US20070155118A1 - Method for forming a notched gate insulator for advanced MIS semiconductor devices and devices thus obtained - Google Patents

Method for forming a notched gate insulator for advanced MIS semiconductor devices and devices thus obtained Download PDF

Info

Publication number
US20070155118A1
US20070155118A1 US11/636,817 US63681706A US2007155118A1 US 20070155118 A1 US20070155118 A1 US 20070155118A1 US 63681706 A US63681706 A US 63681706A US 2007155118 A1 US2007155118 A1 US 2007155118A1
Authority
US
United States
Prior art keywords
insulating layer
overlap
gate
semiconductor device
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/636,817
Inventor
Kirklen Henson
Radu Surdeanu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NXP BV
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US11/636,817 priority Critical patent/US20070155118A1/en
Publication of US20070155118A1 publication Critical patent/US20070155118A1/en
Assigned to NXP B.V. reassignment NXP B.V. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KONINKLIJKE PHILIPS ELECTRONICS N.V.
Priority to US13/167,648 priority patent/US20110309457A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4983Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET with a lateral structure, e.g. a Polysilicon gate with a lateral doping variation or with a lateral composition variation or characterised by the sidewalls being composed of conductive, resistive or dielectric material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26506Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26506Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors
    • H01L21/26513Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors of electrically active species
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26586Bombardment with radiation with high-energy radiation producing ion implantation characterised by the angle between the ion beam and the crystal planes or the main crystal surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42364Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
    • H01L29/42368Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity the thickness being non-uniform

Definitions

  • the present invention relates to a method for forming a notched gate insulator semiconductor device and the device thus obtained. More particularly, the present invention relates to a method for the formation of a semiconductor device structure comprising first and second main electrode extensions, e.g. source and drain extensions, with controllable control electrode, e.g. gate electrode, overlap.
  • first and second main electrode extensions e.g. source and drain extensions
  • controllable control electrode e.g. gate electrode
  • MOS Metal-Oxide-Semiconductor
  • MIS Metal-Insulator-Semiconductor
  • a method for the fabrication of a semiconductor device comprising abrupt source/drain extensions with controllable gate electrode overlap.
  • the method comprises the steps of forming a gate structure on a semiconductor substrate, followed by forming an oxide layer on the gate and substrate.
  • sidewall spacer regions are formed on the sides of the gate structure. Deep source/drain regions that do not overlap with the gate electrode are implanted in the semiconductor substrate.
  • second spacer regions of silicon are formed on the sides of the sidewall spacer regions.
  • Upper regions of the gate structure and the sidewall spacer regions are silicided in order to electrically connect them. Also portions of source/drain extension regions in the semiconductor substrate adjacent the gate structure are silicided.
  • a first disadvantage of the method described in the above document is the number of extra steps required, i.e. “extending” the gate electrode by means of depositing silicon side wall spacers, etching back the spacers and connecting the spacers to the body of the original gate electrode.
  • Another disadvantage of the above method is that by the inevitable presence of an oxide layer between the body of the gate electrode and the silicon sidewall spacers, the overall gate electrode is in fact a discontinuous body of material with deleterious effects on the properties thereof.
  • the device comprises a first gate insulating film, such as TiO 2 , which is formed on a channel region.
  • a gate electrode is formed on the first gate insulating film.
  • Source and drain regions are formed in a surface portion of a p-well region.
  • the gate electrode is formed such that it may partially overlap the source/drain region.
  • the TiO 2 film is subjected to either isotropic or anisotropic etching so that a portion of the TiO 2 film which lies on the source/drain region, may be removed, hereby forming a recess underneath the gate electrode.
  • JP 11 163323 a semiconductor device comprising an insulating layer, a gate electrode and a source and drain is described.
  • the etching time of an etching process of the insulating layer By adjusting the etching time of an etching process of the insulating layer, the overlap length between the gate electrode and the source and drain can be adjusted.
  • Etching of the insulating layer is performed by wet chemical etching in a 0.3% HF solution.
  • EP 1 089 344 and JP 11 163323 A disadvantage of EP 1 089 344 and JP 11 163323 is that the etching process of the insulating layer can not be controlled very well.
  • scaling down of electric and electronic devices plays a very important role in semiconductor processing.
  • Certain aspects of the present invention provide a simple method of providing controlled overlap between first and second main electrode extensions, e.g. source and drain extensions, and the main electrode, e.g. gate electrode, of a semiconductor device structure.
  • One aspect of the invention provides a semiconductor device structure comprising an insulating layer provided on a semiconductor substrate, a control electrode, e.g. a gate, provided on the insulating layer, and a first main electrode extension, e.g. source extension, and a second main electrode extension, e.g. drain extension, in the substrate.
  • the electrodes have an overlap with the control electrode.
  • the insulating layer comprises a recess near the first main electrode extension and near the second main electrode extension with respect to the control electrode.
  • the recess has a depth of between about 0.5 and 5 nm.
  • An advantage of the recess near first and second main electrode extension is that the overlap between the control electrode and the first and second main electrode extensions can easily be controlled by means of changing the depth of the recess during the processing of the device.
  • the depth of the recess may be less than a width of an overlap between the control electrode and the first main electrode extension and/or the second main electrode extension.
  • the semiconductor device structure according to the present invention may have a control electrode with a length of less than about 100 nm, preferably about 50 nm or less.
  • the semiconductor device structure of the present invention may preferably have an overlap between the insulating layer and the first and second main electrode extensions of between about 10 and 20% of the length of the control electrode.
  • the overlap between the control electrode and the first and second main electrode extensions may preferably be between 10 and 20% of the length of the control electrode.
  • the insulating layer may be made of a material comprising silicon oxide.
  • the control electrode may be made of material comprising silicon.
  • the control electrode may comprise polycrystalline material, e.g. polysilicon.
  • An aspect of invention provides a method for processing a semiconductor device structure comprising providing an insulating layer and a control electrode, e.g. gate, onto a substrate, amorphizing a region to be implanted in the substrate to form first and second main electrode extensions, and amorphizing part of the insulating layer by means of accelerated ions under a first angle with respect to a direction perpendicular to the substrate, implanting a first main electrode extension, e.g. source extension, and a second main electrode extension, e.g.
  • drain extension under a second angle with respect to a direction perpendicular to the substrate, etching back part of the insulating layer in order to reduce capacitive overlap between the control electrode and the first and second main electrode extensions to a reduced but non-zero overlap level, hereby forming recesses.
  • the border between the amorphized part and the non-amorphized part of the control electrode insulating layer acts as an etch stop.
  • Etching back may be performed by a dip in a HF solution with a concentration between about 0.1 and 10%.
  • the first angle, under which amorphizing of the first and second electrode extension regions and of part of the insulating layer occur, and the second angle, under which implantation of first and second main electrode extensions occur, may substantially be the same. In another embodiment, the angles may be different. In either of the above embodiments, the first and the second angle may vary between about 0° and 45° with respect to a direction perpendicular to the plane of the substrate.
  • the method may furthermore comprise activating the first and second main electrode extensions.
  • activation of the first and second main electrode extensions may be performed by an annealing step selected from the group consisting of rapid thermal annealing, flash rapid thermal annealing, solid phase epitaxy regrowth or laser thermal annealing.
  • the activation step is performed after the step of etching back, because annealing may remove the amorphized parts of the gate insulating layer. This results in reduced control over the overlap between the control electrode and the first and second main electrode recesses because the border of the amorphized parts of the gate layer and the non-amorphized parts of the gate insulator layer acts as an etch stop.
  • FIG. 1 is schematic cross-sectional view of a MOSFET device during an extension implant.
  • FIG. 2 is a schematic cross-sectional view of the device of FIG. 1 after etching the control electrode, e.g. gate, insulating layer.
  • the control electrode e.g. gate, insulating layer.
  • FIGS. 3A-3E are schematic cross-section illustrating a method of forming a semiconductor device
  • the method according to the invention may be used in many methods for fabricating semiconductor devices with insulated control electrodes, for example gates.
  • a method is described for manufacturing a device having a gate as control electrode and a source and a drain as first and second main electrodes.
  • a gate electrode 3 is formed. Therefore a conductive layer which may for example be a semiconductor layer such as e.g. Si, a metal layer such as e.g. gold, aluminum or copper, or an inorganic conductive layer such as an indium tin oxide (ITO) layer may be deposited on top of the gate insulating layer 2 by means of any suitable deposition technique such as for example vapor deposition, sputter deposition or spin coating. Subsequently, the deposited layer may be etched back to the form of an electrode. Therefore a mask is applied onto that part of the conductive layer, which will later form the gate electrode 3 .
  • a conductive layer which may for example be a semiconductor layer such as e.g. Si, a metal layer such as e.g. gold, aluminum or copper, or an inorganic conductive layer such as an indium tin oxide (ITO) layer may be deposited on top of the gate insulating layer 2 by means of any suitable deposition technique such as for example vapor deposition,
  • the mask may be made of any suitable material, such as for example a polymer, which may be deposited onto the conductive layer by means of for example spin coating. The conductive layer is then etched, removing the part of the conductive layer which is not covered by the mask. The same masking step may also be used to etch the part of the gate insulating layer 2 which is not under the formed gate electrode 3 .
  • FIG. 3A illustrates a semiconductor device at this stage of the formation process. Therefore, an etching solution, which may etch both the conductive material of the gate electrode 3 and the insulating material of the gate insulating layer 2 , is preferably used.
  • the gate electrode 3 is shown as being (poly)crystalline but the invention is not restricted hereto.
  • a gate electrode 3 is formed. Therefore a conductive layer which may for example be a semiconductor layer such as e.g. Si, a metal layer such as e.g. gold, aluminum or copper, or an inorganic conductive layer such as an indium tin oxide (ITO) layer may be deposited on top of the gate insulating layer 2 by means of any suitable deposition technique such as for example vapor deposition, sputter deposition or spin coating. Subsequently, the deposited layer may be etched back to the form of an electrode. Therefore a mask is applied onto that part of the conductive layer, which will later form the gate electrode 3 .
  • a conductive layer which may for example be a semiconductor layer such as e.g. Si, a metal layer such as e.g. gold, aluminum or copper, or an inorganic conductive layer such as an indium tin oxide (ITO) layer may be deposited on top of the gate insulating layer 2 by means of any suitable deposition technique such as for example vapor deposition,
  • the mask may be made of any suitable material, such as for example a polymer, which may be deposited onto the conductive layer by means of for example spin coating.
  • the conductive layer is then etched, removing the part of the conductive layer which is not covered by the mask.
  • the same masking step may also be used to etch the part of the gate insulating layer 2 which is not under the formed gate electrode 3 . Therefore, an etching solution, which may etch both the conductive material of the gate electrode 3 and the insulating material of the gate insulating layer 2 , is preferably used.
  • the gate electrode 3 is shown as being (poly)crystalline but the invention is not restricted hereto.
  • an additional step of amorphizing the region to be implanted is performed, according to the present invention, before the actual implanting of source and drain regions is performed.
  • This step may also be referred to as pre-amorphization implant (PAI).
  • PAI is a well controllable method which limits the depth to which implants can be made. Thereto, atoms, or more precisely ions, are implanted in a sufficient concentration to disrupt the originally perfect crystal lattice of the substrate 1 , so that it becomes amorphous. Applying PAI will thus form regions of a shape like source extension and drain extensions 4 , 5 in FIG. 1 .
  • FIG.3A illustrates amorphizing a first region of the substrate and a first region of the insulating layer by accelerating ions under an angle 10 with respect to a direction substantially perpendicular to the substrate, forming, in the illustrated example, amorphized volume 7 and an amorphized region which will form drain electrode 5 .
  • FIG. 3A illustrates amorphizing a first region of the substrate and a first region of the insulating layer by accelerating ions under an angle 10 with respect to a direction substantially perpendicular to the substrate, forming, in the illustrated example, amorphized volume 7 and an amorphized region which will form drain electrode 5 .
  • 3B illustrates amorphizing a second region of the substrate and a second region of the insulating layer by accelerating ions under an angle 11 with respect to the direction substantially perpendicular to the substrate, forming, in the illustrated embodiment, amorphized volume 6 and an amorphized region which will form source extension 4 .
  • atoms that in principle do not themselves influence the dopant concentration level such as for example Si or Ge, are implanted in the region of the extensions 4 , 5 .
  • this may occur at energies of approximately 8 to 20 keV, with concentrations between about 5.10e14 to 3.10e15 atoms/cm 3 and under an angle of between for example 0° and 45°.
  • concentrations between about 5.10e14 to 3.10e15 atoms/cm 3 and under an angle of between for example 0° and 45°.
  • an additional step of amorphizing the region to be implanted is performed, according to the present invention, before the actual implanting of source and drain regions is performed.
  • This step may also be referred to as pre-amorphization implant (PAI).
  • PAI is a well controllable method which limits the depth to which implants can be made. Thereto, atoms, or more precisely ions, are implanted in a sufficient concentration to disrupt the originally perfect crystal lattice of the substrate 1 , so that it becomes amorphous. Applying PAI will thus form regions of a shape like source extension and drain extensions 4 , 5 in FIG. 1 .
  • the step of amorphizing the extension volume by bombarding under a suitable first angle ensures that a part of the accelerated ions used in the bombarding will pass through the part of the gate electrode 3 nearest the semiconductor substrate 1 , and will hence form an amorphized volume 6 , 7 showing overlap with the gate electrode 3 .
  • atoms that in principle do not themselves influence the dopant concentration level such as for example Si or Ge, are implanted in the region of the extensions 4 , 5 .
  • this may occur at energies of approximately 8 to 20 keV, with concentrations between about 5.10e14 to 3.10e15 atoms/cm 3 and under an angle of between for example 0° and 45°.
  • concentrations between about 5.10e14 to 3.10e15 atoms/cm 3 and under an angle of between for example 0° and 45°.
  • the step of actual implanting the extension regions 4 , 5 with the desired dopants may be performed.
  • boron atoms may be implanted at energies of about 0.5 keV with concentrations up to approximately 1.10e15 atoms/cm3.
  • any kind of suitable implant energy, dose or dopant type may be used in this step.
  • the step of implanting may be performed under a second angle, which, in some cases, may be substantially the same as the first angle.
  • FIG. 3D illustrates implanting ions into the amorphized regions of the substrate to form a source extension 4 and a drain extension 5 by implanting ions using an angle 12 with respect to the direction substantial perpendicular to the substrate. It may thus be ensured that with the appropriate energy of the dopants, the dopants may be present in the amorphized region.
  • the direction of bombarding in order to amorphize and the direction for implanting may be chosen towards the gate electrode 3 in order to achieve overlap. This means that in principle two different directions are required for treatment of the source side and the drain side of the device. However, this does not entail additional masking steps, because the implants for source and drain differ anyhow, and the amorphizing step before the implanting step does not need any additional masking step.
  • the drain extension 5 may be implanted according to a direction indicated by arrows I in FIG. 1 , including an angle a with a direction perpendicular to the substrate 1 . In FIG. 1 this direction is indicated by the dashed line.
  • angles and energies of the accelerated ions for amorphizing and for implanting of the dopants may be selected such that a desired overlap is realized. Selection of these quantities is interrelated and further depends on the type of semiconductor substrate 1 used.
  • the semiconductor substrate 1 is amorphized.
  • a part of the gate insulating layer 2 may, to a depth of for example a few nanometers, be amorphized due to the action of the amorphizing particles. In FIG. 1 this is shown as amorphous parts 6 and 7 .
  • This damage may be undone by annealing the semiconductor device during a further activation step, so that all of the gate insulating layer would be (poly)crystalline again.
  • the damage caused in the gate insulating layer 2 by PAI may be further used during processing to achieve controllable overlap between extensions 4 , 5 and the gate electrode 3 (see further).
  • a structure like the one shown in FIG. 1 is the result.
  • a part of the gate insulating layer 2 is removed in order to reduce the capacitive overlap between gate electrode 3 and extensions 4 , 5 to a reduced but non-zero overlap level. This may be done by means of etching, e.g. by means of a wet etch.
  • the material of the gate insulating layer 2 i.e. a dielectric material in general, on the one hand, and the material of the gate electrode 3 and the semiconductor substrate 1 on the other hand are different. Therefore, an etchant may be selected which selectively etches the gate insulating layer 2 but not the other materials used.
  • the gate insulating layer 2 comprises amorphized parts 6 , 7 and a non-amorphized or polycrystalline part. Because the etch rate of the amorphous gate insulator may differ from that of the (poly)crystalline gate insulator deeper under the gate 3 , and in most cases may be higher, the border between the amorphous and polycrystalline gate insulator may be used as an etch stop. Hence, an etching solution may be required which only removes the amorphized parts 6 , 7 of the gate insulating layer 2 and does not etch the polycrystalline part of the insulating layer 2 .
  • the etching step may be performed by dipping the semiconductor device structure in a HF solution, preferably with a concentration between about 0.1 and 10%, for example 0.2%, during a period between for example 1 second and 5 minutes.
  • a HF solution preferably with a concentration between about 0.1 and 10%, for example 0.2%
  • concentration of the etching solution and etching time may depend on the depth required to etch or on the material that has to be etched. Therefore, this step of etching back the gate insulating layer 2 offers a good control over the overlap, for it is possible to select a relatively slow and therefore precise etching process.
  • the gate insulating layer 2 may also be etched before the actual implant of the extensions 4 , 5 .
  • the step of actual implanting the extension regions 4 , 5 with the desired dopants may be performed.
  • boron atoms may be implanted at energies of about 0.5 keV with concentrations up to approximately 1.10e15 atoms/cm 3 .
  • any kind of suitable implant energy, dose or dopant type may be used in this step.
  • the step of implanting may be performed under a second angle, which, in some cases, may be substantially the same as the first angle.
  • FIG. 3D illustrates implanting ions into the amorphized regions of the substrate to form a source extension 4 and a drain extension 5 by implanting ions using an angle 12 with respect to the direction substantial perpendicular to the substrate. It may thus be ensured that with the appropriate energy of the dopants, the dopants may be present in the amorphized region.
  • the recess 9 on the right hand side of the device is shown as having an etch depth e.
  • the etch depth may for example be a few nanometers, preferably between 0.5 and 5 nm.
  • the distance d represents the remaining overlap between drain extension 5 and gate insulating layer 2 .
  • the remaining overlap d between the gate insulating layer 2 and the drain extension 5 may preferably be between about 10 and 20%, for example 15%, of the length 1 of the gate electrode 3 .
  • the latter statement only applies for gate lengths below about 100 nm, preferably 50 nm or less. For larger gate lengths, a smaller overlap ratio may be selected.
  • a following step may be an activation step in order to activate the implanted dopants, i.e. to build the dopants into the crystal lattice of the semiconductor substrate 1 .
  • This step may also be referred to as a junction anneal step.
  • the junction anneal step may be performed by annealing the device with for example high ramp rates.
  • Preferred processes include rapid thermal anneal (RTA), flash rapid thermal anneal (ETA), solid phase epitaxy (SPE) and laser thermal anneal (LTA).
  • RTA rapid thermal anneal
  • ETA flash rapid thermal anneal
  • SPE solid phase epitaxy
  • LTA laser thermal anneal
  • the type of anneal and the energy concerned may be selected according to the requirements of a specific device.
  • annealing may remove the “etch stop”, which was formed by PAI, by curing the gate insulating layer 2 . Because of that, the control over the overlap between the gate electrode 3 and the source and drain recesses 8 , 9 may disappear.
  • the processing of the semiconductor device structure may be finished with any desired subsequent step, depending on the kind of semiconductor device that has to be formed.
  • a spacer for deep source and drain implants may be deposited in for example a low temperature plasma enhanced chemical vacuum deposition (CVD) process in the form of an oxide, at a deposition temperature of for example 400° C.
  • the CVD oxide will not fill the recesses 8 , 9 due to its course-grained porosity.
  • any other desired subsequent step in the process of forming the semiconductor device may be performed.
  • the total overlap between source and drain extensions 4 , 5 and the gate electrode 3 is represented by t in FIG. 2 .
  • t The total overlap between source and drain extensions 4 , 5 and the gate electrode 3 is represented by t in FIG. 2 .
  • this method is particularly suitable for forming an overlapping extension 4 , 5 for devices with very short gate lengths, because it gives the possibility to obtain a sufficient overlap without having to use diffusion techniques.
  • Diffusion techniques suffer from less abrupt transitions between extensions 4 , 5 and substrate 1 and are furthermore more difficult to control. In particular, it is very difficult to limit diffusion to an overlap of less than 10 nm. For very short gate lengths of for example 50 nm down to even 30 or 20 nm, this is a too large overlap and hence the diffusion technique is then no longer useful.
  • An advantage of aspects of the present invention is the simple way of tuning the overlap between the gate electrode 3 and source and drain extensions 4 , 5 , without the need for masks and/or spacers. This may reduce production time and hence production costs. Furthermore, the method of the present invention leads to strongly reduced gate leakage in the semiconductor device thus obtained.

Abstract

Methods of providing a semiconductor device with a control electrode structure having a controlled overlap between control electrode and first and second main electrode extensions without many spacers are disclosed. A preferred method provides a step of etching back an insulating layer performed after amorphizing and implanting the main electrode extensions. Preferably, the step that amorphizes the extensions also partly amorphizes the insulating layer. Because etch rates of amorphous insulator and crystalline insulator differ, the amorphized portion of the insulating layer may serve as a natural etch stop to enable even better fine-tuning of the overlap. Corresponding semiconductor devices are also provided.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a divisional application of U.S. patent application Ser. No. 10/966,152, filed on Oct. 15, 2004, now published as U.S. Publication No. 2005/0127436.
  • TECHNICAL FIELD OF THE INVENTION
  • The present invention relates to a method for forming a notched gate insulator semiconductor device and the device thus obtained. More particularly, the present invention relates to a method for the formation of a semiconductor device structure comprising first and second main electrode extensions, e.g. source and drain extensions, with controllable control electrode, e.g. gate electrode, overlap.
  • BACKGROUND OF THE INVENTION
  • The scaling of Metal-Oxide-Semiconductor (MOS) or Metal-Insulator-Semiconductor (MIS) transistor devices has reached a point where the length of the gate electrode is only a few tens of nanometers. Requirements for the source/drain extensions (the ultra-shallow junctions USJ) are mainly three-fold, i.e. very high activation (for end-of-the-roadmap devices above the solid solubility limit), ultra-shallow (towards less than 10 nm) and a very high lateral abruptness (1-2 nm/decade). The last one is also dictated by another requirement, the gate leakage level at the junction's overlap with the gate region. There is a trade-off between having no overlap for minimal gate leakage and enough overlap for optimal gate action on the junction. This trade-off is one of the major problems in scaling down the planar devices.
  • In U.S. Pat. No. 6,274,446 a method is described for the fabrication of a semiconductor device comprising abrupt source/drain extensions with controllable gate electrode overlap. The method comprises the steps of forming a gate structure on a semiconductor substrate, followed by forming an oxide layer on the gate and substrate. First, sidewall spacer regions are formed on the sides of the gate structure. Deep source/drain regions that do not overlap with the gate electrode are implanted in the semiconductor substrate. In order to create overlap, second spacer regions of silicon are formed on the sides of the sidewall spacer regions. Upper regions of the gate structure and the sidewall spacer regions are silicided in order to electrically connect them. Also portions of source/drain extension regions in the semiconductor substrate adjacent the gate structure are silicided.
  • A first disadvantage of the method described in the above document is the number of extra steps required, i.e. “extending” the gate electrode by means of depositing silicon side wall spacers, etching back the spacers and connecting the spacers to the body of the original gate electrode.
  • Another disadvantage of the above method is that by the inevitable presence of an oxide layer between the body of the gate electrode and the silicon sidewall spacers, the overall gate electrode is in fact a discontinuous body of material with deleterious effects on the properties thereof.
  • In EP 1 089 344 an insulated gate field effect transistor and a method of making the same are described. The device comprises a first gate insulating film, such as TiO2, which is formed on a channel region. A gate electrode is formed on the first gate insulating film. Source and drain regions are formed in a surface portion of a p-well region. The gate electrode is formed such that it may partially overlap the source/drain region. The TiO2 film is subjected to either isotropic or anisotropic etching so that a portion of the TiO2 film which lies on the source/drain region, may be removed, hereby forming a recess underneath the gate electrode.
  • In JP 11 163323 a semiconductor device comprising an insulating layer, a gate electrode and a source and drain is described. By adjusting the etching time of an etching process of the insulating layer, the overlap length between the gate electrode and the source and drain can be adjusted. Etching of the insulating layer is performed by wet chemical etching in a 0.3% HF solution.
  • A disadvantage of EP 1 089 344 and JP 11 163323 is that the etching process of the insulating layer can not be controlled very well. Nowadays, scaling down of electric and electronic devices plays a very important role in semiconductor processing. With the methods described in EP 1 089 344 and JP 11 163323 it will be difficult to form, in a controllable way, shallow recesses in devices having small dimensions.
  • SUMMARY OF THE INVENTION
  • Certain aspects of the present invention provide a simple method of providing controlled overlap between first and second main electrode extensions, e.g. source and drain extensions, and the main electrode, e.g. gate electrode, of a semiconductor device structure.
  • One aspect of the invention provides a semiconductor device structure comprising an insulating layer provided on a semiconductor substrate, a control electrode, e.g. a gate, provided on the insulating layer, and a first main electrode extension, e.g. source extension, and a second main electrode extension, e.g. drain extension, in the substrate. The electrodes have an overlap with the control electrode. The insulating layer comprises a recess near the first main electrode extension and near the second main electrode extension with respect to the control electrode. The recess has a depth of between about 0.5 and 5 nm. An advantage of the recess near first and second main electrode extension is that the overlap between the control electrode and the first and second main electrode extensions can easily be controlled by means of changing the depth of the recess during the processing of the device. The depth of the recess may be less than a width of an overlap between the control electrode and the first main electrode extension and/or the second main electrode extension.
  • The semiconductor device structure according to the present invention may have a control electrode with a length of less than about 100 nm, preferably about 50 nm or less.
  • Furthermore, the semiconductor device structure of the present invention may preferably have an overlap between the insulating layer and the first and second main electrode extensions of between about 10 and 20% of the length of the control electrode. The overlap between the control electrode and the first and second main electrode extensions may preferably be between 10 and 20% of the length of the control electrode.
  • In the device of the present invention the insulating layer may be made of a material comprising silicon oxide. The control electrode may be made of material comprising silicon. The control electrode may comprise polycrystalline material, e.g. polysilicon.
  • An aspect of invention provides a method for processing a semiconductor device structure comprising providing an insulating layer and a control electrode, e.g. gate, onto a substrate, amorphizing a region to be implanted in the substrate to form first and second main electrode extensions, and amorphizing part of the insulating layer by means of accelerated ions under a first angle with respect to a direction perpendicular to the substrate, implanting a first main electrode extension, e.g. source extension, and a second main electrode extension, e.g. drain extension, under a second angle with respect to a direction perpendicular to the substrate, etching back part of the insulating layer in order to reduce capacitive overlap between the control electrode and the first and second main electrode extensions to a reduced but non-zero overlap level, hereby forming recesses. The border between the amorphized part and the non-amorphized part of the control electrode insulating layer acts as an etch stop. Hence, by changing the magnitude of the part of the insulating layer that is amorphized, the depth of the recesses may be changed. Etching back may be performed by a dip in a HF solution with a concentration between about 0.1 and 10%.
  • In an embodiment of the present invention, the first angle, under which amorphizing of the first and second electrode extension regions and of part of the insulating layer occur, and the second angle, under which implantation of first and second main electrode extensions occur, may substantially be the same. In another embodiment, the angles may be different. In either of the above embodiments, the first and the second angle may vary between about 0° and 45° with respect to a direction perpendicular to the plane of the substrate.
  • The method may furthermore comprise activating the first and second main electrode extensions. In an embodiment of the present invention, activation of the first and second main electrode extensions may be performed by an annealing step selected from the group consisting of rapid thermal annealing, flash rapid thermal annealing, solid phase epitaxy regrowth or laser thermal annealing. In a preferred embodiment, the activation step is performed after the step of etching back, because annealing may remove the amorphized parts of the gate insulating layer. This results in reduced control over the overlap between the control electrode and the first and second main electrode recesses because the border of the amorphized parts of the gate layer and the non-amorphized parts of the gate insulator layer acts as an etch stop.
  • These and other characteristics, features and advantages of the present invention will become apparent from the following detailed description, taken in conjunction with the accompanying drawings, which illustrate, by way of example, the principles of the invention. This description is given for the sake of example only, without limiting the scope of the invention. The reference figures quoted below refer to the attached drawings.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is schematic cross-sectional view of a MOSFET device during an extension implant.
  • FIG. 2 is a schematic cross-sectional view of the device of FIG. 1 after etching the control electrode, e.g. gate, insulating layer.
  • FIGS. 3A-3E are schematic cross-section illustrating a method of forming a semiconductor device
  • In the different figures, the same reference figures refer to the same or analogous elements.
  • DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS
  • The present invention will be described with respect to particular embodiments and with reference to certain drawings but the invention is not limited thereto but only by the claims. The drawings described are only schematic and are non-limiting. In the drawings, the size of some of the elements may be exaggerated and not drawn on scale for illustrative purposes. Where the term “comprising” is used in the present description and claims, it does not exclude other elements or steps.
  • Moreover, the terms top, bottom, over, under and the like in the description and the claims are used for descriptive purposes and not necessarily for describing relative positions. It is to be understood that the terms so used are interchangeable under appropriate circumstances and that the embodiments of the invention described herein are capable of operation in other orientations than described or illustrated herein.
  • The method according to the invention may be used in many methods for fabricating semiconductor devices with insulated control electrodes, for example gates. In the description hereinafter, a method is described for manufacturing a device having a gate as control electrode and a source and a drain as first and second main electrodes.
  • In a next step a gate electrode 3 is formed. Therefore a conductive layer which may for example be a semiconductor layer such as e.g. Si, a metal layer such as e.g. gold, aluminum or copper, or an inorganic conductive layer such as an indium tin oxide (ITO) layer may be deposited on top of the gate insulating layer 2 by means of any suitable deposition technique such as for example vapor deposition, sputter deposition or spin coating. Subsequently, the deposited layer may be etched back to the form of an electrode. Therefore a mask is applied onto that part of the conductive layer, which will later form the gate electrode 3. The mask may be made of any suitable material, such as for example a polymer, which may be deposited onto the conductive layer by means of for example spin coating. The conductive layer is then etched, removing the part of the conductive layer which is not covered by the mask. The same masking step may also be used to etch the part of the gate insulating layer 2 which is not under the formed gate electrode 3. FIG. 3A illustrates a semiconductor device at this stage of the formation process. Therefore, an etching solution, which may etch both the conductive material of the gate electrode 3 and the insulating material of the gate insulating layer 2, is preferably used. In FIG. 1, the gate electrode 3 is shown as being (poly)crystalline but the invention is not restricted hereto.
  • In a next step a gate electrode 3 is formed. Therefore a conductive layer which may for example be a semiconductor layer such as e.g. Si, a metal layer such as e.g. gold, aluminum or copper, or an inorganic conductive layer such as an indium tin oxide (ITO) layer may be deposited on top of the gate insulating layer 2 by means of any suitable deposition technique such as for example vapor deposition, sputter deposition or spin coating. Subsequently, the deposited layer may be etched back to the form of an electrode. Therefore a mask is applied onto that part of the conductive layer, which will later form the gate electrode 3. The mask may be made of any suitable material, such as for example a polymer, which may be deposited onto the conductive layer by means of for example spin coating. The conductive layer is then etched, removing the part of the conductive layer which is not covered by the mask. The same masking step may also be used to etch the part of the gate insulating layer 2 which is not under the formed gate electrode 3. Therefore, an etching solution, which may etch both the conductive material of the gate electrode 3 and the insulating material of the gate insulating layer 2, is preferably used. In FIG. 1, the gate electrode 3 is shown as being (poly)crystalline but the invention is not restricted hereto.
  • In order to fulfill the above mentioned requirements, an additional step of amorphizing the region to be implanted is performed, according to the present invention, before the actual implanting of source and drain regions is performed. This step may also be referred to as pre-amorphization implant (PAI). PAI is a well controllable method which limits the depth to which implants can be made. Thereto, atoms, or more precisely ions, are implanted in a sufficient concentration to disrupt the originally perfect crystal lattice of the substrate 1, so that it becomes amorphous. Applying PAI will thus form regions of a shape like source extension and drain extensions 4, 5 in FIG. 1. The step of amorphizing the extension volume by bombarding under a suitable first angle ensures that a part of the accelerated ions used in the bombarding will pass through the part of the gate electrode 3 nearest the semiconductor substrate 1, and will hence form an amorphized volume 6, 7 showing overlap with the gate electrode 3. FIG.3A illustrates amorphizing a first region of the substrate and a first region of the insulating layer by accelerating ions under an angle 10 with respect to a direction substantially perpendicular to the substrate, forming, in the illustrated example, amorphized volume 7 and an amorphized region which will form drain electrode 5. FIG. 3B illustrates amorphizing a second region of the substrate and a second region of the insulating layer by accelerating ions under an angle 11 with respect to the direction substantially perpendicular to the substrate, forming, in the illustrated embodiment, amorphized volume 6 and an amorphized region which will form source extension 4. In a PAI, atoms that in principle do not themselves influence the dopant concentration level, such as for example Si or Ge, are implanted in the region of the extensions 4, 5. For Ge, for example, this may occur at energies of approximately 8 to 20 keV, with concentrations between about 5.10e14 to 3.10e15 atoms/cm3 and under an angle of between for example 0° and 45°. To obtain a desired amorphization different conditions may be required for different kinds of semiconductors.
  • In order to fulfill the above mentioned requirements, an additional step of amorphizing the region to be implanted is performed, according to the present invention, before the actual implanting of source and drain regions is performed. This step may also be referred to as pre-amorphization implant (PAI). PAI is a well controllable method which limits the depth to which implants can be made. Thereto, atoms, or more precisely ions, are implanted in a sufficient concentration to disrupt the originally perfect crystal lattice of the substrate 1, so that it becomes amorphous. Applying PAI will thus form regions of a shape like source extension and drain extensions 4, 5 in FIG. 1. The step of amorphizing the extension volume by bombarding under a suitable first angle ensures that a part of the accelerated ions used in the bombarding will pass through the part of the gate electrode 3 nearest the semiconductor substrate 1, and will hence form an amorphized volume 6, 7 showing overlap with the gate electrode 3. In a PAI, atoms that in principle do not themselves influence the dopant concentration level, such as for example Si or Ge, are implanted in the region of the extensions 4, 5. For Ge, for example, this may occur at energies of approximately 8 to 20 keV, with concentrations between about 5.10e14 to 3.10e15 atoms/cm3 and under an angle of between for example 0° and 45°. To obtain a desired amorphization different conditions may be required for different kinds of semiconductors.
  • After PAI, the step of actual implanting the extension regions 4, 5 with the desired dopants may be performed. For example, boron atoms may be implanted at energies of about 0.5 keV with concentrations up to approximately 1.10e15 atoms/cm3. However, any kind of suitable implant energy, dose or dopant type may be used in this step. The step of implanting may be performed under a second angle, which, in some cases, may be substantially the same as the first angle. FIG. 3D illustrates implanting ions into the amorphized regions of the substrate to form a source extension 4 and a drain extension 5 by implanting ions using an angle 12 with respect to the direction substantial perpendicular to the substrate. It may thus be ensured that with the appropriate energy of the dopants, the dopants may be present in the amorphized region.
  • The direction of bombarding in order to amorphize and the direction for implanting may be chosen towards the gate electrode 3 in order to achieve overlap. This means that in principle two different directions are required for treatment of the source side and the drain side of the device. However, this does not entail additional masking steps, because the implants for source and drain differ anyhow, and the amorphizing step before the implanting step does not need any additional masking step. For example, the drain extension 5 may be implanted according to a direction indicated by arrows I in FIG. 1, including an angle a with a direction perpendicular to the substrate 1. In FIG. 1 this direction is indicated by the dashed line.
  • The angles and energies of the accelerated ions for amorphizing and for implanting of the dopants may be selected such that a desired overlap is realized. Selection of these quantities is interrelated and further depends on the type of semiconductor substrate 1 used.
  • During the PAI step, not only the semiconductor substrate 1 is amorphized. Also a part of the gate insulating layer 2 may, to a depth of for example a few nanometers, be amorphized due to the action of the amorphizing particles. In FIG. 1 this is shown as amorphous parts 6 and 7. This damage may be undone by annealing the semiconductor device during a further activation step, so that all of the gate insulating layer would be (poly)crystalline again. However, the damage caused in the gate insulating layer 2 by PAI may be further used during processing to achieve controllable overlap between extensions 4, 5 and the gate electrode 3 (see further).
  • After having performed the above steps, a structure like the one shown in FIG. 1 is the result. In a next step, a part of the gate insulating layer 2 is removed in order to reduce the capacitive overlap between gate electrode 3 and extensions 4, 5 to a reduced but non-zero overlap level. This may be done by means of etching, e.g. by means of a wet etch. The material of the gate insulating layer 2, i.e. a dielectric material in general, on the one hand, and the material of the gate electrode 3 and the semiconductor substrate 1 on the other hand are different. Therefore, an etchant may be selected which selectively etches the gate insulating layer 2 but not the other materials used. Furthermore, in one embodiment, the gate insulating layer 2 comprises amorphized parts 6, 7 and a non-amorphized or polycrystalline part. Because the etch rate of the amorphous gate insulator may differ from that of the (poly)crystalline gate insulator deeper under the gate 3, and in most cases may be higher, the border between the amorphous and polycrystalline gate insulator may be used as an etch stop. Hence, an etching solution may be required which only removes the amorphized parts 6, 7 of the gate insulating layer 2 and does not etch the polycrystalline part of the insulating layer 2.
  • For example, the etching step may be performed by dipping the semiconductor device structure in a HF solution, preferably with a concentration between about 0.1 and 10%, for example 0.2%, during a period between for example 1 second and 5 minutes. The type of etchant, concentration of the etching solution and etching time may depend on the depth required to etch or on the material that has to be etched. Therefore, this step of etching back the gate insulating layer 2 offers a good control over the overlap, for it is possible to select a relatively slow and therefore precise etching process. Alternatively, the gate insulating layer 2 may also be etched before the actual implant of the extensions 4, 5.
  • After PAI, the step of actual implanting the extension regions 4, 5 with the desired dopants may be performed. For example, boron atoms may be implanted at energies of about 0.5 keV with concentrations up to approximately 1.10e15 atoms/cm3. However, any kind of suitable implant energy, dose or dopant type may be used in this step. The step of implanting may be performed under a second angle, which, in some cases, may be substantially the same as the first angle. FIG. 3D illustrates implanting ions into the amorphized regions of the substrate to form a source extension 4 and a drain extension 5 by implanting ions using an angle 12 with respect to the direction substantial perpendicular to the substrate. It may thus be ensured that with the appropriate energy of the dopants, the dopants may be present in the amorphized region.
  • In FIG. 2, the recess 9 on the right hand side of the device is shown as having an etch depth e. The etch depth may for example be a few nanometers, preferably between 0.5 and 5 nm. The distance d represents the remaining overlap between drain extension 5 and gate insulating layer 2. The remaining overlap d between the gate insulating layer 2 and the drain extension 5 may preferably be between about 10 and 20%, for example 15%, of the length 1 of the gate electrode 3. The latter statement only applies for gate lengths below about 100 nm, preferably 50 nm or less. For larger gate lengths, a smaller overlap ratio may be selected.
  • A following step may be an activation step in order to activate the implanted dopants, i.e. to build the dopants into the crystal lattice of the semiconductor substrate 1. This step may also be referred to as a junction anneal step. The junction anneal step may be performed by annealing the device with for example high ramp rates. Preferred processes include rapid thermal anneal (RTA), flash rapid thermal anneal (ETA), solid phase epitaxy (SPE) and laser thermal anneal (LTA). The type of anneal and the energy concerned may be selected according to the requirements of a specific device. In the present invention, it is preferred to perform this annealing step after etching the gate insulating layer thus forming the recesses 8, 9, because annealing may remove the “etch stop”, which was formed by PAI, by curing the gate insulating layer 2. Because of that, the control over the overlap between the gate electrode 3 and the source and drain recesses 8, 9 may disappear.
  • After thus forming a junction with controlled overlap and activating it, the processing of the semiconductor device structure may be finished with any desired subsequent step, depending on the kind of semiconductor device that has to be formed. For example, in a CMOS process, a spacer for deep source and drain implants may be deposited in for example a low temperature plasma enhanced chemical vacuum deposition (CVD) process in the form of an oxide, at a deposition temperature of for example 400° C. The CVD oxide will not fill the recesses 8, 9 due to its course-grained porosity. Furthermore, any other desired subsequent step in the process of forming the semiconductor device may be performed.
  • In general, a balance has to be found between an overlap which is as small as possible to reduce parasitic capacitance and hot carrier effect, and an overlap which is big enough to ensure a quick response of the semiconductor device, i.e. a short switching time. The total overlap between source and drain extensions 4, 5 and the gate electrode 3 is represented by t in FIG. 2. With short gate lengths of less than about 100 nm it may be sufficient when the extensions 4, 5 overlap the gate electrode 3 for between about 10% and 20%, e.g. 15%, of the length of the gate electrode 3. Therefore, this methodis particularly suitable for forming an overlapping extension 4, 5 for devices with very short gate lengths, because it gives the possibility to obtain a sufficient overlap without having to use diffusion techniques. Diffusion techniques suffer from less abrupt transitions between extensions 4, 5 and substrate 1 and are furthermore more difficult to control. In particular, it is very difficult to limit diffusion to an overlap of less than 10 nm. For very short gate lengths of for example 50 nm down to even 30 or 20 nm, this is a too large overlap and hence the diffusion technique is then no longer useful.
  • An advantage of aspects of the present invention is the simple way of tuning the overlap between the gate electrode 3 and source and drain extensions 4, 5, without the need for masks and/or spacers. This may reduce production time and hence production costs. Furthermore, the method of the present invention leads to strongly reduced gate leakage in the semiconductor device thus obtained.
  • It is to be understood that although preferred embodiments, specific constructions and configurations, as well as materials, have been discussed herein for devices according to the present invention, various changes or modifications in form and detail may be made without departing from the scope and spirit of this invention.

Claims (9)

1. A semiconductor device comprising:
a first main electrode extension and a second main electrode extension formed in a semiconductor substrate;
an insulating layer formed on the semiconductor substrate; and
a control electrode formed over the insulating layer;
wherein the insulating layer has an overlap with each main electrode extension and the insulating layer has a first recess near the first main electrode extension having a depth of less than a width of an overlap between the control electrode and the first main electrode extension and/or a second recess near the second main electrode extension having a depth of less than a width of an overlap between the control electrode and the second main electrode extension.
2. The semiconductor device of claim 1, wherein each recess has a depth between about 0.5 and 5 nanometers.
3. The semiconductor device of claim 1, wherein the control electrode has a length of less than about 100 nm.
4. The semiconductor device of claim 1, wherein the control electrode has a length of less than about 50 nm.
5. The semiconductor device of claim 1, wherein the overlap between the insulating layer and each main electrode extension is between about 10 and 20% of a length of the control electrode.
6. The semiconductor device of claim 1, wherein an overlap between the control electrode and the first and second main electrode extensions is between about 10 and 20% of a length of the control electrode.
7. The semiconductor device of claim 1, wherein the insulating layer comprises silicon oxide.
8. The semiconductor device of claim 1, wherein the control electrode comprises silicon.
9. The semiconductor device of claim 1, wherein the control electrode comprises a polycrystalline material.
US11/636,817 2003-10-17 2006-12-11 Method for forming a notched gate insulator for advanced MIS semiconductor devices and devices thus obtained Abandoned US20070155118A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/636,817 US20070155118A1 (en) 2003-10-17 2006-12-11 Method for forming a notched gate insulator for advanced MIS semiconductor devices and devices thus obtained
US13/167,648 US20110309457A1 (en) 2003-10-17 2011-06-23 Method for Forming a Notched Gate Insulator for Advanced MIS Semiconductor Devices and Devices Thus Obtained

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP03447260A EP1524699B1 (en) 2003-10-17 2003-10-17 Method for forming CMOS semiconductor devices having a notched gate insulator and devices thus obtained
EP03447260.5 2003-10-17
US10/966,152 US7157356B2 (en) 2003-10-17 2004-10-15 Method for forming a notched gate insulator for advanced MIS semiconductor devices and devices thus obtained
US11/636,817 US20070155118A1 (en) 2003-10-17 2006-12-11 Method for forming a notched gate insulator for advanced MIS semiconductor devices and devices thus obtained

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/966,152 Division US7157356B2 (en) 2003-10-17 2004-10-15 Method for forming a notched gate insulator for advanced MIS semiconductor devices and devices thus obtained

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/167,648 Continuation US20110309457A1 (en) 2003-10-17 2011-06-23 Method for Forming a Notched Gate Insulator for Advanced MIS Semiconductor Devices and Devices Thus Obtained

Publications (1)

Publication Number Publication Date
US20070155118A1 true US20070155118A1 (en) 2007-07-05

Family

ID=34354657

Family Applications (3)

Application Number Title Priority Date Filing Date
US10/966,152 Active 2024-11-06 US7157356B2 (en) 2003-10-17 2004-10-15 Method for forming a notched gate insulator for advanced MIS semiconductor devices and devices thus obtained
US11/636,817 Abandoned US20070155118A1 (en) 2003-10-17 2006-12-11 Method for forming a notched gate insulator for advanced MIS semiconductor devices and devices thus obtained
US13/167,648 Abandoned US20110309457A1 (en) 2003-10-17 2011-06-23 Method for Forming a Notched Gate Insulator for Advanced MIS Semiconductor Devices and Devices Thus Obtained

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/966,152 Active 2024-11-06 US7157356B2 (en) 2003-10-17 2004-10-15 Method for forming a notched gate insulator for advanced MIS semiconductor devices and devices thus obtained

Family Applications After (1)

Application Number Title Priority Date Filing Date
US13/167,648 Abandoned US20110309457A1 (en) 2003-10-17 2011-06-23 Method for Forming a Notched Gate Insulator for Advanced MIS Semiconductor Devices and Devices Thus Obtained

Country Status (5)

Country Link
US (3) US7157356B2 (en)
EP (1) EP1524699B1 (en)
JP (1) JP4668579B2 (en)
CN (1) CN100517747C (en)
TW (1) TWI360166B (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4954508B2 (en) 2005-08-05 2012-06-20 パナソニック株式会社 Semiconductor device
US7595248B2 (en) 2005-12-01 2009-09-29 Intel Corporation Angled implantation for removal of thin film layers
US7279758B1 (en) * 2006-05-24 2007-10-09 International Business Machines Corporation N-channel MOSFETs comprising dual stressors, and methods for forming the same
US20080233702A1 (en) * 2007-03-22 2008-09-25 Texas Instruments Inc. Method of forming a recess in a semiconductor structure
DE102007030056B3 (en) * 2007-06-29 2009-01-22 Advanced Micro Devices, Inc., Sunnyvale A method for blocking a pre-amorphization of a gate electrode of a transistor
US7795104B2 (en) * 2008-02-13 2010-09-14 Chartered Semiconductor Manufacturing Ltd. Method for fabricating device structures having a variation in electrical conductivity
TWI497713B (en) * 2011-09-14 2015-08-21 Inotera Memories Inc Fabricating method of an insulator
US9224604B2 (en) 2012-04-05 2015-12-29 Globalfoundries Inc. Device and method for forming sharp extension region with controllable junction depth and lateral overlap
JP6585354B2 (en) * 2014-03-07 2019-10-02 株式会社半導体エネルギー研究所 Semiconductor device

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4931847A (en) * 1986-06-27 1990-06-05 Sgs-Thomson Microelectronics S.P.A. Floating gate memory with sidewall tunnelling area
US5223445A (en) * 1990-05-30 1993-06-29 Matsushita Electric Industrial Co., Ltd. Large angle ion implantation method
US5434093A (en) * 1994-08-10 1995-07-18 Intel Corporation Inverted spacer transistor
US5516707A (en) * 1995-06-12 1996-05-14 Vlsi Technology, Inc. Large-tilted-angle nitrogen implant into dielectric regions overlaying source/drain regions of a transistor
US5554544A (en) * 1995-08-09 1996-09-10 United Microelectronics Corporation Field edge manufacture of a T-gate LDD pocket device
US6127251A (en) * 1998-09-08 2000-10-03 Advanced Micro Devices, Inc. Semiconductor device with a reduced width gate dielectric and method of making same
US6255165B1 (en) * 1999-10-18 2001-07-03 Advanced Micro Devices, Inc. Nitride plug to reduce gate edge lifting
US6284630B1 (en) * 1999-10-20 2001-09-04 Advanced Micro Devices, Inc. Method for fabrication of abrupt drain and source extensions for a field effect transistor
US20010028086A1 (en) * 2000-04-05 2001-10-11 Mariko Makabe High-performance MOS transistor of LDD structure and manufacturing method of the same
US20020163039A1 (en) * 2001-05-04 2002-11-07 Clevenger Lawrence A. High dielectric constant materials as gate dielectrics (insulators)
US6492695B2 (en) * 1999-02-16 2002-12-10 Koninklijke Philips Electronics N.V. Semiconductor arrangement with transistor gate insulator
US6855989B1 (en) * 2003-10-01 2005-02-15 Advanced Micro Devices, Inc. Damascene finfet gate with selective metal interdiffusion

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0239429A (en) * 1988-07-28 1990-02-08 Matsushita Electron Corp Manufacture of semiconductor device
JPH06283483A (en) * 1993-03-24 1994-10-07 Sanyo Electric Co Ltd Etching method
JPH113990A (en) * 1996-04-22 1999-01-06 Sony Corp Semiconductor device and its manufacture
JPH1140538A (en) * 1997-07-15 1999-02-12 Sony Corp Manufacture of semiconductor device
JPH11163323A (en) * 1997-11-26 1999-06-18 Toshiba Corp Semiconductor device and manufacture thereof
JP3450758B2 (en) * 1999-09-29 2003-09-29 株式会社東芝 Method for manufacturing field effect transistor
JP3904936B2 (en) * 2001-03-02 2007-04-11 富士通株式会社 Manufacturing method of semiconductor device
JP4150548B2 (en) * 2002-08-08 2008-09-17 富士通株式会社 Manufacturing method of semiconductor device

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4931847A (en) * 1986-06-27 1990-06-05 Sgs-Thomson Microelectronics S.P.A. Floating gate memory with sidewall tunnelling area
US5223445A (en) * 1990-05-30 1993-06-29 Matsushita Electric Industrial Co., Ltd. Large angle ion implantation method
US5434093A (en) * 1994-08-10 1995-07-18 Intel Corporation Inverted spacer transistor
US5516707A (en) * 1995-06-12 1996-05-14 Vlsi Technology, Inc. Large-tilted-angle nitrogen implant into dielectric regions overlaying source/drain regions of a transistor
US5554544A (en) * 1995-08-09 1996-09-10 United Microelectronics Corporation Field edge manufacture of a T-gate LDD pocket device
US6127251A (en) * 1998-09-08 2000-10-03 Advanced Micro Devices, Inc. Semiconductor device with a reduced width gate dielectric and method of making same
US6492695B2 (en) * 1999-02-16 2002-12-10 Koninklijke Philips Electronics N.V. Semiconductor arrangement with transistor gate insulator
US6255165B1 (en) * 1999-10-18 2001-07-03 Advanced Micro Devices, Inc. Nitride plug to reduce gate edge lifting
US6284630B1 (en) * 1999-10-20 2001-09-04 Advanced Micro Devices, Inc. Method for fabrication of abrupt drain and source extensions for a field effect transistor
US20010028086A1 (en) * 2000-04-05 2001-10-11 Mariko Makabe High-performance MOS transistor of LDD structure and manufacturing method of the same
US20020163039A1 (en) * 2001-05-04 2002-11-07 Clevenger Lawrence A. High dielectric constant materials as gate dielectrics (insulators)
US6855989B1 (en) * 2003-10-01 2005-02-15 Advanced Micro Devices, Inc. Damascene finfet gate with selective metal interdiffusion

Also Published As

Publication number Publication date
CN100517747C (en) 2009-07-22
EP1524699A1 (en) 2005-04-20
CN1610129A (en) 2005-04-27
US7157356B2 (en) 2007-01-02
TW200520069A (en) 2005-06-16
TWI360166B (en) 2012-03-11
JP2005123632A (en) 2005-05-12
US20110309457A1 (en) 2011-12-22
JP4668579B2 (en) 2011-04-13
EP1524699B1 (en) 2012-12-26
US20050127436A1 (en) 2005-06-16

Similar Documents

Publication Publication Date Title
US20110309457A1 (en) Method for Forming a Notched Gate Insulator for Advanced MIS Semiconductor Devices and Devices Thus Obtained
US20070267660A1 (en) Method and apparatus for forming a semiconductor substrate with a layer structure of activated dopants
US7118980B2 (en) Solid phase epitaxy recrystallization by laser annealing
TW200525762A (en) A semiconductor substrate with solid phase epitaxial regrowth with reduced junction leakage and method of producing same
WO1999050900A1 (en) Reduced channel length lightly doped drain transistor using a sub-amorphous large tilt angle implant to provide enhanced lateral diffusion
JPH08167598A (en) Anisotropic etching method of material mainly composed of silicon
US6734109B2 (en) Method of building a CMOS structure on thin SOI with source/drain electrodes formed by in situ doped selective amorphous silicon
US6475885B1 (en) Source/drain formation with sub-amorphizing implantation
US6218251B1 (en) Asymmetrical IGFET devices with spacers formed by HDP techniques
KR100396692B1 (en) Method for Manufacturing of Semiconductor device
US7659169B2 (en) Semiconductor device and method of manufacturing thereof
US6482688B2 (en) Utilizing amorphorization of polycrystalline structures to achieve T-shaped MOSFET gate
WO2004051728A1 (en) Drain/source extension structure of a field effect transistor including doped high-k sidewall spacers
KR100537103B1 (en) Method for fabricating vertical transistor
US6110786A (en) Semiconductor device having elevated gate electrode and elevated active regions and method of manufacture thereof
KR100212010B1 (en) Method for fabricating transistor of semiconductor device
US7329910B2 (en) Semiconductor substrates and field effect transistor constructions
JP3531087B2 (en) Semiconductor device and manufacturing method thereof
KR100485176B1 (en) Fabrication method of MOS transistor
US8357595B2 (en) Semiconductor substrate with solid phase epitaxial regrowth with reduced depth of doping profile and method of producing same
WO2004042809A1 (en) Method of forming a nickel silicide region in a doped silicon-containing semiconductor area
KR20050063043A (en) Method for forming silicide of semiconductor device
KR20000041386A (en) Mos transistor manufacturing method

Legal Events

Date Code Title Description
AS Assignment

Owner name: NXP B.V., NETHERLANDS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KONINKLIJKE PHILIPS ELECTRONICS N.V.;REEL/FRAME:022092/0572

Effective date: 20081125

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION