US20070073100A1 - Pericardium reinforcing devices and methods for using them - Google Patents

Pericardium reinforcing devices and methods for using them Download PDF

Info

Publication number
US20070073100A1
US20070073100A1 US11/407,883 US40788306A US2007073100A1 US 20070073100 A1 US20070073100 A1 US 20070073100A1 US 40788306 A US40788306 A US 40788306A US 2007073100 A1 US2007073100 A1 US 2007073100A1
Authority
US
United States
Prior art keywords
pericardium
heart
ribs
variation
epicardium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/407,883
Inventor
Ronald French
Sunmi Chew
Hanson Gifford
Bernard Andreas
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Foundry LLC
Original Assignee
FOUNDRY Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FOUNDRY Inc filed Critical FOUNDRY Inc
Priority to US11/407,883 priority Critical patent/US20070073100A1/en
Publication of US20070073100A1 publication Critical patent/US20070073100A1/en
Assigned to THE FOUNDRY, LLC reassignment THE FOUNDRY, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: THE FOUNDRY, INC.
Priority to US13/427,705 priority patent/US20120178988A1/en
Assigned to THE FOUNDRY, INC. reassignment THE FOUNDRY, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ANDREAS, BERNARD H., CHEW, SUNMI K., FRENCH, RONALD G., GIFFORD, HANSON S., III
Assigned to THE FOUNDRY, LLC reassignment THE FOUNDRY, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: THE FOUNDRY, INC.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2478Passive devices for improving the function of the heart muscle, i.e. devices for reshaping the external surface of the heart, e.g. bags, strips or bands
    • A61F2/2481Devices outside the heart wall, e.g. bags, strips or bands

Definitions

  • the device is one for reinforcing the pericardial sac surrounding the heart to assist in the treatment of congestive heart failure.
  • the device generically, is an enclosure having an interior and an exterior.
  • the interior surface is made in such a way that it tends not to or does not form adhesions with or accept ingrowth with the myocardial tissue of the epicardium.
  • the exterior surface of the device in contrast, is adapted to adhere to or to ingrow with or otherwise to attach sufficiently to the pericardium so that it reinforces that membrane or structure.
  • the nature of the device is that it tends not to allow the pericardium to expand further with time.
  • the device after complete deployment, desirably envelopes some measure of pericardial fluid in its interior separating it from the epicardial surface. This device helps to prevent further declination of the condition of the heart during the course of congestive heart failure.
  • the device is preferably introduced into the pericardial space and onto the inner surface of the pericardium using transcutaneous or minimally invasive techniques.
  • Chronic pressure overload causes another response mechanism to develop. Specifically, hypertrophy of the heart muscle, entailing an increase both in the size of individual muscle cells and in overall muscle mass, begins to occur. Although this response helps the heart to overcome higher pressure, it has limitations and is associated with various structural and biochemical changes that have deleterious long term effects.
  • system-wide vascular constriction occurs during the course of CHF.
  • the constriction causes blood flow to be redistributed so that certain regions and systems have a reduced blood supply, e.g., skeletal muscle, kidneys, and skin. These regions do not produce significant amounts of vasodilating metabolites.
  • the brain and heart have high metabolic rates and produce a greater amount of vasodilators. Consequently, the latter organs receives a higher proportion of the restricted blood supply.
  • CHF cardiac output
  • Correction of a reversible causative factors is the first line of offense.
  • Treatment of bradyarrhythmias perhaps by use of an artificial pacemaker or by provision of an appropriate drug such as digitalis, can help alleviate CHF.
  • CHF that continues after correction of such reversible causes is often treated with a regime of salt restriction, vasodilators, diuretics, and the like. Bed rest to increase venous return to the heart and move fluid from the periphery is often helpful.
  • digitalis has been an important drug for increasing cardiac output in persons with specific types of CHF. It has been used for over 200 years.
  • cardiomyoplasty is used for early stage CHF.
  • a muscle taken from the shoulder (the latissimus dorsi) is wrapped around the heart.
  • the added muscle is paced synchronously with the ventricular systole.
  • This procedure is highly invasive requiring a stemotomy to access the heart.
  • the interior surface is adapted to inhibit adhesions or attachment to the epicardium, e.g., via use of a material that does not substantially permit ingrowth with or that resists ingrowth with the epicardium.
  • Suitable choices for materials that functionally provide such results include various lubricious material, perhaps polymeric, e.g., fluorocarbon polymers especially those selected from the group consisting of polytetrafluoroethylene, ethylene-chlorofluoroethylene, fluorinated ethylene propylene, polychlorotrifluoroethylene, polyvinylfluoride, and polyvinylidenefluoride and certain expanded polytetrafluoroethylenes (ePTFE).
  • Other suitable lubricious polymers include those selected from the group consisting of LLDPE, LDPE, HDPE, polypropylene, and polyamides their mixtures and co-polymers.
  • the exterior surface functionally adheres to or reacts with or ingrows with the pericardium in such a way that the resulting pericardium-implant combination is substantially reinforced compared to the previously existing pericardium.
  • the outer layer may comprise a material for ingrowth into or with or for attachment to or adherence with the pericardium.
  • biodegradable polymers with other substantially non-biodegradable materials such as polyolefins or polyfluorocarbons
  • other substantially non-biodegradable materials such as polyolefins or polyfluorocarbons
  • Particularly desirable are mixtures of biodegradable and non-bio-degradable polymeric fibers, perhaps by coweaving or other suitable manner of making an integrated fabric.
  • the outer surface may further comprise a material promoting endothelialization, such as an effective hyalonurate salt or one or more angiogenic materials such as are listed below.
  • a material promoting endothelialization such as an effective hyalonurate salt or one or more angiogenic materials such as are listed below.
  • the outer surface may be an independent layer or an integrated layer, a woven or non-woven polymeric material.
  • the attachment to the outer layer may be simply mechanical, and produced by, e.g., suturing or adhesively attaching it to the pericardium.
  • the exterior surface may be textured to assist with ingrowth into the pericardium.
  • the inventive device include an adjuster adapted for changing the compliant member size after attachment of that compliant member to the interior of the pericardium.
  • the adjuster for instance, may be a rotatable roller, a drawstring, a band, or the like.
  • One preferable band variation is made up of an upper end and an apical end and has a length extending from the upper end to the apical end and where the length of the band is less than about 1 ⁇ 3 length of a heart to which it is applied.
  • the band may have a length substantially matching the width of the A-V groove on that heart.
  • the webbing may be of a variety of forms, e.g., a woven fabric, a woven open weave fabric, one or more ribbons extending between at least some of the multiple ribs, one or more fibers extending between at least some of the multiple ribs, an elastic material, a substantially inelastic material, or the like.
  • the compliant member may have a longitudinal opening extending from the upper end towards the apical end and including a plurality of looping members situated on the upper end (like loops on a kitchen curtain) deployable over a looping deployment tool.
  • the deployment tool is preferably adapted to be removable after placement of the compliant member adjacent said pericardium and has a connector member for separation after installation.
  • the invention in some variations, includes the installation member.
  • the invention includes a modified pericardium reinforced with the compliant pericardial reinforcement devices discussed elsewhere.
  • FIG. 1 is an anterior view of the heart in a human chest showing the pericardium in particular.
  • FIG. 2 is a partial cross-section of the inventive reinforcing device as deployed upon a pericardial sac and in reference to an epicardium.
  • FIG. 3A shows a cross-sectional view of the compliant member making up one variation of the invention.
  • FIG. 3B shows a side-view of the FIG. 3A material.
  • FIG. 4A shows a cross-sectional view of the compliant member making tip one variation of the invention.
  • FIG. 4B shows a side view of the FIG. 4A material.
  • FIGS. 5 and 6 show cross-sectional views of, respectively, mechanical fasteners and adhesives in placing the inventive device on the pericardium.
  • FIGS. 7, 8 , and 9 show various side-views of variations of the invention.
  • FIGS. 1A, 10B , 11 A, 1 B show side views ( FIGS. 10A and 11A ) of variations of the inventive reinforcing member and cross-sectional views ( FIGS. 10B and 11B ) of those variations.
  • FIGS. 12, 13 , and 14 show side views of variations of the invention.
  • FIGS. 15A, 15B , 15 C, and 15 D show close-ups of various webbing variations suitable for the inventive reinforcing member.
  • FIGS. 16A, 16B , 17 A, and 17 B show, respective, a side-view of a variation of the invention device employing adhesives prior to introduction into the pericardial sac, a cross section of that side view, a side view of the variation after introduction to the pericardial sac, and a cross section of that installed device.
  • FIG. 18 shows a side view of a variation of the inventive device and an introducer.
  • FIG. 19 shows a side view of a variation of the inventive device having a draw-string adjuster.
  • FIG. 20A shows a side view of a variation of the inventive device having a roller adjuster.
  • FIG. 20B shows a top view of the FIG. 20A variation schematically depicting the operation of the adjuster.
  • FIG. 21 shows a side view of a variation of the inventive device also having a draw-string adjuster.
  • FIGS. 22A-22E show a method for introducing the inventive device into contact with the pericardium.
  • this invention has several related aspects: it is 1.) a device for reinforcing the pericardial sac that has an inner surface that tends not to adhere to the epicardium and an outer surface that adheres to, is inter-grown with, or is made in some fashion to constrain expansion of some portion of the pericardium; 2.) methods of introducing the inventive reinforcing device to the operative site; and 3.) the resulting modified and reinforced pericardium having the inventive reinforcing device attached to it.
  • the inventive reinforcing device in general, is constructed in such a way that it is sufficiently compliant to be placed insubstantial contact with a portion of the inner surface of the pericardium to allow some measure of adherence between the two. This may mean that the device is flexible or that a portion of the device is flexible or that a portion of the device is comparatively stiffer than another portion or portions.
  • the functional result is this: the device should reinforce the pericardium in such a way that over an extended period of time, the size of the combination of pericardium and the reinforcing device do not expand in a way consistent with the typical, ongoing progress of CHF.
  • FIG. 1 the situation of a typical human heart ( 100 ) may be seen.
  • the pericardium ( 102 ) surrounding the epicardium ( 104 ) but separated by a small barrier filled with a pericardial fluid ( 106 ).
  • the pericardial sac or the pericardium ( 102 ) approaches the diaphragm ( 108 ) closely at the apex of the heart.
  • the distance from the exterior surface of the skin, through the diaphragm ( 108 ), and into the pericardial sac ( 102 ) may be as short as a couple of inches. In obese individuals, the distance can be much greater, e.g., six inches or more.
  • this sub-xiphoid approach (a percutaneous route as described above, but below the xiphoid process-not shown in FIG. 1 ) is highly desirable and even preferable to “cracking the chest” to introduce various implants into the cardiac space.
  • FIG. 1 Also seen in FIG. 1 , for reference are the lungs ( 110 , 112 ) and the ribs ( 114 ). Note how far below the apex at the heart ( 100 ) the ribs extend.
  • FIG. 2 shows, in cross-section, a pericardium ( 120 ), reinforced by the inventive reinforcing device ( 122 ), surrounding a pericardial space ( 124 ) typically filled with a fluid and a heart wall or epicardium ( 126 ).
  • the inventive device ( 122 ) has an inner surface ( 128 ) and an outer surface ( 130 ).
  • the inner surface ( 128 ) remains generally or substantially separated from the epicardium ( 126 ).
  • the inner surface ( 128 ) is adapted not to be susceptible to adhesion to the epicardium.
  • One way to prevent such adhesion is to configure the inner surface of a material or with a surface structure that tends not to permit adhesion with the myocardial tissue of the epicardium ( 126 ). This function may be carried out in several ways.
  • the surface ( 128 ) confronting the epicardium ( 126 ) may be coated with a slippery material or comprise a slippery material.
  • the device ( 122 ) may be multilayered and comprise an independent inner layer of a slippery material.
  • adherence we mean that the noted specific component or region of the device is substantially locally immobile with respect to its related heart tissue. That is to say that it may be adhesively connected to the tissue, mechanically attached to the tissue, ingrown with the tissue, connected using specific mechanical connectors, or other methods of or means for preventing relative motion between the device component and the tissue wall.
  • FIG. 3A depicts a cross-section of a compliant member ( 150 ⁇ having an inner non-adhering surface ( 152 ) and an outer surface ( 154 ).
  • the inner surface ( 152 ) is coated with a material that tends not to form adhesions with the epicardium.
  • the non-adhering material may be sprayed on or infused into another substrate having a differing proclivity for adhesion onto heart tissue.
  • the concept for this variation is simply that there exist a differential proclivity for formation of adhesion.
  • the inner surface ( 152 ) has a comparatively lower proclivity for adhesion to cardiac tissue than does the outer surface.
  • FIGS. 3A and 3B show a typical woven fabric.
  • the weave need not be as loose as is shown in FIG. 3B .
  • a non-woven material ( 162 ) is shown in FIG. 4B in another variation of the invention for another purpose, but may be coated or used as a laminate member for the inventive device.
  • the material used that substantially prevents adhesion to the epicardium may be one or more polymers such as polyfluorocarbons and polyolefins selected from the group consisting of polytetrafluoroethylene (PTFE or TFE), ethylene-chlorofluoroethylene (ECTFE), fluorinated ethylene propylene (FEP), polychlorotrifluoroethylene (pCTFE), polyyinylfluoride (PVF), polyvinylidenefluoride (PVDF), polyethylene (LDPE, LLDPE, and HDPE), and polypropylene.
  • PTFE polytetrafluoroethylene
  • ECTFE ethylene-chlorofluoroethylene
  • FEP fluorinated ethylene propylene
  • pCTFE polychlorotrifluoroethylene
  • PVDF polyvinylidenefluoride
  • LDPE low-dethylene
  • LLDPE low-dethylene
  • HDPE high density polyethylene
  • the substrate material may instead be the substantially non-adhering material with the other side ( 154 ) treated to improve adhesion.
  • FIG. 4A shows a cross-section of another variation ( 156 ) of the inventive device in which the non-adherent surface ( 158 ) is a layer separate from the layer ( 160 ) adjacent the pericardium.
  • the two layers ( 158 ) may be laminated together, if so desired. They need not be, since the function of the non-adhering side ( 160 ) is simply to prevent attachment of the epicardium to the inventive device ( 156 ).
  • both layers ( 158 ; 160 ) may be woven, non-woven, or a mixture as desired by the designer.
  • FIG. 4B shows a typical “non-woven” fabric type.
  • FIG. 3A shows a woven fabric member ( 150 ) having a side ( 154 ) that is adapted to biologically mesh or to ingrow with the pericardium.
  • the adhering surface ( 154 ) may just as well be anon-woven surface.
  • the adherent surface ( 160 ) may be an independent structure perhaps fixedly laminated to the generally non-adherent surface ( 158 ).
  • the exterior or adhering surface may comprise a material that itself promotes ingrowth, e.g., polyethylene terephthalate, polyglycolic acid, polylactic acid, reconstituted collagen, poly-p-dioxanone, poly(glycolide-lactide) copolymer, poly(glycolide-trimethyleile carbonate) copolymer, poly(glycolide- ⁇ -caprolactone) copolymer, glycolide-trimethylene carbonate triblock copolymer, their block and random copolymers, mixtures, and alloys.
  • Biodegradable polymers often promote growth of endothelium and neovasculature in the body.
  • biodegradable polymers with other substantially non-biodegradable materials are desired to preserve the integrity of the flexible or compliant member.
  • substantially non-biodegradable materials such as polyolefins or polyfluorocarbons
  • Particularly desirable are mixtures of biodegradable and non-biodegradable polymeric fibers, perhaps by coweaving or other suitable manner of making an integrated fabric.
  • An especially desirable non-biodegradable polymer is expanded polytetrafluoroethylene (ePTFE) that is functionally adapted to promote ingrowth, e.g., ePTFE having internodal differences greater than about 60 microns.
  • ePTFE expanded polytetrafluoroethylene
  • Expanded polytetrafluoroethylene (ePTFE) sheets are available having an internodal distance gradient between the two sides, e.g., one side at 40 microns or less and one side having internodal distances greater than about 60 microns. Such a sheet is highly desirable.
  • the adhering surface of any of the variations disclosed here may be treated to enhance the biological bonding with the compliant reinforcement device.
  • the inventive device may be adapted to promote angiogenesis adjacent the pericardium.
  • Angiogenesis-promoting materials particularly those that promote growth of microvasculature, whether synthetic or natural may be infused into the various components, e.g., into or onto the polymers of the inventive device adjacent the pericardium.
  • Angiogenic materials include, e.g., collagen, fibrinogen, vitronectin, other plasma proteins, various appropriate growth factors (e.g., vascular endothelial growth factor, “VEGF”), and synthetic peptides of these and other similar proteins.
  • VEGF vascular endothelial growth factor
  • components having a specific role may be included, e.g., genes, growth factors, biomolecules, peptides, oligonucleotides, members of the integrin family, RGD-containing sequences, oligopeptides; e.g., fibronectin, laminin, bitronectin, hyaluronic acid, silk-elastin, elastin, fibrinogen, and the like.
  • bioactive materials which may be used in the invention include, for example, pharmaceutically active compounds, proteins, oligonucleotides, ribozymes, and anti-sense genes.
  • Desirable additions include vascular cell growth promotors such as growth factors, growth factor receptor antagonists, transcriptional activators, and translational promotors; vascular cell growth inhibitors such as growth factor inhibitors, growth factor receptor antagonists, transcriptional repressors, translational repressors, replication inhibitors, inhibitory antibodies, antibodies directly against growth factors, bifunctional molecules consisting of a growth factor and a cytotoxin, bifunctional molecules consisting of an antibody and a cytotoxin; cholesterol-lowering agents; vasodilating agents; agents which interfere with endogenous vasoactive mechanisms, and combinations thereof.
  • polypeptides or proteins that may be incorporated into or onto the inventive device, or whose DNA can be incorporated include without limitation, proteins competent to induce angiogenesis, including factors such as, without limitation, acidic and basic fibroblast growth factors, vascular endothelial growth factor (including VEGF-2, VEGF-3, VEGF-A, VEGF-B, VEGF-C) hif-1 and other molecules competent to induce an upstream or downstream effect of an angiogenic factor; epidermal growth factor, transforming growth factor ⁇ and ⁇ , platelet-derived endothelial growth factor; platelet-derived growth factor, tumor necrosis factor ⁇ , hepatocyte growth factor and insulin like growth factor; cell cycle inhibitors including CDK inhibitors; thymidine kinase (“TK”) and other agents useful for interfering with cell proliferation, and combinations thereof.
  • proteins competent to induce angiogenesis including factors such as, without limitation, acidic and basic fibroblast growth factors, vascular endothelial growth factor (including VEGF
  • FIG. 5 shows the reinforcement ( 170 ) attached to the pericardium ( 172 ) variously with a surgical staple ( 174 ) and a suture ( 176 ).
  • Other mechanical fasteners such as blind rivets ( 178 ) or the like are also suitable and within the scope of knowledge of the worker in this art.
  • FIG. 6 depicts the use of a biological adhesive based perhaps on fibrin or polycyanoacrylate or other similarly operating adhesives ( 180 ) to affix the reinforcing device ( 182 ) to the pericardium ( 172 ).
  • FIG. 7 shows one such basic form ( 190 ) in which the compliant enclosure has a closed apical end ( 192 ) and an optional upper end band ( 194 ).
  • the sack ( 190 ) may be woven or non-woven.
  • the material used preferably has some measure of rigidity, having at least sufficient rigidity to allow an amount of pressure against the enclosing pericardium appropriate to begin the process of adherence to that pericardium. This stiffness is balanced against the need for the device ( 190 ) to be sufficiently compliant to allow passage through a cannula, or the like, during the procedure of introducing the device ( 190 ) into the pericardial sac.
  • a schematic introducer ( 196 ) is shown in this variation and in many of the other variations discussed herein.
  • the introducer ( 196 ) will be a wire or rod having a loop carrying the upper end of the device, e.g., band ( 194 ) in FIG. 7 , during the introducing step.
  • the loop may then be removed from the heart or may remain with the device as a stiffening member.
  • the variation ( 190 ) shown in FIG. 7 may be sufficiently extensive in size that it extends up to the region of the pericardium adjacent the pulmonary arteries, etc.
  • FIG. 8 shows a side view of a variation of the inventive pericardial reinforcement ( 200 ) having a generally pericardial form due to the presence of webbing ( 204 ).
  • Webbing ( 204 ) may be fabric, individual threads, cords, etc—many of which are discussed elsewhere herein, but desirably the webbing is formed in such a way as to allow for ease of folding and conformation during delivery of the device near and past the heart's apical end.
  • a schematic delivery wire or introducer ( 206 ) is shown.
  • FIGS. 10A and 10B show, respectively, a side view and a top cross-sectional view of another ribbed variation ( 230 ).
  • this variation ( 230 ) includes ribs ( 232 ) that extend from an upper (but optional) band ( 234 ) to an apical end ( 236 ).
  • the ribs ( 232 ) may be semicircular in cross-section although there is a preference for the exterior of the ribs ( 232 ) to be a shape conformable to the pericardium, the cross-sectional shape of the ribs is not particularly important.
  • the ribs ( 232 ), as shown in FIGS. 10A and 10B may stand alone but preferably are separated and held in place by webbing ( 238 ) of any of the various forms discussed herein.
  • FIGS. 11A and 11B show, respectively, a side view and a cross-sectional view of another ribbed variation ( 250 ).
  • the ribs ( 252 ) are not semi-circular in cross-section but have more of a flat aspect. In this variation, the ribs extend to an apical and ( 254 ).
  • a schematic introducer ( 256 ) is shown. The ribs ( 252 ) may be separated by webbing ( 258 ) if desired.
  • FIG. 12 shows a side view of a variation ( 260 ) having ribs ( 262 ) that do not extend to the apical end, but instead stop at a lower band ( 264 ) and extend from an upper band ( 266 ). As was the case with the other variations of this type, the ribs may be separated by webbing ( 268 ). An introducer ( 270 ) is shown.
  • FIG. 13 shows a ribbed variation ( 280 ) of the inventive reinforcement member in which the compliant member has ribs ( 282 ) that are zigzag in shape.
  • This rib variation minimizes the amount of material that is introduced as rib material but distributes the stiffer reinforcing material around the periphery of the devices quite nicely.
  • the ribs ( 282 ), again, may be separated by webbing ( 284 ) material of the type discussed elsewhere.
  • An introducer ( 286 ) is also shown.
  • the ribs ( 282 ) are shown to be situated “in phase” but need not be. Other convoluted forms to the ribs, e.g., sine shaped ribs, -shaped ribs, etc., are also within the scope of the invention.
  • FIG. 14 shows a side view of a variation ( 290 ) of the invention where the ribs ( 292 ) are joined at their respective apexes.
  • the ribs ( 292 ) thereby form a continuous cage about the reinforcing member ( 290 ).
  • the various spaces ( 294 ) remaining amongst the ribs ( 292 ) may be filled with webbing if so desired.
  • FIGS. 15A-15D show a number of variations of the “webbing” discussed above.
  • FIG. 15A shows a number of ribs ( 300 ) separated by and held together by strands ( 302 ) of an appropriate material.
  • the strands ( 302 ) collectively making up the webbing may be single threads or collections of threads making up a cord-like assemblage.
  • FIG. 15B shows the ribs ( 300 ) with a woven cloth ( 304 ) as the webbing material.
  • the relative pic value may be in a range that extends between closed cloth to very open weave.
  • FIG. 15C shows the ribs ( 300 ) with anon-woven fabric ( 306 ) having optional upper and lower bands ( 308 ).
  • FIG. 15D shows ribs ( 300 ) separated by webbing ( 310 ) that is made up of a series of tapes ( 310 ) in turn formed from a fabric, woven or non-woven.
  • FIGS. 16A and 16B show, respectively, a side view and a cross-sectional view of a reinforcing device ( 320 ) prior to introduction into the pericardium.
  • FIGS. 17 A and 17B show, respectively, a side view and a cross-sectional view of the FIGS. 16A and 16B device after deployment.
  • FIG. 16A shows a side vision of a device ( 320 ) having a perforated side ( 322 ) with perforation ( 324 ).
  • Perforations ( 324 ) communicate with inflatable lumen that is not visible in FIGS. 16A and 16B .
  • a delivery conduit ( 328 ) is provided for introducing suitable adhesives into the device ( 320 ) in the lumen between perforated side ( 322 ) and back side ( 326 in FIG. 16B ).
  • Delivery conduit ( 328 ) desirably is used as an introducer for placement of the device ( 320 ) in the pericardial sac via a percutaneous or minimally invasive procedure.
  • the form of the device ( 320 ) shown in FIG. 16A is adapted to allow “corkscrewing” of the device as it is wound though the pericardial space.
  • the perforated side ( 322 ) is allowed by this adaptation to migrate to the outside or pericardial side of the resulting structure.
  • FIG. 18 shows a variation of the reinforcing member ( 340 ) that is not a continuous band about the heart, in that it has a longitudinal opening from upper to apical end and a delivery introducer ( 342 ) that may be removed after delivery of the reinforcing member ( 340 ) to the pericardium.
  • the elongate section ( 344 ) of the delivery introducer ( 342 ) may be separately removed.
  • FIGS. 19, 20A , 20 B, and 21 show various features allowing for adjustment of some size of the installed pericardial reinforcement device.
  • FIG. 19 shows a simple or generic reinforcing device ( 350 ) similar in structure and concept to that found in FIG. 9 .
  • An added feature is the structure of the lower band ( 352 ) and its attendant drawstring ( 354 ).
  • the lower band ( 352 ) has a lumen that circumscribes the lower end of the device ( 350 ).
  • the drawstring ( 354 ) passes through this circumscribing lumen. It is desirable to place radio-opaque markers ( 386 ), e.g., platinum or gold bands, on the drawstring ( 354 ) to allow for later detection and manipulation.
  • the concept is simple: to pull on the drawstring ( 354 ) either both sides together or one side against the other, thereby, to cinch the lower band into a smaller diameter.
  • drawstring ( 354 ) may be situated so that it is adjustable from within or without the pericardial space.
  • FIGS. 20A and 20B show a tightener variation in which the reinforcement device ( 360 ) includes a rotatable spine ( 362 ) that is affixed to the compliant member ( 364 ) that, in turn, is adherent to the pericardium. Twisting of the spine ( 362 ) tightens the reinforcement device and hence the pericardium. Desirably, the spine ( 362 ) may be twisted from the pericardia! space near the apex of the enclosed heart.
  • FIG. 20B schematically shows the twisting of spine ( 362 ).
  • FIG. 21 shows a variation ( 370 ) similar in structure to that shown in FIGS. 10A and 10B .
  • Each of these variations includes ribs ( 372 in FIG. 21 and 232 in FIGS. 10A and 10B ) that meet at an apex.
  • the ribs ( 372 ) may be fixed together at that apex ( 374 ) or may flex freely about that lower point.
  • the drawstring ( 376 ) in the lumen upper band ( 378 ) may be tightened to close the upper band ( 378 ) and to tighten the structure of inventive device ( 370 ).
  • radio-opaque markers ( 380 ) is highly desirable.
  • the drawstring ( 376 ) should be placed so to be accessible to the pericardial space.
  • the pericardium is in a gross engineering sense, a liquid-filled shock absorber that tends to exert a constant force upon the epicardium that is assessable via the fluid pressure in the pericardial space. This pressure is in some measure, related to the fitness and strength of the pericardium. Placement of implants upon the epicardial surface provides support to that surface, but the support is at the cost of direct implant contact. Our device provides the same or similar support in a much more gentle and uniform way, by supporting the pericardium and thereby supporting the fluid that supports the heart.
  • sizing and placement of the pericardial reinforcement is somewhat simpler in that the object of the placement procedure is not actively beating but is only a membrane that is passively affected by the beating muscle.
  • FIGS. 22A-22E One highly desirable method for placement of the inventive reinforcement is shown in FIGS. 22A-22E .
  • This inventive device is neat and, because it is situated in contact with the pericardium, is suitable for placement via any number of procedures, ranging from the most invasive—open chest surgery—to those that are much less invasive.
  • a preferred procedure for placing the device is via a percutaneous approach through the diaphragm beneath the xiphoid process. The procedure is direct and uses short instruments for ease and accuracy. Such a process is outlined in FIGS. 22A-22F .
  • FIG. 22A Shown in FIG. 22A is a heart ( 400 ) surrounded by a pericardia! space ( 402 ) holding pericardia! fluid and all is enclosed by the pericardium ( 404 ). Also shown is the muscle sheet known as the diaphragm ( 406 ). For the purposes of depicting the spatial relationships in this procedure, the xiphoid process ( 510 ) is shown in shadow. Much of the extraneous body structure not otherwise needed for explanation of the procedure have been omitted for clarity.
  • FIG. 22A Also shown in FIG. 22A is the first step of the procedure.
  • a suitably large hollow needle ( 408 ) and a guidewire ( 410 ) passing through the lumen of the needle ( 408 ) have been introduced below the xiphoid process and through the diaphragm ( 406 ).
  • the needle ( 408 ) and the guidewire ( 410 ) are shown having penetrated the pericardium ( 404 ) and having passed into the pericardial space ( 402 ).
  • FIG. 22B shows that the needle has been removed from the guidewire ( 410 ) and the distal end ( 412 ) of the guidewire ( 410 ) has been manipulated to pass upwardly.
  • An introducer or cannula ( 414 ) is shown being passed up the guidewire ( 410 ).
  • a cannula ( 420 ) has been placed through the pericardium ( 404 ) and the introducer wire ( 422 ) has been inserted and may be seen proceeding to the left of the heart.
  • the reinforcing device ( 424 ) begins to trail the introducer wire ( 422 ).
  • the upper band ( 426 ) has a relatively rigid connection with the introducer ( 422 ) and will tend to move the device about the apex of the heart ( 400 ).
  • Some amount of manual manipulation will be necessary to keep the upper loop ( 426 ) following “the contours of the epicardium until it reaches its desired site as shown in FIG. 22D .
  • a vibratory or oscillatory motion may be desirable to urge the device to its final spot.
  • FIG. 22E the introducer wire ( 422 ) and cannula ( 420 ) have been removed and their access points repaired, leaving the device ( 424 ) against the pericardia! membrane ( 404 ) for attachment, adherence, or ingrowth.

Abstract

A surgical device for reinforcing the pericardial sac surrounding the heart to assist in the treatment of congestive heart failure includes an enclosure having an interior and an exterior. The interior surface limits adhesions or accepts ingrowth with the myocardial tissue of the epicardium. The exterior surface is adapted to adhere to or otherwise attach to the pericardium to provide reinformcement.

Description

    CROSS-REFERENCES TO RELATED APPLICATIONS
  • This application is a continuation of U.S. application Ser. No. 09/963,848 (Attorney Docket No. 020979-002400US), filed Sep. 25, 2001, the full disclosure of which is incorporated herein by reference.
  • BACKGROUND OF THE INVENTION Field of the Invention
  • This invention relates to surgical devices and to methods of using them. In particular, the device is one for reinforcing the pericardial sac surrounding the heart to assist in the treatment of congestive heart failure. The device, generically, is an enclosure having an interior and an exterior. The interior surface is made in such a way that it tends not to or does not form adhesions with or accept ingrowth with the myocardial tissue of the epicardium. The exterior surface of the device, in contrast, is adapted to adhere to or to ingrow with or otherwise to attach sufficiently to the pericardium so that it reinforces that membrane or structure. The nature of the device is that it tends not to allow the pericardium to expand further with time. The device, after complete deployment, desirably envelopes some measure of pericardial fluid in its interior separating it from the epicardial surface. This device helps to prevent further declination of the condition of the heart during the course of congestive heart failure. The device is preferably introduced into the pericardial space and onto the inner surface of the pericardium using transcutaneous or minimally invasive techniques.
  • Congestive Heart Failure (“CHF”), or simply “Heart Failure” is a progressive path found in many forms of heart disease. In general, it is a condition in which the heart is unable to pump blood at a rate sufficient for the proper supply of nutrients to metabolizing tissues. There are many specific disease states leading to CHF, but each typically results in the dilatation of the ventricles. Various etiologies for CHF are viral and ischemic and, of course, idiopathic. Myocardial injury and chronic volume overload generally are thought to cause this course of ventricular dilatation. The typical adaptation process undertaken by the stressed heart muscle is not achieved during CHF and, instead of gaining a stronger heart muscle, the heart instead gets larger as it attempts to adapt to its increased volume load.
  • Chronic pressure overload causes another response mechanism to develop. Specifically, hypertrophy of the heart muscle, entailing an increase both in the size of individual muscle cells and in overall muscle mass, begins to occur. Although this response helps the heart to overcome higher pressure, it has limitations and is associated with various structural and biochemical changes that have deleterious long term effects.
  • Additionally, system-wide vascular constriction occurs during the course of CHF. The constriction causes blood flow to be redistributed so that certain regions and systems have a reduced blood supply, e.g., skeletal muscle, kidneys, and skin. These regions do not produce significant amounts of vasodilating metabolites. In contrast, the brain and heart have high metabolic rates and produce a greater amount of vasodilators. Consequently, the latter organs receives a higher proportion of the restricted blood supply.
  • Therapy for CHF is staged. Correction of a reversible causative factors is the first line of offense. Treatment of bradyarrhythmias, perhaps by use of an artificial pacemaker or by provision of an appropriate drug such as digitalis, can help alleviate CHF. CHF that continues after correction of such reversible causes is often treated with a regime of salt restriction, vasodilators, diuretics, and the like. Bed rest to increase venous return to the heart and move fluid from the periphery is often helpful. As noted above, digitalis has been an important drug for increasing cardiac output in persons with specific types of CHF. It has been used for over 200 years. Other drugs used for treatment of CHF include beta-adrenergic agonists such as norepinephrine, epinephrine, and isoproterenol. Each stimulate cardiac beta-adrenergic receptors. Dopamine and dobutamine are also used. Various diuretics and vasodilators for variously dilating both veins and arteries are used, each for slightly different reasons based on the detected manifestation of the CHF in the heart. Few interventional or surgical pathways for alleviation of CHF are currently widely practiced. Indeed, the only permanent treatment for CHF is a heart transplant.
  • One surgical procedure known as cardiomyoplasty is used for early stage CHF. In that procedure, a muscle taken from the shoulder (the latissimus dorsi) is wrapped around the heart. The added muscle is paced synchronously with the ventricular systole. This procedure is highly invasive requiring a stemotomy to access the heart. Some have suggested that the benefits of the procedure are due more to remodeling from the mere placement of the shoulder muscle around the heart rather than from a muscular assistance.
  • There are a variety of devices that may be applied to the heart for treatment of CHF. Patents owned by Abiomed (U.S. Pat. Nos. 6,224,540; 5,800,528; 5,643,172) generally show a girdle-like device situated to provide structure to a failing heart. U.S. Patents owned by Acorn Cardiovascular, Inc. (U.S. Pat. Nos. 6,241,654; 6,230,714; 6,193,648; 6,174,279; 6,169,922; 6,165,122; 6,165,121; 6,155,972; 6,126,590; 6,123,662; 6,085,754; 6,077,218; 5,702,343) show various devices, also for treatment of CHF, which typically include a mesh sock-like device placed around the myocardial wall. U.S. Patents to Myocor, Inc. (U.S. Pat. Nos. 6,264,602; 6,261,222; 6,260,552; 6,183,411; 6,165,120; 6,165,119; 6,162,168; 6,077,214; 6,059,715; 6,050,936; 6,045,497; 5;961,440) show devices for treatment CHF generally using components that pierce the ventricular wall.
  • None of the documents mentioned above appears to suggest the devices and methods provided for herein.
  • BRIEF SUMMARY OF THE INVENTION
  • This invention is a device and a method for reinforcing the pericardium. Generically, it is made of at least one compliant member having an interior surface for placement adjacent to or spaced away from the epicardium and an exterior surface for attachment to the interior of a pericardium. The compliant member may be conformable in shape to at least a portion of the epicardium.
  • The interior surface is adapted to inhibit adhesions or attachment to the epicardium, e.g., via use of a material that does not substantially permit ingrowth with or that resists ingrowth with the epicardium. Suitable choices for materials that functionally provide such results include various lubricious material, perhaps polymeric, e.g., fluorocarbon polymers especially those selected from the group consisting of polytetrafluoroethylene, ethylene-chlorofluoroethylene, fluorinated ethylene propylene, polychlorotrifluoroethylene, polyvinylfluoride, and polyvinylidenefluoride and certain expanded polytetrafluoroethylenes (ePTFE). Other suitable lubricious polymers include those selected from the group consisting of LLDPE, LDPE, HDPE, polypropylene, and polyamides their mixtures and co-polymers.
  • The exterior surface functionally adheres to or reacts with or ingrows with the pericardium in such a way that the resulting pericardium-implant combination is substantially reinforced compared to the previously existing pericardium. The outer layer, for instance, may comprise a material for ingrowth into or with or for attachment to or adherence with the pericardium. The exterior surface may comprise a material that itself promotes ingrowth, e.g., polyethylene terephthalate, polyglycolic acid, polylactic acid, reconstituted collagen, poly-p-dioxanone, poly(glycolide-lactide) copolymer, poly(glycolide-trimethylene carbonate) copolymer, poly(glycolide-ε-caprolactone) copolymer, glycolide-trimethylene carbonate triblock copolymer, their block and random copolymers, mixtures, and alloys. Physical mixtures of the biodegradable polymers with other substantially non-biodegradable materials, (such as polyolefins or polyfluorocarbons) is desired to preserve to integrity of the flexible or compliant member. Particularly desirable are mixtures of biodegradable and non-bio-degradable polymeric fibers, perhaps by coweaving or other suitable manner of making an integrated fabric.
  • The outer surface may further comprise a material promoting endothelialization, such as an effective hyalonurate salt or one or more angiogenic materials such as are listed below. Physically, the outer surface may be an independent layer or an integrated layer, a woven or non-woven polymeric material. The attachment to the outer layer may be simply mechanical, and produced by, e.g., suturing or adhesively attaching it to the pericardium. The exterior surface may be textured to assist with ingrowth into the pericardium.
  • As noted above, the compliant member may comprise a separate inner member and an outer member, e.g., where at least one of the inner members and the outer members comprises a woven or non-woven fabric. They may be laminated together or with an intermediate between. In some instances, at least one, of the inner members and the outer members is substantially non-porous, non-porous, or non-continuous.
  • It is desirable that the inventive device include an adjuster adapted for changing the compliant member size after attachment of that compliant member to the interior of the pericardium. The adjuster, for instance, may be a rotatable roller, a drawstring, a band, or the like. One preferable band variation is made up of an upper end and an apical end and has a length extending from the upper end to the apical end and where the length of the band is less than about ⅓ length of a heart to which it is applied. The band may have a length substantially matching the width of the A-V groove on that heart.
  • The shape of the compliant member may be that of a sack having a closed end, particularly one having a closed end and sized to be positioned only along and less than about ⅓ length of the heart when positioned from the apical end. The compliant member may be a substantially elongated member having a distal end and a proximal end and configured to be helical upon introduction into the region of the pericardium, perhaps having a lumen (in some instances expandable) extending from the proximal end at least partially to the distal end. The lumen may have at least one orifice open to the exterior surface when the device is helically configured in the region of the pericardium, perhaps to pass glue or adhesive to the pericardium side of the device. In some variations, the source of glue or adhesive also forms a component of the inventive device.
  • One very desirable form of the compliant member is an enclosure generally conforming in shape to at least a portion of an epicardium where the enclosure has at least one rib separated by and spaced apart by webbing. The rib may be at least one band having an upper end and an apical end and a length extending from the upper end to the apical end and having at least two open, generally opposing openings. Desirably, the wound band has a length less than about ⅓ length of a heart to which it is applied.
  • Preferably, the various ribs have a flexibility different than that of the webbing. The at least one rib may have the form of a generally helical member, perhaps ribbon-like in form. A “ribbon” is considered to have a width-thickness ratio greater than about two, perhaps greater than about seven. The helical member may be inflatable over at least a portion of the enclosure, perhaps incrementally inflatable along its length.
  • The compliant member may be made up of an enclosure generally conforming in shape to at least a portion of a pericardium and having multiple ribs extending from the upper end to the apical end. Desirably each rib may be ribbon-like. Alternatively, the ribs may each have a round cross section or may have a cross section with a width-thickness ratio of two or less. The multiple ribs may be zigzag in shape and where there are multiple zigzag ribs having substantially adjacent points, at least some of the adjacent points may be connected. At least some of the multiple ribs may be joined at the apical end.
  • The webbing may be of a variety of forms, e.g., a woven fabric, a woven open weave fabric, one or more ribbons extending between at least some of the multiple ribs, one or more fibers extending between at least some of the multiple ribs, an elastic material, a substantially inelastic material, or the like.
  • The compliant member may have a longitudinal opening extending from the upper end towards the apical end and including a plurality of looping members situated on the upper end (like loops on a kitchen curtain) deployable over a looping deployment tool. The deployment tool is preferably adapted to be removable after placement of the compliant member adjacent said pericardium and has a connector member for separation after installation. The invention, in some variations, includes the installation member.
  • The invention includes various procedures for reinforcing the pericardium. One procedure comprises the steps of introducing the inventive device through a pericardium wall into a pericardial space, desirably below the xiphoid process of a patient, and positioning the inventive pericardial reinforcement adjacent the pericardium. The procedure may include the step of puncturing skin beneath the xiphoid process with a needle and an introducer and passing the needle through the pericardium to the pericardial space. The steps of introducing a guidewire, removing the needle, and introducing a cannula may also be included.
  • Finally, the invention includes a modified pericardium reinforced with the compliant pericardial reinforcement devices discussed elsewhere.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is an anterior view of the heart in a human chest showing the pericardium in particular.
  • FIG. 2 is a partial cross-section of the inventive reinforcing device as deployed upon a pericardial sac and in reference to an epicardium.
  • FIG. 3A shows a cross-sectional view of the compliant member making up one variation of the invention. FIG. 3B shows a side-view of the FIG. 3A material.
  • FIG. 4A shows a cross-sectional view of the compliant member making tip one variation of the invention. FIG. 4B shows a side view of the FIG. 4A material.
  • FIGS. 5 and 6 show cross-sectional views of, respectively, mechanical fasteners and adhesives in placing the inventive device on the pericardium.
  • FIGS. 7, 8, and 9 show various side-views of variations of the invention.
  • FIGS. 1A, 10B, 11A, 1B show side views (FIGS. 10A and 11A) of variations of the inventive reinforcing member and cross-sectional views (FIGS. 10B and 11B) of those variations.
  • FIGS. 12, 13, and 14 show side views of variations of the invention.
  • FIGS. 15A, 15B, 15C, and 15D show close-ups of various webbing variations suitable for the inventive reinforcing member.
  • FIGS. 16A, 16B, 17 A, and 17B show, respective, a side-view of a variation of the invention device employing adhesives prior to introduction into the pericardial sac, a cross section of that side view, a side view of the variation after introduction to the pericardial sac, and a cross section of that installed device.
  • FIG. 18 shows a side view of a variation of the inventive device and an introducer.
  • FIG. 19 shows a side view of a variation of the inventive device having a draw-string adjuster.
  • FIG. 20A shows a side view of a variation of the inventive device having a roller adjuster. FIG. 20B shows a top view of the FIG. 20A variation schematically depicting the operation of the adjuster.
  • FIG. 21 shows a side view of a variation of the inventive device also having a draw-string adjuster.
  • FIGS. 22A-22E show a method for introducing the inventive device into contact with the pericardium.
  • DETAILED DESCRIPTION OF THE INVENTION
  • As noted elsewhere, this invention has several related aspects: it is 1.) a device for reinforcing the pericardial sac that has an inner surface that tends not to adhere to the epicardium and an outer surface that adheres to, is inter-grown with, or is made in some fashion to constrain expansion of some portion of the pericardium; 2.) methods of introducing the inventive reinforcing device to the operative site; and 3.) the resulting modified and reinforced pericardium having the inventive reinforcing device attached to it.
  • Our use of the term “compliant” and its variations are embodied in the following: in general, the inventive reinforcing device is constructed in such a way that it is sufficiently compliant to be placed insubstantial contact with a portion of the inner surface of the pericardium to allow some measure of adherence between the two. This may mean that the device is flexible or that a portion of the device is flexible or that a portion of the device is comparatively stiffer than another portion or portions. The functional result is this: the device should reinforce the pericardium in such a way that over an extended period of time, the size of the combination of pericardium and the reinforcing device do not expand in a way consistent with the typical, ongoing progress of CHF. Additionally, we use the term “substantially non-elastic” not in an absolute sense, but simply to express the functional concept that during the use of the device in reinforcing the pericardium, the device is not substantially changing in size due to the pressures placed upon it by the beating of the heart. Some elasticity in a gross physical sense is perceived to be inevitable.
  • First, in FIG. 1, the situation of a typical human heart (100) may be seen. Of special interest here is the pericardium (102) surrounding the epicardium (104) but separated by a small barrier filled with a pericardial fluid (106). The pericardial sac or the pericardium (102) approaches the diaphragm (108) closely at the apex of the heart. In individuals who are not obese, the distance from the exterior surface of the skin, through the diaphragm (108), and into the pericardial sac (102) may be as short as a couple of inches. In obese individuals, the distance can be much greater, e.g., six inches or more. As will be discussed below, this sub-xiphoid approach (a percutaneous route as described above, but below the xiphoid process-not shown in FIG. 1) is highly desirable and even preferable to “cracking the chest” to introduce various implants into the cardiac space.
  • Also seen in FIG. 1, for reference are the lungs (110, 112) and the ribs (114). Note how far below the apex at the heart (100) the ribs extend.
  • FIG. 2 shows, in cross-section, a pericardium (120), reinforced by the inventive reinforcing device (122), surrounding a pericardial space (124) typically filled with a fluid and a heart wall or epicardium (126).
  • The inventive device (122) has an inner surface (128) and an outer surface (130). In use, the inner surface (128) remains generally or substantially separated from the epicardium (126). In construction, the inner surface (128) is adapted not to be susceptible to adhesion to the epicardium. One way to prevent such adhesion is to configure the inner surface of a material or with a surface structure that tends not to permit adhesion with the myocardial tissue of the epicardium (126). This function may be carried out in several ways. For instance, the surface (128) confronting the epicardium (126) may be coated with a slippery material or comprise a slippery material. The device (122) may be multilayered and comprise an independent inner layer of a slippery material.
  • By the terms “adherence” and “adhesion,” we mean that the noted specific component or region of the device is substantially locally immobile with respect to its related heart tissue. That is to say that it may be adhesively connected to the tissue, mechanically attached to the tissue, ingrown with the tissue, connected using specific mechanical connectors, or other methods of or means for preventing relative motion between the device component and the tissue wall.
  • FIG. 3A depicts a cross-section of a compliant member (150}having an inner non-adhering surface (152) and an outer surface (154). In this variation of the invention, the inner surface (152) is coated with a material that tends not to form adhesions with the epicardium. The non-adhering material may be sprayed on or infused into another substrate having a differing proclivity for adhesion onto heart tissue. In the absence of mechanical or chemical adhesives to the pericardial sac, the concept for this variation is simply that there exist a differential proclivity for formation of adhesion. The inner surface (152) has a comparatively lower proclivity for adhesion to cardiac tissue than does the outer surface.
  • Incidentally, FIGS. 3A and 3B show a typical woven fabric. The weave need not be as loose as is shown in FIG. 3B. It is also within the scope of this invention to use a random fabric or “non-woven” (as it is known in the polymer industry) for the single or multiple layers of the invention device. A non-woven material (162) is shown in FIG. 4B in another variation of the invention for another purpose, but may be coated or used as a laminate member for the inventive device.
  • The material used that substantially prevents adhesion to the epicardium may be one or more polymers such as polyfluorocarbons and polyolefins selected from the group consisting of polytetrafluoroethylene (PTFE or TFE), ethylene-chlorofluoroethylene (ECTFE), fluorinated ethylene propylene (FEP), polychlorotrifluoroethylene (pCTFE), polyyinylfluoride (PVF), polyvinylidenefluoride (PVDF), polyethylene (LDPE, LLDPE, and HDPE), and polypropylene. An especially desirable polymer is expanded polytetrafluoroethylene (ePTFE) that is functionally adapted to inhibit ingrowth, e.g., ePTFE having internodal differences less than about 40 microns.
  • Again, they may be applied as an emulsion, dispersion, or solution to another substrate material or the substrate material may instead be the substantially non-adhering material with the other side (154) treated to improve adhesion.
  • FIG. 4A shows a cross-section of another variation (156) of the inventive device in which the non-adherent surface (158) is a layer separate from the layer (160) adjacent the pericardium. The two layers (158) may be laminated together, if so desired. They need not be, since the function of the non-adhering side (160) is simply to prevent attachment of the epicardium to the inventive device (156). Again, both layers (158; 160) may be woven, non-woven, or a mixture as desired by the designer. FIG. 4B shows a typical “non-woven” fabric type.
  • Returning to FIG. 2, the surface of the reinforcing device (122) adjacent the pericardium (120) is, in some way, to be generally affixed to that pericardium. FIG. 3A shows a woven fabric member (150) having a side (154) that is adapted to biologically mesh or to ingrow with the pericardium. The adhering surface (154) may just as well be anon-woven surface.
  • As is shown in FIG. 4A, the adherent surface (160) may be an independent structure perhaps fixedly laminated to the generally non-adherent surface (158).
  • The exterior or adhering surface may comprise a material that itself promotes ingrowth, e.g., polyethylene terephthalate, polyglycolic acid, polylactic acid, reconstituted collagen, poly-p-dioxanone, poly(glycolide-lactide) copolymer, poly(glycolide-trimethyleile carbonate) copolymer, poly(glycolide-ε-caprolactone) copolymer, glycolide-trimethylene carbonate triblock copolymer, their block and random copolymers, mixtures, and alloys. Biodegradable polymers often promote growth of endothelium and neovasculature in the body. Physical mixtures of the biodegradable polymers with other substantially non-biodegradable materials, (such as polyolefins or polyfluorocarbons) are desired to preserve the integrity of the flexible or compliant member. Particularly desirable are mixtures of biodegradable and non-biodegradable polymeric fibers, perhaps by coweaving or other suitable manner of making an integrated fabric. An especially desirable non-biodegradable polymer is expanded polytetrafluoroethylene (ePTFE) that is functionally adapted to promote ingrowth, e.g., ePTFE having internodal differences greater than about 60 microns.
  • Expanded polytetrafluoroethylene (ePTFE) sheets are available having an internodal distance gradient between the two sides, e.g., one side at 40 microns or less and one side having internodal distances greater than about 60 microns. Such a sheet is highly desirable.
  • The adhering surface of any of the variations disclosed here may be treated to enhance the biological bonding with the compliant reinforcement device. The inventive device may be adapted to promote angiogenesis adjacent the pericardium. Angiogenesis-promoting materials, particularly those that promote growth of microvasculature, whether synthetic or natural may be infused into the various components, e.g., into or onto the polymers of the inventive device adjacent the pericardium. Angiogenic materials include, e.g., collagen, fibrinogen, vitronectin, other plasma proteins, various appropriate growth factors (e.g., vascular endothelial growth factor, “VEGF”), and synthetic peptides of these and other similar proteins. Other components having a specific role may be included, e.g., genes, growth factors, biomolecules, peptides, oligonucleotides, members of the integrin family, RGD-containing sequences, oligopeptides; e.g., fibronectin, laminin, bitronectin, hyaluronic acid, silk-elastin, elastin, fibrinogen, and the like.
  • Other bioactive materials which may be used in the invention include, for example, pharmaceutically active compounds, proteins, oligonucleotides, ribozymes, and anti-sense genes. Desirable additions include vascular cell growth promotors such as growth factors, growth factor receptor antagonists, transcriptional activators, and translational promotors; vascular cell growth inhibitors such as growth factor inhibitors, growth factor receptor antagonists, transcriptional repressors, translational repressors, replication inhibitors, inhibitory antibodies, antibodies directly against growth factors, bifunctional molecules consisting of a growth factor and a cytotoxin, bifunctional molecules consisting of an antibody and a cytotoxin; cholesterol-lowering agents; vasodilating agents; agents which interfere with endogenous vasoactive mechanisms, and combinations thereof.
  • In addition, polypeptides or proteins that may be incorporated into or onto the inventive device, or whose DNA can be incorporated, include without limitation, proteins competent to induce angiogenesis, including factors such as, without limitation, acidic and basic fibroblast growth factors, vascular endothelial growth factor (including VEGF-2, VEGF-3, VEGF-A, VEGF-B, VEGF-C) hif-1 and other molecules competent to induce an upstream or downstream effect of an angiogenic factor; epidermal growth factor, transforming growth factor α and β, platelet-derived endothelial growth factor; platelet-derived growth factor, tumor necrosis factor α, hepatocyte growth factor and insulin like growth factor; cell cycle inhibitors including CDK inhibitors; thymidine kinase (“TK”) and other agents useful for interfering with cell proliferation, and combinations thereof.
  • In any case, it is also within the scope of this invention to utilize mechanical fasteners or adhesives to join the compliant reinforcing member to the pericardium. For instance, FIG. 5 shows the reinforcement (170) attached to the pericardium (172) variously with a surgical staple (174) and a suture (176). Other mechanical fasteners such as blind rivets (178) or the like are also suitable and within the scope of knowledge of the worker in this art.
  • Similarly, FIG. 6 depicts the use of a biological adhesive based perhaps on fibrin or polycyanoacrylate or other similarly operating adhesives (180) to affix the reinforcing device (182) to the pericardium (172).
  • Having explained the generic functioning of the respective sides of the compliant reinforcing member, we turn now to a description of physical variations of the reinforcing member. They share the desirable functionality of preferably being deliverable using percutaneous delivery methods or minimally-invasive methods.
  • FIG. 7 shows one such basic form (190) in which the compliant enclosure has a closed apical end (192) and an optional upper end band (194). The sack (190) may be woven or non-woven. The material used preferably has some measure of rigidity, having at least sufficient rigidity to allow an amount of pressure against the enclosing pericardium appropriate to begin the process of adherence to that pericardium. This stiffness is balanced against the need for the device (190) to be sufficiently compliant to allow passage through a cannula, or the like, during the procedure of introducing the device (190) into the pericardial sac.
  • A schematic introducer (196) is shown in this variation and in many of the other variations discussed herein. Typically the introducer (196) will be a wire or rod having a loop carrying the upper end of the device, e.g., band (194) in FIG. 7, during the introducing step. The loop may then be removed from the heart or may remain with the device as a stiffening member.
  • The variation (190) shown in FIG. 7 may be sufficiently extensive in size that it extends up to the region of the pericardium adjacent the pulmonary arteries, etc.
  • FIG. 8 shows a side view of a variation of the inventive pericardial reinforcement (200) having a generally pericardial form due to the presence of webbing (204). Webbing (204) may be fabric, individual threads, cords, etc—many of which are discussed elsewhere herein, but desirably the webbing is formed in such a way as to allow for ease of folding and conformation during delivery of the device near and past the heart's apical end. A schematic delivery wire or introducer (206) is shown.
  • FIG. 9 shows a side view of a variation of the pericardial reinforcement device (210) that is open in the end normally near the apical end of the heart and generally is band-shaped. Optional upper band (212) and lower band (214) are included. These bands (212,214) are to provide structure to the after more-loosely woven compliant member (216) separating them. This variation (210) is especially suitable for providing support local to the ventricular valves, a region whose reinforcement is especially effective in alienating congestive heart failure. This variation minimizes the mass of material implanted into the heart region, an often desirable result. The schematic introducer (218) is shown.
  • FIGS. 10A and 10B show, respectively, a side view and a top cross-sectional view of another ribbed variation (230). As shown in FIG. 10A, this variation (230) includes ribs (232) that extend from an upper (but optional) band (234) to an apical end (236). As may be seen in FIG. 10B, the ribs (232) may be semicircular in cross-section although there is a preference for the exterior of the ribs (232) to be a shape conformable to the pericardium, the cross-sectional shape of the ribs is not particularly important. The ribs (232), as shown in FIGS. 10A and 10B, may stand alone but preferably are separated and held in place by webbing (238) of any of the various forms discussed herein.
  • FIGS. 11A and 11B show, respectively, a side view and a cross-sectional view of another ribbed variation (250). As was noted just above, the ribs (252) are not semi-circular in cross-section but have more of a flat aspect. In this variation, the ribs extend to an apical and (254). A schematic introducer (256) is shown. The ribs (252) may be separated by webbing (258) if desired.
  • FIG. 12 shows a side view of a variation (260) having ribs (262) that do not extend to the apical end, but instead stop at a lower band (264) and extend from an upper band (266). As was the case with the other variations of this type, the ribs may be separated by webbing (268). An introducer (270) is shown.
  • FIG. 13 shows a ribbed variation (280) of the inventive reinforcement member in which the compliant member has ribs (282) that are zigzag in shape. This rib variation minimizes the amount of material that is introduced as rib material but distributes the stiffer reinforcing material around the periphery of the devices quite nicely. The ribs (282), again, may be separated by webbing (284) material of the type discussed elsewhere. An introducer (286) is also shown. The ribs (282) are shown to be situated “in phase” but need not be. Other convoluted forms to the ribs, e.g., sine shaped ribs, -shaped ribs, etc., are also within the scope of the invention.
  • FIG. 14 shows a side view of a variation (290) of the invention where the ribs (292) are joined at their respective apexes. The ribs (292) thereby form a continuous cage about the reinforcing member (290). The various spaces (294) remaining amongst the ribs (292) may be filled with webbing if so desired.
  • FIGS. 15A-15D show a number of variations of the “webbing” discussed above.
  • FIG. 15A shows a number of ribs (300) separated by and held together by strands (302) of an appropriate material. The strands (302) collectively making up the webbing may be single threads or collections of threads making up a cord-like assemblage.
  • FIG. 15B shows the ribs (300) with a woven cloth (304) as the webbing material. The relative pic value may be in a range that extends between closed cloth to very open weave.
  • FIG. 15C shows the ribs (300) with anon-woven fabric (306) having optional upper and lower bands (308).
  • Finally; FIG. 15D shows ribs (300) separated by webbing (310) that is made up of a series of tapes (310) in turn formed from a fabric, woven or non-woven.
  • In addition to the generally pre-formed structures discussed above, we contemplate structures formable within the pericardial sac.
  • FIGS. 16A and 16B show, respectively, a side view and a cross-sectional view of a reinforcing device (320) prior to introduction into the pericardium. FIGS. 17 A and 17B show, respectively, a side view and a cross-sectional view of the FIGS. 16A and 16B device after deployment.
  • FIG. 16A shows a side vision of a device (320) having a perforated side (322) with perforation (324). Perforations (324) communicate with inflatable lumen that is not visible in FIGS. 16A and 16B. A delivery conduit (328) is provided for introducing suitable adhesives into the device (320) in the lumen between perforated side (322) and back side (326 in FIG. 16B). Delivery conduit (328) desirably is used as an introducer for placement of the device (320) in the pericardial sac via a percutaneous or minimally invasive procedure.
  • The form of the device (320) shown in FIG. 16A is adapted to allow “corkscrewing” of the device as it is wound though the pericardial space. In addition, the perforated side (322) is allowed by this adaptation to migrate to the outside or pericardial side of the resulting structure. Once the proper positioning of the device (320) has been accomplished, adhesive (330) is brought into the lumen between the perforated side (322) and the opposite side (326). The adhesive flows through the perforation (324) to cause adherence between the device (320) and the surrounding pericardial wall.
  • FIG. 18 shows a variation of the reinforcing member (340) that is not a continuous band about the heart, in that it has a longitudinal opening from upper to apical end and a delivery introducer (342) that may be removed after delivery of the reinforcing member (340) to the pericardium. Optionally, the elongate section (344) of the delivery introducer (342) may be separately removed.
  • All of our variations are passive devices.
  • After a period of time, it may be desirable to alter the stiffness of the inventive reinforcing device. Because the device is preferably adherent to or ingrown with the pericardium, replacement is not a desired step. Simple size adjustment would be. FIGS. 19, 20A, 20B, and 21 show various features allowing for adjustment of some size of the installed pericardial reinforcement device.
  • FIG. 19 shows a simple or generic reinforcing device (350) similar in structure and concept to that found in FIG. 9. An added feature is the structure of the lower band (352) and its attendant drawstring (354). The lower band (352) has a lumen that circumscribes the lower end of the device (350). The drawstring (354) passes through this circumscribing lumen. It is desirable to place radio-opaque markers (386), e.g., platinum or gold bands, on the drawstring (354) to allow for later detection and manipulation. The concept is simple: to pull on the drawstring (354) either both sides together or one side against the other, thereby, to cinch the lower band into a smaller diameter. Some design thought must be had to permit the drawstring (354) to slide within the lower band (352), e.g., by proper choice of materials on this portion. Tugging on the drawstrings (354) of the heart will tighten the pericardium and provide additional firmness to that pericardium in slowing the progression of CHF. The drawstring (354) may be situated so that it is adjustable from within or without the pericardial space.
  • FIGS. 20A and 20B show a tightener variation in which the reinforcement device (360) includes a rotatable spine (362) that is affixed to the compliant member (364) that, in turn, is adherent to the pericardium. Twisting of the spine (362) tightens the reinforcement device and hence the pericardium. Desirably, the spine (362) may be twisted from the pericardia! space near the apex of the enclosed heart.
  • FIG. 20B schematically shows the twisting of spine (362).
  • FIG. 21 shows a variation (370) similar in structure to that shown in FIGS. 10A and 10B. Each of these variations includes ribs (372 in FIG. 21 and 232 in FIGS. 10A and 10B) that meet at an apex. The ribs (372) may be fixed together at that apex (374) or may flex freely about that lower point. In either case, the drawstring (376) in the lumen upper band (378) may be tightened to close the upper band (378) and to tighten the structure of inventive device (370). Again, use of radio-opaque markers (380) is highly desirable. The drawstring (376) should be placed so to be accessible to the pericardial space.
  • Several of the benefits extending from the inventive device may be summarized in the following way: Our device is intended not substantially to contact the epicardium in normal use. Consequently, many of the problems inherent simply in the act of contacting the myocardial tissue, e.g., arrhythmia, myocarditis, etc., may be minimized. Because our implant is designed not substantially to contact the epicardium, any consequent coarsening of the epicardial tissue is lessened.
  • The pericardium is in a gross engineering sense, a liquid-filled shock absorber that tends to exert a constant force upon the epicardium that is assessable via the fluid pressure in the pericardial space. This pressure is in some measure, related to the fitness and strength of the pericardium. Placement of implants upon the epicardial surface provides support to that surface, but the support is at the cost of direct implant contact. Our device provides the same or similar support in a much more gentle and uniform way, by supporting the pericardium and thereby supporting the fluid that supports the heart.
  • Additionally, sizing and placement of the pericardial reinforcement is somewhat simpler in that the object of the placement procedure is not actively beating but is only a membrane that is passively affected by the beating muscle.
  • One highly desirable method for placement of the inventive reinforcement is shown in FIGS. 22A-22E.
  • This inventive device is neat and, because it is situated in contact with the pericardium, is suitable for placement via any number of procedures, ranging from the most invasive—open chest surgery—to those that are much less invasive. A preferred procedure for placing the device is via a percutaneous approach through the diaphragm beneath the xiphoid process. The procedure is direct and uses short instruments for ease and accuracy. Such a process is outlined in FIGS. 22A-22F.
  • Shown in FIG. 22A is a heart (400) surrounded by a pericardia! space (402) holding pericardia! fluid and all is enclosed by the pericardium (404). Also shown is the muscle sheet known as the diaphragm (406). For the purposes of depicting the spatial relationships in this procedure, the xiphoid process (510) is shown in shadow. Much of the extraneous body structure not otherwise needed for explanation of the procedure have been omitted for clarity.
  • Also shown in FIG. 22A is the first step of the procedure. A suitably large hollow needle (408) and a guidewire (410) passing through the lumen of the needle (408) have been introduced below the xiphoid process and through the diaphragm (406). The needle (408) and the guidewire (410) are shown having penetrated the pericardium (404) and having passed into the pericardial space (402).
  • FIG. 22B shows that the needle has been removed from the guidewire (410) and the distal end (412) of the guidewire (410) has been manipulated to pass upwardly. An introducer or cannula (414) is shown being passed up the guidewire (410).
  • In FIG. 22C, a cannula (420) has been placed through the pericardium (404) and the introducer wire (422) has been inserted and may be seen proceeding to the left of the heart. The reinforcing device (424) begins to trail the introducer wire (422). In this variation, the upper band (426) has a relatively rigid connection with the introducer (422) and will tend to move the device about the apex of the heart (400).
  • Some amount of manual manipulation will be necessary to keep the upper loop (426) following “the contours of the epicardium until it reaches its desired site as shown in FIG. 22D. A vibratory or oscillatory motion may be desirable to urge the device to its final spot.
  • In FIG. 22E, the introducer wire (422) and cannula (420) have been removed and their access points repaired, leaving the device (424) against the pericardia! membrane (404) for attachment, adherence, or ingrowth.
  • Many alterations and modifications may be made by those of ordinary skill in this art, without departing from the spirit and scope of this invention. The illustrated embodiments have been shown only for purposes of clarity and the examples should not be taken as limiting the invention as defined in the following claims. Which claims are intended to include all equivalents, whether now or later devised.

Claims (1)

1. A compliant and substantially non-elastic pepcardial reinforcement comprising a compliant and substantially non-elastic member having an interior surface for placement adjacent an epicardium, the interior surface tending to inhibit adhesions with the epicardium and having an exterior surface for attachment to the interior of a pericardium.
US11/407,883 2001-09-25 2006-04-19 Pericardium reinforcing devices and methods for using them Abandoned US20070073100A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/407,883 US20070073100A1 (en) 2001-09-25 2006-04-19 Pericardium reinforcing devices and methods for using them
US13/427,705 US20120178988A1 (en) 2001-09-25 2012-03-22 Pericardium reinforcing devices and methods for using them

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/963,848 US7060023B2 (en) 2001-09-25 2001-09-25 Pericardium reinforcing devices and methods of using them
US11/407,883 US20070073100A1 (en) 2001-09-25 2006-04-19 Pericardium reinforcing devices and methods for using them

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/963,848 Continuation US7060023B2 (en) 2001-09-25 2001-09-25 Pericardium reinforcing devices and methods of using them

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/427,705 Continuation US20120178988A1 (en) 2001-09-25 2012-03-22 Pericardium reinforcing devices and methods for using them

Publications (1)

Publication Number Publication Date
US20070073100A1 true US20070073100A1 (en) 2007-03-29

Family

ID=25507804

Family Applications (3)

Application Number Title Priority Date Filing Date
US09/963,848 Expired - Fee Related US7060023B2 (en) 2001-09-25 2001-09-25 Pericardium reinforcing devices and methods of using them
US11/407,883 Abandoned US20070073100A1 (en) 2001-09-25 2006-04-19 Pericardium reinforcing devices and methods for using them
US13/427,705 Abandoned US20120178988A1 (en) 2001-09-25 2012-03-22 Pericardium reinforcing devices and methods for using them

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/963,848 Expired - Fee Related US7060023B2 (en) 2001-09-25 2001-09-25 Pericardium reinforcing devices and methods of using them

Family Applications After (1)

Application Number Title Priority Date Filing Date
US13/427,705 Abandoned US20120178988A1 (en) 2001-09-25 2012-03-22 Pericardium reinforcing devices and methods for using them

Country Status (6)

Country Link
US (3) US7060023B2 (en)
EP (1) EP1455680B1 (en)
AT (1) ATE415896T1 (en)
AU (1) AU2002362607A1 (en)
DE (1) DE60230182D1 (en)
WO (1) WO2003026485A2 (en)

Families Citing this family (73)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6123662A (en) * 1998-07-13 2000-09-26 Acorn Cardiovascular, Inc. Cardiac disease treatment and device
US7491232B2 (en) 1998-09-18 2009-02-17 Aptus Endosystems, Inc. Catheter-based fastener implantation apparatus and methods with implantation force resolution
US20030040809A1 (en) * 1999-03-20 2003-02-27 Helmut Goldmann Flat implant for use in surgery
EP1261294B1 (en) * 2000-03-10 2006-11-29 Paracor Medical, Inc. Expandable cardiac harness for treating congestive heart failure
US6425856B1 (en) 2000-05-10 2002-07-30 Acorn Cardiovascular, Inc. Cardiac disease treatment and device
WO2003022131A2 (en) 2001-09-07 2003-03-20 Mardil, Inc. Method and apparatus for external heart stabilization
WO2003022176A2 (en) * 2001-09-10 2003-03-20 Paracor Medical, Inc. Cardiac harness
US7060023B2 (en) * 2001-09-25 2006-06-13 The Foundry Inc. Pericardium reinforcing devices and methods of using them
EP1446069A1 (en) * 2001-10-31 2004-08-18 Paracor Surgical, Inc. Heart failure treatment device
US9320503B2 (en) 2001-11-28 2016-04-26 Medtronic Vascular, Inc. Devices, system, and methods for guiding an operative tool into an interior body region
US8231639B2 (en) 2001-11-28 2012-07-31 Aptus Endosystems, Inc. Systems and methods for attaching a prosthesis within a body lumen or hollow organ
US20050177180A1 (en) 2001-11-28 2005-08-11 Aptus Endosystems, Inc. Devices, systems, and methods for supporting tissue and/or structures within a hollow body organ
EP1448117B1 (en) 2001-11-28 2013-05-22 Aptus Endosystems, Inc. Endovascular aneurysm repair system
US20110087320A1 (en) * 2001-11-28 2011-04-14 Aptus Endosystems, Inc. Devices, Systems, and Methods for Prosthesis Delivery and Implantation, Including a Prosthesis Assembly
US20090099650A1 (en) * 2001-11-28 2009-04-16 Lee Bolduc Devices, systems, and methods for endovascular staple and/or prosthesis delivery and implantation
US20070073389A1 (en) 2001-11-28 2007-03-29 Aptus Endosystems, Inc. Endovascular aneurysm devices, systems, and methods
US7022063B2 (en) 2002-01-07 2006-04-04 Paracor Medical, Inc. Cardiac harness
US7485089B2 (en) * 2002-09-05 2009-02-03 Paracor Medical, Inc. Cardiac harness
US20050059855A1 (en) * 2002-11-15 2005-03-17 Lilip Lau Cardiac harness delivery device and method
US7736299B2 (en) * 2002-11-15 2010-06-15 Paracor Medical, Inc. Introducer for a cardiac harness delivery
CA2504555C (en) * 2002-11-15 2012-09-04 Paracor Medical, Inc. Cardiac harness delivery device
US20070255093A1 (en) * 2002-11-15 2007-11-01 Lilip Lau Cardiac harness delivery device and method
US20040138521A1 (en) * 2003-01-10 2004-07-15 Grabek James R. Myocardial constraint
WO2004082532A1 (en) * 2003-03-17 2004-09-30 Ev3 Sunnyvale, Inc. Thin film composite lamination
US20050283042A1 (en) * 2003-03-28 2005-12-22 Steve Meyer Cardiac harness having radiopaque coating and method of use
US20040249242A1 (en) * 2003-03-28 2004-12-09 Lilip Lau Multi-panel cardiac harness
JP2007528749A (en) * 2003-07-10 2007-10-18 パラコー メディカル インコーポレイテッド Self-fixing cardiac harness
US7155295B2 (en) * 2003-11-07 2006-12-26 Paracor Medical, Inc. Cardiac harness for treating congestive heart failure and for defibrillating and/or pacing/sensing
US20070055091A1 (en) * 2004-12-02 2007-03-08 Lilip Lau Cardiac harness for treating congestive heart failure and for defibrillating and/or pacing/sensing
US20050137673A1 (en) * 2003-11-07 2005-06-23 Lilip Lau Cardiac harness having electrodes and epicardial leads
US20070106336A1 (en) * 2003-11-07 2007-05-10 Alan Schaer Cardiac harness assembly for treating congestive heart failure and for pacing/sensing
US7158839B2 (en) * 2003-11-07 2007-01-02 Paracor Medical, Inc. Cardiac harness for treating heart disease
US20070106359A1 (en) * 2003-11-07 2007-05-10 Alan Schaer Cardiac harness assembly for treating congestive heart failure and for pacing/sensing
CA2553185A1 (en) * 2004-01-12 2005-08-04 Paracor Medical, Inc. Cardiac harness having interconnected strands
DE102004023191B3 (en) * 2004-05-11 2005-12-15 Ppa Technologies Ag Device for epicardial support and / or transfer of cardiac activity
US20060009675A1 (en) * 2004-07-08 2006-01-12 Steven Meyer Self-anchoring cardiac harness for treating the heart and for defibrillating and/or pacing/sensing
EP1669045B1 (en) * 2004-12-09 2012-04-11 AMI Agency for Medical Innovations GmbH Gastric band for the treatment of obesity
US20060129026A1 (en) * 2004-12-15 2006-06-15 Joshua Wallin Apparatus and method for mounting a cardiac harness on the heart
US20070032696A1 (en) * 2005-07-22 2007-02-08 Sieu Duong Cardiac harness delivery device
US7587247B2 (en) * 2005-08-01 2009-09-08 Paracor Medical, Inc. Cardiac harness having an optimal impedance range
US20070100199A1 (en) * 2005-11-03 2007-05-03 Lilip Lau Apparatus and method of delivering biomaterial to the heart
CN101466316B (en) 2005-10-20 2012-06-27 阿普特斯内系统公司 Devices systems and methods for prosthesis delivery and implantation including the use of a fastener tool
US7922648B1 (en) * 2006-02-14 2011-04-12 Pacesetter, Inc. Myocardial infarction patch for minimally invasive implant
US20070208217A1 (en) 2006-03-03 2007-09-06 Acorn Cardiovascular, Inc. Self-adjusting attachment structure for a cardiac support device
US20070208215A1 (en) * 2006-03-03 2007-09-06 Acorn Cardiovascular, Inc. Self-adjusting securing structure for a cardiac support device
US9259318B2 (en) * 2006-04-19 2016-02-16 Beth Israel Deaconess Medical Center Pericardial reinforcement device
US20070270654A1 (en) 2006-05-19 2007-11-22 Acorn Cardiovascular, Inc. Pericardium management tool for intra-pericardial surgical procedures
US20070287883A1 (en) * 2006-06-07 2007-12-13 Lilip Lau Apparatus and method for pulling a cardiac harness onto a heart
US20080004489A1 (en) * 2006-06-29 2008-01-03 Acorn Cardiovascular, Inc. Low friction delivery method for a cardiac support device
US20080004488A1 (en) * 2006-06-29 2008-01-03 Acorn Cardiovascular, Inc. Low friction delivery tool for a cardiac support device
US7651462B2 (en) 2006-07-17 2010-01-26 Acorn Cardiovascular, Inc. Cardiac support device delivery tool with release mechanism
US8192351B2 (en) 2007-08-13 2012-06-05 Paracor Medical, Inc. Medical device delivery system having integrated introducer
US20090048480A1 (en) * 2007-08-13 2009-02-19 Paracor Medical, Inc. Cardiac harness delivery device
US20090281372A1 (en) * 2008-05-06 2009-11-12 Paracor Medical, Inc. Cardiac harness assembly for treating congestive heart failure and for defibrillation and/or pacing/sensing
CA2740867C (en) 2008-10-16 2018-06-12 Aptus Endosystems, Inc. Devices, systems, and methods for endovascular staple and/or prosthesis delivery and implantation
WO2011014707A2 (en) 2009-07-29 2011-02-03 Kai Pharmaceuticals, Inc. Therapeutic agents for reducing parathyroid hormone levels
US8579964B2 (en) 2010-05-05 2013-11-12 Neovasc Inc. Transcatheter mitral valve prosthesis
US8696738B2 (en) 2010-05-20 2014-04-15 Maquet Cardiovascular Llc Composite prosthesis with external polymeric support structure and methods of manufacturing the same
US9308087B2 (en) 2011-04-28 2016-04-12 Neovasc Tiara Inc. Sequentially deployed transcatheter mitral valve prosthesis
US9554897B2 (en) 2011-04-28 2017-01-31 Neovasc Tiara Inc. Methods and apparatus for engaging a valve prosthesis with tissue
US9345573B2 (en) 2012-05-30 2016-05-24 Neovasc Tiara Inc. Methods and apparatus for loading a prosthesis onto a delivery system
EP2906151B1 (en) 2012-10-12 2023-06-21 Mardil, Inc. Cardiac treatment system
US9572665B2 (en) 2013-04-04 2017-02-21 Neovasc Tiara Inc. Methods and apparatus for delivering a prosthetic valve to a beating heart
USD717954S1 (en) 2013-10-14 2014-11-18 Mardil, Inc. Heart treatment device
CN108882981B (en) 2016-01-29 2021-08-10 内奥瓦斯克迪亚拉公司 Prosthetic valve for preventing outflow obstruction
WO2018090148A1 (en) 2016-11-21 2018-05-24 Neovasc Tiara Inc. Methods and systems for rapid retraction of a transcatheter heart valve delivery system
WO2019036810A1 (en) 2017-08-25 2019-02-28 Neovasc Tiara Inc. Sequentially deployed transcatheter mitral valve prosthesis
US11737872B2 (en) 2018-11-08 2023-08-29 Neovasc Tiara Inc. Ventricular deployment of a transcatheter mitral valve prosthesis
WO2020102120A1 (en) * 2018-11-16 2020-05-22 Lamamed Solutions Systems and methods for providing penile modeling
CA3135753C (en) 2019-04-01 2023-10-24 Neovasc Tiara Inc. Controllably deployable prosthetic valve
CA3136334A1 (en) 2019-04-10 2020-10-15 Neovasc Tiara Inc. Prosthetic valve with natural blood flow
WO2020236931A1 (en) 2019-05-20 2020-11-26 Neovasc Tiara Inc. Introducer with hemostasis mechanism
CN114144144A (en) 2019-06-20 2022-03-04 内奥瓦斯克迪亚拉公司 Low-profile prosthetic mitral valve

Citations (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2826193A (en) * 1956-08-01 1958-03-11 Vineberg Heart Foundation Cardiac resuscitation device
US3464322A (en) * 1966-12-19 1969-09-02 Michel J J Pequignot Deformable diaphragm
US3513836A (en) * 1966-09-05 1970-05-26 Andre Sausse Prosthesis for cardiac assistance
US3587567A (en) * 1968-12-20 1971-06-28 Peter Paul Schiff Mechanical ventricular assistance assembly
US3613672A (en) * 1969-07-09 1971-10-19 Peter Schiff Mechanical ventricular assistance cup
US3983863A (en) * 1975-06-02 1976-10-05 American Hospital Supply Corporation Heart support for coronary artery surgery
US4536893A (en) * 1982-03-03 1985-08-27 Roberto Parravicini Implant device for substaining the activity of the myocardium
US4628937A (en) * 1984-08-02 1986-12-16 Cordis Corporation Mapping electrode assembly
US4690134A (en) * 1985-07-01 1987-09-01 Snyders Robert V Ventricular assist device
US4827932A (en) * 1987-02-27 1989-05-09 Intermedics Inc. Implantable defibrillation electrodes
US4936857A (en) * 1987-02-23 1990-06-26 Kulik Yaroslav P Prosthetic pericardium
US4957477A (en) * 1986-05-22 1990-09-18 Astra Tech Ab Heart assist jacket and method of using it
US4972300A (en) * 1989-08-21 1990-11-20 American Cyanamid Company Emergency lighting device
US4973300A (en) * 1989-09-22 1990-11-27 Pioneering Technologies, Inc. Cardiac sling for circumflex coronary artery surgery
US5098369A (en) * 1987-02-27 1992-03-24 Vascor, Inc. Biocompatible ventricular assist and arrhythmia control device including cardiac compression pad and compression assembly
US5119804A (en) * 1990-11-19 1992-06-09 Anstadt George L Heart massage apparatus
US5131905A (en) * 1990-07-16 1992-07-21 Grooters Ronald K External cardiac assist device
US5131907A (en) * 1986-04-04 1992-07-21 Thomas Jefferson University Method of treating a synthetic naturally occurring surface with a collagen laminate to support microvascular endothelial cell growth, and the surface itself
US5169381A (en) * 1991-03-29 1992-12-08 Snyders Robert V Ventricular assist device
US5256132A (en) * 1992-08-17 1993-10-26 Snyders Robert V Cardiac assist envelope for endoscopic application
US5258132A (en) * 1989-11-15 1993-11-02 Lever Brothers Company, Division Of Conopco, Inc. Wax-encapsulated particles
US5336254A (en) * 1992-09-23 1994-08-09 Medtronic, Inc. Defibrillation lead employing electrodes fabricated from woven carbon fibers
US5603337A (en) * 1994-12-05 1997-02-18 Jarvik; Robert Two-stage cardiomyoplasty
US5643172A (en) * 1995-03-06 1997-07-01 Abiomed R & D, Inc. Tubular circulatory assist device
US5693085A (en) * 1994-04-29 1997-12-02 Scimed Life Systems, Inc. Stent with collagen
US5702343A (en) * 1996-10-02 1997-12-30 Acorn Medical, Inc. Cardiac reinforcement device
US5713954A (en) * 1995-06-13 1998-02-03 Abiomed R&D, Inc. Extra cardiac ventricular assist device
US5718973A (en) * 1993-08-18 1998-02-17 W. L. Gore & Associates, Inc. Tubular intraluminal graft
US5800528A (en) * 1995-06-13 1998-09-01 Abiomed R & D, Inc. Passive girdle for heart ventricle for therapeutic aid to patients having ventricular dilatation
US5897587A (en) * 1996-12-03 1999-04-27 Atrium Medical Corporation Multi-stage prosthesis
US5900528A (en) * 1997-11-24 1999-05-04 Optimum Quality Grains, L.L.C. Synthetic corn hybrid P55
US5961440A (en) * 1997-01-02 1999-10-05 Myocor, Inc. Heart wall tension reduction apparatus and method
US6037366A (en) * 1997-09-11 2000-03-14 Prohold Medical Technologies, Inc. Composition for creating vascular occlusions
US6045497A (en) * 1997-01-02 2000-04-04 Myocor, Inc. Heart wall tension reduction apparatus and method
US6050936A (en) * 1997-01-02 2000-04-18 Myocor, Inc. Heart wall tension reduction apparatus
US6076013A (en) * 1999-01-14 2000-06-13 Brennan; Edward F. Apparatus and methods for treating congestive heart failure
US6077214A (en) * 1998-07-29 2000-06-20 Myocor, Inc. Stress reduction apparatus and method
US6085754A (en) * 1998-07-13 2000-07-11 Acorn Cardiovascular, Inc. Cardiac disease treatment method
US6085784A (en) * 1998-08-13 2000-07-11 Emhart Inc. Quick connect hose assembly
US6095968A (en) * 1998-04-10 2000-08-01 Cardio Technologies, Inc. Reinforcement device
US6110100A (en) * 1998-04-22 2000-08-29 Scimed Life Systems, Inc. System for stress relieving the heart muscle and for controlling heart function
US6109972A (en) * 1995-08-28 2000-08-29 Nokia Telecommunications Oy Plug
US6126662A (en) * 1998-10-09 2000-10-03 Carmichael; Robert P. Bone implant
US6151222A (en) * 1999-03-02 2000-11-21 Delco Electronics Corp. Dual voltage automotive electrical system with sub-resonant DC-DC converter
US6155972A (en) * 1999-02-02 2000-12-05 Acorn Cardiovascular, Inc. Cardiac constraint jacket construction
US6169922B1 (en) * 1998-11-18 2001-01-02 Acorn Cardiovascular, Inc. Defibrillating cardiac jacket with interwoven electrode grids
US6174279B1 (en) * 1999-09-21 2001-01-16 Acorn Cardiovascular, Inc. Cardiac constraint with tension indicator
US6183411B1 (en) * 1998-09-21 2001-02-06 Myocor, Inc. External stress reduction device and method
US6190408B1 (en) * 1998-03-05 2001-02-20 The University Of Cincinnati Device and method for restructuring the heart chamber geometry
US6193648B1 (en) * 1999-09-21 2001-02-27 Acorn Cardiovascular, Inc. Cardiac constraint with draw string tensioning
US6210432B1 (en) * 1999-06-29 2001-04-03 Jan Otto Solem Device and method for treatment of mitral insufficiency
US6231602B1 (en) * 1999-04-16 2001-05-15 Edwards Lifesciences Corporation Aortic annuloplasty ring
US6230714B1 (en) * 1998-11-18 2001-05-15 Acorn Cardiovascular, Inc. Cardiac constraint with prior venus occlusion methods
US6234960B1 (en) * 1998-09-30 2001-05-22 A-Med Systems, Inc. Heart stabilizer apparatus
US6237607B1 (en) * 1998-04-20 2001-05-29 Heartstent Corporation Transmyocardial implant procedure
US6241654B1 (en) * 1999-07-07 2001-06-05 Acorn Cardiovasculr, Inc. Cardiac reinforcement devices and methods
US6260552B1 (en) * 1998-07-29 2001-07-17 Myocor, Inc. Transventricular implant tools and devices
US6264645B1 (en) * 1997-08-14 2001-07-24 Medtronic, Inc. Method of pressurizing the right ventricle of the heart
US6293906B1 (en) * 2000-01-14 2001-09-25 Acorn Cardiovascular, Inc. Delivery of cardiac constraint jacket
US6416459B1 (en) * 1997-06-21 2002-07-09 Acorn Cardiovascular Inc. Bag for at least partially enveloping a heart
US6425856B1 (en) * 2000-05-10 2002-07-30 Acorn Cardiovascular, Inc. Cardiac disease treatment and device
US6463332B1 (en) * 1999-09-17 2002-10-08 Core Medical, Inc. Method and system for pericardial enhancement
US20030060677A1 (en) * 2001-09-25 2003-03-27 French Ronald G. Passive ventricular support devices and methods of using them
US20030060895A1 (en) * 2001-09-25 2003-03-27 French Ronald G. Pericardium reinforcing devices and methods of using them
US6547821B1 (en) * 1998-07-16 2003-04-15 Cardiothoracic Systems, Inc. Surgical procedures and devices for increasing cardiac output of the heart
US20030088149A1 (en) * 2001-09-07 2003-05-08 Raman Jaishankar Method and apparatus for external stabilization of the heart
US20080021266A1 (en) * 2006-04-19 2008-01-24 Laham Roger J Pericardial reinforcement device
US20080275295A1 (en) * 2007-05-01 2008-11-06 Michael Gertner Methods of using pericardial inserts

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2115287B (en) 1981-06-29 1985-10-30 Devendra Nath Sharma Devices for replacing or assisting the heart
SU1009457A1 (en) 1981-07-15 1983-04-07 Проблемная Лаборатория "Вспомогательного Кровообращения" Благовещенского Медицинского Института Artificial pericardium
FR2639221A1 (en) 1988-11-21 1990-05-25 Perrotin Daniel APPARATUS FOR DIRECTIONAL AND PERIODIC MASSAGE OF A PART OF THE HUMAN BODY
JPH02271829A (en) 1989-04-13 1990-11-06 Tanaka Kikinzoku Kogyo Kk Electrode for deciding myocardial infarction
FR2645739A1 (en) 1989-04-14 1990-10-19 Vm Tech Sa Cardiac assistance device and its use
SU1734767A1 (en) 1990-01-31 1992-05-23 Томский Медицинский Институт Heart action assistance device
US5383840A (en) 1992-07-28 1995-01-24 Vascor, Inc. Biocompatible ventricular assist and arrhythmia control device including cardiac compression band-stay-pad assembly
US6123662A (en) 1998-07-13 2000-09-26 Acorn Cardiovascular, Inc. Cardiac disease treatment and device
US6476069B2 (en) 1997-09-11 2002-11-05 Provasis Therapeutics Inc. Compositions for creating embolic agents and uses thereof
DE19912648A1 (en) * 1999-03-20 2000-09-21 Aesculap Ag & Co Kg Flat implant, method for its production and use in surgery
EP1261294B1 (en) 2000-03-10 2006-11-29 Paracor Medical, Inc. Expandable cardiac harness for treating congestive heart failure
US6730016B1 (en) * 2000-06-12 2004-05-04 Acorn Cardiovascular, Inc. Cardiac disease treatment and device

Patent Citations (84)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2826193A (en) * 1956-08-01 1958-03-11 Vineberg Heart Foundation Cardiac resuscitation device
US3513836A (en) * 1966-09-05 1970-05-26 Andre Sausse Prosthesis for cardiac assistance
US3464322A (en) * 1966-12-19 1969-09-02 Michel J J Pequignot Deformable diaphragm
US3587567A (en) * 1968-12-20 1971-06-28 Peter Paul Schiff Mechanical ventricular assistance assembly
US3613672A (en) * 1969-07-09 1971-10-19 Peter Schiff Mechanical ventricular assistance cup
US3983863A (en) * 1975-06-02 1976-10-05 American Hospital Supply Corporation Heart support for coronary artery surgery
US4536893A (en) * 1982-03-03 1985-08-27 Roberto Parravicini Implant device for substaining the activity of the myocardium
US4628937A (en) * 1984-08-02 1986-12-16 Cordis Corporation Mapping electrode assembly
US4690134A (en) * 1985-07-01 1987-09-01 Snyders Robert V Ventricular assist device
US5131907A (en) * 1986-04-04 1992-07-21 Thomas Jefferson University Method of treating a synthetic naturally occurring surface with a collagen laminate to support microvascular endothelial cell growth, and the surface itself
US4957477A (en) * 1986-05-22 1990-09-18 Astra Tech Ab Heart assist jacket and method of using it
US4936857A (en) * 1987-02-23 1990-06-26 Kulik Yaroslav P Prosthetic pericardium
US5098369A (en) * 1987-02-27 1992-03-24 Vascor, Inc. Biocompatible ventricular assist and arrhythmia control device including cardiac compression pad and compression assembly
US4827932A (en) * 1987-02-27 1989-05-09 Intermedics Inc. Implantable defibrillation electrodes
US4972300A (en) * 1989-08-21 1990-11-20 American Cyanamid Company Emergency lighting device
US4973300A (en) * 1989-09-22 1990-11-27 Pioneering Technologies, Inc. Cardiac sling for circumflex coronary artery surgery
US5258132A (en) * 1989-11-15 1993-11-02 Lever Brothers Company, Division Of Conopco, Inc. Wax-encapsulated particles
US5131905A (en) * 1990-07-16 1992-07-21 Grooters Ronald K External cardiac assist device
US5119804A (en) * 1990-11-19 1992-06-09 Anstadt George L Heart massage apparatus
US5169381A (en) * 1991-03-29 1992-12-08 Snyders Robert V Ventricular assist device
US5256132A (en) * 1992-08-17 1993-10-26 Snyders Robert V Cardiac assist envelope for endoscopic application
US5336254A (en) * 1992-09-23 1994-08-09 Medtronic, Inc. Defibrillation lead employing electrodes fabricated from woven carbon fibers
US5718973A (en) * 1993-08-18 1998-02-17 W. L. Gore & Associates, Inc. Tubular intraluminal graft
US5693085A (en) * 1994-04-29 1997-12-02 Scimed Life Systems, Inc. Stent with collagen
US5603337A (en) * 1994-12-05 1997-02-18 Jarvik; Robert Two-stage cardiomyoplasty
US5643172A (en) * 1995-03-06 1997-07-01 Abiomed R & D, Inc. Tubular circulatory assist device
US5713954A (en) * 1995-06-13 1998-02-03 Abiomed R&D, Inc. Extra cardiac ventricular assist device
US5800528A (en) * 1995-06-13 1998-09-01 Abiomed R & D, Inc. Passive girdle for heart ventricle for therapeutic aid to patients having ventricular dilatation
US6224540B1 (en) * 1995-06-13 2001-05-01 Abiomed, Inc. Passive girdle for heart ventricle for therapeutic aid to patients having ventricular dilatation
US6109972A (en) * 1995-08-28 2000-08-29 Nokia Telecommunications Oy Plug
US6165121A (en) * 1996-10-02 2000-12-26 Acorn Cardiovascular, Inc. Cardiac reinforcement device
US20020091296A1 (en) * 1996-10-02 2002-07-11 Acorn Cardiovascular, Inc. Cardiac reinforcement device
US6077218A (en) * 1996-10-02 2000-06-20 Acorn Cardiovascular, Inc. Cardiac reinforcement device
US6126590A (en) * 1996-10-02 2000-10-03 Acorn Cardiovascular, Inc. Cardiac reinforcement device
US5702343A (en) * 1996-10-02 1997-12-30 Acorn Medical, Inc. Cardiac reinforcement device
US5897587A (en) * 1996-12-03 1999-04-27 Atrium Medical Corporation Multi-stage prosthesis
US5961440A (en) * 1997-01-02 1999-10-05 Myocor, Inc. Heart wall tension reduction apparatus and method
US6165119A (en) * 1997-01-02 2000-12-26 Myocor, Inc. Heart wall tension reduction apparatus and method
US6045497A (en) * 1997-01-02 2000-04-04 Myocor, Inc. Heart wall tension reduction apparatus and method
US6050936A (en) * 1997-01-02 2000-04-18 Myocor, Inc. Heart wall tension reduction apparatus
US6059715A (en) * 1997-01-02 2000-05-09 Myocor, Inc. Heart wall tension reduction apparatus
US6162168A (en) * 1997-01-02 2000-12-19 Myocor, Inc. Heart wall tension reduction apparatus
US6261222B1 (en) * 1997-01-02 2001-07-17 Myocor, Inc. Heart wall tension reduction apparatus and method
US6645139B2 (en) * 1997-06-21 2003-11-11 Acorn Cardiovascular Inc. Bag for at least partially enveloping a heart
US6416459B1 (en) * 1997-06-21 2002-07-09 Acorn Cardiovascular Inc. Bag for at least partially enveloping a heart
US6264645B1 (en) * 1997-08-14 2001-07-24 Medtronic, Inc. Method of pressurizing the right ventricle of the heart
US6037366A (en) * 1997-09-11 2000-03-14 Prohold Medical Technologies, Inc. Composition for creating vascular occlusions
US5900528A (en) * 1997-11-24 1999-05-04 Optimum Quality Grains, L.L.C. Synthetic corn hybrid P55
US6190408B1 (en) * 1998-03-05 2001-02-20 The University Of Cincinnati Device and method for restructuring the heart chamber geometry
US6095968A (en) * 1998-04-10 2000-08-01 Cardio Technologies, Inc. Reinforcement device
US6237607B1 (en) * 1998-04-20 2001-05-29 Heartstent Corporation Transmyocardial implant procedure
US6110100A (en) * 1998-04-22 2000-08-29 Scimed Life Systems, Inc. System for stress relieving the heart muscle and for controlling heart function
US6085754A (en) * 1998-07-13 2000-07-11 Acorn Cardiovascular, Inc. Cardiac disease treatment method
US6547821B1 (en) * 1998-07-16 2003-04-15 Cardiothoracic Systems, Inc. Surgical procedures and devices for increasing cardiac output of the heart
US6077214A (en) * 1998-07-29 2000-06-20 Myocor, Inc. Stress reduction apparatus and method
US6264602B1 (en) * 1998-07-29 2001-07-24 Myocor, Inc. Stress reduction apparatus and method
US6260552B1 (en) * 1998-07-29 2001-07-17 Myocor, Inc. Transventricular implant tools and devices
US6085784A (en) * 1998-08-13 2000-07-11 Emhart Inc. Quick connect hose assembly
US6183411B1 (en) * 1998-09-21 2001-02-06 Myocor, Inc. External stress reduction device and method
US6234960B1 (en) * 1998-09-30 2001-05-22 A-Med Systems, Inc. Heart stabilizer apparatus
US6126662A (en) * 1998-10-09 2000-10-03 Carmichael; Robert P. Bone implant
US6230714B1 (en) * 1998-11-18 2001-05-15 Acorn Cardiovascular, Inc. Cardiac constraint with prior venus occlusion methods
US6169922B1 (en) * 1998-11-18 2001-01-02 Acorn Cardiovascular, Inc. Defibrillating cardiac jacket with interwoven electrode grids
US6076013A (en) * 1999-01-14 2000-06-13 Brennan; Edward F. Apparatus and methods for treating congestive heart failure
US6155972A (en) * 1999-02-02 2000-12-05 Acorn Cardiovascular, Inc. Cardiac constraint jacket construction
US6151222A (en) * 1999-03-02 2000-11-21 Delco Electronics Corp. Dual voltage automotive electrical system with sub-resonant DC-DC converter
US6231602B1 (en) * 1999-04-16 2001-05-15 Edwards Lifesciences Corporation Aortic annuloplasty ring
US6210432B1 (en) * 1999-06-29 2001-04-03 Jan Otto Solem Device and method for treatment of mitral insufficiency
US6241654B1 (en) * 1999-07-07 2001-06-05 Acorn Cardiovasculr, Inc. Cardiac reinforcement devices and methods
US6463332B1 (en) * 1999-09-17 2002-10-08 Core Medical, Inc. Method and system for pericardial enhancement
US6193648B1 (en) * 1999-09-21 2001-02-27 Acorn Cardiovascular, Inc. Cardiac constraint with draw string tensioning
US6174279B1 (en) * 1999-09-21 2001-01-16 Acorn Cardiovascular, Inc. Cardiac constraint with tension indicator
US6293906B1 (en) * 2000-01-14 2001-09-25 Acorn Cardiovascular, Inc. Delivery of cardiac constraint jacket
US6425856B1 (en) * 2000-05-10 2002-07-30 Acorn Cardiovascular, Inc. Cardiac disease treatment and device
US20030088149A1 (en) * 2001-09-07 2003-05-08 Raman Jaishankar Method and apparatus for external stabilization of the heart
US6695769B2 (en) * 2001-09-25 2004-02-24 The Foundry, Inc. Passive ventricular support devices and methods of using them
US20030060895A1 (en) * 2001-09-25 2003-03-27 French Ronald G. Pericardium reinforcing devices and methods of using them
US20030060677A1 (en) * 2001-09-25 2003-03-27 French Ronald G. Passive ventricular support devices and methods of using them
US7060023B2 (en) * 2001-09-25 2006-06-13 The Foundry Inc. Pericardium reinforcing devices and methods of using them
US7354396B2 (en) * 2001-09-25 2008-04-08 The Foundry, Inc. Passive ventricular support devices and methods of using them
US20120178988A1 (en) * 2001-09-25 2012-07-12 The Foundry, Llc Pericardium reinforcing devices and methods for using them
US20080021266A1 (en) * 2006-04-19 2008-01-24 Laham Roger J Pericardial reinforcement device
US20080275295A1 (en) * 2007-05-01 2008-11-06 Michael Gertner Methods of using pericardial inserts
US20080275294A1 (en) * 2007-05-01 2008-11-06 Michael Gertner Pericardial inserts

Also Published As

Publication number Publication date
EP1455680B1 (en) 2008-12-03
WO2003026485A2 (en) 2003-04-03
EP1455680A2 (en) 2004-09-15
EP1455680A4 (en) 2006-12-27
WO2003026485A3 (en) 2004-07-01
ATE415896T1 (en) 2008-12-15
US20030060895A1 (en) 2003-03-27
AU2002362607A1 (en) 2003-04-07
DE60230182D1 (en) 2009-01-15
US20120178988A1 (en) 2012-07-12
US7060023B2 (en) 2006-06-13

Similar Documents

Publication Publication Date Title
US7060023B2 (en) Pericardium reinforcing devices and methods of using them
US7354396B2 (en) Passive ventricular support devices and methods of using them
JP6756785B2 (en) Geometric control of bending properties in artificial heart valve leaflets
JP7440440B2 (en) Apparatus and method for implanting replacement heart valves
US11135410B2 (en) Devices and methods for treating heart failure
JP6974335B2 (en) Devices, systems, and methods for transcatheter treatment of valve regurgitation
US7214181B2 (en) Septum attached ventricular support
JP6204905B2 (en) Apparatus and method for heart valve repair
EP2197512B1 (en) Heart band with fillable chambers to modify heart valve function
US20060025800A1 (en) Method and device for surgical ventricular repair
US20040138745A1 (en) Methods and devices for heart valve treatments
US20060189840A1 (en) Transmyocardial delivery of cardiac wall tension relief
CN106255467A (en) Stapling apparatus
CN106061437A (en) Systems and methods for transcatheter treatment of valve regurgitation
JP2007530136A (en) Devices, systems and methods for supporting tissue and / or structures in hollow body organs
JP2007530136A5 (en)
WO2005041745A2 (en) In vivo device for improving diastolic ventricular function
AU2016201181A1 (en) Heart band with fillable chambers to modify heart valve function
IL175263A (en) In vivo device for improving diastolic ventricular function

Legal Events

Date Code Title Description
AS Assignment

Owner name: THE FOUNDRY, LLC, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:THE FOUNDRY, INC.;REEL/FRAME:022520/0499

Effective date: 20090402

Owner name: THE FOUNDRY, LLC,CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:THE FOUNDRY, INC.;REEL/FRAME:022520/0499

Effective date: 20090402

AS Assignment

Owner name: THE FOUNDRY, LLC, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:THE FOUNDRY, INC.;REEL/FRAME:027940/0700

Effective date: 20090402

Owner name: THE FOUNDRY, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:FRENCH, RONALD G.;CHEW, SUNMI K.;GIFFORD, HANSON S., III;AND OTHERS;REEL/FRAME:027940/0689

Effective date: 20011213

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION