US20070203311A1 - Polymerizable Silicone Copolymer Macromers and Polymers Made Therefrom - Google Patents

Polymerizable Silicone Copolymer Macromers and Polymers Made Therefrom Download PDF

Info

Publication number
US20070203311A1
US20070203311A1 US11/677,610 US67761007A US2007203311A1 US 20070203311 A1 US20070203311 A1 US 20070203311A1 US 67761007 A US67761007 A US 67761007A US 2007203311 A1 US2007203311 A1 US 2007203311A1
Authority
US
United States
Prior art keywords
meth
alkyl
acrylate
monomer
independently
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/677,610
Inventor
Aroop Kumar Roy
Krishnan Tamareselvy
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lubrizol Advanced Materials Inc
Original Assignee
Lubrizol Advanced Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lubrizol Advanced Materials Inc filed Critical Lubrizol Advanced Materials Inc
Priority to US11/677,610 priority Critical patent/US20070203311A1/en
Assigned to NOVEON, INC. reassignment NOVEON, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: TAMARESELVY, KRISHNAN, ROY, AROOP KUMAR
Assigned to LUBRIZOL ADVANCED MATERIALS, INC. reassignment LUBRIZOL ADVANCED MATERIALS, INC. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: NOVEON, INC.
Publication of US20070203311A1 publication Critical patent/US20070203311A1/en
Priority to US13/742,391 priority patent/US8796484B2/en
Abandoned legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/84Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions otherwise than those involving only carbon-carbon unsaturated bonds
    • A61K8/89Polysiloxanes
    • A61K8/891Polysiloxanes saturated, e.g. dimethicone, phenyl trimethicone, C24-C28 methicone or stearyl dimethicone
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/48Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms
    • C08G77/50Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms by carbon linkages
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/84Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions otherwise than those involving only carbon-carbon unsaturated bonds
    • A61K8/89Polysiloxanes
    • A61K8/891Polysiloxanes saturated, e.g. dimethicone, phenyl trimethicone, C24-C28 methicone or stearyl dimethicone
    • A61K8/894Polysiloxanes saturated, e.g. dimethicone, phenyl trimethicone, C24-C28 methicone or stearyl dimethicone modified by a polyoxyalkylene group, e.g. cetyl dimethicone copolyol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/84Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions otherwise than those involving only carbon-carbon unsaturated bonds
    • A61K8/89Polysiloxanes
    • A61K8/895Polysiloxanes containing silicon bound to unsaturated aliphatic groups, e.g. vinyl dimethicone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/12Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polysiloxanes
    • C08F283/124Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polysiloxanes on to polysiloxanes having carbon-to-carbon double bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • C08F290/068Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/42Block-or graft-polymers containing polysiloxane sequences
    • C08G77/442Block-or graft-polymers containing polysiloxane sequences containing vinyl polymer sequences
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/42Block-or graft-polymers containing polysiloxane sequences
    • C08G77/46Block-or graft-polymers containing polysiloxane sequences containing polyether sequences
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/10Block- or graft-copolymers containing polysiloxane sequences
    • C08L83/12Block- or graft-copolymers containing polysiloxane sequences containing polyether sequences
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/38Polysiloxanes modified by chemical after-treatment

Definitions

  • the present invention relates to polymerizable dimethicone copolyol macromers containing ethylenic unsaturation and to polymers obtained therefrom.
  • the ethylenically polymerizable macromer is formed from the reaction of a dimethicone copolyol containing terminal or pendant hydroxyl groups and itaconic anhydride.
  • the obtained macromer is homopolymerizable or copolymerizable with ethylenically unsaturated monomers.
  • a class of silicon containing polymers known as polydimethylsiloxanes is widely employed in the coatings and personal care industries.
  • polydimethylsiloxane and its derivatives are being increasingly used for general modification of surface properties as they provide water and oil repellency, stain resistance, barrier properties, surfactant properties and lubricity.
  • the use of polydimethylsiloxane and derivatives thereof, particularly dimethicone copolyols has gained wide acceptance for the latter's surfactant characteristics and positive effect on sensory properties of a given composition.
  • U.S. Pat. No. 6,403,074 discloses a silicone containing polymer obtained by polymerizing ethylenically unsaturated monomers in the presence of dimethicone copolyol via a free radical mechanism. The patent disclosure surmises that grafting of the monomers onto the dimethicone copolyol occurs during the polymerization reaction.
  • dimethicone copolyol is covalently incorporated into the polymer backbone or whether an interpolymer of the dimethicone copolyol and the free radically polymerized monomers is formed.
  • chain transfer can often be a significant problem during free radical polymerization, and this may prevent effective copolymerization of such compounds with other ethylenically unsaturated monomers.
  • silicone containing macromers containing terminal unsaturation have been synthesized via the anionic polymerization of hexamethylcyclotrisiloxane monomer (D3) to from a living polymer of controlled molecular weight. Termination of the anionic polymerization reaction is achieved via the direct reaction of the living polymeric anion with halogen-containing termination agents, such as, chlorosilane compounds containing a polymerizable vinyl group.
  • halogen-containing termination agents such as, chlorosilane compounds containing a polymerizable vinyl group.
  • the obtained vinyl terminated siloxane containing macromers in turn can be polymerized with other copolymerizable unsaturated monomers to obtain silicone containing copolymers as disclosed in U.S. Pat. Nos. 4,693,935 and 4,728,571.
  • the synthesis of these macromers is very difficult and given the relatively high molecular weight of the macromer it is arduous to separate the unreacted impurities from the reaction product.
  • a more traditional esterification procedure for functionalizing a dimethicone copolyol with a vinyl end group is to react an acid chloride such as acryloyl chloride with the dimethicone copolyol and employing a base to remove the liberated HCl.
  • an acid chloride such as acryloyl chloride
  • the use of the acryloyl chloride eliminates the spontaneous oligomerization issues suffered from the use of acrylic acid as set forth in the '472 disclosure
  • a salt is generated as a by-product of the esterification reaction. Salts are not only difficult to remove from macromers but may also be deleterious to the subsequent polymerization of the macromer.
  • the polymerization activities of these acrylate-type macromers are similar to the polymerization activities of the comonomers intended for copolymerization into the polymer backbone, due to the unhindered nature of the carbon-carbon unsaturation in the terminal vinyl group. It is common practice to vary monomer reactivity as one approach to altering the copolymer structure and thereby the latter's physical and chemical properties.
  • the present invention provides dimethicone copolyol macromers that are easily synthesized and that have unexpected polymerization activities which allow ready copolymerization to generate products with desirable properties.
  • the copolyol macromers of the invention are synthesized from the reaction of a dimethicone copolyol and itaconic anhydride. Dimethicone copolyols contain terminal or pendant polyether groups that terminate in an active hydroxyl group.
  • the reaction of a hydroxy silicone compound such as dimethicone copolyol with a cyclic anhydride is known. As disclosed in U.S. Pat. Nos.
  • the reaction product of a hydroxy silicone with an anhydride containing any type of unsaturation can be employed as polymerizable macromer in the synthesis of polymers and copolymers.
  • the half-ester formed from the reaction of itaconic anhydride (containing exocyclic unsaturation) with a dimethicone copolyol yields a mixture of various isomers of citraconate mono-esters formed from the rapid isomerization itaconic anhydride to citraconic anhydride and subsequent reaction of the citraconic anhydride with the silicone copolyol.
  • citraconate dimethicone copolyol esters are easily copolymerized with a variety of monomers containing free radically polymerizable olefinic unsaturation. This is a novel and unexpected finding in the preparation of ethylenically unsaturated silicone copolyol esters. Itaconic anhydride is known to react with alcohols to generate the expected itaconate esters.
  • dimethicone copolyol macromers of the present invention are obtained from the isomerization of itaconic anhydride and the subsequent esterification of isomerization products with a hydroxy containing dimethicone copolyol.
  • Itaconic anhydride contains exocyclic unsaturation as set forth in the structure below:
  • exocyclic unsaturation is depicted as the carbon-carbon double bond between the ring carbon atom and the alkylidene, e.g., methylene, group.
  • dimethicone copolyol represented by DMC-OH contains one or more anhydride reactive hydroxyl groups that can be located at a terminal end(s) of the dimethicone backbone or can be located as part of one or more pendant groups on the dimethicone backbone.
  • Representative dimethicone copolyols are set forth under Formulae I and II below.
  • the esterification reaction can be carried out with or without a catalyst.
  • the reaction mixture is heated to reaction temperatures of about 75° C. to about 90° C.
  • the reaction can be run with either a stoichiometric amount of the dimethicone copolyol (based on the OH number) and the anhydride, or a slight excess of either reactant.
  • the amount of anhydride loading to dimethicone copolyol in the reaction mixture ranges between 0.1 equivalent to 1 equivalent based on the OH number of the dimethicone copolyol.
  • the loading of anhydride to dimethicone copolyol is between 0.25 equivalent to 0.75 equivalent based on the OH number of the copolyol, and in still another embodiment the loading is between 0.5 equivalent to 0.75 equivalent.
  • the reaction can be carried out from 1 to 3 hours.
  • the reaction is conducted under an inert atmosphere such as a nitrogen blanket and can be carried out in a suitable solvent.
  • Standard esterification catalysts can be used at concentrations of between 0.05 percent to 0.50 percent based on the weight of the anhydride and the dimethicone copolyol in the reaction mixture.
  • Suitable esterification catalysts include but are not limited to sulfuric acid, elemental tin, elemental zinc, elemental titanium, organo titanate compounds, organo tin compounds, organo zinc compounds, zinc oxide, magnesium oxide, calcium oxide, stannous oxide, and the alkali metal acetates such as sodium acetate and potassium acetate.
  • Reaction temperatures can range from ambient room temperature to about 90° C. Typically ambient room temperature ranges from about 20° C. to about 26° C. All other reaction conditions are as above for the non-catalyzed reactions.
  • citraconic anhydride which has methyl substitution on the double bond can be used in lieu of itaconic anhydride in the esterification reaction.
  • the dimethicone copolyol suitable for the esterification reaction contains a terminal hydroxy end group(s) and can be represented by Formula I below:
  • R 1 and R 2 independently represent a radical selected from C 1 to C 30 alkyl, C 1 to C 20 halo substituted alkyl (e.g., —CCl 3 , —CBr 3 , CF 3 ), C 3 to C 8 cycloalkyl, C 6 to C 14 aryl, and C 2 to C 20 alkenyl;
  • E represents a divalent ethylene radical (—CH 2 CH 2 —);
  • P independently represents a divalent propylene radical (—CH 2 CH(CH 3 )—) or (—CH 2 CH 2 CH 2 —);
  • a, b, and c are independently 0 to 100; and n is 0 to 200.
  • E taken together with the oxygen atom to which is attached represents an ethylene oxide residue (EO or OE) and P taken together with the oxygen atom to which it is attached represents a propylene oxide residue (PO or OP).
  • EO/PO residues can be arranged in random, non-random, or blocky sequences.
  • halogen and halo include but are not limited to bromo, chloro, and fluoro.
  • R 1 and R 2 radicals include but are not limited to methyl, ethyl, propyl, butyl, pentyl, hexyl, cyclopentyl, cyclohexyl, phenyl, vinyl, and allyl.
  • Each of the foregoing radicals as well as the generic R 1 and R 2 radicals set forth above are optionally substituted with C 1 to C 5 alkyl, halogen, and halo(C 1 to C 5 )alkyl (e.g., —CCl 3 , —CBr 3 , CF 3 ).
  • the dimethicone copolyol suitable for the esterification reaction contains a pendant hydroxy group(s) and can be represented by Formula II below:
  • R 3 represents a radical selected from C 1 to C 30 alkyl, halo(C 1 to C 20 ) alkyl (e.g., —CCl 3 , —CBr 3 , CF 3 ), C 3 to C 8 cycloalkyl, C 6 to C 14 aryl, and C 2 to C 20 alkenyl;
  • R 4 independently represents a radical selected from C 1 to C 30 alkyl, C 6 to C 14 aryl, and C 2 to C 20 alkenyl;
  • EO (OE) and PO(OP) represent ethylene oxide and propylene oxide residues as previously defined; a, b, and c are independently 0 to 100; x is 0 to 200; and y is 1 to 200.
  • the EO/PO residues can be arranged in random, non-random, or blocky sequences.
  • R 3 radicals include but are not limited to methyl, ethyl, propyl, butyl, pentyl, hexyl, cyclopentyl, cyclohexyl, phenyl, vinyl, and allyl.
  • Each of the foregoing radicals as well as the generic R 3 radicals described above are optionally substituted with C 1 to C 5 alkyl, halogen, and halo(C 1 to C 20 )alkyl (e.g., —CCl 3 , —CBr 3 , CF 3 ).
  • R 4 radicals include but are not limited to methyl, phenyl, and vinyl.
  • Each of the foregoing radicals as well as the generic R 4 radicals described above are optionally substituted with C 1 to C 5 alkyl, halogen, and halo(C 1 to C 20 )alkyl (e.g., —CCl 3 , —CBr 3 , CF 3 ).
  • dimethicone copolyol reactant materials suitable for the esterification are disclosed in U.S. Pat. Nos. 5,136,063 and 5,180,843, the disclosures of which are incorporated herein by reference,
  • dimethicone copolyols are commercially available under the Silsoft® and Silwet® brand names from the General Electric Company (GE-OSi). Specific product designations include but are not limited to Silsoft 305, 430, 475, 810, 895, Silwet L 7604 (GE-OSi) and DC 5103 (Dow Corning Corporation).
  • R and R′ independently represent hydrogen and a cyclic anhydride residue (half ester) represented by the formulae:
  • reaction product represented by Formula III will contain a mixture of dimethicone copolyol citraconates and itaconates including the regio- and stereo isomers thereof (isomers).
  • R′ is a cyclic anhydride residue as previously defined, and, R 1 , R 2 , R 3 , R 4 , a, b, c, x and y are as previously defined, and z is ⁇ y.
  • the reaction product represented by Formula IV will contain a mixture of dimethicone copolyol citraconates (in major portion) and itaconates (in minor portion) including the isomers thereof.
  • dimethicone copolyol citraconates of Formulae III and IV wherein the R and R′ groups contain olefinic unsaturation are readily polymerizable. It has also been found that the half esters formed from dimethicone copolyols and maleic anhydride are also polymerizable with a variety of copolymerizable monomers.
  • R 1 , R 2 , R 3 , R 4 , EO (OE), PO(OP), a, b, c, n, x, y and z are as previously defined;
  • R 5 and R 6 are independently selected from hydrogen and methyl, subject to the proviso that R 5 and R 6 can not both represent methyl at the same time;
  • R′ represents hydrogen or a radical represented by the structure:
  • R 5 and R 6 are defined as above. In one embodiment at least one of R 5 and R 6 in the formulae above is methyl.
  • the dimethicone copolyol macromers set forth under Formulae III, IIIa, IV, and IVa are free radically polymerizable.
  • the copolyol macromers are homopolymerizable and can be employed as building blocks to create a star-like, comb-like, brush-like, and/or flower-like polymers) or are copolymerizable and can be utilized as building blocks to design well-defined structure like arms, branches, rakes, combs graft copolymers) with ethylenically unsaturated free radically polymerizable monomers.
  • ethylenically unsaturated is meant that the monomer possesses at least one polymerizable carbon-carbon double bond.
  • the macromers of this invention can be employed in the synthesis of polymers to convey properties inherent to dimethicone copolyols to a particular polymer backbone.
  • Such polymers can be used in personal care, textile and industrial formulations to deliver softness, lubricity, sensory, fixative, conditioning, water repellency, gloss, surface, and solubility properties, to name a few.
  • the polymers of the invention can be polymerized from a monomer mixture comprising (on a total monomer weight basis): (a) about 0.1 to 100 weight percent of at least one dimethicone copolyol macromer selected from Formulae III, IIIa, IV and IVa above; (b) 0 to 99.9 weight percent of a non-ionic monomer; (c) 0 to 99.9 weight percent of at least an acidic vinyl monomer; (d) 0 to 99.9 weight percent of at least one cationic vinyl monomer; (e) 0 to 99.9 weight percent of at least one associative vinyl monomer; (f) 0 to 99.9 weight percent of at least one semihydrophobic vinyl monomer; and (g) 0 to 5 weight percent of a crosslinking monomer.
  • a monomer mixture comprising (on a total monomer weight basis): (a) about 0.1 to 100 weight percent of at least one dimethicone copolyol macromer selected from Formulae III, IIIa
  • each monomer employed in the polymerizable monomer mixture will depend on the desired properties of the polymer product. Suitable monomers that are copolymerizable with the dimethicone copolyol macromers are described below. While overlapping weight ranges for the various monomer components that make up the polymerizable monomer mixture have been expressed for selected embodiments of the invention, it should be readily apparent that the specific amount of each monomer component in the monomer mixture will be selected from its disclosed range such that the desired amount of each monomer will be adjusted so that the sum of all monomer components in the polymerizable monomer mixture will total 100 weight percent.
  • the polymers can optionally be prepared from a monomer mixture comprising one or more chain transfer agents, which are well known in the polymer arts.
  • halogen-substituted means that at least one hydrogen atom on an alkyl, aryl, or like group has been replaced by at least one halogen atom, hydroxyl group, carboxyl group, polyoxyalkylene group, alkyl group, or aryl group, respectively.
  • (meth)acrylic acid refers to acrylic acid and/or methacrylic acid
  • (meth)acrylate refers to alkyl acrylate and/or alkyl methacrylate
  • (meth)acrylamide refers to acrylamide and/or methacrylamide derivatives.
  • Nonionic vinyl monomers suitable for use in the present invention are copolymerizable, nonionic, ethylenically unsaturated monomers, which are well known in the art.
  • the nonionic monomers are compounds having either of the following Formulae:
  • X is H or methyl; and Z is —C(O)OR 8 , —C(O)NH 2 , —C(O)NHR 8 , —C(O)N(R 8 ) 2 , —C 6 H 4 R 8 , —C 6 H 4 OR 8 , —C 6 H 4 Cl, —C 6 H 11 , —C 6 H 7 (R 8 )(R 8 )(R 8 ) (e.g., tri-substituted cyclohexyl), —CN, —NHC(O)CH 3 , —NHC(O)H, N-(2-pyrrolidonyl), N-caprolactamyl, —C(O)NHC(CH 3 ) 3 , —C(O)NHCH 2 CH 2 —N-ethyleneurea, —Si(R 7 ) 3 , —C(O)O(CH 2 ) x
  • Non limiting examples of suitable nonionic monomers include C 1 to C 30 alkyl(meth)acrylates; cyclohexyl(meth)acrylates; 3,3,5-trimethylcyclohexyl(meth)acrylates (TMCHMA); C 1 to C 30 alkyl(meth)acrylamides; styrene; substituted styrenes, such as vinyl toluene (e.g., 2-methyl styrene), butyl styrene, isopropyl styrene, p-chloro styrene, and the like; vinyl esters, such as vinyl acetate, vinyl butyrate, vinyl caprolate, vinyl pivalate, vinyl neodecanoate, and the like; unsaturated nitriles, such as methacrylonitrile, acrylonitrile, and the like; and unsaturated silanes, such as trimethylvinylsilane, dimethylethylvinyl
  • Non limiting examples of suitable water soluble nonionic monomers are C 1 to C 6 hydroxyalkyl(meth)acrylates, such as 2-hydroxyethyl(meth)acrylate (HEMA), 2-hydroxyethyl(meth)acrylate (2-HEA), 3-hydroxypropyl(meth)acrylate; glycerol mono(meth)acrylate; tris(hydroxymethyl)ethane mono(meth)acrylate; pentaerythritol mono(meth)acrylate; N-hydroxymethyl(meth)acrylamide; 2-hydroxyethyl(meth)acrylamide; 3-hydroxypropyl(meth)acrylamide; (meth)acrylamide; t-octyl(meth)acrylamide; N-(2,3-dihydroxypropyl)acrylamide; t-butyl(meth)acrylamide; N-vinyl caprolactam; N-vinyl pyrrolidone; methacrylamidoethyl-N-ethyleneurea (e.
  • Nonionic vinyl monomers include allyl alcohol, glycerol monoallyl ether, 3-methyl-3-buten-1-ol, and vinyl alcohol precursors and equivalents, such as vinyl acetate.
  • the acidic vinyl monomers suitable for use in the present invention are acidic, polymerizable, ethylenically unsaturated monomers preferably containing at least one carboxylic acid, sulfonic acid group, or a phosphonic acid group to provide an acidic or anionic functional site.
  • These acid groups can be derived from monoacids or diacids, anhydrides of dicarboxylic acids, monoesters of diacids, and salts thereof.
  • Suitable acidic vinyl carboxylic acid-containing monomers include, but are not limited to acrylic acid, methacrylic acid, itaconic acid, citraconic acid, maleic acid, fumaric acid, crotonic acid, aconitic acid, and the like, and C 1 to C 18 alkyl-monoesters of maleic, fumaric, itaconic, or aconitic acid, such as methyl hydrogen maleate, monoisopropyl maleate, butyl hydrogen fumarate, and the like.
  • Anhydrides of dicarboxylic acids such as maleic anhydride, itaconic anhydride, citraconic anhydride, and the like can also be utilized as acidic vinyl monomers. Such anhydrides generally hydrolyze to the corresponding diacids upon prolonged exposure to water, or at elevated pH.
  • Suitable sulfonic acid group-containing monomers include, but are not limited to vinyl sulfonic acid, 2-sulfoethyl methacrylate, styrene sulfonic acid, 2-acrylamido-2-methylpropane sulfonic acid (AMPS), allyloxybenzene sulfonic acid, and the like. Particularly preferred are the sodium salt of styrene sulfonic acid (SSSA) and AMPS.
  • Non limiting examples of suitable phosphonic acid group-containing monomers include vinyl phosphonic acid, allyl phosphonic acid, 3-acrylamidopropyl phosphonic acid, and the like.
  • Suitable salts include, without limitation thereto, alkali metal salts, such as sodium, potassium and lithium salts; alkaline earth metal salts, such as calcium and magnesium salts; ammonium salts; and alkyl-substituted ammonium salts, such as salts of 2-amino-2-methyl-1-propanol (AMP), ethanolamine, diethanolamine, triethanolamine, triethylamine, and the like.
  • alkali metal salts such as sodium, potassium and lithium salts
  • alkaline earth metal salts such as calcium and magnesium salts
  • ammonium salts such as 2-amino-2-methyl-1-propanol (AMP), ethanolamine, diethanolamine, triethanolamine, triethylamine, and the like.
  • AMP 2-amino-2-methyl-1-propanol
  • the foregoing monomers or salts thereof can be used as the acidic vinyl monomer component in mixtures of two or more.
  • Cationic vinyl monomers suitable for copolymerization are basic, polymerizable, ethylenically unsaturated monomers preferably containing at least one amino functional group.
  • These basic amino groups can be derived from mono-, di- or poly-amino alkyl groups or nitrogen containing heteroaromatic groups.
  • the amino group can comprise primary, secondary or tertiary amines.
  • the monomers can be used in the amino form or in the salt form, as desired.
  • Non limiting examples of suitable cationic monomers can be selected from: a mono-(C 1 to C 4 )alkylamino(C 1 to C 8 )alkyl(meth)acrylate, a di-(C 1 to C 4 )alkylamino(C 1 to C 8 )alkyl(meth)acrylate, a mono-(C 1 to C 4 )alkylamino(C 1 to C 8 )alkyl(meth)acrylamide, a di-(C 1 to C 4 )alkylamino(C 1 to C 8 )alkyl(meth)acrylamide, a nitrogen-containing heterocyclic(meth)acrylamide, a nitrogen-containing heterocyclic(meth)acrylate, and mixtures thereof.
  • Suitable cationic monomers include, but are not limited to 2-(N,N-dimethylamino)ethyl(meth)acrylate (DMAEMA), 3-(N,N-dimethylamino)propyl(meth)acrylate, 4-(N,N-dimethylamino)butyl(meth)acrylate, (N,N-dimethylamino)-t-butyl(meth)acrylate, 2-(tert-butylamino)ethyl(meth)acrylate (TBAEMA), 2-(N,N-diethylamino)ethyl(meth)acrylate (DEAEMA), 3-(N,N-diethylamino)propyl(meth)acrylate, 2-(N,N-dimethylamino)neopentyl(meth)acrylate (DMANPA), 4-(N,N-diethylamino)butyl(meth)acrylate, 2-(N,N-dipropyla
  • Suitable salt forms of the cationic monomers include, but are not limited to, mineral acid salts such as the hydrochloride, sulfate, C 1 to C 30 alkyl sulfate and phosphate salts; and organic acid salts such as the acetate, maleate, and fumarate salts; and the like.
  • Non limiting examples of salt forms of the cationic monomers include, but are not limited to, 3-trimethylammonium propyl(meth)acrylamide chloride, 3-trimethylammonium propyl acrylamide chloride, quaternized N,N-dimethylaminoethyl(meth)acrylate using C 1 to C 30 alkyl sulphate, quaternized N,N-dimethylaminoethyl methacrylate using methylchloride, quaternized vinyl imidazole, methacryloyl ethyl betaine, and methacryloyl N-oxide.
  • Associative vinyl monomers (hydrophobic monomer) suitable for use in the synthesis of the polymers are compounds having an ethylenically unsaturated end group portion (i) for addition polymerization with the other monomers of the mixture; a polyoxyalkylene midsection portion (ii) for imparting selective hydrophilic properties to the product polymer and a hydrophobic end group portion (iii) for providing selective hydrophobic properties to the polymer.
  • portion (i) supplying the ethylenically unsaturated end group preferably is derived from an ethylenically unsaturated mono or di-carboxylic acid or the anhydride thereof, more preferably a C 3 or C 4 mono- or di-carboxylic acid or the anhydride thereof.
  • portion (i) of the associative monomer can be derived from an allyl ether or vinyl ether; a nonionic vinyl-substituted urethane monomer, such as disclosed in U.S. Reissue Pat. No. 33,156 or U.S. Pat. No. 5,294,692; or a vinyl-substituted urea reaction product, such as disclosed in U.S. Pat. No. 5,011,978; the relevant disclosures of each are incorporated herein by reference.
  • the midsection portion (ii) is preferably a polyoxyalkylene segment of about 5 to about 250, more preferably about 10 to about 120, and most preferably about 15 to about 60 repeating C 2 to C 7 alkylene oxide units.
  • Preferred midsection portions (ii) include polyoxyethylene, polyoxypropylene, and polyoxybutylene segments comprising about 5 to about 150, more preferably about 10 to about 100, and most preferably about 15 to about 60 ethylene, propylene or butylene oxide units, and random or non-random sequences of ethylene oxide, propylene oxide and or butylene oxide units.
  • the hydrophobic end group portion (iii) of the associative monomers is preferably a hydrocarbon moiety belonging to one of the following hydrocarbon classes: a C 8 to C 40 linear alkyl, an aryl-substituted C 2 to C 40 alkyl, a C 2 to C 40 alkyl-substituted phenyl, a C 8 to C 40 branched alkyl, a C 8 to C 40 carbocyclic alkyl; and a C 8 to C 80 complex ester.
  • Complex esters are formed by the esterification of a polyol with a long chained hydroxy acid which contains both a hydroxyl group and a carboxylic group.
  • the carboxylic group of the long chained hydroxy acid reacts with at least one hydroxyl group of the polyol.
  • the hydroxyl group of the long chained hydroxy acid reacts with a carboxylic group of another long chained hydroxy acid and/or another long chained carboxylic acid.
  • long chained is meant that the hydroxy acid and the carboxylic acid contain from about 10 to 30 carbon atoms.
  • the carbon chain can be saturated or unsaturated.
  • Exemplary non-limiting examples of a suitable polyol are glycerol, sorbitol, pentaerythritol, trimethylol propane.
  • An exemplary non-limiting example of a hydroxy acid is 12-hydroxy steric acid.
  • Exemplary non-limiting long chain carboxylic acids are those that are the fatty acids derived from the vegetable oils and fatty acids set forth herein.
  • Non limiting examples of suitable hydrophobic end group portions (iii) of the associative monomers are linear or branched alkyl groups having about 8 to about 40 carbon atoms such as capryl (C 8 ), isooctyl (branched C 8 ), decyl (C 10 ), lauryl (C 12 ), myristyl (C 14 ), cetyl (C 16 ), cetearyl (C 16 to C 18 ), stearyl (C 18 ), isostearyl (branched C 18 ), arachidyl (C 20 ), behenyl (C 22 ), lignoceryl (C 24 ), cerotyl (C 26 ), montanyl (C 28 ), melissyl (C 30 ), lacceryl (C 32 ), and the like.
  • linear and branched alkyl groups having about 8 to about 40 carbon atoms that are derived from a natural source include, without being limited thereto, alkyl groups derived from hydrogenated peanut oil, soybean oil and canola oil (all predominately C 18 ), hydrogenated tallow oil (C 16 to C 18 ), and the like; and hydrogenated C 10 to C 30 terpenols, such as hydrogenated geraniol (branched C 10 ), hydrogenated farnesol (branched C 15 ), hydrogenated phytol (branched C 20 ), and the like.
  • Non limiting examples of suitable C 2 to C 40 alkyl-substituted phenyl groups include octylphenyl, nonylphenyl, decylphenyl, dodecylphenyl, hexadecylphenyl, octadecylphenyl, isooctylphenyl, sec-butylphenyl, and the like.
  • Suitable C 8 to C 40 carbocylic alkyl groups include, without being limited thereto, groups derived from sterols from animal sources, such as cholesterol, lanosterol, 7-dehydrocholesterol, and the like; from vegetable sources, such as phytosterol, stigmasterol, campesterol, and the like; and from yeast sources, such as ergosterol, mycosterol, and the like.
  • carbocyclic alkyl hydrophobic end groups useful in the present invention include, without being limited thereto, cyclooctyl, cyclododecyl, adamantyl, decahydronaphthyl, and groups derived from natural carbocyclic materials such as pinene, hydrogenated retinol, camphor, isobornyl alcohol, and the like.
  • Exemplary aryl-substituted C 2 to C 40 alkyl groups include, without limitation thereto, styryl (e.g., 2-phenylethyl), distyryl (e.g., 2,4-diphenylbutyl), tristyryl (e.g., 2,4,6-triphenylhexyl), 4-phenylbutyl, 2-methyl-2-phenylethyl, tristyrylphenolyl, and the like.
  • styryl e.g., 2-phenylethyl
  • distyryl e.g., 2,4-diphenylbutyl
  • tristyryl e.g., 2,4,6-triphenylhexyl
  • 4-phenylbutyl 2-methyl-2-phenylethyl, tristyrylphenolyl, and the like.
  • Non limiting examples of suitable C 8 to C 80 complex esters include hydrogenated castor oil (predominately the triglyceride of 12-hydroxystearic acid); 1,2-diacyl glycerols such as 1,2-distearyl glycerol, 1,2-dipalmityl glycerol, 1,2-dimyristyl glycerol, and the like; di-, tri-, or poly-esters of sugars such as 3,4,6-tristearyl glucose, 2,3-dilauryl fructose, and the like; and sorbitan esters such as those disclosed in U.S. Pat. No. 4,600,761 to Ruffner et al., the pertinent disclosures of which are incorporated herein by reference.
  • Useful associative monomers can be prepared by any method known in the art. See, for example, U.S. Pat. No. 4,421,902 to Chang et al.; No. 4,384,096 to Sonnabend; No. 4,514,552 to Shay et al.; No. 4,600,761 to Ruffner et al.; No. 4,616,074 to Ruffner; No. 5,294,692 to Barron et al.; No. 5,292,843 to Jenkins et al.; No. 5,770,760 to Robinson; and No. 5,412,142 to Wilkerson, III et al.; the pertinent disclosures of which are incorporated herein by reference.
  • associative vinyl monomers include those represented by the following Formula (VII):
  • each R 9 is independently H, C 1 to C 30 alkyl, —C(O)OH, or —C(O)OR 10 ;
  • R 10 is C 1 to C 30 alkyl;
  • A is —CH 2 C(O)O—, —C(O)O—, —O—, —CH 2 O—, —NHC(O)NH—, —C(O)NH—, —Ar—(CE 2 ) z -NHC(O)O—, —Ar—(CE 2 ) z -NHC(O)NH—, or —CH 2 CH 2 NHC(O)—;
  • Ar is a divalent aryl;
  • E is H or methyl;
  • z is 0 or 1;
  • k is an integer in the range of 0 to about 30, and m is 0 or 1, with the proviso that when k is 0, m is 0, and when k is in the range of 1 to about 30, m is 1;
  • associative vinyl monomers of Formula (VII) include cetyl polyethoxylated methacrylate (CEM), cetearyl polyethoxylated methacrylate (CSEM), stearyl polyethoxylated(meth)acrylate, arachidyl polyethoxylated(meth)acrylate, behenyl polyethoxylated(meth)acrylate (BEM), lauryl polyethoxylated methacrylate (LEM), cerotyl polyethoxylated(meth)acrylate, montanyl polyethoxylated(meth)acrylate, melissyl polyethoxylated(meth)acrylate, lacceryl polyethoxylated(meth)acrylate, tristyryl phenolpolyethoxylated(meth)acrylate (TEM), hydrogenated castor oil polyethoxylated(meth)acrylate (HCOEM), canola polyethoxylated(meth)acrylate, and cholesterol poly
  • semihydrophobic vinyl monomer refers to compounds having two portions: (i) an ethylenically unsaturated end group moiety for addition polymerization with the other monomers of the reaction mixture, and (ii) a polyoxyalkylene moiety for attenuating the associations between the hydrophobic groups of the polymer or hydrophobic groups from other materials in a composition containing the polymer.
  • a semihydrophobic vinyl monomer is similar in structure to the associative vinyl monomer set forth above, but has a substantially non-hydrophobic end group component and thus, does not impart any associative properties to the polymer.
  • the unsaturated end group portion (i) supplying the vinyl or other ethylenically unsaturated end group for addition polymerization can be derived from an ethylenically unsaturated mono- or di-carboxylic acid or the anhydride thereof, such as, for example, a C 3 or C 4 mono- or di-carboxylic acid, or the anhydride thereof.
  • the end group portion (i) can be derived from an allyl ether, vinyl ether or a nonionic unsaturated urethane.
  • the polymerizable unsaturated end group portion (i) can also be derived from a C 8 to C 30 unsaturated fatty acid group containing at least one free carboxy-functional group.
  • This C 8 to C 30 group is part of the unsaturated end group portion (i) and is different from the hydrophobic groups pendant to the associative monomers, which are specifically separated from the unsaturated end group of the associative monomer by a hydrophilic “spacer” portion.
  • the polyoxyalkylene portion (ii) specifically comprises a long-chain polyoxyalkylene segment, which is substantially similar to the hydrophilic portion of the associative monomers.
  • Preferred polyoxyalkylene portion (ii) includes polyoxyethylene, polyoxypropylene, and polyoxybutylene units comprising about 5 to about 250, and preferably about 10 to about 100 oxyalkylene units.
  • the semihydrophobic vinyl monomer comprises more than one type of oxyalkylene unit, the units can be arranged in random, non-random, or block sequences.
  • exemplary semihydrophobic vinyl monomers include at least one compound represented by one of the following formulae (VIII) or (IX):
  • R 9 , R 11 , A, k, m, and n are as described previously;
  • D is a C 8 to C 30 unsaturated alkyl, or a carboxy-substituted C 8 to C 30 unsaturated alkyl; and
  • R 13 is H or C 1 to C 4 alkyl.
  • the semihydrophobic vinyl monomers include monomers having the following formulae:
  • semihydrophobic vinyl monomers include polymerizable emulsifiers commercially available under the trade names EMULSOGEN® R109, R208, R307, RAL109, RAL208, and RAL307 sold by Clariant Corporation; BX-AA-E5P5 sold by Bimax, Inc.; and MAXEMUL® 5010 and 5011 sold by Uniqema; and combinations thereof.
  • Particularly preferred SVS monomers include EMULSOGEN® R208, R307, and RAL307.
  • EMULSOGEN® R109 is a randomly ethoxylated/propoxylated 1,4-butanediol vinyl ether having the empirical formula CH 2 ⁇ CH—O(CH 2 ) 4 O(C 3 H 6 O) 4 (C 2 H 4 O) 10 H
  • EMULSOGEN® R208 is a randomly ethoxylated/propoxylated 1,4-butanediol vinyl ether having the empirical formula: CH 2 ⁇ CH—O(CH 2 ) 4 O(C 3 H 6 O) 4 (C 2 H 4 O) 20 H
  • EMULSOGEN® R307 is a randomly ethoxylated/propoxylated 1,4-butanediol vinyl ether having the empirical formula: H 2 ⁇ CH—O(CH 2 ) 4 O(C 3 H 6 O) 4 (C 2 H 4 O) 30 H
  • EMULSOGEN® RAL109 is a randomly ethoxylated/propoxylated allyl ether having the empirical
  • the polymers of the present invention can be prepared from a monomer mixture comprising one or more crosslinking monomers for introducing branching and controlling molecular weight.
  • Suitable polyunsaturated crosslinkers are well known in the art.
  • Mono-unsaturated compounds carrying a reactive group that is capable of causing a formed copolymer to be crosslinked before, during, or after polymerization has taken place can also be utilized.
  • Other useful crosslinking monomers include polyfunctional monomers containing multiple reactive groups such as epoxide groups, isocyanate groups, and hydrolyzable silane groups.
  • Various polyunsaturated compounds can be utilized to generate either a partially or substantially cross-linked three dimensional network.
  • suitable polyunsaturated crosslinking monomer components include, without being limited thereto, polyunsaturated aromatic monomers such as divinylbenzene, divinyl naphthylene, and trivinylbenzene; polyunsaturated alicyclic monomers, such as 1,2,4-trivinylcyclohexane; di-functional esters of phthalic acid such as diallyl phthalate; polyunsaturated aliphatic monomers, such as dienes, trienes, and tetraenes, including isoprene, butadiene, 1,5-hexadiene, 1,5,9-decatriene, 1,9-decadiene, 1,5-heptadiene; and the like.
  • polyunsaturated aromatic monomers such as divinylbenzene, divinyl naphthylene, and trivinylbenzene
  • polyunsaturated alicyclic monomers such as 1,2,4-trivinylcyclohexane
  • polyunsaturated crosslinking monomers include polyalkenyl ethers such as triallyl pentaerythritol, diallyl pentaerythritol, diallyl sucrose, octaallyl sucrose, and trimethylolpropane diallyl ether; polyunsaturated esters of polyalcohols or polyacids such as 1,6-hexanediol di(meth)acrylate, tetramethylene tri(meth)acrylate, allyl acrylate, diallyl itaconate, diallyl fumarate, diallyl maleate, trimethylolpropane tri(meth)acrylate, trimethylolpropane di(meth)acrylate, and polyethylene glycol di(meth)acrylate; alkylene bisacrylamides, such as methylene bisacrylamide, propylene bisacrylamide, and the like; hydroxy and carboxy derivatives of methylene bisacrylamide, such as N,N′-bismethyl
  • Useful monounsaturated compounds carrying a reactive group include N-methylolacrylamide; N-alkoxy(meth)acrylamide, wherein the alkoxy group is a C 1 to C 18 alkoxy; and unsaturated hydrolyzable silanes such as triethoxyvinylsilane, tris-isopropoxyvinylsilane, and 3-triethoxysilylpropyl methacrylate; and the like.
  • Useful polyfunctional crosslinking monomers containing multiple reactive groups include, but are not limited to, hydrolyzable silanes such as ethyltriethoxysilane and ethyltrimethoxysilane; epoxy-substituted hydrolyzable silanes, such as 2-(3,4-epoxycyclohexyl)ethyltriethoxysilane and 3-glycidoxypropyltrimethyoxysilane; polyisocyanates, such as 1,4-diisocyanatobutane, 1,6-diisocyanatohexane, 1,4-phenylenediisocyanate, and 4,4′-oxybis(phenylisocyanate); unsaturated epoxides, such as glycidyl (meth)acrylate and allylglycidyl ether; polyepoxides, such as diglycidyl ether, 1,2,5,6-diepoxyhexane, and ethyleneg
  • polyunsaturated crosslinkers derived from ethoxylated polyols, such as diols, triols and bis-phenols, ethoxylated with about 2 to about 100 moles of ethylene oxide per mole of hydroxyl functional group and end-capped with a polymerizable unsaturated group such as a vinyl ether, allyl ether, acrylate ester, methacrylate ester, and the like.
  • crosslinkers include bisphenol A ethoxylated di(meth)acrylate; bisphenol F ethoxylated di(meth)acrylate, ethoxylated trimethylol propane tri(meth)acrylate, and the like.
  • ethoxylated crosslinkers useful in the polymers of the present invention include ethoxylated polyol-derived crosslinkers disclosed in U.S. Pat. No. 6,140,435 to Zanofti-Russo, the pertinent disclosures of which are incorporated herein by reference.
  • Non limiting examples of crosslinking monomers are acrylate and methacrylate esters of polyols having at least two acrylate or methacrylate ester groups, such as trimethylolpropane triacrylate (TMPTA), trimethylolpropane ethoxylated (15) triacrylate (TMPEO15TA), trimethylolpropane dimethacrylate, triethylene glycol dimethacrylate (TEGDMA), ethoxylated (30) bisphenol A dimethacrylate (EOBDMA), and the like.
  • TMPTA trimethylolpropane triacrylate
  • TMPEO15TA trimethylolpropane ethoxylated
  • TEGDMA triethylene glycol dimethacrylate
  • EOBDMA ethoxylated
  • Suitable chain transfer agents for use in this invention, without being limited thereto, are selected from a variety of thio and disulfide containing compounds, such as C 1 to C 18 alkyl mercaptans, mercaptocarboxylic acids, mercaptocarboxylic esters, thioesters, C 1 to C 18 alkyl disulfides, aryldisulfides, polyfunctional thiols, and the like; phosphites and hypophosphites; haloalkyl compounds, such as carbon tetrachloride, bromotrichloromethane, and the like; and unsaturated chain transfer agents, such as alpha-methylstyrene.
  • CTAs chain transfer agents
  • Polyfunctional thiols include trifunctional thiols, such as trimethylolpropane-tris-(3-mercaptopropionate), tetrafunctional thiols, such as pentaerythritol-tetra-(3-mercaptopropionate), pentaerythritol-tetra-(thioglycolate), and pentaerythritol-tetra-(thiolactate); hexafunctional thiols, such as dipentaerythritol-hexa-(thioglycolate); and the like.
  • trifunctional thiols such as trimethylolpropane-tris-(3-mercaptopropionate
  • tetrafunctional thiols such as pentaerythritol-tetra-(3-mercaptopropionate), pentaerythritol-tetra-(thioglycolate), and pentaery
  • the chain transfer agent can be any catalytic chain transfer agent which reduces molecular weight of addition polymers during free radical polymerization of vinyl monomers.
  • catalytic chain transfer agents include, for example, cobalt complexes (e.g., cobalt (II) chelates).
  • Catalytic chain transfer agents can often be utilized in relatively low concentrations relative to thiol-based CTAs.
  • the chain transfer agents include octyl mercaptan, n-dodecyl mercaptan, t-dodecyl mercaptan, hexadecyl mercaptan, octadecyl mercaptan (ODM), isooctyl 3-mercaptopropionate (IMP), butyl 3-mercaptopropionate, 3-mercaptopropionic acid, butyl thioglycolate, isooctyl thioglycolate, dodecyl thioglycolate, and the like.
  • the chain transfer agents can be added to a monomer reaction mixture preferably in amounts of up to about 10 weight percent of polymerizable monomer mixture, based on total monomer mixture weight. In one embodiment, the chain transfer agent is present in an amount of at least about 0.01 percent by weight based on the total monomer weight.
  • the dimethicone copolyol macromer of the present invention can be polymerized alone or in combination with at least one of copolymerizable monomers (b) through (g).
  • the polymerization can be conducted in the optional presence of a chain transfer agent.
  • the unsaturated monomers can be polymerized by a variety of well known free radical polymerization techniques such as bulk polymerization, photo polymerization, microwave polymerization, solution polymerization, precipitation polymerization, suspension polymerization, emulsion polymerization, inverse emulsion polymerization, microemulsion polymerization and the like.
  • Initiators which can be used for the free radical polymerization processes of the invention are the water soluble and water insoluble persulfate, peroxide, organic hydroperoxides, organic peracids, and azo compounds.
  • Suitable initiators include but are not limited to the ammonium persulfate, potassium persulfate, sodium persulfate, hydrogen peroxide, dibenzoyl peroxide, benzoyl peroxide, acetyl peroxide, lauryl peroxide, tert-butyl perpivalate, tert-butyl per-2-ethylhexanoate, di-tert-butyl peroxide, di-(2-ethylhexyl)-peroxy dicarbonate, tert-butyl hydroperoxide, cumene hydroperoxide, azobisisobutyronitrile, azobis(2-amidinopropane)dihydrochloride or 2,2′-azobis(2-methyl-
  • the peroxides and peracids can optionally be activated with reducing agents, such as sodium bisulfite or ascorbic acid, transition metals, hydrazine, and the like.
  • reducing agents such as sodium bisulfite or ascorbic acid, transition metals, hydrazine, and the like.
  • Mixtures of initiator systems can also be utilized, such as, for example, sulfate/sodium peroxodisulfate, tert-butyl hydroperoxide/sodium sulfite, tert-butyl hydroperoxide/sodium hydroxymethanesulfinate.
  • the initiators can be employed in suitable amounts, for example, in amounts of from 0.05 to 5% by weight, based on the amount of monomers to be polymerized.
  • the polymers can be prepared using solution polymerization (e.g., precipitation polymerization) in a polar solvent or non-polar solvent and mixtures thereof.
  • exemplary solvents include but are not limited to water, methanol, methylene chloride chloroform, carbon tetrachloride, ethanol, isopropanol, hexane, cyclohexane, ethyl acetate, methylethyl ketone and benzene, toluene, N-methylpyrrolidone, and mixtures of these solvents.
  • the amounts of monomers and solvents can be chosen to give from 15 to 90% by weight of monomer in solution (based on the total weight of monomer and solvent).
  • the polymerization is usually carried out at temperatures of from 40 to 140° C. and at atmospheric pressure or under autogenous pressure.
  • the polymers can be synthesized via anionic and cationic emulsion polymerization techniques as is well known in the polymer art.
  • anionic emulsion polymerization process is carried out at a reaction temperature in the range of about 30 to about 95° C., however, higher or lower temperatures can be used.
  • the emulsion polymerization can be carried out in the presence of anionic surfactants, such as fatty alcohol sulfates or alkyl sulfonates, nonionic surfactants, such as linear or branched alcohol ethoxylates, amphoteric surfactants, or mixtures thereof.
  • the emulsion polymerization reaction mixture also includes one or more free radical initiators in an amount in the range of about 0.01 to about 3 weight percent based on total monomer weight.
  • the polymerization can be performed in an aqueous or aqueous alcohol medium at a low pH, i.e., preferably not more than about pH 4.5.
  • Anionic surfactants suitable for facilitating emulsion polymerizations are well known in the polymer art, and include but are not limited to sodium lauryl sulfate, sodium dodecyl benzene sulfonate, disodium laureth-3 sulfosuccinate, sodium dioctyl sulfosuccinate, sodium di-sec-butyl naphthalene sulfonate, disodium dodecyl diphenyl ether sulfonate, disodium n-octadecyl sulfosuccinate, phosphate esters of branched alcohol ethoxylates, and the like.
  • a mixture of monomers is added with mixing agitation to a solution of emulsifying surfactant, such as a nonionic surfactant, preferably a linear or branched alcohol ethoxylate, or mixtures of nonionic surfactants and anionic surfactants, such as fatty alcohol sulfates or alkyl sulfonates, in a suitable amount of water, in a suitable reactor, to prepare a monomer emulsion.
  • emulsifying surfactant such as a nonionic surfactant, preferably a linear or branched alcohol ethoxylate, or mixtures of nonionic surfactants and anionic surfactants, such as fatty alcohol sulfates or alkyl sulfonates
  • the emulsion is deoxygenated by any convenient method, such as by sparging with nitrogen, and then a polymerization reaction is initiated by adding a polymerization catalyst (initiator) such as sodium persulfate, or any other suitable free radical polymerization catalyst, as is well known in the emulsion polymerization art.
  • a polymerization catalyst such as sodium persulfate, or any other suitable free radical polymerization catalyst, as is well known in the emulsion polymerization art.
  • the reaction is agitated until the polymerization is complete, typically for a time in the range of about 4 to about 16 hours.
  • the monomer emulsion can be heated to a temperature in the range of about 20 to about 80° C. prior to addition of the initiator, if desired. Unreacted monomer can be eliminated by addition of more catalyst, as is well known in the emulsion polymerization art.
  • the resulting polymer emulsion product can then be discharged from the reactor and packaged for storage or use.
  • Nonionic surfactants suitable for facilitating cationic emulsion polymerizations are well known in the polymer art, and include, without limitation, linear or branched alcohol ethoxylates, C 8 to C 12 alkylphenol alkoxylates, such as octylphenol ethoxylates, polyoxyethylene polyoxypropylene block copolymers, and the like.
  • Nonionic surfactants include C 8 to C 22 fatty acid esters of polyoxyethylene glycol, mono and diglycerides, sorbitan esters and ethoxylated sorbitan esters, C 8 to C 22 fatty acid glycol esters, block copolymers of ethylene oxide and propylene oxide having an HLB value of greater than about 15, ethoxylated octylphenols, and combinations thereof.
  • alkylphenol alkoxylate surfactants include an octylphenol sold under the trade name IGEPAL® CA-897 by Rhodia, Inc.
  • Preferred linear alcohol alkoxylates include polyethylene glycol ethers of cetearyl alcohol (a mixture of cetyl and stearyl alcohols) sold under the trade names PLURAFAC® C-17, PLURAFAC® A-38 and PLURAFAC® A-39 by BASF Corp.
  • Preferred polyoxyethylene polyoxypropylene block copolymers include copolymers sold under the trade names PLURONIC® F127, and PLURONIC® L35 by BASF Corp.
  • the nonionic surfactants include Ethoxylated (50) linear fatty alcohols such as DISPONIL® A 5060 (Cognis), branched alkyl ethoxylates such as GENAPOL® X 1005 (Clariant Corp.), secondary C 12 to C 14 alcohol ethoxylates such as TERGITOL® S15-30 and S15-40 (Dow Chemical Co.), ethoxylated octylphenol-based surfactants such as TRITON® X-305, X-405 and X-705 (Dow Chemical Co.), IGEPAL® CA 407, 887, and 897 (Rhodia, Inc.), ICONOL® OP 3070 and 4070 (BASF Corp.), SYNPERONIC® OP 30 and 40 (Uniqema), block copolymers of ethylene oxide and propylene oxide such as PLURONIC® L35 and F127 (BASF Corp.), and secondary C 11 alcohol ethoxylates such
  • VAZO® free radical polymerization initiators available from DuPont, such as VAZO® 44 (2,2′-azobis(2-(4,5-dihydroimidazolyl)propane), VAZO® 56 (2,2′-azobis(2-methylpropionamidine) dihydrochloride), and VAZO® 68 (4,4′-azobis(4-cyanovaleric acid).
  • emulsion polymerization additives which are well known in the emulsion polymerization art, such as buffering agents, chelating agents, inorganic electrolytes, chain terminators, antifoaming agent, biocides diluents, and pH adjusting agents can be included in the polymerization system.
  • a monomer emulsion is prepared in a first reactor equipped with a nitrogen inlet and an agitator, by combining a desired amount of each monomer in water containing an emulsifying amount of an anionic surfactant under a nitrogen atmosphere and with mixing agitation.
  • a second reactor equipped with an agitator nitrogen inlet and feed pumps are added a desired amount of water and additional anionic surfactant, if desired, under a nitrogen atmosphere, and the contents of the second reactor are heated with mixing agitation.
  • a free radical initiator is injected into the so formed aqueous surfactant solution in the second reactor, and the monomer emulsion from the first reactor is then gradually pumped into the second reactor over a period of typically in the range of about one to about four hours at a controlled reaction temperature in the range of about 45 to 95° C.
  • an additional quantity of free radical initiator can be added to the second reactor, if desired, and the resulting reaction mixture is typically held at a temperature of about 45 to 95° C. for a time period sufficient to complete the polymerization reaction.
  • the resulting polymer emulsion can then be cooled and discharged from the reactor.
  • each monomer component can be adjusted to obtain polymers having any desired ratio of monomers. Larger or smaller proportions of water may also be utilized, as desired. Water miscible solvents, such as alcohols, and other polymerization additives, as described above, may also be included in the reaction mixture. Nonionic surfactants, such as linear or branched alcohol ethoxylates, can also be added as is known in the emulsion polymerization art.
  • the product polymer emulsions can be prepared to preferably contain about 1 percent to about 60 percent total polymer solids, more preferably about 10 percent to about 50 percent total polymer solids, most preferably about 15 percent to about 45 percent total polymer solids (TS) based on the weight of the polymer.
  • TS total polymer solids
  • the polymer emulsions, as produced typically have a pH in the range of about 2 to not more than about 5.5, a Brookfield viscosity of not more than about 100 milli-Pascal seconds (mPa ⁇ s) at ambient room temperature (spindle #2, 20 rpm) and a glass transition temperature (Tg) of not more than about 250° C. as determined by Method below.
  • mPa ⁇ s milli-Pascal seconds
  • Tg glass transition temperature
  • the produced polymer emulsions can be further processed by adjusting the pH to a value preferably in the range of about 3 to about 7.5 or greater, if an alkaline pH is desired, with alkaline materials, preferably alkali metal hydroxides, organic bases, and the like.
  • the polymer emulsions typically swell to a viscosity greater than about 100 mPa ⁇ s and form viscous solutions or gels at neutral to alkaline pH, and the polymers are generally substantially stable at such pH values, even at pH values greater than about 12.
  • the polymer emulsions can be diluted with water or solvent, or concentrated by evaporation of a portion of the water.
  • the obtained polymer emulsion may be substantially dried to a powder or crystalline form by utilizing equipment well known in the art, such as, for example, a spray drier, a drum drier, or a freeze drier.
  • the polymers/monomers of the present invention insofar as they contain ionizable groups can be fully or partially neutralized with acids or bases before or after polymerization to adjust the solubility or dispensability in aqueous medium.
  • the viscosity properties of the polymers can be adjusted by neutralizing the polymer.
  • Non limiting examples of suitable neutralizing agents for monomers and polymers that carry anionic groups are mineral bases and organic bases.
  • suitable neutralizing agents for monomers and polymers that carry anionic groups are mineral bases and organic bases.
  • mineral bases include the alkali metal hydroxides (e.g., sodium and potassium); sodium carbonate; ammonium hydroxide; and ammonia.
  • Non limiting examples of organic bases such as amino alcohols (e.g., 2-amino-2-methyl-1-propanol, monoethanolamine, diethanolamine, triethanolamine, triisopropylamine, tris[(2-hydroxy)-1-propyl]amine, 2-amino-2-methyl-1,3-propanediol, 2-amino-2-hydroxymethyl-1,3-propanediol; diamines such as lysine; cocamine; oleamine; and mopholine.
  • amino alcohols e.g., 2-amino-2-methyl-1-propanol, monoethanolamine, diethanolamine, triethanolamine, triisopropylamine, tris[(2-hydroxy)-1-propyl]amine, 2-amino-2-methyl-1,3-propanediol, 2-amino-2-hydroxymethyl-1,3-propanediol
  • diamines such as lysine
  • cocamine oleamine
  • mopholine
  • Non limiting examples of suitable neutralizing agents for monomers and polymers that carry cationic groups are organic acids, including amino acids, and inorganic mineral acids.
  • organic acids include acetic acid, citric acid, fumaric acid, glutamic acid, tartaric acid, lactic acid, and glycolic acid.
  • mineral acids include hydrochloric acid, nitric acid, phosphoric acid, sodium bisulfate, sulfuric acid, and the like, and mixtures thereof.
  • the polymers of the invention that contain anionic and/or cationic groups can swell upon neutralization with the appropriate base or acid. These polymers beneficially can thicken acidic or basic aqueous formulations to provide aesthetically smooth-textured products that flow smoothly and spread easily.
  • the inventive, multi-purpose polymers can be employed as thickeners, emulsifiers, stabilizers, suspending agents, film formers, conditioners, moisturizers, spreading aids, surface modifiers, shine enhancers, and carriers for enhancing the efficacy, deposition or delivery of chemically and physiologically active ingredients and cosmetic materials, and as vehicles for improving the psychosensory, and aesthetic properties of a formulation in which they are included.
  • the cationic character of the polymers at low pH makes them useful as antistatic agents, and, under certain conditions, may also provide biocidal, anti-microbial, or other preservative activity.
  • the polymers of this invention can be employed, without being limited thereto, in personal care products, health care products, household care products, institutional and industrial (collectively “I&I”) care products, and the like.
  • the polymers can be employed as a film forming conditioner, and for promoting the deposition of silicone, conditioning agents or aids, color cosmetics and of polar and non-polar oils on skin, hair, nails, and fibers.
  • the polymers can be employed in products for industrial chemical processes, textile finishing processes, printing, adhesive coating, and like applications as, for example, rheology modifiers, emulsifiers, stabilizers, solubilizers, suspending agents, flocculents, shine enhancers, surface modifiers, and pigment and grinding additives.
  • the clarity of the polymer-containing composition was measured in % T (transmittance) by Brinkmann PC 920 calorimeter at least about 24 hours after the composition was made. Clarity measurements were taken against deionized water (clarity rating of 100%). Compositions having a clarity of about 60% or more were substantially clear; compositions having a clarity in the range of about 45 to 59% were judged substantially translucent.
  • the glass transition temperature (Tg) of the inventive polymers is determined by well known Differential Scanning Calorimetry (DSC) technique.
  • NTU Nephelometric Turbidity Units
  • the reported viscosity of each polymer containing composition was measured in milli-Pascal seconds (mPa ⁇ s), employing a Brookfield rotating spindle viscometer, (Brookfield, Model RVT) at about 20 revolutions per minute (rpm), at ambient room temperature of about 20 to 25° C. (hereafter referred to as Brookfield viscosity). Viscosity was measured on freshly prepared compositions (referred to as “initial viscosity”, and re-measured after allowing the composition to age for at least about 24 hours at ambient room temperature (referred to as “24-hour viscosity”). Where only one viscosity value is shown, the viscosity value is the 24-hour viscosity, unless otherwise indicated.
  • Yield Value also referred to as Yield Stress
  • Yield Stress is herein defined as the initial resistance to flow under stress. It can be measured using a number of techniques, such as via the use of a constant stress rheometer or via extrapolation using a Brookfield viscometer. These techniques and the usefulness of the Yield Value measurement are further explained in Technical Data Sheet Number 244 available from Noveon, Inc., herein incorporated by reference.
  • Dimethicone copolyol macromers (SM) containing terminal and pendant polyether groups conforming to Formulae III, IIIa, IV, and IVa are synthesized by reacting the cyclic anhydrides and the dimethicone copolyols set forth in Table 1A.
  • a 2 L glass reactor, equipped with a mechanical stirrer, nitrogen inlet, temperature probe connected to an electronic controller, and a water condenser is charged with the respective dimethicone copolyol (Table 1A).
  • the copolyol Under stirring the copolyol is heated to 80 to 105° C. and stripped under vacuum for 15 minutes to 1 hour.
  • the reactor is cooled to 80 to 85° C., vacuum broken with N 2 and then the respective cyclic anhydride (Table 1A) is charged to the reactor.
  • the stirred mixture is heated at 80 to 85° C. for 1 to 3 hours.
  • the mixture is then stripped under vacuum for 15 minutes, vacuum broken with nitrogen, and cooled to 50° C.
  • the mixture is then filtered to remove particulates.
  • analysis by 1 H NMR spectroscopy confirms formation of the respective dimethicone copolyol carboxylate half esters.
  • dimethicone copolyol and anhydrous alkali metal acetate (0.7 g, 0.2% w/w of total recipe components) are heated to 80° C. under vacuum for 15 minutes. Following backfilling with nitrogen, the mixture is allowed to react with the cyclic anhydride for 1 to 2 hours at 80 to 82° C. Analysis by 1 H NMR spectroscopy confirms formation of the respective dimethicone copolyol carboxylate half ester (Table 1B).
  • Examples 1 and 2 illustrate the bulk homopolymerization of two olefinically unsaturated dimethicone copolyol macromers (SM) of the invention.
  • One macromer is derived from a substituted cyclic anhydride (i.e., itaconic anhydride) and the other macromer is derived from an unsubstituted cyclic anhydride (i.e., maleic anhydride).
  • a 100 ml three neck-round bottom flask with magnetic stirring, thermocouple is flushed with nitrogen.
  • the flask is charged with 30 g of the dimethicone copolyol macromer of Example SM 11 (Table 1B).
  • An ammonium persulfate initiator solution (2.6 g in 25 g water) is added in several portions at 4 hour intervals.
  • the reaction was run under continuous stirring at 80 to 85° C. It took 8 hours for approximately 50% of the macromer to convert to the homopolymer and 16 hrs for approximately 70% of the macromer to convert to the homopolymer.
  • 1 H NMR analysis from CDCl 3 extract of the polymer product indicates that unreacted itaconic anhydride derivatives are in the product.
  • Example I is repeated with the macromer of Example SM 7 (Table 1B) except that 0.5% of Luperox 11M 75 initiator (based on the total monomer weight) is added to the monomer mixture which is then heated to 60° C. In 10 minutes the reaction mass gels after reaching an exotherm of 72° C. The maleate derivative of DMC is much more reactive than the trisubstituted (methyl)maleate derivative of Example 1. 1 H NMR analysis from CDCl 3 extract of this gel indicates that only a small portion of unreacted maleic anhydride remains in the reaction product.
  • SM dimethicone copolyol macromers
  • a 500 ml jacketed reactor equipped with a condenser, thermocouple, mechanical stirring (half moon blade) and nitrogen blanket is charged with 2 parts of the dimethicone copolyol macromer of Example SM 9, 28.5 parts IPA, and 28.5 parts distilled water.
  • Initiator 0.2 parts Luperox 11M75 in 1 part IPA
  • An initiator booster 0.02 parts Luperox 11M75 in 1 part IPA
  • Addition of booster continued until conversion of all reactants is confirmed by 1 H NMR.
  • a clear product is obtained by neutralizing with diluted AMP-95. The final product had 21.15% total solids content at pH 4.5.
  • Example III A 500 ml jacketed reactor equipped as in Example III is charged with 15 parts of the dimethicone copolyol macromer of Example SM 9a, 380 parts distilled water and 100 parts of IPA.
  • Initiator 0.4 parts Luperox 11M75 in 1 part IPA
  • a mixture of 40 parts MMA and 20 parts MAA is metered into the reactor through a syringe pump.
  • a mixture of 25 parts AMPS 2405 monomer and 25 parts water is metered into the reactor by another syringe pump over the course of 3 hours.
  • An initiator booster (0.06 parts Luperox 11M75 in 1 part IPA) is added every hour after the metering commenced. The addition of booster continued until conversion of all reactants is confirmed by 1 H NMR.
  • the final product has a total solids content of 21.94% at pH 8.9 and appears as translucent liquid after stripping of the IPA and neutralizing with AMP-95.
  • Example IV A 500 ml jacketed reactor equipped as in Example IV is charged with 5 parts of the dimethicone copolyol macromer of Example SM 9, 190 parts distilled water and 190 parts of IPA.
  • Initiator 0.4 parts Luperox 11M75 in 1 part IPA
  • a mixture of 55 parts styrene and 20 parts MAA is metered into the reactor through a syringe pump.
  • a mixture of 20 parts AMPS 2405/10 parts water is injected into the reactor by another syringe pump over the course of 3 hours.
  • An initiator booster (a total of 0.78 parts Luperox 11M75 in 1 part IPA) is added every hour after metering commenced.
  • a polymer solid is obtained and is filtered and washed with 100 g IPA and followed by 50 g IPA/water mixture and then dried.
  • the final product is a white powder.
  • SM dimethicone copolyol macromers
  • Emulsion polymers are prepared from the monomers set forth in Table 2 as follows: A monomer reaction mixture is prepared in a first reactor equipped with an agitator rotating at about 900 rpm under a nitrogen atmosphere by combining 148 parts by weight of MAA, about 200 parts by weight of EA, and about 40.0 parts by weight of the macromer prepared in Example SM 7 in 192 parts by weight of deionized water containing about 13.3 parts by weight of 30% aqueous sodium lauryl sulfate. To a second reactor equipped with a mixing agitator and nitrogen inlet and feed pumps, is added about 580 parts by weight of deionized water and about 1.27 parts by weight of 30% aqueous sodium lauryl sulfate.
  • the contents of the second reactor are heated with agitation at a rotation speed of about 200 rpm under a nitrogen atmosphere. After the contents of the second reactor reach a temperature in the range of about 85 to 88° C., about 7.84 parts of a 1.73% ammonium persulfate solution (free radical initiator) is injected into the warmed surfactant solution in the second reactor.
  • the aqueous emulsion of the monomer mixture from the first reactor is gradually pumped into the second reactor over a period of about 180 minutes at a temperature in the range of about 85 to 88° C.
  • an initiator feed about 60 parts by weight of 1.7% ammonium persulfate solution is metered to the reaction mixture in the second reactor and the temperature of the reaction is maintained at about 90° C. for an additional one and half hours to complete polymerization.
  • the resulting emulsion is cooled to room temperature, discharged from the reactor and collected. All three copolymers are analyzed by 1 H NMR using CDCL 3 extract.
  • copolymer of comparative Example VII showed 1 H NMR peaks corresponding to non-reactive succinate dimethicone copolyol ester which is presumably not incorporated into the copolymer.
  • the copolymers of Examples VI and VIII containing reactive double bonds did not show a functional ester peak related to unreacted maleate ester derivative (SM 7) or unreacted itaconate derivative of dimethicone copolyol ester (SM 9).
  • Emulsion polymers are prepared as in Examples VI to VIII utilizing the monomers and macromers set forth in Table 3. Three copolymers were synthesized using a non-reactive dimethicone copolyol (Silsoft® 475) in Example 3, the macromer SM 9 in Example 1, and no silicone additive in Example 2 to observe if incorporating the dimethicone copolyol macromers of the invention into a copolymer backbone has any affect on copolymer properties.
  • the viscosity efficiency of the polymer of Example 1 is maintained utilizing 10% weight percent of the dimethicone copolyol macromer of the invention.
  • the polymer of Example 3 which is made according to the teaching of U.S. Pat. No. 6,403,074 B1 containing 10 weight percent of a non-functionalized dimethicone copolyol has a lower viscosity at both 1 and 2 percent mucilages.
  • the non-functionalized dimethicone copolyol (Silsoft® 475) might be acting as chain transfer agent in Example 3a and causing the viscosity deficiency of the resulting associative polymer.
  • Emulsion polymers are prepared as in Examples VI to VIII utilizing the monomers and macromers set forth in Table 4.
  • the comonomers of Examples 4 and 5 are copolymerized in the presence of olefinically unsaturated dimethicone copolyol macromers of the invention, while the comonomers of comparative Example 6 are polymerized in the presence of a non-reactive (i.e., saturated dimethicone copolyol carboxylate).
  • the polymers are compared for relative viscosity performance.
  • each polymer is measured at 1 and 2 percent solids mucilages neutralized with AMP-95 to pH 7.
  • unsaturated functional dimethicone copolyol macromers SM 9 and SM 7
  • associative polymers containing saturated dimethicone copolyol SM 6
  • Glass transition and clarity values of the mucilages were maintained.
  • Emulsion polymers are prepared as in Examples VI to VIII utilizing the monomers and macromers set forth in Table 5.
  • the loading effect of the cyclic anhydride to the dimethicone copolyol in synthesizing the dimethicone copolyol macromer on the gel properties of the final copolymer product is determined and reported in Table 5A.
  • Viscosity Clarity ity No. Tg (mPa ⁇ s), (% T) (NTU) (mPa ⁇ s), (% T) (NTU) 7a 78 n/a n/a n/a 9,650 97.0 0.89 8a 77 n/a n/a n/a 9,750 98.0 0.43 9a 75 1,100 96 0.89 1,260 98.0 0.39 10a 74 12,280 96 1.3 10,300 96.0 0.38
  • the gel properties of each polymer are measured at 1 and 2 percent solids mucilages neutralized with AMP-95 to pH 7. From the data in Table 5A polymers polymerized from macromers synthesized from anhydride loading to dimethicone copolyol loadings of between 0.25 to 0.75 equivalents (based on the OH number of the dimethicone copolyol) give optimal gel properties.
  • Emulsion polymers are prepared as in Examples VI to VIII utilizing the monomers and macromers set forth in Table 6. Two copolymers were polymerized utilizing the monomers and macromers set forth in Table 6.
  • Viscosity Clarity ity No. Tg (mPa ⁇ s), (% T) (NTU) (mPa ⁇ s), (% T) (NTU) 11a n/a 1,500 97.5 0.99 12,600 98 0.39 12a n/a 980 96 0.8 8,750 96 0.65
  • Emulsion polymers are prepared as in Examples VI to VIII utilizing the monomers and macromers set forth in Table 7.
  • the viscosity of each polymer is measured at 1 and 2.5 percent solids mucilages neutralized with AMP-95 to pH 7.
  • Tg, clarity, and turbidity (NTU) values are measured for each polymer. The results are reported in Table 7A.
  • Emulsion polymers are prepared as in Examples VI to VIII utilizing the monomers and macromers set forth in Table 8.
  • the viscosity of each polymer is measured at 2, 3, and 5 percent solids mucilages neutralized with AMP-95 to pH 7.
  • Tg, clarity and turbidity (NTU) values are measured for each polymer. The results are reported in Table 8A.
  • Viscosity Clarity Turbidity Viscosity Clarity Turbidity No. Tg (mPa ⁇ s), (% T) (NTU) (mPa ⁇ s), (% T) (NTU) (mPa ⁇ s), (% T) (NTU) 21a 84 5,600 97.0 2.07 25,600 96.0 2.92 115,000 89.0 3.95 22a 79 1,320 98.9 0.38 5,150 98.2 0.60 15,300 96.9 0.68 23a 71 1,680 96.0 3.62 9,800 94.0 5.53 52,000 90.0 8.52 24a 78 2,740 97.0 2.00 8,700 93.0 1.77 15,000 93.0 2.28 25a 70 10,000 94.0 0.95 35,200 95.0 0.92 78,000 93.0 0.95 26a 72 1,800 99.0 0.52 5,500 98.0 0.59 14,000 97.0 0.68 27a 91 2,680 82.0 8.40 15,500
  • Cationic acid-swellable associative emulsion polymers are polymerized from the monomers and macromers set forth in Table 9 according to the following procedure.
  • a monomer emulsion is prepared by adding (with mixing) the monomers in Table 9 into a reactor containing about 340 parts by weight of water, about 5.5 parts by weight of Emulsogen® EPN 407 nonionic surfactant and about 0.3 parts by weight of sodium lauryl sulfate (30%) anionic surfactant.
  • the resulting mixture is agitated (about 400 rpm) at a temperature in the range of about 20 to about 25° C. under a nitrogen atmosphere until an emulsion is obtained.
  • a solution of about 0.12 parts by weight of Bruggolite® FF6 (reducing agent) in about 5.0 parts by weight of water is then added to the monomer emulsion, with mixing agitation, to initiate the polymerization reaction.
  • a solution of about 0.16 parts by weight of sodium persulfate (oxidizing agent) in about 5.0 parts by weight of water is then added to the monomer emulsion with mixing agitation to initiate the polymerization reaction.
  • the temperature of the reaction mixture is maintained at a temperature in the range of about 60 to about 70° C. for about 2.5 hours after addition of the initiator. Additional quantities of initiator are added at about 0.5 hours and about 1.5 hours after the reaction is initiated (about 0.08 parts by weight of sodium persulfate in about 3.0 parts by weight of water for each additional quantity of initiator added).
  • the resulting polymer emulsion is cooled to a temperature in the range of about 44 to about 46° C. over a period of about 45 minutes and an oxidizing solution is added to the reaction mixture in two portions at one hour intervals thereafter.
  • Each oxidizing (redox) solution contains about 0.15 parts by weight of t-butylhydroperoxide (70%), about 0.015 parts by weight of sodium lauryl sulfate (30%) and about 0.15 parts by weight of Bruggolite® FF6 reducing agent in about nine parts by weight of water.
  • the polymer emulsions are cooled to ambient room temperature and discharged from the reactor.
  • Precipitation polymerization reactions are conducted in a water jacketed two liter Pyrex® resin kettle equipped with mechanical stirrer, a thermometer and reflux condenser topped with a nitrogen inlet connected to a bubbler to provide a slightly positive pressure of nitrogen throughout the polymerization.
  • the water jacket is connected to a constant temperature circulator.
  • the resin kettle is charged with an azeotropic mixture of ethyl acetate, cyclohexane, along with the polymerizable monomers acrylic acid, silicone macromer (SM 9a) and allylpentaerythritol in the levels (parts by wt.) shown in Table 10.
  • the mixture is sparged with nitrogen for 30 minutes while the reactor is heated to 45° C.
  • the sparging tube is removed while a nitrogen purge is maintained.
  • di-(2-ethylhexyl)-peroxydicarbonate in an amount of 0.275 to 0.98 grams is added to the mixture.
  • Polymerization is evident in a matter of minutes as the solution becomes hazy with precipitated polymer. After a few hours the mixture forms a thick slurry. The polymerization is continued for a total of 8 hours.
  • the polymer slurry is transferred to a single neck flask and the solvent is removed by a rotary evaporator at 65° C. to 102° C. at 27 inches of vacuum.
  • the obtained dry polymer product is a fine white powder.
  • the polymer hydrates, and when neutralized with base becomes a thickened aqueous solution.
  • Mucilages of each polymer are prepared by neutralizing samples of 0.2, 0.5, and 1 wt. % (polymer solids) of each polymer in deionized water with an 18% aqueous solution of NaOH to a pH of about 7.5.
  • the Brookfield viscosity and clarity value of each sample is measured and reported in Table 10a. Spindle sizes 5, 6, and 7 were employed for the viscosity measurements of the 0.2, 0.5, and 1 wt. % mucilages, respectively.

Abstract

A polymerizable dimethicone copolyol macromer composition is synthesized by reacting itaconic anhydride with a dimethicone copolyol. During the reaction itaconic anhydride spontaneously isomerizes to citraconic anhydride which in turn is esterified by the dimethicone copolyol. The obtained macromers are copolymerizable with olefinically unsaturated monomers. Polymers containing the macromer repeating units are useful in a variety of applications including personal care, textile and industrial formulations to deliver softness, lubricity, fixative, water repellency, gloss, surface modification, and surfactant properties.

Description

    RELATED U.S. APPLICATION
  • This application claims the benefit of priority from U.S. provisional application Ser. No. 60/776,611 filed on Feb. 24, 2006.
  • FIELD OF THE INVENTION
  • The present invention relates to polymerizable dimethicone copolyol macromers containing ethylenic unsaturation and to polymers obtained therefrom. The ethylenically polymerizable macromer is formed from the reaction of a dimethicone copolyol containing terminal or pendant hydroxyl groups and itaconic anhydride. The obtained macromer is homopolymerizable or copolymerizable with ethylenically unsaturated monomers.
  • BACKGROUND
  • A class of silicon containing polymers known as polydimethylsiloxanes is widely employed in the coatings and personal care industries. In coatings formulations, polydimethylsiloxane and its derivatives are being increasingly used for general modification of surface properties as they provide water and oil repellency, stain resistance, barrier properties, surfactant properties and lubricity. In personal care formulations, the use of polydimethylsiloxane and derivatives thereof, particularly dimethicone copolyols, has gained wide acceptance for the latter's surfactant characteristics and positive effect on sensory properties of a given composition.
  • Attempts to improve the physical properties of such formulations by incorporating dimethicone copolyols into the composition have met with limited success. These polydimethylsiloxane derivatives were frequently incompatible with the polar polymers and/or other ingredients typically contained in coatings and personal care compositions. Often times auxiliary additives have to be employed to compatibilize the polydimethylsiloxane derivative and the anionic and cationic polymers typically used in the coatings and personal care industries to prevent phase separation of the key components during extended storage periods.
  • Accordingly, efforts have been made to covalently incorporate the polydimethylsiloxane derivatives into the target polymer backbone in an effort to compatibilize the silicone and polymer components of the formulation. U.S. Pat. No. 6,403,074 discloses a silicone containing polymer obtained by polymerizing ethylenically unsaturated monomers in the presence of dimethicone copolyol via a free radical mechanism. The patent disclosure surmises that grafting of the monomers onto the dimethicone copolyol occurs during the polymerization reaction. However, it is not evident from the disclosure to what extent (if any) that the dimethicone copolyol is covalently incorporated into the polymer backbone or whether an interpolymer of the dimethicone copolyol and the free radically polymerized monomers is formed. For polyhydroxy carbinol compounds, chain transfer can often be a significant problem during free radical polymerization, and this may prevent effective copolymerization of such compounds with other ethylenically unsaturated monomers.
  • In another approach, silicone containing macromers containing terminal unsaturation have been synthesized via the anionic polymerization of hexamethylcyclotrisiloxane monomer (D3) to from a living polymer of controlled molecular weight. Termination of the anionic polymerization reaction is achieved via the direct reaction of the living polymeric anion with halogen-containing termination agents, such as, chlorosilane compounds containing a polymerizable vinyl group. The obtained vinyl terminated siloxane containing macromers in turn can be polymerized with other copolymerizable unsaturated monomers to obtain silicone containing copolymers as disclosed in U.S. Pat. Nos. 4,693,935 and 4,728,571. However, the synthesis of these macromers is very difficult and given the relatively high molecular weight of the macromer it is arduous to separate the unreacted impurities from the reaction product.
  • In U.S. Pat. No. 5,162,472, there is disclosed a vinyl terminated dimethicone copolyol macromer that is prophetically reported to be synthesized by esterifying acrylic acid with a hydroxyl terminated dimethicone copolyol. The reaction mass is heated to 140 to 180° C. and the disclosure states that the purportedly obtained vinyl containing silicone ester is subsequently copolymerized without additional purification. As is well known, the esterification of carboxylic acid with an alcohol is a slow reaction with moderate yields for oligomeric or polymeric substrates. Further, it is also well known in the art of acrylic acid chemistry that this highly reactive monomer spontaneously dimerizes at room temperatures via a thermally induced ionic mechanism wherein the proton dissociates from the carboxylic acid group forming a carboxylate anion which subsequently adds to acrylic acid via Michael-type addition to give the dimer. This phenomenon is substantially accelerated at increasing temperatures. At the reaction temperatures reported in the '472 disclosure the acrylic acid starting material would rapidly dimerize consuming most if not all of this reactant to yield a complex mixture of products. Given that the esterification of a carboxylic acid with an alcohol is slow and that acrylic acid rapidly oligomerizes at the reaction temperatures reported in the '472 disclosure, it is difficult to perceive how the purported product is obtained. Even if some product is formed it would be difficult, time consuming, and costly to separate the desired product from the reaction mass.
  • A more traditional esterification procedure for functionalizing a dimethicone copolyol with a vinyl end group is to react an acid chloride such as acryloyl chloride with the dimethicone copolyol and employing a base to remove the liberated HCl. The use of the acryloyl chloride eliminates the spontaneous oligomerization issues suffered from the use of acrylic acid as set forth in the '472 disclosure However, a salt is generated as a by-product of the esterification reaction. Salts are not only difficult to remove from macromers but may also be deleterious to the subsequent polymerization of the macromer.
  • In addition to the problems faced in synthesizing the foregoing macromers, the polymerization activities of these acrylate-type macromers are similar to the polymerization activities of the comonomers intended for copolymerization into the polymer backbone, due to the unhindered nature of the carbon-carbon unsaturation in the terminal vinyl group. It is common practice to vary monomer reactivity as one approach to altering the copolymer structure and thereby the latter's physical and chemical properties.
  • Accordingly, there is a need for newer silicone containing macromers that are easily synthesized and purified and exhibit polymerization activities that allow flexibility in copolymerization to generate copolymers with desirable properties. We have now unexpectedly discovered such a silicone macromer via a reaction originally intended to prepare readily polymerizable compounds containing the itaconate moiety.
  • The present invention provides dimethicone copolyol macromers that are easily synthesized and that have unexpected polymerization activities which allow ready copolymerization to generate products with desirable properties. The copolyol macromers of the invention are synthesized from the reaction of a dimethicone copolyol and itaconic anhydride. Dimethicone copolyols contain terminal or pendant polyether groups that terminate in an active hydroxyl group. The reaction of a hydroxy silicone compound such as dimethicone copolyol with a cyclic anhydride is known. As disclosed in U.S. Pat. Nos. 3,560,544 and 5,296,625 the reaction of the active hydroxyl group(s) on the copolyol with the anhydride yields the copolyol half-ester of the anhydride. While these patents disclose the reaction of a dimethicone copolyol with a variety of cyclic anhydrides (including the olefinically unsaturated maleic anhydride), the use of anhydrides containing exocyclic olefinic unsaturation is not described or suggested. Moreover, the '544 patent mentions that the derivatized silicone polymer is used as a surfactant, a wetting agent, detergent, emulsifier or fiber lubricant, and the '625 disclosure teaches that the obtained esters are useful in textile and personal care applications to render softness and lubrication to treated substrates. There is no teaching or suggestion in any of these disclosures that the reaction product of a hydroxy silicone with an anhydride containing any type of unsaturation can be employed as polymerizable macromer in the synthesis of polymers and copolymers.
  • Unexpectedly, it has been discovered that the half-ester formed from the reaction of itaconic anhydride (containing exocyclic unsaturation) with a dimethicone copolyol yields a mixture of various isomers of citraconate mono-esters formed from the rapid isomerization itaconic anhydride to citraconic anhydride and subsequent reaction of the citraconic anhydride with the silicone copolyol. More surprisingly, given that the olefinic double bond in the citraconate moiety of the so-formed macromer is sterically encumbered by triple substitution, and the well known fact that trisubstituted olefins do not readily free radically polymerize at useful rates, we have found the citraconate dimethicone copolyol esters are easily copolymerized with a variety of monomers containing free radically polymerizable olefinic unsaturation. This is a novel and unexpected finding in the preparation of ethylenically unsaturated silicone copolyol esters. Itaconic anhydride is known to react with alcohols to generate the expected itaconate esters.
  • DESCRIPTION OF EXEMPLARY EMBODIMENTS
  • The dimethicone copolyol macromers of the present invention are obtained from the isomerization of itaconic anhydride and the subsequent esterification of isomerization products with a hydroxy containing dimethicone copolyol. Itaconic anhydride contains exocyclic unsaturation as set forth in the structure below:
  • Figure US20070203311A1-20070830-C00001
  • The exocyclic unsaturation is depicted as the carbon-carbon double bond between the ring carbon atom and the alkylidene, e.g., methylene, group.
  • In the reaction medium comprising a dimethicone copolyol (DMC-OH) and itaconic anhydride, the itaconic anhydride nearly instantaneously isomerizes to citraconic anhydride which then reacts with the copolyol to give the citraconate dimethicone copolyol ester (and the regio- and stereo isomers thereof). Minor amounts of the regio-isomers of itaconate esters are also formed. An illustrative general reaction scheme is as follows:
  • Figure US20070203311A1-20070830-C00002
  • Minor amounts (less than 10 weight percent of the total ester formed) of the itaconate ester are formed due to an equilibrium between the citraconic anhydride and itaconic anhydride.
  • It is to be noted that the dimethicone copolyol represented by DMC-OH contains one or more anhydride reactive hydroxyl groups that can be located at a terminal end(s) of the dimethicone backbone or can be located as part of one or more pendant groups on the dimethicone backbone. Representative dimethicone copolyols are set forth under Formulae I and II below.
  • The esterification reaction can be carried out with or without a catalyst. When conducting the esterification reaction without catalyst the reaction mixture is heated to reaction temperatures of about 75° C. to about 90° C. The reaction can be run with either a stoichiometric amount of the dimethicone copolyol (based on the OH number) and the anhydride, or a slight excess of either reactant. In one embodiment of the invention, the amount of anhydride loading to dimethicone copolyol in the reaction mixture ranges between 0.1 equivalent to 1 equivalent based on the OH number of the dimethicone copolyol. In another embodiment the loading of anhydride to dimethicone copolyol is between 0.25 equivalent to 0.75 equivalent based on the OH number of the copolyol, and in still another embodiment the loading is between 0.5 equivalent to 0.75 equivalent. The reaction can be carried out from 1 to 3 hours. The reaction is conducted under an inert atmosphere such as a nitrogen blanket and can be carried out in a suitable solvent.
  • When carrying out the reaction in the presence of an esterification catalyst, the reaction rates are significantly accelerated. Standard esterification catalysts can be used at concentrations of between 0.05 percent to 0.50 percent based on the weight of the anhydride and the dimethicone copolyol in the reaction mixture. Suitable esterification catalysts include but are not limited to sulfuric acid, elemental tin, elemental zinc, elemental titanium, organo titanate compounds, organo tin compounds, organo zinc compounds, zinc oxide, magnesium oxide, calcium oxide, stannous oxide, and the alkali metal acetates such as sodium acetate and potassium acetate. Reaction temperatures can range from ambient room temperature to about 90° C. Typically ambient room temperature ranges from about 20° C. to about 26° C. All other reaction conditions are as above for the non-catalyzed reactions.
  • In another embodiment of the invention, citraconic anhydride which has methyl substitution on the double bond can be used in lieu of itaconic anhydride in the esterification reaction.
  • In one embodiment of the invention the dimethicone copolyol suitable for the esterification reaction contains a terminal hydroxy end group(s) and can be represented by Formula I below:
  • Figure US20070203311A1-20070830-C00003
  • wherein R1 and R2 independently represent a radical selected from C1 to C30 alkyl, C1 to C20 halo substituted alkyl (e.g., —CCl3, —CBr3, CF3), C3 to C8 cycloalkyl, C6 to C14 aryl, and C2 to C20 alkenyl; E represents a divalent ethylene radical (—CH2CH2—); P independently represents a divalent propylene radical (—CH2CH(CH3)—) or (—CH2CH2CH2—); a, b, and c are independently 0 to 100; and n is 0 to 200. E taken together with the oxygen atom to which is attached represents an ethylene oxide residue (EO or OE) and P taken together with the oxygen atom to which it is attached represents a propylene oxide residue (PO or OP). The EO/PO residues can be arranged in random, non-random, or blocky sequences. As used here and throughout the specification the terms halogen and halo include but are not limited to bromo, chloro, and fluoro.
  • Exemplary R1 and R2 radicals include but are not limited to methyl, ethyl, propyl, butyl, pentyl, hexyl, cyclopentyl, cyclohexyl, phenyl, vinyl, and allyl. Each of the foregoing radicals as well as the generic R1 and R2 radicals set forth above are optionally substituted with C1 to C5 alkyl, halogen, and halo(C1 to C5)alkyl (e.g., —CCl3, —CBr3, CF3).
  • In one embodiment of the invention the dimethicone copolyol suitable for the esterification reaction contains a pendant hydroxy group(s) and can be represented by Formula II below:
  • Figure US20070203311A1-20070830-C00004
  • wherein R3 represents a radical selected from C1 to C30 alkyl, halo(C1 to C20) alkyl (e.g., —CCl3, —CBr3, CF3), C3 to C8 cycloalkyl, C6 to C14 aryl, and C2 to C20 alkenyl; R4 independently represents a radical selected from C1 to C30 alkyl, C6 to C14 aryl, and C2 to C20 alkenyl; EO (OE) and PO(OP) represent ethylene oxide and propylene oxide residues as previously defined; a, b, and c are independently 0 to 100; x is 0 to 200; and y is 1 to 200. The EO/PO residues can be arranged in random, non-random, or blocky sequences.
  • Exemplary R3 radicals include but are not limited to methyl, ethyl, propyl, butyl, pentyl, hexyl, cyclopentyl, cyclohexyl, phenyl, vinyl, and allyl. Each of the foregoing radicals as well as the generic R3 radicals described above are optionally substituted with C1 to C5 alkyl, halogen, and halo(C1 to C20)alkyl (e.g., —CCl3, —CBr3, CF3).
  • Exemplary R4 radicals include but are not limited to methyl, phenyl, and vinyl. Each of the foregoing radicals as well as the generic R4 radicals described above are optionally substituted with C1 to C5 alkyl, halogen, and halo(C1 to C20)alkyl (e.g., —CCl3, —CBr3, CF3).
  • Exemplary dimethicone copolyol reactant materials suitable for the esterification are disclosed in U.S. Pat. Nos. 5,136,063 and 5,180,843, the disclosures of which are incorporated herein by reference, In addition, dimethicone copolyols are commercially available under the Silsoft® and Silwet® brand names from the General Electric Company (GE-OSi). Specific product designations include but are not limited to Silsoft 305, 430, 475, 810, 895, Silwet L 7604 (GE-OSi) and DC 5103 (Dow Corning Corporation).
  • An exemplary reaction scheme illustrating the esterification of a dimethicone copolyol of Formula I is as follows:
  • Figure US20070203311A1-20070830-C00005
  • wherein R and R′ independently represent hydrogen and a cyclic anhydride residue (half ester) represented by the formulae:
  • Figure US20070203311A1-20070830-C00006
  • and all isomers thereof; subject to the proviso that R and R′ can not both be hydrogen at the same time; and R1, R2, EO, PO, a, b, c, and n are as previously defined. The reaction product represented by Formula III will contain a mixture of dimethicone copolyol citraconates and itaconates including the regio- and stereo isomers thereof (isomers).
  • An exemplary reaction scheme illustrating the esterification of a dimethicone copolyol of Formula II is as follows:
  • Figure US20070203311A1-20070830-C00007
  • wherein R′ is a cyclic anhydride residue as previously defined, and, R1, R2, R3, R4, a, b, c, x and y are as previously defined, and z is ≦y. The reaction product represented by Formula IV will contain a mixture of dimethicone copolyol citraconates (in major portion) and itaconates (in minor portion) including the isomers thereof.
  • Surprisingly, it has been discovered that the dimethicone copolyol citraconates of Formulae III and IV wherein the R and R′ groups contain olefinic unsaturation are readily polymerizable. It has also been found that the half esters formed from dimethicone copolyols and maleic anhydride are also polymerizable with a variety of copolymerizable monomers.
  • In one embodiment of the present invention the polymerizable dimethicone copolyol macromers conform to the following structures:
  • Figure US20070203311A1-20070830-C00008
  • wherein R1, R2, R3, R4, EO (OE), PO(OP), a, b, c, n, x, y and z are as previously defined; R5 and R6 are independently selected from hydrogen and methyl, subject to the proviso that R5 and R6 can not both represent methyl at the same time; and R′ represents hydrogen or a radical represented by the structure:
  • Figure US20070203311A1-20070830-C00009
  • wherein R5 and R6 are defined as above. In one embodiment at least one of R5 and R6 in the formulae above is methyl.
  • In one embodiment of the invention, the dimethicone copolyol macromers set forth under Formulae III, IIIa, IV, and IVa are free radically polymerizable. The copolyol macromers are homopolymerizable and can be employed as building blocks to create a star-like, comb-like, brush-like, and/or flower-like polymers) or are copolymerizable and can be utilized as building blocks to design well-defined structure like arms, branches, rakes, combs graft copolymers) with ethylenically unsaturated free radically polymerizable monomers. By ethylenically unsaturated is meant that the monomer possesses at least one polymerizable carbon-carbon double bond. The macromers of this invention can be employed in the synthesis of polymers to convey properties inherent to dimethicone copolyols to a particular polymer backbone. Such polymers can be used in personal care, textile and industrial formulations to deliver softness, lubricity, sensory, fixative, conditioning, water repellency, gloss, surface, and solubility properties, to name a few.
  • In one embodiment, the polymers of the invention can be polymerized from a monomer mixture comprising (on a total monomer weight basis): (a) about 0.1 to 100 weight percent of at least one dimethicone copolyol macromer selected from Formulae III, IIIa, IV and IVa above; (b) 0 to 99.9 weight percent of a non-ionic monomer; (c) 0 to 99.9 weight percent of at least an acidic vinyl monomer; (d) 0 to 99.9 weight percent of at least one cationic vinyl monomer; (e) 0 to 99.9 weight percent of at least one associative vinyl monomer; (f) 0 to 99.9 weight percent of at least one semihydrophobic vinyl monomer; and (g) 0 to 5 weight percent of a crosslinking monomer. The amount and selection of each monomer employed in the polymerizable monomer mixture will depend on the desired properties of the polymer product. Suitable monomers that are copolymerizable with the dimethicone copolyol macromers are described below. While overlapping weight ranges for the various monomer components that make up the polymerizable monomer mixture have been expressed for selected embodiments of the invention, it should be readily apparent that the specific amount of each monomer component in the monomer mixture will be selected from its disclosed range such that the desired amount of each monomer will be adjusted so that the sum of all monomer components in the polymerizable monomer mixture will total 100 weight percent.
  • The polymers can optionally be prepared from a monomer mixture comprising one or more chain transfer agents, which are well known in the polymer arts.
  • The terms “halogen-substituted”, “hydroxy-substituted”, “carboxy-substituted”, “polyoxyalkylene-substituted”, alkyl-substituted”, and “aryl-substituted” as used herein in reference to alkyl or aryl groups, and the like, mean that at least one hydrogen atom on an alkyl, aryl, or like group has been replaced by at least one halogen atom, hydroxyl group, carboxyl group, polyoxyalkylene group, alkyl group, or aryl group, respectively. As used herein, the terms “(meth)acrylic” acid, “(meth)acrylate”, and “(meth)acrylamide” are meant to include the corresponding methyl derivatives of acrylic acid, alkyl acrylate, and acrylamide. For example, “(meth)acrylic” acid refers to acrylic acid and/or methacrylic acid, “(meth)acrylate” refers to alkyl acrylate and/or alkyl methacrylate, and “(meth)acrylamide” refers to acrylamide and/or methacrylamide derivatives.
  • Nonionic Vinyl Monomer
  • Nonionic vinyl monomers suitable for use in the present invention are copolymerizable, nonionic, ethylenically unsaturated monomers, which are well known in the art. In one embodiment the nonionic monomers are compounds having either of the following Formulae:

  • CH2═C(X)Z,  (V)

  • CH2═CH—OC(O)R7;  (VI)
  • wherein, in each of formulas (V) and (VI), X is H or methyl; and Z is —C(O)OR8, —C(O)NH2, —C(O)NHR8, —C(O)N(R8)2, —C6H4R8, —C6H4OR8, —C6H4Cl, —C6H11, —C6H7(R8)(R8)(R8) (e.g., tri-substituted cyclohexyl), —CN, —NHC(O)CH3, —NHC(O)H, N-(2-pyrrolidonyl), N-caprolactamyl, —C(O)NHC(CH3)3, —C(O)NHCH2CH2—N-ethyleneurea, —Si(R7)3, —C(O)O(CH2)xSi(R7)3, —C(O)NH(CH2)xSi(R7)3, or —(CH2)xSi(R7)3; x is an integer in the range of 1 to about 6; each R7 is independently linear and branched C1 to C18 alkyl; each R8 is independently linear and branched C1 to C30 alkyl, hydroxy-substituted C2 to C30 alkyl, or halogen-substituted C1 to C30 alkyl.
  • Non limiting examples of suitable nonionic monomers include C1 to C30 alkyl(meth)acrylates; cyclohexyl(meth)acrylates; 3,3,5-trimethylcyclohexyl(meth)acrylates (TMCHMA); C1 to C30 alkyl(meth)acrylamides; styrene; substituted styrenes, such as vinyl toluene (e.g., 2-methyl styrene), butyl styrene, isopropyl styrene, p-chloro styrene, and the like; vinyl esters, such as vinyl acetate, vinyl butyrate, vinyl caprolate, vinyl pivalate, vinyl neodecanoate, and the like; unsaturated nitriles, such as methacrylonitrile, acrylonitrile, and the like; and unsaturated silanes, such as trimethylvinylsilane, dimethylethylvinylsilane, allyldimethylphenylsilane, allyltrimethylsilane, 3-acrylamidopropyltrimethylsilane, 3-trimethylsilylpropyl(meth)acrylate, and the like. Non limiting examples of suitable water soluble nonionic monomers are C1 to C6 hydroxyalkyl(meth)acrylates, such as 2-hydroxyethyl(meth)acrylate (HEMA), 2-hydroxyethyl(meth)acrylate (2-HEA), 3-hydroxypropyl(meth)acrylate; glycerol mono(meth)acrylate; tris(hydroxymethyl)ethane mono(meth)acrylate; pentaerythritol mono(meth)acrylate; N-hydroxymethyl(meth)acrylamide; 2-hydroxyethyl(meth)acrylamide; 3-hydroxypropyl(meth)acrylamide; (meth)acrylamide; t-octyl(meth)acrylamide; N-(2,3-dihydroxypropyl)acrylamide; t-butyl(meth)acrylamide; N-vinyl caprolactam; N-vinyl pyrrolidone; methacrylamidoethyl-N-ethyleneurea (e.g., CH2═C(CH3)C(O)NHCH2CH2—N-ethyleneurea), C1 to C4 alkoxy-substituted (meth)acrylates and (meth)acrylamides, such as methoxyethyl(meth)acrylate, 2-(2-ethoxyethoxy)ethyl(meth)acrylate, and the like; and combinations thereof.
  • Other useful nonionic vinyl monomers include allyl alcohol, glycerol monoallyl ether, 3-methyl-3-buten-1-ol, and vinyl alcohol precursors and equivalents, such as vinyl acetate.
  • Acidic Vinyl Monomer
  • The acidic vinyl monomers suitable for use in the present invention are acidic, polymerizable, ethylenically unsaturated monomers preferably containing at least one carboxylic acid, sulfonic acid group, or a phosphonic acid group to provide an acidic or anionic functional site. These acid groups can be derived from monoacids or diacids, anhydrides of dicarboxylic acids, monoesters of diacids, and salts thereof.
  • Suitable acidic vinyl carboxylic acid-containing monomers include, but are not limited to acrylic acid, methacrylic acid, itaconic acid, citraconic acid, maleic acid, fumaric acid, crotonic acid, aconitic acid, and the like, and C1 to C18 alkyl-monoesters of maleic, fumaric, itaconic, or aconitic acid, such as methyl hydrogen maleate, monoisopropyl maleate, butyl hydrogen fumarate, and the like. Anhydrides of dicarboxylic acids, such as maleic anhydride, itaconic anhydride, citraconic anhydride, and the like can also be utilized as acidic vinyl monomers. Such anhydrides generally hydrolyze to the corresponding diacids upon prolonged exposure to water, or at elevated pH.
  • Suitable sulfonic acid group-containing monomers include, but are not limited to vinyl sulfonic acid, 2-sulfoethyl methacrylate, styrene sulfonic acid, 2-acrylamido-2-methylpropane sulfonic acid (AMPS), allyloxybenzene sulfonic acid, and the like. Particularly preferred are the sodium salt of styrene sulfonic acid (SSSA) and AMPS.
  • Non limiting examples of suitable phosphonic acid group-containing monomers include vinyl phosphonic acid, allyl phosphonic acid, 3-acrylamidopropyl phosphonic acid, and the like.
  • Suitable salts include, without limitation thereto, alkali metal salts, such as sodium, potassium and lithium salts; alkaline earth metal salts, such as calcium and magnesium salts; ammonium salts; and alkyl-substituted ammonium salts, such as salts of 2-amino-2-methyl-1-propanol (AMP), ethanolamine, diethanolamine, triethanolamine, triethylamine, and the like.
  • The foregoing monomers or salts thereof can be used as the acidic vinyl monomer component in mixtures of two or more.
  • Cationic Vinyl Monomer
  • Cationic vinyl monomers suitable for copolymerization are basic, polymerizable, ethylenically unsaturated monomers preferably containing at least one amino functional group. These basic amino groups can be derived from mono-, di- or poly-amino alkyl groups or nitrogen containing heteroaromatic groups. The amino group can comprise primary, secondary or tertiary amines. The monomers can be used in the amino form or in the salt form, as desired.
  • Non limiting examples of suitable cationic monomers can be selected from: a mono-(C1 to C4)alkylamino(C1 to C8)alkyl(meth)acrylate, a di-(C1 to C4)alkylamino(C1 to C8)alkyl(meth)acrylate, a mono-(C1 to C4)alkylamino(C1 to C8)alkyl(meth)acrylamide, a di-(C1 to C4)alkylamino(C1 to C8)alkyl(meth)acrylamide, a nitrogen-containing heterocyclic(meth)acrylamide, a nitrogen-containing heterocyclic(meth)acrylate, and mixtures thereof.
  • Specific examples of suitable cationic monomers include, but are not limited to 2-(N,N-dimethylamino)ethyl(meth)acrylate (DMAEMA), 3-(N,N-dimethylamino)propyl(meth)acrylate, 4-(N,N-dimethylamino)butyl(meth)acrylate, (N,N-dimethylamino)-t-butyl(meth)acrylate, 2-(tert-butylamino)ethyl(meth)acrylate (TBAEMA), 2-(N,N-diethylamino)ethyl(meth)acrylate (DEAEMA), 3-(N,N-diethylamino)propyl(meth)acrylate, 2-(N,N-dimethylamino)neopentyl(meth)acrylate (DMANPA), 4-(N,N-diethylamino)butyl(meth)acrylate, 2-(N,N-dipropylamino)ethyl(meth)acrylate, 3-(N,N-dipropylamino)propyl(meth)acrylate, 4-(N,N-dipropylamino)butyl(meth)acrylate, 3-(N,N-dimethylamino)propyl(meth)acrylate, 2-(4-morpholinyl)ethyl(meth)acrylate, 2-(4-morpholinyl)ethyl acrylate, N′-(2-N,N-dimethylamino)ethyl(meth)acrylamide, 2-(N,N-dimethylamino)propyl(meth)acrylamide (DMAPMAm), N′-(3-N,N-dimethylamino)propyl(meth)acrylamide, N-(2-pyridyl)(meth)acrylamide, N-(2-imidazoyl)(meth)acrylamide, N-(4-morpholinyl)(meth)acrylamide, N-(4-morpholinyl)(meth)acrylamide, 2-vinyl pyridine, 4-vinyl pyridine, N-vinyl-2-methylimidazole, N-vinylimidazole, N-vinyl-4-methylimidazole, and N-vinyloxazolidone, and mixtures thereof.
  • Suitable salt forms of the cationic monomers include, but are not limited to, mineral acid salts such as the hydrochloride, sulfate, C1 to C30 alkyl sulfate and phosphate salts; and organic acid salts such as the acetate, maleate, and fumarate salts; and the like.
  • Non limiting examples of salt forms of the cationic monomers include, but are not limited to, 3-trimethylammonium propyl(meth)acrylamide chloride, 3-trimethylammonium propyl acrylamide chloride, quaternized N,N-dimethylaminoethyl(meth)acrylate using C1 to C30 alkyl sulphate, quaternized N,N-dimethylaminoethyl methacrylate using methylchloride, quaternized vinyl imidazole, methacryloyl ethyl betaine, and methacryloyl N-oxide.
  • Associative Vinyl Monomer
  • Associative vinyl monomers (hydrophobic monomer) suitable for use in the synthesis of the polymers are compounds having an ethylenically unsaturated end group portion (i) for addition polymerization with the other monomers of the mixture; a polyoxyalkylene midsection portion (ii) for imparting selective hydrophilic properties to the product polymer and a hydrophobic end group portion (iii) for providing selective hydrophobic properties to the polymer.
  • The portion (i) supplying the ethylenically unsaturated end group preferably is derived from an ethylenically unsaturated mono or di-carboxylic acid or the anhydride thereof, more preferably a C3 or C4 mono- or di-carboxylic acid or the anhydride thereof. Alternatively, portion (i) of the associative monomer can be derived from an allyl ether or vinyl ether; a nonionic vinyl-substituted urethane monomer, such as disclosed in U.S. Reissue Pat. No. 33,156 or U.S. Pat. No. 5,294,692; or a vinyl-substituted urea reaction product, such as disclosed in U.S. Pat. No. 5,011,978; the relevant disclosures of each are incorporated herein by reference.
  • The midsection portion (ii) is preferably a polyoxyalkylene segment of about 5 to about 250, more preferably about 10 to about 120, and most preferably about 15 to about 60 repeating C2 to C7 alkylene oxide units. Preferred midsection portions (ii) include polyoxyethylene, polyoxypropylene, and polyoxybutylene segments comprising about 5 to about 150, more preferably about 10 to about 100, and most preferably about 15 to about 60 ethylene, propylene or butylene oxide units, and random or non-random sequences of ethylene oxide, propylene oxide and or butylene oxide units.
  • The hydrophobic end group portion (iii) of the associative monomers is preferably a hydrocarbon moiety belonging to one of the following hydrocarbon classes: a C8 to C40 linear alkyl, an aryl-substituted C2 to C40 alkyl, a C2 to C40 alkyl-substituted phenyl, a C8 to C40 branched alkyl, a C8 to C40 carbocyclic alkyl; and a C8 to C80 complex ester. Complex esters are formed by the esterification of a polyol with a long chained hydroxy acid which contains both a hydroxyl group and a carboxylic group. The carboxylic group of the long chained hydroxy acid reacts with at least one hydroxyl group of the polyol. In turn the hydroxyl group of the long chained hydroxy acid reacts with a carboxylic group of another long chained hydroxy acid and/or another long chained carboxylic acid. By long chained is meant that the hydroxy acid and the carboxylic acid contain from about 10 to 30 carbon atoms. The carbon chain can be saturated or unsaturated. Exemplary non-limiting examples of a suitable polyol are glycerol, sorbitol, pentaerythritol, trimethylol propane. An exemplary non-limiting example of a hydroxy acid is 12-hydroxy steric acid. Exemplary non-limiting long chain carboxylic acids are those that are the fatty acids derived from the vegetable oils and fatty acids set forth herein.
  • Non limiting examples of suitable hydrophobic end group portions (iii) of the associative monomers are linear or branched alkyl groups having about 8 to about 40 carbon atoms such as capryl (C8), isooctyl (branched C8), decyl (C10), lauryl (C12), myristyl (C14), cetyl (C16), cetearyl (C16 to C18), stearyl (C18), isostearyl (branched C18), arachidyl (C20), behenyl (C22), lignoceryl (C24), cerotyl (C26), montanyl (C28), melissyl (C30), lacceryl (C32), and the like.
  • Examples of linear and branched alkyl groups having about 8 to about 40 carbon atoms that are derived from a natural source include, without being limited thereto, alkyl groups derived from hydrogenated peanut oil, soybean oil and canola oil (all predominately C18), hydrogenated tallow oil (C16 to C18), and the like; and hydrogenated C10 to C30 terpenols, such as hydrogenated geraniol (branched C10), hydrogenated farnesol (branched C15), hydrogenated phytol (branched C20), and the like.
  • Non limiting examples of suitable C2 to C40 alkyl-substituted phenyl groups include octylphenyl, nonylphenyl, decylphenyl, dodecylphenyl, hexadecylphenyl, octadecylphenyl, isooctylphenyl, sec-butylphenyl, and the like.
  • Suitable C8 to C40 carbocylic alkyl groups include, without being limited thereto, groups derived from sterols from animal sources, such as cholesterol, lanosterol, 7-dehydrocholesterol, and the like; from vegetable sources, such as phytosterol, stigmasterol, campesterol, and the like; and from yeast sources, such as ergosterol, mycosterol, and the like. Other carbocyclic alkyl hydrophobic end groups useful in the present invention include, without being limited thereto, cyclooctyl, cyclododecyl, adamantyl, decahydronaphthyl, and groups derived from natural carbocyclic materials such as pinene, hydrogenated retinol, camphor, isobornyl alcohol, and the like.
  • Exemplary aryl-substituted C2 to C40 alkyl groups include, without limitation thereto, styryl (e.g., 2-phenylethyl), distyryl (e.g., 2,4-diphenylbutyl), tristyryl (e.g., 2,4,6-triphenylhexyl), 4-phenylbutyl, 2-methyl-2-phenylethyl, tristyrylphenolyl, and the like.
  • Non limiting examples of suitable C8 to C80 complex esters include hydrogenated castor oil (predominately the triglyceride of 12-hydroxystearic acid); 1,2-diacyl glycerols such as 1,2-distearyl glycerol, 1,2-dipalmityl glycerol, 1,2-dimyristyl glycerol, and the like; di-, tri-, or poly-esters of sugars such as 3,4,6-tristearyl glucose, 2,3-dilauryl fructose, and the like; and sorbitan esters such as those disclosed in U.S. Pat. No. 4,600,761 to Ruffner et al., the pertinent disclosures of which are incorporated herein by reference.
  • Useful associative monomers can be prepared by any method known in the art. See, for example, U.S. Pat. No. 4,421,902 to Chang et al.; No. 4,384,096 to Sonnabend; No. 4,514,552 to Shay et al.; No. 4,600,761 to Ruffner et al.; No. 4,616,074 to Ruffner; No. 5,294,692 to Barron et al.; No. 5,292,843 to Jenkins et al.; No. 5,770,760 to Robinson; and No. 5,412,142 to Wilkerson, III et al.; the pertinent disclosures of which are incorporated herein by reference.
  • Examples of associative vinyl monomers include those represented by the following Formula (VII):
  • Figure US20070203311A1-20070830-C00010
  • wherein, each R9 is independently H, C1 to C30 alkyl, —C(O)OH, or —C(O)OR10; R10 is C1 to C30 alkyl; A is —CH2C(O)O—, —C(O)O—, —O—, —CH2O—, —NHC(O)NH—, —C(O)NH—, —Ar—(CE2)z-NHC(O)O—, —Ar—(CE2)z-NHC(O)NH—, or —CH2CH2NHC(O)—; Ar is a divalent aryl; E is H or methyl; z is 0 or 1; k is an integer in the range of 0 to about 30, and m is 0 or 1, with the proviso that when k is 0, m is 0, and when k is in the range of 1 to about 30, m is 1; (R11—O)n is a polyoxyalkylene, which is a homopolymer, a random copolymer, or a block copolymer of C2 to C4 oxyalkylene units, wherein R11 is C2H4, C3H6 (and isomers), C4H8, or a mixture thereof, and n is an integer in the range of about 5 to about 250, preferably about 5 to about 100, more preferably about 10 to about 80, and most preferably about 15 to about 60; Y is —R11O—, —R11NH—, —C(O)—, —C(O)NH—, —R11NHC(O)NH—, or —C(O)NHC(O)—; and R12 is a substituted or unsubstituted alkyl selected from the group consisting of a C8 to C40 linear alkyl, a C8 to C40 branched alkyl, a C8 to C40 carbocyclic alkyl, a C2 to C40 alkyl-substituted phenyl, an aryl-substituted C2 to C40 alkyl, and a C8 to C80 complex ester; wherein the R11 alkylene and the R12 alkyl group optionally includes one or more substituents selected from a hydroxyl group, a C1 to C5 alkoxyl group, and a halogen group.
  • Specific examples of associative vinyl monomers of Formula (VII) include cetyl polyethoxylated methacrylate (CEM), cetearyl polyethoxylated methacrylate (CSEM), stearyl polyethoxylated(meth)acrylate, arachidyl polyethoxylated(meth)acrylate, behenyl polyethoxylated(meth)acrylate (BEM), lauryl polyethoxylated methacrylate (LEM), cerotyl polyethoxylated(meth)acrylate, montanyl polyethoxylated(meth)acrylate, melissyl polyethoxylated(meth)acrylate, lacceryl polyethoxylated(meth)acrylate, tristyryl phenolpolyethoxylated(meth)acrylate (TEM), hydrogenated castor oil polyethoxylated(meth)acrylate (HCOEM), canola polyethoxylated(meth)acrylate, and cholesterol polyethoxylated(meth)acrylate (CHEM), where the polyethoxylated portion of the monomer comprises about 5 to about 100, preferably about 10 to about 80, and more preferably about 15 to about 60 ethylene oxide repeating units.
  • Semihydrophobic Vinyl Monomer
  • As used herein the term semihydrophobic vinyl monomer refers to compounds having two portions: (i) an ethylenically unsaturated end group moiety for addition polymerization with the other monomers of the reaction mixture, and (ii) a polyoxyalkylene moiety for attenuating the associations between the hydrophobic groups of the polymer or hydrophobic groups from other materials in a composition containing the polymer. A semihydrophobic vinyl monomer is similar in structure to the associative vinyl monomer set forth above, but has a substantially non-hydrophobic end group component and thus, does not impart any associative properties to the polymer.
  • In one aspect, the unsaturated end group portion (i) supplying the vinyl or other ethylenically unsaturated end group for addition polymerization can be derived from an ethylenically unsaturated mono- or di-carboxylic acid or the anhydride thereof, such as, for example, a C3 or C4 mono- or di-carboxylic acid, or the anhydride thereof. Alternatively, in another aspect, the end group portion (i) can be derived from an allyl ether, vinyl ether or a nonionic unsaturated urethane.
  • The polymerizable unsaturated end group portion (i) can also be derived from a C8 to C30 unsaturated fatty acid group containing at least one free carboxy-functional group. This C8 to C30 group is part of the unsaturated end group portion (i) and is different from the hydrophobic groups pendant to the associative monomers, which are specifically separated from the unsaturated end group of the associative monomer by a hydrophilic “spacer” portion.
  • The polyoxyalkylene portion (ii) specifically comprises a long-chain polyoxyalkylene segment, which is substantially similar to the hydrophilic portion of the associative monomers. Preferred polyoxyalkylene portion (ii) includes polyoxyethylene, polyoxypropylene, and polyoxybutylene units comprising about 5 to about 250, and preferably about 10 to about 100 oxyalkylene units. When the semihydrophobic vinyl monomer comprises more than one type of oxyalkylene unit, the units can be arranged in random, non-random, or block sequences.
  • In one embodiment, exemplary semihydrophobic vinyl monomers include at least one compound represented by one of the following formulae (VIII) or (IX):
  • Figure US20070203311A1-20070830-C00011
  • wherein in each of Formulae VIII and IX R9, R11, A, k, m, and n are as described previously; D is a C8 to C30 unsaturated alkyl, or a carboxy-substituted C8 to C30 unsaturated alkyl; and R13 is H or C1 to C4 alkyl.
  • In one embodiment, the semihydrophobic vinyl monomers include monomers having the following formulae:

  • CH2═CH—O(CH2)aO(C3H6O)b(C2H4O)cH

  • or

  • CH2═CH—CH2O(C3H6O)d(C2H4O)eH;
  • wherein a is an integer of 2, 3, or 4; b is an integer in the range of 1 to about 10 in one aspect, 2 to about 8 in another aspect, and about 3 to about 7 in a further aspect; c is an integer in the range of about 5 to about 50 in one aspect, about 8 to about 40 in another aspect, and about 10 to about 30 in a further aspect; d is an integer in the range of 1 to about 10 in one aspect, about 2 to about 8 in another aspect, and about 3 to about 7 in a further aspect; and e is an integer in the range of about 5 to about 50 in one aspect, and about 8 to about 40 in another aspect.
  • Exemplary examples of semihydrophobic vinyl monomers include polymerizable emulsifiers commercially available under the trade names EMULSOGEN® R109, R208, R307, RAL109, RAL208, and RAL307 sold by Clariant Corporation; BX-AA-E5P5 sold by Bimax, Inc.; and MAXEMUL® 5010 and 5011 sold by Uniqema; and combinations thereof. Particularly preferred SVS monomers include EMULSOGEN® R208, R307, and RAL307.
  • According to the manufacturers EMULSOGEN® R109 is a randomly ethoxylated/propoxylated 1,4-butanediol vinyl ether having the empirical formula CH2═CH—O(CH2)4O(C3H6O)4(C2H4O)10H; EMULSOGEN® R208 is a randomly ethoxylated/propoxylated 1,4-butanediol vinyl ether having the empirical formula: CH2═CH—O(CH2)4O(C3H6O)4(C2H4O)20H; EMULSOGEN® R307 is a randomly ethoxylated/propoxylated 1,4-butanediol vinyl ether having the empirical formula: H2═CH—O(CH2)4O(C3H6O)4(C2H4O)30H; EMULSOGEN® RAL109 is a randomly ethoxylated/propoxylated allyl ether having the empirical formula CH2═CHCH2O(C3H6O)4(C2H4O)10H; EMULSOGEN® RAL208 is a randomly ethoxylated/propoxylated allyl ether having the empirical formula CH2═CHCH2O(C3H6O)4(C2H4O)20H; EMULSOGEN® RAL307 is a randomly ethoxylated/propoxylated allyl ether having the empirical formula CH2═CHCH2O(C3H6O)4(C2H4O)30H; MAXEMUL® 5010 is a carboxy-functional C12 to C15 alkenyl hydrophobe, ethoxylated with about 24 ethylene oxide units; MAXEMUL® 5011 is a carboxy-functional C12 to C15 alkenyl hydrophobe, ethoxylated with about 34 ethylene oxide units; and BX-AA-E5P5 is a randomly ethoxylated/propoxylated allyl ether having the empirical formula CH2═CHCH2O(C3H6O)5(C2H4O)5H.
  • Crosslinking Monomer
  • The polymers of the present invention can be prepared from a monomer mixture comprising one or more crosslinking monomers for introducing branching and controlling molecular weight. Suitable polyunsaturated crosslinkers are well known in the art. Mono-unsaturated compounds carrying a reactive group that is capable of causing a formed copolymer to be crosslinked before, during, or after polymerization has taken place can also be utilized. Other useful crosslinking monomers include polyfunctional monomers containing multiple reactive groups such as epoxide groups, isocyanate groups, and hydrolyzable silane groups. Various polyunsaturated compounds can be utilized to generate either a partially or substantially cross-linked three dimensional network.
  • Examples of suitable polyunsaturated crosslinking monomer components include, without being limited thereto, polyunsaturated aromatic monomers such as divinylbenzene, divinyl naphthylene, and trivinylbenzene; polyunsaturated alicyclic monomers, such as 1,2,4-trivinylcyclohexane; di-functional esters of phthalic acid such as diallyl phthalate; polyunsaturated aliphatic monomers, such as dienes, trienes, and tetraenes, including isoprene, butadiene, 1,5-hexadiene, 1,5,9-decatriene, 1,9-decadiene, 1,5-heptadiene; and the like.
  • Other suitable polyunsaturated crosslinking monomers include polyalkenyl ethers such as triallyl pentaerythritol, diallyl pentaerythritol, diallyl sucrose, octaallyl sucrose, and trimethylolpropane diallyl ether; polyunsaturated esters of polyalcohols or polyacids such as 1,6-hexanediol di(meth)acrylate, tetramethylene tri(meth)acrylate, allyl acrylate, diallyl itaconate, diallyl fumarate, diallyl maleate, trimethylolpropane tri(meth)acrylate, trimethylolpropane di(meth)acrylate, and polyethylene glycol di(meth)acrylate; alkylene bisacrylamides, such as methylene bisacrylamide, propylene bisacrylamide, and the like; hydroxy and carboxy derivatives of methylene bisacrylamide, such as N,N′-bismethylol methylene bisacrylamide; polyethyleneglycol di(meth)acrylates, such as ethyleneglycol di(meth)acrylate, diethyleneglycol di(meth)acrylate, and triethyleneglycol di(meth)acrylate; polyunsaturated silanes, such as dimethyldivinylsilane, methyltrivinylsilane, allyldimethylvinylsilane, diallyldimethylsilane, and tetravinylsilane; polyunsaturated stannanes, such as tetraallyl tin, and diallyldimethyl tin; and the like.
  • Useful monounsaturated compounds carrying a reactive group include N-methylolacrylamide; N-alkoxy(meth)acrylamide, wherein the alkoxy group is a C1 to C18 alkoxy; and unsaturated hydrolyzable silanes such as triethoxyvinylsilane, tris-isopropoxyvinylsilane, and 3-triethoxysilylpropyl methacrylate; and the like.
  • Useful polyfunctional crosslinking monomers containing multiple reactive groups include, but are not limited to, hydrolyzable silanes such as ethyltriethoxysilane and ethyltrimethoxysilane; epoxy-substituted hydrolyzable silanes, such as 2-(3,4-epoxycyclohexyl)ethyltriethoxysilane and 3-glycidoxypropyltrimethyoxysilane; polyisocyanates, such as 1,4-diisocyanatobutane, 1,6-diisocyanatohexane, 1,4-phenylenediisocyanate, and 4,4′-oxybis(phenylisocyanate); unsaturated epoxides, such as glycidyl (meth)acrylate and allylglycidyl ether; polyepoxides, such as diglycidyl ether, 1,2,5,6-diepoxyhexane, and ethyleneglycoldiglycidyl ether; and the like.
  • Particularly useful are polyunsaturated crosslinkers derived from ethoxylated polyols, such as diols, triols and bis-phenols, ethoxylated with about 2 to about 100 moles of ethylene oxide per mole of hydroxyl functional group and end-capped with a polymerizable unsaturated group such as a vinyl ether, allyl ether, acrylate ester, methacrylate ester, and the like. Examples of such crosslinkers include bisphenol A ethoxylated di(meth)acrylate; bisphenol F ethoxylated di(meth)acrylate, ethoxylated trimethylol propane tri(meth)acrylate, and the like. Other ethoxylated crosslinkers useful in the polymers of the present invention include ethoxylated polyol-derived crosslinkers disclosed in U.S. Pat. No. 6,140,435 to Zanofti-Russo, the pertinent disclosures of which are incorporated herein by reference.
  • Non limiting examples of crosslinking monomers are acrylate and methacrylate esters of polyols having at least two acrylate or methacrylate ester groups, such as trimethylolpropane triacrylate (TMPTA), trimethylolpropane ethoxylated (15) triacrylate (TMPEO15TA), trimethylolpropane dimethacrylate, triethylene glycol dimethacrylate (TEGDMA), ethoxylated (30) bisphenol A dimethacrylate (EOBDMA), and the like.
  • Chain Transfer Agent
  • Suitable chain transfer agents (CTAs) for use in this invention, without being limited thereto, are selected from a variety of thio and disulfide containing compounds, such as C1 to C18 alkyl mercaptans, mercaptocarboxylic acids, mercaptocarboxylic esters, thioesters, C1 to C18 alkyl disulfides, aryldisulfides, polyfunctional thiols, and the like; phosphites and hypophosphites; haloalkyl compounds, such as carbon tetrachloride, bromotrichloromethane, and the like; and unsaturated chain transfer agents, such as alpha-methylstyrene.
  • Polyfunctional thiols include trifunctional thiols, such as trimethylolpropane-tris-(3-mercaptopropionate), tetrafunctional thiols, such as pentaerythritol-tetra-(3-mercaptopropionate), pentaerythritol-tetra-(thioglycolate), and pentaerythritol-tetra-(thiolactate); hexafunctional thiols, such as dipentaerythritol-hexa-(thioglycolate); and the like.
  • Alternatively, the chain transfer agent can be any catalytic chain transfer agent which reduces molecular weight of addition polymers during free radical polymerization of vinyl monomers. Examples of catalytic chain transfer agents include, for example, cobalt complexes (e.g., cobalt (II) chelates). Catalytic chain transfer agents can often be utilized in relatively low concentrations relative to thiol-based CTAs.
  • In one embodiment of the invention the chain transfer agents include octyl mercaptan, n-dodecyl mercaptan, t-dodecyl mercaptan, hexadecyl mercaptan, octadecyl mercaptan (ODM), isooctyl 3-mercaptopropionate (IMP), butyl 3-mercaptopropionate, 3-mercaptopropionic acid, butyl thioglycolate, isooctyl thioglycolate, dodecyl thioglycolate, and the like. The chain transfer agents can be added to a monomer reaction mixture preferably in amounts of up to about 10 weight percent of polymerizable monomer mixture, based on total monomer mixture weight. In one embodiment, the chain transfer agent is present in an amount of at least about 0.01 percent by weight based on the total monomer weight.
  • The dimethicone copolyol macromer of the present invention can be polymerized alone or in combination with at least one of copolymerizable monomers (b) through (g). The polymerization can be conducted in the optional presence of a chain transfer agent. The unsaturated monomers can be polymerized by a variety of well known free radical polymerization techniques such as bulk polymerization, photo polymerization, microwave polymerization, solution polymerization, precipitation polymerization, suspension polymerization, emulsion polymerization, inverse emulsion polymerization, microemulsion polymerization and the like.
  • Initiators which can be used for the free radical polymerization processes of the invention are the water soluble and water insoluble persulfate, peroxide, organic hydroperoxides, organic peracids, and azo compounds. Suitable initiators include but are not limited to the ammonium persulfate, potassium persulfate, sodium persulfate, hydrogen peroxide, dibenzoyl peroxide, benzoyl peroxide, acetyl peroxide, lauryl peroxide, tert-butyl perpivalate, tert-butyl per-2-ethylhexanoate, di-tert-butyl peroxide, di-(2-ethylhexyl)-peroxy dicarbonate, tert-butyl hydroperoxide, cumene hydroperoxide, azobisisobutyronitrile, azobis(2-amidinopropane)dihydrochloride or 2,2′-azobis(2-methyl-butyronitrile), peracetic acid. The peroxides and peracids can optionally be activated with reducing agents, such as sodium bisulfite or ascorbic acid, transition metals, hydrazine, and the like. Mixtures of initiator systems can also be utilized, such as, for example, sulfate/sodium peroxodisulfate, tert-butyl hydroperoxide/sodium sulfite, tert-butyl hydroperoxide/sodium hydroxymethanesulfinate. The initiators can be employed in suitable amounts, for example, in amounts of from 0.05 to 5% by weight, based on the amount of monomers to be polymerized.
  • In one embodiment of the invention, the polymers can be prepared using solution polymerization (e.g., precipitation polymerization) in a polar solvent or non-polar solvent and mixtures thereof. Exemplary solvents include but are not limited to water, methanol, methylene chloride chloroform, carbon tetrachloride, ethanol, isopropanol, hexane, cyclohexane, ethyl acetate, methylethyl ketone and benzene, toluene, N-methylpyrrolidone, and mixtures of these solvents. The amounts of monomers and solvents can be chosen to give from 15 to 90% by weight of monomer in solution (based on the total weight of monomer and solvent). The polymerization is usually carried out at temperatures of from 40 to 140° C. and at atmospheric pressure or under autogenous pressure.
  • In another embodiment of the invention, the polymers can be synthesized via anionic and cationic emulsion polymerization techniques as is well known in the polymer art. Typically the anionic emulsion polymerization process is carried out at a reaction temperature in the range of about 30 to about 95° C., however, higher or lower temperatures can be used. To facilitate emulsification of the monomer mixture, the emulsion polymerization can be carried out in the presence of anionic surfactants, such as fatty alcohol sulfates or alkyl sulfonates, nonionic surfactants, such as linear or branched alcohol ethoxylates, amphoteric surfactants, or mixtures thereof. The emulsion polymerization reaction mixture also includes one or more free radical initiators in an amount in the range of about 0.01 to about 3 weight percent based on total monomer weight. The polymerization can be performed in an aqueous or aqueous alcohol medium at a low pH, i.e., preferably not more than about pH 4.5.
  • Anionic surfactants suitable for facilitating emulsion polymerizations are well known in the polymer art, and include but are not limited to sodium lauryl sulfate, sodium dodecyl benzene sulfonate, disodium laureth-3 sulfosuccinate, sodium dioctyl sulfosuccinate, sodium di-sec-butyl naphthalene sulfonate, disodium dodecyl diphenyl ether sulfonate, disodium n-octadecyl sulfosuccinate, phosphate esters of branched alcohol ethoxylates, and the like.
  • In a typical cationic polymerization procedure, a mixture of monomers is added with mixing agitation to a solution of emulsifying surfactant, such as a nonionic surfactant, preferably a linear or branched alcohol ethoxylate, or mixtures of nonionic surfactants and anionic surfactants, such as fatty alcohol sulfates or alkyl sulfonates, in a suitable amount of water, in a suitable reactor, to prepare a monomer emulsion. The emulsion is deoxygenated by any convenient method, such as by sparging with nitrogen, and then a polymerization reaction is initiated by adding a polymerization catalyst (initiator) such as sodium persulfate, or any other suitable free radical polymerization catalyst, as is well known in the emulsion polymerization art. The reaction is agitated until the polymerization is complete, typically for a time in the range of about 4 to about 16 hours. The monomer emulsion can be heated to a temperature in the range of about 20 to about 80° C. prior to addition of the initiator, if desired. Unreacted monomer can be eliminated by addition of more catalyst, as is well known in the emulsion polymerization art. The resulting polymer emulsion product can then be discharged from the reactor and packaged for storage or use.
  • Nonionic surfactants suitable for facilitating cationic emulsion polymerizations are well known in the polymer art, and include, without limitation, linear or branched alcohol ethoxylates, C8 to C12 alkylphenol alkoxylates, such as octylphenol ethoxylates, polyoxyethylene polyoxypropylene block copolymers, and the like. Other useful nonionic surfactants include C8 to C22 fatty acid esters of polyoxyethylene glycol, mono and diglycerides, sorbitan esters and ethoxylated sorbitan esters, C8 to C22 fatty acid glycol esters, block copolymers of ethylene oxide and propylene oxide having an HLB value of greater than about 15, ethoxylated octylphenols, and combinations thereof.
  • In one aspect, alkylphenol alkoxylate surfactants include an octylphenol sold under the trade name IGEPAL® CA-897 by Rhodia, Inc. Preferred linear alcohol alkoxylates include polyethylene glycol ethers of cetearyl alcohol (a mixture of cetyl and stearyl alcohols) sold under the trade names PLURAFAC® C-17, PLURAFAC® A-38 and PLURAFAC® A-39 by BASF Corp. Preferred polyoxyethylene polyoxypropylene block copolymers include copolymers sold under the trade names PLURONIC® F127, and PLURONIC® L35 by BASF Corp.
  • In another aspect, the nonionic surfactants include Ethoxylated (50) linear fatty alcohols such as DISPONIL® A 5060 (Cognis), branched alkyl ethoxylates such as GENAPOL® X 1005 (Clariant Corp.), secondary C12 to C14 alcohol ethoxylates such as TERGITOL® S15-30 and S15-40 (Dow Chemical Co.), ethoxylated octylphenol-based surfactants such as TRITON® X-305, X-405 and X-705 (Dow Chemical Co.), IGEPAL® CA 407, 887, and 897 (Rhodia, Inc.), ICONOL® OP 3070 and 4070 (BASF Corp.), SYNPERONIC® OP 30 and 40 (Uniqema), block copolymers of ethylene oxide and propylene oxide such as PLURONIC® L35 and F127 (BASF Corp.), and secondary C11 alcohol ethoxylates such as EMULSOGEN® EPN 407 (Clariant Corp.). Numerous other suppliers are found in the trade literature.
  • The free radical polymerization initiators discussed above are suitable herein. Exemplary commercially available polymerization initiators include the VAZO® free radical polymerization initiators, available from DuPont, such as VAZO® 44 (2,2′-azobis(2-(4,5-dihydroimidazolyl)propane), VAZO® 56 (2,2′-azobis(2-methylpropionamidine) dihydrochloride), and VAZO® 68 (4,4′-azobis(4-cyanovaleric acid).
  • Optionally, other emulsion polymerization additives, which are well known in the emulsion polymerization art, such as buffering agents, chelating agents, inorganic electrolytes, chain terminators, antifoaming agent, biocides diluents, and pH adjusting agents can be included in the polymerization system.
  • An exemplary general anionic emulsion polymerization procedure for the preparation of alkali swellable or alkali soluble polymer embodiment of the present invention is provided below:
  • A monomer emulsion is prepared in a first reactor equipped with a nitrogen inlet and an agitator, by combining a desired amount of each monomer in water containing an emulsifying amount of an anionic surfactant under a nitrogen atmosphere and with mixing agitation. To a second reactor equipped with an agitator, nitrogen inlet and feed pumps are added a desired amount of water and additional anionic surfactant, if desired, under a nitrogen atmosphere, and the contents of the second reactor are heated with mixing agitation. After the contents of the second reactor reach a temperature in the range of about 55 to 98° C., a free radical initiator is injected into the so formed aqueous surfactant solution in the second reactor, and the monomer emulsion from the first reactor is then gradually pumped into the second reactor over a period of typically in the range of about one to about four hours at a controlled reaction temperature in the range of about 45 to 95° C. After completion of the monomer addition, an additional quantity of free radical initiator can be added to the second reactor, if desired, and the resulting reaction mixture is typically held at a temperature of about 45 to 95° C. for a time period sufficient to complete the polymerization reaction. The resulting polymer emulsion can then be cooled and discharged from the reactor.
  • One skilled in the polymer arts will recognize that the amounts of each monomer component can be adjusted to obtain polymers having any desired ratio of monomers. Larger or smaller proportions of water may also be utilized, as desired. Water miscible solvents, such as alcohols, and other polymerization additives, as described above, may also be included in the reaction mixture. Nonionic surfactants, such as linear or branched alcohol ethoxylates, can also be added as is known in the emulsion polymerization art.
  • The product polymer emulsions can be prepared to preferably contain about 1 percent to about 60 percent total polymer solids, more preferably about 10 percent to about 50 percent total polymer solids, most preferably about 15 percent to about 45 percent total polymer solids (TS) based on the weight of the polymer.
  • Prior to any neutralization, the polymer emulsions, as produced, typically have a pH in the range of about 2 to not more than about 5.5, a Brookfield viscosity of not more than about 100 milli-Pascal seconds (mPa·s) at ambient room temperature (spindle #2, 20 rpm) and a glass transition temperature (Tg) of not more than about 250° C. as determined by Method below.
  • Optionally, the produced polymer emulsions can be further processed by adjusting the pH to a value preferably in the range of about 3 to about 7.5 or greater, if an alkaline pH is desired, with alkaline materials, preferably alkali metal hydroxides, organic bases, and the like. The polymer emulsions typically swell to a viscosity greater than about 100 mPa·s and form viscous solutions or gels at neutral to alkaline pH, and the polymers are generally substantially stable at such pH values, even at pH values greater than about 12. The polymer emulsions can be diluted with water or solvent, or concentrated by evaporation of a portion of the water. Alternatively, the obtained polymer emulsion may be substantially dried to a powder or crystalline form by utilizing equipment well known in the art, such as, for example, a spray drier, a drum drier, or a freeze drier.
  • The polymers/monomers of the present invention insofar as they contain ionizable groups can be fully or partially neutralized with acids or bases before or after polymerization to adjust the solubility or dispensability in aqueous medium. In addition, the viscosity properties of the polymers can be adjusted by neutralizing the polymer.
  • Non limiting examples of suitable neutralizing agents for monomers and polymers that carry anionic groups are mineral bases and organic bases. Non limiting examples of mineral bases include the alkali metal hydroxides (e.g., sodium and potassium); sodium carbonate; ammonium hydroxide; and ammonia. Non limiting examples of organic bases such as amino alcohols (e.g., 2-amino-2-methyl-1-propanol, monoethanolamine, diethanolamine, triethanolamine, triisopropylamine, tris[(2-hydroxy)-1-propyl]amine, 2-amino-2-methyl-1,3-propanediol, 2-amino-2-hydroxymethyl-1,3-propanediol; diamines such as lysine; cocamine; oleamine; and mopholine.
  • Non limiting examples of suitable neutralizing agents for monomers and polymers that carry cationic groups are organic acids, including amino acids, and inorganic mineral acids. Non limiting examples of organic acids include acetic acid, citric acid, fumaric acid, glutamic acid, tartaric acid, lactic acid, and glycolic acid. Non limiting examples of mineral acids include hydrochloric acid, nitric acid, phosphoric acid, sodium bisulfate, sulfuric acid, and the like, and mixtures thereof.
  • The polymers of the invention that contain anionic and/or cationic groups can swell upon neutralization with the appropriate base or acid. These polymers beneficially can thicken acidic or basic aqueous formulations to provide aesthetically smooth-textured products that flow smoothly and spread easily. The inventive, multi-purpose polymers can be employed as thickeners, emulsifiers, stabilizers, suspending agents, film formers, conditioners, moisturizers, spreading aids, surface modifiers, shine enhancers, and carriers for enhancing the efficacy, deposition or delivery of chemically and physiologically active ingredients and cosmetic materials, and as vehicles for improving the psychosensory, and aesthetic properties of a formulation in which they are included. The cationic character of the polymers at low pH makes them useful as antistatic agents, and, under certain conditions, may also provide biocidal, anti-microbial, or other preservative activity.
  • Advantageously, the polymers of this invention can be employed, without being limited thereto, in personal care products, health care products, household care products, institutional and industrial (collectively “I&I”) care products, and the like. The polymers can be employed as a film forming conditioner, and for promoting the deposition of silicone, conditioning agents or aids, color cosmetics and of polar and non-polar oils on skin, hair, nails, and fibers. Further, the polymers can be employed in products for industrial chemical processes, textile finishing processes, printing, adhesive coating, and like applications as, for example, rheology modifiers, emulsifiers, stabilizers, solubilizers, suspending agents, flocculents, shine enhancers, surface modifiers, and pigment and grinding additives.
  • The following examples are presented for the purpose of illustrating the invention disclosed herein in greater detail. However, the examples are not to be construed as limiting the invention in any manner. Unless otherwise specified all parts are given by weight and the term “level” means weight percent.
  • Methods Description Clarity
  • When reported, the clarity of the polymer-containing composition was measured in % T (transmittance) by Brinkmann PC 920 calorimeter at least about 24 hours after the composition was made. Clarity measurements were taken against deionized water (clarity rating of 100%). Compositions having a clarity of about 60% or more were substantially clear; compositions having a clarity in the range of about 45 to 59% were judged substantially translucent.
  • Glass Transition Temperature (Tg)
  • The glass transition temperature (Tg) of the inventive polymers is determined by well known Differential Scanning Calorimetry (DSC) technique.
  • Turbidity
  • When reported, the turbidity of a polymer-containing composition was determined in Nephelometric Turbidity Units (NTU) employing a nephelometric turbidity meter with distilled water (NTU=0) as the standard. Compositions having an NTU value of about 90 or greater were judged turbid.
  • Viscosity
  • The reported viscosity of each polymer containing composition was measured in milli-Pascal seconds (mPa·s), employing a Brookfield rotating spindle viscometer, (Brookfield, Model RVT) at about 20 revolutions per minute (rpm), at ambient room temperature of about 20 to 25° C. (hereafter referred to as Brookfield viscosity). Viscosity was measured on freshly prepared compositions (referred to as “initial viscosity”, and re-measured after allowing the composition to age for at least about 24 hours at ambient room temperature (referred to as “24-hour viscosity”). Where only one viscosity value is shown, the viscosity value is the 24-hour viscosity, unless otherwise indicated.
  • Yield Value
  • Yield Value, also referred to as Yield Stress, is herein defined as the initial resistance to flow under stress. It can be measured using a number of techniques, such as via the use of a constant stress rheometer or via extrapolation using a Brookfield viscometer. These techniques and the usefulness of the Yield Value measurement are further explained in Technical Data Sheet Number 244 available from Noveon, Inc., herein incorporated by reference.
  • MATERIALS ABBREVIATIONS AND TRADE NAMES
    • AA acrylic acid
    • AAE5P5 a randomly ethoxylated-5/propoxylated-5 allyl ether (BX-AA-E5P5, Bimax, Inc.)
    • AMP-95 aminomethyl propanol
    • AMPS® monomer 2-acrylamido-2-methylpropane sulfonic acid
    • APE allylpentaerythritol
    • Bam t-butylacrylamide
    • BEM25 beheneth-25 methacrylate
    • Bruggolite® FF6 sodium hydroxymethane sulfinate dihydrate—reducing agent (Bruggeman Chemical U.S.)
    • CitA citraconic anhydride
    • CSEM25 ceteareth-25 methacrylate
    • DC 5103 pendant dimethicone copolyol (PEG-7 dimethicone), MW=2,500, CAS No. 68937-54-2, Dow Corning
    • DMAEMA N,N′-dimethylaminoethyl methacrylate
    • EA ethyl acrylate
    • EMULSOGEN®
    • EPN 407 secondary C11 ethoxylate having 40 ethylene oxide units per alcohol unit, Clariant Corp.)
    • IPA isopropyl alcohol
    • ItA itaconic anhydride
    • Luperox 11M 75 t-butyl peroxypivalate free radical initiator (75% solution in odorless mineral sprits), Atofina
    • MAA methacrylic acid
    • MaIA maleic anhydride
    • MMA methyl methacrylate
    • Oam t-Octylacrylamide
    • RAL 307 a randomly ethoxylated-30/propoxylated-5 allyl ether
    • Silsoft® 305 pendant dimethicone copolyol (PEG-5/PPG-3 methicone), MW=600, CAS No. 134180-76-0, GE Silicones/OSi Specialties
    • Silsoft® 475 pendant dimethicone copolyol (PEG-23/PPG-6 dimethicone), MW=19,000, CAS No. 68937-55-3, GE Silicones/OSi Specialties
    • Silsoft® 810 linear dimethicone copolyol (PEG-8 dimethicone), MW=1,700, CAS No. 102783-01-7, GE Silicones/OSi Specialties
    • Silsoft® 895 pendant dimethicone copolyol (PEG-17 dimethicone), MW=5,000, CAS No. 68937-54-2, GE Silicones/OSi Specialties
    • STY styrene
    • SucA succinic anhydride
    • TEGDMA triethylene glycol dimethacrylate
    • TMCHMA trimethyl cyclohexyl methacrylate (Ciba Specialty Chemicals)
    • TMPEO15TA trimethylolpropane PEG-15 triacrylate
    • TMPTA trimethylolpropane triacrylate
    • WAM II methacrylamidoethyl-N-ethylene urea, SIPOMER RTM WAM II, Rhodia, Inc.
    EXAMPLES SM 1 to SM 11 A. Dimethicone Copolyol Macromer Synthesis (without Catalyst)
  • Dimethicone copolyol macromers (SM) containing terminal and pendant polyether groups conforming to Formulae III, IIIa, IV, and IVa are synthesized by reacting the cyclic anhydrides and the dimethicone copolyols set forth in Table 1A.
  • A 2 L glass reactor, equipped with a mechanical stirrer, nitrogen inlet, temperature probe connected to an electronic controller, and a water condenser is charged with the respective dimethicone copolyol (Table 1A). Under stirring the copolyol is heated to 80 to 105° C. and stripped under vacuum for 15 minutes to 1 hour. The reactor is cooled to 80 to 85° C., vacuum broken with N2 and then the respective cyclic anhydride (Table 1A) is charged to the reactor. The stirred mixture is heated at 80 to 85° C. for 1 to 3 hours. The mixture is then stripped under vacuum for 15 minutes, vacuum broken with nitrogen, and cooled to 50° C. The mixture is then filtered to remove particulates. In each example, analysis by 1H NMR spectroscopy confirms formation of the respective dimethicone copolyol carboxylate half esters.
  • B. Dimethicone Copolyol Macromer Synthesis (with Catalyst)
  • Using a set up identical to the no catalyst synthesis procedure above, dimethicone copolyol and anhydrous alkali metal acetate (0.7 g, 0.2% w/w of total recipe components) are heated to 80° C. under vacuum for 15 minutes. Following backfilling with nitrogen, the mixture is allowed to react with the cyclic anhydride for 1 to 2 hours at 80 to 82° C. Analysis by 1H NMR spectroscopy confirms formation of the respective dimethicone copolyol carboxylate half ester (Table 1B).
  • TABLE 1A
    Macromer Synthesis
    Dimethicone Amount Cyclic Amount of
    Copolyol of DMC Anhydride OH:CA CA
    Ex. No (DMC) (g) (CA) (equivalents) (g)
    SM1 Silsoft 305 299.6 ItA 1:1   54.8
    SM2 Silsoft 810 299.7 ItA 1:1   45.8
    SM3 Silsoft 810 300.0 ItA 1:0.5 23.1
    SM4 Silsoft 810 300.0 CitA 1:1   46.1
    SM5 DC 5103 672.1 MalA  1:0.75 77.9
    SM6 Silsoft 475 250.0 SucA 1:0.5 10.1
    (compar-
    ative)
    SM7 Silsoft 475 250.0 MalA 1:0.5 9.9
    SM8 Silsoft 475 250 ItA  1:0.25 5.72
    SM9 Silsoft 475 400 ItA 1:0.5 18.1
    SM9a1 Silsoft 475 335.9 ItA 1:0.5 13.4
    SM10 Silsoft 475 238.0 ItA  1:0.75 16.1
    SM11 Silsoft 895 470.9 ItA 1:0.5 29.1
    1Catalyst: Anhydrous potassium acetate at 0.2% w/w of total recipe
  • TABLE 1B
    Macromer Synthesis Product
    Anhydride
    Ex. No Formula a b c z Residue Source
    SM 1 IV 5 3 0 z = y ItA
    SM 2 III 8 0 0 z = y ItA
    SM 3 III 8 0 0 z ≦ y ItA
    SM 4 III 8 0 0 z = y CitA
    SM 5 IVa 7 0 0 z ≦ y MalA
    SM 6 Comparative 23 6 0 z ≦ y SucA
    SM 7 IV 23 6 0 z ≦ y MalA
    SM 8 IV 23 6 0 z ≦ y ItA
    SM 9 IV 23 6 0 z ≦ y ItA
    SM 9a IV 23 6 0 z ≦ y ItA
    SM 10 IV 23 6 0 z ≦ y ItA
    SM 11 IV 17 0 0 z ≦ y ItA
  • Examples 1 and 2 illustrate the bulk homopolymerization of two olefinically unsaturated dimethicone copolyol macromers (SM) of the invention. One macromer is derived from a substituted cyclic anhydride (i.e., itaconic anhydride) and the other macromer is derived from an unsubstituted cyclic anhydride (i.e., maleic anhydride).
  • EXAMPLE I
  • A 100 ml three neck-round bottom flask with magnetic stirring, thermocouple is flushed with nitrogen. The flask is charged with 30 g of the dimethicone copolyol macromer of Example SM 11 (Table 1B). An ammonium persulfate initiator solution (2.6 g in 25 g water) is added in several portions at 4 hour intervals. The reaction was run under continuous stirring at 80 to 85° C. It took 8 hours for approximately 50% of the macromer to convert to the homopolymer and 16 hrs for approximately 70% of the macromer to convert to the homopolymer. 1H NMR analysis from CDCl3 extract of the polymer product indicates that unreacted itaconic anhydride derivatives are in the product.
  • EXAMPLE II
  • Example I is repeated with the macromer of Example SM 7 (Table 1B) except that 0.5% of Luperox 11M 75 initiator (based on the total monomer weight) is added to the monomer mixture which is then heated to 60° C. In 10 minutes the reaction mass gels after reaching an exotherm of 72° C. The maleate derivative of DMC is much more reactive than the trisubstituted (methyl)maleate derivative of Example 1. 1H NMR analysis from CDCl3 extract of this gel indicates that only a small portion of unreacted maleic anhydride remains in the reaction product.
  • The following examples illustrate the copolymerization of olefinically unsaturated dimethicone copolyol macromers (SM) of the invention with other olefinically unsaturated monomers such as AMPS, MMA, MAA and STY utilizing solution and precipitation polymerization techniques.
  • EXAMPLE III
  • A 500 ml jacketed reactor equipped with a condenser, thermocouple, mechanical stirring (half moon blade) and nitrogen blanket is charged with 2 parts of the dimethicone copolyol macromer of Example SM 9, 28.5 parts IPA, and 28.5 parts distilled water. Initiator (0.2 parts Luperox 11M75 in 1 part IPA) is injected into the reactor at 72° C. and a mixture of 18 parts AMPS 2405 monomer, 9 parts IPA, and 9 parts distilled water is metered in over 3 hours. An initiator booster (0.02 parts Luperox 11M75 in 1 part IPA) is added every hour after the metering commenced. Addition of booster continued until conversion of all reactants is confirmed by 1H NMR. A clear product is obtained by neutralizing with diluted AMP-95. The final product had 21.15% total solids content at pH 4.5.
  • EXAMPLE IV
  • A 500 ml jacketed reactor equipped as in Example III is charged with 15 parts of the dimethicone copolyol macromer of Example SM 9a, 380 parts distilled water and 100 parts of IPA. Initiator (0.4 parts Luperox 11M75 in 1 part IPA) is injected into the reactor at 80° C. and a mixture of 40 parts MMA and 20 parts MAA is metered into the reactor through a syringe pump. A mixture of 25 parts AMPS 2405 monomer and 25 parts water is metered into the reactor by another syringe pump over the course of 3 hours. An initiator booster (0.06 parts Luperox 11M75 in 1 part IPA) is added every hour after the metering commenced. The addition of booster continued until conversion of all reactants is confirmed by 1H NMR. The final product has a total solids content of 21.94% at pH 8.9 and appears as translucent liquid after stripping of the IPA and neutralizing with AMP-95.
  • EXAMPLE V
  • A 500 ml jacketed reactor equipped as in Example IV is charged with 5 parts of the dimethicone copolyol macromer of Example SM 9, 190 parts distilled water and 190 parts of IPA. Initiator (0.4 parts Luperox 11M75 in 1 part IPA) is injected into the reactor at 80° C. and a mixture of 55 parts styrene and 20 parts MAA is metered into the reactor through a syringe pump. A mixture of 20 parts AMPS 2405/10 parts water is injected into the reactor by another syringe pump over the course of 3 hours. An initiator booster (a total of 0.78 parts Luperox 11M75 in 1 part IPA) is added every hour after metering commenced. A polymer solid is obtained and is filtered and washed with 100 g IPA and followed by 50 g IPA/water mixture and then dried. The final product is a white powder.
  • The following examples illustrate copolymerization of the olefinically unsaturated dimethicone copolyol macromers (SM) of the invention with different types of monomers via anionic emulsion polymerization.
  • EXAMPLES VI TO VIII
  • Emulsion polymers are prepared from the monomers set forth in Table 2 as follows: A monomer reaction mixture is prepared in a first reactor equipped with an agitator rotating at about 900 rpm under a nitrogen atmosphere by combining 148 parts by weight of MAA, about 200 parts by weight of EA, and about 40.0 parts by weight of the macromer prepared in Example SM 7 in 192 parts by weight of deionized water containing about 13.3 parts by weight of 30% aqueous sodium lauryl sulfate. To a second reactor equipped with a mixing agitator and nitrogen inlet and feed pumps, is added about 580 parts by weight of deionized water and about 1.27 parts by weight of 30% aqueous sodium lauryl sulfate. The contents of the second reactor are heated with agitation at a rotation speed of about 200 rpm under a nitrogen atmosphere. After the contents of the second reactor reach a temperature in the range of about 85 to 88° C., about 7.84 parts of a 1.73% ammonium persulfate solution (free radical initiator) is injected into the warmed surfactant solution in the second reactor. The aqueous emulsion of the monomer mixture from the first reactor is gradually pumped into the second reactor over a period of about 180 minutes at a temperature in the range of about 85 to 88° C. Simultaneously, an initiator feed about 60 parts by weight of 1.7% ammonium persulfate solution is metered to the reaction mixture in the second reactor and the temperature of the reaction is maintained at about 90° C. for an additional one and half hours to complete polymerization. The resulting emulsion is cooled to room temperature, discharged from the reactor and collected. All three copolymers are analyzed by 1H NMR using CDCL3 extract.
  • TABLE 2
    MAA EA SM SM 1H NMR (CDCl3
    Ex. No. (wt. %) (wt. %) (wt. %) Type extract)
    VI 37 53 10 SM 7 No free SM 7
    VII 37 53 10 SM 6 Free SM 6
    (comparative)
    VIII 37 53 10 SM 9 No free SM 9
  • The copolymer of comparative Example VII showed 1H NMR peaks corresponding to non-reactive succinate dimethicone copolyol ester which is presumably not incorporated into the copolymer. Surprisingly, the copolymers of Examples VI and VIII containing reactive double bonds did not show a functional ester peak related to unreacted maleate ester derivative (SM 7) or unreacted itaconate derivative of dimethicone copolyol ester (SM 9). These experiments illustrate that the macromers of the invention are readily copolymerizable in emulsion polymerization.
  • EXAMPLES 1 TO 3
  • Emulsion polymers are prepared as in Examples VI to VIII utilizing the monomers and macromers set forth in Table 3. Three copolymers were synthesized using a non-reactive dimethicone copolyol (Silsoft® 475) in Example 3, the macromer SM 9 in Example 1, and no silicone additive in Example 2 to observe if incorporating the dimethicone copolyol macromers of the invention into a copolymer backbone has any affect on copolymer properties.
  • The viscosity of each polymer is measured at 1 and 2 percent solids mucilages neutralized with AMP-95 to pH 7. In addition Tg, clarity and turbidity (NTU) values are measured for each polymer. The results are reported in Table 3A.
  • TABLE 3
    SM
    MMA Bam X-linker CSEM251 AAE5P52 MAA EA Type
    Ex. No. level level (level) level level Level level (level)
    1 10 3 TEGDMA 3 2 37 34.8 SM 9
    (0.2) (10)
    2 10 3 TEGDMA 3 2 37 44.8 No SM
    (control) (0.2)
    3 10 3 TEGDMA 3 2 37 34.8 DMC3
    (comparative) (0.2) (10)
    1associative monomer
    2semihydrophobic monomer
    3Silsoft ® 475 dimethicone copolyol
  • TABLE 3A
    1% Turbid- 2% Turbid-
    Ex. Viscosity Clarity ity Viscosity Clarity ity
    No. Tg (mPa · s) (% T) (NTU) (mPa · s), (% T) (NTU)
    1a 65 1,230 98 5 10,500
    2a 73 1,200 97 1 12,500 97.0 0.77
    3a 68 370 100 1 4,600
  • The viscosity efficiency of the polymer of Example 1 is maintained utilizing 10% weight percent of the dimethicone copolyol macromer of the invention. In contrast, the polymer of Example 3, which is made according to the teaching of U.S. Pat. No. 6,403,074 B1 containing 10 weight percent of a non-functionalized dimethicone copolyol has a lower viscosity at both 1 and 2 percent mucilages. The non-functionalized dimethicone copolyol (Silsoft® 475) might be acting as chain transfer agent in Example 3a and causing the viscosity deficiency of the resulting associative polymer.
  • EXAMPLES 4 TO 6
  • Emulsion polymers are prepared as in Examples VI to VIII utilizing the monomers and macromers set forth in Table 4. The comonomers of Examples 4 and 5 are copolymerized in the presence of olefinically unsaturated dimethicone copolyol macromers of the invention, while the comonomers of comparative Example 6 are polymerized in the presence of a non-reactive (i.e., saturated dimethicone copolyol carboxylate). The polymers are compared for relative viscosity performance.
  • TABLE 4
    SM
    MMA Bam X-linker CSEM251 AAE5P52 MAA EA Type
    Ex. No. level level (level) level level level level (level)
    4 10 3 TEGDMA 3 2 37 41.8 SM 9
    (0.2) (3)
    5 10 3 TEGDMA 3 2 37 41.8 SM 7
    (0.2) (3)
    6 10 3 TEGDMA 3 2 37 41.8 SM 6
    (comparative) (0.2) (3)
    1hydrophobic monomer
    2semihydrophobic monomer
  • The gel properties of each polymer are measured at 1 and 2 percent solids mucilages neutralized with AMP-95 to pH 7. When unsaturated functional dimethicone copolyol macromers (SM 9 and SM 7) are copolymerized into the associative polymer backbone, such polymers overcome the typical viscosity depression phenomenon exhibited by associative polymers containing saturated dimethicone copolyol (SM 6) as shown in Table 4A below. Glass transition and clarity values of the mucilages were maintained.
  • TABLE 4A
    1% Turbid- 2% Turbid-
    Ex. Viscosity Clarity ity Viscosity Clarity ity
    No. Tg (mPa · s), (% T) (NTU) (mPa · s), (% T) (NTU)
    4a 70 700 96 4 8,350 94.8 1.64
    5a 69 1,000 96 1 7,750 94.0 0.24
    6a 69 370 99 1 3,800 98.0 0.53
  • EXAMPLES 7 TO 10
  • Emulsion polymers are prepared as in Examples VI to VIII utilizing the monomers and macromers set forth in Table 5. In these examples the loading effect of the cyclic anhydride to the dimethicone copolyol in synthesizing the dimethicone copolyol macromer on the gel properties of the final copolymer product is determined and reported in Table 5A.
  • TABLE 5
    SM
    MMA Bam X-linker CSEM251 AAE5P52 MAA EA Type
    Ex. No. level level (level) level level level level (level)
    7 10 3 TMPE015TA 3 0 40 43.8 none
    (0.25)
    8 10 3 TMPE015TA 3 0 40 40.8 SM 9
    (0.25) (3)
    9 10 3 TMPE015TA 3 0 40 40.8 SM 8
    (0.25) (3)
    10 10 3 TMPE015TA 3 0 40 40.8  SM 10
    (0.25) (3)
    1associative monomer
    2semihydrophobic monomer
  • TABLE 5A
    1% Turbid- 2% Turbid-
    Ex. Viscosity Clarity ity Viscosity Clarity ity
    No. Tg (mPa · s), (% T) (NTU) (mPa · s), (% T) (NTU)
    7a 78 n/a n/a n/a 9,650 97.0 0.89
    8a 77 n/a n/a n/a 9,750 98.0 0.43
    9a 75  1,100 96 0.89 1,260 98.0 0.39
    10a  74 12,280 96 1.3  10,300 96.0 0.38
  • The gel properties of each polymer are measured at 1 and 2 percent solids mucilages neutralized with AMP-95 to pH 7. From the data in Table 5A polymers polymerized from macromers synthesized from anhydride loading to dimethicone copolyol loadings of between 0.25 to 0.75 equivalents (based on the OH number of the dimethicone copolyol) give optimal gel properties.
  • EXAMPLES 11 AND 12
  • Emulsion polymers are prepared as in Examples VI to VIII utilizing the monomers and macromers set forth in Table 6. Two copolymers were polymerized utilizing the monomers and macromers set forth in Table 6. The reactive dimethicone copolyol macromers of Examples SM 5 and SM 7 are synthesized from dimethicone copolyols of differing molecular weights (MW=2,500 and 19,000, respectively). Copolymers synthesized from low and high molecular weight dimethicone copolyol macromers give good sensory and gel properties.
  • TABLE 6
    SM
    MMA Bam X-linker CSEM251 AAE5P52 MAA EA Type
    Ex. No. level level (level) level level level level (level)
    11 10 3 TMPE015TA 3 0 40 40.8 SM 7
    (0.25) (3)
    12 10 3 TMPE015TA 3 0 40 40.8 SM 5
    (0.25) (3)
    1associative monomer
    2semihydrophobic monomer
  • The gel properties of each polymer are measured at 1 and 2 percent solids mucilages neutralized with AMP-95 to pH 7. The data are presented in Table 6A.
  • TABLE 6A
    1% Turbid- 2% Turbid-
    Ex. Viscosity Clarity ity Viscosity Clarity ity
    No. Tg (mPa · s), (% T) (NTU) (mPa · s), (% T) (NTU)
    11a n/a 1,500 97.5 0.99 12,600 98 0.39
    12a n/a 980 96 0.8 8,750 96 0.65
  • EXAMPLES 13 TO 20
  • Emulsion polymers are prepared as in Examples VI to VIII utilizing the monomers and macromers set forth in Table 7. Several non-associative copolymers are synthesized utilizing dimethicone copolyol macromers containing terminal and pendant polyether groups that are fully functionalized with an unsaturated carboxylate group (R=R′=cyclic anhydride residue in Formula IIIa; z=y in Formula VIa) or partially functionalized with an unsaturated carboxylate group (one of R or R′=hydrogen in Formula IIIa; z≦y in Formula VIa). The viscosity of each polymer is measured at 1 and 2.5 percent solids mucilages neutralized with AMP-95 to pH 7. In addition Tg, clarity, and turbidity (NTU) values are measured for each polymer. The results are reported in Table 7A.
  • TABLE 7
    Acrylate Amide
    Ex. Monomer Monomer X-linker MAA EA SM
    No. (level) (level) (level) level level (level)
    13 0 0 TMPTA 32 62.7 SM 9
    (0.3) (5)
    14 0 0 TMPTA 35 61.7 SM 9
    (0.3) (3)
    15 0 0 TMPTA 37 59.7 SM 9
    (0.3) (3)
    16 0 Bam TEGDMA 37 56.8 SM 9
    (3) (0.2) (3)
    17 MMA Bam TEGDMA 37 36.8 SM 9
    (20) (3) (0.2) (3)
    18 MMA Oam TMPE015TA 40 38.7 SM 9
    (15) (3) (0.3) (3)
    19 MMA Bam TMPE015TA 40 38.7 SM 9
    (15) (3) (0.3) (3)
    20 TMCHMA Bam TMPE015TA 40 43.8 SM 9
    (10) (3) (0.2) (3)
    20a 0 0 TMPTA 35 59.7 SM 3
    (0.3) (5)
    20b 0 0 TMPTA 35 59.7 SM 4
    (0.3) (5)
    20c 0 0 TMPTA 35 59.7 SM 1
    (0.3) (5)
    20d 0 0 TMPTA 35 59.7 SM 2
    (0.3) (5)
  • TABLE 7A
    1% Clar- Turbid- 2.5% Turbid-
    Ex. Viscosity ity ity Viscosity Clarity ity
    No. Tg (mPa · s), (% T) (NTU) (mPa · s), (% T) (NTU)
    13a 45.6 2,660 N/A 29.4 7,650 N/A 9.3
    14a 54 720 93 5 2,400 91.0 3.10
    15a 59 640 95 4 1,500 95.0 2.20
    16a 81 105 100 0.7 N/A N/A N/A
    17a 87 57 100 0.71 N/A N/A N/A
    18a 85 280 94.0 2.27 360 95.0 2.07
    19a 88 220 98.0 0.59 280 97.0 0.54
    20a 83 200 96.0 1.53 980 94.0 1.88
    20aa 56.5 3,770 87.5 14.7 7,350 83.6 14
    20ba 58.8 7,550 81.1 36.9 16,200 70.1 31
    20ca N/A 1,880 89.9 21.4 5,250 91.3 9.65
    20da N/A 1,320 92.0 10.3 4,900 84.2 13.8
  • EXAMPLES 21 TO 54
  • Emulsion polymers are prepared as in Examples VI to VIII utilizing the monomers and macromers set forth in Table 8. The viscosity of each polymer is measured at 2, 3, and 5 percent solids mucilages neutralized with AMP-95 to pH 7. In addition Tg, clarity and turbidity (NTU) values are measured for each polymer. The results are reported in Table 8A.
  • TABLE 8
    Ex. Monomer Amide X-linker CSEM251 AAE5P52 MAA EA SM Type
    No. (level) (level) (level) level level level level (level)
    21 MMA Bam TEGDMA 3 0 40 35.8 SM 9
    (15) (3) (0.2) (3)
    22 MMA Bam TEGDMA 1 2 40 40.7 SM 9
    (10) (3) (0.3) (3)
    23 TMCHMA Bam TEGDMA 1 0 37 47.7 SM 9
    (10) (1) (0.3) (3)
    24 MMA Oam TMPEO15TA 1 2 37 38.7 SM 9
    (15) (3) (0.3) (3)
    25 MMA Oam TEGDMA 3 2 37 43.9 SM 9
    (10) (1) (0.1) (3)
    26 MMA Oam TMPEO15TA 1 0 37 45.8 SM 9
    (10) (3) (0.2) (3)
    27 TMCHMA Bam TMPEO15TA 1 0 40 37.7 SM 9
    (15) (3) (0.3) (3)
    28 TMCHMA Bam TEGDMA 3 0 37 43.9 SM 9
    (10) (3) (0.1) (3)
    29 MMA Oam TMPEO15TA 3 2 37 38.9 SM 9
    (15) (1) (0.1) (3)
    30 TMCHMA Oam TMPEO15TA 1 2 40 40.9 SM 9
    (10) (3) (0.1) (3)
    31 TMCHMA/ Bam TMPEO15TA 1 1.8 40 41.1 SM 9
    MMA (3) (0.15) (3)
    (5/5)
    32 TMCHMA/ Oam TMPEO15TA 1 1.8 40 41.1 SM 9
    MMA (3) (0.15) (3)
    (5/5)
    33 MMA Oam TMPEO15TA 1 0 37 40.8 SM 9
    (15) (3) (0.2) (3)
    34 MMA Bam TMPEO15TA 3 0 40 42.8 SM 9
    (10) (3) (0.25) (1)
    35 TMPEO15TA 1 0 40 56.9 SM 9
    (0.3) (1.8)
    36 MMA Bam TMPEO15TA 3 0 40 41.8 SM 9
    (10) (3) (0.25) (2)
    37 MMA Bam TMPEO15TA 3 0 40 40.8 SM 9
    (10) (3) (0.25) (3)
    38 MMA Bam TMPEO15TA 2 0 40 41.8 SM 9
    (10) (3) (0.25) (3)
    39 MMA Bam TMPEO15TA 1 0 40 42.7 SM 9
    (10) (3) (0.3) (3)
    40 MMA Bam TMPEO15TA 1.5 0 40 42.2 SM 9
    (10) (3) (0.3) (3)
    41 TMPEO15TA 1 0 40 55.7 SM 9
    (0.3) (3)
    42 Oam TMPEO15TA 1 0 40 53.9 SM 9
    (1.8) (0.3) (3)
    43 Oam TMPEO15TA 1 0 40 51.7 SM 9
    (4) (0.3) (3)
    44 WAM II TMPEO15TA 1 0 40 54.4 SM 9
    (1.3) (0.3) (3)
    45 WAM II TMPEO15TA 1 0 40 52.8 SM 9
    (2.9) (0.3) (3)
    46 MMA 0 0 35 10 SM 9
    (52) (3)
    47 MMA Bam TEGDMA 6 2 37 38.8 SM 9
    (10) (3) (0.2) (3)
    48 TMPEO15TA 1 0 40 53.7 SM 9
    (0.3) (5)
    49 TMPEO15TA 1 0 40 51.2 SM 9
    (0.3) (7.5)
    50 TMPEO15TA 1 0 40 48.7 SM 9
    (0.3) (10)
    51 TMPEO15TA 1 0 40 53.7 SM 3
    (0.3) (5)
    52 TMPEO15TA 1 0 40 53.7 SM 4
    (0.3) (5)
    53 TMPEO15TA 1 0 40 53.7 SM 2
    (0.3) (5)
    54 TMPEO15TA 1 0 40 53.7 SM 1
    (0.3) (5)
    1associative monomer
    2semihydrophobic monomer
  • TABLE 8A
    2% 3% 5%
    Ex. Viscosity Clarity Turbidity Viscosity Clarity Turbidity Viscosity Clarity Turbidity
    No. Tg (mPa · s), (% T) (NTU) (mPa · s), (% T) (NTU) (mPa · s), (% T) (NTU)
    21a 84 5,600 97.0 2.07 25,600 96.0 2.92 115,000 89.0 3.95
    22a 79 1,320 98.9 0.38 5,150 98.2 0.60 15,300 96.9 0.68
    23a 71 1,680 96.0 3.62 9,800 94.0 5.53 52,000 90.0 8.52
    24a 78 2,740 97.0 2.00 8,700 93.0 1.77 15,000 93.0 2.28
    25a 70 10,000 94.0 0.95 35,200 95.0 0.92 78,000 93.0 0.95
    26a 72 1,800 99.0 0.52 5,500 98.0 0.59 14,000 97.0 0.68
    27a 91 2,680 82.0 8.40 15,500 83.0 6.48 92,000 88.0 5.77
    28a 73 10,600 94.0 3.04 38,000 94.0 2.32 104,000 88.0 3.04
    29a 73 14,900 98.0 0.77 40,500 91.0 1.00 92,000 94.0 1.20
    30a 79 840 97.0 1.88 5,850 96.0 1.84 30,000 93.0 3.57
    31a 76 720 98 0.78 2,400 97 0.98 8,250 97 1.18
    32a 75 540 97.0 0.77 1,900 96 0.91 7,050 94 1.28
    33a 78 860 99.0 0.3 3,100 99.0 0.26 8,300 98.0 0.31
    34a 77 10,400 97.0 0.53 32,700 96.0 0.54 104,000 95.0 0.59
    35a 60 4,980 96.0 1.01 13,500 95 0.83 28,000 94 0.81
    36a 77 8,250 98.0 0.33 27,900 97.0 0.38 93,000 96.0 0.56
    37a 78 10,200 97.0 0.45 25,300 97.5 0.42 86,000 95 0.75
    38a 84 5,400 97.5 0.48 20,900 96.5 0.67 68,000 95.5 0.6
    39a 81 3,100 98.0 0.41 8,800 98 0.42 29,100 96 0.99
    40a 85 5,200 97.0 0.61 29,100 96 0.99 75,000 94 1.28
    41a 61 6,700 93.0 1.63 17,000 93 1.74 49,000 90 1.93
    42a 59 3,060 98.4 2.03 7,450 97.8 2.85 25,600 97.5 2.48
    43a 60 2,200 98.3 1.09 5,300 9.89 1.23 14,400 96 1.77
    44a 60 24,500 89.0 22.1 46,000 89.7 11.37 93,000 90 6.44
    45a 60 11,800 88.5 5.01 24,500 90.1 2.81 50,500 90 2.9
    46a 121 1200 n/a 83 n/a n/a n/a n/a n/a n/a
    47a 45 35,200 95.7 1.75 n/a n/a n/a n/a n/a n/a
    48a 64.5 3,020 98.7 0.1 3,020 98.7 0.11 n/a n/a n/a
    49a 65.9 2,110 98 0.5 2,110 98 0.54 n/a n/a n/a
    50a 33.3 2,110 96.1 1.3 2,110 96.1 1.28 n/a n/a n/a
    51a 64.5 1,220 95 6.9 1,220 95 6.86 n/a n/a n/a
    52a 66.0 1,530 95.6 6.3 1,530 95.6 6.3 n/a n/a n/a
    53a 68.6 5,000 97.8 3.02 n/a n/a n/a n/a n/a n/a
    54a 68.3 9,550 99.5 3.0 n/a n/a n/a n/a n/a n/a
  • EXAMPLES 55 TO 59
  • Cationic acid-swellable associative emulsion polymers are polymerized from the monomers and macromers set forth in Table 9 according to the following procedure.
  • A monomer emulsion is prepared by adding (with mixing) the monomers in Table 9 into a reactor containing about 340 parts by weight of water, about 5.5 parts by weight of Emulsogen® EPN 407 nonionic surfactant and about 0.3 parts by weight of sodium lauryl sulfate (30%) anionic surfactant. The resulting mixture is agitated (about 400 rpm) at a temperature in the range of about 20 to about 25° C. under a nitrogen atmosphere until an emulsion is obtained. A solution of about 0.12 parts by weight of Bruggolite® FF6 (reducing agent) in about 5.0 parts by weight of water is then added to the monomer emulsion, with mixing agitation, to initiate the polymerization reaction. A solution of about 0.16 parts by weight of sodium persulfate (oxidizing agent) in about 5.0 parts by weight of water is then added to the monomer emulsion with mixing agitation to initiate the polymerization reaction. The temperature of the reaction mixture is maintained at a temperature in the range of about 60 to about 70° C. for about 2.5 hours after addition of the initiator. Additional quantities of initiator are added at about 0.5 hours and about 1.5 hours after the reaction is initiated (about 0.08 parts by weight of sodium persulfate in about 3.0 parts by weight of water for each additional quantity of initiator added).
  • The resulting polymer emulsion is cooled to a temperature in the range of about 44 to about 46° C. over a period of about 45 minutes and an oxidizing solution is added to the reaction mixture in two portions at one hour intervals thereafter. Each oxidizing (redox) solution contains about 0.15 parts by weight of t-butylhydroperoxide (70%), about 0.015 parts by weight of sodium lauryl sulfate (30%) and about 0.15 parts by weight of Bruggolite® FF6 reducing agent in about nine parts by weight of water. The polymer emulsions are cooled to ambient room temperature and discharged from the reactor.
  • TABLE 9
    TEGDMA HEMA CSEM251 RAL 307 DMAEMA SM 9
    Ex. No. level level level level level EA level level
    55 0.1 1.8 0 4 35 58.1 1
    56 0.1 1.8 0 4 35 56.1 3
    57 0.1 1.8 0 4 35 49.1 10
    58 0.1 1.8 3 4 35 55.1 1
    59 0.1 1.8 3 4 35 53.1 3
    1associative monomer
  • The viscosity and clarity properties of each of the polymers are measured at 2 percent solids mucilages neutralized to pH 4 with a 50 percent solution of glycolic acid. The results are reported in Table 9A.
  • TABLE 9A
    2%
    Viscosity Yield Value Turbidity
    Ex. No. (mPa · s), (dynes/cm2) (NTU)
    55a 11,100 1,280 7.73
    56a 11,400 1,460 8.63
    57a 9,050 1,330 9.99
    58a 17,700 2,230 5.78
    59a 16,000 1,890 4.85
  • EXAMPLES 60 TO 62
  • Precipitation polymerization reactions are conducted in a water jacketed two liter Pyrex® resin kettle equipped with mechanical stirrer, a thermometer and reflux condenser topped with a nitrogen inlet connected to a bubbler to provide a slightly positive pressure of nitrogen throughout the polymerization. The water jacket is connected to a constant temperature circulator. The resin kettle is charged with an azeotropic mixture of ethyl acetate, cyclohexane, along with the polymerizable monomers acrylic acid, silicone macromer (SM 9a) and allylpentaerythritol in the levels (parts by wt.) shown in Table 10. The mixture is sparged with nitrogen for 30 minutes while the reactor is heated to 45° C. At 45° C., the sparging tube is removed while a nitrogen purge is maintained. Under stirring di-(2-ethylhexyl)-peroxydicarbonate (in an amount of 0.275 to 0.98 grams) is added to the mixture. Polymerization is evident in a matter of minutes as the solution becomes hazy with precipitated polymer. After a few hours the mixture forms a thick slurry. The polymerization is continued for a total of 8 hours. The polymer slurry is transferred to a single neck flask and the solvent is removed by a rotary evaporator at 65° C. to 102° C. at 27 inches of vacuum. The obtained dry polymer product is a fine white powder. When dispersed in water, the polymer hydrates, and when neutralized with base becomes a thickened aqueous solution.
  • TABLE 10
    AA SM9a APE Polymer Solids
    Ex. No. level level level (wt. %)
    60 96.35 3 0.65 12
    61 94.52 5 0.48 12
    62 94.70 5 0.3 17
  • Mucilages of each polymer are prepared by neutralizing samples of 0.2, 0.5, and 1 wt. % (polymer solids) of each polymer in deionized water with an 18% aqueous solution of NaOH to a pH of about 7.5. The Brookfield viscosity and clarity value of each sample is measured and reported in Table 10a. Spindle sizes 5, 6, and 7 were employed for the viscosity measurements of the 0.2, 0.5, and 1 wt. % mucilages, respectively.
  • TABLE 10a
    0.2% mucilage 0.5% mucilage 1.0% mucilage Clarity
    Viscosity Viscosity Viscosity (0.5 wt %
    Ex. No. (mPa · s) (mPa · s) (mPa · s) mucilage)
    60 16000 29500 52200 90.2
    61 10600 26000 45200 90.0
    62 10540 24200 36500 88.2

Claims (27)

1. A free radically polymerizable macromer represented by the formula:
Figure US20070203311A1-20070830-C00012
wherein in formula III R and R′ independently represent hydrogen and a cyclic anhydride residue, subject to the proviso that R and R′ do not both represent hydrogen at the same time, R1 and R2 independently represent a radical selected from C1 to C30 alkyl, C1 to C20 halo substituted alkyl, C3 to C8 cycloalkyl, C6 to C14 aryl, and C2 to C20 alkenyl, E represents a divalent ethylene radical, P independently represents a divalent propylene radical, a, b, and c are independently 0 to 100; and n is 0 to 200, E taken together with the oxygen atom to which is attached represents an ethylene oxide residue (EO or OE) and P taken together with the oxygen atom to which it is attached represents a propylene oxide residue (PO or OP) wherein the EO/PO and OE/OP residues can be arranged in random, non-random, or blocky sequences;
wherein in formula IV R1 and R2, E, P, a, b, and c are as defined above, R3 represents a radical selected from C1 to C30 alkyl, C1 to C20 halo substituted alkyl, C3 to C8 cycloalkyl, C6 to C14 aryl, and C2 to C20 alkenyl, R4 represents a radical selected from C1 to C30 alkyl, C6 to C14 aryl, and C2 to C20 alkenyl, x is 0 to 200, y is 1 to 200, z≦y; and
wherein said cyclic anhydride residue in formulae III and IV is represented by the formula:
Figure US20070203311A1-20070830-C00013
wherein R5 and R6 are independently selected from hydrogen and methyl, subject to the proviso that R5 and R6 do not both represent methyl at the same time.
2. A macromer of claim 1 wherein said cyclic anhydride residue is represented by the formulae:
Figure US20070203311A1-20070830-C00014
3. A free radically polymerizable macromer composition comprising the reaction product of maleic anhydride and a dimethicone copolyol containing at least one terminal and/or pendant hydroxyl group.
4. A composition of claim 3 wherein said dimethicone copolyol is represented by the formula:
Figure US20070203311A1-20070830-C00015
wherein R1 and R2 independently represent a radical selected from C1 to C30 alkyl, C1 to C20 halo substituted alkyl, C3 to C8 cycloalkyl, C6 to C14 aryl, and C2 to C20 alkenyl, E represents a divalent ethylene radical, P independently represents a divalent propylene radical, a, b, and c are independently 0 to 100; and n is 0 to 200, E taken together with the oxygen atom to which is attached represents an ethylene oxide residue (EO or OE) and P taken together with the oxygen atom to which it is attached represents a propylene oxide residue (PO or OP) wherein the EO/PO and OE/OP residues can be arranged in random, non-random, or blocky sequences.
5. A composition of claim 3 wherein said dimethicone copolyol is represented by the formula:
Figure US20070203311A1-20070830-C00016
wherein R1, R2, and R3 independently represent a radical selected from C1 to C30 alkyl, C1 to C20 halo substituted alkyl, C3 to C8 cycloalkyl, C6 to C14 aryl, and C2 to C20 alkenyl, R4 independently represents a radical selected from C1 to C30 alkyl, C6 to C14 aryl, and C2 to C20 alkenyl, x is 0 to 200, y is 1 to 200, E represents a divalent ethylene radical, P independently represents a divalent propylene radical, a, b, and c are independently 0 to 100, E taken together with the oxygen atom to which is attached represents an ethylene oxide residue (EO or OE) and P taken together with the oxygen atom to which it is attached represents a propylene oxide residue (PO or OP) wherein the EO/PO and OE/OP residues can be arranged in random, non-random, or blocky sequences.
6. A process for making a free radically polymerizable dimethicone copolyol macromer comprising:
a) mixing itaconic anhydride with a dimethicone copolyol to form a reaction mixture;
b) allowing said itaconic anhydride in said reaction mixture to isomerize to form isomerization products thereof; and
c) reacting said reaction mixture containing said isomerization products at a suitable temperature and permitting the esterification of said isomerization products with said dimethicone copolyol.
7. A process of claim 6 wherein said dimethicone copolyol contains a terminal and/or a pendant hydroxyl group.
8. A process of claim 7 wherein said dimethicone copolyol is represented by the formula:
Figure US20070203311A1-20070830-C00017
wherein R1 and R2 independently represent a radical selected from C1 to C30 alkyl, C1 to C20 halo substituted alkyl, C3 to C8 cycloalkyl, C6 to C14 aryl, and C2 to C20 alkenyl, E represents a divalent ethylene radical, P independently represents a divalent propylene radical, a, b, and c are independently 0 to 100; and n is 0 to 200, E taken together with the oxygen atom to which is attached represents an ethylene oxide residue (EO or OE) and P taken together with the oxygen atom to which it is attached represents a propylene oxide residue (PO or OP) wherein the EO/PO and OE/OP residues can be arranged in random, non-random, or blocky sequences
9. A process of claim 6 wherein said dimethicone copolyol is represented by the formula:
Figure US20070203311A1-20070830-C00018
wherein R1, R2, and R3 independently represent a radical selected from C1 to C30 alkyl, C1 to C20 halo substituted alkyl, C3 to C8 cycloalkyl, C6 to C14 aryl, and C2 to C20 alkenyl, R4 independently represents a radical selected from C1 to C30 alkyl, C6 to C14 aryl, and C2 to C20 alkenyl, x is 0 to 200, y is 1 to 200, E represents a divalent ethylene radical, P independently represents a divalent propylene radical, a, b, and c are independently 0 to 100, E taken together with the oxygen atom to which is attached represents an ethylene oxide residue (EO or OE) and P taken together with the oxygen atom to which it is attached represents a propylene oxide residue (PO or OP) wherein the EO/PO and OE/OP residues can be arranged in random, non-random, or blocky sequences.
10. A process of claim 6 wherein said isomerization products of itaconic anhydride includes citraconic anhydride.
11. A process of claim 6 wherein said reaction mixture is reacted at a temperature ranging from about 75° C. to about 90° C.
12. A process of claim 6 wherein said reaction mixture is reacted in the presence of an esterification catalyst at a temperature ranging between ambient room temperature and 90° C.
13. A process of claim 12 wherein said esterification catalyst is selected from sulfuric acid, elemental tin, elemental zinc, elemental titanium, organo titanate compounds, organo tin compounds, organo zinc compounds, zinc oxide, magnesium oxide, calcium oxide, stannous oxide, and alkali metal acetates.
14. A polymer polymerized from a monomer composition comprising at least one dimethicone copolyol macromer selected from formulae III and IV:
Figure US20070203311A1-20070830-C00019
wherein in formula III R and R′ independently represent hydrogen and a cyclic anhydride residue, subject to the proviso that R and R′ do not both represent hydrogen at the same time, R1 and R2 independently represent a radical selected from C1 to C30 alkyl, C1 to C20 halo substituted alkyl, C3 to C8 cycloalkyl, C6 to C14 aryl, and C2 to C20 alkenyl, E represents a divalent ethylene radical, P independently represents a divalent propylene radical, a, b, and c are independently 0 to 100; and n is 0 to 200, E taken together with the oxygen atom to which is attached represents an ethylene oxide residue (EO or OE) and P taken together with the oxygen atom to which it is attached represents a propylene oxide residue (PO or OP) wherein the EO/PO and OE/OP residues can be arranged in random, non-random, or blocky sequences;
wherein in formula IV R1 and R2, E, P, a, b, and c are as defined above, R3 represents a radical selected from C1 to C30 alkyl, C1 to C20 halo substituted alkyl, C3 to C8 cycloalkyl, C6 to C14 aryl, and C2 to C20 alkenyl, R4 represents a radical selected from C1 to C30 alkyl, C6 to C14 aryl, and C2 to C20 alkenyl, x is 0 to 200, y is 1 to 200, z≦y; and
wherein said cyclic anhydride residue in formulae III and IV is represented by the formula:
Figure US20070203311A1-20070830-C00020
wherein R5 and R6 are independently selected from hydrogen and methyl, subject to the proviso that R5 and R6 do not both represent methyl at the same time.
15. A polymer of claim 14 wherein said monomer composition further comprises one or more monomers selected from:
a) at least one non-ionic vinyl monomer;
b) at least one acidic vinyl monomer;
c) at least one cationic vinyl monomer;
d) at least one associative vinyl monomer;
e) at least one semihydrophobic vinyl monomer;
f) at least one crosslinking monomer; and mixtures thereof.
16. A polymer of claim 15 wherein said non-ionic vinyl monomer is selected from at least one monomer represented by the formulae:

CH2═C(X)Z;

CH2═CH—OC(O)R7
wherein, X is H or methyl; and Z is —C(O)OR8, —C(O)NH2, —C(O)NHR8, —C(O)N(R8)2, —C6H4R8, —C6H4OR8, —C6H4Cl, —C6H11, —C6H7(R8)(R8)(R8), —CN, —NHC(O)CH3, —NHC(O)H, N-(2-pyrrolidonyl), N-caprolactamyl, —C(O)NHC(CH3)3, —C(O)NHCH2CH2—N-ethyleneurea, —Si(R7)3, —C(O)O(CH2)xSi(R7)3, —C(O)NH(CH2)xSi(R7)3, or —(CH2)xSi(R7)3; x is an integer ranging from about 1 to about 6; R7 independently represents linear and branched C1 to C18 alkyl; R8 independently represents linear and branched C1 to C30 alkyl, hydroxy substituted C2 to C30 alkyl, and halogen substituted C1 to C30 alkyl.
17. A polymer of claim 15 wherein said acidic vinyl monomer contains at least one acidic group selected from a carboxylic acid group and salts thereof, a sulfonic acid group and salts thereof, and a phosphonic acid group and salts thereof.
18. A polymer of claim 17 wherein said acidic vinyl monomer is selected from acrylic acid, methacrylic acid, itaconic acid, citraconic acid, maleic acid, fumaric acid, crotonic acid, aconitic acid, C1 to C18 alkyl monoesters of maleic, fumaric, itaconic, or aconitic acid, anhydrides of dicarboxylic acids, vinyl sulfonic acid, 2-sulfoethyl methacrylate, styrene sulfonic acid, 2-acrylamido-2-methylpropane sulfonic acid, allyloxybenzene sulfonic acid, vinyl phosphonic acid, allyl phosphonic acid, 3-acrylamidopropyl phosphonic acid; and salts thereof; and mixtures thereof.
19. A polymer of claim 15 wherein said cationic vinyl monomer is selected from mono-(C1 to C4)alkylamino(C1 to C8)alkyl(meth)acrylate, a di-(C1 to C4)alkylamino(C1 to C8)alkyl(meth)acrylate, a mono-(C1 to C4)alkylamino(C1 to C8)alkyl(meth)acrylamide, a di-(C1 to C4)alkylamino(C1 to C8)alkyl(meth)acrylamide, a nitrogen-containing heterocyclic(meth)acrylamide, a nitrogen-containing heterocyclic(meth)acrylate; and salts thereof; and mixtures thereof.
20. A polymer of claim 19 wherein said cationic vinyl monomer is selected from 2-(N,N-dimethylamino)ethyl(meth)acrylate, 3-(N,N-dimethylamino)propyl(meth)acrylate, 4-(N,N-dimethylamino)butyl(meth)acrylate, (N,N-dimethylamino)-t-butyl(meth)acrylate, 2-tert-butylamino)ethyl(meth)acrylate, 2-(N,N-diethylamino)ethyl(meth)acrylate, 3-(N,N-diethylamino)propyl(meth)acrylate, 2-(N,N-dimethylamino)neopentyl acrylate, 4-N,N-diethylamino)butyl(meth)acrylate, 2-(N,N-dipropylamino)ethyl(meth)acrylate, 3-N,N-(dipropylamino)propyl(meth)acrylate, 4-N,N-dipropylamino)butyl(meth)acrylate, 3-(N,N-dimethylamino)propyl(meth)acrylate, 2-(4-morpholinyl)ethyl(meth)acrylate, 2-(4-morpholinyl)ethyl acrylate, N′-(2-N,N-dimethylamino)ethyl(meth)acrylamide, 2-(N,N-dimethylamino)propyl(meth)acrylamide, N′-3-(N,N-dimethylamino)propyl(meth)acrylamide, N-(2-pyridyl)acrylamide, N-2-imidazoyl)(meth)acrylamide, N-(4-morpholinyl)(meth)acrylamide, N-(4-morpholinyl)acrylamide, 2-vinyl pyridine, 4-vinyl pyridine, N-vinyl-2-methylimidazole, N-vinylimidazole, N-vinyl-4-methylimidazole, and N-vinyloxazolidone; and salts thereof; and mixtures thereof.
21. A polymer of claim 19 wherein said cationic vinyl monomer is selected from 3-trimethylammonium propyl(meth)acrylamide chloride, 3-trimethylammonium propyl acrylamide chloride, quaternized N,N-dimethylaminoethyl(meth)acrylate with C1 to C30 alkyl sulphate, quaternized N,N-dimethylaminoethyl(meth)acrylate with methylchloride, quaternized vinyl imidazole, methacryloyl ethyl betaine, and methacryloyl N-oxide.
22. A polymer of claim 15 wherein said associative vinyl monomer is selected from at least one monomer represented by the formula:
Figure US20070203311A1-20070830-C00021
wherein, each R9 is independently H, C1 to C30 alkyl, —C(O)OH, or —C(O)OR10; R10 is C1 to C30 alkyl; A is —CH2C(O)O—, —C(O)O—, —O—, —CH2O—, —NHC(O)NH—, —C(O)NH—, —Ar—(CE2)z-NHC(O)O—, —Ar—(CE2)z-NHC(O)NH—, or —CH2CH2NHC(O)—; Ar is a divalent aryl; E is H or methyl; z is 0 or 1; k is an integer in the range of 0 to about 30, and m is 0 or 1, with the proviso that when k is 0, m is 0, and when k is in the range of 1 to about 30, m is 1; (R11-0)n represents a polyoxyalkylene moiety of C2 to C4 oxyalkylene units, wherein R11 is C2H4, C3H6, C4H8, or a mixture thereof, and n is an integer in the range of about 5 to about 250; Y is —R11O—, —R11NH—, —C(O)—, —C(O)NH—, —R11NHC(O)NH—, or —C(O)NHC(O)—; and R12 is a substituted or unsubstituted alkyl selected from a C8 to C40 linear alkyl, a C8 to C40 branched alkyl, a C8 to C40 carbocyclic alkyl, a C2 to C40 alkyl-substituted phenyl, an aryl-substituted C2 to C40 alkyl, and a C8 to C80 complex ester; wherein R11 and R12 optionally includes one or more substituents selected from hydroxyl, alkoxyl, and halogen.
23. A polymer of claim 22 wherein said associative vinyl monomer is selected from cetyl polyethoxylated methacrylate, cetearyl polyethoxylated(meth)acrylate, stearyl polyethoxylated(meth)acrylate, arachidyl polyethoxylated(meth)acrylate, behenyl polyethoxylated(meth)acrylate, lauryl polyethoxylated(meth)acrylate, cerotyl polyethoxylated(meth)acrylate, montanyl polyethoxylated(meth)acrylate, melissyl polyethoxylated(meth)acrylate, lacceryl polyethoxylated(meth)acrylate, tristyryl phenolpolyethoxylated(meth)acrylate, hydrogenated castor oil polyethoxylated methacrylate, canola polyethoxylated(meth)acrylate, and cholesterol polyethoxylated(meth)acrylate, wherein the polyethoxylated portion of the monomer contains from about 5 to about 100 ethylene oxide repeating units.
24. A polymer of claim 15 wherein said semihydrophobic vinyl monomer is selected from at least one monomer represented by the formula:
Figure US20070203311A1-20070830-C00022
wherein R9 is independently H, C1 to C30 alkyl, —C(O)OH, or —C(O)OR10; R10 is C1 to C30 alkyl; A is —CH2C(O)O—, —C(O)O—, —O—, —CH2O—, —NHC(O)NH—, —C(O)NH—, —Ar—(CE2)n-NHC(O)O—, —Ar—(CE2)n-NHC(O)NH—, or —CH2CH2NHC(O)—; Ar is a divalent aryl; E is H or methyl; z is 0 or 1; k is an integer in the range of 0 to about 30, and m is 0 or 1, with the proviso that when k is 0, m is 0, and when k is in the range of 1 to about 30, m is 1; (R11—O)n represents a polyoxyalkylene moiety of C2 to C4 oxyalkylene units, wherein R11 is C2H4, C3H6, C4H8, or a mixture thereof, and n is an integer in the range of about 5 to about 250; Y is —R11O—, —R11NH—, —C(O)—, —C(O)NH—, —R11NHC(O)NH—, or —C(O)NHC(O)—; wherein R11 optionally includes one or more substituents selected from hydroxyl, alkoxyl, and halogen; D is a C8 to C30 unsaturated alkyl, or a carboxy-substituted C8 to C30 unsaturated alkyl; and R13 is H or C1 to C4 alkyl.
25. A polymer of claim 24 wherein said semihydrophobic vinyl monomer is represented by at least one monomer of the formulae:

CH2═CH—O(CH2)aO(C3H6O)b(C2H4O)cH

CH2═CH—CH2O(C3H6O)d(C2H4O)eH
wherein a is an integer of 2, 3, or 4; b is an integer in the range of 1 to about 10; c is an integer in the range of about 5 to about 50; d is an integer in the range of 1 to about 10; and e is an integer in the range of about 5 to about 50.
26. A polymer of claim 15 wherein said monomer composition comprises 0 to 5 weight percent (based on the weight of the total monomers of a crosslinking monomer.
27. A polymer of claim 15 wherein said monomer composition comprises at least 0.01 percent by weight based on the total monomer weight of a chain transfer agent.
US11/677,610 2006-02-24 2007-02-22 Polymerizable Silicone Copolymer Macromers and Polymers Made Therefrom Abandoned US20070203311A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/677,610 US20070203311A1 (en) 2006-02-24 2007-02-22 Polymerizable Silicone Copolymer Macromers and Polymers Made Therefrom
US13/742,391 US8796484B2 (en) 2006-02-24 2013-01-16 Polymerizable silicone copolyol macromers and polymers made therefrom

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US77661106P 2006-02-24 2006-02-24
US11/677,610 US20070203311A1 (en) 2006-02-24 2007-02-22 Polymerizable Silicone Copolymer Macromers and Polymers Made Therefrom

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/742,391 Division US8796484B2 (en) 2006-02-24 2013-01-16 Polymerizable silicone copolyol macromers and polymers made therefrom

Publications (1)

Publication Number Publication Date
US20070203311A1 true US20070203311A1 (en) 2007-08-30

Family

ID=38456533

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/677,610 Abandoned US20070203311A1 (en) 2006-02-24 2007-02-22 Polymerizable Silicone Copolymer Macromers and Polymers Made Therefrom
US13/742,391 Active US8796484B2 (en) 2006-02-24 2013-01-16 Polymerizable silicone copolyol macromers and polymers made therefrom

Family Applications After (1)

Application Number Title Priority Date Filing Date
US13/742,391 Active US8796484B2 (en) 2006-02-24 2013-01-16 Polymerizable silicone copolyol macromers and polymers made therefrom

Country Status (9)

Country Link
US (2) US20070203311A1 (en)
EP (1) EP1987083B1 (en)
JP (1) JP5368113B2 (en)
KR (1) KR101446926B1 (en)
CN (1) CN101389694B (en)
BR (1) BRPI0708183B1 (en)
ES (1) ES2500146T3 (en)
MX (1) MX2008010700A (en)
WO (1) WO2007101048A2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090299025A1 (en) * 2008-05-27 2009-12-03 O'lenick Kevin Anthony Multi alkoxylated silicone surfactants
US20120316308A1 (en) * 2009-12-01 2012-12-13 Lubrizol Advanced Materials, Inc. Hydrolytically Stable Multi-Purpose Polymers
US9107855B2 (en) 2012-03-22 2015-08-18 Shin-Etsu Chemical Co., Ltd. Organopolysiloxane, cosmetic containing thereof, and method for preparing organopolysiloxane
US11466225B2 (en) 2018-03-06 2022-10-11 Shrieve Chemical Products, Inc. Lubricant and refrigerant compositions comprising polyalkylene glycols and uses thereof

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2398923T3 (en) * 2006-02-24 2013-03-22 Lubrizol Advanced Materials, Inc. Polymers containing silicone copolyol macromers and personal hygiene compositions containing them
BR112012013051A2 (en) 2009-12-01 2016-11-22 Lubrizol Advanced Mat Inc composition and product
RU2609260C2 (en) * 2011-04-26 2017-01-31 Соленис Текнолоджиз Кейман,Л.П. Organopolysilicone polyether drainage aid
JP6118321B2 (en) * 2011-08-23 2017-04-19 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Particle-containing polyether alcohol
US9403963B2 (en) 2011-08-23 2016-08-02 Basf Se Particle-comprising polyether alcohols
WO2013026738A1 (en) * 2011-08-23 2013-02-28 Basf Se Polyether alcohols containing particles
JP6053816B2 (en) * 2012-11-13 2016-12-27 中国塗料株式会社 Antifouling paint composition, antifouling coating film, antifouling substrate, and method for improving storage stability of antifouling paint composition
CN103272483A (en) * 2013-05-10 2013-09-04 天津大学 Polysiloxane modified polyethersulfone ultrafiltration membrane and preparation method thereof
KR102635855B1 (en) * 2018-07-19 2024-02-14 디아이씨 가부시끼가이샤 Active energy ray curable composition, cured film and anti-reflective film thereof
JP2023547331A (en) * 2020-10-05 2023-11-10 ダウ グローバル テクノロジーズ エルエルシー Method for making poly(oxyalkylene) acrylic polymers with high solids content and low viscosity
CN114989726B (en) * 2022-07-01 2023-08-15 艾力利荣化工科技(惠州)有限公司 Dustproof liquid vehicle cover and preparation method thereof

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3560544A (en) * 1968-04-01 1971-02-02 Dow Corning Triorganosiloxy endblocked polyoxyalkylene siloxane polymers
US4384096A (en) * 1979-08-27 1983-05-17 The Dow Chemical Company Liquid emulsion polymers useful as pH responsive thickeners for aqueous systems
US4421902A (en) * 1982-09-30 1983-12-20 Rohm And Haas Company Alkyl, poly(oxyethylene) poly(carbonyloxyethylene) acrylate emulsion copolymers for thickening purposes
US4514552A (en) * 1984-08-23 1985-04-30 Desoto, Inc. Alkali soluble latex thickeners
US4600761A (en) * 1985-04-04 1986-07-15 Alco Chemical Corporation Acrylic emulsion copolymers for thickening aqueous systems and copolymerizable surfactant monomers for use therein
US4616074A (en) * 1985-10-01 1986-10-07 Alco Chemical Corporation Acrylic-methylene succinic ester emulsion copolymers for thickening aqueous systems
US4693935A (en) * 1986-05-19 1987-09-15 Minnesota Mining And Manufacturing Company Polysiloxane-grafted copolymer pressure sensitive adhesive composition and sheet materials coated therewith
US4728571A (en) * 1985-07-19 1988-03-01 Minnesota Mining And Manufacturing Company Polysiloxane-grafted copolymer release coating sheets and adhesive tapes
USRE33156E (en) * 1984-08-23 1990-01-30 Desoto, Inc. Alkali soluble latex thickeners
US5011978A (en) * 1989-03-02 1991-04-30 National Starch And Chemical Investment Holding Corporation Copolymers as thickeners and modifiers for latex systems
US5136063A (en) * 1990-06-18 1992-08-04 Siltech Inc. Silicone fatty esters
US5162472A (en) * 1990-10-09 1992-11-10 Siltech Inc. Free radical silicone polymers
US5180843A (en) * 1990-06-18 1993-01-19 Lenick Jr Anthony J O Terminal substituted silicone fatty esters
US5248783A (en) * 1991-11-06 1993-09-28 Siltech Inc. Silicone alkoxylated esters carboxylate salts
US5294692A (en) * 1993-06-30 1994-03-15 National Starch And Chemical Investment Holding Corporation Associative monomers and polymers
US5296625A (en) * 1991-11-06 1994-03-22 Siltech Inc. Silicone alkoxylated esters carboxylates
US5770760A (en) * 1994-10-03 1998-06-23 Rhodia Inc. Polymers useful as pH responsive thickeners and monomers therefor
US6140435A (en) * 1997-04-09 2000-10-31 3V, Inc. Cross-linked acrylic copolymers in aqueous emulsion with improved thickening and suspending properties
US20040038151A1 (en) * 2001-11-26 2004-02-26 Berger Larry L Multilayer elements containing photoresist compositions and their use in microlithography
US20050158268A1 (en) * 2000-04-11 2005-07-21 Noveon Ip Holding Corp Stable aqueous surfactant compositions

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6094486A (en) * 1983-10-28 1985-05-27 Dainippon Printing Co Ltd Releasable treatment having printability
DE4139090A1 (en) 1991-11-28 1993-06-03 Stockhausen Chem Fab Gmbh USE OF COPOLYMERS WITH POLYSILOXANE UNITS FOR THE TREATMENT OF LEATHER AND FURS
US5292843A (en) 1992-05-29 1994-03-08 Union Carbide Chemicals & Plastics Technology Corporation Polymers containing macromonomers
DE4244951C2 (en) 1992-12-01 1998-08-06 Minnesota Mining & Mfg New poly:siloxane cpd(s) and carboxylic acid derivs., prepn. and use
JPH08134153A (en) 1994-11-07 1996-05-28 Hitachi Chem Co Ltd Graft copolymer, its production, weakly water-soluble resin composition and coating compound
JP4099310B2 (en) * 1997-07-23 2008-06-11 ビーエーエスエフ ソシエタス・ヨーロピア Use of polysiloxane-containing polymers for cosmetic formulations
US6197317B1 (en) 1997-08-11 2001-03-06 Marvin E. Klein Composition and method for the treatment of skin
FR2801198B1 (en) * 1999-09-16 2002-01-11 Oreal COSMETIC COMPOSITION COMPRISING AT LEAST ONE SILICONE / ACRYLATE COPOLYMER AND AT LEAST ONE CONDITIONING AGENT
KR20040012689A (en) * 2000-11-29 2004-02-11 이 아이 듀폰 디 네모아 앤드 캄파니 Multilayer elements containing photoresist compositions and their use in microlithography
US7025950B2 (en) 2002-05-09 2006-04-11 The Procter & Gamble Company Oral care compositions comprising dicarboxy functionalized polyorganosiloxanes
GB0225292D0 (en) 2002-10-30 2002-12-11 Unilever Plc Fabric care composition
ATE346585T1 (en) 2003-06-19 2006-12-15 Noveon Inc CATIONIC CASSIA DERIVATIVES AND APPLICATIONS THEREOF
EP1639018A1 (en) 2003-06-20 2006-03-29 Noveon IP Holdings Corp. Galactomannan hydrocolloids
US7176268B2 (en) * 2003-12-05 2007-02-13 Bausch & Lomb Incorporated Prepolymers for improved surface modification of contact lenses
WO2007035315A2 (en) 2005-09-16 2007-03-29 Lubrizol Advanced Materials, Inc. Sunscreen compositions
ES2398923T3 (en) 2006-02-24 2013-03-22 Lubrizol Advanced Materials, Inc. Polymers containing silicone copolyol macromers and personal hygiene compositions containing them

Patent Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3560544A (en) * 1968-04-01 1971-02-02 Dow Corning Triorganosiloxy endblocked polyoxyalkylene siloxane polymers
US4384096A (en) * 1979-08-27 1983-05-17 The Dow Chemical Company Liquid emulsion polymers useful as pH responsive thickeners for aqueous systems
US4421902A (en) * 1982-09-30 1983-12-20 Rohm And Haas Company Alkyl, poly(oxyethylene) poly(carbonyloxyethylene) acrylate emulsion copolymers for thickening purposes
US4514552A (en) * 1984-08-23 1985-04-30 Desoto, Inc. Alkali soluble latex thickeners
USRE33156E (en) * 1984-08-23 1990-01-30 Desoto, Inc. Alkali soluble latex thickeners
US4600761A (en) * 1985-04-04 1986-07-15 Alco Chemical Corporation Acrylic emulsion copolymers for thickening aqueous systems and copolymerizable surfactant monomers for use therein
US4728571A (en) * 1985-07-19 1988-03-01 Minnesota Mining And Manufacturing Company Polysiloxane-grafted copolymer release coating sheets and adhesive tapes
US4616074A (en) * 1985-10-01 1986-10-07 Alco Chemical Corporation Acrylic-methylene succinic ester emulsion copolymers for thickening aqueous systems
US4693935A (en) * 1986-05-19 1987-09-15 Minnesota Mining And Manufacturing Company Polysiloxane-grafted copolymer pressure sensitive adhesive composition and sheet materials coated therewith
US5011978A (en) * 1989-03-02 1991-04-30 National Starch And Chemical Investment Holding Corporation Copolymers as thickeners and modifiers for latex systems
US5136063A (en) * 1990-06-18 1992-08-04 Siltech Inc. Silicone fatty esters
US5180843A (en) * 1990-06-18 1993-01-19 Lenick Jr Anthony J O Terminal substituted silicone fatty esters
US5162472A (en) * 1990-10-09 1992-11-10 Siltech Inc. Free radical silicone polymers
US5248783A (en) * 1991-11-06 1993-09-28 Siltech Inc. Silicone alkoxylated esters carboxylate salts
US5296625A (en) * 1991-11-06 1994-03-22 Siltech Inc. Silicone alkoxylated esters carboxylates
US5294692A (en) * 1993-06-30 1994-03-15 National Starch And Chemical Investment Holding Corporation Associative monomers and polymers
US5412142A (en) * 1993-06-30 1995-05-02 National Starch And Chemical Investment Holding Corporation Associative monomers
US5770760A (en) * 1994-10-03 1998-06-23 Rhodia Inc. Polymers useful as pH responsive thickeners and monomers therefor
US6140435A (en) * 1997-04-09 2000-10-31 3V, Inc. Cross-linked acrylic copolymers in aqueous emulsion with improved thickening and suspending properties
US20050158268A1 (en) * 2000-04-11 2005-07-21 Noveon Ip Holding Corp Stable aqueous surfactant compositions
US20040038151A1 (en) * 2001-11-26 2004-02-26 Berger Larry L Multilayer elements containing photoresist compositions and their use in microlithography

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090299025A1 (en) * 2008-05-27 2009-12-03 O'lenick Kevin Anthony Multi alkoxylated silicone surfactants
US7718750B2 (en) * 2008-05-27 2010-05-18 Siltech Llc Multi alkoxylated silicone surfactants
US20120316308A1 (en) * 2009-12-01 2012-12-13 Lubrizol Advanced Materials, Inc. Hydrolytically Stable Multi-Purpose Polymers
US9187590B2 (en) * 2009-12-01 2015-11-17 Lubrizol Advanced Materials, Inc. Hydrolytically stable multi-purpose polymers
US9107855B2 (en) 2012-03-22 2015-08-18 Shin-Etsu Chemical Co., Ltd. Organopolysiloxane, cosmetic containing thereof, and method for preparing organopolysiloxane
US11466225B2 (en) 2018-03-06 2022-10-11 Shrieve Chemical Products, Inc. Lubricant and refrigerant compositions comprising polyalkylene glycols and uses thereof

Also Published As

Publication number Publication date
EP1987083B1 (en) 2014-08-27
KR101446926B1 (en) 2014-10-07
ES2500146T3 (en) 2014-09-30
BRPI0708183A2 (en) 2011-05-24
WO2007101048A2 (en) 2007-09-07
WO2007101048A3 (en) 2007-11-15
US8796484B2 (en) 2014-08-05
CN101389694B (en) 2013-03-27
KR20080096709A (en) 2008-10-31
BRPI0708183B1 (en) 2018-10-16
JP2009528402A (en) 2009-08-06
JP5368113B2 (en) 2013-12-18
EP1987083A2 (en) 2008-11-05
US20130137844A1 (en) 2013-05-30
CN101389694A (en) 2009-03-18
MX2008010700A (en) 2008-09-01

Similar Documents

Publication Publication Date Title
US8796484B2 (en) Polymerizable silicone copolyol macromers and polymers made therefrom
US7288616B2 (en) Multi-purpose polymers, methods and compositions
EP2507275B1 (en) Hydrolytically stable multi-purpose polymers
JP2008542462A (en) Hydrophilic organofunctional silicone copolymer
US20130035452A1 (en) Polysiloxane block copolymers and use thereof in cosmetic formulations
CN1447678A (en) Hair cosmetic formulations
JPH0826160B2 (en) Surface modifier for polymer materials
EP1199314B1 (en) Process for producing aqueous resin dispersion
US20120329955A1 (en) Polysiloxane block copolymers and the use thereof in cosmetic formulations
US9012516B2 (en) Copolymer, composition and method for modifying rheology
JP2024503778A (en) Silicone-(meth)acrylate copolymers and methods for their preparation and use in personal care compositions.
JPH10176019A (en) Production of aqueous emulsion of copolymer having organopolysiloxane side chain and alcohol-soluble polymer side chain
JP2000290326A (en) Preparation of star polymer
JP2001031529A5 (en)

Legal Events

Date Code Title Description
AS Assignment

Owner name: NOVEON, INC., OHIO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ROY, AROOP KUMAR;TAMARESELVY, KRISHNAN;REEL/FRAME:018991/0760;SIGNING DATES FROM 20070305 TO 20070308

AS Assignment

Owner name: LUBRIZOL ADVANCED MATERIALS, INC., OHIO

Free format text: CHANGE OF NAME;ASSIGNOR:NOVEON, INC.;REEL/FRAME:019434/0322

Effective date: 20070604

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION