US20070123811A1 - Squitieri hemodialysis and vascular access systems - Google Patents

Squitieri hemodialysis and vascular access systems Download PDF

Info

Publication number
US20070123811A1
US20070123811A1 US11/417,658 US41765806A US2007123811A1 US 20070123811 A1 US20070123811 A1 US 20070123811A1 US 41765806 A US41765806 A US 41765806A US 2007123811 A1 US2007123811 A1 US 2007123811A1
Authority
US
United States
Prior art keywords
hemodialysis
catheter
vascular access
access system
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/417,658
Inventor
Rafael Squitieri
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hemosphere Inc
Original Assignee
Squitieri Rafael P
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Squitieri Rafael P filed Critical Squitieri Rafael P
Priority to US11/417,658 priority Critical patent/US20070123811A1/en
Publication of US20070123811A1 publication Critical patent/US20070123811A1/en
Assigned to HEMOSPHERE, INC. reassignment HEMOSPHERE, INC. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: GRAFTCATH, INC.
Assigned to HEMOSPHERE MERGER CORP. reassignment HEMOSPHERE MERGER CORP. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HEMOSPHERE, INC.
Assigned to HEMOSPHERE, INC. reassignment HEMOSPHERE, INC. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: HEMOSPHERE MERGER CORP.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • A61M1/3621Extra-corporeal blood circuits
    • A61M1/3653Interfaces between patient blood circulation and extra-corporal blood circuit
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • A61M1/3621Extra-corporeal blood circuits
    • A61M1/3653Interfaces between patient blood circulation and extra-corporal blood circuit
    • A61M1/3655Arterio-venous shunts or fistulae
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M39/00Tubes, tube connectors, tube couplings, valves, access sites or the like, specially adapted for medical use
    • A61M39/02Access sites
    • A61M39/0208Subcutaneous access sites for injecting or removing fluids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/158Needles for infusions; Accessories therefor, e.g. for inserting infusion needles, or for holding them on the body
    • A61M2005/1581Right-angle needle-type devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M39/00Tubes, tube connectors, tube couplings, valves, access sites or the like, specially adapted for medical use
    • A61M39/02Access sites
    • A61M39/0208Subcutaneous access sites for injecting or removing fluids
    • A61M2039/0211Subcutaneous access sites for injecting or removing fluids with multiple chambers in a single site
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M39/00Tubes, tube connectors, tube couplings, valves, access sites or the like, specially adapted for medical use
    • A61M39/02Access sites
    • A61M39/0247Semi-permanent or permanent transcutaneous or percutaneous access sites to the inside of the body
    • A61M2039/0258Semi-permanent or permanent transcutaneous or percutaneous access sites to the inside of the body for vascular access, e.g. blood stream access

Definitions

  • HD hemodialysis
  • vascular access for chemotherapy and plasmapheresis
  • Applicant's invention involves a new method and instrumentation for HD and vascular access designed to eliminate the problems of the prior methods and create a new, more durable, easier to use, vascular access system.
  • One prior art method involves a primary arteriovenous fistula.
  • a native artery is sewn to a native vein creating a high flow system of blood in a vein which over time can be accessed with two hemodialysis needles attached to a dialysis machine.
  • the problem with this method is that few patients are candidates secondary to anatomy and in others the veins or shunt fail to enlarge and mature properly even if the primary fistula remains patent.
  • These arteriovenous fistulas also become aneursymol over time requiring revision.
  • Another method involves a subcutaneous prosthetic conduit (PTFE) in the shape of a tube which is sewn at either end to openings made in an artery and vein.
  • PTFE subcutaneous prosthetic conduit
  • This method causes recurrent stenosis at the venous outflow leading to thrombosis (i.e., graft closure) secondary to intimal hyperplasia at venous anastomosis.
  • thrombosis also occurs at needle puncture sites along the PTFE.
  • Another method involves a “tunneled” percutaneous dual lumen catheter which is inserted into a central vein. This causes recurrent thrombosis secondary to stasis of blood in the lumen (i.e., not a continuous flow system like an A-V fistula) and build up of fibrinous debris at the venous end. Further, the access end of the catheter protrudes through the skin making it cosmetically unappealing, cumbersome to live with, as well as more likely to become infected.
  • a further method involves the use of the Sorenson Catheter.
  • This is a percutaneous (not tunneled) dual lumen catheter, placed into the central venous system, which is used to provide temporary access for the purposes of hemodialysis. These catheters are prone to kinking, clotting, infection, and poor flow rates.
  • a still further method of vascular access involves the “Port-a-cath”.
  • This system of venous access which utilizes a subcutaneous reservoir attached to a central venous catheter, is used for long term intervenous access for chemotherapy etc. (It is not intended for HD.)
  • the ports are prone to clotting and must be continually flushed since they are a stagnant system.
  • Applicant's invention involves a vascular access system, known as the Squitieri Hemodialysis and Vascular Access System, which creates a continuous blood flow and which is easily accessed and resistant to clotting.
  • vascular access system known as the Squitieri Hemodialysis and Vascular Access System
  • Squitieri Hemodialysis and Vascular Access System which creates a continuous blood flow and which is easily accessed and resistant to clotting.
  • U.S. Pat. Nos. 4,898,669, 4,822,341; 5,041,098; and, 4,790,826 None of the foregoing patents disclose a system having the features of this invention.
  • U.S. Pat. No. 4,447,237 describes improvements in a valving slit which includes the provision of a flattened sleeve within an elastomeric body presenting opposed interior surfaces interengaged when the valving slit is in the closed condition and spaced apart when the valving slit is in the open condition.
  • a hemodialysis and vascular access system comprises a PTFE end which is sutured to an opening in an artery at one end and the other end is placed into a vein using any technique which avoids the need for an anastomosis between the silicone “venous” end of the catheter and the vein wall.
  • the system comprises any material, synthetic or natural (i.e. vein) which can be sutured to the artery (i.e. preferably PTFE) at one end while the other end is composed of a material which is suitable for placement into a vein in such a way that the openings in the “venous” end of the system are away from the site where the graft enters the vein.
  • the system may also be constructed of multiple layers of materials i.e. PTFE on the inside with silastic on the outside.
  • the “Needle Receiving Site” may also be covered with PTFE to encourage self sealing and tissue in-growth.
  • a preferred embodiment comprises a combination of PTFE conduit sewn to an artery on one end of the system with the other end connected to a silastic-plastic catheter which can be percutaneously inserted into a vein via an introducer.
  • the venous end may also be placed via open cut down.
  • the seal around the system where it enters the vein may be “self sealing” when placed in percutaneous technique; it may be achieved with a purse string when done by open technique “cut down”; or, it may be sewn to the vein to create a seal with a “cuff” while the system continues downstream within the venous system to return the arterial blood away from the site of entry into the vein.
  • the entire system can be positioned subcutaneously at the completion of insertion.
  • This design is a significant improvement over existing methods because it avoids the most frequent complication of current HD access methods.
  • By utilizing an indwelling venous end one avoids creating a sewn anastomosis on a vein which is prone to stenosis secondary to neointimal hyperplasia.
  • By having continuous flow through the silastic end of the catheter thrombosis of these catheters can be avoided.
  • Dialysis is made more efficient by decreasing recirculation of blood which accompanies the use of side by side dual lumen catheters inserted into a central vein. This invention not only benefits the patient but it also speeds dialysis thus saving time and money.
  • the Squitieri Access System comprises a tube composed of PTFE and a silastic catheter. This tube is used to create an arteriovenous fistula.
  • the PTFE end (arterial end) of the tube is sewn to an artery while the silastic catheter end is placed into the venous system by the Seldinger technique much like a standard central line.
  • the entire system is subcutaneous at the completion of insertion.
  • This system is a composite of the arterial end of a “gortex graft” joined to the venous end of a “permacath”. This system enjoys strengths of each type of access and at the same time avoids their weaknesses.
  • an object of this invention is to provide a new and improved vascular access system.
  • Another object of this invention is to provide a new and improved hemodialysis and vascular access system including an easily replaceable needle receiving site which has superior longevity and performance, is more easily implanted, more easily replaced, and is “user friendly” i.e. easily and safely accessed by a nurse or patient which is ideal for home hemodialysis.
  • a more specific object of this invention is to provide a new and improved Squitieri hemodialysis and vascular access system including a subcutaneous composite PTFE/Silastic arteriovenous fistula.
  • a further object of this invention is to provide a new and improved hemodialysis and vascular access system including a fistula utilizing an indwelling silastic end which is inserted percutaneously into the venous system and a PTFE arterial end which is anastomosed to an artery and including a unique needle receiving sites which are positioned anywhere between the ends and which have superior longevity and performance.
  • a further object of this invention is to provide a system constructed to preserve laminar flow within the system and at the venous outflow end to reduce turbulence and shear force in the vascular system to the degree possible.
  • a still further object of this invention is to provide a system wherein the arterial end (PTFE) may also be placed by percutaneous technique including one where blood entry holes are distant from the site where blood enters the veins.
  • PTFE arterial end
  • FIG. 1 is a perspective view of the vascular access system comprising the invention
  • FIG. 2 is a cross-sectional view of the needle access site taken along the line 2 - 2 of FIG. 1 ;
  • FIG. 3 is a cross-sectional view similar to FIG. 2 with a needle inserted into the access site;
  • FIG. 4 is a cross-sectional view of the coupling between the PTFE and the silicone venous end of the catheter;
  • FIG. 5 is a perspective view of an alternate embodiment of the invention with one port having a tube sewn to a vein;
  • FIG. 6 is a perspective view of the embodiment in FIG. 5 with a silastic tube floated down a vein;
  • FIG. 7 illustrates a ringed tube sewn to an artery and connected to a first access site which is joined to a second site by silastic tubing and includes an outflow through silastic tubing which is floated into the venous system;
  • FIG. 8 is similar to FIG. 7 but shows PTFE sewn to an artery and silastic tubing floated into a different portion of the venous system;
  • FIG. 9 depicts ringed PTFE tubing sewn to the subclavian artery and a dual access site coupled to the venous system at its other end;
  • FIG. 10 shows a multi-layered variation at the venous end of the system
  • FIG. 11 discloses a quick coupler design utilized in conjunction with the system
  • FIG. 12 is a unique port design utilized in conjunction with the system
  • FIG. 13 shows holes where ports can be fixed in place while FIG. 13 a and FIG. 13 b show cross-sectional views which depict the internal construction of the invention with FIG. 13 b illustrating multi-layered tubing; and,
  • FIG. 14 shows a variation of the system entry through vein wall (i.e. not percutaneous or purse string) wherein a cuff, sewn to vein as indwelling portion, is floated down stream.
  • the Squitieri hemodialysis and vascular system as shown in FIG. 1 , comprises a PTFE/Dacron (or other synthetic or natural material) tube 10 of several centimeters in length which is attached at one end by means of a coupling to a needle access site or receiving site 20 .
  • Adjustable band 18 regulates the blood flow through the access site 20 .
  • the PTFE tube 10 is approximately 7 mm in diameter and transitions downward to an open end portion 19 approximately 4 mm in diameter.
  • the access site 20 includes an in line aperture 16 , see FIG. 2 , having a silicone tube 41 connected thereto at one end leading to a long flexible plastic/silastic/silicone tube 12 with transverse holes 13 along its free end.
  • the number of holes 13 may vary within predetermined limits to achieve optimum results.
  • the end 36 may be beveled for ease of insertion.
  • This tubular arrangement functions as a subcutaneous connection between the arterial and venous systems. It may also be modified to allow part of the system to exit through the skin 14 ( FIG. 3 ) to provide access to the blood circulation without placing needles 15 ( FIG. 3 ) through the skin 14 into the fistula (usually at the PTFE end).
  • the needle access areas 20 which are designed to receive needles 15 etc. to allow access to the system are in line conduits with self-sealing material 25 which is here shown as a silicone member 25 which can be located beneath the skin surface.
  • the silicone member 25 comprises an oval configuration exposed within the frame 26 for ease of puncture.
  • the system may be accessed immediately after insertion without having to wait for the graft to incorporate into the tissues as is the case with the current methods of subcutaneous fistulas.
  • These access areas 20 will protect the graft since they are uniformly and easily utilized requiring little training or experience.
  • the “needle receiving” sites 20 are designed in such a way to preserve laminar flow as far as possible (i.e. not a reservoir arrangement). Needle receiver sites 20 may be connected to a system via “quick couple” 45 for easy exchangability, see FIG. 11 .
  • FIGS. 2 and 3 disclose a needle access site 20 wherein a silicone member 25 is mounted within a plastic or metal frame 26 .
  • a protruding portion 27 of member 25 extends upwardly through the aperture 31 while a flange portion 28 extends outwardly on both sides of the portion 27 to be gripped by teeth 29 on the internal surface of frame 26 and member 32 .
  • the frame 26 includes an in-line aperture or passage 16 through the needle access site 20 for blood flow.
  • the blood flow is accessed by inserting needles 15 through the silicone member 25 which is preferably oval in shape.
  • the teeth 29 seal the arterial pressure.
  • the passage 16 of the needle receiving site 20 is tubular in shape.
  • the open end portion 19 of the PTFE tube 10 is sewn to an opening in an artery 30 , see FIGS. 5, 6 , 7 , 8 and 9 , while the flexible plastic tube 24 of the system having been inserted percutaneously lies in the venous system in such a way that the openings 13 in the silastic tube 12 are downstream from the site where the flexible plastic tube 24 enters the vein 40 (see FIGS. 5 and 6 ).
  • the venous end may be inserted via “cutdown”.
  • the purpose of the system is to allow communication between an artery 30 and a vein 40 in such a way that the system may be accessed by either puncturing the PTFE segment or by entering the specialized “needle receiving” site 20 .
  • HD hemodialysis
  • FIG. 4 discloses, as an alternative, a “glued” connection between PTFE tubing 60 and silicone tubing 61 wherein the PTFE tubing 60 is inserted into an enlarged portion of silicone tubing 61 wherein the longitudinally extending portion includes a raised section 63 which locks a raised section 64 of PTFE tubing 61 within the silicone tubing 61 .
  • the materials used may vary as specified herein.
  • the system may be constructed of one or more specific materials.
  • the arteries and veins used may also vary.
  • Material may also be covered with thrombus resistant coatings (heparin, etc.) or biologic tissue.
  • the system may in specific cases be “ringed” for support.
  • the system comprises an arterial reservoir structure or port 50 with needle accessible top portions 51 a and 51 b , each of which a preferably-constructed of silicone.
  • the arterial reservoir structure 50 is connected to an outlet tube 53 of PTFE (gortex-ringed), which is sewn to an artery 30 at its other end.
  • PTFE glycol-ringed
  • the venous outlet tube portion 57 is constructed in a similar way but it is either sewn to a vein 40 via gortex ringed portion 52 or is placed percutaneously into the central circulation via an indwelling venous (silicon) catheter 42 as shown in FIG. 6 . There is no continuous flow through this version of the system since the ports are not connected.
  • FIG. 6 shows two separate ports 51 a and 51 b with the outlet tube 53 sewn to an artery 30 and the indwelling venous catheter 42 floated down a vein 40 .
  • FIG. 7 illustrates, in an anatomical drawing, an outlet tube 53 of PTFE (ringed gortex) sewn to an artery 30 at 62 and coupled at its other end 62 a to the needle access site 20 .
  • the site 20 see FIGS. 1-3 , is joined by silastic tubing 68 to a second access site 20 a which has an outlet silastic tube 65 .
  • the outlet tube 65 includes a plurality of perforations 66 at its outlet end which is positioned in the venous system 67 through vein 40 . Either site 20 or 20 a can be used for needle access.
  • FIG. 8 depicts an embodiment similar to that of FIG. 7 except that the coupling between the artery 30 and the first needle access site 20 is PTFE tube 69 .
  • the entry to the venous system 67 is via vein 40 which has silastic tubing 65 floated therein.
  • a PTFE tube portion 69 a joins parts 20 and 20 a.
  • FIG. 9 illustrates a dual needle access site 80 which is coupled via outlet tube 53 of PTFE (gortex-ringed) to the subclavian artery 30 and floated into the venous system 67 via silastic tubing 65 .
  • the dual site 80 provides additional access through 25 a , 25 b in approximately the same area with tubing (not shown) extending through the dual site needle access site 80 .
  • FIG. 10 depicts a variation of the invention at the venous end wherein the outlet of the port 20 comprises PTFE tubing 91 located within a silastic catheter 92 . This design is appropriate if thrombosis is a problem in the outlet silastic portion of the shunt.
  • FIG. 11 discloses a quick coupler 45 joining the PTFE outlet tube 53 (gortex-ringed) to the port 46 in the needle access site 20 .
  • a plastic or metal member 47 includes a portion 48 which engages the cylindrical PTFE tubing 10 , an intermediate portion 49 extending perpendicularly outward and an end portion 43 tapered outwardly at an angle and including an inward projection 44 .
  • the projecting portion 44 of the member 47 engages a slot 54 in the port 46 firmly fixing the cylindrical PTFE tubing 10 therebetween.
  • Portion 48 is made of flexible material to allow a gentle curve in tubing as it exits/enters port.
  • FIG. 12 is an exploded view of a new port embodiment wherein the port 71 comprises a frame 72 having an inlet coupling 73 and an outlet coupling 74 .
  • the plastic or metal frame 72 includes a recessed reservoir 76 and end walls 78 a and 78 b .
  • An upper member 85 having a top or upper member 85 a , a recess 83 and downwardly projecting sides 87 a and 87 b fits within walls 77 a and 77 b .
  • the upper member 85 includes an oval silicone access site 90 .
  • the member 45 rapidly couples the PTFE tubing 10 to site 71 with tubing 88 which fits over the inlet coupling 73 and the outlet coupling 74 with recessed portions 75 a and 75 b which engage tubing 88 (only one of which is shown) and have couplers 45 (only one of which is shown) which slide over the tubing 88 to engage the inlet and outlet couplings 73 and 74 .
  • a housing 86 includes a top portion 86 a and a side portion 86 b .
  • the top portion 86 a includes an aperture which surrounds and provides a means for accessing the oval silicone access site 90 .
  • This embodiment provides a quick assembly for a needle access site 71 .
  • FIG. 13 shows a typical dual port system showing holes 55 where ports 20 can be fixed in place
  • FIG. 13 a and FIG. 13 b show cross-sectional views which depict the internal construction of the invention with FIG. 13 b illustrating multi-layered tubing.
  • FIG. 14 discloses a cuff 56 which is made of PTFE and sewn to a vein. No physiological/functional venues anastomosis is created as blood is returned at the end of the system distant from the cuff.
  • the silastic end 12 may still be lined with PTFE.
  • the Squitieri Hemodialysis/Vascular Access System avoids creation of a venous anastomosis, a revolutionary advancement, i.e. there is no site for neointimal hyperplasia at a venous anastomosis which accounts for the vast majority of PTFE arteriovenous graft failures (60-80%). This is accomplished by returning the blood into a larger vein via an indwelling venous catheter 42 . The site of blood return to the venous system is not fixed to the vein wall where neointimal hyperplasia occurs with the standard PTFE bridge graft. This feature represents a tremendous advantage over the present grafts.
  • the system is not stagnant and prone to thrombosis, i.e. constant flow through the new system avoids the problem of clotting inherent in indwelling dual lumen venous catheters which remain stagnant when not in use. It also avoids need to flush catheters with heplock thereby reducing nursing costs to maintain the catheter.
  • the Squitieri system avoids externalization of components which are prone to infection. Since dual lumen catheters exit the skin 14 , they frequently lead to sepsis requiring catheter removal despite subcutaneous tunneling. This new access is entirely subcutaneous.
  • the system proposed herein avoids problems with the aspiration of blood from the venous system and “positional” placement through continuous flow.
  • a frequent problem with dual lumen catheters is their inability to draw blood from the venous system due to clot and fibrinous debris ball-valving at the tip of a catheter.
  • This new system receives blood directly from arterial inflow which ensures high flow rates needed for shorter, more efficient dialysis runs. It also avoids the frequent problem of the catheter tip “sucking” on the vein wall inhibiting flow to the dialysis machine and rendering the access ineffective.
  • the system avoids recirculation seen with dual lumen catheters resulting in more efficient and more cost effective dialysis.
  • the system avoids the need for temporary access with incorporation of “Needle Access Sites” 20 .
  • A-V fistulas and gortex grafts must “mature” for several weeks before use. This creates a huge strain on the patient as well as the doctor to achieve temporary access while waiting to use the permanent access.
  • Temporary access is very prone to infection, malfunction and vein destruction.
  • Needle Access Sites 20 The system avoids PTFE needle site damage with the incorporation of “Needle Access Sites” 20 . Needle access directly into PTFE is presently uncontrolled and user dependent. Often, PTFE is lacerated by access needles. While this system may be accessed via the PTFE segment, the needle receiving sites are the preferred method. This leads to excessive bleeding which requires excessive pressure to halt the bleeding causing thrombosis of the graft. “Needle Access Sites” 20 on the Squitieri access system allow safe, quick, and easy entry into the system and avoid the complications inherent in placing needles directly into PTFE. It also avoids perigraft bleeding which will compress and thrombose the graft. By eliminating the long time needed to compress bleeding at the needle site, the system shortens dialysis runs.
  • the Squitieri system permits an easier, faster insertion technique. Only one anastomosis the arterial end and a percutaneous placement of the venous end is required. A modification allows the system to be sutured to the vein wall while the system tubing is floated down stream from this site where the system enters the vein 40 . This saves operating room time at thousands of dollars per hour. The technique is easier with faster replacement. It avoids difficult and time consuming revision of venous anastomosis required to repair venous outflow occluded by neointimal hyperplasia. If the system malfunctions, the silastic catheter end 65 slips out easily and the arterial end of the outlet tube 53 is thrombectomized. New access sewn to the thrombectomized end of the outlet tube 53 of PTFE at the arterial end and the silastic venous end is replaced percutaneously via Seldinger technique or “open technique”.

Abstract

A hemodialysis and vascular access system comprises a subcutaneous composite PTFE silastic arteriovenous fistula having an indwelling silastic venous end which is inserted percutaneously into a vein and a PTFE arterial end which is anastomosed to an artery. Access to a blood stream within the system is gained by direct puncture of needle(s) into a needle receiving site having a tubular passage within a metal or plastic frame and a silicone upper surface through which needle(s) are inserted. In an alternate embodiment of the invention, percutaneous access to a blood stream may be gained by placing needles directly into the system (i.e. into the PTFE arterial end). The invention also proposes an additional embodiment having an arterialized indwelling venous catheter where blood flows from an artery through a tube and a port into an arterial reservoir and is returned to a vein via a port and a venous outlet tube distinct and distant from the area where the blood from the artery enters the arterial reservoir. The site where blood is returned to the vein is not directly fixed to the venous wall but is free floating within the vein. This system provides a hemodialysis and venous access graft which has superior longevity and performance, is easier to implant and is much more user friendly.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation of U.S. application Ser. No. 10/219,998 filed on Aug. 15, 2002, which is a reissue of U.S. application Ser. No. 08/835,316 filed on Apr. 7, 1997, now U.S. Pat. No. 6,102,884, which claims benefit under 35 U.S.C. Section 119(e) to U.S. Application No. 60/037,094, filed on Feb. 3, 1997, all of which are incorporated herein by reference in their entirety.
  • BACKGROUND OF THE INVENTION
  • Currently, HD (hemodialysis) and vascular access for chemotherapy and plasmapheresis is achieved in one of several ways. Applicant's invention involves a new method and instrumentation for HD and vascular access designed to eliminate the problems of the prior methods and create a new, more durable, easier to use, vascular access system.
  • One prior art method involves a primary arteriovenous fistula. In this method, a native artery is sewn to a native vein creating a high flow system of blood in a vein which over time can be accessed with two hemodialysis needles attached to a dialysis machine. The problem with this method is that few patients are candidates secondary to anatomy and in others the veins or shunt fail to enlarge and mature properly even if the primary fistula remains patent. These arteriovenous fistulas also become aneursymol over time requiring revision.
  • Another method involves a subcutaneous prosthetic conduit (PTFE) in the shape of a tube which is sewn at either end to openings made in an artery and vein. This method causes recurrent stenosis at the venous outflow leading to thrombosis (i.e., graft closure) secondary to intimal hyperplasia at venous anastomosis. Thrombosis also occurs at needle puncture sites along the PTFE.
  • Another method involves a “tunneled” percutaneous dual lumen catheter which is inserted into a central vein. This causes recurrent thrombosis secondary to stasis of blood in the lumen (i.e., not a continuous flow system like an A-V fistula) and build up of fibrinous debris at the venous end. Further, the access end of the catheter protrudes through the skin making it cosmetically unappealing, cumbersome to live with, as well as more likely to become infected.
  • A further method involves the use of the Sorenson Catheter. This is a percutaneous (not tunneled) dual lumen catheter, placed into the central venous system, which is used to provide temporary access for the purposes of hemodialysis. These catheters are prone to kinking, clotting, infection, and poor flow rates.
  • A still further method of vascular access involves the “Port-a-cath”. This system of venous access, which utilizes a subcutaneous reservoir attached to a central venous catheter, is used for long term intervenous access for chemotherapy etc. (It is not intended for HD.) The ports are prone to clotting and must be continually flushed since they are a stagnant system.
  • Applicant's invention involves a vascular access system, known as the Squitieri Hemodialysis and Vascular Access System, which creates a continuous blood flow and which is easily accessed and resistant to clotting. These advantages provide ideal access for long term HD chemo or blood draws. An example, would be patients who are on coumadin which require weekly blood draws. This new system becomes less painful over time as the skin over the “needle access” site become less sensitive. The veins are spared repeated blood draws which results in vein thrombosis to such a degree that some patients “have no veins left” making routine blood draws impossible.
  • Among the more relevant prior art patents are U.S. Pat. Nos. 4,898,669, 4,822,341; 5,041,098; and, 4,790,826. None of the foregoing patents disclose a system having the features of this invention. U.S. Pat. No. 4,447,237 describes improvements in a valving slit which includes the provision of a flattened sleeve within an elastomeric body presenting opposed interior surfaces interengaged when the valving slit is in the closed condition and spaced apart when the valving slit is in the open condition.
  • SUMMARY OF THE INVENTION
  • A hemodialysis and vascular access system comprises a PTFE end which is sutured to an opening in an artery at one end and the other end is placed into a vein using any technique which avoids the need for an anastomosis between the silicone “venous” end of the catheter and the vein wall. The system comprises any material, synthetic or natural (i.e. vein) which can be sutured to the artery (i.e. preferably PTFE) at one end while the other end is composed of a material which is suitable for placement into a vein in such a way that the openings in the “venous” end of the system are away from the site where the graft enters the vein. The system may also be constructed of multiple layers of materials i.e. PTFE on the inside with silastic on the outside. The “Needle Receiving Site” may also be covered with PTFE to encourage self sealing and tissue in-growth.
  • A preferred embodiment comprises a combination of PTFE conduit sewn to an artery on one end of the system with the other end connected to a silastic-plastic catheter which can be percutaneously inserted into a vein via an introducer. The venous end may also be placed via open cut down. The seal around the system where it enters the vein may be “self sealing” when placed in percutaneous technique; it may be achieved with a purse string when done by open technique “cut down”; or, it may be sewn to the vein to create a seal with a “cuff” while the system continues downstream within the venous system to return the arterial blood away from the site of entry into the vein. The entire system can be positioned subcutaneously at the completion of insertion. This design is a significant improvement over existing methods because it avoids the most frequent complication of current HD access methods. By utilizing an indwelling venous end, one avoids creating a sewn anastomosis on a vein which is prone to stenosis secondary to neointimal hyperplasia. By having continuous flow through the silastic end of the catheter, thrombosis of these catheters can be avoided. Dialysis is made more efficient by decreasing recirculation of blood which accompanies the use of side by side dual lumen catheters inserted into a central vein. This invention not only benefits the patient but it also speeds dialysis thus saving time and money.
  • To summarize, the Squitieri Access System comprises a tube composed of PTFE and a silastic catheter. This tube is used to create an arteriovenous fistula. The PTFE end (arterial end) of the tube is sewn to an artery while the silastic catheter end is placed into the venous system by the Seldinger technique much like a standard central line. The entire system is subcutaneous at the completion of insertion. This system is a composite of the arterial end of a “gortex graft” joined to the venous end of a “permacath”. This system enjoys strengths of each type of access and at the same time avoids their weaknesses.
  • Accordingly, an object of this invention is to provide a new and improved vascular access system.
  • Another object of this invention is to provide a new and improved hemodialysis and vascular access system including an easily replaceable needle receiving site which has superior longevity and performance, is more easily implanted, more easily replaced, and is “user friendly” i.e. easily and safely accessed by a nurse or patient which is ideal for home hemodialysis.
  • A more specific object of this invention is to provide a new and improved Squitieri hemodialysis and vascular access system including a subcutaneous composite PTFE/Silastic arteriovenous fistula.
  • A further object of this invention is to provide a new and improved hemodialysis and vascular access system including a fistula utilizing an indwelling silastic end which is inserted percutaneously into the venous system and a PTFE arterial end which is anastomosed to an artery and including a unique needle receiving sites which are positioned anywhere between the ends and which have superior longevity and performance.
  • A further object of this invention is to provide a system constructed to preserve laminar flow within the system and at the venous outflow end to reduce turbulence and shear force in the vascular system to the degree possible.
  • A still further object of this invention is to provide a system wherein the arterial end (PTFE) may also be placed by percutaneous technique including one where blood entry holes are distant from the site where blood enters the veins.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The above and other objects of this invention may be more clearly seen when viewed in conjunction with the accompanying drawings wherein:
  • FIG. 1 is a perspective view of the vascular access system comprising the invention;
  • FIG. 2 is a cross-sectional view of the needle access site taken along the line 2-2 of FIG. 1;
  • FIG. 3 is a cross-sectional view similar to FIG. 2 with a needle inserted into the access site;
  • FIG. 4 is a cross-sectional view of the coupling between the PTFE and the silicone venous end of the catheter;
  • FIG. 5 is a perspective view of an alternate embodiment of the invention with one port having a tube sewn to a vein;
  • FIG. 6 is a perspective view of the embodiment in FIG. 5 with a silastic tube floated down a vein;
  • FIG. 7 illustrates a ringed tube sewn to an artery and connected to a first access site which is joined to a second site by silastic tubing and includes an outflow through silastic tubing which is floated into the venous system;
  • FIG. 8 is similar to FIG. 7 but shows PTFE sewn to an artery and silastic tubing floated into a different portion of the venous system;
  • FIG. 9 depicts ringed PTFE tubing sewn to the subclavian artery and a dual access site coupled to the venous system at its other end;
  • FIG. 10 shows a multi-layered variation at the venous end of the system;
  • FIG. 11 discloses a quick coupler design utilized in conjunction with the system;
  • FIG. 12 is a unique port design utilized in conjunction with the system;
  • FIG. 13 shows holes where ports can be fixed in place while FIG. 13 a and FIG. 13 b show cross-sectional views which depict the internal construction of the invention with FIG. 13 b illustrating multi-layered tubing; and,
  • FIG. 14 shows a variation of the system entry through vein wall (i.e. not percutaneous or purse string) wherein a cuff, sewn to vein as indwelling portion, is floated down stream.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
  • Referring to the drawings the Squitieri hemodialysis and vascular system, as shown in FIG. 1, comprises a PTFE/Dacron (or other synthetic or natural material) tube 10 of several centimeters in length which is attached at one end by means of a coupling to a needle access site or receiving site 20. Adjustable band 18 regulates the blood flow through the access site 20. The PTFE tube 10 is approximately 7 mm in diameter and transitions downward to an open end portion 19 approximately 4 mm in diameter.
  • The access site 20 includes an in line aperture 16, see FIG. 2, having a silicone tube 41 connected thereto at one end leading to a long flexible plastic/silastic/silicone tube 12 with transverse holes 13 along its free end. The number of holes 13 may vary within predetermined limits to achieve optimum results. The end 36 may be beveled for ease of insertion. This tubular arrangement functions as a subcutaneous connection between the arterial and venous systems. It may also be modified to allow part of the system to exit through the skin 14 (FIG. 3) to provide access to the blood circulation without placing needles 15 (FIG. 3) through the skin 14 into the fistula (usually at the PTFE end).
  • Along the length of the catheter specially constructed needle access sites 20 (FIGS. 1, 7, 8, and 10) are located to receive specially designed needles 15 into the system to gain access to the blood stream which flows through aperture 16. This method avoids perigraft bleeding which leads to thrombosis either by compression of the graft by hematoma or by manual pressure applied to the graft in an attempt to control the bleeding.
  • The needle access areas 20 which are designed to receive needles 15 etc. to allow access to the system are in line conduits with self-sealing material 25 which is here shown as a silicone member 25 which can be located beneath the skin surface. The silicone member 25 comprises an oval configuration exposed within the frame 26 for ease of puncture. The system may be accessed immediately after insertion without having to wait for the graft to incorporate into the tissues as is the case with the current methods of subcutaneous fistulas. These access areas 20 will protect the graft since they are uniformly and easily utilized requiring little training or experience. The “needle receiving” sites 20 are designed in such a way to preserve laminar flow as far as possible (i.e. not a reservoir arrangement). Needle receiver sites 20 may be connected to a system via “quick couple” 45 for easy exchangability, see FIG. 11.
  • FIGS. 2 and 3 disclose a needle access site 20 wherein a silicone member 25 is mounted within a plastic or metal frame 26. A protruding portion 27 of member 25 extends upwardly through the aperture 31 while a flange portion 28 extends outwardly on both sides of the portion 27 to be gripped by teeth 29 on the internal surface of frame 26 and member 32. The frame 26 includes an in-line aperture or passage 16 through the needle access site 20 for blood flow. The blood flow is accessed by inserting needles 15 through the silicone member 25 which is preferably oval in shape. The teeth 29 seal the arterial pressure. The passage 16 of the needle receiving site 20 is tubular in shape.
  • The open end portion 19 of the PTFE tube 10 is sewn to an opening in an artery 30, see FIGS. 5, 6, 7, 8 and 9, while the flexible plastic tube 24 of the system having been inserted percutaneously lies in the venous system in such a way that the openings 13 in the silastic tube 12 are downstream from the site where the flexible plastic tube 24 enters the vein 40 (see FIGS. 5 and 6). The venous end may be inserted via “cutdown”. The purpose of the system is to allow communication between an artery 30 and a vein 40 in such a way that the system may be accessed by either puncturing the PTFE segment or by entering the specialized “needle receiving” site 20. This allows blood to flow from the system to a hemodialysis (HD) machine (not shown) and then return into the venous outflow portion at a more distal (venous end) location allowing the blood to return from the HD machine (not shown) back into the patient.
  • FIG. 4 discloses, as an alternative, a “glued” connection between PTFE tubing 60 and silicone tubing 61 wherein the PTFE tubing 60 is inserted into an enlarged portion of silicone tubing 61 wherein the longitudinally extending portion includes a raised section 63 which locks a raised section 64 of PTFE tubing 61 within the silicone tubing 61.
  • In this invention, the materials used may vary as specified herein. The system may be constructed of one or more specific materials. The arteries and veins used may also vary. Material may also be covered with thrombus resistant coatings (heparin, etc.) or biologic tissue. The system may in specific cases be “ringed” for support.
  • The same concept of using an arterialized venous access catheter may be applied to the use of long term indwelling catheters used to give chemotherapy etc., making the current ports obsolete as these new access systems will have a decreased thrombosis rate and they will no longer need to be flushed as continuous blood flow through the system makes thrombus formation unlikely. This will definitely cut down on costs since it will decrease nursing requirements in out patient settings, etc.
  • In alternate embodiments shown in FIGS. 5 and 6, the system comprises an arterial reservoir structure or port 50 with needle accessible top portions 51 a and 51 b, each of which a preferably-constructed of silicone. The arterial reservoir structure 50 is connected to an outlet tube 53 of PTFE (gortex-ringed), which is sewn to an artery 30 at its other end. The venous outlet tube portion 57 is constructed in a similar way but it is either sewn to a vein 40 via gortex ringed portion 52 or is placed percutaneously into the central circulation via an indwelling venous (silicon) catheter 42 as shown in FIG. 6. There is no continuous flow through this version of the system since the ports are not connected. Flow is established when the system is attached to an HD machine with a needle 15 in the arterial port 51 a to deliver blood to the HD machine and a second needle 15 is placed in the venous port 51 b to the vein 40 to deliver blood to the patient. The ports 51 a, 51 b will remain flushed with heparin when not in use to avoid clotting when accessed through the skin 14 with needles 15. The ports 51 a, 51 b will also provide high flow access to both the arterial and venous systems. FIG. 6 shows two separate ports 51 a and 51 b with the outlet tube 53 sewn to an artery 30 and the indwelling venous catheter 42 floated down a vein 40.
  • FIG. 7 illustrates, in an anatomical drawing, an outlet tube 53 of PTFE (ringed gortex) sewn to an artery 30 at 62 and coupled at its other end 62 a to the needle access site 20. The site 20, see FIGS. 1-3, is joined by silastic tubing 68 to a second access site 20 a which has an outlet silastic tube 65. The outlet tube 65 includes a plurality of perforations 66 at its outlet end which is positioned in the venous system 67 through vein 40. Either site 20 or 20 a can be used for needle access.
  • FIG. 8 depicts an embodiment similar to that of FIG. 7 except that the coupling between the artery 30 and the first needle access site 20 is PTFE tube 69. The entry to the venous system 67 is via vein 40 which has silastic tubing 65 floated therein. A PTFE tube portion 69 a joins parts 20 and 20 a.
  • FIG. 9 illustrates a dual needle access site 80 which is coupled via outlet tube 53 of PTFE (gortex-ringed) to the subclavian artery 30 and floated into the venous system 67 via silastic tubing 65. The dual site 80 provides additional access through 25 a, 25 b in approximately the same area with tubing (not shown) extending through the dual site needle access site 80.
  • FIG. 10 depicts a variation of the invention at the venous end wherein the outlet of the port 20 comprises PTFE tubing 91 located within a silastic catheter 92. This design is appropriate if thrombosis is a problem in the outlet silastic portion of the shunt.
  • FIG. 11 discloses a quick coupler 45 joining the PTFE outlet tube 53 (gortex-ringed) to the port 46 in the needle access site 20. A plastic or metal member 47 includes a portion 48 which engages the cylindrical PTFE tubing 10, an intermediate portion 49 extending perpendicularly outward and an end portion 43 tapered outwardly at an angle and including an inward projection 44. The projecting portion 44 of the member 47 engages a slot 54 in the port 46 firmly fixing the cylindrical PTFE tubing 10 therebetween. Portion 48 is made of flexible material to allow a gentle curve in tubing as it exits/enters port.
  • FIG. 12 is an exploded view of a new port embodiment wherein the port 71 comprises a frame 72 having an inlet coupling 73 and an outlet coupling 74. The plastic or metal frame 72 includes a recessed reservoir 76 and end walls 78 a and 78 b. An upper member 85 having a top or upper member 85 a, a recess 83 and downwardly projecting sides 87 a and 87 b fits within walls 77 a and 77 b. The upper member 85 includes an oval silicone access site 90. The member 45 rapidly couples the PTFE tubing 10 to site 71 with tubing 88 which fits over the inlet coupling 73 and the outlet coupling 74 with recessed portions 75 a and 75 b which engage tubing 88 (only one of which is shown) and have couplers 45 (only one of which is shown) which slide over the tubing 88 to engage the inlet and outlet couplings 73 and 74.
  • A housing 86 includes a top portion 86 a and a side portion 86 b. The top portion 86 a includes an aperture which surrounds and provides a means for accessing the oval silicone access site 90. This embodiment provides a quick assembly for a needle access site 71.
  • FIG. 13 shows a typical dual port system showing holes 55 where ports 20 can be fixed in place, while FIG. 13 a and FIG. 13 b show cross-sectional views which depict the internal construction of the invention with FIG. 13 b illustrating multi-layered tubing.
  • FIG. 14 discloses a cuff 56 which is made of PTFE and sewn to a vein. No physiological/functional venues anastomosis is created as blood is returned at the end of the system distant from the cuff. The silastic end 12 may still be lined with PTFE.
  • The Squitieri Hemodialysis/Vascular Access System avoids creation of a venous anastomosis, a revolutionary advancement, i.e. there is no site for neointimal hyperplasia at a venous anastomosis which accounts for the vast majority of PTFE arteriovenous graft failures (60-80%). This is accomplished by returning the blood into a larger vein via an indwelling venous catheter 42. The site of blood return to the venous system is not fixed to the vein wall where neointimal hyperplasia occurs with the standard PTFE bridge graft. This feature represents a tremendous advantage over the present grafts.
  • As a further advantage, the system is not stagnant and prone to thrombosis, i.e. constant flow through the new system avoids the problem of clotting inherent in indwelling dual lumen venous catheters which remain stagnant when not in use. It also avoids need to flush catheters with heplock thereby reducing nursing costs to maintain the catheter.
  • The Squitieri system avoids externalization of components which are prone to infection. Since dual lumen catheters exit the skin 14, they frequently lead to sepsis requiring catheter removal despite subcutaneous tunneling. This new access is entirely subcutaneous.
  • Very importantly the system proposed herein, avoids problems with the aspiration of blood from the venous system and “positional” placement through continuous flow. A frequent problem with dual lumen catheters is their inability to draw blood from the venous system due to clot and fibrinous debris ball-valving at the tip of a catheter. This new system receives blood directly from arterial inflow which ensures high flow rates needed for shorter, more efficient dialysis runs. It also avoids the frequent problem of the catheter tip “sucking” on the vein wall inhibiting flow to the dialysis machine and rendering the access ineffective.
  • The system avoids recirculation seen with dual lumen catheters resulting in more efficient and more cost effective dialysis.
  • The system avoids the need for temporary access with incorporation of “Needle Access Sites” 20. A-V fistulas and gortex grafts must “mature” for several weeks before use. This creates a huge strain on the patient as well as the doctor to achieve temporary access while waiting to use the permanent access. Temporary access is very prone to infection, malfunction and vein destruction. By placing sites 20 designed to receive needles 15 along the new access, the system may be used the day it is inserted.
  • The system avoids PTFE needle site damage with the incorporation of “Needle Access Sites” 20. Needle access directly into PTFE is presently uncontrolled and user dependent. Often, PTFE is lacerated by access needles. While this system may be accessed via the PTFE segment, the needle receiving sites are the preferred method. This leads to excessive bleeding which requires excessive pressure to halt the bleeding causing thrombosis of the graft. “Needle Access Sites” 20 on the Squitieri access system allow safe, quick, and easy entry into the system and avoid the complications inherent in placing needles directly into PTFE. It also avoids perigraft bleeding which will compress and thrombose the graft. By eliminating the long time needed to compress bleeding at the needle site, the system shortens dialysis runs.
  • The Squitieri system permits an easier, faster insertion technique. Only one anastomosis the arterial end and a percutaneous placement of the venous end is required. A modification allows the system to be sutured to the vein wall while the system tubing is floated down stream from this site where the system enters the vein 40. This saves operating room time at thousands of dollars per hour. The technique is easier with faster replacement. It avoids difficult and time consuming revision of venous anastomosis required to repair venous outflow occluded by neointimal hyperplasia. If the system malfunctions, the silastic catheter end 65 slips out easily and the arterial end of the outlet tube 53 is thrombectomized. New access sewn to the thrombectomized end of the outlet tube 53 of PTFE at the arterial end and the silastic venous end is replaced percutaneously via Seldinger technique or “open technique”.
  • The end result of the above advantages translates into superior patency rates and a decreased complication rate with this new system. Patients are spared the repeated painful hospitalizations for failed access as well as the emotional trauma associated with this difficult condition. The physicians are spared the dilemma of how to best treat these patients. This system will have a large impact on the current practice of vascular access in areas such as hemodialysis; plasmapheresis; chemotherapy; hyperalimentation; and chronic blood draws.
  • While the invention has been explained by a detailed description of certain specific embodiments, it is understood that various modifications and substitutions can be made in any of them within the scope of the appended claims which are intended also to include equivalents of such embodiments.

Claims (46)

1. A hemodialysis and vascular access system wherein:
said system comprises a first portion comprising a tube and a second portion comprising a catheter and wherein:
said tube is provided from a material which can be sutured to the artery with a first end of said tube adapted to be coupled to an artery; and
said catheter is adapted to be inserted within a vein at an insertion site, with a first end of the catheter having an opening adapted to be within the vein itself and wherein the opening in the first end of said catheter is distant from the insertion site and
said tube and said catheter being adapted to be entirely subcutaneous in use and
configured to avoid, in use, a reservoir therein.
2. The hemodialysis and vascular access system of claim 1, wherein said system has a single lumen formed by said tube and said catheter.
3. The hemodialysis and vascular access system of claim 1, wherein said first end of the catheter is adapted for percutaneous insertion.
4. The hemodialysis and vascular access system of claim 3, wherein said first end of the catheter is beveled.
5. The hemodialysis and vascular access system of claim 1, wherein a second end of the tube is adapted to be coupled to a second end of the catheter.
6. The hemodialysis and vascular access system of claim 5, wherein said second end of the catheter comprises an enlarged portion configured to lock with said second end of the tube.
7. The hemodialysis and vascular access system of claim 5, wherein said system further comprises a coupler adapted to join said second end of the tube to said second end of the catheter.
8. The hemodialysis and vascular access system of claim 5, wherein said second end of the tube is glued to said second end of the catheter.
9. The hemodialysis and vascular access system of claim 1, wherein said catheter comprises a cuff adapted for sewing to the vein.
10. The hemodialysis and vascular access system of claim 1, wherein said catheter comprises multiple layers of material.
11. The hemodialysis and vascular access system of claim 10, wherein at least one layer is a thrombus resistant coating.
12. The hemodialysis and vascular access system of claim 10, wherein said catheter further comprises an inner layer of PTFE material and an outer layer of silastic material.
13. The hemodialysis and vascular access system of claim 1, wherein the tube comprises a PTFE material and the catheter comprises a silastic material.
14. The hemodialysis and vascular access system of claim 1, wherein said system further comprises a needle receiving site located between said first end of the tube and said first end of the catheter.
15. The hemodialysis and vascular access system of claim 14, wherein the needle receiving site comprises a frame having a passage extending therethrough, an inlet adapted to connect to said second end of the tube, and an outlet adapted to connect to a second end of the catheter.
16. The hemodialysis and vascular access system of claim 1, wherein said system further comprises at least one needle having a first end configured to couple to a hemodialysis device and a second end adapted for insertion directly into said tube.
17. A hemodialysis and vascular access system to shunt blood between a vein and an artery, said system having a single lumen comprising:
a tube having first and second ends, said first end adapted to be anastomosed to said artery; and
a catheter, comprising tubing having a first end and a second end, said second end being connected to said second end of said tube;
said catheter having a site for entering said vein, said site being away from said first end of said catheter so that, in use, said first end can be located downstream in said vein;
and needle receiving sites between said first end of said tube and said first end of said catheter;
said tube and said catheter being adapted to be entirely subcutaneous in use and configured to avoid, in use, a blood reservoir therein and to provide continuous blood flow.
18. The hemodialysis and vascular access system of claim 17, wherein said first end of the catheter is adapted for percutaneous insertion in said vein.
19. The hemodialysis and vascular access system of claim 17, wherein said first end of the catheter is beveled.
20. The hemodialysis and vascular access system of claims 17, wherein said second end of the catheter comprises an enlarged portion configured to lock with said second end of the tube.
21. The hemodialysis and vascular access system of claim 17, wherein said system further comprises a coupler adapted to join said second end of the tube to said second end of the catheter.
22. The hemodialysis and vascular access system of claim 17, wherein said second end of the tube is glued to said second end of the catheter.
23. The hemodialysis and vascular access system of claims 1, wherein said catheter comprises a cuff adapted for sewing to the vein.
24. The hemodialysis and vascular access system of claim 1, wherein said catheter comprises multiple layers of material.
25. The hemodialysis and vascular access system of claim 24, wherein at least one layer is a thrombus resistant coating.
26. The hemodialysis and vascular access system of claim 24, wherein said catheter further comprises an inner layer of PTFE material and an outer layer of silastic material.
27. The hemodialysis and vascular access system of claim 17, wherein the material of said tube and said catheter comprise PTFE.
28. The hemodialysis and vascular access system of claim 17, wherein the material of said tube is PTFE and the material of said catheter is silastic.
29. The hemodialysis and vascular access system of claim 17, further comprising a needle receiving site between said first and second ends.
30. The hemodialysis and vascular access system of claim 29, wherein the needle receiving site comprises a frame having a passage extending therethrough, an inlet adapted to connect to said first portion of the tube, an outlet adapted to connect to said second portion of the tube.
31. The hemodialysis and vascular access system of claim 17, wherein said system further comprises at least one needle having a first end configured to couple to a hemodialysis device and a second end adapted for insertion directly into said system.
32. A hemodialysis and vascular access system, comprising:
an arterialized indwelling venous catheter having a first portion provided from a material which is biocompatible with an arterial system, has a nonthrombogenic characteristic, which is adapted for attachment to an arterial system and a catheter section, with a first end of said first portion adapted to be coupled to an arterial system and a portion of the catheter section adapted to be inserted within a venous system at an insertion site, said catheter section portion having an outside diameter which is less than an inner diameter of the venous system and having at least one opening in an end thereof with at least one of the at least one openings in the catheter section portion adapted to be within the venous system itself and wherein the at least one opening is distant from the insertion site such that, in operation, blood flows from the arterial system through the catheter and is returned to the venous system through the at least one opening and blood also flows through the vein uninterrupted around at least an outer portion of said catheter; and
at least one needle having a first end coupled to a hemodialysis device and having a second end adapted for insertion directly into the arterialized indwelling venous catheter to shunt the blood flow through the dialysis device.
33. The hemodialysis and vascular access system of claim 32 wherein the first portion of said arterialized indwelling venous catheter is provided from a first tube and said catheter section is provided from a second tube comprising multiple layers and a first end of said first tube is coupled to a first end of said second tube.
34. The hemodialysis and vascular access system of claim 33 wherein said first and second tubes are adapted for percutaneous placement.
35. The hemodialysis and vascular access system of claim 33 wherein the end of said second tube which is coupled to the first tube includes an enlarged portion in which the first end of said first tube is disposed.
36. A hemodialysis and vascular access system as in claim 32, wherein the first portion comprises PTFE.
37. A hemodialysis and vascular access system as in claim 32, wherein the first portion has a diameter of approximately 7 mm.
38. A hemodialysis and vascular access system as in claim 32, wherein the first end of the first portion has a diameter of about 4 mm.
39. A hemodialysis and vascular access system as in claim 32, wherein the catheter section comprises a silastic material.
40. A hemodialysis and vascular access system as in claim 32, wherein the catheter section comprises silicone.
41. A hemodialysis and vascular access system as in claim 32, wherein a downstream end of the catheter section is provided with a bevel.
42. A hemodialysis and vascular access system as in claim 32, additionally comprising an access segment for receiving a needle to allow access to blood flowing through the catheter.
43. A hemodialysis and vascular access system as in claim 33, wherein the access segment comprises a self sealing material.
44. A hemodialysis and vascular access system as in claim 43, wherein the self sealing material comprises silicone.
45. A hemodialysis and vascular access system as in claim 43, wherein the access segment is removably connected to the access system.
46. A hemodialysis and vascular access system as in claim 43, further comprising a frame in the access segment.
US11/417,658 1997-02-07 2006-05-03 Squitieri hemodialysis and vascular access systems Abandoned US20070123811A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/417,658 US20070123811A1 (en) 1997-02-07 2006-05-03 Squitieri hemodialysis and vascular access systems

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US3709497P 1997-02-07 1997-02-07
US08/835,316 US6102884A (en) 1997-02-07 1997-04-07 Squitieri hemodialysis and vascular access systems
US10/219,998 USRE41448E1 (en) 1997-02-07 2002-08-15 Squitieri hemodialysis and vascular access systems
US11/417,658 US20070123811A1 (en) 1997-02-07 2006-05-03 Squitieri hemodialysis and vascular access systems

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/219,998 Continuation USRE41448E1 (en) 1997-02-07 2002-08-15 Squitieri hemodialysis and vascular access systems

Publications (1)

Publication Number Publication Date
US20070123811A1 true US20070123811A1 (en) 2007-05-31

Family

ID=26713805

Family Applications (5)

Application Number Title Priority Date Filing Date
US08/835,316 Ceased US6102884A (en) 1997-02-07 1997-04-07 Squitieri hemodialysis and vascular access systems
US09/490,368 Expired - Lifetime US6582409B1 (en) 1997-02-07 2000-01-24 Hemodialysis and vascular access systems
US10/219,998 Expired - Lifetime USRE41448E1 (en) 1997-02-07 2002-08-15 Squitieri hemodialysis and vascular access systems
US11/417,658 Abandoned US20070123811A1 (en) 1997-02-07 2006-05-03 Squitieri hemodialysis and vascular access systems
US12/688,716 Expired - Lifetime USRE44639E1 (en) 1997-02-07 2010-01-15 Hemodialysis and vascular access system

Family Applications Before (3)

Application Number Title Priority Date Filing Date
US08/835,316 Ceased US6102884A (en) 1997-02-07 1997-04-07 Squitieri hemodialysis and vascular access systems
US09/490,368 Expired - Lifetime US6582409B1 (en) 1997-02-07 2000-01-24 Hemodialysis and vascular access systems
US10/219,998 Expired - Lifetime USRE41448E1 (en) 1997-02-07 2002-08-15 Squitieri hemodialysis and vascular access systems

Family Applications After (1)

Application Number Title Priority Date Filing Date
US12/688,716 Expired - Lifetime USRE44639E1 (en) 1997-02-07 2010-01-15 Hemodialysis and vascular access system

Country Status (6)

Country Link
US (5) US6102884A (en)
EP (2) EP1550479B1 (en)
JP (1) JP3995057B2 (en)
AU (1) AU6053498A (en)
DE (1) DE69829468T2 (en)
WO (1) WO1998034676A1 (en)

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050137614A1 (en) * 2003-10-08 2005-06-23 Porter Christopher H. System and method for connecting implanted conduits
US20060064159A1 (en) * 2003-10-08 2006-03-23 Porter Christopher H Device and method for vascular access
US20070167901A1 (en) * 2005-11-17 2007-07-19 Herrig Judson A Self-sealing residual compressive stress graft for dialysis
US20090209918A1 (en) * 2007-09-07 2009-08-20 Imtec, Llc Method and device for dialysis
US20090227932A1 (en) * 2008-03-05 2009-09-10 Hemosphere, Inc. Vascular access system
WO2010028272A1 (en) * 2008-09-05 2010-03-11 Imtecbiomedical, Inc. Method and apparatus for vascular access
US20100152640A1 (en) * 2008-09-05 2010-06-17 Imtecbiomedical, Inc. Methods and apparatus for vascular access
USRE41448E1 (en) 1997-02-07 2010-07-20 Hemosphere, Inc. Squitieri hemodialysis and vascular access systems
US20100191166A1 (en) * 2009-01-29 2010-07-29 Vital Access Corporation Subcutaneous vascular access ports and related systems and methods
KR101037077B1 (en) 2009-09-25 2011-05-26 주식회사 리브라하트 A conduit which is capable of attaching and detaching Ventricular Assist Device and its using method
US20110213309A1 (en) * 2009-01-29 2011-09-01 Vital Access Corporation Vascular access ports and related methods
WO2012125927A3 (en) * 2011-03-16 2013-01-10 Duke University Arteriovenous graft for hemodialysis with puncture-resistant posterior and side walls
US9039717B2 (en) 2008-06-06 2015-05-26 Vital Access Corporation Tissue management apparatus for vascular access
US20150157836A1 (en) * 2008-01-28 2015-06-11 Peter Mats Forsell Implantable drainage device
US9278172B2 (en) 2011-09-06 2016-03-08 Cryolife, Inc. Vascular access system with connector
US10004842B2 (en) 2011-08-11 2018-06-26 Medical Components, Inc. Method and apparatus for the dialysis of blood
CN109260570A (en) * 2018-09-18 2019-01-25 中山肾康医疗科技有限公司 A kind of subcutaneous embedded sting device for hemodialysis catheter
US10682453B2 (en) 2013-12-20 2020-06-16 Merit Medical Systems, Inc. Vascular access system with reinforcement member
US10792413B2 (en) 2008-03-05 2020-10-06 Merit Medical Systems, Inc. Implantable and removable customizable body conduit
USD905853S1 (en) 2018-02-27 2020-12-22 Medical Components, Inc. Catheter tip
US10925710B2 (en) 2017-03-24 2021-02-23 Merit Medical Systems, Inc. Subcutaneous vascular assemblies for improving blood flow and related devices and methods
US11026704B2 (en) 2017-03-06 2021-06-08 Merit Medical Systems, Inc. Vascular access assembly declotting systems and methods
US11065377B2 (en) 2017-03-31 2021-07-20 InnAVasc Medical, Inc. Apparatus and method for cannulation of vascular access graft
US11116943B2 (en) 2018-10-09 2021-09-14 Limflow Gmbh Methods for accessing pedal veins
US11179543B2 (en) 2017-07-14 2021-11-23 Merit Medical Systems, Inc. Releasable conduit connectors
US11197952B2 (en) 2009-01-29 2021-12-14 Advent Access Pte. Ltd. Vascular access ports and related methods
US11241304B2 (en) 2006-04-20 2022-02-08 Limflow Gmbh Method for fluid flow through body passages
US11331458B2 (en) 2017-10-31 2022-05-17 Merit Medical Systems, Inc. Subcutaneous vascular assemblies for improving blood flow and related devices and methods
US11383072B2 (en) 2017-01-12 2022-07-12 Merit Medical Systems, Inc. Methods and systems for selection and use of connectors between conduits
US11413043B2 (en) 2016-11-10 2022-08-16 Merit Medical Systems, Inc. Anchor device for vascular anastomosis
US11446170B2 (en) 2004-09-08 2022-09-20 Limflow Gmbh Minimally invasive surgical apparatus and methods
US11471262B2 (en) 2013-03-08 2022-10-18 Limflow Gmbh Methods for targeting a body passage to effect fluid flow
US11590010B2 (en) 2017-01-25 2023-02-28 Merit Medical Systems, Inc. Methods and systems for facilitating laminar flow between conduits
US11612397B2 (en) 2019-11-01 2023-03-28 Limflow Gmbh Devices and methods for increasing blood perfusion to a distal extremity
USD984880S1 (en) 2020-11-06 2023-05-02 Medical Components, Inc. Clamp with indicator
US11826504B2 (en) 2017-04-10 2023-11-28 Limflow Gmbh Methods for routing a guidewire from a first vessel and through a second vessel in lower extremity vasculature
WO2024007921A1 (en) * 2022-07-05 2024-01-11 上海心光生物医药有限责任公司 Implantable access device and fluid circulation system
US11911585B2 (en) 2017-07-20 2024-02-27 Merit Medical Systems, Inc. Methods and systems for coupling conduits
US11925782B2 (en) 2018-10-30 2024-03-12 InnAVasc Medical, Inc. Apparatus and method for cannulation of vascular access vessel

Families Citing this family (118)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3720374B2 (en) 1996-02-28 2005-11-24 バード・ペリフェラル・バスキュラー・インコーポレーテッド Endoplasty flanged graft
GB9709967D0 (en) * 1997-05-17 1997-07-09 Harris Peter L Prosthetic grafts
US6090118A (en) 1998-07-23 2000-07-18 Mcguckin, Jr.; James F. Rotational thrombectomy apparatus and method with standing wave
US6889082B2 (en) 1997-10-09 2005-05-03 Orqis Medical Corporation Implantable heart assist system and method of applying same
US6603112B1 (en) * 1998-02-25 2003-08-05 Massachusetts Institute Of Technology Method and apparatus for detecting malfunctions in communication systems
US8177762B2 (en) 1998-12-07 2012-05-15 C. R. Bard, Inc. Septum including at least one identifiable feature, access ports including same, and related methods
US6338724B1 (en) 1999-03-29 2002-01-15 Christos D. Dossa Arterio-venous interconnection
US9814869B1 (en) 1999-06-15 2017-11-14 C.R. Bard, Inc. Graft-catheter vascular access system
WO2001026713A1 (en) * 1999-10-12 2001-04-19 Biolink Corporation Single needle vascular access for home hemodialysis
US6544206B1 (en) * 1999-10-14 2003-04-08 Robert H. Johnston, Jr. Dialysis access system and method
AU2614901A (en) 1999-10-22 2001-04-30 Boston Scientific Corporation Double balloon thrombectomy catheter
US8414543B2 (en) 1999-10-22 2013-04-09 Rex Medical, L.P. Rotational thrombectomy wire with blocking device
US7118546B2 (en) * 2000-01-11 2006-10-10 Integrated Vascular Interventional Technologies, L.C. Apparatus and methods for facilitating repeated vascular access
US7131959B2 (en) * 2003-01-23 2006-11-07 Integrated Vascular Interventional Technologies, L.C., (“IVIT LC”) Apparatus and methods for occluding an access tube anastomosed to sidewall of an anatomical vessel
US6656151B1 (en) 2000-01-11 2003-12-02 Integrated Vascular Interventional Technologies, L.C. (Ivit, Lc) Vascular access devices and systems
US6595941B1 (en) * 2000-01-11 2003-07-22 Integrated Vascular Interventional Technologies, L.C. Methods for external treatment of blood
AU2001229433A1 (en) 2000-01-11 2001-07-24 Duane D. Blatter Vascular occlusal balloons and related vascular access devices and systems
US6773428B2 (en) * 2000-05-12 2004-08-10 Stephen M. Zappala Implantable delivery system and method for the pharmacologic management of erectile dysfunction
JP4967183B2 (en) * 2000-09-22 2012-07-04 株式会社ジェイ・エム・エス Blood collection device for arterial or venous line blood collection system, and arterial or venous line blood collection system using the blood collection device.
US6761700B2 (en) * 2001-02-09 2004-07-13 Orqis Medical Corporation Extra-corporeal vascular conduit
US7101356B2 (en) * 2001-03-23 2006-09-05 Miller Stuart H Implantable vascular access device
US6997914B2 (en) * 2001-04-02 2006-02-14 Horizon Medical Products, Inc. Implantable access port
WO2003000314A2 (en) * 2001-06-20 2003-01-03 The Regents Of The University Of California Hemodialysis system and method
US6849183B2 (en) * 2002-08-13 2005-02-01 Transvivo, Inc. Method and apparatus for therapeutic apheresis
US6899692B2 (en) * 2001-10-17 2005-05-31 Transvivo, Inc. Plasmapheresis filter device and catheter assembly
US7481936B2 (en) * 2001-10-17 2009-01-27 Transvivo Inc. Method and apparatus for patient fluid management
AU2003282466A1 (en) * 2002-10-09 2004-05-04 Edrich Vascular Devices, Inc. Implantable dialysis access port
US8574204B2 (en) 2002-10-21 2013-11-05 Angiodynamics, Inc. Implantable medical device for improved placement and adherence in the body
WO2004054641A1 (en) * 2002-12-17 2004-07-01 Ventracor Limited Blood pumping system and procedure
US7124570B2 (en) * 2003-01-23 2006-10-24 Integrated Vascular Interventional Technologies, L.C. Apparatus and methods for fluid occlusion of an access tube anastomosed to an anatomical vessel
EP1613373A4 (en) * 2003-04-08 2008-09-10 Univ Leland Stanford Junior Implantable arteriovenous shunt device
US7967769B2 (en) 2003-04-08 2011-06-28 Rox Medical Inc. Implantable arterio-venous shunt devices and methods for their use
US7452374B2 (en) * 2003-04-24 2008-11-18 Maquet Cardiovascular, Llc AV grafts with rapid post-operative self-sealing capabilities
US8114044B2 (en) * 2003-06-06 2012-02-14 Creativasc Medical, Llc Arteriovenous access valve system and process
US7025741B2 (en) * 2003-06-06 2006-04-11 Creativasc Medical Llc Arteriovenous access valve system and process
US20050203457A1 (en) * 2004-03-15 2005-09-15 Smego Douglas R. Apparatus and method for creating an arterio-venous connection in hemodialysis maintenance
US8747344B2 (en) * 2004-03-29 2014-06-10 Nazir A. Khan Hybrid arteriovenous shunt
US8282591B2 (en) * 2004-03-29 2012-10-09 Iftikhar Khan Hybrid arteriovenous shunt
US8177760B2 (en) 2004-05-12 2012-05-15 C. R. Bard, Inc. Valved connector
US20060004316A1 (en) * 2004-07-02 2006-01-05 Difiore Attilio E Reduction of recirculation in catheters
JP4964134B2 (en) 2004-08-31 2012-06-27 シー・アール・バード・インコーポレーテッド Self-sealing PTFE graft with torsion resistance
ES2490610T3 (en) * 2004-12-08 2014-09-04 Shire Regenerative Medicine, Inc. Materials and methods for minimally invasive administration of a fluid composition containing cells
US8029482B2 (en) 2005-03-04 2011-10-04 C. R. Bard, Inc. Systems and methods for radiographically identifying an access port
US9474888B2 (en) 2005-03-04 2016-10-25 C. R. Bard, Inc. Implantable access port including a sandwiched radiopaque insert
JP5484674B2 (en) 2005-03-04 2014-05-07 シー・アール・バード・インコーポレーテッド Access port and identification method
US7947022B2 (en) 2005-03-04 2011-05-24 C. R. Bard, Inc. Access port identification systems and methods
EP2308547B1 (en) 2005-04-27 2014-09-17 C.R. Bard, Inc. High pressure access port with septum
US10307581B2 (en) 2005-04-27 2019-06-04 C. R. Bard, Inc. Reinforced septum for an implantable medical device
WO2006116613A1 (en) 2005-04-27 2006-11-02 C.R. Bard, Inc. Infusion apparatuses
US7794422B2 (en) * 2005-05-27 2010-09-14 Medical Components, Inc. Catheter port assembly for extracorporeal treatment
CA2610896C (en) 2005-06-17 2014-07-08 C.R. Bard, Inc. Vascular graft with kink resistance after clamping
US8709069B2 (en) 2005-07-01 2014-04-29 C. R. Bard, Inc. Flanged graft with trim lines
US20070073250A1 (en) * 2005-07-08 2007-03-29 Schneiter James A Implantable port
CA2626598A1 (en) 2005-11-09 2007-05-18 C.R. Bard Inc. Grafts and stent grafts having a radiopaque marker
US8163002B2 (en) * 2005-11-14 2012-04-24 Vascular Devices Llc Self-sealing vascular graft
US9198749B2 (en) 2006-10-12 2015-12-01 C. R. Bard, Inc. Vascular grafts with multiple channels and methods for making
US7922757B2 (en) * 2006-10-23 2011-04-12 Rex Medical, L.P. Vascular conduit
US9265912B2 (en) 2006-11-08 2016-02-23 C. R. Bard, Inc. Indicia informative of characteristics of insertable medical devices
US9642986B2 (en) 2006-11-08 2017-05-09 C. R. Bard, Inc. Resource information key for an insertable medical device
US20080306580A1 (en) * 2007-02-05 2008-12-11 Boston Scientific Scimed, Inc. Blood acess apparatus and method
WO2008097946A2 (en) * 2007-02-05 2008-08-14 Boston Scientific Scimed, Inc. Expandable dialysis apparatus and method
FR2915107A1 (en) * 2007-04-20 2008-10-24 Braun Medical Sas Soc Par Acti SEPTUM OF IMPLANTABLE ROOM, AND IMPLANTABLE ROOM COMPRISING IT
US20090030498A1 (en) * 2007-05-29 2009-01-29 Creativasc Medical Arteriovenous Access Valve System and Process
US20080300528A1 (en) 2007-05-29 2008-12-04 Creativasc Medical Llc Arteriovenous access valve system and process
ES2651269T3 (en) 2007-06-20 2018-01-25 Medical Components, Inc. Venous reservoir with molded indications and / or radiopacas
WO2009012395A1 (en) 2007-07-19 2009-01-22 Innovative Medical Devices, Llc Venous access port assembly with x-ray discernable indicia
EP3311877A1 (en) 2007-07-19 2018-04-25 Medical Components, Inc. Venous access port assembly with x-ray discernable indicia
WO2009035582A1 (en) * 2007-09-07 2009-03-19 Angiodynamics, Inc. Implantable access port
JP2010540197A (en) * 2007-10-05 2010-12-24 アンジオ ダイナミクス インコーポレイテッド Dual reservoir embedded access port
US9579496B2 (en) 2007-11-07 2017-02-28 C. R. Bard, Inc. Radiopaque and septum-based indicators for a multi-lumen implantable port
EP2231068A1 (en) * 2007-12-27 2010-09-29 C.R. Bard, Inc. Vascular graft prosthesis having a reinforced margin for enhanced anastomosis
US20090192469A1 (en) * 2008-01-24 2009-07-30 Istvan Bognar Devices and Methods for Development of a Scar Tissue Tunnel Track
US20100010339A1 (en) * 2008-03-13 2010-01-14 Smith Christopher K Method and device for easy access to subintimally implanted vascular access ports
US20090234267A1 (en) * 2008-03-13 2009-09-17 Ross John R Method and device for easy access to vascular graft cannulation sites
US8075531B2 (en) * 2008-07-16 2011-12-13 Marvao Medical Ltd. Modular implantable medical device
US20100030322A1 (en) * 2008-07-30 2010-02-04 John Sang Hun Lee Bridge graft
WO2010015001A1 (en) * 2008-08-01 2010-02-04 The Methodist Hospital Research Institute Hemodialysis grafts and methods for localizing and identifying the placement of same
WO2010039862A1 (en) * 2008-09-30 2010-04-08 Rox Medical, Inc. Methods for screening and treating patients with compromised cardiopulmonary function
EP2346553B1 (en) 2008-10-31 2022-01-19 C.R. Bard, Inc. Systems and methods for identifying an access port
US11890443B2 (en) 2008-11-13 2024-02-06 C. R. Bard, Inc. Implantable medical devices including septum-based indicators
US8932271B2 (en) 2008-11-13 2015-01-13 C. R. Bard, Inc. Implantable medical devices including septum-based indicators
US8715244B2 (en) 2009-07-07 2014-05-06 C. R. Bard, Inc. Extensible internal bolster for a medical device
WO2011005812A2 (en) * 2009-07-07 2011-01-13 Marwan Tabbara Surgical methods, devices, and kits
US20140155804A1 (en) * 2009-07-07 2014-06-05 Marwan Tabbara Surgical devices and kits
JP2013510652A (en) 2009-11-17 2013-03-28 シー・アール・バード・インコーポレーテッド Overmolded access port including locking feature and identification feature
ES2656939T3 (en) 2010-03-09 2018-03-01 Solinas Medical Inc. Automatic closing devices
US20110226253A1 (en) * 2010-03-16 2011-09-22 Exclusive Computer Innovations, Llc Cough shield
USD676955S1 (en) 2010-12-30 2013-02-26 C. R. Bard, Inc. Implantable access port
USD682416S1 (en) 2010-12-30 2013-05-14 C. R. Bard, Inc. Implantable access port
WO2012103328A1 (en) 2011-01-26 2012-08-02 The Methodist Hospital Research Institute Labeled, non- peptidic multivalent integrin alpha -v - beta - 3 antagonists, compositions containing them and their use
US8882694B2 (en) 2011-06-03 2014-11-11 The Johns Hopkins University Implantable three-way diaphragm valve
JP5869252B2 (en) * 2011-07-29 2016-02-24 川澄化学工業株式会社 Vascular access device
US9707339B2 (en) 2012-03-28 2017-07-18 Angiodynamics, Inc. High flow rate dual reservoir port system
US9713704B2 (en) 2012-03-29 2017-07-25 Bradley D. Chartrand Port reservoir cleaning system and method
US9205242B2 (en) 2012-11-19 2015-12-08 Angiodynamics, Inc. Port septum with integral valve
US11420033B2 (en) 2013-01-23 2022-08-23 C. R. Bard, Inc. Low-profile single and dual vascular access device
US11464960B2 (en) 2013-01-23 2022-10-11 C. R. Bard, Inc. Low-profile single and dual vascular access device
CA2897214C (en) 2013-01-23 2022-04-05 C.R. Bard, Inc. Low-profile access port
US10835367B2 (en) 2013-03-08 2020-11-17 Limflow Gmbh Devices for fluid flow through body passages
EP2983625B1 (en) 2013-04-13 2024-02-14 Solinas Medical, Inc. Self-closing devices and apparatus and methods for making and delivering them
US20150025437A1 (en) 2013-07-18 2015-01-22 Cryolife, Inc. Vascular access system with connector
EP3033122B1 (en) 2013-08-13 2018-07-18 Merit Medical Systems, Inc. Systems for a fluid carrying conduit of a vascular access system
US10166321B2 (en) 2014-01-09 2019-01-01 Angiodynamics, Inc. High-flow port and infusion needle systems
ES2880334T3 (en) 2014-03-07 2021-11-24 Bard Inc C R Stabilization and Guidance Appliance for Access to an Implanted Pathway and Related Methods
JP6636010B2 (en) 2014-04-25 2020-01-29 クリエイティヴァスク メディカル コーポレイション Magnetically driven arteriovenous access valve system and related methods
JP2015213594A (en) * 2014-05-09 2015-12-03 ニプロ株式会社 Blood vessel access device
US9545263B2 (en) 2014-06-19 2017-01-17 Limflow Gmbh Devices and methods for treating lower extremity vasculature
US10905867B2 (en) 2015-05-06 2021-02-02 Voyager Biomedical, Inc. Vascular access channel and methods
EP3307374A4 (en) 2015-06-11 2019-04-10 Proviflo, LLC Graft-port hemodialysis systems, devices and methods
JP7222881B2 (en) 2016-04-25 2023-02-15 ソリナス メディカル インコーポレイテッド Self-sealing tubular grafts, patches, methods of making and using same
CN106938064B (en) * 2017-03-02 2023-11-24 南华大学附属第二医院 Puncture hemodialysis catheter
CN106730083A (en) * 2017-03-14 2017-05-31 周峻 A kind of subcutaneous implantable delivery system hemodialysis catheter
US10406274B1 (en) 2017-06-02 2019-09-10 Jose Ramirez Accessing assembly for hemodialysis administration
CN107376043A (en) * 2017-08-24 2017-11-24 范朕 A kind of implantable subcutaneous vascular access punctures valve
USD870264S1 (en) 2017-09-06 2019-12-17 C. R. Bard, Inc. Implantable apheresis port
CN111655188A (en) 2018-01-26 2020-09-11 巴德血管外围设备公司 System and method for locating and identifying implanted medical devices
CN109107020A (en) * 2018-09-18 2019-01-01 中山肾康医疗科技有限公司 A kind of subcutaneous embedded sting device for haemodialysis artery and vein puncture
DE102018133404A1 (en) 2018-12-21 2020-06-25 B.Braun Avitum Ag Vascular access implant and access implant system

Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US64159A (en) * 1867-04-23 Henry smith
US167901A (en) * 1875-09-21 Improvement in registers
US203457A (en) * 1878-05-07 Improvement in fruit-pickers
US215938A (en) * 1879-05-27 Improvement in filters
US3490438A (en) * 1967-06-08 1970-01-20 Atomic Energy Commission Perfusion chamber and cannulae therefor
US3826257A (en) * 1972-07-14 1974-07-30 T Buselmeier Prosthetic shunt
US3882862A (en) * 1974-01-11 1975-05-13 Olga Berend Arteriovenous shunt
US3998222A (en) * 1974-04-15 1976-12-21 Shihata Alfred A Subcutaneous arterio-venous shunt with valve
US4619641A (en) * 1984-11-13 1986-10-28 Mount Sinai School Of Medicine Of The City University Of New York Coaxial double lumen anteriovenous grafts
US4790826A (en) * 1986-03-28 1988-12-13 Elftman Nancy W Percutaneous access port
US4877661A (en) * 1987-10-19 1989-10-31 W. L. Gore & Associates, Inc. Rapidly recoverable PTFE and process therefore
US4898669A (en) * 1987-06-16 1990-02-06 Claber S.P.A. Vascular access device, in particular for purification treatments of the blood
US4955899A (en) * 1989-05-26 1990-09-11 Impra, Inc. Longitudinally compliant vascular graft
US5041098A (en) * 1989-05-19 1991-08-20 Strato Medical Corporation Vascular access system for extracorporeal treatment of blood
US5509897A (en) * 1990-01-08 1996-04-23 The Curators Of The University Of Missouri Multiple lumen catheter for hemodialysis
US5607463A (en) * 1993-03-30 1997-03-04 Medtronic, Inc. Intravascular medical device
US5800512A (en) * 1996-01-22 1998-09-01 Meadox Medicals, Inc. PTFE vascular graft
US5840240A (en) * 1991-11-04 1998-11-24 Possis Medical, Inc. Method of making a silicone composite vascular graft
US5904967A (en) * 1995-04-27 1999-05-18 Terumo Kabushiki Kaisha Puncture resistant medical material
US5931865A (en) * 1997-11-24 1999-08-03 Gore Enterprise Holdings, Inc. Multiple-layered leak resistant tube
US5931829A (en) * 1997-01-21 1999-08-03 Vasca, Inc. Methods and systems for establishing vascular access
US20060058867A1 (en) * 2004-09-15 2006-03-16 Thistle Robert C Elastomeric radiopaque adhesive composite and prosthesis
US7025741B2 (en) * 2003-06-06 2006-04-11 Creativasc Medical Llc Arteriovenous access valve system and process
US20070167901A1 (en) * 2005-11-17 2007-07-19 Herrig Judson A Self-sealing residual compressive stress graft for dialysis

Family Cites Families (100)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3363926A (en) 1965-05-14 1968-01-16 Nat Lock Co Locking mechanism for a door lock assembly
US3683926A (en) * 1970-07-09 1972-08-15 Dainippon Pharmaceutical Co Tube for connecting blood vessels
US3818511A (en) * 1972-11-17 1974-06-25 Medical Prod Corp Medical prosthesis for ducts or conduits
US3814137A (en) 1973-01-26 1974-06-04 Baxter Laboratories Inc Injection site for flow conduits containing biological fluids
US4076023A (en) 1975-08-01 1978-02-28 Erika, Inc. Resealable device for repeated access to conduit lumens
US4184489A (en) 1976-10-06 1980-01-22 Cordis Dow Corp. Infusion tube access site
US4133312A (en) 1976-10-13 1979-01-09 Cordis Dow Corp. Connector for attachment of blood tubing to external arteriovenous shunts and fistulas
JPS5714358Y2 (en) 1976-11-12 1982-03-24
US4214586A (en) 1978-11-30 1980-07-29 Ethicon, Inc. Anastomotic coupling device
US4496350A (en) 1980-04-08 1985-01-29 Renal Systems, Inc. Blood access device
US4318401A (en) * 1980-04-24 1982-03-09 President And Fellows Of Harvard College Percutaneous vascular access portal and catheter
DE3019996A1 (en) 1980-05-24 1981-12-03 Institute für Textil- und Faserforschung Stuttgart, 7410 Reutlingen HOHLORGAN
JPS5714358A (en) 1980-07-02 1982-01-25 Toray Industries Antithrombus medical material
US4427219A (en) 1981-01-26 1984-01-24 Robroy Industries Compression coupling
US4496349A (en) * 1981-05-08 1985-01-29 Renal Systems, Inc. Percutaneous implant
US4503568A (en) 1981-11-25 1985-03-12 New England Deaconess Hospital Small diameter vascular bypass and method
JPS58168333A (en) 1982-03-29 1983-10-04 Fujitsu Ltd Phase comparing system of phase locking loop circuit
SE445884B (en) 1982-04-30 1986-07-28 Medinvent Sa DEVICE FOR IMPLANTATION OF A RODFORM PROTECTION
US4447237A (en) * 1982-05-07 1984-05-08 Dow Corning Corporation Valving slit construction and cooperating assembly for penetrating the same
SE446372B (en) * 1983-02-03 1986-09-08 Medinvent Sa BLOODKERL PROTES FOR USE AS SHUNT BETWEEN BLOODKERL
US4550447A (en) 1983-08-03 1985-11-05 Shiley Incorporated Vascular graft prosthesis
GB8407706D0 (en) 1984-03-24 1984-05-02 Edgealpha Ltd Lining pipelines in passageways
US4917087A (en) 1984-04-10 1990-04-17 Walsh Manufacturing (Mississuaga) Limited Anastomosis devices, kits and method
US4772268A (en) 1984-05-25 1988-09-20 Cook Incorporated Two lumen hemodialysis catheter
JPH06105798B2 (en) 1985-12-13 1994-12-21 株式会社日立製作所 Optical communication semiconductor device
JPH0316599Y2 (en) 1986-01-06 1991-04-09
US4753236A (en) 1986-04-08 1988-06-28 Healey Maureen A Temporary anastomotic device
SE453258B (en) 1986-04-21 1988-01-25 Medinvent Sa ELASTIC, SELF-EXPANDING PROTEST AND PROCEDURE FOR ITS MANUFACTURING
US4734094A (en) 1986-06-09 1988-03-29 Jacob Erwin T Catheter and method for cholangiography
SE455834B (en) 1986-10-31 1988-08-15 Medinvent Sa DEVICE FOR TRANSLUMINAL IMPLANTATION OF A PRINCIPLE RODFORMALLY RADIALLY EXPANDABLE PROSTHESIS
US4771777A (en) 1987-01-06 1988-09-20 Advanced Cardiovascular Systems, Inc. Perfusion type balloon dilatation catheter, apparatus and method
US5061276A (en) 1987-04-28 1991-10-29 Baxter International Inc. Multi-layered poly(tetrafluoroethylene)/elastomer materials useful for in vivo implantation
EP0301113B1 (en) 1987-07-28 1992-04-22 Menck Gmbh Device for cutting tubular foundation piles under water
US5026513A (en) 1987-10-19 1991-06-25 W. L. Gore & Associates, Inc. Process for making rapidly recoverable PTFE
JP2801596B2 (en) 1987-11-05 1998-09-21 日本特殊陶業株式会社 Air-fuel ratio control method
US4822341A (en) * 1987-11-20 1989-04-18 Impra, Inc. Vascular access fistula
US4919127A (en) 1988-05-03 1990-04-24 Pell Donald M Endotracheal tube connector
US5104402A (en) 1988-05-25 1992-04-14 Trustees Of The University Of Pennsylvania Prosthetic vessels for stress at vascular graft anastomoses
US4929236A (en) * 1988-05-26 1990-05-29 Shiley Infusaid, Inc. Snap-lock fitting catheter for an implantable device
US5053023A (en) 1988-10-25 1991-10-01 Vas-Cath Incorporated Catheter for prolonged access
US5192289A (en) 1989-03-09 1993-03-09 Avatar Design And Development, Inc. Anastomosis stent and stent selection system
US5569182A (en) 1990-01-08 1996-10-29 The Curators Of The University Of Missouri Clot resistant multiple lumen catheter and method
US5350360A (en) * 1990-03-01 1994-09-27 Michigan Transtech Corporation Implantable access devices
US5064435A (en) 1990-06-28 1991-11-12 Schneider (Usa) Inc. Self-expanding prosthesis having stable axial length
DE69116130T2 (en) 1990-10-18 1996-05-15 Ho Young Song SELF-EXPANDING, ENDOVASCULAR DILATATOR
ES2112904T3 (en) 1991-04-05 1998-04-16 Boston Scient Corp A CATHETER SET FOR INSERTION WITHIN A BLOOD VESSEL.
US5171227A (en) 1991-04-16 1992-12-15 The Curators Of The University Of Missouri Separable peritoneal dialysis catheter
US5399168A (en) * 1991-08-29 1995-03-21 C. R. Bard, Inc. Implantable plural fluid cavity port
DE4129782C1 (en) 1991-09-07 1992-10-08 Hans Dipl.-Ing. Dr.Med. 3015 Wennigsen De Haindl
US5192310A (en) * 1991-09-16 1993-03-09 Atrium Medical Corporation Self-sealing implantable vascular graft
US5197976A (en) * 1991-09-16 1993-03-30 Atrium Medical Corporation Manually separable multi-lumen vascular graft
US5171305A (en) 1991-10-17 1992-12-15 Imagyn Medical, Inc. Linear eversion catheter with reinforced inner body extension
US5647855A (en) 1992-05-06 1997-07-15 Trooskin; Stanley Z. Self-healing diaphragm in a subcutaneous infusion port
JPH06105798A (en) 1992-09-30 1994-04-19 Terumo Corp Catheter tube
US5735892A (en) 1993-08-18 1998-04-07 W. L. Gore & Associates, Inc. Intraluminal stent graft
US5405339A (en) 1993-09-03 1995-04-11 Medtronic, Inc. Medical connector and method for connecting medical tubing
US6053901A (en) * 1994-01-18 2000-04-25 Vasca, Inc. Subcutaneously implanted cannula and method for arterial access
US5562617A (en) 1994-01-18 1996-10-08 Finch, Jr.; Charles D. Implantable vascular device
US5562618A (en) * 1994-01-21 1996-10-08 Sims Deltec, Inc. Portal assembly and catheter connector
US5387192A (en) * 1994-01-24 1995-02-07 Sims Deltec, Inc. Hybrid portal and method
US5454790A (en) 1994-05-09 1995-10-03 Innerdyne, Inc. Method and apparatus for catheterization access
DE4418910A1 (en) * 1994-05-31 1995-12-07 Mouhamed Kamal Dr Med Koudaimi Dialysis port system and diaphragm
US5496294A (en) 1994-07-08 1996-03-05 Target Therapeutics, Inc. Catheter with kink-resistant distal tip
ATE184662T1 (en) 1994-07-12 1999-10-15 Eat Elektronische Ateliertechn METHOD FOR THE TRUE SIMULATION OF A REAL FABRIC CONSISTING OF WARP AND WEFT THREADS
US5669881A (en) 1995-01-10 1997-09-23 Baxter International Inc. Vascular introducer system incorporating inflatable occlusion balloon
US5591226A (en) * 1995-01-23 1997-01-07 Schneider (Usa) Inc. Percutaneous stent-graft and method for delivery thereof
NZ286445A (en) * 1995-05-16 1997-12-19 Ivac Corp Needleless luer connector: deformable piston occludes bore
US5637102A (en) * 1995-05-24 1997-06-10 C. R. Bard, Inc. Dual-type catheter connection system
US5674272A (en) 1995-06-05 1997-10-07 Ventritex, Inc. Crush resistant implantable lead
US5743894A (en) * 1995-06-07 1998-04-28 Sherwood Medical Company Spike port with integrated two way valve access
AU6396496A (en) 1995-07-07 1997-02-10 W.L. Gore & Associates, Inc. Interior liner for tubes, pipes and blood conduits
US5637088A (en) * 1995-09-14 1997-06-10 Wenner; Donald E. System for preventing needle displacement in subcutaneous venous access ports
JPH0984871A (en) 1995-09-25 1997-03-31 Terumo Corp Medical tube and manufacture thereof
DE29515546U1 (en) 1995-09-29 1997-01-30 Schreiber Hans Vascular port, especially for hemodialysis
US5631748A (en) 1995-11-16 1997-05-20 Xerox Corporation Color images having multiple separations with minimally overlapping halftone dots and reduced interpixel contrast
US6428571B1 (en) 1996-01-22 2002-08-06 Scimed Life Systems, Inc. Self-sealing PTFE vascular graft and manufacturing methods
US5624413A (en) 1996-02-23 1997-04-29 Medical Components, Inc. Method for inserting a multiple catheter assembly
US5830184A (en) 1996-03-06 1998-11-03 Medical Components, Inc. Composite catheter stabilizing devices, methods of making the same and catheter extracting device
US5830224A (en) * 1996-03-15 1998-11-03 Beth Israel Deaconess Medical Center Catheter apparatus and methodology for generating a fistula on-demand between closely associated blood vessels at a pre-chosen anatomic site in-vivo
US5800514A (en) 1996-05-24 1998-09-01 Meadox Medicals, Inc. Shaped woven tubular soft-tissue prostheses and methods of manufacturing
US5669637A (en) 1996-05-29 1997-09-23 Optimize Technologies, Inc. Miniature fitting assembly for micro-tubing
US5755773A (en) 1996-06-04 1998-05-26 Medtronic, Inc. Endoluminal prosthetic bifurcation shunt
US6007544A (en) 1996-06-14 1999-12-28 Beth Israel Deaconess Medical Center Catheter apparatus having an improved shape-memory alloy cuff and inflatable on-demand balloon for creating a bypass graft in-vivo
US5797879A (en) * 1996-08-26 1998-08-25 Decampli; William M. Apparatus and methods for providing selectively adjustable blood flow through a vascular graft
US6019788A (en) * 1996-11-08 2000-02-01 Gore Enterprise Holdings, Inc. Vascular shunt graft and junction for same
US5792104A (en) * 1996-12-10 1998-08-11 Medtronic, Inc. Dual-reservoir vascular access port
US5957974A (en) 1997-01-23 1999-09-28 Schneider (Usa) Inc Stent graft with braided polymeric sleeve
US6102884A (en) 1997-02-07 2000-08-15 Squitieri; Rafael Squitieri hemodialysis and vascular access systems
US6056762A (en) 1997-05-22 2000-05-02 Kensey Nash Corporation Anastomosis system and method of use
US5997562A (en) 1997-06-13 1999-12-07 Percusurge, Inc. Medical wire introducer and balloon protective sheath
US6156016A (en) * 1998-01-06 2000-12-05 Maginot Vascular Systems Catheter systems and associated methods utilizing removable inner catheter or catheters
US6167765B1 (en) 1998-09-25 2001-01-02 The Regents Of The University Of Michigan System and method for determining the flow rate of blood in a vessel using doppler frequency signals
US6261255B1 (en) * 1998-11-06 2001-07-17 Ronald Jay Mullis Apparatus for vascular access for chronic hemodialysis
US6338724B1 (en) * 1999-03-29 2002-01-15 Christos D. Dossa Arterio-venous interconnection
US20020049403A1 (en) * 2000-10-03 2002-04-25 Audencio Alanis Method and apparatus for permanent vascular access for hemodialysis
US7452374B2 (en) 2003-04-24 2008-11-18 Maquet Cardiovascular, Llc AV grafts with rapid post-operative self-sealing capabilities
US20050137614A1 (en) 2003-10-08 2005-06-23 Porter Christopher H. System and method for connecting implanted conduits
US7762977B2 (en) 2003-10-08 2010-07-27 Hemosphere, Inc. Device and method for vascular access
US20050203457A1 (en) 2004-03-15 2005-09-15 Smego Douglas R. Apparatus and method for creating an arterio-venous connection in hemodialysis maintenance
US8282591B2 (en) 2004-03-29 2012-10-09 Iftikhar Khan Hybrid arteriovenous shunt

Patent Citations (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US64159A (en) * 1867-04-23 Henry smith
US167901A (en) * 1875-09-21 Improvement in registers
US203457A (en) * 1878-05-07 Improvement in fruit-pickers
US215938A (en) * 1879-05-27 Improvement in filters
US3490438A (en) * 1967-06-08 1970-01-20 Atomic Energy Commission Perfusion chamber and cannulae therefor
US3826257A (en) * 1972-07-14 1974-07-30 T Buselmeier Prosthetic shunt
US3882862A (en) * 1974-01-11 1975-05-13 Olga Berend Arteriovenous shunt
US3998222A (en) * 1974-04-15 1976-12-21 Shihata Alfred A Subcutaneous arterio-venous shunt with valve
US4619641A (en) * 1984-11-13 1986-10-28 Mount Sinai School Of Medicine Of The City University Of New York Coaxial double lumen anteriovenous grafts
US4790826A (en) * 1986-03-28 1988-12-13 Elftman Nancy W Percutaneous access port
US4898669A (en) * 1987-06-16 1990-02-06 Claber S.P.A. Vascular access device, in particular for purification treatments of the blood
US4877661A (en) * 1987-10-19 1989-10-31 W. L. Gore & Associates, Inc. Rapidly recoverable PTFE and process therefore
US5041098A (en) * 1989-05-19 1991-08-20 Strato Medical Corporation Vascular access system for extracorporeal treatment of blood
US4955899A (en) * 1989-05-26 1990-09-11 Impra, Inc. Longitudinally compliant vascular graft
US5509897A (en) * 1990-01-08 1996-04-23 The Curators Of The University Of Missouri Multiple lumen catheter for hemodialysis
US5840240A (en) * 1991-11-04 1998-11-24 Possis Medical, Inc. Method of making a silicone composite vascular graft
US5866217A (en) * 1991-11-04 1999-02-02 Possis Medical, Inc. Silicone composite vascular graft
US5607463A (en) * 1993-03-30 1997-03-04 Medtronic, Inc. Intravascular medical device
US5904967A (en) * 1995-04-27 1999-05-18 Terumo Kabushiki Kaisha Puncture resistant medical material
US6036724A (en) * 1996-01-22 2000-03-14 Meadox Medicals, Inc. PTFE vascular graft and method of manufacture
US6001125A (en) * 1996-01-22 1999-12-14 Meadox Medicals, Inc. PTFE vascular prosthesis and method of manufacture
US5800512A (en) * 1996-01-22 1998-09-01 Meadox Medicals, Inc. PTFE vascular graft
US5931829A (en) * 1997-01-21 1999-08-03 Vasca, Inc. Methods and systems for establishing vascular access
US5931865A (en) * 1997-11-24 1999-08-03 Gore Enterprise Holdings, Inc. Multiple-layered leak resistant tube
US7025741B2 (en) * 2003-06-06 2006-04-11 Creativasc Medical Llc Arteriovenous access valve system and process
US20060058867A1 (en) * 2004-09-15 2006-03-16 Thistle Robert C Elastomeric radiopaque adhesive composite and prosthesis
US20070167901A1 (en) * 2005-11-17 2007-07-19 Herrig Judson A Self-sealing residual compressive stress graft for dialysis

Cited By (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE41448E1 (en) 1997-02-07 2010-07-20 Hemosphere, Inc. Squitieri hemodialysis and vascular access systems
USRE44639E1 (en) 1997-02-07 2013-12-10 Hemosphere, Inc. Hemodialysis and vascular access system
US7762977B2 (en) 2003-10-08 2010-07-27 Hemosphere, Inc. Device and method for vascular access
US20060064159A1 (en) * 2003-10-08 2006-03-23 Porter Christopher H Device and method for vascular access
USRE47154E1 (en) 2003-10-08 2018-12-11 Merit Medical Systems, Inc. Device and method for vascular access
US20050137614A1 (en) * 2003-10-08 2005-06-23 Porter Christopher H. System and method for connecting implanted conduits
US11446170B2 (en) 2004-09-08 2022-09-20 Limflow Gmbh Minimally invasive surgical apparatus and methods
US20070167901A1 (en) * 2005-11-17 2007-07-19 Herrig Judson A Self-sealing residual compressive stress graft for dialysis
US11241304B2 (en) 2006-04-20 2022-02-08 Limflow Gmbh Method for fluid flow through body passages
US20090209918A1 (en) * 2007-09-07 2009-08-20 Imtec, Llc Method and device for dialysis
US9694165B2 (en) * 2008-01-28 2017-07-04 Peter Mats Forsell Implantable drainage device
US20150157836A1 (en) * 2008-01-28 2015-06-11 Peter Mats Forsell Implantable drainage device
US10792413B2 (en) 2008-03-05 2020-10-06 Merit Medical Systems, Inc. Implantable and removable customizable body conduit
US8079973B2 (en) * 2008-03-05 2011-12-20 Hemosphere Inc. Vascular access system
US20090227932A1 (en) * 2008-03-05 2009-09-10 Hemosphere, Inc. Vascular access system
US9039717B2 (en) 2008-06-06 2015-05-26 Vital Access Corporation Tissue management apparatus for vascular access
US11134950B2 (en) 2008-06-06 2021-10-05 Advent Access Pte. Ltd. Methods of attaching an implant to a vessel
US20100152640A1 (en) * 2008-09-05 2010-06-17 Imtecbiomedical, Inc. Methods and apparatus for vascular access
WO2010028272A1 (en) * 2008-09-05 2010-03-11 Imtecbiomedical, Inc. Method and apparatus for vascular access
US20100191191A1 (en) * 2009-01-29 2010-07-29 Vital Access Corporation Subcutaneous vascular access ports and related systems, methods, and implantation features
US10894120B2 (en) 2009-01-29 2021-01-19 Advent Access Pte. Ltd. Vascular access port systems and methods
US10226564B2 (en) 2009-01-29 2019-03-12 Advent Access Pte. Ltd. Vascular access port systems and methods
US11197952B2 (en) 2009-01-29 2021-12-14 Advent Access Pte. Ltd. Vascular access ports and related methods
US9072880B2 (en) * 2009-01-29 2015-07-07 Vital Access Corporation Subcutaneous vascular access ports and related systems and methods
US9179901B2 (en) 2009-01-29 2015-11-10 Vital Access Corporation Vascular access ports and related methods
US10265458B2 (en) 2009-01-29 2019-04-23 Advent Access Pte. Ltd. Vascular access ports and related methods
US9033931B2 (en) 2009-01-29 2015-05-19 Vital Access Corporation Subcutaneous vascular access ports having attachment features
US9603988B2 (en) 2009-01-29 2017-03-28 Vital Access Corporation Subcutaneous vascular access ports
US8337465B2 (en) 2009-01-29 2012-12-25 Vital Access Corporation Subcutaneous vascular access ports and related systems, methods, and implantation features
US9968726B2 (en) 2009-01-29 2018-05-15 Df Vital Holdings, Llc Methods for implanting subcutaneous vascular access ports
US20110213309A1 (en) * 2009-01-29 2011-09-01 Vital Access Corporation Vascular access ports and related methods
US20100191166A1 (en) * 2009-01-29 2010-07-29 Vital Access Corporation Subcutaneous vascular access ports and related systems and methods
US10773010B2 (en) 2009-01-29 2020-09-15 Advent Access Pte. Ltd. Subcutaneous vascular access ports and related systems and methods
KR101037077B1 (en) 2009-09-25 2011-05-26 주식회사 리브라하트 A conduit which is capable of attaching and detaching Ventricular Assist Device and its using method
EP2686033A2 (en) * 2011-03-16 2014-01-22 Duke University Arteriovenous graft for hemodialysis with puncture-resistant posterior and side walls
US11504461B2 (en) 2011-03-16 2022-11-22 W. L. Gore & Associates, Inc. Arteriovenous graft for hemodialysis with puncture-resistant posterior and side walls
US10420874B2 (en) 2011-03-16 2019-09-24 Duke University Arteriovenous graft for hemodialysis with puncture-resistant posterior and side walls
EP2686033A4 (en) * 2011-03-16 2014-01-22 Univ Duke Arteriovenous graft for hemodialysis with puncture-resistant posterior and side walls
AU2012229032B2 (en) * 2011-03-16 2015-06-25 W.L. Gore & Associates, Inc. Arteriovenous graft for hemodialysis with puncture-resistant posterior and side walls
WO2012125927A3 (en) * 2011-03-16 2013-01-10 Duke University Arteriovenous graft for hemodialysis with puncture-resistant posterior and side walls
US9585998B2 (en) 2011-03-16 2017-03-07 Duke University Arteriovenous graft for hemodialysis with puncture-resistant posterior and side walls
US10765794B2 (en) 2011-08-11 2020-09-08 Medical Components, Inc. Method and apparatus for the dialysis of blood
US10765795B2 (en) 2011-08-11 2020-09-08 Medical Components, Inc. Method and apparatus for the dialysis of blood
US11696981B2 (en) 2011-08-11 2023-07-11 Medical Components, Inc. Method and apparatus for the dialysis of blood
US10004842B2 (en) 2011-08-11 2018-06-26 Medical Components, Inc. Method and apparatus for the dialysis of blood
US9278172B2 (en) 2011-09-06 2016-03-08 Cryolife, Inc. Vascular access system with connector
US10213590B2 (en) 2011-09-06 2019-02-26 Merit Medical Systems, Inc. Vascular access system with connector
US11185676B2 (en) 2011-09-06 2021-11-30 Merit Medical Systems, Inc. Vascular access system with connector
US10632296B2 (en) 2011-09-06 2020-04-28 Merit Medical Systems, Inc. Vascular access system with connector
US11471262B2 (en) 2013-03-08 2022-10-18 Limflow Gmbh Methods for targeting a body passage to effect fluid flow
US10682453B2 (en) 2013-12-20 2020-06-16 Merit Medical Systems, Inc. Vascular access system with reinforcement member
US11413043B2 (en) 2016-11-10 2022-08-16 Merit Medical Systems, Inc. Anchor device for vascular anastomosis
US11383072B2 (en) 2017-01-12 2022-07-12 Merit Medical Systems, Inc. Methods and systems for selection and use of connectors between conduits
US11590010B2 (en) 2017-01-25 2023-02-28 Merit Medical Systems, Inc. Methods and systems for facilitating laminar flow between conduits
US11026704B2 (en) 2017-03-06 2021-06-08 Merit Medical Systems, Inc. Vascular access assembly declotting systems and methods
US11622846B2 (en) 2017-03-24 2023-04-11 Merit Medical Systems, Inc. Subcutaneous vascular assemblies for improving blood flow and related devices and methods
US10925710B2 (en) 2017-03-24 2021-02-23 Merit Medical Systems, Inc. Subcutaneous vascular assemblies for improving blood flow and related devices and methods
US11938260B2 (en) 2017-03-31 2024-03-26 InnAVasc Medical, Inc. Apparatus and method for cannulation of vascular access graft
US11065377B2 (en) 2017-03-31 2021-07-20 InnAVasc Medical, Inc. Apparatus and method for cannulation of vascular access graft
US11826504B2 (en) 2017-04-10 2023-11-28 Limflow Gmbh Methods for routing a guidewire from a first vessel and through a second vessel in lower extremity vasculature
US11179543B2 (en) 2017-07-14 2021-11-23 Merit Medical Systems, Inc. Releasable conduit connectors
US11911585B2 (en) 2017-07-20 2024-02-27 Merit Medical Systems, Inc. Methods and systems for coupling conduits
US11331458B2 (en) 2017-10-31 2022-05-17 Merit Medical Systems, Inc. Subcutaneous vascular assemblies for improving blood flow and related devices and methods
USD905853S1 (en) 2018-02-27 2020-12-22 Medical Components, Inc. Catheter tip
CN109260570A (en) * 2018-09-18 2019-01-25 中山肾康医疗科技有限公司 A kind of subcutaneous embedded sting device for hemodialysis catheter
US11116943B2 (en) 2018-10-09 2021-09-14 Limflow Gmbh Methods for accessing pedal veins
US11478614B2 (en) 2018-10-09 2022-10-25 Limflow Gmbh Method for accessing pedal veins for deep vein arterialization
US11850379B2 (en) 2018-10-09 2023-12-26 Limflow Gmbh Devices and methods for catheter alignment
US11129965B2 (en) 2018-10-09 2021-09-28 Limflow Gmbh Devices and methods for catheter alignment
US11311700B2 (en) 2018-10-09 2022-04-26 Limflow Gmbh Methods for accessing pedal veins
US11925782B2 (en) 2018-10-30 2024-03-12 InnAVasc Medical, Inc. Apparatus and method for cannulation of vascular access vessel
US11925781B2 (en) 2018-10-30 2024-03-12 InnAVasc Medical, Inc. Apparatus and method for cannulation of vascular access vessel
US11612397B2 (en) 2019-11-01 2023-03-28 Limflow Gmbh Devices and methods for increasing blood perfusion to a distal extremity
USD984880S1 (en) 2020-11-06 2023-05-02 Medical Components, Inc. Clamp with indicator
WO2024007921A1 (en) * 2022-07-05 2024-01-11 上海心光生物医药有限责任公司 Implantable access device and fluid circulation system

Also Published As

Publication number Publication date
US6582409B1 (en) 2003-06-24
EP0973577B1 (en) 2005-03-23
JP2002515798A (en) 2002-05-28
DE69829468T2 (en) 2006-02-09
US6102884A (en) 2000-08-15
EP0973577A1 (en) 2000-01-26
USRE41448E1 (en) 2010-07-20
JP3995057B2 (en) 2007-10-24
DE69829468D1 (en) 2005-04-28
EP1550479A3 (en) 2005-08-03
USRE44639E1 (en) 2013-12-10
EP1550479B1 (en) 2015-09-16
WO1998034676A1 (en) 1998-08-13
EP1550479A2 (en) 2005-07-06
AU6053498A (en) 1998-08-26

Similar Documents

Publication Publication Date Title
US6582409B1 (en) Hemodialysis and vascular access systems
US6053901A (en) Subcutaneously implanted cannula and method for arterial access
US6682498B2 (en) Methods and systems for subcutaneous graft implantation
US5755780A (en) Implantable vascular device
US6261255B1 (en) Apparatus for vascular access for chronic hemodialysis
US5944688A (en) Implantable hemodialysis access port assembly
US7261708B2 (en) Removable catheter hub
US7261705B2 (en) Implantable dialysis access port
US6022335A (en) Implantable hemodialysis triple port assembly
US6042569A (en) Subcutaneously implanted cannula and methods for vascular access
US7828781B2 (en) Implantable dialysis access port
US6258079B1 (en) Method and systems for establishing vascular access
US6761700B2 (en) Extra-corporeal vascular conduit
WO1997012643A1 (en) Subcutaneously implanted cannula and method for arterial access
CA2278125A1 (en) Methods and systems for establishing vascular access
EP0456748B1 (en) A single-lumen, bidirectional, check valve catheter
JP2003102831A (en) Subcutaneously implanted blood processing device
WO2006116188A2 (en) Implantable dialysis access port
US11077239B2 (en) Tributary access device and methods of use

Legal Events

Date Code Title Description
AS Assignment

Owner name: HEMOSPHERE, INC., MINNESOTA

Free format text: CHANGE OF NAME;ASSIGNOR:GRAFTCATH, INC.;REEL/FRAME:022562/0278

Effective date: 20080417

AS Assignment

Owner name: HEMOSPHERE MERGER CORP.,MINNESOTA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HEMOSPHERE, INC.;REEL/FRAME:024079/0130

Effective date: 20100309

Owner name: HEMOSPHERE MERGER CORP., MINNESOTA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HEMOSPHERE, INC.;REEL/FRAME:024079/0130

Effective date: 20100309

AS Assignment

Owner name: HEMOSPHERE, INC., MINNESOTA

Free format text: CHANGE OF NAME;ASSIGNOR:HEMOSPHERE MERGER CORP.;REEL/FRAME:024640/0716

Effective date: 20100311

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION