Suche Bilder Maps Play YouTube News Gmail Drive Mehr »
Anmelden
Nutzer von Screenreadern: Klicken Sie auf diesen Link, um die Bedienungshilfen zu aktivieren. Dieser Modus bietet die gleichen Grundfunktionen, funktioniert aber besser mit Ihrem Reader.

Patente

  1. Erweiterte Patentsuche
VeröffentlichungsnummerUS20070164669 A1
PublikationstypAnmeldung
AnmeldenummerUS 11/693,288
Veröffentlichungsdatum19. Juli 2007
Eingetragen29. März 2007
Prioritätsdatum8. Apr. 2005
Auch veröffentlicht unterUS7449593, US20060226768, US20070173658
Veröffentlichungsnummer11693288, 693288, US 2007/0164669 A1, US 2007/164669 A1, US 20070164669 A1, US 20070164669A1, US 2007164669 A1, US 2007164669A1, US-A1-20070164669, US-A1-2007164669, US2007/0164669A1, US2007/164669A1, US20070164669 A1, US20070164669A1, US2007164669 A1, US2007164669A1
ErfinderChen-Ping Yu, Chia-Liang Tai, Fan-Hsiu Chang
Ursprünglich BevollmächtigterAu Optronics Corporation
Zitat exportierenBiBTeX, EndNote, RefMan
Externe Links: USPTO, USPTO-Zuordnung, Espacenet
Silicon-contained anthracene compound for organic electroluminescent device
US 20070164669 A1
Zusammenfassung
This invention is about anthracene, at least one having silyl substituted group on ring 9 and 10, the anthracene can be a organic light emitting diodes (OLED) material and used for organic electroluminescent device.
wherein X is an triarylsilyl group having 6 to 20 carbon atoms, an trialkylsilyl group having 1 to 12 carbon atoms, a substituted or unsubstituted aryl group having 6 to 20 carbon atoms, a substituted or unsubstituted heteroaryl group having 2 to 20 carbon atoms, or a substituted or unsubstituted alkyl group having 1 to 12 carbon atoms. R1 and R2 is independently a hydrogen, halogen, or a substituted or unsubstituted alkyl group having 1 to 12 carbon atoms. R3 to R5 is independently a substituted or unsubstituted aryl group having 6 to 20 carbon atoms, or a substituted or unsubstituted alkyl group having 1 to 12 carbon atoms.
Bilder(4)
Previous page
Next page
Ansprüche(10)
1. An organic electroluminescent device, comprising:
a substrate;
a first electrode layer, on the substrate;
an organic layer, on the first electrode, wherein the organic layer at least comprises an anthracene compound, represented by the following formula:
wherein X represents a trialkyl substituted silyl group, a substituted or unsubstituted aryl group having 6 to 20 carbon atoms, a substituted or unsubstituted heteroaryl group having 2 to 20 carbon atoms, or a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms; each R1 and R2 represents hydrogen, halogen, or a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, R1 and R2 can be the same or not the same; and each R3, R4 and R5 represents a substituted or unsubstituted aryl group having 6 to 20 carbon atoms, or a substituted or unsubstituted alkyl group having 1 to 12 carbon atoms, R3, R4, R5 can be the same or not the same; and
a second electrode layer, on the organic layer.
2. The organic electroluminescent device as claimed in claim 1, wherein the first electrode layer is made of a transparent conductive material.
3. The organic electroluminescent device as claimed in claim 1, wherein the organic layer further comprises a hole injection layer, a hole transport layer, and an electron transport layer.
4. The organic electroluminescent device as claimed in claim 3, wherein said anthracene compound is comprised into said hole transport layer.
5. The organic electroluminescent device as claimed in claim 1, wherein X represents a trimethylsilyl group.
6. The organic electroluminescent device as claimed in claim 1, wherein X represents the phenyl group and it's derivatives or the anthryl group and it's derivatives.
7. The organic electroluminescent device as claimed in claim 1, wherein X represents the furanyl group, the thiophenyl group, the pyrrolyl group, the pyranyl group, the thiopyranyl group, the pyridinyl group, the thiazolyl group, the imidazolyl group, the pyrimidinyl group or the triazinyl group.
8. The organic electroluminescent device as claimed in claim 1, wherein R1 represents the fluorine, the chlorine, or the bromine.
9. The organic electroluminescent device as claimed in claim 1, wherein R2 represents the fluorine, the chlorine, or the bromine.
10. The organic electroluminescent device as claimed in claim 1, wherein R3, R4, and R5 represent the phenyl group or the methyl.
Beschreibung
RELATED CASES

This application is a Divisional patent application of co-pending application Ser. No. 11/179,573, filed 13 Jul. 2005.

FIELD OF THE INVENTION

This invention relates to anthracene compound, particular on the position 9 and 10, and at least one having a substituted silyl group, the anthracene compound can be an organic light emitting diode (OLED) material and used for organic electroluminescent device.

BACKGROUND OF THE INVENTION

In recent years, the organic electroluminescent device having high efficiency and fluorescent dyes, can be used for the flat panel displays bring this technology commercialization. In various types of flat panel displays, since an OLED, being developed later than a liquid crystal display (LCD), has many beneficial characteristics, such as a spontaneous light source, a wide viewing angle, high response velocity, high brightness, strong contrast, small thickness, power saving, and a wide operating temperature, the OLED has been used extensively in small and medium scale portable display fields.

The emitting layer is between the metal cathode and transparent anode in the organic electroluminescent device. When a DC voltage is applied to the OLED structure, electrons in the cathode and holes in the transparent conductive layer will be injected into the emitting layer through the electron transport layer and the hole transport layer respectively. Due to the potential difference incurred from the external electrical field, electrons and holes will move in the emitting layer and recombine as excitions. When the excitions come back to the ground state by way of releasing energy, the quantum efficiency is released in a form of photos to emit light downwards through the transparent anode. This is the organic electroluminescent principle.

For example, in U.S. Pat. No. 6,465,115 disclosed anthracene compound on the hole transport layer, which on position 9 and 10 having aryl group, the structure as following:


wherein substituents R1 to R4 are each individually hydrogen, or alkyl of from 1 to 24 carbon atoms; aryl or substituted aryl of from 5 to 20 carbon atoms; or heteroaryl or substituted of from 5 to 24 carbon atoms; or fluorine, chlorine, bromine; or cyano group.

In U.S. Pat. No. 5,759,444 also disclosed anthracene compound, the structure as following:


Wherein each of A1 to A4 is a substituted or unsubstituted aryl group having 6 to 16 carbon atoms, and each of R1 to R8 is a hydrogen atom independently, a halogen atom, a substituted or unsubstituted alkoxy group, a substituted or unsubstituted aryl group or a substituted or unsubstituted amino group.

In U.S. Pat. No. 6,310,231 disclosed silane compounds as a constituent material of luminescent device are described, which are represented by following formula:


wherein R1 represents an alkyl group, an aryl group, a heteroaryl group or an alkynyl group, and each of Ar11, Ar12 and Ar13 represents a heteroaryl group.

Though the prior investigations described the organic light emitting diode, it is very important to make new and efficient organic EL materials to improve the spontaneous light source, a wide viewing angle, high response velocity, high brightness, strong contrast, small thickness, power saving, and a wide operating temperature in the organic electroluminescent device.

SUMMARY OF THE INVENTION

This invention provides an organic light emitting diode (OLED) material, which at least one having a substituted silyl group on the position 9 and 10 of the anthracene compound, said the anthracene compound represented by the following formula:

In the compound (A), X represents a substituted silyl group (more preferably triphenylsilyl group), a trialkylsilyl group having 1 to 20 carbon atoms (more preferably trimethylsilyl group, triethylsilyl group, or tripropylsilyl group, particularly preferably trimethylsilyl group), a substituted or unsubstituted aryl group having 6 to 20 carbon atoms (more preferably benzyl group, 2-methylbenzyl group, 3-methylbenzyl group, 4-methylbenzyl group, 4-ethylbenzyl group, biphenyl group, 4-methylbiphenyl group, 4-ethylbiphenyl group, 4-cyclohexylbiphenyl group, triphenyl group, naphthyl group, 5-methylnaphthyl group, anthryl group, or pyrenyl group, particularly preferably benzyl group, naphthyl group, biphenyl group, triphenyl group, or pyrenyl group etc.), a substituted or unsubstituted heteroaryl group having 2 to 20 carbon atoms (more preferably furanyl group, pyrrolyl group, pyridinyl group, pyrimidinyl group, pyranyl group, thiophenyl group, thiopyranyl, thiazolyl group, imidazolyl group, carbazole group, triazinyl group, quinolinyl group, particularly preferably pyridinyl group, carbazole group, or quinolinyl group), or a substituted or unsubstituted alkyl group having 1 to 12 carbon atoms (more preferably methyl, ethyl, propyl, or butyl).

In the compound (A), each R1 and R2 represents hydrogen, halogen, or a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms (more preferably hydrogen, a substituted or unsubstituted alkyl group having 1 to 4 carbon atoms, fluorine, chlorine, or bromine, particularly preferably hydrogen, methyl group, ethyl group, propyl group, butyl group, fluorine, chlorine, or bromine), wherein R1 and R2 can be the same or not the same.

In the compound (A), each R3, R4 and R5 represents a substituted or unsubstituted aryl group having 6 to 20 carbon atoms (more preferably benzyl group, 2-methylbenzyl group, 3-methylbenzyl group, 4-methylbenzyl group, 4-ethylbenzyl group, biphenyl group, 4-methylbiphenyl group, 4-ethylbiphenyl group, 4-cyclohexylbiphenyl group, triphenyl group, naphthyl group, 5-methylnaphthyl group, anthryl group, or pyrenyl group, particularly preferably benzyl group, naphthyl group, biphenyl group, triphenyl group, or pyrenyl group etc.), or a substituted or unsubstituted alkyl group having 1 to 12 carbon atoms (more preferably a substituted or unsubstituted alkyl group having 1 to 4 carbon atoms, particularly preferably methyl group, ethyl group, propyl group, or butyl group), wherein R1 and R2 can be the same or not the same.

According to the above anthracene compound (A), there are some compounds but not limited:

The invention also represents an organic electroluminescent device, which comprising:

a substrate;

a first electrode layer, which is on the substrate;

an organic layer, which is on the first electrode, and the organic layer including the anthracene compound (A) of mention above; and

a second electrode layer, which is on the organic layer.

The substrate more preferably glass substrate, the first electrode layer more preferably a transparent conductive material, perfect preferably indium tin oxide film, the organic layer more preferably including a hole injection layer, a hole transport layer, a light emitting layer, a electron transport layer and a electron injection layer, wherein the anthracene compound (A) is in the light emitting layer; the second electrode layer more preferably a metal layer, perfect preferably Aluminum in the organic electroluminescent device.

Typical organic emitting materials were formed of a conjugated organic host material and a conjugated organic activating agent having condensed benzene rings. However, for the production of full color OLED display panel, it is necessary to have efficient red, green and blue (RGB) EL materials with proper chromaticity and sufficient luminance efficiency. The guest-host doped system offers a ready avenue fir achieving such an objective, mainly because doping an emissive dopant of high luminescent property into a host can raise the efficiency of radiative recombination. In this application also having dopant in the emissive layer, such as BDM. etc.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows the PL intensity in different waves about compound (1) and compound (2);

FIG. 2 shows the efficiency of organic light emitting diode material in example 5 and compare example 1; and

FIG. 3(a) and FIG. 3(b) show the different of organic light emitting diode material in the CIE chromaticity coordinates between example 5 and compare example 1, wherein both the horizontal axis represent voltage, the vertical axis represents CIEx in FIG. 3(a), and the vertical axis represents CIEy in FIG. 3(b).

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Synthesis of Anthracene Compound

EXAMPLE 1 Synthesis of 9-bromo-10-triphenysilyl anthracene

In a nitrogen atmosphere, 12 g (35.7mmol) of 9,10-dibromoanthracene, and 300 ml of tetrahydrofuran (THF) were added to a round-bottom flask. Next, 14.4 ml (35.7 mmol, 2.5M) of n-butyl lithium was added dropwise slowly into the round-bottom flask at −78° C. After mixing and reacting for 30 min, 12 g (40.7 mmol) triphenylsilyl chloride with 50 ml THF were added dropwise slowly into the round-bottom flask at −78° C. After reacting at room temperature for 24 hours, the resulting mixture was subjected to extraction with a mixed solvent (ethyl acetate: H2O), dried over anhydrous MgSO4, filtered, and condensed, then the crude product was purified by column chromatography (n-hexane/acetyl acetate=15/1), A 9.0 g of pure 9-bromo-10-triphenysilyl anthracene was collected.

EXAMPLE 2 Synthesis of 9,10-di-triphenysilyl anthracene (Compound 1)

In a nitrogen atmosphere, 9 g (17.5 mmol) of 9-bromo-10-triphenysily anthracene, and 200 ml of tetrahydrofuran (THF) were added to a round-bottom flask. Next, 7.7 ml (19.3 mmol, 2.5M) of n-butyl lithium was added dropwise slowly into the round-bottom flask at −78° C. After mixing and reacting for 30 min, 6.2 g (21.2 mmol) triphenylsilyl chloride with 50 ml THF added dropwise slowly into the round-bottom flask at −78° C. After reacting at room temperature for 24 hours, the resulting mixture was subjected to extraction with a mixed solvent (ethyl acetate:H2O), dried over anhydrous MgSO4, filtered, and condensed, then the crude product was purified by column chromatography (n-hexane/acetyl acetate=15/1), A 4.2 g of pure 9,10-di-triphenysilyl anthracene was collected, the reaction was following:

EXAMPLE 3 Synthesis of 9-(2-naphthyl)-10-triphenysilyl anthracene (Compound 2)

9-bromo-10-triphenysilyl anthracene (4 g, 7.8 mmol), 2-naphthylboronic acid (1.6 g, 9.4 mmol) and K2CO3 (1.5 g,15.6 mmol) were dissolved in the solvent mixture of 50 mL ethylene glycol dimethyl ether and 75 mL water. The stirred solution was added tetrakis(triphenylphosphine)palladium (0) and the mixture refluxed under N2 for 16 hours. The reaction mixture was cooled and the water extracted with acetyl acetate three times. The combined organic phase was washed with portions of brine. The organic layer was then dried with MgSO4, filtered, and evaporated of solvent. The crude material was purified by column chromatography (n-hexane/acetyl acetate=10/1) to give 9-(2-naphthyl)-10-triphenysilyl anthracene (Compound 2), the reaction was following:

TABLE 1
Device Characteristics of Examples
CIE CIE
Operation chromaticity chromaticity
emitting layer material Voltage Brightness coordinates coordinates Efficiency
Example Host Dopant (V) (cd/m2) (X axis) (Y axis) (cd/A)
Example 4*1 anthracene BDM*2 8.5 1000 0.15 0.13 2.1
compound (1)
Example 5*1 ADN*3 anthracene 7.0 1000 0.20 0.23 1.7
compound (1)
Example 6*1 anthracene BDM*2 8.5 1000 0.14 0.13 2.4
compound (2)
Compare ADN*3 BDM*2 7.1 1000 0.15 0.14 2.6
Example 1*1

*1The hole injection layer is consisted of 2T-NATA (4,4′,4″-tri(N-(2-naphthyl)-N-aniline)-triphenyl amine); the hole transport layer is consisted of NPB (N,N′-di-1-naphthyl-N,-N′-diphenyl-1,1′-biphenyl-1,1′-biphenyl-4,4′-diamine); the electron transport layer is consisted of Alq3 (tris(8-hydroxyquinoline)aluminum).

*2BDM:

*3ADN:

From table 1, in the present invention, the host material of emitting layer being the anthracene compound, as Example 4 and 6, the CIE chromaticity coordinates (Y axis) from 0.14 to 0.13. So the organic electroluminescent element approaches to blue light. Furthermore, this invention also can be dopant, as Example 5.

Comparing the Example 5 with the Example 1, it is known the efficiency and the color gamut of the present compound (Example 5) better than the Example 1 from FIG. 2, FIG. 3(a) and FIG. 3(b).

Those skilled in the art will readily observe that numerous modifications and alterations of the device and method may be made while relating the teachings of the invention. Accordingly, the above disclosure should be construed as limited only by the meters and bounds of appended claims.

Referenziert von
Zitiert von PatentEingetragen Veröffentlichungsdatum Antragsteller Titel
US812903926. Okt. 20076. März 2012Global Oled Technology, LlcPhosphorescent OLED device with certain fluoranthene host
Klassifizierungen
US-Klassifikation313/504, 546/14, 556/400
Internationale KlassifikationC07F7/02, H01J1/62
UnternehmensklassifikationH01L51/0072, H05B33/14, H01L51/5012, C07F7/0818, C09K2211/1014, H01L51/008, C09K2211/1029, H01L51/0094, H01L51/0054, C09K11/06, C09K2211/1055, H01L51/0052, C09K2211/1011, C07F7/0809, C09K2211/1007
Europäische KlassifikationH01L51/00M16, H01L51/00M6D, C07F7/08C6D, C07F7/08C4D, H05B33/14, C09K11/06