US20080026506A1 - Semiconductor multi-chip package and fabrication method - Google Patents

Semiconductor multi-chip package and fabrication method Download PDF

Info

Publication number
US20080026506A1
US20080026506A1 US11/868,382 US86838207A US2008026506A1 US 20080026506 A1 US20080026506 A1 US 20080026506A1 US 86838207 A US86838207 A US 86838207A US 2008026506 A1 US2008026506 A1 US 2008026506A1
Authority
US
United States
Prior art keywords
chip
support structures
insulating support
bonding pads
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/868,382
Inventor
Dong-Kuk Kim
Chang-Cheol Lee
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020030021922A external-priority patent/KR20040087501A/en
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Priority to US11/868,382 priority Critical patent/US20080026506A1/en
Publication of US20080026506A1 publication Critical patent/US20080026506A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L25/0657Stacked arrangements of devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/50Multistep manufacturing processes of assemblies consisting of devices, each device being of a type provided for in group H01L27/00 or H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32135Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/32145Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45147Copper (Cu) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48095Kinked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48464Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area also being a ball bond, i.e. ball-to-ball
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4847Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
    • H01L2224/48471Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond the other connecting portion not on the bonding area being a ball bond, i.e. wedge-to-ball, reverse stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48599Principal constituent of the connecting portion of the wire connector being Gold (Au)
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48799Principal constituent of the connecting portion of the wire connector being Copper (Cu)
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4899Auxiliary members for wire connectors, e.g. flow-barriers, reinforcing structures, spacers, alignment aids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85909Post-treatment of the connector or wire bonding area
    • H01L2224/8592Applying permanent coating, e.g. protective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/922Connecting different surfaces of the semiconductor or solid-state body with connectors of different types
    • H01L2224/9222Sequential connecting processes
    • H01L2224/92242Sequential connecting processes the first connecting process involving a layer connector
    • H01L2224/92247Sequential connecting processes the first connecting process involving a layer connector the second connecting process involving a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/0651Wire or wire-like electrical connections from device to substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06575Auxiliary carrier between devices, the carrier having no electrical connection structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06582Housing for the assembly, e.g. chip scale package [CSP]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01014Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01015Phosphorus [P]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Definitions

  • the present invention relates to semiconductor devices and, more particularly, to a semiconductor multi-chip package and a method of manufacturing the same.
  • FIG. 1A is a plan view of a semiconductor chip having a center pad configuration
  • FIG. 1B is a plan view of a semiconductor chip having a peripheral pad configuration.
  • the center pad configuration is generally more suitable for achieving high-speed operation of semiconductor devices.
  • semiconductor industry is expending significant resources toward forming semiconductor multi-chip packages that can meet the demand for high packing density in high-speed, multi-functional semiconductor devices.
  • semiconductor multi-chip packages that include stacked chips having a peripheral pad configuration.
  • FIG. 2 One such conventional multi-chip package is shown in FIG. 2 .
  • a semiconductor multi-chip package includes stacked chips 20 , 40 , each having a peripheral pad configuration.
  • the chips 20 , 40 are stacked one on top of the other with a spacer 30 placed between them.
  • the multi-chip package of FIG. 2 cannot be assembled using a lower chip with a center pad configuration, because the center pads do not provide sufficient room between them for placement of a spacer.
  • FIG. 3 illustrates one conventional attempt to provide a semiconductor multi-chip package 32 having a lower chip 32 originally configured having a center pad configuration, i.e., pad wiring patterns (not shown) formed on a center region thereof (“center pad wiring patterns”).
  • FIGS. 4 and 5 illustrate a technique for redistributing center pad wiring patterns 36 to peripheral bonding pads 38 , in which an actual wire bonding process is performed.
  • a conventional multi-chip package 32 includes stacked chips 32 , 34 originally configured having a center pad configuration.
  • the center pad wiring patterns 36 of the semiconductor chips 32 , 34 are redistributed from a center region to a peripheral region using redistribution patterns 39 .
  • the center pad wiring patterns 36 are connected to the peripheral bonding pads 38 through the redistribution patterns 39 .
  • a high-density semiconductor multi-chip package can be formed using chips with a center pad configuration. This can preferably be accomplished using existing assembly equipment and without the use of costly and unreliable pad redistribution processes.
  • a multi-chip package comprises a package substrate having bond fingers disposed thereon.
  • a first chip is disposed on the package substrate and preferably includes first bonding pads formed on a substantially center portion of the chip. Insulating support structures are preferably formed outward of the bonding pads on the first chip.
  • a bonding wire is preferably connected between one of the bond fingers and at least one of the first bonding pads. A portion of the bonding wire is preferably spaced apart from the first chip using the support structures.
  • a second chip is disposed over the bonding wire and overlying the insulating support structures.
  • FIG. 1A is a plan view illustrating a semiconductor chip having a center pad configuration according to the related art
  • FIG. 1B is a plan view illustrating a semiconductor chip having a peripheral pad configuration according to the related art
  • FIG. 2 is a cross-sectional view of a conventional multi-chip package having chips with peripheral bonding pads;
  • FIG. 3 is a cross-sectional view of a multi-chip package with a chip having a center bonding pad redistributed to a peripheral bonding pad according to the related art
  • FIG. 4 is a plan view of a conventional semiconductor chip having bonding pads redistributed from a center region to a peripheral region;
  • FIG. 5 is a cross-sectional view of a conventional semiconductor chip with bonding pads redistributed from a center region to a peripheral region;
  • FIGS. 6 to 12 are cross-sectional views illustrating a process of manufacturing a semiconductor multi-chip package according to an embodiment of the present invention:
  • FIG. 13 is a cross-sectional view of an insulating support structure according to another embodiment of the present invention.
  • FIG. 14A is a plan view illustrating a semiconductor chip with insulating support structures disposed thereon according to one aspect of the present invention
  • FIG. 14B is a plan view illustrating a semiconductor chip with insulating support structures disposed thereon according to another aspect of the present invention.
  • FIG. 15 is a plan view of a wafer level package according to yet another embodiment of the present invention.
  • FIG. 16 is a plan view of a screen mask for use in forming a wafer level package having the structure shown in FIG. 15 ;
  • FIG. 17 is a cross-sectional view illustrating a semiconductor multi-chip package according to still another embodiment of the present invention.
  • FIG. 12 illustrates a preferred embodiment of a multi-chip package constructed according to principles of the present invention.
  • a multi-chip package 400 preferably comprises a package substrate 200 having bond fingers 220 disposed thereon.
  • a first chip 210 preferably has a center pad configuration, and therefore includes first bonding pads 215 , formed on a substantially center portion thereof.
  • the first chip 210 is preferably disposed on the package substrate 200 .
  • Insulating support structures 260 are preferably formed on the first chip 210 outwards of the bonding pads 215 .
  • the insulating support structures 260 can, for example, be formed spaced apart from each other along opposite sides of the first chip 210 , with the bonding pads 215 therebetween.
  • the insulating support structures 260 can, for example, extend in a line shape along a periphery of at least two opposing sides of the first chip 210 (see FIG. 9 ).
  • the support structures 260 are by no means limited, however, to having a line shape, and other shapes are within the contemplation of the invention.
  • the support structures 260 may be a plurality of separate, mound-like structures disposed along the length of two or more edges of the first chip 210 .
  • the support structures 260 can also be formed in corners of the first chip 210 as shown in FIGS. 14A-14B .
  • manufacturing costs and processing time can be reduced, as compared to the line-shaped support structures 260 , by reducing the amount of material required to form the insulating support structures.
  • the support structures 260 are not limited to a straight line shape as shown in FIG. 9 . Other shapes such as a wavy line shape may be used to implement the present invention.
  • more than a single line of insulating support structures 260 can be formed on opposing peripheral regions of the first chip 210 depending on manufacturing objectives.
  • a bonding wire 230 is preferably connected between one of the bond fingers 220 and at least one of the first bonding pads 215 .
  • the bonding wire 230 is preferably spaced apart from the first chip 210 by the insulating support structures 260 . It is also desirable to ensure that the top of the bonding wire loop 230 is not substantially higher than the top of the support structures 260 .
  • a second chip 310 having second bonding pads 315 is preferably disposed over the bonding wire 230 and overlying the insulating support structures 260 .
  • FIG. 13 illustrates an alternative embodiment incorporating principles of the present invention.
  • the bonding wire 230 may pass through, rather than overlying, the support structures 260 .
  • the insulating support structures 260 can directly support the second chip 310 .
  • the bonding wire 230 need not directly contact the support structures 260 and could, for example, be arranged over but not touching or alongside the line-shaped or separate, mound-like support structures 260 .
  • FIG. 11 illustrates another aspect of the present invention.
  • the multi-chip package 400 preferably includes an interposer 270 sandwiched between the first chip 210 and the second chip 310 for adhesion therebetween.
  • the interposer 270 supports the second chip 310 and prevents it from touching the bonding wire 230 connected to the first chip 210 .
  • An interposer material 170 for example, an epoxy without a filler such as silica therein—is preferably placed between the spaced apart support structures 260 (see FIG. 10 ) to form the interposer 270 .
  • Various alternative embodiments can be formed, however, without using the interposer 270 , by instead using the insulating support structures 260 and/or the insulating tape 340 to support the second chip 310 and insulate the bonding wires 230 .
  • the multi-chip package 400 may further include an insulating tape 340 disposed between the second chip 310 and the bonding wire 230 , for example, to provide isolation therebetween.
  • the insulating tape 340 is preferably formed on a bottom surface of the second chip 310 .
  • the insulating tape 340 may directly touch the bonding wire 230 , although not shown.
  • the insulating tape 340 may directly touch the insulating support structures 260 , for example, if the bonding wire 230 passes through the support structures 260 as described in connection with FIG. 13 or FIG. 14B .
  • the insulating tape 340 may contact the interposer 270 without contacting the bonding wire 230 or the insulating support structures 260 .
  • the multi-chip package 400 may also include an epoxy molding compound (EMC) 350 that encapsulates the first and second chips 210 , 310 .
  • EMC epoxy molding compound
  • the interposer 270 is not formed on the first chip 210
  • the EMC 350 is preferably instead disposed between the first chip 210 and the second chip 310 in place of the interposer 270 .
  • a semiconductor multi-chip package 400 is formed by mounting a lower (or first) semiconductor chip 210 on a package substrate 200 . This can be accomplished using conventional techniques.
  • An adhesive 240 can, for example, be applied on the package substrate 200 using a conventional die-bonder having a dispenser unit for dispensing the adhesive 240 .
  • the adhesive may be a conventional adhesive material typically used in semiconductor packaging.
  • the package substrate 200 may be a printed circuit board (PCB) or other package substrate such as a lead frame or a wiring tape, for example.
  • the substrate 200 preferably has bond fingers (or wire connection contacts) 220 for electrical connection between the package substrate 200 and the first chip 210 .
  • the first chip 210 preferably has first bonding pads (center bonding pads) 215 formed on a substantially center portion of the chip 210 .
  • the lower semiconductor chip 210 is preferably attached to the package substrate 200 using the adhesive 240 .
  • insulating support structures 260 can be formed by applying a liquid type nonconductive epoxy resin, or any other suitable non-conductive insulating material, for example, hybrid type adhesive, silicon type adhesive, film type adhesive, on the peripheral surface (i.e., the surface of the peripheral region) of the lower chip 210 . This can be done using conventional techniques, including, for example, a dispensing technique.
  • a die bonder dispenser unit, as used to apply the adhesive 240 onto the package substrate 200 can be used to provide the epoxy resin onto the peripheral surface of the lower chip 210 .
  • the insulating support structures 260 can, for example, be arranged as lines along the peripheral region of the lower chip 210 (see FIG. 9 ) or they can be arranged as a plurality of separate, mound-like structures aligned, for instance, with the center bonding pads 215 .
  • the resultant structure is then preferably heat treated at approximately 100° C. or higher to solidify the epoxy resin of the support structures 260 , as well as the adhesive 240 .
  • the insulating support structures 260 can thereby be formed on the peripheral region of the lower chip 210 .
  • the width d 1 of the support structures 260 is preferably less than half of the distance d 2 between the center of the bonding pads 215 and the nearest edge of the first chip 210 .
  • the height h of the support structures 260 is preferably between about 25 ⁇ 200 ⁇ m.
  • first bonding wires 230 made of a conductive material such as gold or copper.
  • This wire bonding process can be performed using conventional techniques including, but not limited to, a wedge bonding technique or a bump reverse ball bonding technique.
  • the wire bonding process may be performed directly on the first bonding pads 215 formed on a substantially center portion of the chip 210 .
  • the first wires 230 may directly contact the top surface of (i.e., placed directly overlying) the support structures 260 , as shown in reference area A.
  • the bonding wires 230 could also be configured to pass through the support structures 260 (see FIG. 13 ) or located over the insulating support structures 260 such that they do not touch the support structures 260 . Using the insulating support structures 260 , conventional problems such as bond wire sagging can be reduced.
  • an interposer material 170 is preferably provided on the surface of the lower chip 210 .
  • the interposer material 170 may be a liquid, and may be the same as the material used to form the support structures 260 .
  • the interposer material 170 can be applied using a conventional dispensing technique.
  • an upper (or second) semiconductor chip 310 is mounted on the first chip 210 .
  • the second chip 310 may have either a center pad configuration or a peripheral pad configuration.
  • the loop height and the shape of the wires 230 are preferably controlled such that the first wires 230 do not contact the bottom surface of the second chip 310 .
  • the bonding wires 230 may have a low loop height and have a substantially flat portion suitable for stacking the second chip 310 over the first chip 210 .
  • the package thickness can thereby be reduced and device failure resulting from unwanted contact between the wires 230 and the second chip 310 can be prevented.
  • the second chip 310 may have an insulating tape 340 disposed on the bottom side thereof.
  • the insulating tape 340 prevents the bottom surface of the second chip 310 from touching the first wires 230 and allows the second chip 310 to be arranged closer to the first chip 210 , reducing overall package thickness.
  • the insulating tape 340 is not required, however, and even without the insulating tape 340 , sufficient isolation between the wires 230 and the second chip 310 can be obtained through use of the interposer 270 and/or the insulating structures 260 disposed between the first and second chips 210 , 310 .
  • the bonding wire 230 passes through the support structures 260 as described in connection with FIG. 13 or FIG. 14B , the insulating tape 340 is not needed between the first chip 210 and the second chip 310 .
  • the bonding wires 230 are preferably distanced sufficiently from the bottom surface of the second chip 310 to provide isolation therebetween.
  • the height of the first bonding wires 230 (the wire loop) can be substantially reduced, which in turn substantially reduces the overall package thickness.
  • the interposer material 170 is pushed down and spreads out toward the peripheral region of the lower chip 210 .
  • the insulating support structures 260 extending along the length of the first chip 210 act as a dam structure, helping to contain the interposer material 170 within the boundaries of the first chip 210 and prevent it from leaking out onto the package substrate 200 .
  • insulating support structures 260 are arranged on more than two sides of the first chip 210 , because voids may be generated within the interposer material 170 when mounting or attaching the upper chip 310 on the lower chip 210 , it is preferable to have the insulating support structures 260 extend along only two opposing sides of the first chip 210 .
  • the interposer material 170 By helping to prevent the interposer material 170 from flowing onto the sidewalls of the lower chip 210 , an adequate thickness of the interposer 270 can be maintained. In addition, by preventing the interposer material 170 from flowing between the lower chip 210 and the housing 350 , weak adhesion between them can be prevented. For example, if the interposer material 170 is permitted to escape from the edge of the lower chip 210 , the interposer material 170 having the weak adhesion characteristics are interposed between the lower chip 210 and the an epoxy molding compound that encapsulates the first and second chips 210 , 310 , thereby preventing the strong direct adhesion between the molding compound that forms a housing 350 ( FIG. 12 ) and the lower chip 210 . Escape of the interposer material 170 can thereby lower the overall package reliability.
  • the support structures 260 may also be useful in maintaining a parallel relationship between the second chip 310 and the first chip 210 during the attachment. This also improves the yield and reduces the overall
  • the interposer material 170 is then solidified by thermal treatment at a temperature between about 50° C. to about 200° C. to form an interposer 270 .
  • the interposer 270 permits the lower and upper chips 210 , 310 to be adjoined to each other while further securing the bonding wires 230 within the solidified interposer 270 . Because the interposer 270 can prevent the first wires 230 from being swept or bent by a flowing molding compound during a transfer molding process, conventional encapsulation problems such as wire sweeping and sagging caused by an encapsulation material can be effectively prevented.
  • the interposer 270 also provides isolation between the first chip 210 and the second chip 310 .
  • the other portions of the bond fingers 220 are preferably electrically connected to second bonding pads 315 formed in the upper chip 310 through second bonding wires 330 . This can also be done using conventional wire bonding techniques, as discussed above.
  • the upper chip 310 may also have insulating support structures formed using similar methods to those described above.
  • the resultant structure can then be subjected to a molding process to form a housing 350 .
  • This can be a conventional molding process using EMC.
  • the housing 350 can be formed of materials other than EMC, such as ceramic, and that it can be formed using processes other than the conventional molding process.
  • the interposer 270 prevents the first wires 230 from being swept and bent by a molding compound during a transfer molding process.
  • bonding wire reliability and package reliability can be substantially improved compared to conventional packages having such wire sweeping and sagging problems.
  • a conductive ball array such as a solder ball array can be formed on the bottom side of the package substrate 200 to form a ball grid array (BGA) package and to permit interconnection to an external system.
  • BGA ball grid array
  • FIG. 13 illustrates an alternative embodiment implementing the principles of the present invention.
  • this alternative embodiment is similar to the embodiment illustrated in FIGS. 6-13B , except that the support structures 260 are formed after forming the first wires 230 .
  • the first wires 230 can pass through the support structures 260 .
  • the first wires 230 pass through a middle portion of the support structures 260 such that the first wires 230 are fixed or secured within the support structures 260 .
  • One advantage of this embodiment is that the top height of the first wires 230 is lower than the top height of the support structures 260 .
  • the bottom side of the upper chip 310 can thereby be sufficiently isolated from the first wires 230 and the wire sweeping and sagging problem can be prevented and insulating tape 340 is not needed.
  • the upper chip 310 can also be kept parallel with the lower chip 210 .
  • a single-chip package can benefit from various principles of this invention.
  • the resultant structure may be subjected to a molding process and a process for forming a solder ball array.
  • the support structures 260 help prevent sweeping and sagging of the first wires 230 during the molding process.
  • FIGS. 15 and 16 illustrate a wafer-level manufacturing technique according to still another aspect of the present invention.
  • the wafer-level manufacturing process is similar to the process explained above with reference to FIGS. 6 through 13 B, except that the support structures 260 can be formed at the wafer level.
  • a wafer includes a plurality of chips 210 , each having insulating support structures 260 formed thereon.
  • the support structures 260 can be formed using a wafer-level dispensing technique similar to the dispensing techniques described previously.
  • the support structures 260 may also be formed using a screen-printing technique.
  • FIG. 16 shows a screen mask 402 used to form line-shaped support structures 260 .
  • the screen mask 402 could also be used to form a plurality of separate, interspersed structures.
  • the screen-printing technique provides better control over the width and height of the support structures 260 .
  • the wafer are cut out (dicing) to singulate the plurality of chips 210 .
  • the processes described above or similar methods are performed to form a multi-chip package according to the principles of the present invention.
  • the method of forming support structures 260 at the wafer level may also be used for a package having only a single chip.
  • FIG. 17 illustrates a still further embodiment implementing principles of the present invention in which a multi-chip package includes more than two stacked chips.
  • a multi-chip package 500 according to this embodiment includes three or more stacked chips 510 , 520 , 530 , 540 .
  • all of the bond wires 512 in this figure appear connected to a single bond finger 514 .
  • the respective bonding wires 512 are connected to corresponding bond fingers 514 as needed.
  • Each of the stacked chips 510 , 520 , 530 , 540 may have either a center pad configuration or a peripheral pad configuration. Not all of the stacked chips 510 , 520 , 530 , 540 need to have the same pad configuration.
  • multi-chips packages can be formed using lower chips having a center pad configuration. Further, the methods disclosed herein are less expensive than conventional methods and are able to be implemented using existing equipment. Additionally, conventional problems such as wire sweeping or sagging can be avoided.

Abstract

A multi-chip package comprises a package substrate having bond fingers disposed thereon. A first chip have center bonding pads formed on a substantially center portion thereof. The first chip is disposed on the package substrate. Insulating support structures are formed on the first chip located outward of the bonding pads. A bonding wire is connected between one of the bond fingers and at least one of the center bonding pads. A second chip has is disposed over the bonding wire and overlying the insulating support structures.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application is a Divisional of U.S. patent application Ser. No. 10/787,679, filed Feb. 25, 2004, now pending, which is claims priority from Korean Patent Application No. 2003-21922, filed on Apr. 8, 2003, the contents of which are incorporated herein by reference in their entirety.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention relates to semiconductor devices and, more particularly, to a semiconductor multi-chip package and a method of manufacturing the same.
  • 2. Description of Related Art
  • Conventional semiconductor chips have either a center pad configuration, wherein bonding pads 12 are formed on a center region of the chips, or a peripheral pad configuration, wherein bonding pads 14 are formed on a peripheral region of the chips. FIG. 1A is a plan view of a semiconductor chip having a center pad configuration and FIG. 1B is a plan view of a semiconductor chip having a peripheral pad configuration. The center pad configuration is generally more suitable for achieving high-speed operation of semiconductor devices.
  • Currently, the semiconductor industry is expending significant resources toward forming semiconductor multi-chip packages that can meet the demand for high packing density in high-speed, multi-functional semiconductor devices. As part of such efforts, the industry has proposed semiconductor multi-chip packages that include stacked chips having a peripheral pad configuration.
  • One such conventional multi-chip package is shown in FIG. 2. Referring to FIG. 2, a semiconductor multi-chip package includes stacked chips 20, 40, each having a peripheral pad configuration. The chips 20, 40 are stacked one on top of the other with a spacer 30 placed between them. Unfortunately, however, the multi-chip package of FIG. 2 cannot be assembled using a lower chip with a center pad configuration, because the center pads do not provide sufficient room between them for placement of a spacer.
  • FIG. 3 illustrates one conventional attempt to provide a semiconductor multi-chip package 32 having a lower chip 32 originally configured having a center pad configuration, i.e., pad wiring patterns (not shown) formed on a center region thereof (“center pad wiring patterns”).
  • FIGS. 4 and 5 illustrate a technique for redistributing center pad wiring patterns 36 to peripheral bonding pads 38, in which an actual wire bonding process is performed. Referring to FIGS. 3-5, a conventional multi-chip package 32, according to this example, includes stacked chips 32, 34 originally configured having a center pad configuration. The center pad wiring patterns 36 of the semiconductor chips 32, 34 are redistributed from a center region to a peripheral region using redistribution patterns 39.
  • In other words, the center pad wiring patterns 36 are connected to the peripheral bonding pads 38 through the redistribution patterns 39. This allows for a spacer 37 to be placed between the bonding pads 38 on the lower chip 32 to form a multi-chip package 300 comprising stacked chips 32, 34 with the center pad wiring patterns 36.
  • Unfortunately, however, the cost of redistributing the pad wiring patterns is considerably high, and the process and package reliability are yet to reach desirable levels. Accordingly, a need remains for a reliable and cost-effective method of manufacturing semiconductor multi-chip packages using chips having a center pad configuration.
  • SUMMARY OF THE INVENTION
  • According to principles of the present invention, a high-density semiconductor multi-chip package can be formed using chips with a center pad configuration. This can preferably be accomplished using existing assembly equipment and without the use of costly and unreliable pad redistribution processes.
  • According to one embodiment, for example, a multi-chip package comprises a package substrate having bond fingers disposed thereon. A first chip is disposed on the package substrate and preferably includes first bonding pads formed on a substantially center portion of the chip. Insulating support structures are preferably formed outward of the bonding pads on the first chip. A bonding wire is preferably connected between one of the bond fingers and at least one of the first bonding pads. A portion of the bonding wire is preferably spaced apart from the first chip using the support structures. A second chip is disposed over the bonding wire and overlying the insulating support structures.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The objects, features, and advantages of the present invention will be more readily apparent through the following detailed description of preferred embodiments made in conjunction with the accompanying drawings. In the drawings, like reference numerals denote the same or similar members and the thicknesses of layers or regions may be exaggerated for clarity, in which:
  • FIG. 1A is a plan view illustrating a semiconductor chip having a center pad configuration according to the related art;
  • FIG. 1B is a plan view illustrating a semiconductor chip having a peripheral pad configuration according to the related art;
  • FIG. 2 is a cross-sectional view of a conventional multi-chip package having chips with peripheral bonding pads;
  • FIG. 3 is a cross-sectional view of a multi-chip package with a chip having a center bonding pad redistributed to a peripheral bonding pad according to the related art;
  • FIG. 4 is a plan view of a conventional semiconductor chip having bonding pads redistributed from a center region to a peripheral region;
  • FIG. 5 is a cross-sectional view of a conventional semiconductor chip with bonding pads redistributed from a center region to a peripheral region;
  • FIGS. 6 to 12 are cross-sectional views illustrating a process of manufacturing a semiconductor multi-chip package according to an embodiment of the present invention:
  • FIG. 13 is a cross-sectional view of an insulating support structure according to another embodiment of the present invention;
  • FIG. 14A is a plan view illustrating a semiconductor chip with insulating support structures disposed thereon according to one aspect of the present invention;
  • FIG. 14B is a plan view illustrating a semiconductor chip with insulating support structures disposed thereon according to another aspect of the present invention;
  • FIG. 15 is a plan view of a wafer level package according to yet another embodiment of the present invention;
  • FIG. 16 is a plan view of a screen mask for use in forming a wafer level package having the structure shown in FIG. 15; and
  • FIG. 17 is a cross-sectional view illustrating a semiconductor multi-chip package according to still another embodiment of the present invention.
  • DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS
  • Various embodiments of the present invention will now be described in detail with reference to the attached drawings. It should be noted, however, that the various embodiments of the present invention described herein can be modified in arrangement and detail, and that the scope of the present invention is not restricted to the described embodiments. Rather, these exemplary embodiments are provided to demonstrate the principles of the present invention to those skilled in the art.
  • FIG. 12 illustrates a preferred embodiment of a multi-chip package constructed according to principles of the present invention. Referring to FIG. 12, a multi-chip package 400 preferably comprises a package substrate 200 having bond fingers 220 disposed thereon. A first chip 210 preferably has a center pad configuration, and therefore includes first bonding pads 215, formed on a substantially center portion thereof. The first chip 210 is preferably disposed on the package substrate 200.
  • Insulating support structures 260 are preferably formed on the first chip 210 outwards of the bonding pads 215. The insulating support structures 260 can, for example, be formed spaced apart from each other along opposite sides of the first chip 210, with the bonding pads 215 therebetween. The insulating support structures 260 can, for example, extend in a line shape along a periphery of at least two opposing sides of the first chip 210 (see FIG. 9).
  • The support structures 260 are by no means limited, however, to having a line shape, and other shapes are within the contemplation of the invention. For example, the support structures 260 may be a plurality of separate, mound-like structures disposed along the length of two or more edges of the first chip 210. The support structures 260 can also be formed in corners of the first chip 210 as shown in FIGS. 14A-14B. Using separate, mound-like support structures, manufacturing costs and processing time can be reduced, as compared to the line-shaped support structures 260, by reducing the amount of material required to form the insulating support structures. Also, the support structures 260 are not limited to a straight line shape as shown in FIG. 9. Other shapes such as a wavy line shape may be used to implement the present invention. In addition, more than a single line of insulating support structures 260 can be formed on opposing peripheral regions of the first chip 210 depending on manufacturing objectives.
  • A bonding wire 230 is preferably connected between one of the bond fingers 220 and at least one of the first bonding pads 215. The bonding wire 230 is preferably spaced apart from the first chip 210 by the insulating support structures 260. It is also desirable to ensure that the top of the bonding wire loop 230 is not substantially higher than the top of the support structures 260. A second chip 310 having second bonding pads 315 is preferably disposed over the bonding wire 230 and overlying the insulating support structures 260.
  • FIG. 13 illustrates an alternative embodiment incorporating principles of the present invention. Referring to FIG. 13, the bonding wire 230 may pass through, rather than overlying, the support structures 260. In this configuration, the insulating support structures 260 can directly support the second chip 310.
  • In still other embodiments, however, depending on manufacturing objectives, the bonding wire 230 need not directly contact the support structures 260 and could, for example, be arranged over but not touching or alongside the line-shaped or separate, mound-like support structures 260.
  • FIG. 11 illustrates another aspect of the present invention. Referring to FIG. 11, the multi-chip package 400 preferably includes an interposer 270 sandwiched between the first chip 210 and the second chip 310 for adhesion therebetween. The interposer 270 supports the second chip 310 and prevents it from touching the bonding wire 230 connected to the first chip 210. An interposer material 170—for example, an epoxy without a filler such as silica therein—is preferably placed between the spaced apart support structures 260 (see FIG. 10) to form the interposer 270. Various alternative embodiments can be formed, however, without using the interposer 270, by instead using the insulating support structures 260 and/or the insulating tape 340 to support the second chip 310 and insulate the bonding wires 230.
  • Referring again to FIG. 12, the multi-chip package 400 may further include an insulating tape 340 disposed between the second chip 310 and the bonding wire 230, for example, to provide isolation therebetween. The insulating tape 340 is preferably formed on a bottom surface of the second chip 310. The insulating tape 340 may directly touch the bonding wire 230, although not shown. Also, the insulating tape 340 may directly touch the insulating support structures 260, for example, if the bonding wire 230 passes through the support structures 260 as described in connection with FIG. 13 or FIG. 14B. Alternatively, the insulating tape 340 may contact the interposer 270 without contacting the bonding wire 230 or the insulating support structures 260.
  • The multi-chip package 400 may also include an epoxy molding compound (EMC) 350 that encapsulates the first and second chips 210, 310. Although not shown, if the interposer 270 is not formed on the first chip 210, the EMC 350 is preferably instead disposed between the first chip 210 and the second chip 310 in place of the interposer 270.
  • Manufacturing Method
  • A preferred method of manufacturing the above-described semiconductor multi-chip package 400 will now be described in greater detail with reference to FIGS. 6-12. Referring specifically to FIG. 6, a semiconductor multi-chip package 400 is formed by mounting a lower (or first) semiconductor chip 210 on a package substrate 200. This can be accomplished using conventional techniques. An adhesive 240 can, for example, be applied on the package substrate 200 using a conventional die-bonder having a dispenser unit for dispensing the adhesive 240. The adhesive may be a conventional adhesive material typically used in semiconductor packaging.
  • The package substrate 200 may be a printed circuit board (PCB) or other package substrate such as a lead frame or a wiring tape, for example. The substrate 200 preferably has bond fingers (or wire connection contacts) 220 for electrical connection between the package substrate 200 and the first chip 210. The first chip 210 preferably has first bonding pads (center bonding pads) 215 formed on a substantially center portion of the chip 210. The lower semiconductor chip 210 is preferably attached to the package substrate 200 using the adhesive 240.
  • Referring now to FIG. 7, insulating support structures 260 can be formed by applying a liquid type nonconductive epoxy resin, or any other suitable non-conductive insulating material, for example, hybrid type adhesive, silicon type adhesive, film type adhesive, on the peripheral surface (i.e., the surface of the peripheral region) of the lower chip 210. This can be done using conventional techniques, including, for example, a dispensing technique. A die bonder dispenser unit, as used to apply the adhesive 240 onto the package substrate 200, can be used to provide the epoxy resin onto the peripheral surface of the lower chip 210. The insulating support structures 260 can, for example, be arranged as lines along the peripheral region of the lower chip 210 (see FIG. 9) or they can be arranged as a plurality of separate, mound-like structures aligned, for instance, with the center bonding pads 215.
  • The resultant structure is then preferably heat treated at approximately 100° C. or higher to solidify the epoxy resin of the support structures 260, as well as the adhesive 240. The insulating support structures 260 can thereby be formed on the peripheral region of the lower chip 210. The width d1 of the support structures 260 is preferably less than half of the distance d2 between the center of the bonding pads 215 and the nearest edge of the first chip 210. In addition, the height h of the support structures 260 is preferably between about 25˜200 μm.
  • Referring to FIG. 8, a portion of the bond fingers 220 are preferably electrically connected to the first bonding pads 215 through first bonding wires 230 made of a conductive material such as gold or copper. This wire bonding process can be performed using conventional techniques including, but not limited to, a wedge bonding technique or a bump reverse ball bonding technique. The wire bonding process may be performed directly on the first bonding pads 215 formed on a substantially center portion of the chip 210. The first wires 230 may directly contact the top surface of (i.e., placed directly overlying) the support structures 260, as shown in reference area A. The bonding wires 230 could also be configured to pass through the support structures 260 (see FIG. 13) or located over the insulating support structures 260 such that they do not touch the support structures 260. Using the insulating support structures 260, conventional problems such as bond wire sagging can be reduced.
  • Referring to FIG. 10, an interposer material 170 is preferably provided on the surface of the lower chip 210. The interposer material 170 may be a liquid, and may be the same as the material used to form the support structures 260. The interposer material 170 can be applied using a conventional dispensing technique.
  • Referring to FIG. 11, an upper (or second) semiconductor chip 310 is mounted on the first chip 210. The second chip 310 may have either a center pad configuration or a peripheral pad configuration. The loop height and the shape of the wires 230 are preferably controlled such that the first wires 230 do not contact the bottom surface of the second chip 310. In this respect, the bonding wires 230 may have a low loop height and have a substantially flat portion suitable for stacking the second chip 310 over the first chip 210. The package thickness can thereby be reduced and device failure resulting from unwanted contact between the wires 230 and the second chip 310 can be prevented.
  • Optionally, the second chip 310 may have an insulating tape 340 disposed on the bottom side thereof. The insulating tape 340 prevents the bottom surface of the second chip 310 from touching the first wires 230 and allows the second chip 310 to be arranged closer to the first chip 210, reducing overall package thickness.
  • The insulating tape 340 is not required, however, and even without the insulating tape 340, sufficient isolation between the wires 230 and the second chip 310 can be obtained through use of the interposer 270 and/or the insulating structures 260 disposed between the first and second chips 210, 310. For example, if the bonding wire 230 passes through the support structures 260 as described in connection with FIG. 13 or FIG. 14B, the insulating tape 340 is not needed between the first chip 210 and the second chip 310. In either of these embodiments, the bonding wires 230 are preferably distanced sufficiently from the bottom surface of the second chip 310 to provide isolation therebetween. Thus, according to various embodiments of the present invention, the height of the first bonding wires 230 (the wire loop) can be substantially reduced, which in turn substantially reduces the overall package thickness.
  • During mounting or attaching of the second chip 310 to the first chip 210, the interposer material 170 is pushed down and spreads out toward the peripheral region of the lower chip 210. During this process, the insulating support structures 260 extending along the length of the first chip 210 (see FIG. 9) act as a dam structure, helping to contain the interposer material 170 within the boundaries of the first chip 210 and prevent it from leaking out onto the package substrate 200. Although it is possible to have insulating support structures 260 arranged on more than two sides of the first chip 210, because voids may be generated within the interposer material 170 when mounting or attaching the upper chip 310 on the lower chip 210, it is preferable to have the insulating support structures 260 extend along only two opposing sides of the first chip 210.
  • By helping to prevent the interposer material 170 from flowing onto the sidewalls of the lower chip 210, an adequate thickness of the interposer 270 can be maintained. In addition, by preventing the interposer material 170 from flowing between the lower chip 210 and the housing 350, weak adhesion between them can be prevented. For example, if the interposer material 170 is permitted to escape from the edge of the lower chip 210, the interposer material 170 having the weak adhesion characteristics are interposed between the lower chip 210 and the an epoxy molding compound that encapsulates the first and second chips 210, 310, thereby preventing the strong direct adhesion between the molding compound that forms a housing 350 (FIG. 12) and the lower chip 210. Escape of the interposer material 170 can thereby lower the overall package reliability. The support structures 260 may also be useful in maintaining a parallel relationship between the second chip 310 and the first chip 210 during the attachment. This also improves the yield and reduces the overall package thickness.
  • After the second chip 310 is mounted on the first chip 210, the interposer material 170 is then solidified by thermal treatment at a temperature between about 50° C. to about 200° C. to form an interposer 270. The interposer 270 permits the lower and upper chips 210, 310 to be adjoined to each other while further securing the bonding wires 230 within the solidified interposer 270. Because the interposer 270 can prevent the first wires 230 from being swept or bent by a flowing molding compound during a transfer molding process, conventional encapsulation problems such as wire sweeping and sagging caused by an encapsulation material can be effectively prevented. In addition, the interposer 270 also provides isolation between the first chip 210 and the second chip 310.
  • The other portions of the bond fingers 220 are preferably electrically connected to second bonding pads 315 formed in the upper chip 310 through second bonding wires 330. This can also be done using conventional wire bonding techniques, as discussed above. The upper chip 310 may also have insulating support structures formed using similar methods to those described above.
  • Referring to FIG. 12, the resultant structure can then be subjected to a molding process to form a housing 350. This can be a conventional molding process using EMC. Those skilled in the art, however, will appreciate that the housing 350 can be formed of materials other than EMC, such as ceramic, and that it can be formed using processes other than the conventional molding process. As pointed out previously, the interposer 270 prevents the first wires 230 from being swept and bent by a molding compound during a transfer molding process. Thus, bonding wire reliability and package reliability can be substantially improved compared to conventional packages having such wire sweeping and sagging problems. A conductive ball array such as a solder ball array can be formed on the bottom side of the package substrate 200 to form a ball grid array (BGA) package and to permit interconnection to an external system.
  • ALTERNATIVE EMBODIMENTS
  • FIG. 13 illustrates an alternative embodiment implementing the principles of the present invention. Referring to FIG. 13, this alternative embodiment is similar to the embodiment illustrated in FIGS. 6-13B, except that the support structures 260 are formed after forming the first wires 230. Accordingly, in this embodiment, the first wires 230 can pass through the support structures 260. In the specific embodiment shown, the first wires 230 pass through a middle portion of the support structures 260 such that the first wires 230 are fixed or secured within the support structures 260. One advantage of this embodiment is that the top height of the first wires 230 is lower than the top height of the support structures 260. The bottom side of the upper chip 310 can thereby be sufficiently isolated from the first wires 230 and the wire sweeping and sagging problem can be prevented and insulating tape 340 is not needed. The upper chip 310 can also be kept parallel with the lower chip 210.
  • According to yet another embodiment of the present invention, a single-chip package can benefit from various principles of this invention. In this embodiment, after forming the support structures 260, the resultant structure may be subjected to a molding process and a process for forming a solder ball array. In this single-chip embodiment, the support structures 260 help prevent sweeping and sagging of the first wires 230 during the molding process.
  • Wafer-Level Manufacturing Technique
  • FIGS. 15 and 16 illustrate a wafer-level manufacturing technique according to still another aspect of the present invention. The wafer-level manufacturing process is similar to the process explained above with reference to FIGS. 6 through 13B, except that the support structures 260 can be formed at the wafer level.
  • Referring to FIG. 15, a wafer includes a plurality of chips 210, each having insulating support structures 260 formed thereon. The support structures 260 can be formed using a wafer-level dispensing technique similar to the dispensing techniques described previously. The support structures 260 may also be formed using a screen-printing technique. FIG. 16 shows a screen mask 402 used to form line-shaped support structures 260. The screen mask 402 could also be used to form a plurality of separate, interspersed structures. The screen-printing technique provides better control over the width and height of the support structures 260. After the insulating support structures 260 are formed, the wafer are cut out (dicing) to singulate the plurality of chips 210. Next, the processes described above or similar methods are performed to form a multi-chip package according to the principles of the present invention. The method of forming support structures 260 at the wafer level may also be used for a package having only a single chip.
  • Chip Packages Having Three or More Chips
  • FIG. 17 illustrates a still further embodiment implementing principles of the present invention in which a multi-chip package includes more than two stacked chips. Referring to FIG. 17, a multi-chip package 500 according to this embodiment includes three or more stacked chips 510, 520, 530, 540. For simplicity in illustration, all of the bond wires 512 in this figure appear connected to a single bond finger 514. Those skilled in the art will understand, however, that the respective bonding wires 512 are connected to corresponding bond fingers 514 as needed. Each of the stacked chips 510, 520, 530, 540 may have either a center pad configuration or a peripheral pad configuration. Not all of the stacked chips 510, 520, 530, 540 need to have the same pad configuration.
  • In conclusion, using the insulating structures 260 disclosed as part of the present invention, with or without the interposer 270, multi-chips packages can be formed using lower chips having a center pad configuration. Further, the methods disclosed herein are less expensive than conventional methods and are able to be implemented using existing equipment. Additionally, conventional problems such as wire sweeping or sagging can be avoided.
  • While the principles of the present invention have been shown and described with reference to the particular embodiments described herein, it will be understood by those skilled in the art that various changes in form and detail may be made thereto without departing from the spirit and scope of the invention, as covered by the following claims.

Claims (18)

1. A method of forming a multi-chip package, the method comprising:
providing a package substrate;
mounting a first chip on the package substrate, the first chip having center bonding pads on a substantially center portion thereof;
electrically interconnecting the package substrate and at least one of the center bonding pads using a bonding wire; and
stacking a second chip over the first chip.
2. The method of claim 1, further comprising forming insulating support structures on the first chip outward of the center bonding pads.
3. The method of claim 2, further comprising forming an interposer on the first chip between the insulating support structures, before stacking the second chip.
4. The method of claim 1, wherein the second chip includes an insulating tape on a bottom thereof.
5. A method of forming a multi-chip package, the method comprising:
providing a package substrate having bond fingers disposed thereon;
mounting a first chip on the package substrate, the first chip having center bonding pads on a substantially center portion thereof;
forming insulating support structures on the first chip located outward of the center bonding pads;
electrically connecting one of the bond fingers with at least one of the center bonding pads using a bonding wire; and
stacking a second chip over the bonding wire and overlying the insulating support structures.
6. The method of claim 5, wherein the forming insulating support structures comprises using a dispensing technique.
7. The method of claim 5, wherein insulating support structures are formed after electrically connecting one of the bond fingers with at least one of the first bonding pads using a bonding wire.
8. The method of claim 7, wherein the bonding wire passes through the insulating support structures.
9. The method of claim 5, wherein the support structures extend along two opposing sides of the first chip.
10. The method of claim 9, wherein the support structures extend in a line shape along two opposing sides of the first chip.
11. The method of claim 5, wherein the support structures comprise a plurality of separate, mound-like structures.
12. The method of claim 5, further comprising forming an interposer on the first chip between the insulating support structures, before stacking the second chip.
13. The method of claim 12, wherein forming an interposer comprising forming an interposer material on the first chip, wherein stacking a second chip comprises spreading out the interposer material toward a peripheral surface of the first chip.
14. The method of claim 5, wherein the second chip includes an insulating tape on a bottom surface thereof.
15. A wafer level packaging method, comprising:
providing a wafer having integrated circuit chips, the chips having center bonding pads on a substantially center portion thereof;
forming insulating support structures on at least one of the chips, the insulating support structures located outward of center bonding pads; and
singulating the chips.
16. The method of claim 15, wherein forming insulating support structures comprises using a dispensing technique.
17. The method of claim 15, wherein forming insulating support structures comprises using a screen printing technique.
18. The method of claim 15, further comprising:
providing a package substrate having bond fingers disposed thereon;
mounting one of the singulated chips having the insulating support structures on the package substrate;
electrically connecting one of the bond fingers with at least one of the center bonding pads using a bonding wire; and
stacking another chip over the bonding wire and overlying the insulating support structures.
US11/868,382 2003-04-08 2007-10-05 Semiconductor multi-chip package and fabrication method Abandoned US20080026506A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/868,382 US20080026506A1 (en) 2003-04-08 2007-10-05 Semiconductor multi-chip package and fabrication method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR2003-21922 2003-04-08
KR1020030021922A KR20040087501A (en) 2003-04-08 2003-04-08 A package of a semiconductor chip with center pads and packaging method thereof
US10/787,679 US7298032B2 (en) 2003-04-08 2004-02-25 Semiconductor multi-chip package and fabrication method
US11/868,382 US20080026506A1 (en) 2003-04-08 2007-10-05 Semiconductor multi-chip package and fabrication method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/787,679 Division US7298032B2 (en) 2003-04-08 2004-02-25 Semiconductor multi-chip package and fabrication method

Publications (1)

Publication Number Publication Date
US20080026506A1 true US20080026506A1 (en) 2008-01-31

Family

ID=33455672

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/868,382 Abandoned US20080026506A1 (en) 2003-04-08 2007-10-05 Semiconductor multi-chip package and fabrication method

Country Status (5)

Country Link
US (1) US20080026506A1 (en)
JP (1) JP2004312008A (en)
CN (1) CN1551351A (en)
DE (1) DE102004018434A1 (en)
TW (1) TWI258823B (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050269680A1 (en) * 2004-06-08 2005-12-08 Min-Chih Hsuan System-in-package (SIP) structure and fabrication thereof
US7829991B2 (en) 1998-06-30 2010-11-09 Micron Technology, Inc. Stackable ceramic FBGA for high thermal applications
US20110104853A1 (en) * 2009-11-05 2011-05-05 Freescale Semiconductor, Inc Method of forming semiconductor package
US20110156106A1 (en) * 2009-12-28 2011-06-30 Solid State System Co., Ltd. Hermetic mems device and method for fabricating hermetic mems device and package structure of mems device
US8072082B2 (en) 2008-04-24 2011-12-06 Micron Technology, Inc. Pre-encapsulated cavity interposer
US20120145446A1 (en) * 2010-12-08 2012-06-14 Freescale Semiconductor, Inc. Brace for long wire bond
US20140191417A1 (en) * 2013-01-07 2014-07-10 Spansion Llc Multi-Chip Package Assembly with Improved Bond Wire Separation
US10276540B2 (en) 2015-03-16 2019-04-30 China Wafer Level Csp Co., Ltd. Chip packaging method and chip packaging structure
US20190181072A1 (en) * 2016-09-28 2019-06-13 Intel Corporation Compact wirebonding in stacked-chip system in package, and methods of making same

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8586413B2 (en) * 2005-05-04 2013-11-19 Spansion Llc Multi-chip module having a support structure and method of manufacture
JP4998268B2 (en) * 2005-08-24 2012-08-15 富士通セミコンダクター株式会社 Semiconductor device and manufacturing method thereof
JP4932203B2 (en) * 2005-09-20 2012-05-16 芝浦メカトロニクス株式会社 Paste coating apparatus and paste coating method
DE102005054353A1 (en) * 2005-11-15 2006-08-17 Infineon Technologies Ag Electronic component, especially multi chip as in ball grid array, has one chip above another with spacers between them and bond wire to inner conductive surface of lower chip
SG135066A1 (en) 2006-02-20 2007-09-28 Micron Technology Inc Semiconductor device assemblies including face-to-face semiconductor dice, systems including such assemblies, and methods for fabricating such assemblies
JP5234703B2 (en) * 2006-06-21 2013-07-10 株式会社日立超エル・エス・アイ・システムズ Manufacturing method of semiconductor device
US7719122B2 (en) 2007-01-11 2010-05-18 Taiwan Semiconductor Manufacturing Co., Ltd. System-in-package packaging for minimizing bond wire contamination and yield loss
JP4823089B2 (en) 2007-01-31 2011-11-24 株式会社東芝 Manufacturing method of stacked semiconductor device
JP2008198909A (en) * 2007-02-15 2008-08-28 Elpida Memory Inc Semiconductor package
CN101567364B (en) * 2008-04-21 2011-01-26 力成科技股份有限公司 Multichip package structure capable of arranging chips on pins
JP2010199548A (en) 2009-01-30 2010-09-09 Elpida Memory Inc Semiconductor device and method of manufacturing the same
JP5619381B2 (en) * 2009-07-09 2014-11-05 ピーエスフォー ルクスコ エスエイアールエルPS4 Luxco S.a.r.l. Semiconductor device and manufacturing method of semiconductor device
CN102386165A (en) * 2011-10-28 2012-03-21 三星半导体(中国)研究开发有限公司 Chip package and manufacturing method thereof
CN102412241B (en) * 2011-11-17 2014-12-17 三星半导体(中国)研究开发有限公司 Semiconductor chip encapsulating piece and manufacturing method thereof
CN103367172A (en) * 2012-03-27 2013-10-23 南亚科技股份有限公司 Bonding wire fixing method
CN103377952A (en) * 2012-04-13 2013-10-30 南亚科技股份有限公司 Fixation method for bonding wires
KR102053349B1 (en) * 2013-05-16 2019-12-06 삼성전자주식회사 Semiconductor package
CN109906507B (en) * 2016-10-26 2023-09-05 硅工厂股份有限公司 Semiconductor device of multichip structure and semiconductor module using the same
AT519780B1 (en) * 2017-03-20 2020-02-15 Zkw Group Gmbh Process for making bond connections
CN108010898A (en) * 2017-11-02 2018-05-08 上海玮舟微电子科技有限公司 A kind of chip-packaging structure
CN109887850B (en) * 2019-02-18 2021-10-01 长江存储科技有限责任公司 Method, device, equipment and storage medium for 3D packaging multi-point welding
CN115394212B (en) * 2022-08-29 2023-07-25 武汉华星光电半导体显示技术有限公司 Display panel and spliced display screen

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5847445A (en) * 1996-11-04 1998-12-08 Micron Technology, Inc. Die assemblies using suspended bond wires, carrier substrates and dice having wire suspension structures, and methods of fabricating same
US6348363B1 (en) * 1999-07-06 2002-02-19 Samsung Electronics Co., Ltd. Method for manufacturing a semiconductor package
US6400007B1 (en) * 2001-04-16 2002-06-04 Kingpak Technology Inc. Stacked structure of semiconductor means and method for manufacturing the same
US20020096755A1 (en) * 2001-01-24 2002-07-25 Yasuki Fukui Semiconductor device
US20020125556A1 (en) * 2001-03-09 2002-09-12 Oh Kwang Seok Stacking structure of semiconductor chips and semiconductor package using it
US20030038355A1 (en) * 2001-08-24 2003-02-27 Derderian James M. Semiconductor devices and semiconductor device assemblies including a nonconfluent spacer layer
US6531784B1 (en) * 2000-06-02 2003-03-11 Amkor Technology, Inc. Semiconductor package with spacer strips
US6683385B2 (en) * 2002-04-23 2004-01-27 Ultratera Corporation Low profile stack semiconductor package
US6930396B2 (en) * 2002-04-05 2005-08-16 Nec Electronics Corporation Semiconductor device and method for manufacturing the same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5847445A (en) * 1996-11-04 1998-12-08 Micron Technology, Inc. Die assemblies using suspended bond wires, carrier substrates and dice having wire suspension structures, and methods of fabricating same
US6348363B1 (en) * 1999-07-06 2002-02-19 Samsung Electronics Co., Ltd. Method for manufacturing a semiconductor package
US6531784B1 (en) * 2000-06-02 2003-03-11 Amkor Technology, Inc. Semiconductor package with spacer strips
US20020096755A1 (en) * 2001-01-24 2002-07-25 Yasuki Fukui Semiconductor device
US20020125556A1 (en) * 2001-03-09 2002-09-12 Oh Kwang Seok Stacking structure of semiconductor chips and semiconductor package using it
US6400007B1 (en) * 2001-04-16 2002-06-04 Kingpak Technology Inc. Stacked structure of semiconductor means and method for manufacturing the same
US20030038355A1 (en) * 2001-08-24 2003-02-27 Derderian James M. Semiconductor devices and semiconductor device assemblies including a nonconfluent spacer layer
US20030038357A1 (en) * 2001-08-24 2003-02-27 Derderian James M. Spacer for semiconductor devices, semiconductor devices and assemblies including the spacer, and methods
US6930396B2 (en) * 2002-04-05 2005-08-16 Nec Electronics Corporation Semiconductor device and method for manufacturing the same
US6683385B2 (en) * 2002-04-23 2004-01-27 Ultratera Corporation Low profile stack semiconductor package

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7829991B2 (en) 1998-06-30 2010-11-09 Micron Technology, Inc. Stackable ceramic FBGA for high thermal applications
US20050269680A1 (en) * 2004-06-08 2005-12-08 Min-Chih Hsuan System-in-package (SIP) structure and fabrication thereof
US8072082B2 (en) 2008-04-24 2011-12-06 Micron Technology, Inc. Pre-encapsulated cavity interposer
US8399297B2 (en) 2008-04-24 2013-03-19 Micron Technology, Inc. Methods of forming and assembling pre-encapsulated assemblies and of forming associated semiconductor device packages
US20110104853A1 (en) * 2009-11-05 2011-05-05 Freescale Semiconductor, Inc Method of forming semiconductor package
US8460972B2 (en) 2009-11-05 2013-06-11 Freescale Semiconductor, Inc. Method of forming semiconductor package
US8217474B2 (en) * 2009-12-28 2012-07-10 Solid State System Co., Ltd. Hermetic MEMS device and method for fabricating hermetic MEMS device and package structure of MEMS device
US20110156106A1 (en) * 2009-12-28 2011-06-30 Solid State System Co., Ltd. Hermetic mems device and method for fabricating hermetic mems device and package structure of mems device
US20120145446A1 (en) * 2010-12-08 2012-06-14 Freescale Semiconductor, Inc. Brace for long wire bond
US8692134B2 (en) * 2010-12-08 2014-04-08 Freescale Semiconductor, Inc. Brace for long wire bond
US20140191417A1 (en) * 2013-01-07 2014-07-10 Spansion Llc Multi-Chip Package Assembly with Improved Bond Wire Separation
US9431364B2 (en) * 2013-01-07 2016-08-30 Cypess Semiconductor Corporation Multi-chip package assembly with improved bond wire separation
US10276540B2 (en) 2015-03-16 2019-04-30 China Wafer Level Csp Co., Ltd. Chip packaging method and chip packaging structure
US20190181072A1 (en) * 2016-09-28 2019-06-13 Intel Corporation Compact wirebonding in stacked-chip system in package, and methods of making same
US10847450B2 (en) * 2016-09-28 2020-11-24 Intel Corporation Compact wirebonding in stacked-chip system in package, and methods of making same

Also Published As

Publication number Publication date
TWI258823B (en) 2006-07-21
DE102004018434A1 (en) 2004-12-09
JP2004312008A (en) 2004-11-04
CN1551351A (en) 2004-12-01
TW200425357A (en) 2004-11-16

Similar Documents

Publication Publication Date Title
US7298032B2 (en) Semiconductor multi-chip package and fabrication method
US20080026506A1 (en) Semiconductor multi-chip package and fabrication method
US6919627B2 (en) Multichip module
US7829382B2 (en) Method for making semiconductor multipackage module including die and inverted land grid array package stacked over ball grid array package
US7061125B2 (en) Semiconductor package with pattern leads and method for manufacturing the same
US7211900B2 (en) Thin semiconductor package including stacked dies
US7485490B2 (en) Method of forming a stacked semiconductor package
US6759737B2 (en) Semiconductor package including stacked chips with aligned input/output pads
US6621172B2 (en) Semiconductor device and method of fabricating the same, circuit board, and electronic equipment
US6531784B1 (en) Semiconductor package with spacer strips
US6858919B2 (en) Semiconductor package
US20060097402A1 (en) Semiconductor device having flip-chip package and method for fabricating the same
US7659620B2 (en) Integrated circuit package employing a flexible substrate
KR101355274B1 (en) Integrated circuit having second substrate to facilitate core power and ground distribution
KR100533847B1 (en) Stacked flip chip package using carrier tape
KR100652374B1 (en) Semiconductor multi-chip package and fabrication method for the same
KR100712499B1 (en) Multi chip package increasing efficiency of heat dissipation and method for manufacturing the same
TW569410B (en) Window-type ball grid array semiconductor package
CN116759397A (en) Chip packaging structure and preparation method thereof
KR20050077168A (en) Chip stack package having center pad type semiconductor chip and manufacturing method thereof

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO PAY ISSUE FEE