Suche Bilder Maps Play YouTube News Gmail Drive Mehr »
Anmelden
Nutzer von Screenreadern: Klicke auf diesen Link, um die Bedienungshilfen zu aktivieren. Dieser Modus bietet die gleichen Grundfunktionen, funktioniert aber besser mit deinem Reader.

Patentsuche

  1. Erweiterte Patentsuche
VeröffentlichungsnummerUS20070092591 A1
PublikationstypAnmeldung
AnmeldenummerUS 11/257,339
Veröffentlichungsdatum26. Apr. 2007
Eingetragen24. Okt. 2005
Prioritätsdatum24. Okt. 2005
Auch veröffentlicht unterUS7901613, US20100101944
Veröffentlichungsnummer11257339, 257339, US 2007/0092591 A1, US 2007/092591 A1, US 20070092591 A1, US 20070092591A1, US 2007092591 A1, US 2007092591A1, US-A1-20070092591, US-A1-2007092591, US2007/0092591A1, US2007/092591A1, US20070092591 A1, US20070092591A1, US2007092591 A1, US2007092591A1
ErfinderShawn Kollatschny, Joseph Sciacca
Ursprünglich BevollmächtigterCyberonics, Inc.
Zitat exportierenBiBTeX, EndNote, RefMan
Externe Links: USPTO, USPTO-Zuordnung, Espacenet
Vacuum mandrel for use in fabricating an implantable electrode
US 20070092591 A1
Zusammenfassung
A vacuum mandrel for use in fabricating an implantable electrode comprises a hollow body member and a first groove provided radially on an outer surface of the hollow body member. The first groove is adapted to receive an implantable electrode and retain the electrode in place with a vacuum pressure during an elastomeric encapsulation of the electrode. The vacuum mandrel further comprises a vacuum port provided in the first groove.
Bilder(5)
Previous page
Next page
Ansprüche(23)
1. A vacuum mandrel for use in fabricating an implantable electrode, comprising:
a hollow body member having an outer surface;
a first groove on said outer surface, adapted to receive an electrode member; and
a vacuum port provided in said first groove.
2. The vacuum mandrel of claim 1 wherein said first groove is a spiral groove.
3. The vacuum mandrel of claim 2 further comprising a plurality of vacuum ports provided in said spiral groove.
4. The vacuum mandrel of claim 1 further comprising a longitudinal groove portion provided at an end of said first groove.
5. The vacuum mandrel of claim 1 further comprising a pair of second grooves provided at or near opposing ends of said first groove, each of said second grooves ending in a longitudinal groove portion.
6. The vacuum mandrel of claim 5 wherein each of said second grooves is provided on said hollow body member for less than one revolution.
7. The vacuum mandrel of claim 1 further comprising a raised surface in said first groove through which said vacuum port is provided.
8. The vacuum mandrel of claim 7 wherein the first groove comprises a first width and the raised surface comprises a second width that is less than the first width.
9. The vacuum mandrel of claim 7 wherein the raised surface has a height of approximately 0.002 to 0.003 inches.
10. The vacuum mandrel of claim 1 wherein said hollow body member comprises a distal segment and a proximal segment, and wherein said first groove is located in said distal segment.
11. An electrode fabrication system, comprising:
the vacuum mandrel of claim 10;
a lead;
an electrode coupled to an end of said lead, said electrode being positioned in said first groove of said vacuum mandrel;
a longitudinal groove provided along at least a portion of the distal segment of said hollow body member, in which at least a portion of the lead is positioned.
12. An electrode fabrication system comprising:
the vacuum mandrel of claim 1;
a vacuum source in communication with said vacuum port via said hollow body member;
an electrode positioned over said vacuum port in said first groove and retained in position through the application of vacuum pressure by said vacuum source, to thereby permit an elastomer to-be applied to said first groove to cover said electrode.
13. The vacuum mandrel of claim 1 wherein said first groove has a width of approximately 0.053 to 0.058 inches.
14. The vacuum mandrel of claim 1 wherein said vacuum port has a diameter of approximately 0.018 inches.
15. A method of making an electrode, comprising:
providing a mandrel comprising a first groove in an outer surface thereof, and a vacuum port in said first groove,
providing an electrode coupled to an end of a lead;
positioning said electrode in said first groove over said vacuum port; and
retaining said electrode in said first groove through vacuum pressure applied through said vacuum port; and
applying an elastomer over said conductive electrode while said electrode is retained in said first groove.
16. The method of claim 16 wherein said vacuum mandrel further comprises at least one longitudinal groove formed at one end of said spiral groove, and wherein applying said elastomer comprises applying said elastomer to said and least one longitudinal groove.
17. An electrode manufactured according to a method comprising:
locating a conductive ribbon electrode in a first groove of a hollow body member, said groove containing at least one vacuum port; and
retaining said conductive electrode in said spiral groove through vacuum pressure applied through said at least one vacuum port; and
applying an elastomer over said conductive electrode while said electrode is retained in place.
18. The electrode of claim 17 further manufactured by applying the elastomer in at least one longitudinal groove portion formed on the hollow body, the elastomer applied to said a least one longitudinal groove portion comprising a gripping surface to be used during implantation.
19. An apparatus for holding an implantable electrode in place during a manufacturing process, comprising:
an elongate body having an outer surface and a hollow interior portion;
a vacuum source in fluid communication with said hollow interior portion;
a channel formed in said outer surface and extending helically about said elongate body, said channel comprising an engaging surface for engaging the implantable electrode; and
at least one bore extending between said hollow interior portion and said engaging surface of said channel such that said bore and said hollow interior portion are in fluid communication.
20. The apparatus of claim 19 wherein the channel has a rectangular cross-sectional shape.
21. The apparatus of claim 19 wherein the engaging surface is raised from a bottom surface of said channel.
22. The apparatus of claim 19 wherein said channel extends for approximately 2.5 turns about said outer surface.
23. The apparatus of claim 19 wherein said elongate body has a longitudinal axis and said channel has opposing ends that extend in a direction generally parallel to the axis.
Beschreibung
    BACKGROUND
  • [0001]
    Many types of implantable medical devices, such as pacemakers, defibrillators, and vagus nerve stimulators, have leads connected to an electronics unit. The distal end of the lead typically comprises or is coupled to one or more conductive electrodes. Such electrodes are typically fragile and thus should be handled carefully by the implanting surgeon when attaching the electrode to the relevant tissue to be stimulated. Fabrication of such electrodes is often a painstaking, time-consuming process.
  • BRIEF SUMMARY
  • [0002]
    A vacuum mandrel is disclosed that is used during the fabrication of an implantable conductive electrode. In accordance with at least one embodiment, the mandrel comprises a hollow body member having an axis, a first groove provided radially on an outer surface of the hollow body member, and a vacuum port provided in the groove. The first groove is adapted to receive the implantable electrode. In a particular embodiment, the first groove is a spiral groove around the outer periphery of the hollow body. By application of vacuum pressure through the hollow body member and the vacuum port, an electrode can be retained in place in the first groove while an elastomer, or another type of insulating material, is applied to the electrode. One or more second grooves, which are preferably longitudinal relative to the axis of the hollow body member, may be provided on opposing ends of the spiral groove to receive the elastomer and thereby form gripping members that an implantation surgeon can use when coupling the resulting electrode to a neural tissue such as a vagus nerve.
  • [0003]
    In accordance with another embodiment, a method comprises locating a conductive electrode formed on end of a lead adjacent a first, preferably spiral, groove in a vacuum mandrel, retaining the conductive electrode in the first groove through vacuum pressure applied through the at least one port, and applying an insulator over the conductive electrode while the electrode is retained in place in the first groove. The first groove contains at least one port through which the vacuum is applied to retain the conductive electrode in place.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • [0004]
    For a detailed description of exemplary embodiments of the invention, reference will now be made to the accompanying drawings in which:
  • [0005]
    FIGS. 1 a-1 c show a vacuum mandrel in accordance with a preferred embodiment of the invention;
  • [0006]
    FIG. 2 shows an enlarged portion of the vacuum mandrel;
  • [0007]
    FIG. 3 shows a side of the vacuum mandrel opposite from that shown in FIGS. 1 and 2;
  • [0008]
    FIG. 4 shows a ribbon electrode provided on a lead;
  • [0009]
    FIG. 5 shows a view of the vacuum mandrel with an electrode wrapped around a groove formed in the mandrel in accordance with a preferred embodiment of the invention;
  • [0010]
    FIG. 6 illustrates the connection between the vacuum mandrel and a vacuum source;
  • [0011]
    FIG. 7 shows a lead with coil electrode formed thereon and elastomer formed on a portion of the electrode in accordance with a preferred embodiment of the invention;
  • [0012]
    FIG. 8 shows a completed electrode assembly in accordance with embodiments of the invention; and
  • [0013]
    FIG. 9 shows an enlarged portion of FIG. 7.
  • DETAILED DESCRIPTION
  • [0014]
    The following discussion is directed to various embodiments of the invention. Although one or more of these embodiments may be preferred, the embodiments disclosed should not be interpreted, or otherwise used, as limiting the scope of the disclosure, including the claims. In addition, one skilled in the art will understand that the following description has broad application, and the discussion of any embodiment is meant only to be exemplary of that embodiment, and not intended to intimate that the scope of the disclosure, including the claims, is limited to that embodiment. Any numerical dimensions provided herein are merely exemplary and do not limit the scope of this disclosure or the claims that follow.
  • [0015]
    FIG. 1 a shows a plan view of a vacuum mandrel 10 in accordance with a preferred embodiment of the invention. The mandrel 10 comprises an elongate hollow body member formed from stainless steel or tool steel and has an exterior finish of nickel plating with Teflon®. As illustrated FIG. 1 b, the mandrel 10 is generally circular in cross section, although other cross sectional shapes are possible as well. As shown, the vacuum mandrel 10 comprises a plurality of segments 12, 14, and 16. Segment 12 has a diameter D3 that, as is evident from FIG. 1 a, is greater than the diameter D1 of segment 16. In accordance with at least one embodiment, D1 is approximately 0.171 inches and D3 is approximately 0.50 inches. The length L1 of segment 12 preferably approximately is 2.094 inches and the length L3 of segment 16 preferably is approximately 0.875 inches. Segment 12 includes a tip portion 11 provided at one end as shown in FIG. 1 a. Tip portion 11 has a diameter D2 of approximately 0.312 inches and a length L4 of approximately 0.625 inches. Segment 14 has a generally frustoconical shape that transitions between segments 12 and 16. The slope of segment 14 preferably is at an angle A1 of approximately 60 degrees as shown in FIG. 1 a, and the length L2 of segment 14 is approximately 0.281 inches. Mandrel 10 may be formed as a unitary hollow body or in multiple pieces that are joined together in a suitable manner (e.g., by welding).
  • [0016]
    Segment 16 includes a first, preferably spiral (e.g., helical) groove 20 formed radially about the outer surface of segment 16 as shown in FIG. 1 a. FIG. 2 shows an enlarged view of segment 16 of the vacuum mandrel. In the embodiments of FIGS. 1 and 2, the first groove 20 comprises a spiral groove having about 2.5 revolutions around the outer surface of the mandrel. It will be appreciated by persons of skill in the art that non-spiral grooves can be used, and that where a spiral groove is employed the number of revolutions of the groove can be varied. The first groove 20 can have any dimensions that are suitable for the application described herein. In one embodiment, the groove 20 has a generally flat bottom surface 21 and flat side walls 23 formed generally perpendicular to the bottom surface 21. In this embodiment, the groove has a rectangular cross-sectional shape, with a width W1 of approximately 0.053 to 0.058 inches and a height H1 of approximately 0.024 to 0.028 inches.
  • [0017]
    As best shown in FIG. 2, a raised surface 25 is provided within groove 20. The raised surface 25 preferably is formed integrally with the segment 12 although, in other embodiments, the raised surface can be a separately formed component that is then adhered in a suitable manner (e.g., welded, glued, etc.) to surface 21. The raised surface 25 preferably has a height relative to the bottom surface 21 of approximately 0.002 to 0.003 inches and a width W2 that is less than the width W1 of the groove 20. In one embodiment, the width W2 of the raised surface 25 may range from approximately 0.028 to 0.032 inches. In such embodiments, therefore, the width W2 of the raised surface is approximately 45% to 60% of the width W1 of the first groove 20. At least one vacuum port 22 is provided within the first groove 20. In accordance with one embodiment, eight vacuum ports 22 are provided, although any number of ports sufficient to retain an electrode in place in the first groove may be employed. Preferably, the vacuum ports 22 comprise bore holes that extend through the raised surface 25 and into the hollow interior portion of segment 16. In at least one embodiment, the eight radially extending vacuum ports 22 are spaced apart in increments of 30 degrees.
  • [0018]
    Referring to FIG. 1 a, segment 12 of mandrel 10 comprises a lead groove 36 provided longitudinally along at least some or all of the length of segment 12. Referring to FIGS. 1 a and 1 c, the lead groove 36 that is provided longitudinally along segment 12 relative to a plane that contains central axis 19 preferably is formed in the outer surface of the segment 12 at a location disposed on an angular measure A2 from the plane. In one embodiment, the lead groove 36 preferably has a depth D8 of approximately 0.089 inches and a width W3 of approximately 0.063 inches. As will be explained above, an implantable lead resides in the lead groove 36 during fabrication of an electrode. Thus, the lead groove 36 has an engaging surface that engages the electrode during manufacturing.
  • [0019]
    The interior of the hollow body member is shown in FIG. 1 b. In the embodiment depicted, the dimensions of the hollow interior of the body vary, although persons of skill in the art will appreciate that various hollow chamber designs may be employed. The hollow interior of segment 12 is shown with a diameter D4 of approximately 0.19 inches. The hollow interior of segments 14 and 16 has a diameter D5 of approximately 0.06 inches. The hollow interior of segment 16 extends to the end of, or just beyond the end of, the first groove 20. The hollow interior may also extend throughout the hollow body and be sealed off via a plug fastened by various techniques such as welding, screw threads, or adhesive.
  • [0020]
    FIGS. 1 a and 2 also show one or more second grooves 30, 32 formed at, or near, opposing ends of first groove 20. Second grooves 30 and 32 may advantageously have a different cross-sectional shape than groove 20. Each second groove 30, 32 preferably is curved and extends circumferentially preferably for less than one complete revolution around segment 16 and, in some embodiments, extends for three-fourths of one revolution. As better shown in FIG. 3, each second groove 30 and 32 ends in a longitudinal groove portion 31 and 33, respectively. Each second groove 30, 32 may have a pitch of approximately from 0.65 to 0.70, a radius of curvature of approximately 0.020 inches and a depth D9 (shown in FIG. 2) of approximately 0.018 inches. Each of the longitudinal groove portions 31 and 33 may have a length D7 (FIG. 3) of approximately 0.074 inches. Further, each second groove 30, 32 begins at or near an end of the first groove 20. For example, second groove 32 begins at end 37 (FIG. 2) of first groove 20. The beginning of each second groove 30, 32 preferably is centered within first groove 20 thereby forming a continuous groove within the body segment 16. In one embodiment, each second groove 30 and 32 preferably comprises a spiral curved groove that extends for three-fourths of a revolution and the central flat-bottom groove 20 (having bottom surface 21) extends for 2.5 revolutions. Thus, the combination of the two spiral curved second grooves 30 and 32 and the central flat first groove 20 form a groove that extends for, in a particular embodiment, four total revolutions around the body segment 16.
  • [0021]
    The vacuum mandrel 10 may be used during a manufacturing process for an electrode. The electrode preferably comprises an electrode such as may be used in conjunction with an implantable medical device such as a vagus nerve stimulator. FIG. 4 shows an electrode 52 provided on an end of lead 50. The electrode 52 preferably is an electrically conductive ribbon electrode that, when further processed as described below, can be attached to a nerve or nerve bundle such as a cranial nerve (e.g., a vagus nerve). The electrode 52 preferably comprises a conductive ribbon electrode formed from platinum, platinum-iridium, or other suitable material. In a particular embodiment, the electrode 52 is approximately 0.040 inches wide by approximately 0.500 inches long by approximately 0.0005 inches thick. The electrode 52 is coupled (e.g., welded) to the lead 50 at approximately the mid-point of the electrode. The lead 50 comprises an electrical conductor that is covered by an insulator and that electrically couples the implanted device (not shown) to electrode 52 provided on the end of the lead. When implanted, the electrode 52 is placed in contact with the tissue to be stimulated. Through the lead 50 and electrode 52, the implanted device is able to deliver electrical current to the tissue to be stimulated.
  • [0022]
    FIG. 5 shows the body segment 16 of the vacuum mandrel 10 with the lead 50 and electrode 52 disposed thereon. The electrode 52 is placed on the mandrel and wrapped around and located within at least a portion of the first groove 20. By residing in the first groove 20, the ribbon electrode covers at least one or more, and preferably all, of the vacuum ports 22. FIG. 5 also shows the lead 50 extending down the length of the segment 16. The remaining length of the lead rests in the longitudinal lead groove 36 formed in segment 12 (FIG. 1 a).
  • [0023]
    FIG. 6 illustrates the vacuum mandrel 10 coupled to a vacuum tube 62 that, in turn, connects to a vacuum source 60. The vacuum tube 62 preferably comprises a flexible hose of rubber or other suitable material. The tip 11 of the vacuum mandrel is inserted into the vacuum tube 62. Once the vacuum source 60 is turned on, the vacuum pressure thereby created through the mandrel 10 and vacuum ports 22 will cause the ribbon electrode to be retained in place during the next part of the manufacturing process. The raised surface 25 provides an engaging surface for the electrode in groove 20 and enables the electrode edges to be encapsulated by the elastomer/insulator. In one embodiment, the vacuum pressure is approximately 28 inches Hg, although the pressure can be varied as desired.
  • [0024]
    With the electrode held in place in first groove 20 by vacuum pressure, the next step in the manufacturing process is to apply an insulator such as an elastomer to all, or substantially all, of the lengths of first groove 20, and second grooves 30 and 32, thereby covering the ribbon electrode with the insulator. The ribbon electrode 52 preferably does not extend throughout the combined lengths of first groove 20 and second grooves 30 and 32, and as such a portion of the insulator fills the grooves beyond the reach of the ribbon electrode. The insulator is applied by spraying or pouring by methods well known in the art. In a particular embodiment, the insulator comprises a silicone elastomer. However, persons of skill in the art will appreciate that other elastomers, and other insulators may be used.
  • [0025]
    The insulator is then permitted to cure. Once cured, vacuum source is turned off and the lead 50 and insulator-covered electrode 52 assembly can be removed from the vacuum mandrel. Examples of the completed electrodes 52 are shown in FIGS. 7 and 8. FIG. 7 shows an electrode with a cut away portion to better illustrate the elastomer 70 covering the ribbon electrode 52. Because the elastomer cured while the electrode 52 was still wrapped in the spiral first groove 20 of the vacuum mandrel, the resulting electrode generally retains the shape of the first groove 20. Other shapes are, of course, possible depending upon the needs of the particular application in which the electrode will be used. Further, because the elastomer covered the exposed electrode 52 and was not able to penetrate between the electrode 52 and the raised surface 25 of the first groove 20, one side of the electrode is not covered with elastomer, i.e., the interior surface 71 of the spirally formed electrode. This interior surface is the surface that will be in contact with the body tissue (e.g., a vagus nerve) being stimulated. The elastomer generally is an electrical insulator and thus the surface of the electrode opposite the body tissue is electrically insulated from other body tissues while the surface of the electrode touching the nerve is in electrical contact with the nerve.
  • [0026]
    The raised surface 25 on which the ribbon electrode rests while the elastomer is applied causes elastomer to fill the sides of the first groove 20 adjacent the electrode. As a result, some of the elastomer, such as that shown at reference numeral 90, covers the side edges of the ribbon electrode and thereby covers any sharp edges that might otherwise cut into the nerve to which the electrode is attached. The relationship between the elastomer and the edges of the electrode are better shown in the enlarged view of FIG. 9.
  • [0027]
    Reference numeral 80 in FIG. 7 shows the elastomer that was applied to the spiral second grooves 30 and 32. The width of second grooves 30 and 32 preferably is less than the width of first groove 20 as measured in the direction parallel to axis 19. As such, as shown in FIG. 7, the two elastomer end portions 80 of the electrode assembly are narrower than the central portion that contains the ribbon electrode.
  • [0028]
    The longitudinal groove portions 31 and 33 (FIG. 3) are also filled with elastomer. After the elastomer cures and the electrode is removed from the mandrel, the elastomer that filled the longitudinal groove portions 31 and 33 form gripping portions 74 and 76, respectively. The gripping portions 74 and 76 are used during implantation to attach the electrode to the nerve. More specifically, the gripping portions 74 and 76 are pulled in opposite directions using, for example, forceps. Pulling the gripping surfaces 74 and 76 apart in this manner stretches the spiral electrode so that it can be wrapped around the nerve. Once wrapped around the nerve, the gripping portions 74 and 76 are released and the spring-like nature of the spiral electrode 52 causes the electrode naturally to attach itself to the nerve.
  • [0029]
    Another prior type of spiral electrode included a thread suture embedded in the elastomer. The ends of the suture protruded from the electrode and functioned as gripping mechanisms for the implantation surgeon. Unfortunately, embedding a thread suture in a spiral electrode adds complexity and time to the manufacturing process of such an electrode. Gripping portions 74 and 76 obviate the need for such a thread suture, although one could be included if desired. Without such a thread suture, the manufacturing of the disclosed electrode is made easier and less time consuming.
  • [0030]
    The above discussion is meant to be illustrative of the principles and various embodiments of the present invention. Numerous variations and modifications will become apparent to those skilled in the art once the above disclosure is fully appreciated. It is intended that the following claims be interpreted to embrace all such variations and modifications.
Patentzitate
Zitiertes PatentEingetragen Veröffentlichungsdatum Antragsteller Titel
US1404042 *3. Nov. 192117. Jan. 1922The Faultless Rubber companyEverard f
US3089600 *26. Mai 196114. Mai 1963Rca CorpTransfer apparatus
US3421511 *10. Dez. 196514. Jan. 1969Medtronic IncImplantable electrode for nerve stimulation
US3468648 *8. Juli 196623. Sept. 1969Owens Illinois IncMethod and apparatus for forming hollow glass articles
US3539322 *25. März 196810. Nov. 1970Quickfit & Quartz LtdMethod and apparatus for producing an internal precision sealing surface in hollow glass bodies
US3743457 *13. Juli 19713. Juli 1973Acme Hamilton Mfg CorpStock flow control means for extruders and the like
US3760812 *19. März 197125. Sept. 1973Univ MinnesotaImplantable spiral wound stimulation electrodes
US3922134 *17. Dez. 197325. Nov. 1975Robintech IncPipe bending mandrel
US4106744 *14. Febr. 197715. Aug. 1978Analog Technology CorporationMandrel for formation of mass spectrometer filter
US4384926 *25. März 198224. Mai 1983Amp IncorporatedPlating interior surfaces of electrical terminals
US4413636 *25. März 19828. Nov. 1983Phillip R. BeutelCatheter
US4427498 *17. Jan. 198324. Jan. 1984Amp IncorporatedSelective plating interior surfaces of electrical terminals
US4459989 *30. Juni 198117. Juli 1984Neuromed, Inc.Non-invasive multiprogrammable tissue stimulator and methods for use
US4484586 *1. Nov. 198227. Nov. 1984Berkley & Company, Inc.Hollow conductive medical tubing
US4490104 *22. Nov. 198225. Dez. 1984Borg-Warner Chemicals, Inc.Apparatus for separating a low viscosity material from a high _viscosity material
US4508053 *5. Jan. 19832. Apr. 1985Xis, IncorporatedVacuum deposition apparatus for manufacturing selenium photoreceptors
US4573481 *25. Juni 19844. März 1986Huntington Institute Of Applied ResearchImplantable electrode array
US4590946 *14. Juni 198427. Mai 1986Biomed Concepts, Inc.Surgically implantable electrode for nerve bundles
US4602624 *11. Okt. 198429. Juli 1986Case Western Reserve UniversityImplantable cuff, method of manufacture, and method of installation
US4608985 *11. Okt. 19842. Sept. 1986Case Western Reserve UniversityAntidromic pulse generating wave form for collision blocking
US4612934 *16. Juli 198423. Sept. 1986Borkan William NNon-invasive multiprogrammable tissue stimulator
US4628942 *11. Okt. 198416. Dez. 1986Case Western Reserve UniversityAsymmetric shielded two electrode cuff
US4643658 *26. Sept. 198417. Febr. 1987Gordon John HExpanding mandrel
US4649936 *11. Okt. 198417. März 1987Case Western Reserve UniversityAsymmetric single electrode cuff for generation of unidirectionally propagating action potentials for collision blocking
US4789327 *25. Febr. 19886. Dez. 1988Harry ChanAdjustable pipe extrusion die with internal cooling
US4822272 *15. Okt. 198718. Apr. 1989Agency Of Industrial Science And TechnologyMandrel for use in a manufacture of an article made of composite material
US4832048 *29. Okt. 198723. Mai 1989Cordis CorporationSuction ablation catheter
US4850356 *9. Febr. 198825. Juli 1989Darox CorporationDefibrillator electrode system
US4860616 *17. Juni 198829. Aug. 1989Smith Winford LMethod and apparatus for the manufacture of rotary sheet dies
US4920979 *12. Okt. 19881. Mai 1990Huntington Medical Research InstituteBidirectional helical electrode for nerve stimulation
US4940065 *23. Jan. 198910. Juli 1990Regents Of The University Of CaliforniaSurgically implantable peripheral nerve electrode
US4944906 *11. Okt. 198831. Juli 1990Spirex CorporationMethods of injection molding and extruding wet hygroscopic ionomers
US4979511 *3. Nov. 198925. Dez. 1990Cyberonics, Inc.Strain relief tether for implantable electrode
US5003975 *17. Okt. 19892. Apr. 1991Siemens-Pacesetter, Inc.Automatic electrode configuration of an implantable pacemaker
US5063018 *4. Juni 19905. Nov. 1991Cordis CorporationExtrusion method
US5095905 *7. Juni 199017. März 1992Medtronic, Inc.Implantable neural electrode
US5143067 *7. Juni 19901. Sept. 1992Medtronic, Inc.Tool for implantable neural electrode
US5176866 *8. Juni 19905. Jan. 1993Asahi Kasei Kogyo Kabushiki KaishaProcess for producing a resin product having a bent hollow portion and a core usable for the same process
US5215089 *21. Okt. 19911. Juni 1993Cyberonics, Inc.Electrode assembly for nerve stimulation
US5251634 *3. Mai 199112. Okt. 1993Cyberonics, Inc.Helical nerve electrode
US5282468 *8. Jan. 19921. Febr. 1994Medtronic, Inc.Implantable neural electrode
US5351394 *21. Sept. 19924. Okt. 1994Cyberonics, Inc.Method of making a nerve electrode array
US5460501 *7. Apr. 199424. Okt. 1995Advanced Drainage Systems, Inc.Pipe production line for the manufacture of plastic pipe
US5515848 *7. Juni 199514. Mai 1996Pi Medical CorporationImplantable microelectrode
US5524338 *22. Dez. 199411. Juni 1996Pi Medical CorporationMethod of making implantable microelectrode
US5531778 *20. Sept. 19942. Juli 1996Cyberonics, Inc.Circumneural electrode assembly
US5624693 *16. Jan. 199629. Apr. 1997Outboard Marine CorporationMolding apparatus with combined venting and flushing valve
US5630968 *7. Juni 199520. Mai 1997The Japan Steel Works, Ltd.Water-injection foaming devolatilizing method
US5874116 *15. Apr. 199723. Febr. 1999Nanbu Plastic Co., Ltd.Injection molding apparatus having a divided degassing pin
US5938596 *17. März 199717. Aug. 1999Medtronic, Inc.Medical electrical lead
US5964702 *30. Juli 199712. Okt. 1999Case Western Reserve UniversityImplantable helical spiral cuff electrode method of installation
US6093197 *8. Dez. 199725. Juli 2000Axon Engineering, Inc.Spiral nerve cuff electrode implantation tool
US6240320 *5. Juni 199829. Mai 2001Intermedics Inc.Cardiac lead with zone insulated electrodes
US6292703 *8. Okt. 199918. Sept. 2001Biotronik Mess-Und Therapiegerate Gmbh & Co.Neural electrode arrangement
US6304785 *27. Okt. 199916. Okt. 2001Huntington Medical Research InstituteElectrode insertion tool
US6304787 *17. Aug. 199916. Okt. 2001Advanced Bionics CorporationCochlear electrode array having current-focusing and tissue-treating features
US6350229 *28. Jan. 200026. Febr. 2002Medtronic, Inc.Method and apparatus for temporarily immobilizing a local area of tissue
US6352422 *16. Juni 19995. März 2002Micron Technology, Inc.Method and apparatus for epoxy loc die attachment
US6371906 *28. Jan. 200016. Apr. 2002Medtronic, Inc.Method and apparatus for temporarily immobilizing a local area of tissue
US6418348 *22. Juni 20009. Juli 2002Biotronik Mess-Und Therapiegeraete Gmbh & Co. Ingenieurbuero BerlinImplantable lead with selectively operable electrodes
US6461474 *11. Juli 20008. Okt. 2002Kimberly-Clark Worldwide, Inc.Process for producing high-bulk tissue webs using nonwoven substrates
US6473653 *2. März 200029. Okt. 2002Medtronic, Inc.Selective activation of electrodes within an inplantable lead
US6477417 *12. Apr. 20015. Nov. 2002Pacesetter, Inc.System and method for automatically selecting electrode polarity during sensing and stimulation
US6526321 *15. Aug. 200025. Febr. 2003Intermedics, Inc.Method for making cardiac leads with zone insulated electrodes
US6600956 *21. Aug. 200129. Juli 2003Cyberonics, Inc.Circumneural electrode assembly
US6609956 *21. Nov. 200126. Aug. 2003Bottero S.P.A.Method and machine for grinding coated sheets of glass
US6782619 *17. Aug. 200131. Aug. 2004Advanced Cochlear Systems, Inc.Method of making high contact density electrode array
US6827569 *28. März 20027. Dez. 2004Klaus A. WiederMold vent and method
US6837848 *15. Jan. 20034. Jan. 2005Medtronic, Inc.Methods and apparatus for accessing and stabilizing an area of the heart
US6884055 *29. Mai 200226. Apr. 2005The Boeing CompanyPotting compound injection apparatus and method of injecting potting compound into panel cells
US6907295 *24. Juli 200214. Juni 2005Biocontrol Medical Ltd.Electrode assembly for nerve control
US6918908 *17. Juli 200319. Juli 2005Medtronic, Inc.Methods and apparatus for accessing and stabilizing an area of the heart
US7047082 *8. Febr. 200016. Mai 2006Micronet Medical, Inc.Neurostimulating lead
US7048683 *30. Apr. 200223. Mai 2006Medtronic, Inc.Method and apparatus for temporarily immobilizing a local area of tissue
US7051419 *28. Aug. 200330. Mai 2006Micronet Medical, Inc.Neurostimulating lead
US7114944 *21. Jan. 20043. Okt. 2006David Wolfe Design, IncTactical venting
US7189201 *30. Apr. 200213. März 2007Medtronic, Inc.Method and apparatus for temporarily immobilizing a local area of tissue
US7201940 *12. Juni 200110. Apr. 2007Advanced Cardiovascular Systems, Inc.Method and apparatus for thermal spray processing of medical devices
US7212867 *5. Dez. 20011. Mai 2007Medtronic, Inc.Directional brain stimulation and recording leads
US7212868 *30. März 20041. Mai 2007Cardiac Pacemakers, Inc.Electrode and insulation assembly for a lead and method therefor
US20020100860 *28. März 20021. Aug. 2002Wieder Klaus A.Mold vent and method
US20020173785 *25. Apr. 200221. Nov. 2002Medtronic, Inc.System and method for positioning implantable medical devices within coronary veins
US20020192320 *5. Aug. 200219. Dez. 2002Brand J. MichaelMethod and apparatus for filling a gap between spaced layers of a semiconductor
US20030065242 *13. Aug. 20023. Apr. 2003Ludger DinkelborgRadioactive implantable devices and methods and apparatuses for their production and use
US20040039434 *28. Aug. 200326. Febr. 2004Schrom Mark G.Neurostimulating lead
US20040111139 *10. Dez. 200210. Juni 2004Mccreery Douglas B.Apparatus and methods for differential stimulation of nerve fibers
US20040186368 *21. März 200323. Sept. 2004Scimed Life Systems, Inc.Systems and methods for internal tissue penetration
US20040231365 *31. März 200425. Nov. 2004Tatsuhiro YabukiManufacturing methods of double-spiral arc tubes
US20040247849 *2. März 20049. Dez. 2004Csaba TruckaiPolymer composites for biomedical applications and methods of making
US20040260145 *30. Apr. 200223. Dez. 2004Cornelius BorstMethod and apparatus for temporarily immobilizing a local area of tissue
US20050203488 *9. März 200415. Sept. 2005Usgi Medical Inc.Apparatus and methods for mapping out endoluminal gastrointestinal surgery
US20050203489 *28. Febr. 200515. Sept. 2005Usgi Medical Inc.Apparatus and methods for performing mucosectomy
US20050245944 *31. Jan. 20033. Nov. 2005Rezai Ali RApparatus for facilitating delivery of at least one device to a target site in a body
US20060030919 *4. Aug. 20059. Febr. 2006Ndi Medical, LlcDevices, systems, and methods employing a molded nerve cuff electrode
US20060036128 *13. Okt. 200516. Febr. 2006Medtronic, Inc.Method and apparatus for temporarily immobilizing a local area of tissue
US20060089691 *29. Apr. 200527. Apr. 2006Medtronic, Inc.Implantable medical lead with axially oriented coiled wire conductors
US20060089696 *29. Apr. 200527. Apr. 2006Medtronic, Inc.Implantable medical lead with reinforced outer jacket
US20060089697 *29. Apr. 200527. Apr. 2006Medtronic, Inc.Implantable medical lead
US20070100406 *28. Okt. 20053. Mai 2007Cyberonics, Inc.Insert for implantable electrode
Klassifizierungen
US-Klassifikation425/110, 264/272.11, 264/511
Internationale KlassifikationA23G1/22, B29C70/88
UnternehmensklassifikationB29C70/72
Europäische KlassifikationB29C70/72
Juristische Ereignisse
DatumCodeEreignisBeschreibung
24. Okt. 2005ASAssignment
Owner name: CYBERONICS, INC., TEXAS
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KOLLATSCHNY, SHAWN D.;SCIACCA, JOSEPH J.;REEL/FRAME:017146/0603
Effective date: 20051020