted to and/or promote interaction and penetration negatively charged bacterial cell walls on account of their lipophilic nature. Alkyl chain lengths of quaternizing agents and overall hydrophilic/lipophilic balance may affect bactericidal activity of the polymeric compositions of the present invention. Accordingly, these variables may be modified to optimize or improve bactericidal activity of the polymeric compositions.
  • Hydrophilizing comonomers of the present invention confer increased wettability or hydrophilicity to one or more surfaces of the polymeric composition in aqueous solutions, including water. Preferably, the polymeric composition is more wettable than a bactericidal comonomer or a comonomer rendered bactericidal by quaternization, such as poly(4-vinylpyridine). Suitable hydrophilizing monomers or copolymers, may include, but are not limited to, ethylene glycol (ethylyene oxide); polyethylene glycol derivatives, including poly(ethyleneglycol) methacrylate (PEGMA), poly(ethyleneglycol) acrylate, and vinyl polyethylene glycol; vinyl acetate; poly(vinyl alcohol); vinyl pyrrolidone and poly(vinyl pyrrolidone); vinyl pyrrolidinone and poly(vinyl pyrrolininone); vinyl oxazoline and poly(vinyl oxazoline); vinyl foramide and poly(vinyl foramide); hydroxyalkyl acrylates and hydroxyalkyl methacrylates, such as hydroxyethyl methacrylate (HEMA) and hydroxyethyl acrylate; methacrylamide; acrylamide and methacrylamide based monomers, such as acrylamide, N,N-dimethyl acrylamide, N-ethyl acrylamide, N-isopropyl acrylamide, and hydroxymethyl acrylamide; monomers containing one or more of the following functional groups: hydroxy, amino, ammonium, ether, carboxylate, amide, and sulfoamide groups; and combinations or copolymers thereof. polyvinyloxazolines
  • Hydrophilic polymeric compositions and methods for hydrophilizing polymeric materials, including the use of high energy treatments, are disclosed in U.S. Pat. Appl. No. 20050008839, the contents of which are expressly incorporated by reference in their entirety, also may be used.
  • Preferably, the hydrophilizing comonomer is biocompatible. Standard assays may be utilized to evaluate biocompatibility, including but not limited to viability/cytotoxicity mammalian cell assays and the like. Representative hydrophilizing comonomers or copolymers include hydroxyethylmethacrylate (HEMA) and poly(ethyleneglycol) methacrylate (PEGMA).
  • HEMA is widely used in biomedical applications and devices, most prominently soft contact lenses. HEMA, with 37.8% water per weight, is typical of hydrogels. Preferably, the molar ratio of HEMA comonomer in the polymeric composition is equal to or greater than about 90 to 1.
  • PEGMA is a biocompatible polymer which possesses several important properties, such as good solubility in both organic and aqueous media, low toxicity, immunogenicity and nonbiodegradability.
  • Preferably, the molar molecular weight of PEGMA comonomer in the bactericidal composition is equal to or greater than 300, more preferably between about 300 and about 2000, including but not limited to 1100. Preferably, the molar ratio of PEGMA comonomer in the polymeric composition is equal to or less than about 10 to 1; equal to or less than about 25 to 1; equal to or greater than about 75 to 1; equal to or greater than about 95 to 1; equal to or greater than about 99 to 1.
  • Hydrophilicity or wettability can be evaluated by any suitable methodology known in the art, including contact angle testing and tensionometry testing. Contact angle testing of polymeric compositions may be carried out by dip coating microscope slides in solutions with copolymer dissolved in chloroform and methanol and obtaining contact angle measurements using e.g., a Ramé-Hart Advanced Goniometer. Contact angles may be characterized as advancing or receding, the difference being whether or not the angle is taken when moving onto a dry surface or moving off a wet surface. Advancing angles may be used for surface energy determinations, receding angles for characterizing other surface characteristics.
  • Polymeric bactericidal compositions may be rendered hydrophilic by engineering them to have advancing contact angles with water of less than or equal to about 90 degrees, preferably less than or equal to about 45 degrees, more preferably less than or equal to about 30 degrees, less than or equal to 15 degrees after 30 seconds of spreading.
  • The disclosed bactericidal compositions are suitably formulated to significantly reduce the growth, number, viability and/or metabolic activity of bacteria. A bactericidal composition may be formulated to significantly reduce bacterial growth from a treated medium by a factor of at least 50%. Further, a bactericidal composition may be formulated to significantly reduce bacterial growth from a treated medium by at least 60%, by at least 70%, by at least 80%, by at least 90%, by at least 95%, by at least 99%, or by at least 99.9%.
  • The bactericidal composition may be applied as a coating to at least one portion or surface of a medium or medical device, including but not limited to catheters, needles, stents, and other implantable medical devices. Various methods may be used to apply the comonomers or bactericidal polymers as a coating to the surface of the medical device. Suitable methods for applying coatings may include, but are not limited to the methods disclosed in U.S. Pat. No. 5,509,899 and U.S. Pat. No. 6,221,425, the contents of which are expressly incorporated by reference in their entirety.
  • Comonomers may be applied to a surface and subsequently polymerized. Alternatively, the bactericidal polymer composition may be applied directly to the surface of the medical device. In particular, one or more comonomers or bactericidal polymers may be combined with water and sprayed onto the medical device. Alternatively, the medical device may be dipped into a solution containing the bactericidal polymer. The comonomer or bactericidal polymer may be present in the solution in an amount from about 50% to about 98% by weight, particularly from about 70% to about 90% by weight, and applied to the surface of the medical device.
  • The viscosity of the monomeric or polymeric solution can be adjusted depending upon the particular application and circumstances. In general, when dipping the medical device into the solution, higher viscosities will cause more of the bactericidal polymer to remain on the surface of the device. Thus, if thicker coatings are desired, the viscosity can be increased. The viscosity of the solution can be increased by minimizing the amount of water in the solution. Additionally, thickeners, such as a polyacrylamide, can be added to the solution. The viscosity of the solution may also be increased by partially polymerizing the monomer.
  • In another example, the present invention provides methods for rendering a material or area bactericidal. In a further example, the present invention provides a method for killing or significantly reducing the number of bacteria on a material or area treated with a bactericidal composition of the present invention.
  • Accordingly, in one example, a bactericidal composition of the present invention is applied to a medium or medical device in an amount sufficient to kill or significantly reducing the number of bacteria in or on the treated medium compared to an untreated medium. In a further example, a bactericidal composition according to the present invention is applied to a medium or medical device in an amount sufficient to kill at least one bacterium or significantly reduce bacterial growth compared to an untreated medium.
  • The bacteria may be Gram-positive or Gram-negative. The bactericidal composition may be is included in or coated onto a catheter, stent, implantable medical device, contact lens, root canal filler, or wound dressing. The treated medium may include natural or synthetic materials, implantable devices, or bodily surfaces. The treated medium may be contact with an aqueous environment, such as water or the inside of a patient or other vertebrate organism. Alternatively, the treated medium may be contact with air or air and/or air borne bacteria in an external environment or an enclosed bodily organ, such as lung.
  • Biocompatibility may be evaluated by any suitable methodology known in the art, including biocompatibility tests set forth in International Standards Organization (ISO) Standard No. 10993 and/or the U.S. Pharmacopeia (USP) 23 and/or the U.S. Food and Drug Administration (FDA) blue book memorandum No. G95-1, entitled “Use of International Standard ISO-10993, Biological Evaluation of Medical Devices Part-1: Evaluation and Testing.” In addition, any of the viability/cytotoxicity assays known to those of ordinary skill in the art may be used to evaluate lack of toxicity for normal human cells.
  • In a further example, the present invention provides a method for identifying a polymer having suitable bactericidal activity. In this method, a hydrophilizing first comonomer may be polymerized to a second comonomer and a bactericidal polymeric composition is formed. The bactericidal polymeric composition may be applied to a medium to form a first treated medium and the medium may be separately treated with the second comonomer used in the first treated medium. The first treated medium and the second treated medium may be separately contacted with a plurality of bacteria. Whether the first treated medium is more bactericidal than the second treated medium may be determined.
  • In a further example, a first polymeric composition and a second polymeric composition differing by molecular weight with regard to one or more corresponding comonomers may be separately applied to a medium and tested to identify a polymeric composition having improved bactericidal activity.
  • Alternatively, a first polymeric composition and a second polymeric composition differing by molar ratio of their corresponding comonomers may be varied and may be separately applied to a medium and tested to identify a polymeric composition having improved bactericidal activity.
  • In the above disclosed methods, a given polymeric composition may be rendered bactericidal by quaternization after polymerizing the hydrophilizing first comonomer to the second comonomer. Accordingly, the quaternized polymeric composition would be deemed suitable for use in a bactericidal composition if a medium containing or treated with the quaternized polymeric composition is more hydrophilic and/or bactericidal than the same medium containing or treated with the quaternized second comonomer alone.
  • Bactericidal activity may be evaluated using any suitable testing methodology used in the art, including, but not limited to, luminescence, optical density, or microscopic evaluation of bacterial growth or viability of coated and/or stained microscopic slides, plates or cultures.
  • The following examples illustrate features in accordance with the present invention, and are provided solely by way of illustration. They are not intended to limit the scope of the appended claims or their equivalents.
  • EXAMPLES
  • 1. Radical Polymerization and Quaternization. Copolymers possessing suitable bactericidal properties and a suitable hydrophilicity/biocompatibility profile were obtained using a quaternized polymeric composition synthesized from 4-vinylpyridine and a biocompatible, hydrophilic comonomer, such as hydroxyethylmethacrylate (HEMA) or poly(ethyleneglycol) methacrylate.
  • Copolymers were synthesized by radical copolymerization with AIBN as initiator. The reactants were stirred at 70° C. for 48 hours under flowing N2 to prevent oxidation. As the monomer contents were varied, the AIBN proportion was held constant to a massic ratio VP+PEGMA:AIBN equal to 22:1. To investigate the effects of hydrophilization, seven different compositions of VP with PEGMA300, PEGMA 1100 and HEMA were synthesized, containing a molar percentage of VP of 10, 25, 50, 75, 90, 95 and 99.
  • Copolymers were quaternized with a 3-fold excess of hexyl bromide (HB) in a mixture of chloroform and methanol by reflux for 48 hr. They were precipitated in hexane, recovered and dried under vacuum. A schematic of the radical polymerization and quaternization process can be seen in FIG. 1.
  • Synthesis of P(VP-co-HEMA), P(VP-co-PEGMA300) and P(VP-co-PEGMA 1100) was followed with FTIR and NMR. Spectroscopy showed that the synthesis was successful and that the quaternization went to near completion and that the resultant products were relatively pure after work-up.
  • VP, HEMA and PEGMA were purchased from Sigma Aldrich Co. (Milwaukee, USA). To avoid polymerization through heat or light, these monomers were inhibited with hydroquinone (HQ), 4-Methoxyphenol (MEHQ), and 2,6-di-tert-butyl-4-methylphenol (BHT) respectively. The HQ and MEHQ inhibitors were removed by means of trap to trap while BHT was purified from PEGMA by column chromatography on silica gel (70-270 mesh) stationary phase.
  • 2. Contact Angle and Bactericidal Testing. To evaluate wettability or hydrophilicity, contact angle tests were conducted by dip coating microscope slides in solutions with copolymer dissolved in chloroform and methanol. Contact angle measurements were obtained on a Ramé-Hart Advanced Goniometer.
  • Bactericidal tests were performed with a small quantity of the bacteria Escherichia coli O157:H7 in which the lux gene was added for luminescence, which provides a measure of metabolic growth or activity. A sample was taken from a culture and placed in contact with the coated slides, by means of a pipette. The intensity of the bioluminescence was recorded as a function of time for two hours with a photomultiplier tube. Reduced bioluminescence correlates with enhanced bactericidal activity.
  • 3. Bactericidal activity of P(VP-co-HEMA). The results of the bactericidal tests on quaternized copolymers of VP and HEMA are shown in FIG. 2. An initial increase of intensity is observed in the control, due to the fast growth of the bacteria, called blooming. After approximately 19 minutes, the intensity starts decreasing as the bacteria start to die. PVP-HB, known to kill bacteria, prevents blooming, as reflected by the fact that the intensity never increases by more than 1 percent. The intensity starts decreasing after only 7 minutes. Since this is much earlier than the control, the death of the bacteria can be attributed to the properties of the polymer. An uninterrupted blooming is observed for a slide coated with PHEMA, and the number of bacteria has quadrupled after two hours, following a lag-log behavior. This indicates that PHEMA by itself is not bactericidal.
  • P(VP-co-HEMA)-HB 95/5 and P(VP-co-HEMA)-HB 90/10 exhibited enhanced bactericidal activity compared to PVP-HB alone. The luminescence recorded for P(VP-co-HEMA)-HB 99/1, is similar to, but slightly less than that observed for PVP-HB alone. Accordingly, this copolymer, having one molar percent HEMA, displays properties similar to PVP-HB alone. However, a slide coated with P(VP-co-HEMA)-HB 99/1 kills bacteria faster than one coated with PVP-HB.
  • The wettability of dry, vitreous HEMA-based materials was studied by contact angle measurements. The results for both advancing and receding angles are given in FIG. 3. Contact angle measurements showed an increase in hydrophilicity provoked by the copolymerization. The surface energy was found to be minimal for P(VP-co-HEMA) at 90/10 and slightly higher for P(VP-co-HEMA)-HB 99/1. This corresponds to the bactericidal behavior of the polymers and suggests that the wettability plays a significant role in the polymer's effectiveness. Being a hydrogel monomer, HEMA hydrophilizes the copolymer.
  • Although not wishing to be bound by theory, it is believed that coupling hydrophilization to bactericidal activity in the polymer facilitates enhances bacterial killing, in part because of the water-loving nature of bacteria: a hydrophilic growth medium is better able to support uptake and killing by a hydrophilized bactericidal polymer compared to an unhydrophilized bactericidal polymer. Moreover, it is believed that the bactericidal polymers are electrostatically attracted to the bacterial cell wall whereby lipophilic side chains insert into the bacterial cell membrane, disrupting it so that holes form therein.
  • In P(VP-co-HEMA)-HB 90/10, the wettability effect is particularly evident. This polymer exhibits a more optimal bactericidal activity, reflected in the fact that all bacteria were killed in 30 minutes. This further illustrates that that a slide coated with P(VP-co-HEMA)-HB 90/10 copolymer is significantly more bactericidal than pure PVP-HB.
  • 4. Bactericidal activity of P(VP-co-PEGMA). The bacterial growth behavior for copolymers with PEGMA1100 can be seen in FIG. 4. Comonomer ratios of 90/10, 25/75, and 10/90 exhibited enhanced bactericidal activity compared to PVP-HB alone. Extremely high bactericidal activity was seen with ratios of 99/1, presumably due to the large fraction of VP and improved wettability from PEGMA1100. Copolymers with ratios ranging from 95/5 to 50/50 displayed bacterial results similar to PVP-HB.
  • P(VP-co-PEGMA1100)-HB 25/75 and 10/90 displayed a surprisingly high antibacterial activity. Although counterintuitive, this fact can have several explanations. The molecular weight of P(VP-co-PEGMA1100)-HB 10/90 is much higher than other copolymer formulations of this system. This could increase bactericidal activity, because the copolymer possesses more alkyl tails to traverse the bacterial membranes. The enhanced water wettability of the polymer may enable the polymer to better dissolve in and/or surround the bacteria in an aqueous medium, so as to facilitate more efficient bacterial killing.
  • PPEGMA300 (graph not shown) alone does not kill bacteria and actually improves growth due to its biocompatibility and hydrophilicity. The improved biocompatibility and hydrophilicity is carried over into the P(VP-co-PEGMA300) copolymers with ratios from 0/100 to 50/50 thereby improving bacterial growth. However, for ratios greater 50/50, bactericidal activity was observed. The optimum balance between spreading and VP content was found to be 75/25, in which half the bacteria were killed in the first 15 minutes. Overall, the bactericidal behavior of the PEGMA300 based polymers were reduced compared to PEGMA1100 based polymers.
  • PEGMA1100 has a significantly larger PEG size than PEGMA300. A smaller fraction of PEGMA 1100 is thus necessary to hydrophilize P(VP-co-PEGMA 1100). However, even for some similarly hydrophilized polymers, the PEGMA 1100 materials exhibit superior bactericidal activity, possibly due to the enhanced protein resistance imparted by longer PEG chains in the polymers.
  • The enhanced bactericidal activity exhibited by the HEMA and PEGMA copolymers appears to result from enhanced wettability in aqueous solutions, allowing the polymer to better surround and/or gain access to the bacteria, so as to enhance bacterial killing.
  • 5. Cytotoxity of P(VP-co-PEGMA). A viability/cytotoxicity assay may be used to evaluate biocompatibility of the bactericidal polymers for mammalian cells. In particular, FIG. 5 shows that an exemplary bactericidal PEGMA 1100 copolymer is non-toxic to mammalian cells. Corneal epithelial cells were seeded onto polystyrene culture plates in phosphobuffered saline solution (PBS; pH 7.2) at a density of 3,500 cells/cm2 for 24 hrs at 37° C. The cells were co-incubated for 4 hrs. with quaternized P(VP-co-PEGMA 1100) copolymer or PPEGMA control polymer in PBS at a concentration of 2.5 mg/ml, along with a PBS negative control media.
  • Live cells were distinguished from dead cells using a fluorescence-based LIVE/DEAD viability/cytotoxicity assay system (Molecular Probes, Invitrogen Detection Technologies). The assay system includes two probes, calcein AM, a fluorogenic esterase substrate producing a green fluorescent product in live cells having intracellular esterase activity, and ethidium homodimer-1, a high-affinity, red fluorescent dye only able to pass through and stain the compromised membranes of dead cells. FIG. 5 plots the fraction of dead epithelial cells as a function of added bactericidal polymer or polymer control. As shown in FIG. 5, treatment of epithelial cells with the bactericidal P(VP-co-PEGMA) polymer did not exhibit a statistically significant level of epithelial cell killing over that of the PEGMA polymer or PBS negative controls.
  • It is to be understood that the above-described polymers and methods for their use are merely representative embodiments illustrating the principles of this invention and that other variations in the polymers or methods, may be devised by those skilled in the art without departing from the spirit and scope of this invention. The foregoing detailed description and accompanying drawings have been provided solely by way of explanation and illustration, and are not intended to limit the scope of the appended claims. Many variations in the presently preferred embodiments illustrated herein will be apparent to one of ordinary skill in the art, and remain within the scope of the appended claims and their equivalents.

Claims (20)

1. A polymeric composition comprising:
a hydrophilic first comonomer polymerized to a second comonomer to form a polymeric composition, where the polymeric composition is more hydrophilic than either of the first comonomer or the second comonomer alone and/or where the polymeric composition is more bactericidal than either of the first comonomer or the second comonomer alone.
2. The composition of claim 1, where the hydrophilic first comonomer comprises hydroxyethylmethacrylate.
3. The composition of claim 1, where the hydrophilic first copolymer comprises poly(ethyleneglycol) methacrylate.
4. The composition of claim 1, where the second comonomer comprises polycationic species, polycationic derivatives or combinations therefrom.
5. The composition of claim 1, where the second comonomer comprises a plurality of quaternary ammonium groups.
6. The composition of claim 1, where the second comonomer comprises quaternized poly(4-vinylpyridine).
7. A method for killing bacteria or rendering a medium bactericidal comprising:
providing a polymeric composition comprising a hydrophilic first comonomer polymerized to a second comonomer, where the polymeric composition is more hydrophilic than either of the first comonomer or the second comonomer alone and/or where the polymeric composition is more bactericidal than either of the first comonomer or the second comonomer alone;
applying the polymeric composition to a medium to form a treated medium, where the polymeric composition is applied in an amount sufficient to kill at least one bacterium or significantly reduce bacterial growth in or on the treated medium compared to an untreated medium.
8. The method of claim 7, where the polymeric composition is applied as a coating to at least one surface of the medium.
9. The method of claim 7, where the treated medium is in contact with an aqueous environment.
10. The method of claim 7, where the treated medium is in contact with air.
11. The method of claim 7, where the treated medium is included in or coated onto a catheter, stent, implantable medical device, contact lens, root canal filler, or wound dressing.
12. The method of claim 7, further comprising the step of contacting the treated medium with bacteria, where the treated medium comprises the polymeric composition in an amount sufficient to kill at least one bacterium or significantly reduce bacterial growth in or on the treated medium compared to an untreated medium.
13. The method of claim 12, where the treated medium is formulated to kill or significantly reduce the growth of Gram-positive bacteria.
14. The method of claim 12, where the treated medium is suitably formulated to kill or significantly reduce the growth of Gram-negative bacteria.
15. A method of identifying a polymeric composition suitable for use in a bactericidal composition comprising:
a) providing a first comonomer, where the first comonomer is soluble in an aqueous solution;
b) providing a second comonomer, where the second comonomer is bactericidal or capable of being rendered bactericidal;
c) polymerizing the first comonomer in step (a) to the second comonomer in step (b) to form a polymeric composition;
d) treating or applying the polymeric composition in step (c) to a medium to form a first treated medium;
e) separately applying a comonomer from step (a) or step (b) to the medium of step (d) to form a second treated medium;
f) separately contacting the first treated medium and the second treated medium with a plurality of bacteria; and
g) determining whether the first treated medium is more bactericidal than the second treated medium, where the polymeric composition is suitable for use in a bactericidal composition if the first treated medium is more bactericidal than the second treated medium.
16. The method of claim 15, where each comonomer from step (a) and step (b) is separately applied to the medium of step (d) to form a second treated medium and a third treated medium, respectively, where the polymeric composition is suitable for use in a bactericidal composition if the first treated medium is more bactericidal than each of the second and third treated mediums.
17. The method of claim 15, where the molecular weight(s) of one or more more monomers in the first comonomer in the first polymeric composition of the first treated medium is modified compared to the corresponding molecular weight(s) of one or more monomers in a second polymeric composition of a fourth medium, such that the fourth treated medium is more bactericidal than the first treated medium.
18. The method of claim 15, where a molar ratio(s) of one or one or more monomers in the first comonomer in the first polymeric composition in a first treated medium is modified compared to the corresponding molar ratio(s) of one or more monomers in a second polymeric composition of a fourth medium, such that the fourth treated medium is more bactericidal than the first treated medium.
19. The method of claim 15, where the second comonomer is quaternized after the second comonomer is polymerized to the first comonomer.
20. The method of claim 15, where step (g) comprises a luminescence assay, optical density determination or microscopic determination.
US11/509,915 2005-08-24 2006-08-24 Hydrophilized bactericidal polymers Abandoned US20070048249A1 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
US11/509,915 US20070048249A1 (en) 2005-08-24 2006-08-24 Hydrophilized bactericidal polymers
US12/549,004 US8343473B2 (en) 2005-08-24 2009-08-27 Hydrophilized antimicrobial polymers
US13/682,159 US20130079481A1 (en) 2005-08-24 2012-11-20 Hydrophilized antimicrobial polymers
US13/748,290 US20130136783A1 (en) 2005-08-24 2013-01-23 Hydrophilized antimicrobial polymers
US14/087,188 US20140080977A1 (en) 2005-08-24 2013-11-22 Hydrophilized antimicrobial polymers
US14/837,900 US20160053038A1 (en) 2005-08-24 2015-08-27 Hydrophilized bactericidal polymers
US15/163,285 US11134684B2 (en) 2005-08-24 2016-05-24 Method of using hydrophilized bactericidal polymers
US17/115,709 US11459415B2 (en) 2005-08-24 2020-12-08 Method of using hydrophilized bactericidal polymers

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US71123405P 2005-08-24 2005-08-24
US11/509,915 US20070048249A1 (en) 2005-08-24 2006-08-24 Hydrophilized bactericidal polymers

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12/549,004 Continuation-In-Part US8343473B2 (en) 2005-08-24 2009-08-27 Hydrophilized antimicrobial polymers
US14/837,900 Continuation US20160053038A1 (en) 2005-08-24 2015-08-27 Hydrophilized bactericidal polymers

Publications (1)

Publication Number Publication Date
US20070048249A1 true US20070048249A1 (en) 2007-03-01

Family

ID=37804426

Family Applications (4)

Application Number Title Priority Date Filing Date
US11/509,915 Abandoned US20070048249A1 (en) 2005-08-24 2006-08-24 Hydrophilized bactericidal polymers
US14/837,900 Abandoned US20160053038A1 (en) 2005-08-24 2015-08-27 Hydrophilized bactericidal polymers
US15/163,285 Active US11134684B2 (en) 2005-08-24 2016-05-24 Method of using hydrophilized bactericidal polymers
US17/115,709 Active US11459415B2 (en) 2005-08-24 2020-12-08 Method of using hydrophilized bactericidal polymers

Family Applications After (3)

Application Number Title Priority Date Filing Date
US14/837,900 Abandoned US20160053038A1 (en) 2005-08-24 2015-08-27 Hydrophilized bactericidal polymers
US15/163,285 Active US11134684B2 (en) 2005-08-24 2016-05-24 Method of using hydrophilized bactericidal polymers
US17/115,709 Active US11459415B2 (en) 2005-08-24 2020-12-08 Method of using hydrophilized bactericidal polymers

Country Status (1)

Country Link
US (4) US20070048249A1 (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070254006A1 (en) * 2006-02-15 2007-11-01 Massachusetts Institute Of Technology Medical Devices and Coatings with Non-Leaching Antimicrobial Peptides
US20090155335A1 (en) * 2007-12-05 2009-06-18 Semprus Biosciences Corp. Non-leaching non-fouling antimicrobial coatings
US20090295004A1 (en) * 2008-06-02 2009-12-03 Pinsly Jeremy B Silicone hydrogel contact lenses displaying reduced protein uptake
US20100145286A1 (en) * 2008-12-05 2010-06-10 Semprus Biosciences Corp. Layered non-fouling, antimicrobial antithrombogenic coatings
US20100152708A1 (en) * 2008-12-05 2010-06-17 Semprus Biosciences Corp. Non-fouling, anti-microbial, anti-thrombogenic graft-from compositions
US20110062410A1 (en) * 2009-09-11 2011-03-17 Ivanov Ilia N Method for morphological control and encapsulation of materials for electronics and energy applications
US8101913B2 (en) 2009-09-11 2012-01-24 Ut-Battelle, Llc Method of making large area conformable shape structures for detector/sensor applications using glass drawing technique and postprocessing
US8208136B2 (en) 2009-09-11 2012-06-26 Ut-Battelle, Llc Large area substrate for surface enhanced Raman spectroscopy (SERS) using glass-drawing technique
US8574660B2 (en) 2010-06-09 2013-11-05 Semprus Biosciences Corporation Articles having non-fouling surfaces and processes for preparing the same without altering bulk physical properties
US8709466B2 (en) 2011-03-31 2014-04-29 International Business Machines Corporation Cationic polymers for antimicrobial applications and delivery of bioactive materials
WO2014096851A2 (en) 2012-12-21 2014-06-26 Coopervision International Holding Company, Lp Silicone hydrogel contact lenses for sustained release of beneficial polymers
US8870372B2 (en) 2011-12-14 2014-10-28 Semprus Biosciences Corporation Silicone hydrogel contact lens modified using lanthanide or transition metal oxidants
US9000063B2 (en) 2011-12-14 2015-04-07 Semprus Biosciences Corporation Multistep UV process to create surface modified contact lenses
US9006359B2 (en) 2011-12-14 2015-04-14 Semprus Biosciences Corporation Imbibing process for contact lens surface modification
US9004682B2 (en) 2011-12-14 2015-04-14 Semprus Biosciences Corporation Surface modified contact lenses
US9096703B2 (en) 2010-06-09 2015-08-04 Semprus Biosciences Corporation Non-fouling, anti-microbial, anti-thrombogenic graft-from compositions
US9120119B2 (en) 2011-12-14 2015-09-01 Semprus Biosciences Corporation Redox processes for contact lens modification
US9147505B2 (en) 2011-11-02 2015-09-29 Ut-Battelle, Llc Large area controlled assembly of transparent conductive networks
WO2016182444A1 (en) * 2015-05-12 2016-11-17 Rijksuniversiteit Groningen 3d-printable antimicrobial composite resins, methods for manufacturing the same
US9758607B2 (en) 2013-10-10 2017-09-12 Research Foundation Of The City University Of New York Polymer with antibacterial activity
US10016532B2 (en) 2010-06-09 2018-07-10 Arrow International, Inc. Non-fouling, anti-microbial, anti-thrombogenic graft compositions
US11134684B2 (en) 2005-08-24 2021-10-05 Purdue Research Foundation Method of using hydrophilized bactericidal polymers
US11167064B2 (en) 2016-07-14 2021-11-09 Hollister Incorporated Hygienic medical devices having hydrophilic coating
US11421084B2 (en) 2017-05-27 2022-08-23 Poly Group LLC Dispersible antimicrobial complex and coatings therefrom
US11680116B2 (en) 2017-06-16 2023-06-20 Poly Group LLC Polymeric antimicrobial surfactant

Citations (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4414353A (en) * 1977-06-03 1983-11-08 Hercules Incorporated Organic pigments
US4459289A (en) * 1980-06-18 1984-07-10 Texcontor - Anstalt Copolymers having bactericidal activity, process for the preparation thereof and pharmaceutical compositions therefrom
US4482680A (en) * 1981-09-15 1984-11-13 Dynapol Quaternary ammonium group-containing polymers having antimicrobial activity
US4931522A (en) * 1989-07-11 1990-06-05 Robert Catena Copolymers of polyalkylene glycol acrylate and a salt of a quarternized acrylate
US5317063A (en) * 1989-09-06 1994-05-31 Lion Corporation Water-soluble polymer sensitive to salt
US5509899A (en) * 1994-09-22 1996-04-23 Boston Scientific Corp. Medical device with lubricious coating
US6221425B1 (en) * 1998-01-30 2001-04-24 Advanced Cardiovascular Systems, Inc. Lubricious hydrophilic coating for an intracorporeal medical device
US20010044482A1 (en) * 1998-07-08 2001-11-22 Hopin Hu Interpenetrating polymer network hydrophilic hydrogels for contact lens
US6358557B1 (en) * 1999-09-10 2002-03-19 Sts Biopolymers, Inc. Graft polymerization of substrate surfaces
US20020086160A1 (en) * 2000-08-24 2002-07-04 Yongxing Qiu Process for surface modifying substrates and modified substrates resulting therefrom
US6537663B1 (en) * 2000-05-04 2003-03-25 Kimberly-Clark Worldwide, Inc. Ion-sensitive hard water dispersible polymers and applications therefor
US6559116B1 (en) * 1999-09-27 2003-05-06 The Procter & Gamble Company Antimicrobial compositions for hard surfaces
US20030091641A1 (en) * 2001-04-23 2003-05-15 Tiller Joerg C. Antimicrobial polymeric surfaces
US20030161804A1 (en) * 2001-12-20 2003-08-28 Beatrice Perron Self-adhesive cationic or amphoteric free-radical polymers and cosmetic use thereof
US20030229185A1 (en) * 2002-02-05 2003-12-11 Daoyong Chen Method for preparation of block copolymeric nanoparticles
US20030236376A1 (en) * 2002-03-11 2003-12-25 Ture Kindt-Larsen Low polydispersity poly-HEMA compositions
US20040009136A1 (en) * 2002-05-31 2004-01-15 L'oreal Aqueous hair treatment compositions, thickened with an amphiphilic linear block copolymer
US6689856B2 (en) * 2001-05-16 2004-02-10 L'oreal Water-soluble polymers with a water-soluble backbone and side units with a lower critical solution temperature, process for preparing them, aqueous compositions containing them and cosmetic use thereof
US20040135967A1 (en) * 2002-12-03 2004-07-15 Carney Fiona Patricia Medical devices having antimicrobial coatings thereon
US20040202639A1 (en) * 2001-03-08 2004-10-14 Degrado William F. Facially amphiphilic polymers as anti-infective agents
US6815502B1 (en) * 2000-05-04 2004-11-09 Kimberly-Clark Worldwide, Inc. Ion-sensitive, water-dispersable polymers, a method of making same and items using same
US6815074B2 (en) * 2001-05-30 2004-11-09 Novartis Ag Polymeric materials for making contact lenses
US20050008839A1 (en) * 2002-01-30 2005-01-13 Cramer Ronald Dean Method for hydrophilizing materials using hydrophilic polymeric materials with discrete charges
US20050008876A1 (en) * 2001-11-08 2005-01-13 Toyoyuki Teranishi Ultra-water-repellent substrate
US20050013842A1 (en) * 2003-07-16 2005-01-20 Yongxing Qiu Antimicrobial medical devices
US6852353B2 (en) * 2000-08-24 2005-02-08 Novartis Ag Process for surface modifying substrates and modified substrates resulting therefrom
US20050032931A1 (en) * 2003-07-18 2005-02-10 Naisby Andrew S. Ink jet recording medium
US20050053569A1 (en) * 2001-12-12 2005-03-10 Bruno Bavouzet Use of cationic block copolymers to assist the deposition of simple or multiple emulsions
US20050058844A1 (en) * 2002-12-19 2005-03-17 Rubner Michael F. Method for making medical devices having antimicrobial coatings thereon
US20050101740A1 (en) * 2003-09-01 2005-05-12 Nathalie Mougin Block ethylenic copolymers comprising a vinyllactam block, cosmetic compositions containing them and cosmetic use of these copolymers
US20060057209A1 (en) * 2004-09-16 2006-03-16 Predicant Biosciences, Inc. Methods, compositions and devices, including microfluidic devices, comprising coated hydrophobic surfaces
US7112559B1 (en) * 2005-03-14 2006-09-26 Ecolab Inc. Thickened quaternary ammonium compound sanitizer

Family Cites Families (309)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2717887A (en) 1952-12-02 1955-09-13 Du Pont Salts of vinylpyridine polymers with anionic soap-forming sulfuric and sulfonic acids of high molecular weight
US2882157A (en) 1955-08-19 1959-04-14 Eastman Kodak Co Treatment of photographic film for static resistance
US2972537A (en) 1957-09-03 1961-02-21 Eastman Kodak Co Condensation products of polyvinylketones with hydrazides containing quaternary nitrogen groups
US3140227A (en) 1961-02-14 1964-07-07 American Cyanamid Co Durable germicidal finish for hydrophobic polyamide textile materials
US3296167A (en) 1962-02-02 1967-01-03 Morton Int Inc Process for polymerizing an ethylenically unsaturated amine-containing monomeric mixture
BE633443A (en) 1962-06-12 1900-01-01
US3227672A (en) 1962-12-12 1966-01-04 Nat Starch Chem Corp Water soluble cationic copolymers of beta-hydroxyalkyl ethlenically unsaturated ester with vinyl tertiary amine
DE1244398B (en) 1963-07-11 1967-07-13 Bayer Ag Antistatic thermoplastic molding compounds
US3296196A (en) 1964-06-01 1967-01-03 Gen Electric Siloxane polymers containing allylcinnamate groups
US3328328A (en) 1964-07-09 1967-06-27 American Cyanamid Co Water-insolubilized floor wax composition containing alkali metal aluminate and method for preparing same
US3619200A (en) 1966-06-21 1971-11-09 Commw Scient Ind Res Org Method and food composition for feeding ruminants
US3597313A (en) 1968-09-23 1971-08-03 American Cyanamid Co Polyaldehyde crosslinked aliphatic alcohol resins and a process of making temporary wet strength paper and paper made therefrom
US3592805A (en) 1969-02-17 1971-07-13 Stauffer Chemical Co Complex of organic amine with a completely halogenated acetone and method of preparation
GB1299012A (en) 1969-02-25 1972-12-06 Mitsubishi Gas Chemical Co Process for producing cationic synthetic latices
JPS5343533B2 (en) 1970-06-23 1978-11-21
US3754055A (en) 1970-12-28 1973-08-21 California Inst Of Techn Cationic vinyl-pyridine copolymers and products thereof
US4029694A (en) 1971-09-01 1977-06-14 Basf Wyandotte Corporation Antistatic agents for melt-formed polymers
US4093676A (en) 1971-09-01 1978-06-06 Basf Wyandotte Corporation Antistatic agents for melt-formed polymers
US3753716A (en) 1972-02-04 1973-08-21 Konishiroku Photo Ind Method for antistatic treatment of plastic films
US3872128A (en) 1972-03-08 1975-03-18 Union Carbide Corp Antimicrobial hydroxy quinoline, ethylene-acrylic polymer compositions
US3975350A (en) 1972-08-02 1976-08-17 Princeton Polymer Laboratories, Incorporated Hydrophilic or hydrogel carrier systems such as coatings, body implants and other articles
US3898188A (en) 1972-08-14 1975-08-05 California Inst Of Techn Novel polyelectrolytes
US4017440A (en) 1973-10-10 1977-04-12 Rohm And Haas Company Polymers stabilized with polymerizable vinylbenzyltrialkyl ammonium salt surfactant
US4234381A (en) 1973-10-10 1980-11-18 Rohm And Haas Company Fibrous material made with polymers stabilized by polymerizable vinyl benzyltrialkyl ammonium salt surfactant
US3871376A (en) 1974-03-13 1975-03-18 Union Carbide Corp Combination absorbent dressing and flexible cooling device
US3929741A (en) 1974-07-16 1975-12-30 Datascope Corp Hydrophilic acrylamido polymers
US4181752A (en) 1974-09-03 1980-01-01 Minnesota Mining And Manufacturing Company Acrylic-type pressure sensitive adhesives by means of ultraviolet radiation curing
US4011178A (en) 1974-12-23 1977-03-08 The Goodyear Tire & Rubber Company Resins and polymer mixtures thereof
JPS51146586A (en) 1975-06-12 1976-12-16 Toyo Soda Mfg Co Ltd Preparation of polymer emulsions
DE2529939C3 (en) 1975-07-04 1980-10-09 Chemische Fabrik Stockhausen & Cie, 4150 Krefeld Antistatic preparation for coating masses of textile fabrics
US4045510A (en) 1975-09-24 1977-08-30 Basf Wyandotte Corporation Method for providing polymers with durable improved properties
USRE31454E (en) 1975-11-25 1983-12-06 Lectec Corporation Monitoring and stimulation electrode
US4125110A (en) 1975-11-25 1978-11-14 Hymes Alan C Monitoring and stimulation electrode
US4026941A (en) 1975-11-28 1977-05-31 Basf Wyandotte Corporation Polyoxyalkylated polyol polyesters having improved antistatic properties
US4070189A (en) 1976-10-04 1978-01-24 Eastman Kodak Company Silver halide element with an antistatic layer
DE2650306A1 (en) 1976-11-02 1978-05-03 Merck Patent Gmbh ANTIBACTERIAL DRESSING AND METHOD OF ITS MANUFACTURING
US4080315A (en) 1976-11-08 1978-03-21 Basf Wyandotte Corporation Polyesters of N,N-bis(hydroxyalkyl) taurine salts as antistatic agents for synthetic polymers
US4229554A (en) 1976-12-02 1980-10-21 Basf Wyandotte Corporation Flame retardant antistatic additives and antistatic fibers
JPS5378288A (en) 1976-12-22 1978-07-11 Sanyo Chem Ind Ltd Preparation of water in oil type polymer emulsion having improved flowability
US4104443A (en) 1977-05-06 1978-08-01 J. P. Stevens & Co., Inc. Antistatic finish for textiles material
AU3747378A (en) 1977-06-27 1980-02-21 Univ Melbourne Amphoteric latices
US4147550A (en) 1977-07-15 1979-04-03 Eastman Kodak Company Photographic silver halide element with a layer of sulfonated polymer
US4119094A (en) 1977-08-08 1978-10-10 Biosearch Medical Products Inc. Coated substrate having a low coefficient of friction hydrophilic coating and a method of making the same
JPS5837439B2 (en) 1978-01-27 1983-08-16 花王株式会社 fiber sizing agent
JPS5536237A (en) 1978-09-06 1980-03-13 Kureha Chem Ind Co Ltd Antistatic resin composition
US4416668A (en) 1978-10-25 1983-11-22 Petrolite Corporation Antistatic agents for organic liquids
US4259411A (en) 1978-11-15 1981-03-31 Calgon Corporation Electroconductive coating formulations
CA1153427A (en) 1978-12-11 1983-09-06 Patrick T. Cahalan Tape electrode
US4226232A (en) 1979-04-09 1980-10-07 Spenco Medical Corporation Wound dressing
US4361623A (en) 1979-11-13 1982-11-30 Basf Wyandotte Corporation Flame retardant antistatic additives and antistatic fibers
US4318947A (en) 1979-12-26 1982-03-09 The Kendall Company Polymer coating and curing process for catheters
US4539996A (en) 1980-01-23 1985-09-10 Minnesota Mining And Manufacturing Company Conductive adhesive and biomedical electrode
US4581821A (en) 1980-02-14 1986-04-15 Medtronic, Inc. Method of preparing tape electrode
US4393048A (en) 1980-02-15 1983-07-12 The United States Of America As Represented By The Secretary Of The Army Protective gel composition for wounds
JPS5933361Y2 (en) 1980-03-14 1984-09-18 日東電工株式会社 electrode pad
US4306996A (en) 1980-05-05 1981-12-22 Calgon Corporation Electroconductive polymer composition
JPS573809A (en) 1980-06-10 1982-01-09 Kureha Chem Ind Co Ltd Multilayer antistatic resin and its composition
US4377667A (en) 1980-06-13 1983-03-22 Asahi Kasei Kogyo Kabushiki Kaisha Polyacetal and process of producing same
US4304703A (en) 1980-06-23 1981-12-08 Ppg Industries, Inc. Cationic polymer dispersions and their method of preparation
US4379869A (en) 1981-01-15 1983-04-12 W. R. Grace & Co. Cationic latices and their electrodeposition
US4768523A (en) 1981-04-29 1988-09-06 Lifecore Biomedical, Inc. Hydrogel adhesive
US4373009A (en) 1981-05-18 1983-02-08 International Silicone Corporation Method of forming a hydrophilic coating on a substrate
US4366238A (en) 1981-06-25 1982-12-28 Fuji Photo Film Co., Ltd. Silver halide photographic materials
US4500517A (en) 1981-12-07 1985-02-19 H. B. Fuller Co. Antimicrobial composition for a semipermeable membrane
US4515593A (en) 1981-12-31 1985-05-07 C. R. Bard, Inc. Medical tubing having exterior hydrophilic coating for microbiocide absorption therein and method for using same
DE3363213D1 (en) 1982-01-18 1986-06-05 Medtronic Inc Electrically conductive compositions and electrodes utilizing same
US4699146A (en) 1982-02-25 1987-10-13 Valleylab, Inc. Hydrophilic, elastomeric, pressure-sensitive adhesive
US4570629A (en) 1982-03-17 1986-02-18 University Of Illinois Foundation Hydrophilic biopolymeric copolyelectrolytes, and biodegradable wound dressing comprising same
GB2122900A (en) 1982-07-01 1984-01-25 Surgikos Inc Disinfectant compositions having residual biocidal activity and wipes and sprays containing them
DE3371914D1 (en) 1982-07-16 1987-07-09 Mitsui Petrochemical Ind Hot-melt adhesive composition
US4506070A (en) 1982-07-26 1985-03-19 E. I. Du Pont De Nemours And Company Antistatic composition and polyester fiber containing same
US4769013A (en) 1982-09-13 1988-09-06 Hydromer, Inc. Bio-effecting medical material and device
US5512329A (en) 1982-09-29 1996-04-30 Bsi Corporation Substrate surface preparation
AU562370B2 (en) 1982-10-02 1987-06-11 Smith & Nephew Associated Companies Plc Moisture vapour permeable adhesive surgical dressing
DE3339662C2 (en) 1982-11-04 1986-10-30 Mitsubishi Paper Mills, Ltd., Tokio/Tokyo Process for the production of an electrophotographic suspension developer and its use for the production of electrophotographic printing plates
FR2540123A1 (en) 1983-01-28 1984-08-03 Rhone Poulenc Spec Chim STABLE AQUEOUS DISPERSIONS AND AMPHOTERIES OF SYNTHETIC POLYMERS
US4791063A (en) 1983-02-14 1988-12-13 Cuno Incorporated Polyionene transformed modified polysaccharide supports
DE3305964A1 (en) 1983-02-21 1984-08-23 Henkel KGaA, 4000 Düsseldorf USE OF CATIONIC POLYMERS AS ANTISTATIC ADDITIVES TO HAIR TREATMENT AGENTS
US4480075A (en) 1983-06-24 1984-10-30 Shell Oil Company Block copolymers of Ziegler-Natta polymerized and anionically polymerized monomers
US4563184A (en) 1983-10-17 1986-01-07 Bernard Korol Synthetic resin wound dressing and method of treatment using same
US4675347A (en) 1983-10-29 1987-06-23 Unitika Ltd. Antimicrobial latex composition
JPS60130640A (en) 1983-12-16 1985-07-12 Dainippon Ink & Chem Inc Preparation of aqueous dispersion of vinyl copolymer resin
US5024840A (en) 1984-03-08 1991-06-18 Interface, Inc. Antimicrobial carpet and carpet tile
JPS60210613A (en) 1984-04-03 1985-10-23 Fuji Photo Film Co Ltd Photosensitive material
US4617343A (en) 1984-04-23 1986-10-14 National Starch And Chemical Corporation Laminating adhesives containing polymerized surfactant
US4546140A (en) 1984-08-02 1985-10-08 National Starch And Chemical Corporation One-package aqueous latices containing alkaline-curable self-crosslinking polymers
US4632881A (en) 1984-10-12 1986-12-30 Olin Corporation Pyrithione-containing bioactive polymers and their use in paint and wood perservative products
US4668748A (en) 1984-10-19 1987-05-26 E. I. Du Pont De Nemours And Company Crosslinkable antistatic polymers and their manufacture
US4543390A (en) 1984-12-20 1985-09-24 Toray Industries, Inc. Antistatic resinous compositions
US4842768A (en) 1985-01-16 1989-06-27 Kyowa Gas Chemical Industry Co., Ltd. Electrically conductive adhesive
US4708870A (en) 1985-06-03 1987-11-24 E. I. Du Pont De Nemours And Company Method for imparting antimicrobial activity from acrylics
EP0208367B1 (en) 1985-07-05 1989-05-03 Akzo N.V. Process for coating an electrically conductive substrate and an aqueous coating composition based on a cationic binder
US4810567A (en) 1985-08-21 1989-03-07 Uop Antimicrobial fabrics utilizing graft copolymers
GB2191941B (en) 1985-08-27 1990-03-14 Glyzinc Pharma Ltd Zinc glycerolate complex and additions for pharmaceutical applications
US4705709A (en) 1985-09-25 1987-11-10 Sherwood Medical Company Lubricant composition, method of coating and a coated intubation device
US4816508A (en) 1985-11-07 1989-03-28 Calgon Corporation Stabilized cationic acrylate or methacrylate polymer admixtures
US4674512A (en) 1986-02-03 1987-06-23 Lectec Corporation Medical electrode for monitoring and diagnostic use
US4722965A (en) 1986-02-24 1988-02-02 Reichhold Chemicals, Inc. Chalk adhesion polymer composition and method of preparation
JPS62235305A (en) 1986-04-04 1987-10-15 Dai Ichi Kogyo Seiyaku Co Ltd Production of high-molecular-weight acrylic polymer
US5338795A (en) 1986-04-14 1994-08-16 Toray Industries, Inc. Housing and thermoplastic resin compositions including polyether ester amide, styrene based resin and vinyl copolymer
US5081182A (en) 1986-05-19 1992-01-14 Exxon Chemical Patents Inc. Cationic monomer delayed addition process
JPH0689323B2 (en) 1986-06-13 1994-11-09 第一工業製薬株式会社 Antistatic agent
US4777954A (en) 1986-06-30 1988-10-18 Nepera Inc. Conductive adhesive medical electrode assemblies
US4728323A (en) 1986-07-24 1988-03-01 Minnesota Mining And Manufacturing Company Antimicrobial wound dressings
US4859727A (en) 1986-08-22 1989-08-22 Mitsubishi Rayon Company Ltd. Antistatic thermoplastic resin composition
US4848353A (en) 1986-09-05 1989-07-18 Minnesota Mining And Manufacturing Company Electrically-conductive, pressure-sensitive adhesive and biomedical electrodes
JPH0764940B2 (en) 1986-09-16 1995-07-12 三菱レイヨン株式会社 Manufacturing method of synthetic resin moldings with excellent antistatic properties
US5055171A (en) 1986-10-06 1991-10-08 T And G Corporation Ionic semiconductor materials and applications thereof
DE3776776D1 (en) 1986-12-06 1992-03-26 Lion Corp POLYMER LATEX WITH ULTRA FINE PARTICLES AND COMPOSITIONS CONTAINING THEM.
PH23983A (en) 1986-12-23 1990-02-09 Biopolymers Ltd Biostatic and biocidal composition
DE3704486A1 (en) 1987-02-13 1988-08-25 Bayer Ag ANTISTATIC, THERMOPLASTIC MOLDING MATERIALS BASED ON VINYLAROMATE POLYMERISATES II
US4931506A (en) 1987-03-20 1990-06-05 The B. F. Goodrich Company Ethylene oxide/epihalohydrin copolymer antistatic additive for chlorine-containing polymers
US5153321A (en) 1987-04-03 1992-10-06 Ciba-Geigy Corporation Antistatic and electrically conducting polymers and moulding materials
DE3711680A1 (en) 1987-04-07 1988-10-27 Hoechst Ag AQUEOUS BIOCIDES CATIONIC PLASTIC DISPERSIONS AND THE USE THEREOF AS FUNGICIDES, BACTERICIDES AND ALGICIDES EQUIPMENT
ES2031948T3 (en) 1987-04-17 1993-01-01 Bayer Ag FIRE-FIGHTING ANTI-STATIC POLYCARBONATE MOLDING MASSES.
CA1318740C (en) 1987-04-17 1993-06-01 Simon Hsiao-Pao Yu Copolymers of ethylene oxide as antistatic additives
AU605217B2 (en) 1987-05-12 1991-01-10 Ecolab Inc. Disinfectant polymeric coatings for hard surfaces
US4857590A (en) 1987-06-08 1989-08-15 Ge Chemicals, Inc. Polymer blend compositions
US4948720A (en) 1987-08-20 1990-08-14 Eastman Kodak Company Photographic element containing polyphosphazene antistatic composition
US5057560A (en) 1987-10-05 1991-10-15 Ciba-Geigy Corporation Thermotropic copolymer hydrogels from N,N-dimethylacrylamide and methoxy-ethyl (meth) acrylate
US4841021A (en) 1987-11-30 1989-06-20 Minnesota Mining And Manufacturing Company Polypyridinium
US5019096A (en) 1988-02-11 1991-05-28 Trustees Of Columbia University In The City Of New York Infection-resistant compositions, medical devices and surfaces and methods for preparing and using same
US5082697A (en) 1988-02-17 1992-01-21 The Dow Chemical Company Polymer salt complex for fiber or fabric treatment
US5330527A (en) 1988-03-25 1994-07-19 Lec Tec Corporation Multipurpose medical electrode
US5205297A (en) 1988-03-25 1993-04-27 Lectec Corporation Multipurpose medical stimulation electrode
JP2595678B2 (en) 1988-04-15 1997-04-02 ダイキン工業株式会社 Antifouling paint composition and coated product
US5043195A (en) 1988-10-28 1991-08-27 Minnesota Mining & Manufacturing Company Static shielding film
GB8829835D0 (en) 1988-12-21 1989-02-15 Smith Kline French Lab Compounds
US4898908A (en) 1989-01-26 1990-02-06 Kuwait Institute For Scientific Research Anionic polymer hydrogels and a process for making the same
DE3905919A1 (en) 1989-02-25 1990-08-30 Degussa MIXTURES CONTAINING ORGANOSILICIUM COMPOUNDS AND THE USE THEREOF FOR HYDROPHOBIC AND ANTIMICROBIAL IMPREGNATION
US5432000A (en) 1989-03-20 1995-07-11 Weyerhaeuser Company Binder coated discontinuous fibers with adhered particulate materials
US5498478A (en) 1989-03-20 1996-03-12 Weyerhaeuser Company Polyethylene glycol as a binder material for fibers
US5143071A (en) 1989-03-30 1992-09-01 Nepera, Inc. Non-stringy adhesive hydrophilic gels
US4981936A (en) 1989-04-14 1991-01-01 Polypure, Inc. Terpolymer of oxyalkyene acrylates, acrylamides and quaternary monomers
US4997697A (en) 1989-06-29 1991-03-05 Xerox Corporation Transparencies
US4954636A (en) 1989-07-03 1990-09-04 Gaf Chemicals Corporation Antimicrobial polymeric bisbiguanides
US5312863A (en) 1989-07-05 1994-05-17 Rohm And Haas Company Cationic latex coatings
US5271943A (en) 1989-10-27 1993-12-21 Scott Health Care Wound gel compositions containing sodium chloride and method of using them
US5006267A (en) 1989-11-08 1991-04-09 The Dow Chemical Company Biocidal fluid filters
US4957908A (en) 1990-01-08 1990-09-18 Olin Corporation Chitosan pyrithione as antimicrobial agent useful in personal care products
US5269770A (en) 1990-01-10 1993-12-14 Rochester Medical Corporation Microcidal agent releasing catheter with balloon
US5261896A (en) 1990-01-10 1993-11-16 Rochester Medical Corporation Sustained release bactericidal cannula
US5124076A (en) 1990-01-19 1992-06-23 Contour Electrodes, Inc. Rapid, curing, electrically conductive adhesive
WO1991012282A1 (en) 1990-02-14 1991-08-22 H.B. Fuller Licensing & Financing Inc. Copolymers with inherent antimicrobial action
US5059629A (en) 1990-02-16 1991-10-22 The Dow Chemical Company Biocidal foams
US5004760A (en) 1990-02-16 1991-04-02 The Dow Chemical Company Biocidal foams
US5069907A (en) 1990-03-23 1991-12-03 Phoenix Medical Technology Surgical drape having incorporated therein a broad spectrum antimicrobial agent
JP3740549B2 (en) 1990-03-30 2006-02-01 アルザ・コーポレーション Apparatus and method for drug administration by ion permeation therapy
US5142010A (en) 1990-05-10 1992-08-25 H. B. Fuller Licensing & Financing Inc. Polymeric biocidal agents
US5080097A (en) 1990-05-14 1992-01-14 Boston University Combination pacer defibrillator electrodes and pacer-defibrillator and method for use therewith
US5183576A (en) 1990-06-06 1993-02-02 Betz Laboratories, Inc. Cationic polymers for sludge dewatering
FR2665450B1 (en) 1990-08-01 1994-04-08 Rhone Poulenc Chimie PROCESS FOR THE PREPARATION OF AQUEOUS COPOLYMER DISPERSIONS.
US5175059A (en) 1990-09-05 1992-12-29 Mitsubishi Rayon Company Ltd. Synthetic resin molded article having good antistatic property and process for preparation thereof
US5369179A (en) 1990-09-07 1994-11-29 W. R. Grace & Co.-Conn. Inherently antistatic thermoplastic polyamide-polyether films
JPH06501239A (en) 1990-10-12 1994-02-10 ザ ダウ ケミカル カンパニー antibacterial hydrogel
US5314959A (en) 1991-03-06 1994-05-24 Minnesota Mining And Manufacturing Company Graft copolymers containing fluoroaliphatic groups
EP0537774B1 (en) 1991-10-18 1998-01-07 Kuraray Co., Ltd. Antimicrobial polymerizable composition, the polymer and article obtained from the same
AU652494B2 (en) 1991-11-15 1994-08-25 Minnesota Mining And Manufacturing Company Solid state conductive polymer compositions, biomedical electrodes containing such compositions, and method of preparing same
IT1252628B (en) 1991-12-06 1995-06-19 Pier Giorgio Righetti FORMULATIONS FOR POLYACRYLAMIDIC MATRICES IN ELECTROKINETIC METHODS
FR2686088B1 (en) 1992-01-10 1995-06-23 Atochem Elf Sa PROCESS FOR THE MANUFACTURE OF MULTI-SEQUENCE POLYCONDENSATES, IN STAR OR IN NETWORKS BY COUPLING USING DI- OR MULTI-ALDEHYDES, AND POLYCONDENSATES OBTAINED THEREBY.
DE4201604A1 (en) 1992-01-22 1993-07-29 Bayer Ag FLUORINE COPOLYMERISATE AND AQUEOUS DISPERSIONS MADE THEREOF
DE69328523T2 (en) 1992-02-13 2000-09-21 Surmodics Inc IMMOBILIZATION OF A CHEMICAL SPECIES IN A NETWORKED MATRIX
US5264249A (en) 1992-03-20 1993-11-23 Medtronic, Inc. Method for making a conductive coated product
DE4211461A1 (en) 1992-04-06 1993-10-07 Agfa Gevaert Ag Antistatic plastic parts
JPH05286811A (en) 1992-04-07 1993-11-02 Sunstar Inc Microorganism adsorbing material
DE4216167A1 (en) 1992-05-18 1993-11-25 Roehm Gmbh Water soluble polymer dispersions
US5263481A (en) 1992-05-21 1993-11-23 Jens Axelgaard Electrode system with disposable gel
TW259806B (en) 1992-09-16 1995-10-11 Sekisui Plastics
US5984102A (en) 1992-09-24 1999-11-16 Survivalink Corporation Medical electrode packaging technology
US5402884A (en) 1992-09-24 1995-04-04 Surviva Link Corporation Medical electrode packaging technology
US5597661A (en) 1992-10-23 1997-01-28 Showa Denko K.K. Solid polymer electrolyte, battery and solid-state electric double layer capacitor using the same as well as processes for the manufacture thereof
GB2272376B (en) 1992-11-13 1996-07-24 Eric Thomas Mcadams A multifunction multielectrode device
US5622168A (en) 1992-11-18 1997-04-22 John L. Essmyer Conductive hydrogels and physiological electrodes and electrode assemblies therefrom
US5429590A (en) 1992-12-01 1995-07-04 Nitto Denko Corporation Medical water-absorptive polymer and dressing for wound and medical bandage using the same
DK0604103T3 (en) 1992-12-15 1999-09-27 Johnson & Johnson Consumer Hydrogel laminate, compounds and materials, and processes for their preparation
TW228529B (en) 1992-12-23 1994-08-21 Ciba Geigy
DE4301459A1 (en) 1993-01-20 1994-07-21 Huels Chemische Werke Ag Aqueous fabric softener for the treatment of textiles
US5255979A (en) 1993-02-01 1993-10-26 Ferrari R Keith Medical temperature probe cover
TW243455B (en) 1993-02-09 1995-03-21 Ciba Geigy
US5652326A (en) 1993-03-03 1997-07-29 Sanyo Chemical Industries, Ltd. Polyetheresteramide and antistatic resin composition
DE19709075A1 (en) 1997-03-06 1998-09-10 Huels Chemische Werke Ag Process for the production of antimicrobial plastics
US5403587A (en) 1993-04-22 1995-04-04 Eastman Kodak Company Disinfectant and sanitizing compositions based on essential oils
US5340583A (en) 1993-05-06 1994-08-23 Allergan, Inc. Antimicrobial lenses and lens care systems
US5665490A (en) 1993-06-03 1997-09-09 Showa Denko K.K. Solid polymer electrolyte, battery and solid-state electric double layer capacitor using the same as well as processes for the manufacture thereof
DE69413790T2 (en) 1993-07-14 1999-02-25 Nippon Chemical Ind ANTIBACTERIAL POLYMER, CONTACT LENS AND CONTACT LENS CARE PRODUCT
US5489437A (en) 1993-08-17 1996-02-06 Applied Extrusion Technologies, Inc. Hydrogel products and methods of producing same
US5403640A (en) 1993-08-27 1995-04-04 Reichhold Chemicals, Inc. Textile coating and method of using the same
US5533971A (en) 1993-09-03 1996-07-09 Alza Corporation Reduction of skin irritation during electrotransport
DE69316005T2 (en) 1993-09-17 1998-07-16 Agfa Gevaert Nv Photographic light-sensitive material with preserved antistatic properties
US5314924A (en) 1993-10-12 1994-05-24 Sealed Air Corporation Antistatic polyolefin composition
GB9322132D0 (en) 1993-10-27 1993-12-15 Zeneca Ltd Antimicrobial treatment of textile materials
US5608021A (en) 1993-11-29 1997-03-04 Osaka Yuki Kagaku Kogyo Kabushiki Kaisha Cationic polymer thickener and process for preparing the same
US5420197A (en) 1994-01-13 1995-05-30 Hydromer, Inc. Gels formed by the interaction of polyvinylpyrrolidone with chitosan derivatives
US5670557A (en) 1994-01-28 1997-09-23 Minnesota Mining And Manufacturing Company Polymerized microemulsion pressure sensitive adhesive compositions and methods of preparing and using same
TW369558B (en) 1994-01-28 1999-09-11 Minnesota Mining & Mfg Polymerized microemulsion pressure sensitive adhesive compositions and methods of preparing and using same
US5618586A (en) 1994-03-29 1997-04-08 Ppg Industries, Inc. N-alkoxymethyl (meth)acrylamide functional polymers and their use in self-crosslinkable coating compositions
US5474065A (en) 1994-04-04 1995-12-12 Graphic Controls Corporation Non-invasive fetal probe
US5614586A (en) 1994-04-06 1997-03-25 Graphic Controls Corporation Polyacrylate and Polymethacrylate ester based hydrogel adhesives
US5674275A (en) 1994-04-06 1997-10-07 Graphic Controls Corporation Polyacrylate and polymethacrylate ester based hydrogel adhesives
AU2286995A (en) 1994-04-08 1995-10-30 Alza Corporation Electrotransport system with ion exchange competitive ion capture
UA10911C2 (en) 1994-08-10 1996-12-25 Мале Впроваджувальне Підприємство "Іhтерфалл" Biocompatible hydrogel
US5536494A (en) 1994-10-04 1996-07-16 Alcon Laboratories, Inc. Polyethylene oxide-containing quaternary ammunium polymers and pharmaceutical compositions containing an antimicrobial amount of same
US5518788A (en) 1994-11-14 1996-05-21 Minnesota Mining And Manufacturing Company Antistatic hard coat incorporating a polymer comprising pendant fluorinated groups
US5614538A (en) 1994-12-05 1997-03-25 Olin Corporation Synergistic antimicrobial composition containing pyrithione and alcohol
DE19507025A1 (en) 1995-03-01 1996-09-05 Huels Chemische Werke Ag Multi-layer pipe with an electrically conductive inner layer
US5591799A (en) 1995-03-03 1997-01-07 Air Products And Chemicals, Inc. Aqueous emulsion materials containing copolymerized vinyl amide monomers and hydrolysis products thereof
US5667913A (en) 1995-03-23 1997-09-16 National Science Council Electroconductive polymer composites as positive electrode active materials in secondary batteries
US5725789A (en) 1995-03-31 1998-03-10 Minnesota Mining And Manufacturing Company Aqueous oil and water repellent compositions
US5624704A (en) 1995-04-24 1997-04-29 Baylor College Of Medicine Antimicrobial impregnated catheters and other medical implants and method for impregnating catheters and other medical implants with an antimicrobial agent
US5688855A (en) 1995-05-01 1997-11-18 S.K.Y. Polymers, Inc. Thin film hydrophilic coatings
DE19519481A1 (en) 1995-05-27 1996-11-28 Huels Chemische Werke Ag Multi-layer plastic fuel filter with antistatic properties
US5962580A (en) 1995-06-07 1999-10-05 Rohm And Haas Company Method for providing a waterborne coating composition with improved color acceptance
US5654369A (en) 1995-07-25 1997-08-05 Dai-Ichi Kogyo Seiyaku Co., Ltd. Antistatic thermoplastic resin composition
JP3398809B2 (en) 1995-07-27 2003-04-21 日本光電工業株式会社 Method for producing conductive composition for bioelectrode
US6024895A (en) 1995-08-11 2000-02-15 Mitsubishi Rayon Co., Ltd. Cross-linkable, electrically conductive composition, electric conductor and process for forming the same
US5849822A (en) 1995-08-17 1998-12-15 Teijin Limited Thermoplastic resin composition superior in transparency and antistatic property
US5773507A (en) 1995-08-25 1998-06-30 Henkel Corporation Anti-static composition and process for making same
US5646197A (en) 1995-10-16 1997-07-08 Martin; Howard Antimicrobial root canal sealer
GB9521253D0 (en) 1995-10-17 1995-12-20 Luthra Ajay K Biocompatible lubricious hydrophilic materials for medical devices
US5830934A (en) 1995-10-27 1998-11-03 Reichhold Chemicals, Inc. Colloidally stabilized emulsion polymer
EP0780594A1 (en) 1995-12-21 1997-06-25 Elf Atochem S.A. Antistatic belts
US5985990A (en) 1995-12-29 1999-11-16 3M Innovative Properties Company Use of pendant free-radically polymerizable moieties with polar polymers to prepare hydrophilic pressure sensitive adhesive compositions
BR9708281A (en) 1996-03-27 1999-08-03 Procter & Gamble Conditioning containing polyalphaolefins conditioner
US6280509B1 (en) 1996-05-09 2001-08-28 Alistagen Corporation Biocidal coating compositions and method
EP0846418B1 (en) 1996-05-10 2006-08-16 Toyo Boseki Kabushiki Kaisha Antimicrobial composition and antimicrobial laminate
DE69715404T2 (en) 1996-05-28 2003-01-09 Eastman Chem Co SURFACE-ACTIVE AGENT-CONTAINING ACETOACETOXY FUNCTIONAL AND ENAMINE FUNCTIONAL POLYMERS
JP3193300B2 (en) 1996-07-12 2001-07-30 帝人株式会社 Antistatic polyester film
EP0952168A4 (en) 1996-07-16 2000-05-24 Toray Industries Graft polymer and moldings thereof for medical supply
JPH10104692A (en) 1996-09-30 1998-04-24 Minolta Co Ltd Static-proof finder
US5645968A (en) 1996-10-07 1997-07-08 Xerox Corporation Cationic Toner processes
US6039940A (en) 1996-10-28 2000-03-21 Ballard Medical Products Inherently antimicrobial quaternary amine hydrogel wound dressings
US6800278B1 (en) 1996-10-28 2004-10-05 Ballard Medical Products, Inc. Inherently antimicrobial quaternary amine hydrogel wound dressings
US5800685A (en) 1996-10-28 1998-09-01 Cardiotronics Systems, Inc. Electrically conductive adhesive hydrogels
DE19654897A1 (en) 1996-11-14 1998-06-04 Roehm Gmbh Monomers for polymers with antimicrobial properties
FR2757866B1 (en) 1996-12-30 2004-12-17 Catalyse POLYMERS COMPRISING QUATERNARY AMMONIUM GROUPS, THEIR USE FOR THE MANUFACTURE OF AN ANTIBACTERIAL PROPERTY MATERIAL AND THEIR PREPARATION METHODS
US6218492B1 (en) 1997-01-03 2001-04-17 Huels Aktiengesellschaft Water insoluble bacteriophobic polymers containing carboxyl and sulfonic acid groups
EP0860213A3 (en) 1997-01-03 2002-10-16 Therapol SA Bioactive coating on surfaces
ES2227799T3 (en) 1997-01-06 2005-04-01 Arkema ANTISTATIC FILM FOR THE PACKAGING OF MATERIALS THAT DISSEMINATE VOLATILE PRODUCTS.
US6242526B1 (en) 1997-01-28 2001-06-05 Stepan Company Antimicrobial polymer latexes derived from unsaturated quaternary ammonium compounds and antimicrobial coatings, sealants, adhesives and elastomers produced from such latexes
US5907017A (en) 1997-01-31 1999-05-25 Cornell Research Foundation, Inc. Semifluorinated side chain-containing polymers
DE19705579A1 (en) 1997-02-14 1998-08-20 Huels Chemische Werke Ag An article with microorganism repellent coating, its preparation and use
GB2322300A (en) 1997-02-20 1998-08-26 Reckitt & Colman Inc Miticidal and disinfectant composition
BR9805903A (en) 1997-02-25 1999-08-24 Amoco Corp Copolymer process to prepare the same and structure in several layers
DE19709076A1 (en) 1997-03-06 1998-09-10 Huels Chemische Werke Ag Process for the production of antimicrobial plastics
DE19716606A1 (en) 1997-04-21 1998-10-22 Huels Chemische Werke Ag Bacteria-repellent and blood-compatible modified surfaces
US5900451A (en) 1997-05-15 1999-05-04 Reichhold Chemicals, Inc. Collaidally stabilized butadiene emulsions
EP0893165A3 (en) 1997-06-28 2000-09-20 Degussa-Hüls Aktiengesellschaft Bioactive coating of surfaces using macroinitiators
DE19728489A1 (en) 1997-07-03 1999-01-07 Huels Chemische Werke Ag Medical device for improving the skin fixation of indwelling catheters and other transcutaneous implants with a reduced risk of infection
KR20010023208A (en) 1997-08-28 2001-03-26 브루스, 제임스 에이취 Chemical and Pharmacological Standardization of Herbal Extracts
US6015836A (en) 1997-10-28 2000-01-18 Martin; Howard Chemical disinfectant employing dual chain quaternary ammonium compounds with iodine
US6063745A (en) 1997-11-26 2000-05-16 Allergan Mutli-purpose contact lens care compositions
US6197322B1 (en) 1997-12-23 2001-03-06 Kimberly-Clark Worldwide, Inc. Antimicrobial structures
US6038464A (en) 1998-02-09 2000-03-14 Axelgaard Manufacturing Co., Ltd. Medical electrode
BR9908386A (en) 1998-07-17 2000-10-31 Chemeq Ltd Method of preparing polymeric compositions, microbicidal, dermatological and / or feed additive compositions and their uses
DE19833066A1 (en) 1998-07-22 2000-02-03 Elotex Ag Sempach Station Process for the preparation of aqueous dispersions of (co) polymers, the dispersions obtainable thereafter, redispersible powders obtainable from the dispersions and their use
DE19833062A1 (en) 1998-07-22 2000-02-03 Elotex Ag Sempach Station Redispersible powder and its aqueous dispersion, process for its preparation and use
AU5547299A (en) 1998-08-07 2000-02-28 Reichhold, Inc. Novel latex compositions for deposition on various substrates
DE19854819A1 (en) 1998-11-27 2000-05-31 Degussa Hollow article with antistatic properties
US7709694B2 (en) 1998-12-08 2010-05-04 Quick-Med Technologies, Inc. Materials with covalently-bonded, nonleachable, polymeric antimicrobial surfaces
FR2789574B1 (en) 1999-02-16 2001-03-30 Oreal DETERGENT COSMETIC COMPOSITIONS CONTAINING ANIONIC HYDROXYALKYLETHER SURFACTANT AND CATIONIC POLYMER AND USES THEREOF
DE19910811C2 (en) 1999-03-11 2002-11-14 Sunyx Surface Nanotechnologies Hydrophilizable block copolymers
ATE410455T1 (en) 1999-05-26 2008-10-15 Rhodia BLOCK POLYMERS, COMPOSITIONS AND METHODS FOR USE IN FOAM, DETERGENT, SHOWER CLEANER AND COAGULANT
US20050065284A1 (en) 1999-08-06 2005-03-24 Venkataram Krishnan Novel latex compositions for deposition on various substrates
EP1144505A3 (en) 1999-09-09 2002-02-20 Atofina Antistatic acrylic polymer compositions
US6207361B1 (en) 1999-12-27 2001-03-27 Eastman Kodak Company Photographic film with base containing polymeric antistatic material
DE10025707A1 (en) 2000-05-26 2001-11-29 Degussa Multi-layer, reinforced plastic connection element with antistatic properties
US6500981B1 (en) 2000-08-02 2002-12-31 Ethox Chemicals Llc Hydroxy and sulfonic acid substituted alkenes and salts
US6797743B2 (en) 2000-09-27 2004-09-28 Michigan Biotechnology Institute Antimicrobial polymer
JP2002105152A (en) 2000-09-29 2002-04-10 Nof Corp Fluorine-containing block copolymer for fluorocoating
US7264638B2 (en) 2000-12-21 2007-09-04 John William Artley Polyethylene glycol saturated substrate and method of making
WO2002066530A1 (en) 2001-01-05 2002-08-29 Cornell Research Foundation, Inc. Polymer material with stable non-wetting surface
JP3434800B2 (en) 2001-01-31 2003-08-11 海洋科学技術センター Crust core sample collection method, and antibacterial polymer gel and gel material used for the method
US6821943B2 (en) 2001-03-13 2004-11-23 S. C. Johnson & Son, Inc. Hard surface antimicrobial cleaner with residual antimicrobial effect comprising an organosilane
US6686890B2 (en) * 2001-04-19 2004-02-03 Fox Broadcasting Company Slot-array antennas with shaped radiation patterns and a method for the design thereof
DE10122149A1 (en) 2001-05-08 2002-11-14 Creavis Tech & Innovation Gmbh Process for the antimicrobial finishing of porous materials
US7081139B2 (en) 2001-05-11 2006-07-25 E. I. Du Pont De Nemours And Company Antimicrobial polyester-containing articles and process for their preparation
DE10131484A1 (en) 2001-06-29 2003-01-09 Creavis Tech & Innovation Gmbh Antimicrobial polymer foams with amino alcohols
DE10135667A1 (en) 2001-07-21 2003-02-06 Creavis Tech & Innovation Gmbh Microbicidal wallpaper
US20030049437A1 (en) 2001-08-03 2003-03-13 Devaney Laura C. Flexible carrier tape having high clarity and conductivity
US7030203B2 (en) 2001-09-28 2006-04-18 3M Innovative Properties Company Water-in-oil emulsions with ethylene oxide groups, compositions, and methods
DE10149973A1 (en) 2001-10-10 2003-04-17 Creavis Tech & Innovation Gmbh Extraction stable polymer coatings useful for coating he inner surfaces of pipes, and for coating cooling equipment, air conditioning control panels, glass and synthetic resin surfaces, solar equipment, roof coating, window glass
MXPA04003543A (en) 2001-10-18 2004-07-22 Procter & Gamble Shampoo compositions with anionic surfactants, amphoteric surfactants and cationic polymers.
US20050010174A1 (en) * 2002-06-04 2005-01-13 Berman Irwin R. Applicator and methods of applying a substance
WO2003104583A1 (en) 2002-06-07 2003-12-18 Microban Products Company Antimicrobial wallboard
MY134362A (en) 2002-11-20 2007-12-31 Efka Additives B V Aqueous emulsion polymer as dipersant
US7981946B2 (en) 2003-07-03 2011-07-19 Mallard Creek Polymers, Inc. Antimicrobial and antistatic polymers and methods of using such polymers on various substrates
US7781498B2 (en) 2003-07-03 2010-08-24 Mallard Creek Polymers, Inc. Cationic latex as a carrier for bioactive ingredients and methods for making and using the same
US7491753B2 (en) 2003-07-03 2009-02-17 Mallard Creek Polymers, Inc. Antimicrobial and antistatic polymers and methods of using such polymers on various substrates
JP4285481B2 (en) * 2003-07-23 2009-06-24 東亞合成株式会社 Water-based ink
US7763687B2 (en) 2004-02-20 2010-07-27 Cornell Research Foundation, Inc. Polymers containing quaternized nitrogen
US7887790B2 (en) 2004-02-20 2011-02-15 Cornell Research Foundation, Inc. Polymers and polymer coatings
US7709055B2 (en) 2004-02-20 2010-05-04 Cornell Research Foundation, Inc. Polymers with ether containing side chains and compositions thereof
EP1809264B1 (en) 2004-09-20 2016-04-13 Avent, Inc. Antimicrobial amorphous compositions
EP1866166B1 (en) 2005-03-31 2012-10-24 Fujifilm Corporation Ink set for ink jet recording, ink for ink jet recording, and ink jet image recording method
US8343473B2 (en) 2005-08-24 2013-01-01 Purdue Research Foundation Hydrophilized antimicrobial polymers
US20070048249A1 (en) 2005-08-24 2007-03-01 Purdue Research Foundation Hydrophilized bactericidal polymers
US8349300B2 (en) 2007-04-19 2013-01-08 The Procter & Gamble Company Personal care compositions containing at least two cationic polymers and an anionic surfactant
US8673277B2 (en) 2010-07-09 2014-03-18 Lubrizol Advanced Materials, Inc. Structured acrylate copolymer thickeners
US20120046378A1 (en) 2010-08-20 2012-02-23 Sloan Donald D Water-Based Digital Ink
US9131683B2 (en) 2011-09-30 2015-09-15 The Sherwin-Williams Company High quality antimicrobial paint composition
US9663683B2 (en) 2011-10-31 2017-05-30 S. C. Johnson & Son, Inc. Polish composition
US9560849B2 (en) 2012-06-09 2017-02-07 The University Of Toledo Antibacterial surfactant/microgel formulations, methods of making and methods of using the same
NZ707855A (en) 2012-11-06 2018-11-30 Rochal Ind Llc Delivery of biologically-active agents using volatile, hydrophobic solvents
WO2016127387A1 (en) 2015-02-13 2016-08-18 The Procter & Gamble Company Cleaning compositions containing alkyl sulfate surfactants and cationic polymer for holistic improvement of sudsing profile
EP3316855B1 (en) 2015-07-01 2020-09-23 3M Innovative Properties Company Compositions for spore removal
US20180237686A1 (en) 2015-08-31 2018-08-23 Halliburton Energy Services, Inc. Method for stimulation treatment using polymer-surfactant combination
US10159638B2 (en) 2016-06-21 2018-12-25 Johnson & Johnson Consumer Inc. Personal care compositions containing complexing polyelectrolytes
WO2018222622A1 (en) 2017-05-27 2018-12-06 Poly Group LLC Dispersible antimicrobial complex and coatings therefrom
US20180362678A1 (en) 2017-06-16 2018-12-20 Poly Group LLC Polymeric antimicrobial surfactant

Patent Citations (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4414353A (en) * 1977-06-03 1983-11-08 Hercules Incorporated Organic pigments
US4459289A (en) * 1980-06-18 1984-07-10 Texcontor - Anstalt Copolymers having bactericidal activity, process for the preparation thereof and pharmaceutical compositions therefrom
US4482680A (en) * 1981-09-15 1984-11-13 Dynapol Quaternary ammonium group-containing polymers having antimicrobial activity
US4931522A (en) * 1989-07-11 1990-06-05 Robert Catena Copolymers of polyalkylene glycol acrylate and a salt of a quarternized acrylate
US5317063A (en) * 1989-09-06 1994-05-31 Lion Corporation Water-soluble polymer sensitive to salt
US5509899A (en) * 1994-09-22 1996-04-23 Boston Scientific Corp. Medical device with lubricious coating
US6221425B1 (en) * 1998-01-30 2001-04-24 Advanced Cardiovascular Systems, Inc. Lubricious hydrophilic coating for an intracorporeal medical device
US20010044482A1 (en) * 1998-07-08 2001-11-22 Hopin Hu Interpenetrating polymer network hydrophilic hydrogels for contact lens
US6358557B1 (en) * 1999-09-10 2002-03-19 Sts Biopolymers, Inc. Graft polymerization of substrate surfaces
US6559116B1 (en) * 1999-09-27 2003-05-06 The Procter & Gamble Company Antimicrobial compositions for hard surfaces
US6537663B1 (en) * 2000-05-04 2003-03-25 Kimberly-Clark Worldwide, Inc. Ion-sensitive hard water dispersible polymers and applications therefor
US6815502B1 (en) * 2000-05-04 2004-11-09 Kimberly-Clark Worldwide, Inc. Ion-sensitive, water-dispersable polymers, a method of making same and items using same
US20020086160A1 (en) * 2000-08-24 2002-07-04 Yongxing Qiu Process for surface modifying substrates and modified substrates resulting therefrom
US6852353B2 (en) * 2000-08-24 2005-02-08 Novartis Ag Process for surface modifying substrates and modified substrates resulting therefrom
US20040202639A1 (en) * 2001-03-08 2004-10-14 Degrado William F. Facially amphiphilic polymers as anti-infective agents
US20030091641A1 (en) * 2001-04-23 2003-05-15 Tiller Joerg C. Antimicrobial polymeric surfaces
US6689856B2 (en) * 2001-05-16 2004-02-10 L'oreal Water-soluble polymers with a water-soluble backbone and side units with a lower critical solution temperature, process for preparing them, aqueous compositions containing them and cosmetic use thereof
US6815074B2 (en) * 2001-05-30 2004-11-09 Novartis Ag Polymeric materials for making contact lenses
US20050008876A1 (en) * 2001-11-08 2005-01-13 Toyoyuki Teranishi Ultra-water-repellent substrate
US20050053569A1 (en) * 2001-12-12 2005-03-10 Bruno Bavouzet Use of cationic block copolymers to assist the deposition of simple or multiple emulsions
US20030161804A1 (en) * 2001-12-20 2003-08-28 Beatrice Perron Self-adhesive cationic or amphoteric free-radical polymers and cosmetic use thereof
US20050008839A1 (en) * 2002-01-30 2005-01-13 Cramer Ronald Dean Method for hydrophilizing materials using hydrophilic polymeric materials with discrete charges
US20030229185A1 (en) * 2002-02-05 2003-12-11 Daoyong Chen Method for preparation of block copolymeric nanoparticles
US20030236376A1 (en) * 2002-03-11 2003-12-25 Ture Kindt-Larsen Low polydispersity poly-HEMA compositions
US20040009136A1 (en) * 2002-05-31 2004-01-15 L'oreal Aqueous hair treatment compositions, thickened with an amphiphilic linear block copolymer
US20040135967A1 (en) * 2002-12-03 2004-07-15 Carney Fiona Patricia Medical devices having antimicrobial coatings thereon
US20050058844A1 (en) * 2002-12-19 2005-03-17 Rubner Michael F. Method for making medical devices having antimicrobial coatings thereon
US20050013842A1 (en) * 2003-07-16 2005-01-20 Yongxing Qiu Antimicrobial medical devices
US20050032931A1 (en) * 2003-07-18 2005-02-10 Naisby Andrew S. Ink jet recording medium
US20050101740A1 (en) * 2003-09-01 2005-05-12 Nathalie Mougin Block ethylenic copolymers comprising a vinyllactam block, cosmetic compositions containing them and cosmetic use of these copolymers
US20060057209A1 (en) * 2004-09-16 2006-03-16 Predicant Biosciences, Inc. Methods, compositions and devices, including microfluidic devices, comprising coated hydrophobic surfaces
US7112559B1 (en) * 2005-03-14 2006-09-26 Ecolab Inc. Thickened quaternary ammonium compound sanitizer

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11459415B2 (en) 2005-08-24 2022-10-04 Purdue Research Foundation Method of using hydrophilized bactericidal polymers
US11134684B2 (en) 2005-08-24 2021-10-05 Purdue Research Foundation Method of using hydrophilized bactericidal polymers
US20070254006A1 (en) * 2006-02-15 2007-11-01 Massachusetts Institute Of Technology Medical Devices and Coatings with Non-Leaching Antimicrobial Peptides
US20090155335A1 (en) * 2007-12-05 2009-06-18 Semprus Biosciences Corp. Non-leaching non-fouling antimicrobial coatings
WO2009149022A3 (en) * 2008-06-02 2010-02-25 Johnson & Johnson Vision Care, Inc. Silicone hydrogel contact lenses displaying reduced protein uptake
WO2009149022A2 (en) * 2008-06-02 2009-12-10 Johnson & Johnson Vision Care, Inc. Silicone hydrogel contact lenses displaying reduced protein uptake
US20090295004A1 (en) * 2008-06-02 2009-12-03 Pinsly Jeremy B Silicone hydrogel contact lenses displaying reduced protein uptake
US20100145286A1 (en) * 2008-12-05 2010-06-10 Semprus Biosciences Corp. Layered non-fouling, antimicrobial antithrombogenic coatings
US20100152708A1 (en) * 2008-12-05 2010-06-17 Semprus Biosciences Corp. Non-fouling, anti-microbial, anti-thrombogenic graft-from compositions
US8308699B2 (en) 2008-12-05 2012-11-13 Semprus Biosciences Corp. Layered non-fouling, antimicrobial antithrombogenic coatings
US9358326B2 (en) 2008-12-05 2016-06-07 Arrow International, Inc. Layered non-fouling, antimicrobial antithrombogenic coatings
US9895470B2 (en) 2008-12-05 2018-02-20 Semprus Biosciences Corp. Non-fouling, anti-microbial, anti-thrombogenic graft—from compositions
US20110062410A1 (en) * 2009-09-11 2011-03-17 Ivanov Ilia N Method for morphological control and encapsulation of materials for electronics and energy applications
US8101913B2 (en) 2009-09-11 2012-01-24 Ut-Battelle, Llc Method of making large area conformable shape structures for detector/sensor applications using glass drawing technique and postprocessing
US8208136B2 (en) 2009-09-11 2012-06-26 Ut-Battelle, Llc Large area substrate for surface enhanced Raman spectroscopy (SERS) using glass-drawing technique
US8461600B2 (en) 2009-09-11 2013-06-11 Ut-Battelle, Llc Method for morphological control and encapsulation of materials for electronics and energy applications
US9895469B2 (en) 2010-06-09 2018-02-20 Arrow International, Inc. Articles having non-fouling surfaces and processes for preparing the same including applying a primer coat
US9764069B2 (en) 2010-06-09 2017-09-19 Semprus Biosciences Corporation Articles having non-fouling surfaces and processes for preparing the same including pretreatment of articles
US8574660B2 (en) 2010-06-09 2013-11-05 Semprus Biosciences Corporation Articles having non-fouling surfaces and processes for preparing the same without altering bulk physical properties
US8632838B2 (en) 2010-06-09 2014-01-21 Semprus Biosciences Corporation Articles having non-fouling surfaces and processes for preparing the same including pretreatment of articles
US9096703B2 (en) 2010-06-09 2015-08-04 Semprus Biosciences Corporation Non-fouling, anti-microbial, anti-thrombogenic graft-from compositions
US10117974B2 (en) 2010-06-09 2018-11-06 Arrow International, Inc. Non-fouling, anti-microbial, anti-thrombogenic graft-from compositions
US10016532B2 (en) 2010-06-09 2018-07-10 Arrow International, Inc. Non-fouling, anti-microbial, anti-thrombogenic graft compositions
US9974303B2 (en) 2011-03-31 2018-05-22 International Business Machines Corporation Cationic polymers for antimicrobial applications and delivery of bioactive materials
US8709466B2 (en) 2011-03-31 2014-04-29 International Business Machines Corporation Cationic polymers for antimicrobial applications and delivery of bioactive materials
US9147505B2 (en) 2011-11-02 2015-09-29 Ut-Battelle, Llc Large area controlled assembly of transparent conductive networks
US8870372B2 (en) 2011-12-14 2014-10-28 Semprus Biosciences Corporation Silicone hydrogel contact lens modified using lanthanide or transition metal oxidants
US9000063B2 (en) 2011-12-14 2015-04-07 Semprus Biosciences Corporation Multistep UV process to create surface modified contact lenses
US9120119B2 (en) 2011-12-14 2015-09-01 Semprus Biosciences Corporation Redox processes for contact lens modification
US9004682B2 (en) 2011-12-14 2015-04-14 Semprus Biosciences Corporation Surface modified contact lenses
US9006359B2 (en) 2011-12-14 2015-04-14 Semprus Biosciences Corporation Imbibing process for contact lens surface modification
WO2014096851A2 (en) 2012-12-21 2014-06-26 Coopervision International Holding Company, Lp Silicone hydrogel contact lenses for sustained release of beneficial polymers
US9758607B2 (en) 2013-10-10 2017-09-12 Research Foundation Of The City University Of New York Polymer with antibacterial activity
WO2016182444A1 (en) * 2015-05-12 2016-11-17 Rijksuniversiteit Groningen 3d-printable antimicrobial composite resins, methods for manufacturing the same
US11167064B2 (en) 2016-07-14 2021-11-09 Hollister Incorporated Hygienic medical devices having hydrophilic coating
US11421084B2 (en) 2017-05-27 2022-08-23 Poly Group LLC Dispersible antimicrobial complex and coatings therefrom
US11760844B2 (en) 2017-05-27 2023-09-19 Poly Group LLC Dispersible antimicrobial complex and coatings therefrom
US11680116B2 (en) 2017-06-16 2023-06-20 Poly Group LLC Polymeric antimicrobial surfactant

Also Published As

Publication number Publication date
US20210084898A1 (en) 2021-03-25
US20160262392A1 (en) 2016-09-15
US20160053038A1 (en) 2016-02-25
US11134684B2 (en) 2021-10-05
US11459415B2 (en) 2022-10-04

Similar Documents

Publication Publication Date Title
US11459415B2 (en) Method of using hydrophilized bactericidal polymers
US8343473B2 (en) Hydrophilized antimicrobial polymers
L Zubris et al. Polymeric quaternary ammonium compounds: versatile antimicrobial materials
US8404224B2 (en) Cationic betaine precursors to zwitterionic betaines having controlled biological properties
CN108603136B (en) Coating solution, coating formed therefrom, and coated medical device
EP1020495B1 (en) Ion complex, coating material, and coating method
EP3380536B1 (en) A polymeric composition
US20060030669A1 (en) Thermally-reactive polymers
Karakeçılı et al. Comparison of bacterial and tissue cell initial adhesion on hydrophilic/hydrophobic biomaterials
CN107236143A (en) Cationically ampholytic ionic copolymer coating and its preparation method and application
CN107286355B (en) Cation-zwitterion copolymer and polycaprolactone blended membrane and preparation method and application thereof
CN101478976A (en) Polymers with antimicrobial activity containing quaternary ammonium groups
Micic et al. Network parameters and biocompatibility of p (2-hydroxyethyl methacrylate/itaconic acid/oligo (ethylene glycol) acrylate) dual-responsive hydrogels
CN112552765A (en) Quaternary ammonium salt cation antibacterial antifouling coating and preparation method and application thereof
Lane et al. Sustained tobramycin release from polyphosphate double network hydrogels
Gupta et al. N-vinylpyrrolidone antimicrobial polymers: Current trends and emerging perspectives
CN114432506A (en) Zwitterion functionalized biological material, and preparation method and application thereof
Pidhatika et al. The synthesis of polymeric dual-functional antimicrobial surface based on poly (2-methyl-2-oxazoline)
WO2015170769A1 (en) Antibacterial polymer, production method therefor, and usage thereof
Grigoraş et al. Evaluation of antibacterial activity of two poly-(carboxybetaines) derived from poly (4-vinylpyridine)
CN114702624B (en) Antibacterial material based on polysaccharide polymer and preparation method thereof
EP3973934B1 (en) Polycationic polymer, composition comprising the polycationic polymer, and product, comprising an active surface, provided with the polycationic polymer
Yang et al. D-amino acid/gentamicin loaded zwitterionic hydrogel coatings with optimized mechanical stability and biofilm inhibition capabilities
Mutar Chloramphenicol controlled release from Poly (acrylic acid-co-methyl methacrylate) hydrogels
Arıca et al. Preparation and characterization of infection‐resistant antibiotics‐releasing hydrogels rods of poly [hydroxyethyl methacrylate‐co‐(poly (ethylene glycol)‐methacrylate]: Biomedical application in a novel rabbit penile prosthesis model

Legal Events

Date Code Title Description
AS Assignment

Owner name: PURDUE RESEARCH FOUNDATION, INDIANA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:YOUNGBLOOD, JEFFREY P.;SELLENET, PHILIPPE;REEL/FRAME:018235/0145;SIGNING DATES FROM 20060822 TO 20060823

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION