US20070247130A1 - Adaptive current reversal comparator - Google Patents

Adaptive current reversal comparator Download PDF

Info

Publication number
US20070247130A1
US20070247130A1 US11/408,749 US40874906A US2007247130A1 US 20070247130 A1 US20070247130 A1 US 20070247130A1 US 40874906 A US40874906 A US 40874906A US 2007247130 A1 US2007247130 A1 US 2007247130A1
Authority
US
United States
Prior art keywords
transistor
inductor
comparison circuit
synchronous
switching regulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US11/408,749
Other versions
US7279877B1 (en
Inventor
Jaime Tseng
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Analog Devices International ULC
Original Assignee
Linear Technology LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linear Technology LLC filed Critical Linear Technology LLC
Priority to US11/408,749 priority Critical patent/US7279877B1/en
Assigned to LINEAR TECHNOLOGY CORP. reassignment LINEAR TECHNOLOGY CORP. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: TSENG, JAIME
Priority to TW095136795A priority patent/TWI396958B/en
Priority to KR1020060116141A priority patent/KR101304178B1/en
Application granted granted Critical
Publication of US7279877B1 publication Critical patent/US7279877B1/en
Publication of US20070247130A1 publication Critical patent/US20070247130A1/en
Assigned to Analog Devices International Unlimited Company reassignment Analog Devices International Unlimited Company CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: LINEAR TECHNOLOGY LLC
Assigned to LINEAR TECHNOLOGY LLC reassignment LINEAR TECHNOLOGY LLC CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: LINEAR TECHNOLOGY CORPORATION
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators

Definitions

  • This invention relates to voltage regulators. More specifically this invention relates to switching regulators with synchronous rectification.
  • a synchronous switching regulator typically includes a first transistor that is ON during a first portion of a switching cycle and a second transistor that is ON during a second portion of the switching cycle.
  • the first transistor conducts between a power supply and an inductor.
  • the second transistor is typically OFF during the first portion of the cycle.
  • power is transmitted from the power supply through the first transistor to the inductor (which in turn is typically coupled to a load and/or load capacitor).
  • the second transistor which may be referred to herein as the synchronous transistor, turns ON and couples ground (or some other suitable reference voltage) to the end of the inductor that is not coupled to the load.
  • both transistors may be OFF and the end of the inductor not coupled to the load may, in fact, be floating.
  • Switching regulators with synchronous rectification preferably require a comparator, or for the purposes of this application other suitable comparison circuit, that monitors current reversal across the synchronous transistor.
  • An ideal comparator with zero propagation delay would simply trip—i.e., change from a first output state to a second output state—when a sign reversal is detected across the synchronous transistor.
  • the output of the comparator is used to control the operation of the second transistor.
  • the synchronous switching regulator includes a power supply, a main transistor that typically operates as a switch, a synchronous transistor, and an inductor having one side coupled to the load.
  • the method preferably includes turning ON a first transistor during a first portion of a switching cycle.
  • the first transistor is preferably coupled to a second side of the inductor, the first transistor that conducts between the power supply and the inductor during the first portion of the switching cycle.
  • the method also preferably includes turning ON a second transistor that is ON during a second portion of the switching cycle and that is OFF during the remainder of the switching cycle, the second transistor that is also coupled to the second side of the inductor. The second transistor conducts between ground and the inductor during the second portion of the switching cycle.
  • the method also includes detecting a trip point at which the voltage at the second side of the inductor is about zero, the detecting using a comparison circuit, determining a time differential between the trip point and an end of the second portion of the switching cycle, and, finally adjusting an offset of the comparison circuit in response to the time differential.
  • FIG. 1 is a synchronous switching regulator according to the invention
  • FIG. 2 is a group of signal traces based on the circuit shown in FIG. 1 ;
  • FIG. 3 is a second group of signal traces based on the circuit in FIG. 1 ;
  • FIG. 4 is a second synchronous switching regulator according to the invention.
  • FIG. 5 is a group of signal traces based on the circuit in FIG. 4 ;
  • FIG. 6 is a second group of signal traces based on the circuit shown in FIG. 4 ;
  • FIG. 7 is a delay circuit
  • FIG. 8 is a group of signal traces based on the circuit shown in FIG. 7 .
  • the offset of the current reversal comparator is preferably automatically adjusted for any suitable output voltage and inductor value.
  • the adaptive current reversal comparator ensures the synchronous transistor is substantially always turned OFF at about zero inductor current—i.e., about the point of current reversal in the secondary switch.
  • the current reversal comparator is active preferably only in discontinuous conduction mode (DCM).
  • DCM discontinuous conduction mode
  • the current reversal comparator prevents inductor current reversal by turning OFF the synchronous transistor thereby mimicking a rectifying diode to prevent the backflow of current through the inductor.
  • CCM continuous conduction mode
  • the current reversal comparator is inactive, since the inductor current, by definition, does not reverse.
  • the synchronous transistor can either turn OFF too early or turn OFF too late.
  • the stored energy left in the inductor pulls the SW pin 114 below ground, until the internal body diode of the synchronous transistor conducts the necessary current and clamps the transistor pin at ⁇ 0.7 volts.
  • conducting through the body diode results in a reduction of efficiency because it is more efficient to conduct through the channel of the synchronous transistor than it is to conduct through the body diode of the synchronous transistor.
  • the reverse stored energy in the inductor pushes SW pin 114 HIGH right after the synchronous transistor is turned OFF.
  • the adaptive current reversal comparator takes advantage of these differences and servos its offset voltage such that the synchronous transistor is preferably turned OFF within a predetermined window of the discharge point of the inductor (wherein the inductor is substantially completely discharged)—i.e., the point of current reversal in the synchronous transistor.
  • the offset voltage of the adaptive current reversal comparator which controls where the comparator actually trips as opposed to where it should trip, is served such that the comparator (which responds to the discharge point of the inductor) substantially always trips within a certain predetermined time of the tripping of the synchronous transistor.
  • FIG. 1 shows the circuit implementation 100 of the adaptive current reversal comparator (RCMP) 101 .
  • the offset of RCMP 101 is developed by a current dropped across resistor 102 (which is the offset resistor coupled to the gate of transistor 135 and which receives a constant current from current source 106 .) This current is modulated by transistor 104 to servo the offset voltage as needed.
  • Transistor 104 is adapted to steer current away from a constant current source 106 as necessary.
  • the offset voltage can range from zero volts to a maximum of the current through source 106 ⁇ the resistance of resistor 102 .
  • Transistor 103 preferably provides level shifting to allow the current steering to be implemented.
  • Charging and discharging capacitor 108 modulates the RCMP offset voltage. To increase the offset voltage, capacitor 108 is discharged, and conversely to decrease the offset voltage, capacitor 108 is charged.
  • the implementation of the comparator offset servo loop could just as well be implemented with a digital counter (not shown) or a digital-to-analog converter (DAC) (also not shown) instead of using capacitor 108 .
  • DAC digital-to-analog converter
  • TDR 107 is typically controlled by an input from an oscillator.
  • BDR is controlled by the output of current reversal comparator 101 .
  • the RCMP offset voltage should preferably be decreased.
  • trace 202 representing IL
  • the current through the inductor trace 204 which represents the SW pin 114 that is coupled to inductor 112
  • trace 206 which represents BDR 109 input
  • trace 208 which represents RESETB which is input to latches 117 and 119
  • trace 210 PG which shows implementation of the decrease of the offset voltage.
  • the stored energy left in inductor 112 pushes SW pin 114 (which is located at the second end of the inductor) below ground right after BDR 109 goes LOW.
  • NOR gate 116 and NAND gate 118 preferably latch (which are implemented via logic 117 and 119 , respectively, and that have outputs that are inverted using inverters 133 and 132 , respectively), and drive PG 120 (coupled to the gate of transistor 122 , transistor 122 having a source coupled to constant current source 138 ) LOW, thereby charging capacitor 108 (see trace 210 in FIG. 2 ).
  • Block 121 preferably provides a delay of some predetermined amount—e.g., 70 nanoseconds—to allow transistor 104 to charge up sufficiently so as to be able to influence the operation of current reversal comparator 101 .
  • Trace 212 does not oscillate in FIG. 2 but its equivalent trace 312 in FIG. 3 does oscillate.
  • Trace 312 NG implements the increase of the offset voltage (see FIG. 3 ) wherein the BDR trace 306 shows BDR 109 forcing transistor 110 LOW after inductor 112 , carrying IL 202 , has fully discharged and reversed polarity.
  • FIG. 3 includes trace 302 representing IL, the current through the inductor, trace 304 which represents the pin voltage at SW pin 114 , trace 306 which represents BDR 109 input, trace 308 which represents RESETB which is input to latches 117 and 119 , trace 309 PG (which is flat under the conditions shown in FIG. 3 ), and trace 310 which shows NG implementing the increase of the offset voltage.
  • circuitry may be needed to recognize and/or distinguish the situation where the regulator is running in CCM at relatively HIGH output load current, and CCM at relatively LOW output load current.
  • CCM at HIGH output load current the traces for which are shown in FIG. 5
  • the inductor current does not reverse—i.e., the inductor current is typically above a certain threshold value.
  • circuitry is preferably only needed to prevent capacitor 108 from charging or discharging—i.e., circuitry that maintains capacitor 108 at a preferably predetermined independent value.
  • the regulator may be running in forced continuous mode and the inductor current may reverse. In this case, capacitor 108 needs to discharge to raise the RCMP offset voltage.
  • FIG. 4 shows additional circuitry.
  • This additional circuitry preferably distinguishes CCM at HIGH output load current from CCM at LOW output load current (and, preferably, both conditions from DCM mode).
  • NICMP comparison circuit 450 is used to detect whether SW pin 114 dips below ground or not. In the case of CCM at HIGH output load current, SW pin 114 dips below ground immediately following the falling edge of BDR 109 and circuit 450 goes HIGH. (See FIG.
  • trace 502 shows the inductor current IL 112
  • trace 504 shows SW pin 114
  • trace 506 shows BDR 109
  • trace 508 shows TDR 107
  • trace 510 shows circuit 450 .
  • circuit 450 resets latch 452 , which also is coupled to receive an input from TDR 107 , allows TDR 107 through latch 454 and gate 456 to pull RESETB LOW (see trace 512 ), keeping both PG 120 HIGH and NG 123 LOW (see traces 514 and 516 ). Keeping PG 120 HIGH and NG 123 LOW maintains the offset voltage independent of oscillation of IL 502 at preferably more than a predetermined threshold.
  • capacitor 108 is allowed to charge or discharge—i.e., is flexible—as needed to prevent the inductor current from reversing.
  • Inverter 481 and 482 invert the signals at the outputs of TDR 107 and 450 resectively.

Abstract

An adaptive current reversal comparator for synchronous switching regulator comparison circuit for use in a switching regulator is provided. The comparison circuit includes a voltage offset that is used at least in part to compensate for a propagation delay of the comparison circuit. The switching regulator includes an inductor and a synchronous transistor. The comparison circuit also includes a timing circuit that provides a threshold amount of time and an offset adjustment circuit. The offset adjustment circuit preferably decreases the voltage offset of the comparison circuit when a synchronous transistor control signal transitions to an OFF state more than the threshold amount of time prior to the discharge of an inductor. The comparison circuit also increases the voltage offset of the comparison circuit when the synchronous control signal transitions to an OFF state more than the threshold amount of time following the discharge of the inductor.

Description

    BACKGROUND OF THE INVENTION
  • This invention relates to voltage regulators. More specifically this invention relates to switching regulators with synchronous rectification.
  • A synchronous switching regulator typically includes a first transistor that is ON during a first portion of a switching cycle and a second transistor that is ON during a second portion of the switching cycle. During the first portion of the switching cycle, the first transistor conducts between a power supply and an inductor. The second transistor is typically OFF during the first portion of the cycle. In the first portion of the cycle, power is transmitted from the power supply through the first transistor to the inductor (which in turn is typically coupled to a load and/or load capacitor). During a second portion of the cycle, the second transistor, which may be referred to herein as the synchronous transistor, turns ON and couples ground (or some other suitable reference voltage) to the end of the inductor that is not coupled to the load. In certain parts of the switching cycle, both transistors may be OFF and the end of the inductor not coupled to the load may, in fact, be floating.
  • Switching regulators with synchronous rectification preferably require a comparator, or for the purposes of this application other suitable comparison circuit, that monitors current reversal across the synchronous transistor. An ideal comparator with zero propagation delay would simply trip—i.e., change from a first output state to a second output state—when a sign reversal is detected across the synchronous transistor. The output of the comparator is used to control the operation of the second transistor.
  • However, real comparators must offset the trip point to compensate for the propagation delays associated with the current reversal in the output inductor. The offset required depends on the propagation delay of the comparator and the time the inductor current takes to reach zero from the trip point. These two factors typically depend on the output voltage of the regulator and the inductor value used, both of which are typically beyond the IC (integrated circuit) designer's control. The current state of the art is to select the most likely output voltage and its corresponding inductor value, and then calculate the offset voltage the comparator needs. This approach works reasonably well for many applications. But for some applications the comparator either trips too early or too late, resulting in lowered efficiency.
  • It would be desirable to provide current reversal comparison circuits and methods that automatically adjusts for any suitable output voltage and/or inductor value.
  • SUMMARY OF THE INVENTION
  • It is an object of the invention to provide current reversal comparison circuits and methods that are automatically adjustable for any suitable output voltage and/or inductor value.
  • A method of providing power to a load using a synchronous switching regulator according to one embodiment of the invention is provided. The synchronous switching regulator includes a power supply, a main transistor that typically operates as a switch, a synchronous transistor, and an inductor having one side coupled to the load.
  • The method preferably includes turning ON a first transistor during a first portion of a switching cycle. The first transistor is preferably coupled to a second side of the inductor, the first transistor that conducts between the power supply and the inductor during the first portion of the switching cycle. The method also preferably includes turning ON a second transistor that is ON during a second portion of the switching cycle and that is OFF during the remainder of the switching cycle, the second transistor that is also coupled to the second side of the inductor. The second transistor conducts between ground and the inductor during the second portion of the switching cycle.
  • The method also includes detecting a trip point at which the voltage at the second side of the inductor is about zero, the detecting using a comparison circuit, determining a time differential between the trip point and an end of the second portion of the switching cycle, and, finally adjusting an offset of the comparison circuit in response to the time differential.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The following detailed description of the embodiments of the present disclosure can best be understood when read in conjunction with the following drawings, in which the features are not necessarily drawn to scale but rather are drawn as to best illustrate the pertinent features, wherein
  • FIG. 1 is a synchronous switching regulator according to the invention;
  • FIG. 2 is a group of signal traces based on the circuit shown in FIG. 1;
  • FIG. 3 is a second group of signal traces based on the circuit in FIG. 1;
  • FIG. 4 is a second synchronous switching regulator according to the invention;
  • FIG. 5 is a group of signal traces based on the circuit in FIG. 4;
  • FIG. 6 is a second group of signal traces based on the circuit shown in FIG. 4;
  • FIG. 7 is a delay circuit; and
  • FIG. 8 is a group of signal traces based on the circuit shown in FIG. 7.
  • DESCRIPTION OF INVENTION
  • In the present invention, the offset of the current reversal comparator is preferably automatically adjusted for any suitable output voltage and inductor value. The adaptive current reversal comparator ensures the synchronous transistor is substantially always turned OFF at about zero inductor current—i.e., about the point of current reversal in the secondary switch.
  • In synchronous regulators, the current reversal comparator is active preferably only in discontinuous conduction mode (DCM). The current reversal comparator prevents inductor current reversal by turning OFF the synchronous transistor thereby mimicking a rectifying diode to prevent the backflow of current through the inductor. In continuous conduction mode (CCM), the current reversal comparator is inactive, since the inductor current, by definition, does not reverse.
  • In convention implementations of DCM circuitry, the synchronous transistor can either turn OFF too early or turn OFF too late. When it turns OFF too early, the stored energy left in the inductor pulls the SW pin 114 below ground, until the internal body diode of the synchronous transistor conducts the necessary current and clamps the transistor pin at −0.7 volts. Typically, conducting through the body diode results in a reduction of efficiency because it is more efficient to conduct through the channel of the synchronous transistor than it is to conduct through the body diode of the synchronous transistor. When the synchronous transistor turns OFF too late, the reverse stored energy in the inductor pushes SW pin 114 HIGH right after the synchronous transistor is turned OFF.
  • The adaptive current reversal comparator according to the invention takes advantage of these differences and servos its offset voltage such that the synchronous transistor is preferably turned OFF within a predetermined window of the discharge point of the inductor (wherein the inductor is substantially completely discharged)—i.e., the point of current reversal in the synchronous transistor. In other words, the offset voltage of the adaptive current reversal comparator, which controls where the comparator actually trips as opposed to where it should trip, is served such that the comparator (which responds to the discharge point of the inductor) substantially always trips within a certain predetermined time of the tripping of the synchronous transistor.
  • Circuit Implementation
  • FIG. 1 shows the circuit implementation 100 of the adaptive current reversal comparator (RCMP) 101. The offset of RCMP 101 is developed by a current dropped across resistor 102 (which is the offset resistor coupled to the gate of transistor 135 and which receives a constant current from current source 106.) This current is modulated by transistor 104 to servo the offset voltage as needed. Transistor 104 is adapted to steer current away from a constant current source 106 as necessary. Thus, the offset voltage can range from zero volts to a maximum of the current through source 106× the resistance of resistor 102. Transistor 103 preferably provides level shifting to allow the current steering to be implemented.
  • Charging and discharging capacitor 108 modulates the RCMP offset voltage. To increase the offset voltage, capacitor 108 is discharged, and conversely to decrease the offset voltage, capacitor 108 is charged.
  • Alternatively, the implementation of the comparator offset servo loop could just as well be implemented with a digital counter (not shown) or a digital-to-analog converter (DAC) (also not shown) instead of using capacitor 108.
  • TDR 107 is typically controlled by an input from an oscillator. In DCM, BDR is controlled by the output of current reversal comparator 101.
  • In the case when the synchronous FET (NFET), transistor 110, is turned OFF too early by BDR 109, the RCMP offset voltage should preferably be decreased. (See FIG. 2, which includes trace 202 representing IL, the current through the inductor, trace 204 which represents the SW pin 114 that is coupled to inductor 112, trace 206 which represents BDR 109 input, trace 208 which represents RESETB which is input to latches 117 and 119, trace 210 PG, which shows implementation of the decrease of the offset voltage.1 The stored energy left in inductor 112 pushes SW pin 114 (which is located at the second end of the inductor) below ground right after BDR 109 goes LOW. Some time after the inductor current has discharged SW pin 114 swings HIGH and settles to the output voltage (VOUT). The time it takes BDR 109 (which responds to current reversal in transistor 110 as stated above) to go LOW and SW 114 to go HIGH is compared against a 20 nanoseconds delayed BDR signal 115 (which is coupled to receive an input from BDR 109). If the time differential between BDR 109 going LOW and SW 114 going HIGH is greater than 20 nanoseconds, NOR gate 116 and NAND gate 118 preferably latch (which are implemented via logic 117 and 119, respectively, and that have outputs that are inverted using inverters 133 and 132, respectively), and drive PG 120 (coupled to the gate of transistor 122, transistor 122 having a source coupled to constant current source 138) LOW, thereby charging capacitor 108 (see trace 210 in FIG. 2). Block 121 preferably provides a delay of some predetermined amount—e.g., 70 nanoseconds—to allow transistor 104 to charge up sufficiently so as to be able to influence the operation of current reversal comparator 101.
    1 Trace 212 does not oscillate in FIG. 2 but its equivalent trace 312 in FIG. 3 does oscillate. Trace 312 NG implements the increase of the offset voltage (see FIG. 3) wherein the BDR trace 306 shows BDR 109 forcing transistor 110 LOW after inductor 112, carrying IL 202, has fully discharged and reversed polarity.
  • In the situation when transistor 110 is turned OFF too late, SW pin 114 swings HIGH immediately after BDR 109 goes LOW. In this case gate 116 and gate 118 latch in the opposite state, and drive NG 123 (which is coupled to the gate of transistor 124 which itself is preferably coupled to constant current sink 136) is HIGH thereby discharging capacitor 108 (see trace 310 in FIG. 3). FIG. 3 includes trace 302 representing IL, the current through the inductor, trace 304 which represents the pin voltage at SW pin 114, trace 306 which represents BDR 109 input, trace 308 which represents RESETB which is input to latches 117 and 119, trace 309 PG (which is flat under the conditions shown in FIG. 3), and trace 310 which shows NG implementing the increase of the offset voltage.
  • CCM at High Load and CCM at Low Load
  • Additional circuitry may be needed to recognize and/or distinguish the situation where the regulator is running in CCM at relatively HIGH output load current, and CCM at relatively LOW output load current. In CCM at HIGH output load current (the traces for which are shown in FIG. 5), the inductor current does not reverse—i.e., the inductor current is typically above a certain threshold value. Thus, circuitry is preferably only needed to prevent capacitor 108 from charging or discharging—i.e., circuitry that maintains capacitor 108 at a preferably predetermined independent value.
  • In CCM at LOW output load current (the traces for which are shown in FIG. 6), the regulator may be running in forced continuous mode and the inductor current may reverse. In this case, capacitor 108 needs to discharge to raise the RCMP offset voltage.
  • FIG. 4 shows additional circuitry. This additional circuitry preferably distinguishes CCM at HIGH output load current from CCM at LOW output load current (and, preferably, both conditions from DCM mode). To distinguish CCM at HIGH output load current from CCM at LOW output load current, NICMP comparison circuit 450 is used to detect whether SW pin 114 dips below ground or not. In the case of CCM at HIGH output load current, SW pin 114 dips below ground immediately following the falling edge of BDR 109 and circuit 450 goes HIGH. (See FIG. 5 wherein trace 502 shows the inductor current IL 112, trace 504 shows SW pin 114, trace 506 shows BDR 109, trace 508 shows TDR 107, and trace 510 shows circuit 450.) In CCM at HIGH output load current, circuit 450 resets latch 452, which also is coupled to receive an input from TDR 107, allows TDR 107 through latch 454 and gate 456 to pull RESETB LOW (see trace 512), keeping both PG 120 HIGH and NG 123 LOW (see traces 514 and 516). Keeping PG 120 HIGH and NG 123 LOW maintains the offset voltage independent of oscillation of IL 502 at preferably more than a predetermined threshold.
  • In the case of CCM at LOW output load current, SW pin 114 does not dip below ground immediately following the falling edge of BDR 109 and circuit 450 stays LOW. (See FIG. 6 wherein trace 602 shows inductor current 112, trace 604 shows SW pin 114, trace 606 shows BDR 109, trace 608 shows TDR 107, trace 609 shows NICMP, trace 610 shows RESETB, trace 612 shows NG 123, and trace 614 shows PG 120.) In this situation, latch 452 preferably does not reset which prevents TDR 107 from going through latch 454. This results in a circuit that behaves substantially identically to the circuit in FIG. 1. capacitor 108 is allowed to charge or discharge—i.e., is flexible—as needed to prevent the inductor current from reversing. Inverter 481 and 482 invert the signals at the outputs of TDR 107 and 450 resectively.
  • The embodiments described hereinabove are further intended to explain best modes known of practicing the invention and to enable others skilled in the art to utilize the invention in such, or other, embodiments and with the various modifications required by the particular applications or uses of the invention. Accordingly, the description is not intended to limit the invention to the form disclosed herein. Also, it is intended that the appended claims be construed to include alternative embodiments.

Claims (19)

1. A method for adjusting the offset of a synchronous switching regulator comparison circuit, the synchronous switching regulator comparison circuit for use in a switching regulator, the comparison circuit comprising a voltage offset that is used at least in part to compensate for a propagation delay of the comparison circuit, the switching regulator comprising an inductor and a synchronous transistor, the operation of the synchronous transistor controlled by a synchronous transistor control signal, the method comprising:
comparing the synchronous transistor control signal with the discharge of the inductor;
when the synchronous transistor control signal transitions to an OFF state more than a threshold amount of time prior to the discharge of the inductor, decreasing the offset of the synchronous switching regulator comparison circuit; and
when the synchronous control signal transitions to an OFF state more than a threshold amount of time after the discharge of the inductor, increasing the offset.
2. The method of claim 1 further comprising determining whether the synchronous transistor control signal transitions to an OFF state more than a threshold amount of time prior to the discharge of the inductor.
3. The method of claim 1 further comprising determining whether the switching regulator is operating in discontinuous conduction mode or continuous conduction mode.
4. The method of claim 1 further comprising determining whether the switching regulator is operating in a continuous conduction mode at a light output current load characterized by a transistor pin that does not drop below ground.
5. The method of claim 1 further comprising determining whether the switching regulator is operating in a continuous conduction mode at a relatively heavy output current mode characterized by a pin coupled to the synchronous transistor that periodically drops below ground.
6. A synchronous switching regulator comparison circuit for use in a switching regulator, the comparison circuit comprising a voltage offset that is used at least in part to compensate for a propagation delay of the comparison circuit, the switching regulator comprising an inductor and a synchronous transistor, the comparison circuit comprising:
a timing circuit that provides a threshold amount of time; and
an offset adjustment circuit that decreases the voltage offset of the comparison circuit when a synchronous transistor control signal transitions to an OFF state more than the threshold amount of time prior to the discharge of an inductor and increases the voltage offset of the comparison circuit when the synchronous transistor control signal transitions to an OFF state more than the threshold amount of time following the discharge of the inductor.
7. The comparison circuit of claim 6 further comprising a delay circuit that provides a delay that corresponds to the threshold amount of time.
8. The comparison circuit of claim 6 further comprising a logic circuit that determines whether the switching regulator is operating in discontinuous conduction mode or continuous conduction mode.
9. The comparison circuit of claim 6 further comprising a logic circuit that determines whether the switching regulator is operating in a continuous conduction mode at a light output current load characterized by a synchronous transistor pin that does not drop below reference voltage level.
10. The comparison circuit of claim 6 further comprising a logic circuit that determines whether the switching regulator is operating in a continuous conduction mode at a heavy output current mode characterized by a synchronous transistor pin that periodically drops below a reference voltage level.
11. A synchronous switching regulator comprising:
a power supply;
an inductor having a first side coupled to a load;
a first transistor that is ON during a first portion of a switching cycle, the first transistor coupled to a second side of the inductor;
a second transistor that is ON during a second portion of the switching cycle and that is OFF during the remainder of the switching cycle, the second transistor that is coupled to the second side of the inductor;
the first transistor that conducts between the power supply and the load during the first portion of the switching cycle;
the second transistor that conducts between ground and the inductor during the second portion of the switching cycle;
a synchronous switching regulator comparator circuit that detects a trip point at which the voltage at the second side of the inductor is about zero;
a measurement circuit that determines a time differential between the trip point and an end of the second portion of the switching cycle; and
an offset adjustment circuit that adjusts an offset of the comparison circuit in response to a determination of the measurement circuit, the offset of the comparison circuit that controls a magnitude of the time difference between the total discharge of the inductor and the trip point of the comparator circuit.
12. The switching regulator of claim 11 further comprising a differentiation circuit that determines whether the switching regulator is operating in a continuous conduction mode characterized by zero current reversals or operating in a continuous conduction mode characterized by periodic current reversals.
13. The switching regulator of claim 11, the offset adjustment circuit further operable to decrease the offset of the comparison circuit when the measurement circuit determines that the trip point occurs more than a predetermined amount of time before the end of the second portion of the switching cycle.
14. The switching regulator of claim 11, the offset adjustment circuit further operable to increase the offset of the comparison circuit when the measurement circuit determines that the trip point occurs more than a predetermined amount of time after the end of the second portion of the switching cycle.
15. A method of providing power to a load using a synchronous switching regulator, the synchronous switching regulator comprising a first transistor, a synchronous transistor, a power supply and an inductor having a first side coupled to a load, the method comprising:
turning ON the first transistor during a first portion of a switching cycle, the first transistor coupled to a second side of the inductor, the first transistor that conducts between the power supply and the inductor during the first portion of the switching cycle;
turning ON a second transistor, the second transistor that is ON during a second portion of the switching cycle and that is OFF during the remainder of the switching cycle, the second transistor that is coupled to the second side of the inductor, the second transistor that conducts between ground and the inductor during the second portion of the switching cycle;
detecting a trip point at which the voltage at the second side of the inductor is about zero, the detecting using a comparison circuit;
determining a time differential between the trip point and an end of the second portion of the switching cycle; and
adjusting an offset of the comparison circuit in response to the time differential.
16. The method of claim 15 further comprising determining whether the switching regulator is operating in a continuous conduction mode characterized by zero current reversals or operating in a continuous conduction mode characterized by periodic current reversals.
17. The method of claim 15,
further comprising decreasing the offset of the comparison circuit when the trip point occurs more than a predetermined amount of time before the end of the second portion of the switching cycle.
18. The method of claim 15, further comprising increasing the offset of the comparison circuit when the trip point occurs more than a predetermined amount of time after the end of the second portion of the switching cycle.
19. A synchronous switching regulator comparison circuit for use in a switching regulator, the comparison circuit comprising a voltage offset that is used at least in part to compensate for a propagation delay of the comparison circuit, the switching regulator comprising an inductor and a synchronous transistor, the comparison circuit comprising:
a delay circuit that provides a threshold amount of delay;
a first offset adjustment loop that decreases the voltage offset of the comparison circuit when a synchronous transistor control signal transitions to an OFF state more than the threshold amount of delay prior to the discharge of an inductor; and
a second offset adjustment loop that increases the voltage offset of the comparison circuit when the synchronous control signal transitions to an OFF state more than the threshold amount of delay following the discharge of the inductor.
US11/408,749 2006-04-21 2006-04-21 Adaptive current reversal comparator Active US7279877B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US11/408,749 US7279877B1 (en) 2006-04-21 2006-04-21 Adaptive current reversal comparator
TW095136795A TWI396958B (en) 2006-04-21 2006-10-03 Method for adjusting the offset of a synchronous switching regulator comparison circuit, switching regulator comparison circuit, synchronous switching regulator comparison circuit, synchronous switching regulator, and method of providing power to a load
KR1020060116141A KR101304178B1 (en) 2006-04-21 2006-11-23 Adaptive current reversal comparator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/408,749 US7279877B1 (en) 2006-04-21 2006-04-21 Adaptive current reversal comparator

Publications (2)

Publication Number Publication Date
US7279877B1 US7279877B1 (en) 2007-10-09
US20070247130A1 true US20070247130A1 (en) 2007-10-25

Family

ID=38562125

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/408,749 Active US7279877B1 (en) 2006-04-21 2006-04-21 Adaptive current reversal comparator

Country Status (3)

Country Link
US (1) US7279877B1 (en)
KR (1) KR101304178B1 (en)
TW (1) TWI396958B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110291632A1 (en) * 2010-05-26 2011-12-01 Samsung Electronics Co., Ltd. Power Converters Including Zero-Current Detectors And Methods Of Power Conversion

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4710749B2 (en) * 2006-07-28 2011-06-29 富士電機システムズ株式会社 DC-DC converter control circuit and method
TW200841565A (en) * 2007-04-04 2008-10-16 Richtek Techohnology Corp Device for detecting zero current applied in switching regulator and method thereof
EP2104213B1 (en) 2008-03-19 2012-05-30 The Swatch Group Research and Development Ltd. Method of controlling a DC-DC converter in discontinuous mode
US8611109B2 (en) * 2010-09-30 2013-12-17 Infineon Technologies Ag Flyback converter with an adaptively controlled rectifier arrangement
US8829874B2 (en) * 2011-09-13 2014-09-09 Texas Instruments Deutschland Gmbh Electronic device and method for DC-DC conversion with low power mode
TWI470933B (en) * 2012-07-18 2015-01-21 Upi Semiconductor Corp Zero-current detecting circuit and operating method thereof
KR102031534B1 (en) 2013-01-07 2019-10-14 삼성전자 주식회사 Switching regulator and method for detecting zero current of switching regulator
US10116211B2 (en) 2015-02-11 2018-10-30 Mediatek Inc. Power converter with adaptive zero-crossing current detection
TWI560984B (en) 2015-04-16 2016-12-01 Anpec Electronics Corp Zero current detecting circuit and related synchronous switching power converter and method
CN112105119A (en) * 2019-06-18 2020-12-18 半导体组件工业公司 Current control for power converters

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3458798A (en) * 1966-09-15 1969-07-29 Ibm Solid state rectifying circuit arrangements
US3579091A (en) * 1969-05-16 1971-05-18 Bell Telephone Labor Inc Switching regulator with random noise generator
US3582758A (en) * 1969-09-30 1971-06-01 Ibm Rectifier using low saturation voltage transistors
US3784893A (en) * 1973-01-10 1974-01-08 Bell Telephone Labor Inc High voltage shutdown protection circuit with bias arrangement to decrease the voltage shutdown point with increasing load
US3992638A (en) * 1973-03-01 1976-11-16 Silec-Semi-Conducteurs Synchronous switch
US4462069A (en) * 1981-08-14 1984-07-24 American Standard Inc. d.c. To d.c. voltage regulator having an input protection circuit, a d.c. to d.c. inverter, a saturable reactor regulator, and main and auxiliary rectifying and filtering circuits
US4672303A (en) * 1986-08-28 1987-06-09 International Business Machines Corporation Inductor current control circuit
US4683529A (en) * 1986-11-12 1987-07-28 Zytec Corporation Switching power supply with automatic power factor correction
US4712169A (en) * 1985-11-22 1987-12-08 U.S. Philips Corporation Circuit arrangement for forming a direct voltage from a sinusoidal input voltage
US4922404A (en) * 1989-03-15 1990-05-01 General Electric Company Method and apparatus for gating of synchronous rectifier
US6310469B1 (en) * 2000-06-19 2001-10-30 Texas Instruments Incorporated System and method to detect synchronous switching regulator light load
US6580258B2 (en) * 1993-03-23 2003-06-17 Linear Technology Corporation Control circuit and method for maintaining high efficiency over broad current ranges in a switching regulator circuit
US6998828B2 (en) * 2004-03-29 2006-02-14 Semiconductor Components Industries, L.L.C. Low audible noise power supply controller and method therefor
US7030596B1 (en) * 2003-12-03 2006-04-18 Linear Technology Corporation Methods and circuits for programmable automatic burst mode control using average output current

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63307510A (en) 1987-06-09 1988-12-15 Seiko Instr & Electronics Ltd Reverse current preventing circuit for series voltage regulator
US4962290A (en) 1989-11-13 1990-10-09 Stonel Corporation Shaft position indicating and display means with adjustable mounting adapter
JP2681409B2 (en) 1990-06-19 1997-11-26 ファナック株式会社 DC-DC converter
JPH04101286A (en) 1990-08-21 1992-04-02 Toshiba Corp Number plate information reader
JP3144374B2 (en) * 1998-02-06 2001-03-12 日本電気株式会社 Signal change acceleration bus drive circuit
US6894463B2 (en) * 2002-11-14 2005-05-17 Fyre Storm, Inc. Switching power converter controller configured to provide load shedding
US6912139B2 (en) * 2002-11-14 2005-06-28 Fyre Storm, Inc. Multi-channel control methods for switched power converters
TWI234058B (en) * 2003-01-02 2005-06-11 Richtek Techohnology Corp Switching type voltage regulator and its method

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3458798A (en) * 1966-09-15 1969-07-29 Ibm Solid state rectifying circuit arrangements
US3579091A (en) * 1969-05-16 1971-05-18 Bell Telephone Labor Inc Switching regulator with random noise generator
US3582758A (en) * 1969-09-30 1971-06-01 Ibm Rectifier using low saturation voltage transistors
US3784893A (en) * 1973-01-10 1974-01-08 Bell Telephone Labor Inc High voltage shutdown protection circuit with bias arrangement to decrease the voltage shutdown point with increasing load
US3992638A (en) * 1973-03-01 1976-11-16 Silec-Semi-Conducteurs Synchronous switch
US4462069A (en) * 1981-08-14 1984-07-24 American Standard Inc. d.c. To d.c. voltage regulator having an input protection circuit, a d.c. to d.c. inverter, a saturable reactor regulator, and main and auxiliary rectifying and filtering circuits
US4712169A (en) * 1985-11-22 1987-12-08 U.S. Philips Corporation Circuit arrangement for forming a direct voltage from a sinusoidal input voltage
US4672303A (en) * 1986-08-28 1987-06-09 International Business Machines Corporation Inductor current control circuit
US4683529A (en) * 1986-11-12 1987-07-28 Zytec Corporation Switching power supply with automatic power factor correction
US4922404A (en) * 1989-03-15 1990-05-01 General Electric Company Method and apparatus for gating of synchronous rectifier
US6580258B2 (en) * 1993-03-23 2003-06-17 Linear Technology Corporation Control circuit and method for maintaining high efficiency over broad current ranges in a switching regulator circuit
US6310469B1 (en) * 2000-06-19 2001-10-30 Texas Instruments Incorporated System and method to detect synchronous switching regulator light load
US7030596B1 (en) * 2003-12-03 2006-04-18 Linear Technology Corporation Methods and circuits for programmable automatic burst mode control using average output current
US6998828B2 (en) * 2004-03-29 2006-02-14 Semiconductor Components Industries, L.L.C. Low audible noise power supply controller and method therefor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110291632A1 (en) * 2010-05-26 2011-12-01 Samsung Electronics Co., Ltd. Power Converters Including Zero-Current Detectors And Methods Of Power Conversion
KR20110129653A (en) * 2010-05-26 2011-12-02 삼성전자주식회사 Power converter having a zero-current detecting circuit and method of converting power
US8624573B2 (en) * 2010-05-26 2014-01-07 Samsung Electronics Co., Ltd. Power converters including zero-current detectors and methods of power conversion
KR101658783B1 (en) * 2010-05-26 2016-09-23 삼성전자주식회사 Power converter having a zero-current detecting circuit and method of converting power

Also Published As

Publication number Publication date
KR20070104200A (en) 2007-10-25
KR101304178B1 (en) 2013-09-09
TWI396958B (en) 2013-05-21
US7279877B1 (en) 2007-10-09
TW200741407A (en) 2007-11-01

Similar Documents

Publication Publication Date Title
US7279877B1 (en) Adaptive current reversal comparator
US7872461B2 (en) Reverse current stopping circuit of synchronous rectification type DC-DC converter
US8988052B2 (en) Control circuit for power supply including a detection circuit and a regulation circuit for regulating switching timing
US8129970B2 (en) Switching regulator with reverse current detection
US9088223B2 (en) Power factor correction circuit with input voltage estimation and driving method thereof
US7148670B2 (en) Dual mode buck regulator with improved transition between LDO and PWM operation
US8896283B2 (en) Synchronous switching power converter with zero current detection, and method thereof
US9812983B2 (en) Synchronous rectifier circuit
US7906942B2 (en) Control circuit of DC-DC converter with synchronous rectifier adjusting signal to improve efficiency at light loads and control method thereof
US8558529B2 (en) Control circuit for synchronous rectification type step-down switching regulator
US9564809B2 (en) Zero current detecting circuit and method and related synchronous switching power converter
US20090315523A1 (en) Dc-dc converter
US8823351B2 (en) Overvoltage threshold control system of DC to DC converter
US7548437B2 (en) Switching mode power supply
US20080298106A1 (en) Adaptive rectifier Architecture and method for switching regulators
TWI470393B (en) Load-adaptive power generator
US11095218B2 (en) Low-power DC-DC converter capable of preventing reverse current with digital operations and method of operating the same
US6055170A (en) Prediction methods and circuits for operating a transistor as a rectifier
JP4830218B2 (en) Drive signal supply circuit
US20120176104A1 (en) Synchronous Switching Power Converter with Zero Current Detection, and Method Thereof
US20200244180A1 (en) Semiconductor device and method of operating the same
US20090219083A1 (en) Electric circuit device
US7205751B2 (en) Enable and disable of diode emulation in a DC/DC converter
US20180331619A1 (en) Dc-to-dc controller and control method thereof
US10523184B2 (en) Oscillator, method of operating the same, and PWM controller including the same

Legal Events

Date Code Title Description
AS Assignment

Owner name: LINEAR TECHNOLOGY CORP., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:TSENG, JAIME;REEL/FRAME:017815/0270

Effective date: 20060418

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 12

AS Assignment

Owner name: ANALOG DEVICES INTERNATIONAL UNLIMITED COMPANY, IRELAND

Free format text: CHANGE OF NAME;ASSIGNOR:LINEAR TECHNOLOGY LLC;REEL/FRAME:057423/0001

Effective date: 20181105

Owner name: LINEAR TECHNOLOGY LLC, CALIFORNIA

Free format text: CHANGE OF NAME;ASSIGNOR:LINEAR TECHNOLOGY CORPORATION;REEL/FRAME:057421/0543

Effective date: 20170502