US20080017020A1 - Rapidly Deployable Barrier for High-Speed Projectiles - Google Patents

Rapidly Deployable Barrier for High-Speed Projectiles Download PDF

Info

Publication number
US20080017020A1
US20080017020A1 US11/458,187 US45818706A US2008017020A1 US 20080017020 A1 US20080017020 A1 US 20080017020A1 US 45818706 A US45818706 A US 45818706A US 2008017020 A1 US2008017020 A1 US 2008017020A1
Authority
US
United States
Prior art keywords
tube
fibers
layers
tubes
wound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/458,187
Inventor
Thomas Kevin Casper
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sonoco Development Inc
Original Assignee
Sonoco Development Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sonoco Development Inc filed Critical Sonoco Development Inc
Priority to US11/458,187 priority Critical patent/US20080017020A1/en
Assigned to SONOCO DEVELOPMENT, INC. reassignment SONOCO DEVELOPMENT, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CASPER, THOMAS KEVIN
Priority to EP07252821A priority patent/EP1880839A2/en
Publication of US20080017020A1 publication Critical patent/US20080017020A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B1/00Layered products having a general shape other than plane
    • B32B1/08Tubular products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B29/00Layered products comprising a layer of paper or cardboard
    • B32B29/02Layered products comprising a layer of paper or cardboard next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/18Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/245Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it being a foam layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41HARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
    • F41H5/00Armour; Armour plates
    • F41H5/02Plate construction
    • F41H5/04Plate construction composed of more than one layer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41HARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
    • F41H5/00Armour; Armour plates
    • F41H5/02Plate construction
    • F41H5/04Plate construction composed of more than one layer
    • F41H5/0414Layered armour containing ceramic material
    • F41H5/0428Ceramic layers in combination with additional layers made of fibres, fabrics or plastics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41HARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
    • F41H5/00Armour; Armour plates
    • F41H5/02Plate construction
    • F41H5/04Plate construction composed of more than one layer
    • F41H5/0492Layered armour containing hard elements, e.g. plates, spheres, rods, separated from each other, the elements being connected to a further flexible layer or being embedded in a plastics or an elastomer matrix
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42DBLASTING
    • F42D5/00Safety arrangements
    • F42D5/04Rendering explosive charges harmless, e.g. destroying ammunition; Rendering detonation of explosive charges harmless
    • F42D5/045Detonation-wave absorbing or damping means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/726Permeability to liquids, absorption
    • B32B2307/7265Non-permeable

Definitions

  • the present invention relates to barriers for protecting personnel from high-speed projectiles such as rifle bullets, shrapnel from explosive devices, and the like.
  • barriers for protection against threats such as high-speed projectiles and vehicles being driven through the barrier.
  • barriers are constructed at the site of operations using sand bags, concrete, or mounds of dirt.
  • the on-site construction of these types of barriers is time-consuming, and because the materials used for constructing them are heavy, the construction often requires the use of heavy equipment.
  • a rapidly deployable barrier is constructed from one or more rows of light-weight tubes that are wound from fiber materials.
  • the tubes are arranged in parallel side-by-side relation abutting one another so as to form a wall of the tubes.
  • the tubes are specially constructed to be resistant to penetration by high-speed projectiles such as rifle bullets, shrapnel, and the like.
  • a tube in accordance with one embodiment of the invention comprises a plurality of layers of flexible fiber materials wound one upon another about an axis and adhered together to form the tube.
  • the layers include one or more relatively low-penetration-resistant paperboard layers and one or more relatively high-penetration-resistant fabric layers formed from fibers selected from the group consisting of polymer fibers, carbon fibers, glass fibers, ceramic fibers, natural fibers, and mixtures thereof.
  • the fibers can comprise aramid fibers, carbon fibers, liquid crystal polymer fibers, ultra-high molecular weight polyethylene fibers, glass fibers, ceramic fibers, mineral-filled natural or synthetic fibers, or mixtures thereof.
  • the tube can be spirally wound from separate strips of the paperboard and fabric materials.
  • the tube can be convolutely wound from a single sheet that comprises at least one layer of paperboard and at least one layer of the fabric. Adhesive is used for adhering the layers of the tube together.
  • the relatively high-penetration-resistant fabric can be made from yarns constructed from the fibers.
  • the fabric can be woven, knitted, felted, fabricated into a nonwoven fabric, or formed in any other suitable fashion.
  • the fabric can comprise yarns of various types and various sizes.
  • the paperboard materials used in the tube can be treated to be water-resistant.
  • the paperboard can be sized with a sizing composition such as ASA, AKD, rosin/alum, or the like.
  • the tube in preferred embodiments is constructed so that the tube is foldable into a collapsed or flattened configuration for shipping and storage.
  • a plurality of the collapsed tubes can be reshaped into a tubular configuration and can be erected in a row to form a wall.
  • the tubes are light in weight and thus are easily handled by personnel without the use of heavy equipment.
  • the tubes can be filled with a material such as sand, concrete, steel bar stock, or other material that helps prevent complete penetration of projectiles and/or vehicles through the barrier.
  • the barrier can comprise a single row of tubes, or alternatively the barrier can comprise two or more rows of tubes one behind another.
  • the tubes in one row can be staggered relative to tubes in an adjacent row such that each juncture between two tubes in one row is in front of or behind a tube in the adjacent row.
  • FIG. 1 is a perspective view of a rapidly deployable barrier in accordance with one embodiment of the invention
  • FIG. 2 is a cross-sectional view through a tube in accordance with one embodiment of the invention.
  • FIG. 3 a top view of a rapidly deployable barrier in accordance with another embodiment of the invention.
  • FIG. 4 depicts a tube being convolutely wound in accordance with a further embodiment of the invention.
  • FIG. 5 is a cross-sectional view along line 5 - 5 in FIG. 4 ;
  • FIG. 6 is a fragmentary cross-sectional view through a wall of a tube in accordance with yet another embodiment of the invention.
  • FIG. 7 shows a tube in accordance with the invention in a collapsed or flattened configuration for shipping and storage
  • FIG. 8 shows a tube in accordance with an alternative embodiment of the invention.
  • FIG. 1 A rapidly deployable barrier 10 in accordance with one embodiment of the invention is shown in FIG. 1 .
  • the barrier 10 comprises a plurality of wound tubes 20 that are hollow and generally cylindrical.
  • hollow and generally cylindrical By “cylindrical” is meant that the cross-sectional shape of the tube is substantially constant along the length of the tube, but the term “cylindrical” is not intended to imply that the cross-sectional shape must be circular.
  • the tubes can have various cross-sectional shapes.
  • the tubes 20 are positioned in parallel side-by-side relation such that the tubes are abutting one another to form one or more walls.
  • a wall can be generally planar as shown in FIG.
  • the tubes can be arranged to form non-planar walls (e.g., arcuate, L-shaped, C-shaped, polygonal, etc.).
  • the wall(s) can be generally vertically oriented as shown, or can have other orientations.
  • a generally vertical wall can be erected by digging a trench and burying the lower ends of the tubes in the trench and filling the trench around the tubes, as illustrated in FIG. 1 .
  • the tubes 20 forming the barrier 10 in FIG. 1 are shown as all being circular and having the same diameter, alternatively the barrier can include tubes of two or more different cross-sectional shapes and/or two or more different diameters.
  • FIG. 2 is a cross-sectional view through one of the tubes 20 .
  • the tube comprises a multilayered structure formed by winding flexible sheets or layers of fiber materials one upon another about an axis and adhering the layers together with adhesive.
  • the tube comprises four layers 22 , 24 , 26 , 28 .
  • the outermost layer 22 can comprise a relatively high-penetration-resistant fabric formed of fibers.
  • the fibers can be selected from aramid fibers (e.g., KEVLAR®, NOMEX®, etc.), carbon fibers, liquid crystal polymer fibers (e.g., VECTRAN®), ultra-high molecular weight polyethylene fibers (e.g., SPECTRA® or DYNEEMA®), glass fibers, ceramic fibers, mineral-filled natural or synthetic fibers (e.g., SiC-filled or UBr-filled fibers), and mixtures thereof.
  • the filled natural fibers can be produced by “lumen loading” the fibers with particles of the filler material.
  • the fabric can be made from yarns constructed from the fibers.
  • the fabric can be woven, knitted, felted, fabricated into a nonwoven fabric, or formed in any other suitable fashion.
  • the fabric can comprise yarns of various types and various sizes.
  • the fabric basis weight can range from about 10 lb/msf to about 160 lb/msf.
  • the next two layers 24 and 26 can comprise a relatively low-penetration-resistant fiber material.
  • the layers 24 can comprise paperboard layers. It will be understood that two layers of paperboard are shown merely as an example, and the number and positioning of paperboard layers within the tube wall can vary.
  • One or more layers of the tube can comprise paperboard.
  • the paperboard material can be treated to be water-resistant.
  • the paperboard can be sized with a sizing composition such as alkenyl succinic anhydride (ASA), alkyl ketene dimer (AKD), or rosin and alum.
  • the paperboard layer(s) can have a thickness or caliper ranging from about 0.13 mm (0.005 inch) to about 1.14 mm (0.045 inch).
  • the density of the paperboard material can range from about 0.5 g/cc to about 0.9 g/cc.
  • the innermost layer 28 comprises another layer of the relatively high-penetration-resistant fabric.
  • the fabric of the innermost layer 28 can be identical to the fabric of the outermost layer 22 .
  • the two fabrics can be different in some respect (e.g., different fiber materials and/or different basis weights and/or different fabric constructions). While two fabric layers 22 , 28 are shown in FIG. 2 , the invention is not limited to any particular number or positioning of fabric layers within the tube wall.
  • the tube can comprise one or more fabric layers.
  • the tubes 20 can comprise spirally wound tubes formed in a generally conventional spiral tube-making process from multiple separate plies or layers of the relatively low-penetration-resistant material and relatively high-penetration-resistant fabric material.
  • the plies are spirally wound one upon another about a cylindrical mandrel and are adhered together with adhesive applied to the plies as they are advanced to the mandrel.
  • the mandrel is circular in cross-section and the tube formed on the mandrel is advanced in screw fashion along the mandrel by a winding belt, as known in the spiral tube-making art. In this manner, a continuous tube is formed on the mandrel.
  • the tube is cut into desired lengths by a suitable cutting saw or the like arranged downstream of the mandrel.
  • a tube in accordance with the invention can be made by a convolute winding process as schematically depicted in FIG. 4 .
  • a sheet 30 having a width equal to the desired length of the tube to be produced is prepared and adhesive is applied to one of its surfaces.
  • the sheet is then rolled up in window shade fashion to form the convolutely wound tube.
  • the sheet 30 in one embodiment is shown in FIG. 5 .
  • the illustrated sheet comprises a layer 32 of paperboard and a layer 34 of relatively high-penetration-resistant fabric overlying the paperboard layer.
  • the two layers can be joined together, such as by adhesive, prior to convolute winding.
  • the sheet 30 can comprise more than two layers (e.g., more than one layer of paperboard and/or more than one layer of fabric).
  • FIG. 6 shows a cross-sectional view through a portion of a wall of a tube 20 ′ in accordance with another embodiment of the invention, which can be made by spiral winding or by the convolute winding process.
  • the tube 20 ′ can be a convolutely wound tube made from the sheet 30 shown in FIG. 5 , or can be a spirally wound tube prepared from four plies.
  • the tube has an outermost layer 22 ′ of the fabric, an adjacent layer 24 ′ of paperboard, a next adjacent layer 26 ′ of fabric, and an innermost layer 28 ′ of paperboard.
  • the tubes 20 , 20 ′ in accordance with the invention preferably are formed so that they are collapsible or foldable into a generally flattened configuration for shipping and storage, as illustrated in FIG. 7 .
  • the wall thickness of the tube is small enough that the tube has substantial flexibility and can be folded along longitudinally extending fold lines that do not have to be pre-formed (e.g., by scoring or other weakening of the wall). This ability to be collapsed without pre-formed fold lines is termed “natural collapsibility” herein.
  • the maximum wall thickness that can be employed while preserving the natural collapsibility of the tube depends in part on the tube diameter; as the diameter increases, the maximum allowable wall thickness also increases.
  • the maximum allowable wall thickness for natural collapsibility also depends on the stiffness of the tube wall, which in turn depends on the particular makeup of the tube (i.e., what materials are used, the proportions of each material, the locations of the various layers of different materials relative to one another, etc.). Thus, no general rule of thumb dictating the maximum allowable wall thickness for natural collapsibility can be given.
  • the tube can include one or more pre-formed fold lines.
  • a pre-formed fold line can be made by scoring partially through the thickness of the tube wall. It is preferred that such scoring not cut through any of the fabric layers of the tube.
  • the tube can have the fabric layer(s) located radially inwardly of one or more paperboard layers, and the scoring can extend only through one or more radially outwardly located paperboard layers.
  • the tubes 20 can be left hollow.
  • the tubes can be filled with a dense material such as sand, concrete, or the like, as shown in FIG. 2 .
  • a loose filler material such as sand is preferred because the barrier can be dismantled, the tubes can be emptied of the sand (and collapsed for transportation or storage, if the tubes are collapsible), and the tubes and the sand can later be salvaged for reuse.
  • the invention is also advantageous because the tubes are combustible and thus can be burned at the site, if desired.
  • the tubes can be filled with steel bar stock.
  • the tubes filled with the bar stock can be partially buried to form a barrier that has substantial strength so as to substantially preclude the possibility of a vehicle being driven through the barrier.
  • a tube in accordance with another embodiment of the invention can include a resilient foam layer that tends to form a self-closing hole when penetrated by a projectile.
  • a tube 120 having such a foam layer is shown in FIG. 8 .
  • the tube 120 includes a radially outermost paperboard layer 122 , a next adjacent paperboard layer 124 , a further paperboard layer 126 , a fabric layer 128 , and a foam liner layer 130 at the innermost surface of the tube.
  • the foam liner layer 130 can comprise any suitable polymer foam such as polyethylene, polypropylene, polyurethane, EVA, etc., as long as the foam has sufficient resilience to form self-closing holes when penetrated by projectiles.
  • Tubes in accordance with the invention can include one or more such resilient foam layers.
  • the tube 120 also includes pre-formed fold lines 140 along which the tube can fold for collapsing the tube into a generally flattened configuration for shipping and storage.
  • a fold line 140 is formed by scoring through one or more of the outer paperboard layers 122 , 124 , 126 with a suitable cutting implement. The score line preferably does not penetrate the fabric layer 128 or the foam layer 130 .
  • the tube includes four such pre-formed fold lines 140 spaced equally about the circumference of the tube.
  • Tubes in accordance with the invention can be made in various diameters and various lengths.
  • the tubes can range in diameter from about 1 inch to about 36 inches.
  • the length of the tubes can range from about 4 feet on up.
  • tubes are most conveniently shipped and handled when they do not exceed about 15 feet in length.

Abstract

A rapidly deployable barrier is constructed from one or more rows of tubes that are wound from fiber materials. The tubes are arranged in parallel side-by-side relation abutting one another so as to form a wall. A tube in accordance with one embodiment of the invention comprises a plurality of layers of flexible fiber materials wound one upon another about an axis and adhered together to form the tube. The layers include one or more relatively low-penetration-resistant fiber layers and one or more relatively high-penetration-resistant fabric layers formed from fibers selected from the group consisting of polymer fibers, carbon fibers, glass fibers, ceramic fibers, natural fibers, and mixtures thereof. The tube can also include one or more resilient foam layers. The tube can be filled with concrete, sand, steel bar stock, or the like.

Description

    BACKGROUND OF THE INVENTION
  • The present invention relates to barriers for protecting personnel from high-speed projectiles such as rifle bullets, shrapnel from explosive devices, and the like.
  • Personnel involved in police or military operations frequently have a need to construct a barrier for protection against threats such as high-speed projectiles and vehicles being driven through the barrier. Typically such barriers are constructed at the site of operations using sand bags, concrete, or mounds of dirt. The on-site construction of these types of barriers is time-consuming, and because the materials used for constructing them are heavy, the construction often requires the use of heavy equipment.
  • BRIEF SUMMARY OF THE INVENTION
  • The present invention addresses the need for a light-weight, rapidly deployable barrier as an alternative to the heavy and cumbersome types of barriers that have typically been used in police and military operations. In accordance with one embodiment of the invention, a rapidly deployable barrier is constructed from one or more rows of light-weight tubes that are wound from fiber materials. The tubes are arranged in parallel side-by-side relation abutting one another so as to form a wall of the tubes. The tubes are specially constructed to be resistant to penetration by high-speed projectiles such as rifle bullets, shrapnel, and the like.
  • A tube in accordance with one embodiment of the invention comprises a plurality of layers of flexible fiber materials wound one upon another about an axis and adhered together to form the tube. The layers include one or more relatively low-penetration-resistant paperboard layers and one or more relatively high-penetration-resistant fabric layers formed from fibers selected from the group consisting of polymer fibers, carbon fibers, glass fibers, ceramic fibers, natural fibers, and mixtures thereof. In some embodiments, the fibers can comprise aramid fibers, carbon fibers, liquid crystal polymer fibers, ultra-high molecular weight polyethylene fibers, glass fibers, ceramic fibers, mineral-filled natural or synthetic fibers, or mixtures thereof.
  • The tube can be spirally wound from separate strips of the paperboard and fabric materials. Alternatively, the tube can be convolutely wound from a single sheet that comprises at least one layer of paperboard and at least one layer of the fabric. Adhesive is used for adhering the layers of the tube together.
  • The relatively high-penetration-resistant fabric can be made from yarns constructed from the fibers. The fabric can be woven, knitted, felted, fabricated into a nonwoven fabric, or formed in any other suitable fashion. The fabric can comprise yarns of various types and various sizes.
  • The paperboard materials used in the tube can be treated to be water-resistant. As one example, the paperboard can be sized with a sizing composition such as ASA, AKD, rosin/alum, or the like.
  • The tube in preferred embodiments is constructed so that the tube is foldable into a collapsed or flattened configuration for shipping and storage. When it is time to deploy the barrier, a plurality of the collapsed tubes can be reshaped into a tubular configuration and can be erected in a row to form a wall. The tubes are light in weight and thus are easily handled by personnel without the use of heavy equipment.
  • Part of the lengths of the tubes can be buried in the ground, the portions of the tubes projecting above ground forming a barrier. The tubes optionally can be filled with a material such as sand, concrete, steel bar stock, or other material that helps prevent complete penetration of projectiles and/or vehicles through the barrier. The barrier can comprise a single row of tubes, or alternatively the barrier can comprise two or more rows of tubes one behind another. The tubes in one row can be staggered relative to tubes in an adjacent row such that each juncture between two tubes in one row is in front of or behind a tube in the adjacent row.
  • BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWING(S)
  • Having thus described the invention in general terms, reference will now be made to the accompanying drawings, which are not necessarily drawn to scale, and wherein:
  • FIG. 1 is a perspective view of a rapidly deployable barrier in accordance with one embodiment of the invention;
  • FIG. 2 is a cross-sectional view through a tube in accordance with one embodiment of the invention;
  • FIG. 3 a top view of a rapidly deployable barrier in accordance with another embodiment of the invention;
  • FIG. 4 depicts a tube being convolutely wound in accordance with a further embodiment of the invention;
  • FIG. 5 is a cross-sectional view along line 5-5 in FIG. 4;
  • FIG. 6 is a fragmentary cross-sectional view through a wall of a tube in accordance with yet another embodiment of the invention;
  • FIG. 7 shows a tube in accordance with the invention in a collapsed or flattened configuration for shipping and storage; and
  • FIG. 8 shows a tube in accordance with an alternative embodiment of the invention.
  • DETAILED DESCRIPTION OF THE INVENTION
  • The present inventions now will be described more fully hereinafter with reference to the accompanying drawings in which some but not all embodiments of the inventions are shown. Indeed, these inventions may be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will satisfy applicable legal requirements. Like numbers refer to like elements throughout.
  • A rapidly deployable barrier 10 in accordance with one embodiment of the invention is shown in FIG. 1. The barrier 10 comprises a plurality of wound tubes 20 that are hollow and generally cylindrical. By “cylindrical” is meant that the cross-sectional shape of the tube is substantially constant along the length of the tube, but the term “cylindrical” is not intended to imply that the cross-sectional shape must be circular. The tubes can have various cross-sectional shapes. The tubes 20 are positioned in parallel side-by-side relation such that the tubes are abutting one another to form one or more walls. A wall can be generally planar as shown in FIG. 1, or alternatively the tubes can be arranged to form non-planar walls (e.g., arcuate, L-shaped, C-shaped, polygonal, etc.). The wall(s) can be generally vertically oriented as shown, or can have other orientations. As an example, a generally vertical wall can be erected by digging a trench and burying the lower ends of the tubes in the trench and filling the trench around the tubes, as illustrated in FIG. 1. While the tubes 20 forming the barrier 10 in FIG. 1 are shown as all being circular and having the same diameter, alternatively the barrier can include tubes of two or more different cross-sectional shapes and/or two or more different diameters.
  • FIG. 2 is a cross-sectional view through one of the tubes 20. The tube comprises a multilayered structure formed by winding flexible sheets or layers of fiber materials one upon another about an axis and adhering the layers together with adhesive. In the illustrated embodiment of FIG. 2, the tube comprises four layers 22, 24, 26, 28. The outermost layer 22 can comprise a relatively high-penetration-resistant fabric formed of fibers. As non-limiting examples, the fibers can be selected from aramid fibers (e.g., KEVLAR®, NOMEX®, etc.), carbon fibers, liquid crystal polymer fibers (e.g., VECTRAN®), ultra-high molecular weight polyethylene fibers (e.g., SPECTRA® or DYNEEMA®), glass fibers, ceramic fibers, mineral-filled natural or synthetic fibers (e.g., SiC-filled or UBr-filled fibers), and mixtures thereof. The filled natural fibers can be produced by “lumen loading” the fibers with particles of the filler material. The fabric can be made from yarns constructed from the fibers. The fabric can be woven, knitted, felted, fabricated into a nonwoven fabric, or formed in any other suitable fashion. The fabric can comprise yarns of various types and various sizes. The fabric basis weight can range from about 10 lb/msf to about 160 lb/msf.
  • The next two layers 24 and 26 can comprise a relatively low-penetration-resistant fiber material. As an example, the layers 24 can comprise paperboard layers. It will be understood that two layers of paperboard are shown merely as an example, and the number and positioning of paperboard layers within the tube wall can vary. One or more layers of the tube can comprise paperboard. The paperboard material can be treated to be water-resistant. For example, the paperboard can be sized with a sizing composition such as alkenyl succinic anhydride (ASA), alkyl ketene dimer (AKD), or rosin and alum. The paperboard layer(s) can have a thickness or caliper ranging from about 0.13 mm (0.005 inch) to about 1.14 mm (0.045 inch). The density of the paperboard material can range from about 0.5 g/cc to about 0.9 g/cc.
  • The innermost layer 28 comprises another layer of the relatively high-penetration-resistant fabric. The fabric of the innermost layer 28 can be identical to the fabric of the outermost layer 22. Alternatively, the two fabrics can be different in some respect (e.g., different fiber materials and/or different basis weights and/or different fabric constructions). While two fabric layers 22, 28 are shown in FIG. 2, the invention is not limited to any particular number or positioning of fabric layers within the tube wall. The tube can comprise one or more fabric layers.
  • As illustrated in FIG. 1, the tubes 20 can comprise spirally wound tubes formed in a generally conventional spiral tube-making process from multiple separate plies or layers of the relatively low-penetration-resistant material and relatively high-penetration-resistant fabric material. The plies are spirally wound one upon another about a cylindrical mandrel and are adhered together with adhesive applied to the plies as they are advanced to the mandrel. Preferably the mandrel is circular in cross-section and the tube formed on the mandrel is advanced in screw fashion along the mandrel by a winding belt, as known in the spiral tube-making art. In this manner, a continuous tube is formed on the mandrel. The tube is cut into desired lengths by a suitable cutting saw or the like arranged downstream of the mandrel.
  • Alternatively, a tube in accordance with the invention can be made by a convolute winding process as schematically depicted in FIG. 4. A sheet 30 having a width equal to the desired length of the tube to be produced is prepared and adhesive is applied to one of its surfaces. The sheet is then rolled up in window shade fashion to form the convolutely wound tube. The sheet 30 in one embodiment is shown in FIG. 5. The illustrated sheet comprises a layer 32 of paperboard and a layer 34 of relatively high-penetration-resistant fabric overlying the paperboard layer. The two layers can be joined together, such as by adhesive, prior to convolute winding. The sheet 30 can comprise more than two layers (e.g., more than one layer of paperboard and/or more than one layer of fabric).
  • FIG. 6 shows a cross-sectional view through a portion of a wall of a tube 20′ in accordance with another embodiment of the invention, which can be made by spiral winding or by the convolute winding process. In particular, the tube 20′ can be a convolutely wound tube made from the sheet 30 shown in FIG. 5, or can be a spirally wound tube prepared from four plies. The tube has an outermost layer 22′ of the fabric, an adjacent layer 24′ of paperboard, a next adjacent layer 26′ of fabric, and an innermost layer 28′ of paperboard.
  • The tubes 20, 20′ in accordance with the invention preferably are formed so that they are collapsible or foldable into a generally flattened configuration for shipping and storage, as illustrated in FIG. 7. To make the tube collapsible, preferably the wall thickness of the tube is small enough that the tube has substantial flexibility and can be folded along longitudinally extending fold lines that do not have to be pre-formed (e.g., by scoring or other weakening of the wall). This ability to be collapsed without pre-formed fold lines is termed “natural collapsibility” herein. The maximum wall thickness that can be employed while preserving the natural collapsibility of the tube depends in part on the tube diameter; as the diameter increases, the maximum allowable wall thickness also increases. The maximum allowable wall thickness for natural collapsibility also depends on the stiffness of the tube wall, which in turn depends on the particular makeup of the tube (i.e., what materials are used, the proportions of each material, the locations of the various layers of different materials relative to one another, etc.). Thus, no general rule of thumb dictating the maximum allowable wall thickness for natural collapsibility can be given.
  • Alternatively, the tube can include one or more pre-formed fold lines. A pre-formed fold line can be made by scoring partially through the thickness of the tube wall. It is preferred that such scoring not cut through any of the fabric layers of the tube. As an example, the tube can have the fabric layer(s) located radially inwardly of one or more paperboard layers, and the scoring can extend only through one or more radially outwardly located paperboard layers.
  • When deploying the barrier 10 such as shown in FIG. 1, the tubes 20 can be left hollow. Alternatively, for increased protection against penetration by high-speed projectiles, the tubes can be filled with a dense material such as sand, concrete, or the like, as shown in FIG. 2. The use of a loose filler material such as sand is preferred because the barrier can be dismantled, the tubes can be emptied of the sand (and collapsed for transportation or storage, if the tubes are collapsible), and the tubes and the sand can later be salvaged for reuse. The invention is also advantageous because the tubes are combustible and thus can be burned at the site, if desired.
  • In other embodiments, the tubes can be filled with steel bar stock. The tubes filled with the bar stock can be partially buried to form a barrier that has substantial strength so as to substantially preclude the possibility of a vehicle being driven through the barrier.
  • When the tube is filled with loose material such as sand, a bullet hole formed through the tube wall can allow sand to escape through the hole, which is undesirable. To address this problem, a tube in accordance with another embodiment of the invention can include a resilient foam layer that tends to form a self-closing hole when penetrated by a projectile. A tube 120 having such a foam layer is shown in FIG. 8. The tube 120 includes a radially outermost paperboard layer 122, a next adjacent paperboard layer 124, a further paperboard layer 126, a fabric layer 128, and a foam liner layer 130 at the innermost surface of the tube. The foam liner layer 130 can comprise any suitable polymer foam such as polyethylene, polypropylene, polyurethane, EVA, etc., as long as the foam has sufficient resilience to form self-closing holes when penetrated by projectiles. Tubes in accordance with the invention can include one or more such resilient foam layers.
  • The tube 120 also includes pre-formed fold lines 140 along which the tube can fold for collapsing the tube into a generally flattened configuration for shipping and storage. A fold line 140 is formed by scoring through one or more of the outer paperboard layers 122, 124, 126 with a suitable cutting implement. The score line preferably does not penetrate the fabric layer 128 or the foam layer 130. In one embodiment, the tube includes four such pre-formed fold lines 140 spaced equally about the circumference of the tube.
  • Tubes in accordance with the invention can be made in various diameters and various lengths. For example, the tubes can range in diameter from about 1 inch to about 36 inches. The length of the tubes can range from about 4 feet on up. Particularly when the tubes are made by the continuous spiral process, there is no theoretical upper limit on length, but for practical reasons it is desirable to keep the tubes to a reasonable length so that they can be readily shipped and handled. Generally, tubes are most conveniently shipped and handled when they do not exceed about 15 feet in length.
  • Many modifications and other embodiments of the inventions set forth herein will come to mind to one skilled in the art to which these inventions pertain having the benefit of the teachings presented in the foregoing descriptions and the associated drawings. Therefore, it is to be understood that the inventions are not to be limited to the specific embodiments disclosed and that modifications and other embodiments are intended to be included within the scope of the appended claims. Although specific terms are employed herein, they are used in a generic and descriptive sense only and not for purposes of limitation.

Claims (24)

1. A wound fiber tube useful in combination with a plurality of other such tubes for constructing a barrier against high-speed projectiles, the tube comprising:
a plurality of layers of flexible fiber materials wound one upon another about an axis and adhered together to form the tube, the layers including one or more relatively low-penetration-resistant fiber layers and one or more relatively high-penetration-resistant fabric layers formed from fibers selected from the group consisting of polymer fibers, carbon fibers, glass fibers, ceramic fibers, natural fibers, and mixtures thereof.
2. The wound fiber tube of claim 1, wherein the fabric layers are formed from fibers selected from the group consisting of aramid fibers, carbon fibers, liquid crystal polymer fibers, ultra-high molecular weight polyethylene fibers, glass fibers, ceramic fibers, mineral-filled natural or synthetic fibers, and mixtures thereof.
3. The wound fiber tube of claim 1, wherein the tube is spirally wound.
4. The wound fiber tube of claim 1, wherein the tube is convolutely wound from a sheet comprising one or more paperboard layers and one or more relatively high-penetration-resistant fabric layers, the sheet being convolutely wound to form the tube.
5. The wound fiber tube of claim 1, wherein the tube is foldable into a collapsed configuration having reduced volume for shipping and storage.
6. The wound fiber tube of claim 1, wherein the one or more relatively low-penetration-resistant fibers layers comprise paperboard.
7. The wound fiber tube of claim 6, wherein the paperboard comprises paperboard sized with a sizing composition for imparting water-resistance to the paperboard.
8. The wound fiber tube of claim 1, further comprising one or more resilient foam layers.
9. The wound fiber tube of claim 8, wherein one of the one or more resilient foam layers is an innermost layer of the tube.
10. The wound fiber tube of claim 1, further comprising longitudinal pre-formed fold lines formed in the tube along which the tube can fold for collapsing the tube into a generally flattened configuration for shipping and storage.
11. The wound fiber tube of claim 10, where there are four of the pre-formed fold lines spaced equally about the circumference of the tube.
12. A rapidly deployable barrier for high-speed projectiles, comprising:
at least one row of wound fiber tubes disposed in parallel abutting relation to form a wall, each wound fiber tube comprising a plurality of layers of flexible fiber materials wound one upon another about an axis and adhered together to form the tube, the layers including one or more relatively low-penetration-resistant fiber layers and one or more relatively high-penetration-resistant fabric layers formed from fibers selected from the group consisting of polymer fibers, carbon fibers, glass fibers, ceramic fibers, natural fibers, and mixtures thereof.
13. The rapidly deployable barrier of claim 12, wherein the one or more relatively high-penetration-resistant fabric layers are formed from fibers selected from the group consisting of aramid fibers, carbon fibers, liquid crystal polymer fibers, ultra-high molecular weight polyethylene fibers, glass fibers, ceramic fibers, mineral-filled natural or synthetic fibers, and mixtures thereof.
14. The rapidly deployable barrier of claim 12, wherein one or more of the tubes are spirally wound.
15. The rapidly deployable barrier of claim 12, wherein one or more of the tubes are convolutely wound from a sheet comprising one or more relatively low-penetration-resistant fiber layers and one or more relatively high-penetration-resistant fabric layers, the sheet being convolutely wound to form the tube.
16. The rapidly deployable barrier of claim 12, wherein each tube is foldable into a collapsed configuration having reduced volume for shipping and storage.
17. The rapidly deployable barrier of claim 12, wherein the one or more relatively low-penetration-resistant fiber layers of each tube comprise paperboard.
18. The rapidly deployable barrier of claim 16, wherein the paperboard comprises paperboard sized with a sizing composition.
19. The rapidly deployable barrier of claim 12, wherein the rapidly deployable barrier comprises a first row of the tubes and a second row of the tubes positioned parallel to and behind the first row, the tubes of the second row being staggered relative to the tubes of the first row such that a juncture between any two tubes of the first row is backed up by a tube of the second row.
20. The rapidly deployable barrier of claim 12, wherein the tubes are filled with a material for enhancing penetration-resistance of the tubes.
21. The rapidly deployable barrier of claim 20, wherein the material comprises sand.
22. The rapidly deployable barrier of claim 20, wherein the material comprises concrete.
23. A construction member for constructing a barrier against high-speed projectiles, comprising:
a hollow tube comprising a plurality of layers of flexible material wound one upon another about an axis of the tube and adhered together to form the tube, the layers including a layer of resilient foam; and
a loose particulate material filling an interior space defined by the tube to enhance the barrier performance of the construction member.
24. The construction member of claim 23, wherein the layer of resilient foam forms an innermost surface of the tube.
US11/458,187 2006-07-18 2006-07-18 Rapidly Deployable Barrier for High-Speed Projectiles Abandoned US20080017020A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/458,187 US20080017020A1 (en) 2006-07-18 2006-07-18 Rapidly Deployable Barrier for High-Speed Projectiles
EP07252821A EP1880839A2 (en) 2006-07-18 2007-07-17 Rapidly deployable barrier for high-speed projectiles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/458,187 US20080017020A1 (en) 2006-07-18 2006-07-18 Rapidly Deployable Barrier for High-Speed Projectiles

Publications (1)

Publication Number Publication Date
US20080017020A1 true US20080017020A1 (en) 2008-01-24

Family

ID=38616552

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/458,187 Abandoned US20080017020A1 (en) 2006-07-18 2006-07-18 Rapidly Deployable Barrier for High-Speed Projectiles

Country Status (2)

Country Link
US (1) US20080017020A1 (en)
EP (1) EP1880839A2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080257141A1 (en) * 2007-04-20 2008-10-23 Medwell Roger Terence Arthur Vehicle armor
US20080264245A1 (en) * 2005-12-17 2008-10-30 Ian Barnes Barrier
US20100000399A1 (en) * 2005-12-17 2010-01-07 Ian Barnes Barrier
WO2012052993A2 (en) * 2010-10-20 2012-04-26 Yehuda Fences Ltd. Fillable geomesh immovable vehicle barrier system and method
US8721221B2 (en) 2011-02-16 2014-05-13 Premark Packaging Llc System for providing flood protection and method of implementing same
US20160186381A1 (en) * 2014-12-26 2016-06-30 Westrock Mwv, Llc Sizing of paperboard

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2015202033B2 (en) * 2008-04-22 2017-08-31 Dsm Ip Assets B.V. Abrasion Resistant Fabric
EP2112259A1 (en) * 2008-04-22 2009-10-28 DSM IP Assets B.V. Abrasion resistant fabric
GB2506588A (en) * 2012-09-21 2014-04-09 J & S Franklin Ltd Blast containment/weapon shielding system
US20160009046A1 (en) * 2012-11-13 2016-01-14 Consystex Pty Ltd Formwork or construction element and a new material
CN111908889A (en) * 2020-07-11 2020-11-10 巩义市泛锐熠辉复合材料有限公司 Composite fiber reinforced aerogel felt and preparation method thereof

Citations (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US578000A (en) * 1897-03-02 Bullet-proof fabric
US577999A (en) * 1897-03-02 Bullet-proof fabric
US660716A (en) * 1900-03-31 1900-10-30 Robert S Anderson Roller shield or breastwork.
US2053686A (en) * 1930-10-03 1936-09-08 President And Directors Of The Collapsible paper container
US3179553A (en) * 1963-03-12 1965-04-20 Philip J Franklin Lightweight armor plate
US3454947A (en) * 1959-07-03 1969-07-08 Eltro Gmbh Radar-proof and shell-proof building material
US3470051A (en) * 1965-08-05 1969-09-30 Leonard S Meyer Formation of reinforced plastic rods and tubes
US3521580A (en) * 1968-01-16 1970-07-21 Shibaura Electric Co Ltd Shelter for military use
US3566741A (en) * 1969-06-09 1971-03-02 Joseph L Sliney Tubular, seamless, dual-hardness armor plate
US4061815A (en) * 1967-10-26 1977-12-06 The Upjohn Company Novel compositions
US4529640A (en) * 1983-04-08 1985-07-16 Goodyear Aerospace Corporation Spaced armor
US4651791A (en) * 1985-06-17 1987-03-24 Eldon Industries, Inc. Collapsible structures primarily useful as wastebaskets
US4732803A (en) * 1986-10-07 1988-03-22 Smith Novis W Jr Light weight armor
US4957270A (en) * 1989-01-05 1990-09-18 Sonoco Products Company Concrete column forming tube
US5080943A (en) * 1989-06-15 1992-01-14 Otto Chlupsa Tubing
US5198280A (en) * 1990-10-25 1993-03-30 Allied-Signal Inc. Three dimensional fiber structures having improved penetration resistance
US5328142A (en) * 1992-07-17 1994-07-12 Sonoco Products Company Concrete column forming tube
US5333532A (en) * 1988-06-03 1994-08-02 Foster-Miller, Inc. Survivability enhancement
US5796028A (en) * 1995-06-26 1998-08-18 Pacific Safety Products, Inc. Soft body armor
US6067889A (en) * 1997-07-17 2000-05-30 Brown; James C. Portable combat bunker
US6295782B1 (en) * 1999-06-11 2001-10-02 Edward Robert Fyfe Stay-in-place form
US20010038893A1 (en) * 2000-01-26 2001-11-08 Mohan Kosaraju Krishna Low density paperboard articles
US6439100B1 (en) * 2000-07-11 2002-08-27 Tae Suk Jung Bulletproof equipment
US6595102B2 (en) * 1997-05-12 2003-07-22 Southwest Research Institute Reactive personnel protection system and method
US20040043168A1 (en) * 2000-09-18 2004-03-04 Masataka Ishikawa Multilayered molded container
US20040052986A1 (en) * 2002-09-17 2004-03-18 Bank Lawrence C. Reinforced paperboard tube
US20040216593A1 (en) * 2003-04-02 2004-11-04 The Regents Of The University Of California Portable convertible blast effects shield
US20050229771A1 (en) * 2004-04-16 2005-10-20 New Mexico Technical Research Foundation Composite protection system
US20060013977A1 (en) * 2004-07-13 2006-01-19 Duke Leslie P Polymeric ballistic material and method of making
US7331504B2 (en) * 2004-05-20 2008-02-19 Sonoco Development, Inc. Partially adhered tube and methods and apparatus for manufacturing same

Patent Citations (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US578000A (en) * 1897-03-02 Bullet-proof fabric
US577999A (en) * 1897-03-02 Bullet-proof fabric
US660716A (en) * 1900-03-31 1900-10-30 Robert S Anderson Roller shield or breastwork.
US2053686A (en) * 1930-10-03 1936-09-08 President And Directors Of The Collapsible paper container
US3454947A (en) * 1959-07-03 1969-07-08 Eltro Gmbh Radar-proof and shell-proof building material
US3179553A (en) * 1963-03-12 1965-04-20 Philip J Franklin Lightweight armor plate
US3470051A (en) * 1965-08-05 1969-09-30 Leonard S Meyer Formation of reinforced plastic rods and tubes
US4061815A (en) * 1967-10-26 1977-12-06 The Upjohn Company Novel compositions
US3521580A (en) * 1968-01-16 1970-07-21 Shibaura Electric Co Ltd Shelter for military use
US3566741A (en) * 1969-06-09 1971-03-02 Joseph L Sliney Tubular, seamless, dual-hardness armor plate
US4529640A (en) * 1983-04-08 1985-07-16 Goodyear Aerospace Corporation Spaced armor
US4651791A (en) * 1985-06-17 1987-03-24 Eldon Industries, Inc. Collapsible structures primarily useful as wastebaskets
US4732803A (en) * 1986-10-07 1988-03-22 Smith Novis W Jr Light weight armor
US5333532A (en) * 1988-06-03 1994-08-02 Foster-Miller, Inc. Survivability enhancement
US4957270A (en) * 1989-01-05 1990-09-18 Sonoco Products Company Concrete column forming tube
US5080943A (en) * 1989-06-15 1992-01-14 Otto Chlupsa Tubing
US5198280A (en) * 1990-10-25 1993-03-30 Allied-Signal Inc. Three dimensional fiber structures having improved penetration resistance
US5328142A (en) * 1992-07-17 1994-07-12 Sonoco Products Company Concrete column forming tube
US5796028A (en) * 1995-06-26 1998-08-18 Pacific Safety Products, Inc. Soft body armor
US6595102B2 (en) * 1997-05-12 2003-07-22 Southwest Research Institute Reactive personnel protection system and method
US6067889A (en) * 1997-07-17 2000-05-30 Brown; James C. Portable combat bunker
US6878323B2 (en) * 1999-06-11 2005-04-12 Edward Robert Fyfe Method of manufacturing a stay-in-place form
US6295782B1 (en) * 1999-06-11 2001-10-02 Edward Robert Fyfe Stay-in-place form
US20010038893A1 (en) * 2000-01-26 2001-11-08 Mohan Kosaraju Krishna Low density paperboard articles
US6439100B1 (en) * 2000-07-11 2002-08-27 Tae Suk Jung Bulletproof equipment
US20040043168A1 (en) * 2000-09-18 2004-03-04 Masataka Ishikawa Multilayered molded container
US20040052986A1 (en) * 2002-09-17 2004-03-18 Bank Lawrence C. Reinforced paperboard tube
US20040216593A1 (en) * 2003-04-02 2004-11-04 The Regents Of The University Of California Portable convertible blast effects shield
US20050229771A1 (en) * 2004-04-16 2005-10-20 New Mexico Technical Research Foundation Composite protection system
US7331504B2 (en) * 2004-05-20 2008-02-19 Sonoco Development, Inc. Partially adhered tube and methods and apparatus for manufacturing same
US20060013977A1 (en) * 2004-07-13 2006-01-19 Duke Leslie P Polymeric ballistic material and method of making

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080264245A1 (en) * 2005-12-17 2008-10-30 Ian Barnes Barrier
US20100000399A1 (en) * 2005-12-17 2010-01-07 Ian Barnes Barrier
US20080257141A1 (en) * 2007-04-20 2008-10-23 Medwell Roger Terence Arthur Vehicle armor
US7882776B2 (en) * 2007-04-20 2011-02-08 Np Aerospace Limited Vehicle armor incorporating grid with carbon fibers
WO2012052993A2 (en) * 2010-10-20 2012-04-26 Yehuda Fences Ltd. Fillable geomesh immovable vehicle barrier system and method
WO2012052993A3 (en) * 2010-10-20 2012-08-09 Yehuda Fences Ltd. Fillable geomesh immovable vehicle barrier system and method
US8721221B2 (en) 2011-02-16 2014-05-13 Premark Packaging Llc System for providing flood protection and method of implementing same
US20160186381A1 (en) * 2014-12-26 2016-06-30 Westrock Mwv, Llc Sizing of paperboard
US9689115B2 (en) * 2014-12-26 2017-06-27 Westrock Mwv, Llc Sizing of paperboard

Also Published As

Publication number Publication date
EP1880839A2 (en) 2008-01-23

Similar Documents

Publication Publication Date Title
EP1880839A2 (en) Rapidly deployable barrier for high-speed projectiles
EP0852695B1 (en) Blast resistant and blast directing containers and method of making
US5328142A (en) Concrete column forming tube
US20090235814A1 (en) Mobile Reconfigurable Barricade
CA2553123C (en) Apparatus and method for packaging and shipping of high explosive content components
US7185778B1 (en) Barrier units and articles made therefrom
US20090235813A1 (en) Ballistics Barrier
DE69728409T2 (en) EXPLOSION-RESISTANT, EXPLOSIVE DIRECTION CONTROL PACKAGING
US20050133472A1 (en) Rack for holding fireworks for ignition
US10781569B2 (en) Confinement structures—DefenCell plastic gabion system
EP2268448A1 (en) Method of repairing a ballistics barrier
US7204183B2 (en) Container for containing an explosion
CN106414054A (en) Micro-perforated reflective textile sleeve and method of construction thereof
ES2638639T3 (en) Flange
US8247046B2 (en) Multi-layer tube of improved physical properties
EP0938640B1 (en) Barrier units and articles made therefrom
US20170035003A1 (en) Collapsible shelter for trees, shrubs and vines
JP2000510779A (en) Tubular members in composites obtained by winding unevenly woven fibers on a compressible mandrel
NZ247817A (en) Impact absorbing tubular pole: wall with alternating first and second pairs of staggered slits
JP2011011792A (en) Strip binder and method for manufacturing the same
WO2010003858A1 (en) Method for preparing hollow charges for transport, ensuring safe shipment
CN216140346U (en) Corrugated carton for packaging cylindrical articles

Legal Events

Date Code Title Description
AS Assignment

Owner name: SONOCO DEVELOPMENT, INC., SOUTH CAROLINA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CASPER, THOMAS KEVIN;REEL/FRAME:017951/0896

Effective date: 20060621

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION