US20070266923A1 - Hybrid hull - Google Patents

Hybrid hull Download PDF

Info

Publication number
US20070266923A1
US20070266923A1 US11/436,429 US43642906A US2007266923A1 US 20070266923 A1 US20070266923 A1 US 20070266923A1 US 43642906 A US43642906 A US 43642906A US 2007266923 A1 US2007266923 A1 US 2007266923A1
Authority
US
United States
Prior art keywords
recess
transom
tunnel
tunnel recess
keel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/436,429
Inventor
Rex Orr
James Gregory
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
American Sports Car Design Inc
Original Assignee
American Sports Car Design Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by American Sports Car Design Inc filed Critical American Sports Car Design Inc
Priority to US11/436,429 priority Critical patent/US20070266923A1/en
Publication of US20070266923A1 publication Critical patent/US20070266923A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B1/00Hydrodynamic or hydrostatic features of hulls or of hydrofoils
    • B63B1/16Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving additional lift from hydrodynamic forces
    • B63B1/18Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving additional lift from hydrodynamic forces of hydroplane type
    • B63B1/20Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving additional lift from hydrodynamic forces of hydroplane type having more than one planing surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B1/00Hydrodynamic or hydrostatic features of hulls or of hydrofoils
    • B63B1/32Other means for varying the inherent hydrodynamic characteristics of hulls
    • B63B1/34Other means for varying the inherent hydrodynamic characteristics of hulls by reducing surface friction
    • B63B1/38Other means for varying the inherent hydrodynamic characteristics of hulls by reducing surface friction using air bubbles or air layers gas filled volumes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B39/00Equipment to decrease pitch, roll, or like unwanted vessel movements; Apparatus for indicating vessel attitude
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B1/00Hydrodynamic or hydrostatic features of hulls or of hydrofoils
    • B63B1/16Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving additional lift from hydrodynamic forces
    • B63B1/18Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving additional lift from hydrodynamic forces of hydroplane type
    • B63B1/20Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving additional lift from hydrodynamic forces of hydroplane type having more than one planing surface
    • B63B2001/203Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving additional lift from hydrodynamic forces of hydroplane type having more than one planing surface arranged in semi-catamaran configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B39/00Equipment to decrease pitch, roll, or like unwanted vessel movements; Apparatus for indicating vessel attitude
    • B63B39/06Equipment to decrease pitch, roll, or like unwanted vessel movements; Apparatus for indicating vessel attitude to decrease vessel movements by using foils acting on ambient water
    • B63B2039/067Equipment to decrease pitch, roll, or like unwanted vessel movements; Apparatus for indicating vessel attitude to decrease vessel movements by using foils acting on ambient water effecting motion dampening by means of fixed or movable resistance bodies, e.g. by bilge keels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B39/00Equipment to decrease pitch, roll, or like unwanted vessel movements; Apparatus for indicating vessel attitude
    • B63B39/02Equipment to decrease pitch, roll, or like unwanted vessel movements; Apparatus for indicating vessel attitude to decrease vessel movements by displacement of masses
    • B63B39/03Equipment to decrease pitch, roll, or like unwanted vessel movements; Apparatus for indicating vessel attitude to decrease vessel movements by displacement of masses by transferring liquids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T70/00Maritime or waterways transport
    • Y02T70/10Measures concerning design or construction of watercraft hulls

Definitions

  • This invention pertains to boat hull structures. More particularly, this invention pertains to a hybrid hull structure which combines handling characteristics of a V-hull design with the speed and acceleration characteristics of a tunnel-hull design.
  • Power boats display different operating characteristics depending on the shape of their hulls. Many hulls have been previously designed in an attempt to decrease the resistance of the hull moving across the water surface and to increase the directional stability of the hull while moving through or over the water. Attempts to achieve both of these objectives have often involved a compromise between decreased hull resistance and increased directional stability, due to the problems involved in achieving both of these advantages.
  • one common hull design is a flat bottom, since it draws a low amount of water for its weight.
  • the flat bottom hull is a classic example of a planing hull which tends to climb above the water to a full planing position from its at-rest displacement position.
  • the flat bottom hull lacks directional stability, and the hull bottom is often subjected to impact from passing waves.
  • V hull typically has a V-shaped (or cathedral-shaped) cross-section with a low keel running from the bow to the transom.
  • the V-shaped cross-section of the V hull is capable of cutting through waves and transitioning smoothly between an at-rest displacement position to a full planing position. Therefore, V hulls are capable of providing a smooth ride, seaworthiness and good handling and steering characteristics.
  • the V hull often has a wetted area (portion of hull contacting the water surface) larger than flat bottom hulls, the V hull provides considerably more resistance when moving, thus resulting in considerable loss of planing performance.
  • the V hull typically displays lateral instability, slide slipping or tipping during turns as water pushes against the keel of the V hull.
  • the V hull is susceptible to capsizing in waves or choppy water when the hull direction is at an angle, that is, not perpendicular to the waves.
  • the increased resistance of the V hull often causes the bow of a V hull boat to rise considerably during acceleration, resulting in a temporary decrease in forward visibility during acceleration from the at-rest displacement position to the full planing position.
  • Tunnel hull boats utilize a large channel running along the middle of the hull with multiple sponsons that extend the entire length of the hull. Tunnel hull boats are designed to trap air underneath the boat hull as the boat moves through water, thereby compressing the air and lifting the boat above the water line defined by the boat's natural buoyancy. This lifting typically results in decreased bow rise during acceleration, and the effect of lifting the boat decreases the boat's resistance through the water, allowing for faster acceleration and greater boat speeds. Furthermore, the entrapment of air underneath the boat hull typically results in aeration of the water beneath the boat hull. This aerated water typically displays more desirable hydrodynamic characteristics than water that is unaerated, resulting in decreased boat hull resistance as the hull travels through the water and therefore increased hull speed.
  • tunnel hull designs have inherently sacrificed handling characteristics for higher speed performance.
  • the performance of a conventional tunnel hull is load sensitive and sea state dependent.
  • heavy loads detract from the air capturing and speed enhancing ability of tunnel hulls.
  • Lighter loaded tunnel hull boats subjected to rapid acceleration are susceptible to poling, that is, capsizing end over end due to the lift provided by the tunnel hull entrapment.
  • tunnel hulls are less stable in choppy water or in low-speed travel such as during acceleration from the at-rest displacement position.
  • U.S. Pat. No. 3,996,869 (the '869 patent), U.S. Pat. No. 5,231,949 (the '949 patent), U.S. Pat. No. 5,265,554 (the '554 patent), and U.S. Pat. No. 6,216,622 B1 (the '622 patent) each disclose a substantially V-shaped central hull portion and a pair of adjacent sponsons. In each invention, the central hull portion and the sponsons begin proximate the bow of the hull and extend towards the stern.
  • the inner walls of the sponsons are substantially vertical, and the sponsons are stepped upwardly at approximately midships, such that the rear portions of the sponsons are substantially horizontal, or parallel to the plane of the water surface.
  • the hull includes mid hull sponsons and outer sponsons.
  • the mid hull sponsons form longitudinal tunnels with adjacent central hull portions and outer sponsons.
  • the outer sponsons engage and deflect side directed spray and wake downwardly, providing additional lift and decreasing or eliminating spray and signature wake.
  • the central hull and the sponsons form air tunnels which induce air beneath the hull and decrease frictional engagement of the hull with water, thereby improving the efficiency of the hull.
  • U.S. Pat. No. 4,587,918 (the '918 patent), also issued to Donald E. Burg, discloses a hull with one or more recesses that intersect the hull substantially beneath the waterline.
  • each recess is bounded by catamaran-like sidehulls with bow shaped members located at the forward and aft portions of the recess. The fore and aft bow shaped members contact the water like small bow sections, thereby improving hull ride and handling characteristics. The keels of the sidehulls diverge to allow narrow or fine entry forward.
  • the recess of the '918 patent is supplied with pressurized gas to maintain a lift-augmenting, restrained pressurized gas layer under the hull.
  • Carl J. Anderson in U.S. Pat. No. 5,833,502 discloses a deep V-shaped forward section and a rear tunnel section extending longitudinally aft from midships.
  • a vertically adjustable outboard motor is positioned at the forward end of the rear tunnel section. The center mounting of the engine in conjunction with the tunnel section of the hull reduces planing upon acceleration, improves center of gravity and reduces the risk to swimmers and water skiers from a rear mounted propeller.
  • U.S. Pat. No. 6,406,341 (the '341 patent), issued to Christopher S. Morejohn, discloses a shallow draft sports boat having a water tunnel in its bottom allowing one to place an outboard motor higher with respect to the hull of the boat than is conventional.
  • the water tunnel is relatively short with respect to the overall length of the boat, has a small volume and is provided with a recess at its leading end.
  • a vent communicates between the recess and a port in the transom above the water line to remove air entrainment from water that passes through the tunnel.
  • FIG. 1 is a side elevation view of a hybrid hull constructed in accordance with several features of the present invention
  • FIG. 2 is a bottom view of the hybrid hull of FIG. 1 ;
  • FIG. 3 is a stem elevation view of the hybrid hull of FIG. 1 ;
  • FIG. 4 is a bottom view of a traditional prior-art V-shaped hull, showing the pad below the full planing waterline;
  • FIG. 5 is a bow elevation of another embodiment of a hybrid hull constructed in accordance with the present invention.
  • FIG. 6 is a side elevation view of the embodiment of the hybrid hull shown in FIG. 5 ;
  • FIG. 7 is a side elevation of another embodiment of a hybrid hull constructed in accordance with the present invention, showing the hybrid hull partially immersed in water in its at-rest displacement position;
  • FIG. 8 is a side elevation of the alternative embodiment of the hybrid hull shown in FIG. 7 , showing the hybrid hull accelerating to its planing position with water draining from the ballast cavity;
  • FIG. 9 is a side elevation of another embodiment of a hybrid hull constructed in accordance with the present invention.
  • FIG. 10 is a bottom view of the embodiment of the hybrid hull shown in FIG. 9 .
  • a hybrid hull for increasing the directional stability of a boat hull while decreasing water resistance during planar movement is disclosed.
  • the hybrid hull of the present invention illustrated at 10 in the figures, combines the handling characteristics of a V hull design with the speed and stability of a tunnel hull design. Furthermore, the hybrid hull limits the possibility of poling by limiting excess air entrapment beneath the hull during high speed motion.
  • FIG. 1 is a partially cut away side elevation view of a hybrid hull 10 constructed in accordance with several features of the present invention.
  • the hull 10 includes a bow 12 with a keel 14 , and a stem 16 .
  • the bow 12 defines a starboard side 20 and a port side 22 intersecting in a traditional V-shaped configuration.
  • the bow 12 begins at a forward point 24 and widens aft for stability.
  • the keel 14 begins at the forward point 24 and extends aft along the intersection between the port side 22 and the starboard side 20 , defining a cutting edge that allows the hybrid hull 10 to cut through the water and any waves.
  • a port wall 21 and a starboard wall 23 begin at the forward point 24 and widen to extend substantially upward along the outer edges of the port and starboard sides 22 , 20 .
  • the stem 16 of the hybrid hull includes a transom 26 defining a rear surface of the hull 10 .
  • the transom connects rear edges of the port and starboard walls 21 , 23 to the port side 22 and the starboard side 20 .
  • a lower portion 28 of the transom 26 is offset forward from a transom upper portion 30 by a transom recess 32 .
  • the transom recess 32 of the hybrid hull 10 decreases water resistance, thereby improving the efficiency of the hull 10 .
  • the transom recess 32 also increases the speed at which the hybrid hull 10 achieves its planing position during acceleration.
  • the transom upper portion 30 further includes a motor well 19 defined by a recessed portion of the transom upper portion 30 .
  • the motor well 19 is adapted to receive a conventional propulsive device, such as an outboard motor (not shown).
  • a conventional propulsive device such as an outboard motor (not shown).
  • the top edge 29 of the transom lower portion 28 is connected to the lower edge 31 of the transom upper portion 30 by a spray deflector 18 defining a surface configured substantially parallel to the plane defined by an at-rest displacement waterline 38 .
  • the spray deflector 18 serves to limit the upward spray of the wake resulting from the forward propulsion of the hybrid hull 10 through water.
  • a plurality of additional spray deflectors 25 , 27 extend aft from the transom lower portion 28 . As illustrated, these deflectors 25 , 27 define a series of step-shaped protrusions extending aft from the transom lower portion 28 . It is appreciated that other shapes can be used in various configurations to accomplish the present invention. To this extent, it is understood that inclusion of the additional spray deflectors 25 , 27 is not necessary to achieve the present invention.
  • the keel 14 is interrupted by a tunnel recess 34 at a point 36 located between the at-rest displacement waterline 38 and a full planing waterline 40 .
  • the tunnel recess 34 defines a longitudinal passageway running from the keel point 36 and extending aft toward the stem 16 .
  • the tunnel recess 34 is provided with a vertically tapered forward end such that the tunnel recess 34 opens substantially upward into the hybrid hull 10 . This configuration is designed to limit the entrapment of frontal air into the tunnel recess 34 while the hybrid hull 10 is in a full planing position.
  • the tunnel recess 34 intersects at 42 with the transom lower portion 28 , such that the aft portion of the tunnel recess 34 adjacent said transom lower portion 28 is open.
  • the configuration of the tunnel recess 34 relative to the at-rest displacement waterline 38 and the full planing waterline 40 is such that the tunnel recess 34 is completely submerged when the hybrid hull 10 is in an at-rest displacement position and partially submerged when the hybrid hull 10 is in a full planing position.
  • those skilled in the art will recognize other possible configurations between the tunnel recess 34 and the at-rest displacement and full planing waterhnes 38 , 40 which can be used without departing from the spirit and scope of the present invention.
  • a bottom view of the illustrated embodiment of the present invention better illustrates the shape and configuration of the spray deflectors 18 , 25 , 27 , proximate the tunnel recess 34 .
  • the tunnel recess 34 is symmetrical about the plane defined by the keel 14 .
  • the lateral dimension of the tunnel recess forward portion 46 is tapered such that the tunnel recess 34 begins at the intersection point 36 and widens to extend aft.
  • the perimeter 44 of the tunnel recess 34 is beneath the at-rest displacement waterline 38 .
  • the intersection point 36 of the tunnel recess 34 with the keel 14 is positioned above the full planing waterline 40 , such that the forward portion 46 of the tunnel recess 34 is exposed to the air during full planing.
  • FIG. 3 is a stem elevation view of the hybrid hull 10 of the present invention, showing the intersection 42 of the tunnel recess 34 with the transom lower portion 28 .
  • the sidewalls 48 , 50 of the tunnel recess 34 cooperate with port and starboard sides 20 , 22 to define a port sponson 52 and a starboard sponson 54 .
  • the port and starboard sponsons 52 , 54 begin at the intersection point 36 of the keel 14 and the tunnel recess 34 and extend the full length of the tunnel recess 34 , terminating at the intersection 42 of the tunnel recess 34 with the transom lower portion 28 .
  • the point 36 of the keel 14 and the tunnel recess 34 is positioned sufficiently aft of the bow that the point 36 substantially aligns with the plane defined by the lower edges of the sponsons 52 , 54 .
  • the configuration of the sponsons 52 , 54 is such that the sponsons 52 , 54 act as a pair of running surfaces while the bow 12 and keel 14 act to break or piece waves in heavy seas and to cut through the water surface.
  • the sponsons 52 , 54 compliment the bow 12 by providing lateral stability to the hybrid hull 10 while the bow 12 and keel 14 provide directional stability.
  • the exposed portion 46 of the tunnel recess 34 channels air into the tunnel, providing additional lift to the rear of the hybrid hull 10 .
  • the bow 12 lowers proximate the stem 14 , and the tunnel recess 34 returns to a more level configuration.
  • the bow 12 and keel 14 move to partially block the forward exposure of the tunnel recess 34 , and the tapered front portion 46 of the tunnel recess 34 limits air entrapment beneath the hybrid hull 10 .
  • the limited amount of air entrapped beneath the hull serves to aerate the water beneath the stern 14 , thus providing a softer and less resistant aerated water surface beneath the hybrid hull 10 .
  • the tunnel recess 34 further serves to reduce the frictional wetted area of the hybrid hull 10 , as compared to a typical V-hull design.
  • the pad 56 ′ of a typical prior-art V-hull is illustrated in FIG. 4 .
  • the pad 56 ′ is defined by the portion of the hull positioned below the full planing waterline 40 .
  • the pad 56 of the hybrid hull is shown in FIG. 2 .
  • the tunnel recess 34 becomes filled with channeled air.
  • the tunnel recess 34 serves to reduce the pad 56 of the hybrid hull 10 during planing. As shown in FIG.
  • the pad 56 of the illustrated embodiment is defined only by those portions of the sponsons 52 , 54 extending below the full planing waterline 40 .
  • the tunnel recess 34 reduces the overall resistance exerted by water against the hybrid hull 10 and increases the efficiency of the hull design.
  • FIGS. 5 and 6 show another embodiment of a hybrid hull 10 ′constructed in accordance with the present invention.
  • the hybrid hull 10 ′ defines an air duct 62 having a plurality of intake openings 58 , 60 positioned above the at-rest displacement waterline 38 ′ proximate the forward surfaces of the bow 12 ′.
  • the air duct 62 connects the tunnel recess 34 ′ to the intake openings 58 , 60 on the port and starboard sides 22 ′, 20 ′.
  • each of the intake openings 58 , 60 is defined by a boring in the forward portions of the port and starboard sides 22 ′, 20 ′.
  • the air duct 62 connects two intake openings 58 , 60 to the tunnel recess 34 ′.
  • the air duct 62 and corresponding intake openings 58 , 60 are positioned in a substantially symmetrical configuration about the keel 14 , in order to reduce imbalance of the hybrid hull 10 ′ during motion.
  • the non-symmetrical configuration of air ducts and intake openings along the bow 12 ′ is contemplated.
  • FIG. 6 shows a partially cut away side elevation view of the present embodiment.
  • the air duct 62 is configured such as to allow air to enter and leave the tunnel recess 34 ′ while the hybrid hull 10 ′ is underway. This feature provides several advantages. As the hybrid hull 10 ′ begins forward motion from an at-rest displacement position, the air duct 62 allows air to fill the tunnel recess 34 , dissipating any hydraulic suction which may result from water within the tunnel recess 34 . Once the hybrid hull 10 ′ achieves planing position, the air duct 62 allows air to flow into the tunnel recess 34 and beneath the stern 14 , where the additional air provides additional aeration to the water beneath the hybrid hull 10 ′.
  • FIGS. 7 and 8 A further embodiment of the hybrid hull is illustrated at 10 ′′ in FIGS. 7 and 8 .
  • the hybrid hull 10 ′′ is partially immersed in water in its at-rest displacement position.
  • a forward portion of the tunnel recess 34 ′′ is intersected by a ballast cavity 66 .
  • the ballast cavity 66 extends forward into the bow 12 ′′ above the keel 14 ′′.
  • At least a portion of the ballast cavity 66 is positioned substantially below the at-rest displacement waterline 38 ′′. This configuration allows the ballast cavity 66 to partially fill with water as the ballast cavity is partially submerged below the surface of the water.
  • a damper 68 is movably positioned proximate the interface between the tunnel recess 34 ′′ and the ballast cavity 66 .
  • the damper 68 serves to regulate the flow of water out of the ballast cavity 66 and to limit debris from entering the ballast cavity 66 .
  • the damper 68 comprises a screen hinged to the interface between the tunnel recess 34 ′′ and the ballast cavity 66 .
  • a piston 70 connects the damper 68 to the ballast cavity 66 .
  • the hybrid hull 10 ′′ includes controls (not shown) for the piston 70 sufficient to allow a user to selectively position the damper 68 between an open and a closed position.
  • controls for the piston 70 sufficient to allow a user to selectively position the damper 68 between an open and a closed position.
  • the damper 68 may be fixed to substantially cover the interface between the tunnel recess 34 ′′ and the ballast cavity 66 without departing from the spirit and scope of the present invention.
  • FIG. 8 illustrates the present embodiment of the hybrid hull 10 ′′ accelerating to its planing position.
  • the bow 12 ′′ tends to rise as water resistance is applied to starboard and port sides 20 , 22 .
  • the damper 68 restricts the flow of water from the ballast cavity 66 , and the water-filled ballast cavity 66 acts as a forward counterbalance to limit bow rise during acceleration.
  • the damper 68 causes water within the ballast cavity 66 to drain from the ballast cavity 66 at a controlled rate as the hybrid hull 10 ′′ lifts above the at-rest displacement waterline 38 ′′.
  • the ballast cavity 66 empties, thereby decreasing the hull weight proximate the bow 12 ′′ and increasing the speed capabilities of the hybrid hull 10 ′′ while in motion along the full planing waterline 40 ′′.
  • the user is able to selectively position the damper 68 to an open position, thereby allowing water to fill the ballast cavity 66 upon deceleration of the hybrid hull 10 ′′.
  • FIGS. 9 and 10 Another embodiment of the hybrid hull is illustrated at 10 ′′′ in FIGS. 9 and 10 .
  • the embodiment of FIGS. 9 and 10 includes the air duct 62 having a plurality of intake openings 58 , 60 positioned above the at-rest displacement waterline 38 ′ proximate the forward surfaces of the bow 12 ′.
  • the air duct 62 connects the tunnel recess 34 ′ to the intake openings 58 , 60 on the port and starboard sides 22 ′, 20 ′.
  • a damper 68 is movably positioned proximate the interface between the tunnel recess 34 ′′ and the ballast cavity 66 .
  • a piston 70 connects the damper 68 to the ballast cavity 66 , and controls (not shown) for the piston 70 are provided to allow a user to selectively position the damper 68 between an open and a closed position.
  • the air duct 62 partially fills with water when the hybrid hull 10 ′′′ is in an at-rest position.
  • the damper 68 restricts the flow of water from the air duct 62 , and the partially water-filled air duct 62 acts as a forward counterbalance to limit bow rise during acceleration.
  • the air duct 62 empties, thereby decreasing the hull weight proximate the bow 12 ′′′ and increasing the speed capabilities of the hybrid hull 10 ′′′.
  • the user With the air duct 62 empty, the user is able to selectively position the damper 68 to an open position, thereby allowing air to fill the tunnel recess 34 and dissipating any hydraulic suction which may result from water within the tunnel recess 34 .
  • the air duct 62 allows air to flow into the tunnel recess 34 and beneath the stem 14 , where the additional air provides additional aeration to the water beneath the hybrid hull 10 ′′′.
  • the hybrid hull of the present invention combines the handling characteristics of a V hull design with the speed and acceleration characteristics of a tunnel hull design.
  • the transom recess feature of the hybrid hull decreases water resistance while increasing the speed at which the hybrid hull achieves its planing position during acceleration by encouraging rapid bow rise and allowing more immediate lift to planing position than the traditional V hull design.

Abstract

An improved hybrid boat hull adapted for use with a motor. The boat hull structure combines the handling characteristics of a v-hull design with a speed and acceleration characteristics of a tunnel-hull design. A transom recess is positioned approximate the aft portion of the stern, defining an upper portion and a lower portion which is offset forward of the upper portion. A tunnel recess is provided which includes a forward and an aft end. The tunnel recess cooperates with portions of the port and starboard side, such that the handling and acceleration features of the boat are enhanced.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • Not Applicable
  • STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT
  • Not Applicable
  • BACKGROUND OF THE INVENTION
  • 1. Field of Invention
  • This invention pertains to boat hull structures. More particularly, this invention pertains to a hybrid hull structure which combines handling characteristics of a V-hull design with the speed and acceleration characteristics of a tunnel-hull design.
  • 2. Description of the Related Art
  • Power boats display different operating characteristics depending on the shape of their hulls. Many hulls have been previously designed in an attempt to decrease the resistance of the hull moving across the water surface and to increase the directional stability of the hull while moving through or over the water. Attempts to achieve both of these objectives have often involved a compromise between decreased hull resistance and increased directional stability, due to the problems involved in achieving both of these advantages.
  • To decrease the hull resistance of a boat, one common hull design is a flat bottom, since it draws a low amount of water for its weight. The flat bottom hull is a classic example of a planing hull which tends to climb above the water to a full planing position from its at-rest displacement position. However, the flat bottom hull lacks directional stability, and the hull bottom is often subjected to impact from passing waves.
  • On the other hand, a more stable and softer riding hull in rough or choppy water is the V hull. The V hull typically has a V-shaped (or cathedral-shaped) cross-section with a low keel running from the bow to the transom. The V-shaped cross-section of the V hull is capable of cutting through waves and transitioning smoothly between an at-rest displacement position to a full planing position. Therefore, V hulls are capable of providing a smooth ride, seaworthiness and good handling and steering characteristics. However, because the V hull often has a wetted area (portion of hull contacting the water surface) larger than flat bottom hulls, the V hull provides considerably more resistance when moving, thus resulting in considerable loss of planing performance. The V hull typically displays lateral instability, slide slipping or tipping during turns as water pushes against the keel of the V hull. Also, the V hull is susceptible to capsizing in waves or choppy water when the hull direction is at an angle, that is, not perpendicular to the waves. Moreover, the increased resistance of the V hull often causes the bow of a V hull boat to rise considerably during acceleration, resulting in a temporary decrease in forward visibility during acceleration from the at-rest displacement position to the full planing position.
  • Attempts to decrease bow rise during acceleration while alleviating the problem of the V hull's tendency to tip over in turning situations have resulted in utilization of tunnel hulls. Tunnel hull boats utilize a large channel running along the middle of the hull with multiple sponsons that extend the entire length of the hull. Tunnel hull boats are designed to trap air underneath the boat hull as the boat moves through water, thereby compressing the air and lifting the boat above the water line defined by the boat's natural buoyancy. This lifting typically results in decreased bow rise during acceleration, and the effect of lifting the boat decreases the boat's resistance through the water, allowing for faster acceleration and greater boat speeds. Furthermore, the entrapment of air underneath the boat hull typically results in aeration of the water beneath the boat hull. This aerated water typically displays more desirable hydrodynamic characteristics than water that is unaerated, resulting in decreased boat hull resistance as the hull travels through the water and therefore increased hull speed.
  • Conventional tunnel hull designs have inherently sacrificed handling characteristics for higher speed performance. In particular, the performance of a conventional tunnel hull is load sensitive and sea state dependent. In other words, heavy loads detract from the air capturing and speed enhancing ability of tunnel hulls. Lighter loaded tunnel hull boats subjected to rapid acceleration are susceptible to poling, that is, capsizing end over end due to the lift provided by the tunnel hull entrapment. Also, as compared to the more traditional V hull, tunnel hulls are less stable in choppy water or in low-speed travel such as during acceleration from the at-rest displacement position.
  • Several devices have been developed in an attempt to combine the characteristics of multiple traditional hull designs to decrease hull resistance while increasing hull stability. Typical of the art are those devices disclosed in the following U.S. patents:
    Patent No. Inventor(s) Issue Date
    3,996,869 Robert O. Hadley Dec. 14, 1976
    4,165,703 Donald E. Burg Aug. 28, 1979
    4,587,918 Donald E. Burg May 13, 1986
    5,231,949 Robert Hadley Aug. 3, 1993
    5,265,554 Wilbur R. Meredith Nov. 30, 1993
    5,833,502 Carl J. Anderson Nov. 10, 1998
    6,216,622 Lindstrom/Kirkham Apr. 17, 2001
    6,406,341 Christopher S. Morejohn Jun. 18, 2002
    6,708,642 B1 Ian A. Taylor Mar. 23, 2004
  • Of these patents, U.S. Pat. No. 3,996,869 (the '869 patent), U.S. Pat. No. 5,231,949 (the '949 patent), U.S. Pat. No. 5,265,554 (the '554 patent), and U.S. Pat. No. 6,216,622 B1 (the '622 patent) each disclose a substantially V-shaped central hull portion and a pair of adjacent sponsons. In each invention, the central hull portion and the sponsons begin proximate the bow of the hull and extend towards the stern. In both the '869 patent and the '949 patent, the inner walls of the sponsons are substantially vertical, and the sponsons are stepped upwardly at approximately midships, such that the rear portions of the sponsons are substantially horizontal, or parallel to the plane of the water surface. In the '622 patent, the hull includes mid hull sponsons and outer sponsons. The mid hull sponsons form longitudinal tunnels with adjacent central hull portions and outer sponsons. The outer sponsons engage and deflect side directed spray and wake downwardly, providing additional lift and decreasing or eliminating spray and signature wake. In each of these patents, the central hull and the sponsons form air tunnels which induce air beneath the hull and decrease frictional engagement of the hull with water, thereby improving the efficiency of the hull.
  • In U.S. Pat. No. 4,165,703 (the '703 patent), issued to Donald E. Burg, a V hull having an air chamber substantially aft of midships and entirely beneath the waterline is disclosed. The '703 patent includes an air supply duct with a pressure control valve, providing injected air to the air chamber, thereby reducing the pad (wetted area of the hull during planing) and improving hull efficiency without substantially altering the V hull handling characteristics.
  • U.S. Pat. No. 4,587,918 (the '918 patent), also issued to Donald E. Burg, discloses a hull with one or more recesses that intersect the hull substantially beneath the waterline. In the '918 patent, each recess is bounded by catamaran-like sidehulls with bow shaped members located at the forward and aft portions of the recess. The fore and aft bow shaped members contact the water like small bow sections, thereby improving hull ride and handling characteristics. The keels of the sidehulls diverge to allow narrow or fine entry forward. Like the '703 patent, the recess of the '918 patent is supplied with pressurized gas to maintain a lift-augmenting, restrained pressurized gas layer under the hull.
  • Carl J. Anderson in U.S. Pat. No. 5,833,502 (the '502 patent) discloses a deep V-shaped forward section and a rear tunnel section extending longitudinally aft from midships. In the '502 patent, a vertically adjustable outboard motor is positioned at the forward end of the rear tunnel section. The center mounting of the engine in conjunction with the tunnel section of the hull reduces planing upon acceleration, improves center of gravity and reduces the risk to swimmers and water skiers from a rear mounted propeller.
  • U.S. Pat. No. 6,406,341 (the '341 patent), issued to Christopher S. Morejohn, discloses a shallow draft sports boat having a water tunnel in its bottom allowing one to place an outboard motor higher with respect to the hull of the boat than is conventional. In the '341 patent, the water tunnel is relatively short with respect to the overall length of the boat, has a small volume and is provided with a recess at its leading end. A vent communicates between the recess and a port in the transom above the water line to remove air entrainment from water that passes through the tunnel.
  • Finally, Ian A. Taylor, in U.S. Pat. No. 6,708,642 B1 (the '642 patent), discloses a hull having an upper flat bottom section and a pair of outer sponsons extending from a forward portion to a stern portion of the bottom of the flat bottom section. The pair of outer sponsons cooperate with the upper flat bottom section to define a tunnel, and an elongated center sponson extends along the bottom of the flat bottom section substantially parallel to the pair of outer sponsons. The center sponson has a forward section with an upwardly extending trailing step wall defining an upward step in the center sponson. An aft section of the center sponson has an upwardly curved leading edge intersecting the step wall of the forward section.
  • BRIEF SUMMARY OF THE INVENTION
  • According to one embodiment of the present invention, is provided.
  • Another embodiment provides
  • BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS
  • The above-mentioned features of the invention will become more clearly understood from the following detailed description of the invention read together with the drawings in which:
  • FIG. 1 is a side elevation view of a hybrid hull constructed in accordance with several features of the present invention;
  • FIG. 2 is a bottom view of the hybrid hull of FIG. 1;
  • FIG. 3 is a stem elevation view of the hybrid hull of FIG. 1;
  • FIG. 4 is a bottom view of a traditional prior-art V-shaped hull, showing the pad below the full planing waterline;
  • FIG. 5 is a bow elevation of another embodiment of a hybrid hull constructed in accordance with the present invention;
  • FIG. 6 is a side elevation view of the embodiment of the hybrid hull shown in FIG. 5;
  • FIG. 7 is a side elevation of another embodiment of a hybrid hull constructed in accordance with the present invention, showing the hybrid hull partially immersed in water in its at-rest displacement position;
  • FIG. 8 is a side elevation of the alternative embodiment of the hybrid hull shown in FIG. 7, showing the hybrid hull accelerating to its planing position with water draining from the ballast cavity;
  • FIG. 9 is a side elevation of another embodiment of a hybrid hull constructed in accordance with the present invention;
  • FIG. 10 is a bottom view of the embodiment of the hybrid hull shown in FIG. 9.
  • DETAILED DESCRIPTION OF THE INVENTION
  • A hybrid hull for increasing the directional stability of a boat hull while decreasing water resistance during planar movement is disclosed. The hybrid hull of the present invention, illustrated at 10 in the figures, combines the handling characteristics of a V hull design with the speed and stability of a tunnel hull design. Furthermore, the hybrid hull limits the possibility of poling by limiting excess air entrapment beneath the hull during high speed motion.
  • FIG. 1 is a partially cut away side elevation view of a hybrid hull 10 constructed in accordance with several features of the present invention. The hull 10 includes a bow 12 with a keel 14, and a stem 16. The bow 12 defines a starboard side 20 and a port side 22 intersecting in a traditional V-shaped configuration. The bow 12 begins at a forward point 24 and widens aft for stability. The keel 14 begins at the forward point 24 and extends aft along the intersection between the port side 22 and the starboard side 20, defining a cutting edge that allows the hybrid hull 10 to cut through the water and any waves. A port wall 21 and a starboard wall 23 begin at the forward point 24 and widen to extend substantially upward along the outer edges of the port and starboard sides 22, 20.
  • The stem 16 of the hybrid hull includes a transom 26 defining a rear surface of the hull 10. The transom connects rear edges of the port and starboard walls 21, 23 to the port side 22 and the starboard side 20. A lower portion 28 of the transom 26 is offset forward from a transom upper portion 30 by a transom recess 32. The transom recess 32 of the hybrid hull 10 decreases water resistance, thereby improving the efficiency of the hull 10. The transom recess 32 also increases the speed at which the hybrid hull 10 achieves its planing position during acceleration. As discussed in greater detail below, the configuration of the transom recess 32 offsetting the transom lower portion 28 forward from the transom upper portion 30 allows the bow 12 to rise as the hybrid hull 10 is propelled forward to achieve water-surface planing. In the illustrated embodiment, the transom upper portion 30 further includes a motor well 19 defined by a recessed portion of the transom upper portion 30. The motor well 19 is adapted to receive a conventional propulsive device, such as an outboard motor (not shown). Of course, those skilled in the art will recognize that the inclusion of the motor well 19 is not necessary to achieve the present invention.
  • The top edge 29 of the transom lower portion 28 is connected to the lower edge 31 of the transom upper portion 30 by a spray deflector 18 defining a surface configured substantially parallel to the plane defined by an at-rest displacement waterline 38. The spray deflector 18 serves to limit the upward spray of the wake resulting from the forward propulsion of the hybrid hull 10 through water. In the illustrated embodiment, a plurality of additional spray deflectors 25, 27 extend aft from the transom lower portion 28. As illustrated, these deflectors 25, 27 define a series of step-shaped protrusions extending aft from the transom lower portion 28. It is appreciated that other shapes can be used in various configurations to accomplish the present invention. To this extent, it is understood that inclusion of the additional spray deflectors 25, 27 is not necessary to achieve the present invention.
  • The keel 14 is interrupted by a tunnel recess 34 at a point 36 located between the at-rest displacement waterline 38 and a full planing waterline 40. The tunnel recess 34 defines a longitudinal passageway running from the keel point 36 and extending aft toward the stem 16. The tunnel recess 34 is provided with a vertically tapered forward end such that the tunnel recess 34 opens substantially upward into the hybrid hull 10. This configuration is designed to limit the entrapment of frontal air into the tunnel recess 34 while the hybrid hull 10 is in a full planing position. The tunnel recess 34 intersects at 42 with the transom lower portion 28, such that the aft portion of the tunnel recess 34 adjacent said transom lower portion 28 is open. In the illustrated embodiment, the configuration of the tunnel recess 34 relative to the at-rest displacement waterline 38 and the full planing waterline 40 is such that the tunnel recess 34 is completely submerged when the hybrid hull 10 is in an at-rest displacement position and partially submerged when the hybrid hull 10 is in a full planing position. However, those skilled in the art will recognize other possible configurations between the tunnel recess 34 and the at-rest displacement and full planing waterhnes 38, 40 which can be used without departing from the spirit and scope of the present invention.
  • In FIG. 2, a bottom view of the illustrated embodiment of the present invention better illustrates the shape and configuration of the spray deflectors 18, 25, 27, proximate the tunnel recess 34. The tunnel recess 34 is symmetrical about the plane defined by the keel 14. The lateral dimension of the tunnel recess forward portion 46 is tapered such that the tunnel recess 34 begins at the intersection point 36 and widens to extend aft. The perimeter 44 of the tunnel recess 34 is beneath the at-rest displacement waterline 38. However, the intersection point 36 of the tunnel recess 34 with the keel 14 is positioned above the full planing waterline 40, such that the forward portion 46 of the tunnel recess 34 is exposed to the air during full planing.
  • FIG. 3 is a stem elevation view of the hybrid hull 10 of the present invention, showing the intersection 42 of the tunnel recess 34 with the transom lower portion 28. In the illustrated embodiment, the sidewalls 48, 50 of the tunnel recess 34 cooperate with port and starboard sides 20, 22 to define a port sponson 52 and a starboard sponson 54. The port and starboard sponsons 52, 54 begin at the intersection point 36 of the keel 14 and the tunnel recess 34 and extend the full length of the tunnel recess 34, terminating at the intersection 42 of the tunnel recess 34 with the transom lower portion 28. The point 36 of the keel 14 and the tunnel recess 34 is positioned sufficiently aft of the bow that the point 36 substantially aligns with the plane defined by the lower edges of the sponsons 52, 54. The configuration of the sponsons 52, 54 is such that the sponsons 52, 54 act as a pair of running surfaces while the bow 12 and keel 14 act to break or piece waves in heavy seas and to cut through the water surface. In this respect, the sponsons 52, 54 compliment the bow 12 by providing lateral stability to the hybrid hull 10 while the bow 12 and keel 14 provide directional stability.
  • Referring to FIG. 1, when a forward force is applied to the transom upper portion 30, water surrounding the bow 12 pushes against the starboard and port sides 20, 22, tending to cause the bow 12 to lift. The configuration of the transom lower portion 28, offset forward from the transom upper portion 30, allows the hybrid hull 10 to pivot upward about the transom recess 32. This pivoting action further causes the bow 12 to rise as the hybrid hull 10 is propelled forward. As the bow 12 rises during acceleration, the forward portion 46 of the tunnel recess 34 is exposed. At the same time, passing water pushes against the stern 14, causing the stern to lift. The exposed portion 46 of the tunnel recess 34 channels air into the tunnel, providing additional lift to the rear of the hybrid hull 10. As this combined lifting force raises the stem 14 into a full planing position, the bow 12 lowers proximate the stem 14, and the tunnel recess 34 returns to a more level configuration. Hence, the bow 12 and keel 14 move to partially block the forward exposure of the tunnel recess 34, and the tapered front portion 46 of the tunnel recess 34 limits air entrapment beneath the hybrid hull 10. As the hybrid hull 10 travels forward, the limited amount of air entrapped beneath the hull serves to aerate the water beneath the stern 14, thus providing a softer and less resistant aerated water surface beneath the hybrid hull 10.
  • The tunnel recess 34 further serves to reduce the frictional wetted area of the hybrid hull 10, as compared to a typical V-hull design. The pad 56′ of a typical prior-art V-hull is illustrated in FIG. 4. In the prior art design, the pad 56′ is defined by the portion of the hull positioned below the full planing waterline 40. The pad 56 of the hybrid hull is shown in FIG. 2. As illustrated, as the hybrid hull 10 achieves a full planing position, the tunnel recess 34 becomes filled with channeled air. Thus, the tunnel recess 34 serves to reduce the pad 56 of the hybrid hull 10 during planing. As shown in FIG. 2, the pad 56 of the illustrated embodiment is defined only by those portions of the sponsons 52, 54 extending below the full planing waterline 40. By reducing the overall area of the pad 56 of the hybrid hull 10 during planing, the tunnel recess 34 reduces the overall resistance exerted by water against the hybrid hull 10 and increases the efficiency of the hull design.
  • FIGS. 5 and 6 show another embodiment of a hybrid hull 10′constructed in accordance with the present invention. As shown in the bow elevation view shown in FIG. 5, the hybrid hull 10′defines an air duct 62 having a plurality of intake openings 58, 60 positioned above the at-rest displacement waterline 38′ proximate the forward surfaces of the bow 12′. As illustrated, the air duct 62 connects the tunnel recess 34′ to the intake openings 58, 60 on the port and starboard sides 22′, 20′. In the illustrated embodiment, each of the intake openings 58, 60 is defined by a boring in the forward portions of the port and starboard sides 22′, 20′. The air duct 62 connects two intake openings 58, 60 to the tunnel recess 34′. Of course, those skilled in the art will recognize that more or fewer air ducts can be utilized in a variety of configurations without departing from the spirit and scope of the present invention. The air duct 62 and corresponding intake openings 58, 60 are positioned in a substantially symmetrical configuration about the keel 14, in order to reduce imbalance of the hybrid hull 10′ during motion. However, the non-symmetrical configuration of air ducts and intake openings along the bow 12′ is contemplated.
  • FIG. 6 shows a partially cut away side elevation view of the present embodiment. As shown in FIG. 6, the air duct 62 is configured such as to allow air to enter and leave the tunnel recess 34′ while the hybrid hull 10′ is underway. This feature provides several advantages. As the hybrid hull 10′ begins forward motion from an at-rest displacement position, the air duct 62 allows air to fill the tunnel recess 34, dissipating any hydraulic suction which may result from water within the tunnel recess 34. Once the hybrid hull 10′ achieves planing position, the air duct 62 allows air to flow into the tunnel recess 34 and beneath the stern 14, where the additional air provides additional aeration to the water beneath the hybrid hull 10′.
  • A further embodiment of the hybrid hull is illustrated at 10″ in FIGS. 7 and 8. Referring to FIG. 7, the hybrid hull 10″ is partially immersed in water in its at-rest displacement position. A forward portion of the tunnel recess 34″ is intersected by a ballast cavity 66. The ballast cavity 66 extends forward into the bow 12″ above the keel 14″. At least a portion of the ballast cavity 66 is positioned substantially below the at-rest displacement waterline 38″. This configuration allows the ballast cavity 66 to partially fill with water as the ballast cavity is partially submerged below the surface of the water.
  • A damper 68 is movably positioned proximate the interface between the tunnel recess 34″ and the ballast cavity 66. The damper 68 serves to regulate the flow of water out of the ballast cavity 66 and to limit debris from entering the ballast cavity 66. In the illustrated embodiment, the damper 68 comprises a screen hinged to the interface between the tunnel recess 34″ and the ballast cavity 66. Of course, those skilled in the art will recognize other devices suitable for use to accomplish the damper 68. In the illustrated embodiment, a piston 70 connects the damper 68 to the ballast cavity 66. The hybrid hull 10″ includes controls (not shown) for the piston 70 sufficient to allow a user to selectively position the damper 68 between an open and a closed position. Those skilled in the art will recognize other devices and configurations suitable for use in limiting the inward flow of debris to the ballast cavity while regulating the outward flow of water. To this extent, it is appreciated that the damper 68 may be fixed to substantially cover the interface between the tunnel recess 34″ and the ballast cavity 66 without departing from the spirit and scope of the present invention.
  • FIG. 8 illustrates the present embodiment of the hybrid hull 10″ accelerating to its planing position. As the hybrid hull 10″ is propelled forward, the bow 12″ tends to rise as water resistance is applied to starboard and port sides 20, 22. The damper 68 restricts the flow of water from the ballast cavity 66, and the water-filled ballast cavity 66 acts as a forward counterbalance to limit bow rise during acceleration. As shown in FIG. 8, the damper 68 causes water within the ballast cavity 66 to drain from the ballast cavity 66 at a controlled rate as the hybrid hull 10″ lifts above the at-rest displacement waterline 38″. As the hybrid hull 10″ achieves a full planing position, the ballast cavity 66 empties, thereby decreasing the hull weight proximate the bow 12″ and increasing the speed capabilities of the hybrid hull 10″ while in motion along the full planing waterline 40″. With the ballast cavity 66 empty, the user is able to selectively position the damper 68 to an open position, thereby allowing water to fill the ballast cavity 66 upon deceleration of the hybrid hull 10″.
  • Another embodiment of the hybrid hull is illustrated at 10′″ in FIGS. 9 and 10. As illustrated, the embodiment of FIGS. 9 and 10 includes the air duct 62 having a plurality of intake openings 58, 60 positioned above the at-rest displacement waterline 38′ proximate the forward surfaces of the bow 12′. As illustrated, the air duct 62 connects the tunnel recess 34′ to the intake openings 58, 60 on the port and starboard sides 22′, 20′. As shown in the bottom view of FIG. 10, a damper 68 is movably positioned proximate the interface between the tunnel recess 34″ and the ballast cavity 66. A piston 70 connects the damper 68 to the ballast cavity 66, and controls (not shown) for the piston 70 are provided to allow a user to selectively position the damper 68 between an open and a closed position.
  • In this embodiment, the air duct 62 partially fills with water when the hybrid hull 10′″ is in an at-rest position. As the hybrid hull 10′″ is propelled forward, the damper 68 restricts the flow of water from the air duct 62, and the partially water-filled air duct 62 acts as a forward counterbalance to limit bow rise during acceleration. As the hybrid hull 10′″ achieves a full planing position, the air duct 62 empties, thereby decreasing the hull weight proximate the bow 12′″ and increasing the speed capabilities of the hybrid hull 10′″. With the air duct 62 empty, the user is able to selectively position the damper 68 to an open position, thereby allowing air to fill the tunnel recess 34 and dissipating any hydraulic suction which may result from water within the tunnel recess 34. Once the hybrid hull 10′″ achieves planing position, the air duct 62 allows air to flow into the tunnel recess 34 and beneath the stem 14, where the additional air provides additional aeration to the water beneath the hybrid hull 10′″.
  • From the foregoing description, it will be recognized by those skilled in the art that several embodiments of a hybrid hull have been provided. The hybrid hull of the present invention combines the handling characteristics of a V hull design with the speed and acceleration characteristics of a tunnel hull design. The transom recess feature of the hybrid hull decreases water resistance while increasing the speed at which the hybrid hull achieves its planing position during acceleration by encouraging rapid bow rise and allowing more immediate lift to planing position than the traditional V hull design.
  • While the present invention has been illustrated by description of several embodiments and while the illustrative embodiments have been described in considerable detail, it is not the intention of the applicant to restrict or in any way limit the scope of the appended claims to such detail. Additional advantages and modifications will readily appear to those skilled in the art. The invention in its broader aspects is therefore not limited to the specific details, representative apparatus and methods, and illustrative examples shown and described. Accordingly, departures may be made from such details without departing from the spirit or scope of applicant's general inventive concept.

Claims (18)

1. An improved boat hull of the type adapted for use with a motor, said boat hull having a conventional V-shaped design including at least one bow, keel, stern, port side, starboard side, port wall, starboard wall, transom, at-rest displacement waterline, and full planing waterline; the improvement comprising:
a transom recess positioned proximate an aft portion of said stern, said transom recess defining a transom upper portion and a transom lower portion, said transom lower portion being offset forward of said transom upper portion; and,
a tunnel recess having a forward end and an aft end, said tunnel recess forward end interrupting said keel proximate a point located along said keel, said tunnel recess extending aft toward said stem, said tunnel recess being open at said aft end adjacent said transom lower portion;
whereby said tunnel recess cooperates with portions of said port side and said starboard side aft of said intersection point to define a port sponson and a starboard sponson, each of said port sponson and said starboard sponson defining a pad.
2. The improved boat hull of claim 1, said transom recess further defining a spray deflector, said spray deflector connecting an upper edge of said transom lower portion to a lower edge of said transom upper portion.
3. The improved boat hull of claim 1, said transom recess further defining:
a first spray deflector, said first spray deflector connecting an upper edge of said transom lower portion to a lower edge of said transom upper portion; and,
at least one additional spray deflector, each of said at least one additional spray deflector comprising a surface positioned substantially aft of said transom lower portion.
4. The improved boat hull of claim 1, wherein said point between said keel and said tunnel recess is positioned between said at-rest displacement waterline and said full planing waterline.
5. The improved boat hull of claim 1, said tunnel recess defining a longitudinal passageway beginning at said point and widening to extend aft toward said stern.
6. The improved boat hull of claim 1, said tunnel recess being substantially symmetrical about a plane defined by said keel.
7. The improved boat hull of claim 1, whereby a forward portion of said tunnel recess is vertically tapered such that said tunnel recess is positioned substantially above said point between said keel and said tunnel recess.
8. The improved boat hull of claim 1, whereby:
said transom recess further defines a first spray deflector, said first spray deflector connecting an upper edge of said transom lower portion to a lower edge of said transom upper portion, and whereby said transom recess further defines at least one additional spray deflector, each of said at least one additional spray deflector comprising a surface positioned substantially aft of said transom lower portion;
said point between said keel and said tunnel recess is positioned between said at-rest displacement waterline and said full planing waterline; and,
said tunnel recess defines a longitudinal passageway beginning at said point and extending aft toward said stern, said longitudinal passageway being substantially symmetrical about a plane defined by said keel, a forward portion of said tunnel recess being vertically tapered such that said tunnel recess is positioned substantially above said point between said keel and said tunnel recess.
9. The improved boat hull of claim 1, said improvement further comprising a counterbalancing means for limiting bow rise during acceleration of said boat hull, said counterbalancing means comprising a ballast cavity positioned proximate said bow above said keel, said ballast cavity being configured substantially below said at-rest displacement waterline such as to allow said ballast cavity to substantially fill with water when said boat hull is positioned in an at-rest displacement position.
10. The improved boat hull of claim 9, said counterbalancing means comprising:
a ballast cavity extending forward from said tunnel recess forward end, said ballast cavity being positioned substantially above said keel, said ballast cavity being configured substantially below said at-rest displacement waterline such as to allow said ballast cavity to substantially fill with water when said boat hull is positioned in an at-rest displacement position; and,
a damper for regulating regulate the flow of water out of said ballast cavity.
11. The improved boat hull of claim 9, said counterbalancing means comprising:
a ballast cavity extending forward from said tunnel recess forward end, said ballast cavity being positioned substantially above said keel, said ballast cavity being configured substantially below said at-rest displacement waterline such as to allow said ballast cavity to substantially fill with water when said boat hull is positioned in an at-rest displacement position;
a damper for regulating the flow of water out of said ballast cavity, said dampener comprising a screen hinged to said ballast cavity proximate said tunnel recess forward end; and
a piston connecting said damper to said ballast cavity, said piston being configured to allow said damper to be selectively positioned between an open and a closed position.
12. The improved boat hull of claim 1, said improvement further comprising:
a ballast cavity extending forward from said tunnel recess forward end, said ballast cavity being positioned substantially above said keel, said ballast cavity being configured substantially below said at-rest displacement waterline such as to allow said ballast cavity to substantially fill with water when said boat hull is positioned in an at-rest displacement position; and,
a damper for regulating the flow of water out of said ballast cavity, said dampener comprising a screen fixedly attached to said ballast cavity proximate said tunnel recess forward end; and whereby,
said transom recess further defines a first spray deflector, said first spray deflector connecting an upper edge of said transom lower portion to a lower edge of said transom upper portion, and whereby said transom recess further defines at least one additional spray deflector, each of said at least one additional spray deflector comprising a surface positioned substantially aft of said transom lower portion;
said point between said keel and said tunnel recess is positioned between
said at-rest displacement waterline and said full planing waterline; and, said tunnel recess defines a longitudinal passageway beginning at said point and extending aft toward said stern, said longitudinal passageway being substantially symmetrical about a plane defined by said keel, a forward portion of said tunnel recess being vertically tapered such that said tunnel recess is positioned substantially above said point between said keel and said tunnel recess.
13. An improved boat hull of the type adapted for use with a motor, said boat hull having a conventional V-shaped design including at least one bow, keel, stern, port side, starboard side, port wall, starboard wall, transom, at-rest displacement waterline, and full planing waterline; the improvement comprising:
a tunnel recess having a forward end and an aft end, said tunnel recess forward end interrupting said keel proximate a point located along said keel, said tunnel recess extending aft toward said stern, said tunnel recess being open at said aft end adjacent said transom lower portion; and
a ventilation means for ventilating said tunnel recess, said ventilation means comprising:
an intake opening positioned along an exterior surface of said bow; and,
an air duct connecting said tunnel recess to said intake opening, said air duct being configured to allow air to enter and leave said tunnel recess;
whereby said tunnel recess cooperates with portions of said port side and said starboard side aft of said intersection point to define a port sponson and a starboard sponson, each of said port sponson and said starboard sponson defining a pad.
14. The improved boat hull of claim 13, said means for ventilating said tunnel recess comprising:
an intake opening positioned proximate a forward surface of said bow above the at-rest displacement waterline; and,
an air duct extending forward from said tunnel recess forward end, said air duct being positioned substantially above said keel, said air duct connecting said tunnel recess to said intake opening, said air duct being configured to allow air to enter and leave said tunnel recess.
15. The improved boat hull of claim 14, said means for ventilating said tunnel recess further comprising:
a damper for regulating the flow of water out of said air duct, said dampener comprising a screen fixed to proximate an intersection of said air duct and said tunnel recess forward end.
16. The improved boat hull of claim 14, said means for ventilating said tunnel recess further comprising:
a damper for regulating the flow of water out of said air duct, said dampener comprising a screen fixed to proximate an intersection of said air duct and said tunnel recess forward end; and
a piston connecting said damper to said ballast cavity, said piston being configured to allow said damper to be selectively positioned between an open and a closed position.
17. An improved boat hull of the type adapted for use with a motor, said boat hull having a conventional V-shaped design including at least one bow, keel, stern, port side, starboard side, port wall, starboard wall, transom, at-rest displacement waterline, and full planing waterline; the improvement comprising:
a transom recess positioned proximate an aft portion of said stern, said transom recess defining a transom upper portion and a transom lower portion, said transom lower portion being offset forward of said transom upper portion, said transom recess further defining a first spray deflector, said first spray deflector connecting an upper edge of said transom lower portion to a lower edge of said transom upper portion, said transom recess further defining at least one additional spray deflector, each of said at least one additional spray deflector comprising a surface positioned substantially aft of said transom lower portion;
a tunnel recess having a forward end and an aft end, said tunnel recess forward end interrupting said keel proximate a point located along said keel, said point between said keel and said tunnel recess being positioned between said at-rest displacement waterline and said full planing waterline, said tunnel recess defining a longitudinal passageway beginning at said point and extending aft toward said stem, said longitudinal passageway being substantially symmetrical about a plane defined by said keel, said tunnel recess forward portion being vertically tapered such that said tunnel recess is positioned substantially above said point between said keel and said tunnel recess, said tunnel recess being open at said aft end adjacent said transom lower portion;
an intake opening positioned proximate a forward surface of said bow above the at-rest displacement waterline; and,
an air duct connecting said tunnel recess forward end to said intake opening, said air duct being configured to allow air to enter and leave said tunnel recess;
whereby said tunnel recess cooperates with portions of said port side and said starboard side aft of said intersection point to define a port sponson and a starboard sponson, each of said port sponson and said starboard sponson defining a pad.
18. An improved boat hull of the type adapted for use with a motor, said boat hull having a conventional V-shaped design including at least one bow, keel, stern, port side, starboard side, port wall, starboard wall, transom, at-rest displacement waterline, and full planing waterline; the improvement comprising:
a transom recess positioned proximate an aft portion of said stern, said transom recess defining a transom upper portion and a transom lower portion, said transom lower portion being offset forward of said transom upper portion, said transom recess further defining a first spray deflector, said first spray deflector connecting an upper edge of said transom lower portion to a lower edge of said transom upper portion, said transom recess further defining at least one additional spray deflector, each of said at least one additional spray deflector comprising a surface positioned substantially aft of said transom lower portion;
a tunnel recess having a forward end and an aft end, said tunnel recess forward end interrupting said keel proximate a point located along said keel, said point between said keel and said tunnel recess being positioned between said at-rest displacement waterline and said full planing waterline, said tunnel recess defining a longitudinal passageway beginning at said point and extending aft toward said stem, said longitudinal passageway being substantially symmetrical about a plane defined by said keel, said tunnel recess forward portion being vertically tapered such that said tunnel recess is positioned substantially above said point between said keel and said tunnel recess, said tunnel recess being open at said aft end adjacent said transom lower portion;
an intake opening positioned proximate a forward surface of said bow above the at-rest displacement waterline;
an air duct connecting said tunnel recess forward end to said intake opening, said air duct being configured to allow air to enter and leave said tunnel recess;
a ballast cavity extending forward from said tunnel recess forward end, said ballast cavity being positioned substantially above said keel, said ballast cavity being configured substantially below said at-rest displacement waterline such as to allow said ballast cavity to substantially fill with water when said boat hull is positioned in an at-rest displacement position,
a damper for regulating the flow of water out of said ballast cavity, said dampener comprising a screen hinged to said ballast cavity proximate said tunnel recess forward end; and
a piston connecting said damper to said ballast cavity, said piston being configured to allow said damper to be selectively positioned between an open and a closed position;
whereby said tunnel recess cooperates with portions of said port side and said starboard side aft of said intersection point to define a port sponson and a starboard sponson, each of said port sponson and said starboard sponson defining a pad.
US11/436,429 2006-05-18 2006-05-18 Hybrid hull Abandoned US20070266923A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/436,429 US20070266923A1 (en) 2006-05-18 2006-05-18 Hybrid hull

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/436,429 US20070266923A1 (en) 2006-05-18 2006-05-18 Hybrid hull

Publications (1)

Publication Number Publication Date
US20070266923A1 true US20070266923A1 (en) 2007-11-22

Family

ID=38710831

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/436,429 Abandoned US20070266923A1 (en) 2006-05-18 2006-05-18 Hybrid hull

Country Status (1)

Country Link
US (1) US20070266923A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110106729A1 (en) * 2007-06-26 2011-05-05 Ebay, Inc. Economic optimization for product search relevancy
US20110107954A1 (en) * 2009-11-02 2011-05-12 Schaefer Jr Louis E Combination Catamaran and V-hull
CN103171736A (en) * 2013-03-01 2013-06-26 刘长东 Device for reducing shipping resistance of ships
WO2015179409A1 (en) * 2014-05-21 2015-11-26 Guerard Roger Hybrid vee-hull with sponsons
WO2018217183A1 (en) * 2017-05-26 2018-11-29 Johnston Daniel D Recon marine vessel

Citations (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3382833A (en) * 1966-06-08 1968-05-14 Wukowitz Edward High-speed motorboat hull
US3469549A (en) * 1968-01-11 1969-09-30 Randolph S Rae Planing boat
US3726246A (en) * 1971-04-07 1973-04-10 E Wukowitz Ground effect craft with divergent channel
US3930274A (en) * 1972-02-18 1976-01-06 Syfritt Harold A Assembly for use in recreational activities
US3996869A (en) * 1975-09-08 1976-12-14 Hadley Robert O Dihedral tunnel boat hull
US4031841A (en) * 1973-11-23 1977-06-28 Bredt-Kat, Inc. Controlled air film hull for watercraft
US4031846A (en) * 1975-10-09 1977-06-28 Tone John W Anti-cavitation shroud and rudder
US4165703A (en) * 1976-11-01 1979-08-28 Burg Donald E Air ride boat hull
US4587918A (en) * 1976-11-01 1986-05-13 Burg Donald E Fine entry air ride boat hull
US4672905A (en) * 1984-11-28 1987-06-16 Pipkorn Howard W Boat hull with center V-hull and sponsons
US4708085A (en) * 1984-12-06 1987-11-24 Blee Leonard J Marine hull
US4896621A (en) * 1988-07-29 1990-01-30 Coles Charles F Method of modifying a boat hull to obtain enhanced lift and rough water stability
US4951591A (en) * 1988-07-29 1990-08-28 Coles Charles F Powered boat hull
US4959032A (en) * 1987-09-08 1990-09-25 Blohm + Voss Ag Water craft with guide fins
US5016552A (en) * 1988-02-05 1991-05-21 Ludlow Roy S Boat hull
US5141456A (en) * 1986-11-15 1992-08-25 Blohm+Voss Ag Water craft with guide fins
US5231949A (en) * 1990-05-08 1993-08-03 Robert Hadley Dihedral tunnel boat hull
US5265554A (en) * 1992-06-23 1993-11-30 Meredith Marine, Inc. Boat construction
US5379710A (en) * 1993-10-15 1995-01-10 Parnigoni; Johann Asymmetrical sailing catamaran keels
US5833502A (en) * 1996-06-19 1998-11-10 Anderson; Carl J. Boat construction
US6216622B1 (en) * 1997-09-10 2001-04-17 N.P.M. Holdings, Inc. Boat hull with center V-hull and sponsons
US6406341B1 (en) * 2000-11-20 2002-06-18 Hell's Bay Boat Works Co. Shallow draft boat
US6708642B1 (en) * 2002-02-22 2004-03-23 Reflex Advanced Marine Corp. Tri-sponson boat hull and method of making boat hulls
US6773316B1 (en) * 2002-01-31 2004-08-10 Brunswick Corporation Non-ventilating aft thruster tunnel design
US20050087120A1 (en) * 2003-05-02 2005-04-28 Anthony Kalil Vessel hull

Patent Citations (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3382833A (en) * 1966-06-08 1968-05-14 Wukowitz Edward High-speed motorboat hull
US3469549A (en) * 1968-01-11 1969-09-30 Randolph S Rae Planing boat
US3726246A (en) * 1971-04-07 1973-04-10 E Wukowitz Ground effect craft with divergent channel
US3930274A (en) * 1972-02-18 1976-01-06 Syfritt Harold A Assembly for use in recreational activities
US4031841A (en) * 1973-11-23 1977-06-28 Bredt-Kat, Inc. Controlled air film hull for watercraft
US3996869A (en) * 1975-09-08 1976-12-14 Hadley Robert O Dihedral tunnel boat hull
US4031846A (en) * 1975-10-09 1977-06-28 Tone John W Anti-cavitation shroud and rudder
US4165703A (en) * 1976-11-01 1979-08-28 Burg Donald E Air ride boat hull
US4587918A (en) * 1976-11-01 1986-05-13 Burg Donald E Fine entry air ride boat hull
US4672905A (en) * 1984-11-28 1987-06-16 Pipkorn Howard W Boat hull with center V-hull and sponsons
US4708085A (en) * 1984-12-06 1987-11-24 Blee Leonard J Marine hull
US5141456A (en) * 1986-11-15 1992-08-25 Blohm+Voss Ag Water craft with guide fins
US4959032A (en) * 1987-09-08 1990-09-25 Blohm + Voss Ag Water craft with guide fins
US5016552A (en) * 1988-02-05 1991-05-21 Ludlow Roy S Boat hull
US4951591A (en) * 1988-07-29 1990-08-28 Coles Charles F Powered boat hull
US4896621A (en) * 1988-07-29 1990-01-30 Coles Charles F Method of modifying a boat hull to obtain enhanced lift and rough water stability
US5231949A (en) * 1990-05-08 1993-08-03 Robert Hadley Dihedral tunnel boat hull
US5265554A (en) * 1992-06-23 1993-11-30 Meredith Marine, Inc. Boat construction
US5379710A (en) * 1993-10-15 1995-01-10 Parnigoni; Johann Asymmetrical sailing catamaran keels
US5833502A (en) * 1996-06-19 1998-11-10 Anderson; Carl J. Boat construction
US6216622B1 (en) * 1997-09-10 2001-04-17 N.P.M. Holdings, Inc. Boat hull with center V-hull and sponsons
US6406341B1 (en) * 2000-11-20 2002-06-18 Hell's Bay Boat Works Co. Shallow draft boat
US6773316B1 (en) * 2002-01-31 2004-08-10 Brunswick Corporation Non-ventilating aft thruster tunnel design
US6708642B1 (en) * 2002-02-22 2004-03-23 Reflex Advanced Marine Corp. Tri-sponson boat hull and method of making boat hulls
US20050087120A1 (en) * 2003-05-02 2005-04-28 Anthony Kalil Vessel hull

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110106729A1 (en) * 2007-06-26 2011-05-05 Ebay, Inc. Economic optimization for product search relevancy
US10430724B2 (en) 2007-06-26 2019-10-01 Paypal, Inc. Economic optimization for product search relevancy
US11120098B2 (en) 2007-06-26 2021-09-14 Paypal, Inc. Economic optimization for product search relevancy
US11709908B2 (en) 2007-06-26 2023-07-25 Paypal, Inc. Economic optimization for product search relevancy
US20110107954A1 (en) * 2009-11-02 2011-05-12 Schaefer Jr Louis E Combination Catamaran and V-hull
WO2011053980A3 (en) * 2009-11-02 2011-08-18 Schaefer Jr Louis E Combination catamaran and v-hull
CN103171736A (en) * 2013-03-01 2013-06-26 刘长东 Device for reducing shipping resistance of ships
WO2015179409A1 (en) * 2014-05-21 2015-11-26 Guerard Roger Hybrid vee-hull with sponsons
WO2018217183A1 (en) * 2017-05-26 2018-11-29 Johnston Daniel D Recon marine vessel

Similar Documents

Publication Publication Date Title
US7418915B2 (en) Entrapment tunnel monohull optimized waterjet and high payload
US4231314A (en) Hydroplane boat
US4903626A (en) Planing motor boat hull
CA2474675C (en) Air cushion vessel
US8291850B1 (en) Stabilized step hull utilizing a ventilated tunnel
US5458078A (en) High speed catamaran hull and boat
US4660492A (en) Catamaran air cushion water vehicle
CA2763076C (en) Watercraft with stepped hull and outboard fins
US6293216B1 (en) Surface effect ship (SES) hull configuration having improved high speed performance and handling characteristics
AU616048B2 (en) Boat hull having stepped underside
US6604478B2 (en) Hull configuration utilizing multiple effects for enhanced speed, range and efficiency
US6425341B1 (en) Boat hull
US20070266923A1 (en) Hybrid hull
US6675736B1 (en) Boat having channels formed in its hull
US7316193B1 (en) Vessel for water travel
US5031556A (en) Marine hull
US8701583B2 (en) Hydrofoil-assisted multi-hulled watercraft
US5265554A (en) Boat construction
US20090308300A1 (en) Watercraft with wave deflecting hull
JP2005517573A (en) Integrated entry air cushion ship and marine platform
US4031841A (en) Controlled air film hull for watercraft
US5188049A (en) Catamaran boat
US20190176934A1 (en) Marine vessel hull with a longitudinally vented transverse step
WO2018190746A1 (en) Stabilized hull of a monohull motorboat with planing skis

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION