US20080046883A1 - Method and apparatus for just-in-time provisioning application-related information at a communication device - Google Patents

Method and apparatus for just-in-time provisioning application-related information at a communication device Download PDF

Info

Publication number
US20080046883A1
US20080046883A1 US11/461,139 US46113906A US2008046883A1 US 20080046883 A1 US20080046883 A1 US 20080046883A1 US 46113906 A US46113906 A US 46113906A US 2008046883 A1 US2008046883 A1 US 2008046883A1
Authority
US
United States
Prior art keywords
application
application component
screen
communication device
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/461,139
Inventor
Charles Gautney
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Intellectual Ventures Assets 191 LLC
Rateze Remote Mgmt LLC
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US11/461,139 priority Critical patent/US20080046883A1/en
Assigned to DEFYWIRE, INC. reassignment DEFYWIRE, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GAUTNEY, CHARLES W.
Publication of US20080046883A1 publication Critical patent/US20080046883A1/en
Assigned to RALVIN REMOTE GMBH, L.L.C. reassignment RALVIN REMOTE GMBH, L.L.C. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DEFYWIRE, INC.
Assigned to INTELLECTUAL VENTURES ASSETS 191 LLC reassignment INTELLECTUAL VENTURES ASSETS 191 LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: RATEZE REMOTE MGMT. L.L.C.
Assigned to INTELLECTUAL VENTURES ASSETS 186 LLC, INTELLECTUAL VENTURES ASSETS 191 LLC reassignment INTELLECTUAL VENTURES ASSETS 186 LLC SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MIND FUSION, LLC
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/44Arrangements for executing specific programs
    • G06F9/445Program loading or initiating

Definitions

  • the invention relates generally to communication devices and communication systems. More specifically, the invention relates to a system and method for just-in-time provisioning application-related information at a communication device.
  • Communication devices such as for example wireless phones, are increasingly incorporating additional software functionality beyond that needed to establish a communication connection.
  • communication devices can include software applications such as calendars, contact lists, calculators, etc.
  • additional applications based on, for example, Java languages such as Java 2 Micro Edition (J2ME) are being developed for use with communication devices.
  • J2ME Java 2 Micro Edition
  • These software applications also typically involve a sizable amount of application data.
  • a software application that provides the functionality of a contact list also uses application data relating to the contact's name, phone number, etc.
  • One known way to accommodate a large number of software applications and their related data is to provision applications as needed and to remove the applications when not needed. Such known provisioning is performed by installing and/or removing an entire application and all of its related data. For example, as an application is needed, an unused application and all of its related data are first deleted from the communication device to make room for the provisioning of the new application and its related data.
  • Software applications are provisioned at a communication device having its own memory device.
  • a download request based on an application-related request is sent if application-related information associated with the application-related request is not stored on the memory device of the communication device.
  • a portion of the application-related information is received based on the download request. The portion of the application-related information is stored when the portion of the application-related information is configured for storage.
  • FIG. 1 shows a system block diagram of a communication network according to an embodiment of the invention.
  • FIG. 2 shows a diagram of an example of a memory device of a communication device, according to an embodiment of the invention.
  • FIGS. 3 a and 3 b shows a flowchart for performing provisioning, according to an embodiment of the invention.
  • FIGS. 4 through 6 show an example of the display of a user interface at a communication device relating to the establishing a connection between the communication device and a gateway, according to an embodiment of the invention.
  • FIG. 7 shows an example of a display of a user interface of a communication device where no applications are provisioned for the communication device, according to an embodiment of the invention.
  • FIG. 8 shows an example of a user interface of a communication device where two application indicators are displayed, according to an embodiment of the invention.
  • FIGS. 9 and 10 show an example of a user interface of a communication device where a subset of five application indicators is displayed, according to an embodiment of the invention.
  • FIGS. 11 and 12 show examples of a user interface of a communication device after application components have been received and provisioned, according to an embodiment of the invention.
  • FIG. 13 shows a system block diagram of a communication network including distributed gateways, according to another embodiment of the invention.
  • Just-in-time provisioning of software applications at a communication device is performed.
  • the provisioning is “just-in-time” in the sense that applications, application components and/or application data can be provided to the communication device as needed rather than maintaining all of this application-related information within the memory device of the communication device.
  • These applications, application components and/or application data can be provided to the communication device as a whole or in portions.
  • separate portions of an application can be provisioned when the application can be paginated into distinctly downloadable portions.
  • the term “pagination” is used herein to mean the division or segmentation of an application or application-related data into discrete portions. When an application is paginated, the resulting segments are referred to herein as application components.
  • application portions can be added and removed as the available amount of memory changes while at the same time allowing at least an indication of the application to be provided to the user.
  • This advantageously allows the removal of just enough application portions to free up whatever amount of memory space is needed to perform other functions (e.g., execute other applications).
  • this advantageously maintains an indication to the user that the application can be available in the future even though the entire application may be not presently provisioned.
  • a download request based on an application-related request can be sent to, for example, a gateway through which application-related information can be routed.
  • the term “download request” is used to mean any type of request or instruction sent from the communication device to request application-related information from the network.
  • a download request can be a request sent from the communication device to the gateway requesting that application-related information be provided to the communication device through the gateway.
  • application-related information is used to include information related to an application operable on the communication device. Such application-related information can include, for example, applications, application components or data used by an application.
  • a user can send an application-related request to trigger provisioning of application-related information.
  • application-related request is used herein to mean any type of request by a user that results in the provisioning of application-related information that is not presently available in the memory device of the communication device.
  • the user can use a keypad of a user interface to request that a particular function be performed at the communication device, such as accessing a calendar.
  • a download request can be formed by the communication device based on the application-related request.
  • Application-related information can be used in the execution of an application as soon as the application-related information is received.
  • the received application-related information can be stored at the communication device while, in other situations, the received application-related information need not be stored at the communication device.
  • the received application-related information is a screen command application component
  • the screen command can be used for the immediate display of information at the user interface of the communication device and the screen command need not be stored on the communication device.
  • the received application-related information is a definition command application component
  • the definition command can be stored to the memory device of the communication device for execution by the application.
  • the application-related information can be associated with a connected application or a disconnected application.
  • a connected application can receive the application-related information and use that information while communication device 100 maintains a connection with gateway 120 .
  • a disconnected application can receive the application-related information and use that information after the connection between the communication device 100 and the gateway 120 has been disconnected.
  • the communication device can send requests and receive information, for example, over a bandwidth-limited connection.
  • bandwidth-limited connection is used to include any type of connection where the bandwidth of the information desired to be transmitted exceeds the available bandwidth capacity of the connection.
  • bandwidth-limited connection can include, for example, a wireless data connection configured to send and/or receive multimedia content.
  • FIG. 1 shows a system block diagram of a communication network according to an embodiment of the invention.
  • Communication device 100 is coupled to gateway 120 through mobile network 110 by an uplink connection 105 and a downlink connection 107 .
  • Gateway 120 is coupled to network 130 and database 170 .
  • Network 130 is coupled to network service A 140 , network service B 150 and network service C 160 .
  • Network services A 140 , B 150 and C 160 can be any type of information stored at a network device that is remotely accessible. Such network services can be, for example, web-based multimedia content or a non-web-based software application.
  • Communication device 100 includes antenna 101 , user interface 102 , processor 103 and memory device 104 .
  • Gateway 120 includes application server 121 , which includes authentication module 123 and handler 125 .
  • Handler 125 further includes device resource database 126 , data pagination module 127 and request handling module 128 .
  • Application server 121 includes software configured to allow the functionality discussed below, including the functionality relating to the authentication module 123 and handler 125 .
  • the memory device 104 of communication device 100 stores client-side software that is configured to operate with the software of application server 121 . Note that although the software is described in terms of client and server software, any appropriate software configuration, such as distributed software, is possible.
  • the uplink connection 105 and downlink connection 107 are established for a particular communication device 100 for the duration of a session.
  • the session information associated with those connections is maintained during the duration of the session regardless of the particular status of the connections. Additional details of the uplink connection 105 and the downlink connection 107 are provided in co-pending U.S. patent application Attorney Docket NBLE-001/00US, entitled “Method and Apparatus for Establishing Multiple Bandwidth-Limited Connections for a Communication Device.”.
  • FIG. 2 shows a diagram of an example of a memory device of a communication device, according to an embodiment of the invention. More specifically, FIG. 2 shows an example of the memory device 104 of communication device 100 shown in FIG. 1 .
  • Memory device 200 includes a volatile memory 210 and a non-volatile storage 220 .
  • Non-volatile storage 220 further includes a memory portion where application data store 225 is stored.
  • the application data store 225 can store application-related information such as applications 226 and application data 227 .
  • application-related information provided to communication device 100 is stored in application data store 225 of non-volatile memory 220 , the corresponding applications can be implemented on communication device 100 having its own device-specific software stored in the non-volatile storage 220 .
  • customized applications can be provisioned and executed on communication device 100 in a manner compatible with the pre-existing software associated with communication device 100 .
  • a memory device can include solely volatile memory or solely non-volatile storage. In either configuration, the application-related information can be stored in an appropriate portion of the memory device.
  • a memory device can include solely volatile memory or solely non-volatile storage. In either configuration, the application-related information can be stored in an appropriate portion of the memory device.
  • embodiments discussed herein refer to storing particular types of information in either the volatile memory or the non-volatile storage, alternative embodiments are possible where the same type of information is stored in different areas of the memory device.
  • Memory device 200 can be, for example, a pluggable memory module such as the Sony Memory StickTM or a CompactFlash (CF) card.
  • CF CompactFlash
  • FIGS. 3 a and 3 b show a flowchart for performing provisioning, according to an embodiment of the invention. Although FIGS. 3 a and 3 b are described below in reference to the communication system of FIG. 1 , the process of FIGS. 3 a and 3 b can be applied to alternative configurations of communication systems.
  • a connection between the communication device 100 and the gateway 120 is established.
  • the connection between the communication device 100 and the gateway can include an uplink connection 105 and a downlink connection 107 .
  • FIGS. 4 through 6 show an example of a display (not shown) of the user interface 102 at the communication device 100 relating to the establishing a connection between communication device 100 and gateway 120 .
  • the user can provide its user name via a keypad (not shown) of the user interface 102 .
  • the user name is “EEarth.”
  • the user can then scroll down to the “Password” portion of the display and enter a password, as shown in FIG. 5 .
  • the user can scroll down further to the portion of the display relating to the address of the gateway 120 .
  • the user can enter a Universal Resource Locator (URL) address associated with gateway 120 via the keypad of the user interface 102 .
  • URL Universal Resource Locator
  • encryption is negotiated between the communication device 100 and the gateway 120 .
  • Such encryption negotiation can be based on any appropriate encryption scheme such as the private key encryption or public key encryption, for example the Public Key Infrastructure (PKI).
  • PKI Public Key Infrastructure
  • the user of the communication device 100 is authenticated by gateway 120 through, for example a process that verifies a previous service enrollment.
  • a download request is sent from the communication device 100 to the gateway 120 based on information in the application data store 225 of memory device 200 of the communication device 100 .
  • the download request can identify, for example, application-related information sought to be downloaded to the communication device 100 .
  • the application-related information can include, for example, applications, application components or application data used by an application.
  • application-related information is received at the communication device 100 based on the download request.
  • Steps 310 and 315 relate to the activation process, by which a user first activates the communication device 100 and provisions, for example, basic applications relating to the initial operation of the communication device. Consequently, in certain circumstances, steps 310 and 315 need not be performed in conjunction with the remaining steps of the flowchart shown in FIGS. 3 a and 3 b.
  • FIG. 7 shows an example of a display of the user interface 102 of the communication device 100 where no applications are provisioned for the communication device 100 . Such a situation can exist, for example, when the user first enrolls in a service through which the applications are provided.
  • an application indicator is provided to the user based on an application definition stored in the memory device 104 of the communication device 100 .
  • the application indicator can be, for example, a glyph that is displayed on the user interface 102 of the communication device 100 and represents an application available for operation on the communication device 100 .
  • FIG. 8 shows an example of user interface 104 of communication device 100 where two application indicators are displayed.
  • FIGS. 9 and 10 show an example of user interface 104 of communication device 100 where a subset of five application indicators is displayed. More specifically, FIG. 9 shows the display of three of the five application indicators with a scroll bar in a top position; FIG. 10 shows the display of the remaining two of the five application indicators with the scroll bar in a bottom position.
  • an application-related request is received at the communication device 100 from the user.
  • the application-related request can be received, for example, through a numeric keypad (not shown) of the user interface 102 .
  • the application-related request can be in response to the display of an application indicator as discussed above in connection with step 320 .
  • a download request is sent from the communication device 100 to the gateway 120 .
  • the download request will be sent from the communication device 100 , for example, when the application-related information associated with the application-related request is not available within the memory device 104 of the communication device 100 . In such a situation, the application-related information can be requested through the download request sent to the gateway 120 . If the application-related information is available at the memory device 104 of the communication device 100 , then the application-related information can be accessed to execute the application and the remaining portion of the flowchart shown by FIGS. 3 a and 3 b need not be performed.
  • the download request sent from communication device 100 is received at the gateway 120 .
  • an information request is sent from the gateway 120 to an appropriate destination such as, for example, network service A 140 , network service B 150 or network service C 160 .
  • the information request can be sent in response to receiving the download request. For example, upon receiving the download request at gateway 120 , gateway 120 can determine a destination within network 130 at which the application-related information associated with the download request is located. Based on that network destination and the application-related information being requested, gateway 120 can formulate and send the information request.
  • the information request is sent to, for example, network service A 140 , network service B 150 or network service C 160 .
  • the application-related information associated with the information request is received at gateway 120 .
  • step 350 a determination is made as to whether the available space on the memory device 104 of the communication device 100 is sufficient to store the application-related information associated with the download request.
  • conditional step 355 if the available space on the memory device 104 of the communication device 100 is insufficient to store the application-related information associated with the download request, then the process proceeds to step 360 .
  • step 360 resource management is performed so that the amount of available memory space is increased. For example, resource management can be performed according to the methods described in co-pending U.S. patent application Attorney Docket NBLE-003/00US, entitled “Method and Apparatus for Managing Resources Stored on a Communication Device.” Upon completing the resource management process of step 360 , the process proceeds to step 350 .
  • step 365 the application-related information associated with the download request is sent from the gateway 120 to the communication device 100 .
  • step 370 the application-related information associated with the download request is received at the communication device 100 .
  • the application associated with the application-related information is automatically executed.
  • the application associated with the application-related information is automatically executed in the sense that the portion of the application, to which application-related information is related, can be executed.
  • the application-related information is application data (e.g., contact or calendar information)
  • the application can make such application data available to the user within the application being executed.
  • the application component can be displayed or executed depending upon the purpose of the application component.
  • FIGS. 11 and 12 show examples of a user interface display after application components have been received and provisioned. More specifically, the application components here include a screen component, a command component, a command listener and a menu component; after provisioning these components, the display shown in FIG. 11 is provided. Upon receiving an indication from the user relating to the application, the menu component of this application can be displayed as shown in FIG. 12 .
  • Step 375 can be performed with a connected application or a disconnected application.
  • a connected application can receive the application-related information and use that information while communication device 100 maintains a connection with gateway 120 .
  • a disconnected application can receive the application-related information while connection between communication device 100 and gateway 120 is maintained, and then use that information after the connection between the communication device 100 and the gateway 120 has been disconnected.
  • the application can perform operations using the received application-related information regardless of whether the connection between communication device 100 and gateway 120 is maintained after the application-related information is received.
  • FIG. 13 shows a system block diagram of a communication network including distributed gateways, according to another embodiment of the invention.
  • Communication device 1300 includes antenna 1301 , user interface 1302 , processor 1303 and memory device 1304 .
  • Communication device 1300 is coupled to uplink gateway 1380 through mobile network 1310 by an uplink connection 1305 , and to downlink gateway 1320 through mobile network 1310 by a downlink connection 1307 .
  • Gateways 1320 and 1380 are connected to each other by connection 1390 .
  • Gateways 1320 and 1380 are also separately connected to database 1370 .
  • gateway 1320 is coupled to network 1330 .
  • Network 1330 is coupled to network service A 1340 , network service B 1350 and network service C 1360 .
  • Gateway 1320 includes application server 1321 , which includes authentication module 1323 and handler 1325 .
  • Gateway 1380 includes application server 1381 , which includes authentication module 1383 and handler 1385 .
  • handlers 1325 and 1385 each further include a device resource database, data pagination module and request handling module as discussed in reference to FIG. 1 .
  • Application servers 1321 and 1381 each include software configured to allow the functionality discussed above, including the functionality relating to the authentication modules 1323 and 1383 , and handlers 1325 and 1385 , respectively.
  • communication device 1300 includes client-side software that is configured to operate with the software of application servers 1321 and 1381 .
  • client-side software that is configured to operate with the software of application servers 1321 and 1381 .
  • the uplink connection 1305 and downlink connection 1307 are established for a particular communication device 1300 for the duration of a session, as described in co-pending U.S. patent application Attorney Docket NBLE-001/00US, entitled “Method and Apparatus for Establishing Multiple Bandwidth-Limited Connections for a Communication Device.”
  • communication device 1300 can send a download request to uplink gateway 1380 via uplink connection 1305 while communication device 1300 is connected to the uplink gateway 1380 .
  • Uplink gateway 1380 can then forward the download request to the downlink gateway 1320 via connection 1390 .
  • Downlink gateway 1320 can produce an information request based on the download request and forward the information request to the appropriate network destination (e.g., network service A 1340 , network service B 1350 or network service C 1360 ).
  • the downlink gateway 1320 can forward the application-related information to communication device 100 via downlink connection 1307 .
  • FIG. 13 shows a communication network with two distributed gateways
  • these downlink connections can be distributed across multiple downlink gateways.
  • these three connections each can be uniquely associated with one of the three downlink gateways (each downlink connection being uniquely associated with one downlink gateway).
  • two downlink connections can be associated with one downlink gateway and the remaining downlink connection can be associated with the remaining downlink gateway.
  • embodiments with multiple uplink connections and distributed uplink gateways are also possible.
  • embodiments with both multiple downlink connections, and distributed downlink gateways, and multiple uplink connections and distributed uplink gateways are also possible.

Abstract

Software applications are provisioned at a communication device having its own memory device. A download request based on an application-related request is sent if application-related information associated with the application-related request is not stored on the memory device of the communication device. A portion of the application-related information is received based on the download request. The portion of the application-related information is stored when the portion of the application-related information is configured for storage.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a Continuation of U.S. application Ser. No. 10/224,476, filed Aug. 21, 2002, entitled “Method and Apparatus for Just-in-Time Provisioning Application-Related Information at a Communication Device;” which is related to U.S. application Ser. No. 10/125,132, filed May 10, 2005, entitled “Method and Apparatus for Establishing Multiple Bandwidth-Limited Connections for a Communication Device;” which is a continuation application of U.S. application Ser. No. 10/224,331, filed Aug. 21, 2002, entitled “Method and Apparatus for Establishing Multiple Bandwidth-Limited Connections for a Communication Device,” now U.S. Pat. No. 6,891,860; and related to U.S. application Ser. No. 10/224,486, filed Aug. 21, 2002, entitled “Method and Apparatus for Managing Resources Stored on a Communication Device;” all disclosures of which are incorporated herein by reference.
  • BACKGROUND
  • The invention relates generally to communication devices and communication systems. More specifically, the invention relates to a system and method for just-in-time provisioning application-related information at a communication device.
  • Communication devices, such as for example wireless phones, are increasingly incorporating additional software functionality beyond that needed to establish a communication connection. For example, communication devices can include software applications such as calendars, contact lists, calculators, etc. Moreover, additional applications based on, for example, Java languages such as Java 2 Micro Edition (J2ME) are being developed for use with communication devices. These software applications also typically involve a sizable amount of application data. For example, a software application that provides the functionality of a contact list also uses application data relating to the contact's name, phone number, etc.
  • These communication devices, however, typically have storage devices with a limited storage capacity. Accordingly, the limited storage capacity of typical communication devices often limits the number of applications and the amount of application-related information that can be stored on a communication device at any given time.
  • One known way to accommodate a large number of software applications and their related data is to provision applications as needed and to remove the applications when not needed. Such known provisioning is performed by installing and/or removing an entire application and all of its related data. For example, as an application is needed, an unused application and all of its related data are first deleted from the communication device to make room for the provisioning of the new application and its related data.
  • This known way of provisioning applications to communication devices, however, suffers shortcomings. For example, removing an entire application and its related data may free more memory space than is actually needed to provision the new application. This can involve more time than would otherwise be involved to free only the amount of memory needed. In addition, removing an entire application and its related data also removes an indication to the user that that application and its related data may be available again in the future. Moreover, requiring user-initiated actions to select and/or remove applications overburdens the users and unnecessarily complicates the operation of communication devices.
  • Thus, a need exists for a more effective form of provisioning software applications and their related data for communication devices.
  • SUMMARY OF THE INVENTION
  • Software applications are provisioned at a communication device having its own memory device. A download request based on an application-related request is sent if application-related information associated with the application-related request is not stored on the memory device of the communication device. A portion of the application-related information is received based on the download request. The portion of the application-related information is stored when the portion of the application-related information is configured for storage.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 shows a system block diagram of a communication network according to an embodiment of the invention.
  • FIG. 2 shows a diagram of an example of a memory device of a communication device, according to an embodiment of the invention.
  • FIGS. 3 a and 3 b shows a flowchart for performing provisioning, according to an embodiment of the invention.
  • FIGS. 4 through 6 show an example of the display of a user interface at a communication device relating to the establishing a connection between the communication device and a gateway, according to an embodiment of the invention.
  • FIG. 7 shows an example of a display of a user interface of a communication device where no applications are provisioned for the communication device, according to an embodiment of the invention.
  • FIG. 8 shows an example of a user interface of a communication device where two application indicators are displayed, according to an embodiment of the invention.
  • FIGS. 9 and 10 show an example of a user interface of a communication device where a subset of five application indicators is displayed, according to an embodiment of the invention.
  • FIGS. 11 and 12 show examples of a user interface of a communication device after application components have been received and provisioned, according to an embodiment of the invention.
  • FIG. 13 shows a system block diagram of a communication network including distributed gateways, according to another embodiment of the invention.
  • DETAILED DESCRIPTION
  • Just-in-time provisioning of software applications at a communication device is performed. The provisioning is “just-in-time” in the sense that applications, application components and/or application data can be provided to the communication device as needed rather than maintaining all of this application-related information within the memory device of the communication device. These applications, application components and/or application data can be provided to the communication device as a whole or in portions. For example, separate portions of an application can be provisioned when the application can be paginated into distinctly downloadable portions. The term “pagination” is used herein to mean the division or segmentation of an application or application-related data into discrete portions. When an application is paginated, the resulting segments are referred to herein as application components.
  • Consequently, rather than deleting an entire application, application portions can be added and removed as the available amount of memory changes while at the same time allowing at least an indication of the application to be provided to the user. This advantageously allows the removal of just enough application portions to free up whatever amount of memory space is needed to perform other functions (e.g., execute other applications). In addition, this advantageously maintains an indication to the user that the application can be available in the future even though the entire application may be not presently provisioned.
  • As a need for provisioning application-related information arises, a download request based on an application-related request can be sent to, for example, a gateway through which application-related information can be routed. The term “download request” is used to mean any type of request or instruction sent from the communication device to request application-related information from the network. For example, a download request can be a request sent from the communication device to the gateway requesting that application-related information be provided to the communication device through the gateway. The term “application-related information” is used to include information related to an application operable on the communication device. Such application-related information can include, for example, applications, application components or data used by an application.
  • A user can send an application-related request to trigger provisioning of application-related information. The term “application-related request” is used herein to mean any type of request by a user that results in the provisioning of application-related information that is not presently available in the memory device of the communication device. For example, the user can use a keypad of a user interface to request that a particular function be performed at the communication device, such as accessing a calendar. In such a case, if the calendar information sought is not stored on the memory device of the communication device, then a download request can be formed by the communication device based on the application-related request.
  • Application-related information can be used in the execution of an application as soon as the application-related information is received. In some situations, the received application-related information can be stored at the communication device while, in other situations, the received application-related information need not be stored at the communication device. For example, when the received application-related information is a screen command application component, the screen command can be used for the immediate display of information at the user interface of the communication device and the screen command need not be stored on the communication device. Alternatively, when the received application-related information is a definition command application component, the definition command can be stored to the memory device of the communication device for execution by the application.
  • The application-related information can be associated with a connected application or a disconnected application. A connected application can receive the application-related information and use that information while communication device 100 maintains a connection with gateway 120. A disconnected application can receive the application-related information and use that information after the connection between the communication device 100 and the gateway 120 has been disconnected.
  • The communication device can send requests and receive information, for example, over a bandwidth-limited connection. The term “bandwidth-limited connection” is used to include any type of connection where the bandwidth of the information desired to be transmitted exceeds the available bandwidth capacity of the connection. Such a bandwidth-limited connection can include, for example, a wireless data connection configured to send and/or receive multimedia content.
  • FIG. 1 shows a system block diagram of a communication network according to an embodiment of the invention. Communication device 100 is coupled to gateway 120 through mobile network 110 by an uplink connection 105 and a downlink connection 107. Gateway 120 is coupled to network 130 and database 170. Network 130 is coupled to network service A 140, network service B 150 and network service C 160. Network services A 140, B 150 and C 160 can be any type of information stored at a network device that is remotely accessible. Such network services can be, for example, web-based multimedia content or a non-web-based software application.
  • Communication device 100 includes antenna 101, user interface 102, processor 103 and memory device 104. Gateway 120 includes application server 121, which includes authentication module 123 and handler 125. Handler 125 further includes device resource database 126, data pagination module 127 and request handling module 128. Application server 121 includes software configured to allow the functionality discussed below, including the functionality relating to the authentication module 123 and handler 125. Similarly, the memory device 104 of communication device 100 stores client-side software that is configured to operate with the software of application server 121. Note that although the software is described in terms of client and server software, any appropriate software configuration, such as distributed software, is possible.
  • The uplink connection 105 and downlink connection 107 are established for a particular communication device 100 for the duration of a session. In other words, once the communication device 100 is connected to the mobile network 110 via the uplink connection 105 and downlink connection 107, the session information associated with those connections is maintained during the duration of the session regardless of the particular status of the connections. Additional details of the uplink connection 105 and the downlink connection 107 are provided in co-pending U.S. patent application Attorney Docket NBLE-001/00US, entitled “Method and Apparatus for Establishing Multiple Bandwidth-Limited Connections for a Communication Device.”.
  • FIG. 2 shows a diagram of an example of a memory device of a communication device, according to an embodiment of the invention. More specifically, FIG. 2 shows an example of the memory device 104 of communication device 100 shown in FIG. 1. Memory device 200 includes a volatile memory 210 and a non-volatile storage 220. Non-volatile storage 220 further includes a memory portion where application data store 225 is stored. The application data store 225 can store application-related information such as applications 226 and application data 227.
  • Because application-related information provided to communication device 100 is stored in application data store 225 of non-volatile memory 220, the corresponding applications can be implemented on communication device 100 having its own device-specific software stored in the non-volatile storage 220. Thus, customized applications can be provisioned and executed on communication device 100 in a manner compatible with the pre-existing software associated with communication device 100.
  • Although the memory device 200 is shown in FIG. 2 as having a volatile memory 210 and a non-volatile storage 220, other configurations are possible. For example, a memory device can include solely volatile memory or solely non-volatile storage. In either configuration, the application-related information can be stored in an appropriate portion of the memory device. Similarly, although embodiments discussed herein refer to storing particular types of information in either the volatile memory or the non-volatile storage, alternative embodiments are possible where the same type of information is stored in different areas of the memory device. Memory device 200 can be, for example, a pluggable memory module such as the Sony Memory Stick™ or a CompactFlash (CF) card.
  • FIGS. 3 a and 3 b show a flowchart for performing provisioning, according to an embodiment of the invention. Although FIGS. 3 a and 3 b are described below in reference to the communication system of FIG. 1, the process of FIGS. 3 a and 3 b can be applied to alternative configurations of communication systems.
  • As step 300, a connection between the communication device 100 and the gateway 120 is established. The connection between the communication device 100 and the gateway can include an uplink connection 105 and a downlink connection 107. FIGS. 4 through 6 show an example of a display (not shown) of the user interface 102 at the communication device 100 relating to the establishing a connection between communication device 100 and gateway 120. As shown in FIG. 4, the user can provide its user name via a keypad (not shown) of the user interface 102. In this example, the user name is “EEarth.” The user can then scroll down to the “Password” portion of the display and enter a password, as shown in FIG. 5. Finally, the user can scroll down further to the portion of the display relating to the address of the gateway 120. As shown in the example of FIG. 6, the user can enter a Universal Resource Locator (URL) address associated with gateway 120 via the keypad of the user interface 102.
  • At step 305, encryption is negotiated between the communication device 100 and the gateway 120. Such encryption negotiation can be based on any appropriate encryption scheme such as the private key encryption or public key encryption, for example the Public Key Infrastructure (PKI). At step 307, the user of the communication device 100 is authenticated by gateway 120 through, for example a process that verifies a previous service enrollment.
  • At step 310, a download request is sent from the communication device 100 to the gateway 120 based on information in the application data store 225 of memory device 200 of the communication device 100. The download request can identify, for example, application-related information sought to be downloaded to the communication device 100. The application-related information can include, for example, applications, application components or application data used by an application. At step 315, application-related information is received at the communication device 100 based on the download request.
  • Steps 310 and 315 relate to the activation process, by which a user first activates the communication device 100 and provisions, for example, basic applications relating to the initial operation of the communication device. Consequently, in certain circumstances, steps 310 and 315 need not be performed in conjunction with the remaining steps of the flowchart shown in FIGS. 3 a and 3 b. FIG. 7 shows an example of a display of the user interface 102 of the communication device 100 where no applications are provisioned for the communication device 100. Such a situation can exist, for example, when the user first enrolls in a service through which the applications are provided.
  • At step 320, an application indicator is provided to the user based on an application definition stored in the memory device 104 of the communication device 100. The application indicator can be, for example, a glyph that is displayed on the user interface 102 of the communication device 100 and represents an application available for operation on the communication device 100. FIG. 8 shows an example of user interface 104 of communication device 100 where two application indicators are displayed. Similarly, FIGS. 9 and 10 show an example of user interface 104 of communication device 100 where a subset of five application indicators is displayed. More specifically, FIG. 9 shows the display of three of the five application indicators with a scroll bar in a top position; FIG. 10 shows the display of the remaining two of the five application indicators with the scroll bar in a bottom position.
  • At step 325, an application-related request is received at the communication device 100 from the user. The application-related request can be received, for example, through a numeric keypad (not shown) of the user interface 102. The application-related request can be in response to the display of an application indicator as discussed above in connection with step 320.
  • At step 330, a download request is sent from the communication device 100 to the gateway 120. The download request will be sent from the communication device 100, for example, when the application-related information associated with the application-related request is not available within the memory device 104 of the communication device 100. In such a situation, the application-related information can be requested through the download request sent to the gateway 120. If the application-related information is available at the memory device 104 of the communication device 100, then the application-related information can be accessed to execute the application and the remaining portion of the flowchart shown by FIGS. 3 a and 3 b need not be performed.
  • At step 335, the download request sent from communication device 100 is received at the gateway 120. At step 340, an information request is sent from the gateway 120 to an appropriate destination such as, for example, network service A 140, network service B 150 or network service C 160. The information request can be sent in response to receiving the download request. For example, upon receiving the download request at gateway 120, gateway 120 can determine a destination within network 130 at which the application-related information associated with the download request is located. Based on that network destination and the application-related information being requested, gateway 120 can formulate and send the information request. At step 340, the information request is sent to, for example, network service A 140, network service B 150 or network service C 160. At step 345, the application-related information associated with the information request is received at gateway 120.
  • At step 350, a determination is made as to whether the available space on the memory device 104 of the communication device 100 is sufficient to store the application-related information associated with the download request. At conditional step 355, if the available space on the memory device 104 of the communication device 100 is insufficient to store the application-related information associated with the download request, then the process proceeds to step 360. At step 360, resource management is performed so that the amount of available memory space is increased. For example, resource management can be performed according to the methods described in co-pending U.S. patent application Attorney Docket NBLE-003/00US, entitled “Method and Apparatus for Managing Resources Stored on a Communication Device.” Upon completing the resource management process of step 360, the process proceeds to step 350.
  • Returning to conditional step 355, if the available space on the memory device 104 of the communication device 100 is sufficient to store the application-related information associated with the download request, then the process proceeds to step 365. At step 365, the application-related information associated with the download request is sent from the gateway 120 to the communication device 100. At step 370, the application-related information associated with the download request is received at the communication device 100.
  • At step 375, the application associated with the application-related information is automatically executed. The application associated with the application-related information is automatically executed in the sense that the portion of the application, to which application-related information is related, can be executed. For example, where the application-related information is application data (e.g., contact or calendar information), the application can make such application data available to the user within the application being executed.
  • For another example, where the application-related information is an application component, the application component can be displayed or executed depending upon the purpose of the application component. For example, FIGS. 11 and 12 show examples of a user interface display after application components have been received and provisioned. More specifically, the application components here include a screen component, a command component, a command listener and a menu component; after provisioning these components, the display shown in FIG. 11 is provided. Upon receiving an indication from the user relating to the application, the menu component of this application can be displayed as shown in FIG. 12.
  • Step 375 can be performed with a connected application or a disconnected application. A connected application can receive the application-related information and use that information while communication device 100 maintains a connection with gateway 120. A disconnected application can receive the application-related information while connection between communication device 100 and gateway 120 is maintained, and then use that information after the connection between the communication device 100 and the gateway 120 has been disconnected. In sum, the application can perform operations using the received application-related information regardless of whether the connection between communication device 100 and gateway 120 is maintained after the application-related information is received.
  • FIG. 13 shows a system block diagram of a communication network including distributed gateways, according to another embodiment of the invention. Communication device 1300 includes antenna 1301, user interface 1302, processor 1303 and memory device 1304. Communication device 1300 is coupled to uplink gateway 1380 through mobile network 1310 by an uplink connection 1305, and to downlink gateway 1320 through mobile network 1310 by a downlink connection 1307. Gateways 1320 and 1380 are connected to each other by connection 1390. Gateways 1320 and 1380 are also separately connected to database 1370. In addition, gateway 1320 is coupled to network 1330. Network 1330 is coupled to network service A 1340, network service B 1350 and network service C 1360. Gateway 1320 includes application server 1321, which includes authentication module 1323 and handler 1325. Gateway 1380 includes application server 1381, which includes authentication module 1383 and handler 1385. Although not explicitly shown in FIG. 13, handlers 1325 and 1385 each further include a device resource database, data pagination module and request handling module as discussed in reference to FIG. 1.
  • Application servers 1321 and 1381 each include software configured to allow the functionality discussed above, including the functionality relating to the authentication modules 1323 and 1383, and handlers 1325 and 1385, respectively. Similarly, communication device 1300 includes client-side software that is configured to operate with the software of application servers 1321 and 1381. Note that although the software is described in terms of client and server software, any appropriate software configuration, such as distributed software, is possible. The uplink connection 1305 and downlink connection 1307 are established for a particular communication device 1300 for the duration of a session, as described in co-pending U.S. patent application Attorney Docket NBLE-001/00US, entitled “Method and Apparatus for Establishing Multiple Bandwidth-Limited Connections for a Communication Device.”
  • In a distributed configuration, applications can be provisioned. As shown in FIG. 13, communication device 1300 can send a download request to uplink gateway 1380 via uplink connection 1305 while communication device 1300 is connected to the uplink gateway 1380. Uplink gateway 1380 can then forward the download request to the downlink gateway 1320 via connection 1390. Downlink gateway 1320 can produce an information request based on the download request and forward the information request to the appropriate network destination (e.g., network service A 1340, network service B 1350 or network service C 1360). Upon receiving the application-related information based on the information request, the downlink gateway 1320 can forward the application-related information to communication device 100 via downlink connection 1307.
  • Although FIG. 13 shows a communication network with two distributed gateways, other configurations of distributed gateways are possible. For example, in embodiments where a communication device is associated with multiple downlink connections, these downlink connections can be distributed across multiple downlink gateways. For a specific example, where a communication device is associated with three downlink connections and three distributed downlink gateways, these three connections each can be uniquely associated with one of the three downlink gateways (each downlink connection being uniquely associated with one downlink gateway). Where a communication device is associated with three downlink connections and two distributed downlink gateways, two downlink connections can be associated with one downlink gateway and the remaining downlink connection can be associated with the remaining downlink gateway.
  • Similar to the above-described embodiments with multiple downlink connections and distributed downlink gateways, embodiments with multiple uplink connections and distributed uplink gateways are also possible. Alternatively, embodiments with both multiple downlink connections, and distributed downlink gateways, and multiple uplink connections and distributed uplink gateways are also possible.
  • Conclusion
  • While various embodiments of the invention have been described above, it should be understood that they have been presented by way of example only, and not limitation. Thus, the breadth and scope of the invention should not be limited by any of the above-described embodiments, but should be defined only in accordance with the following claims and their equivalents.
  • The previous description of the embodiments is provided to enable any person skilled in the art to make or use the invention. While the invention has been particularly shown and described with reference to embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention.

Claims (20)

1. A method, comprising:
sending a download request when a screen command application component associated with a software application is not stored on a memory device of a communication device, the screen command application component being a paginated application component associated with the software application;
receiving the screen command application component at the communication device; and
displaying a screen at a user interface of the communication device based on the screen command application component without storing the screen command application component on a non-volatile memory of the memory device.
2. The method of claim 1, further comprising:
receiving a definition command application component corresponding with the screen command application component, the definition command application component being associated with the software application.
3. The method of claim 1, further comprising:
receiving a definition command application component corresponding with the screen command application component, the definition command application component being associated with the software application; and
storing the definition command application component on at least one of the non-volatile memory of the memory device or a volatile memory of the memory device.
4. The method of claim 1, wherein the screen application component is irretrievable at the communication device after the executing.
5. The method of claim 1, wherein the screen command application component is received over a bandwidth-limited connection, the screen command application component being operable when the bandwidth-limited connection is not maintained after the receiving.
6. The method of claim 1, wherein the download request is sent and the screen application component is received over a wireless connection, the communication device is a wireless communication device.
7. The method of claim 1, further comprising:
receiving a definition command application component corresponding with the screen command application component, the definition command application component being associated with the software application; and
executing the definition command application component when a selectable indicator associated with the screen application component is selected in response to a request from a user.
8. The method of claim 7, wherein the download request is a first download request, the application-related request is a first application-related request,
the method further comprising:
triggering a second application-related request after the executing;
sending a second download request in response to the second application-related request when an application-related information associated with the second application-related request is not stored on the memory device of the communication device, the application-related information being associated with the software application; and
receiving the application-related information at the communication device.
9. The method of claim 8, wherein the screen command application component is a first screen command application component, the definition command application component is a first definition command application component, the application-related information is at least one of a second screen application component or a second definition command application component.
10. A method, comprising:
receiving a first application component from a plurality of application components, each application component from the plurality of application components being associated with a software application, the first application component being associated with a set of selectable indicators, a number of selectable indicators from the set of selectable indicators being greater than zero;
receiving a request for a second application component from the plurality of application components when a selectable indicator from the set of selectable indicators is selected in response to a request from a user; and
defining a download request in response to the request for the second application component and when the second application component is not stored on a memory device of a communication device, the download request being defined to request the second application component from the plurality of application components.
11. The method of claim 10, wherein each selectable indicator from the set of selectable indicators is configured to trigger download of at least one application component from the plurality of application components when the at least one application component is not stored on the memory device, each selectable indicator having a unique selectable portion.
12. The method of claim 10, wherein the second application component is retrieved from a location disposed outside of the communication device based on the download request.
13. The method of claim 10, wherein the selectable indicator is at least one of a tool bar indicator or a drop-down menu indicator.
14. The method of claim 10, wherein the first application component is a first screen application component, the second application component is a second screen application component,
the method further comprising:
displaying an image associated with the first screen application component at a first time on a user interface of the communication device after the receiving the first screen application component;
receiving the second screen application component based on the download request; and
modifying the image at a second time based on at least a portion of the second screen application component, the second time being after the first time.
15. The method of claim 14, wherein the displaying includes displaying without storing the image associated with the first screen command application component on a non-volatile memory of the memory device.
16. The method of claim 10, farther comprising defining the request for the second application when the selectable indicator is selected based on a third application component that corresponds with the first application component.
17. The method of claim 10, wherein the second application component is associated with a set of selectable indicators, the set of selectable indicators for the first application component being different than the set of selectable indicators for the second application component.
18. A method, comprising:
displaying at a first time on a user interface of a communication device an image associated with a first screen application component and having a selectable indicator, the selectable indicator being associated with a second screen application component, the second screen application component not being stored and not being displayed on the communication device at the first time, the first screen component and the second screen component being associated with a software application;
sending at a second time a download request in response to the selectable indicator being selected by a user, the second time being after the first time;
receiving the second screen application component in response to the download request; and
displaying on the user interface at a third time an image associated with the second screen application component, the third time being after the second time.
19. The method of claim 18, further comprising defining the download request based on a definition command component that corresponds with the first screen application component, the defining being in response to selection of the selectable indicator.
20. The method of claim 18, wherein the selectable indicator is at least one of a tool bar indicator or a drop-down menu indicator.
US11/461,139 2002-08-21 2006-07-31 Method and apparatus for just-in-time provisioning application-related information at a communication device Abandoned US20080046883A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/461,139 US20080046883A1 (en) 2002-08-21 2006-07-31 Method and apparatus for just-in-time provisioning application-related information at a communication device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/224,476 US7086051B2 (en) 2002-08-21 2002-08-21 Method and apparatus for just-in-time provisioning application-related information at a communication device
US11/461,139 US20080046883A1 (en) 2002-08-21 2006-07-31 Method and apparatus for just-in-time provisioning application-related information at a communication device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/224,476 Continuation US7086051B2 (en) 2002-08-21 2002-08-21 Method and apparatus for just-in-time provisioning application-related information at a communication device

Publications (1)

Publication Number Publication Date
US20080046883A1 true US20080046883A1 (en) 2008-02-21

Family

ID=31886808

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/224,476 Expired - Lifetime US7086051B2 (en) 2002-08-21 2002-08-21 Method and apparatus for just-in-time provisioning application-related information at a communication device
US11/461,139 Abandoned US20080046883A1 (en) 2002-08-21 2006-07-31 Method and apparatus for just-in-time provisioning application-related information at a communication device

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/224,476 Expired - Lifetime US7086051B2 (en) 2002-08-21 2002-08-21 Method and apparatus for just-in-time provisioning application-related information at a communication device

Country Status (3)

Country Link
US (2) US7086051B2 (en)
AU (1) AU2003259905A1 (en)
WO (1) WO2004019208A2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090327063A1 (en) * 2008-06-27 2009-12-31 Microsoft Corporation Online Services Offer Management
US20110208857A1 (en) * 2010-02-03 2011-08-25 Odyssey Software, Inc. Method, system, and computer readable medium for gathering usage statistics
CN104601672A (en) * 2014-12-26 2015-05-06 北京奇虎科技有限公司 Method and device for sharing network resources based on different application clients
US9342381B2 (en) 2011-02-03 2016-05-17 Symantec Corporation Method and system for establishing a DLP-compliant environment

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6941135B2 (en) * 2001-08-13 2005-09-06 Qualcomm Inc. System and method for temporary application component deletion and reload on a wireless device
EP1704710A4 (en) * 2003-12-24 2007-09-19 Walker Digital Llc Method and apparatus for automatically capturing and managing images
JP2005228123A (en) * 2004-02-13 2005-08-25 Sharp Corp Communication method, communication system and information reception-side device used in the communication system
US7796975B2 (en) * 2004-11-23 2010-09-14 Sony Ericsson Mobile Communications Ab Method of transferring data files to and from a portable wireless communication device
EP1864214B1 (en) * 2004-12-23 2012-02-15 Koninklijke Philips Electronics N.V. Method and apparatus for configuring software resources for playing network programs
US20060143295A1 (en) * 2004-12-27 2006-06-29 Nokia Corporation System, method, mobile station and gateway for communicating with a universal plug and play network
US9660829B2 (en) * 2007-06-04 2017-05-23 Avaya Inc. Secure VLANs
US20130013419A1 (en) * 2011-07-08 2013-01-10 Electronics And Telecommunications Research Institute Application execution apparatus, application providing apparatus, and application distribution method using chaining of applications
US10620931B2 (en) * 2016-07-13 2020-04-14 At&T Mobility Ii Llc Automated device memory clean up mechanism

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6006035A (en) * 1997-12-31 1999-12-21 Network Associates Method and system for custom computer software installation
US6167567A (en) * 1998-05-05 2000-12-26 3Com Corporation Technique for automatically updating software stored on a client computer in a networked client-server environment
US20030135851A1 (en) * 2002-01-17 2003-07-17 Laura Dickey Method and system for concentration of applications during installation in target devices
US20040002943A1 (en) * 2002-06-28 2004-01-01 Merrill John Wickens Lamb Systems and methods for application delivery and configuration management of mobile devices
US6973478B1 (en) * 1999-10-26 2005-12-06 Top Moxie, Inc. Autonomous local assistant for managing business processes
US7240336B1 (en) * 2000-07-25 2007-07-03 Sci Systems, Inc. Interpretive simulation of software download process

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5528490A (en) * 1992-04-10 1996-06-18 Charles E. Hill & Associates, Inc. Electronic catalog system and method
US5813015A (en) 1993-06-07 1998-09-22 International Business Machine Corp. Method and apparatus for increasing available storage space on a computer system by disposing of data with user defined characteristics
US5761504A (en) * 1996-02-16 1998-06-02 Motorola, Inc. Method for updating a software code in a communication system
US5835724A (en) 1996-07-03 1998-11-10 Electronic Data Systems Corporation System and method for communication information using the internet that receives and maintains information concerning the client and generates and conveys the session data to the client
US5893920A (en) 1996-09-30 1999-04-13 International Business Machines Corporation System and method for cache management in mobile user file systems
US6178448B1 (en) * 1997-06-18 2001-01-23 International Business Machines Corporation Optimal link scheduling for multiple links by obtaining and utilizing link quality information
US6791952B2 (en) 1997-10-31 2004-09-14 Nortel Networks Limited Asymmetric data access scheme
US6148405A (en) 1997-11-10 2000-11-14 Phone.Com, Inc. Method and system for secure lightweight transactions in wireless data networks
US6016311A (en) 1997-11-19 2000-01-18 Ensemble Communications, Inc. Adaptive time division duplexing method and apparatus for dynamic bandwidth allocation within a wireless communication system
US6065120A (en) 1997-12-09 2000-05-16 Phone.Com, Inc. Method and system for self-provisioning a rendezvous to ensure secure access to information in a database from multiple devices
US6484174B1 (en) 1998-04-20 2002-11-19 Sun Microsystems, Inc. Method and apparatus for session management and user authentication
IL124788A (en) * 1998-06-07 1999-04-11 Ben Hador David Boomerang launcher
US6490624B1 (en) 1998-07-10 2002-12-03 Entrust, Inc. Session management in a stateless network system
US6574239B1 (en) 1998-10-07 2003-06-03 Eric Morgan Dowling Virtual connection of a remote unit to a server
US6460076B1 (en) * 1998-12-21 2002-10-01 Qwest Communications International, Inc. Pay per record system and method
US6456603B1 (en) 1999-01-21 2002-09-24 Telefonaktiebolaget L M Ericsson (Publ) Method of supporting communications mobility in a telecommunications system
US6427227B1 (en) * 1999-03-03 2002-07-30 Microsoft Corporation System, method, and computer-readable medium for repairing an application program that has been patched
US6490616B1 (en) 1999-06-14 2002-12-03 Wind River International, Ltd. Method and apparatus for incremental download from server to client
US6532225B1 (en) 1999-07-27 2003-03-11 At&T Corp Medium access control layer for packetized wireless systems
US6816944B2 (en) 2000-02-02 2004-11-09 Innopath Software Apparatus and methods for providing coordinated and personalized application and data management for resource-limited mobile devices
US6654610B1 (en) 2000-05-05 2003-11-25 Lucent Technologies Inc. Two-way packet data protocol methods and apparatus for a mobile telecommunication system
US6650905B1 (en) 2000-06-30 2003-11-18 Nokia Mobile Phones, Ltd. Universal mobile telecommunications system (UMTS) terrestrial radio access (UTRA) frequency division duplex (FDD) downlink shared channel (DSCH) power control in soft handover
CN100380314C (en) 2000-07-03 2008-04-09 株式会社爱可信 Mobile information terminal device, storage server, and method for providing storage region
AU8879601A (en) 2000-09-07 2002-03-22 A2Q Inc Method and system for high speed wireless data transmission and reception
FI113898B (en) * 2000-11-21 2004-06-30 Nokia Corp Process for producing content in a wireless communication device
US20020083160A1 (en) 2000-12-21 2002-06-27 Don Middleton Method and apparatus for managing applications and data in a mobile device
WO2002079981A1 (en) 2001-03-30 2002-10-10 Nokia Corporation Downloading application software to a mobile terminal
US7143409B2 (en) * 2001-06-29 2006-11-28 International Business Machines Corporation Automated entitlement verification for delivery of licensed software
US6941135B2 (en) * 2001-08-13 2005-09-06 Qualcomm Inc. System and method for temporary application component deletion and reload on a wireless device
US20030061273A1 (en) 2001-09-24 2003-03-27 Intel Corporation Extended content storage method and apparatus
US7761535B2 (en) 2001-09-28 2010-07-20 Siebel Systems, Inc. Method and system for server synchronization with a computing device
US20030110190A1 (en) * 2001-12-10 2003-06-12 Hitachi, Ltd. Method and system for file space management
US20030217358A1 (en) * 2002-05-17 2003-11-20 Sun Microsystems, Inc. Method, system, and article of manufacture for firmware downloads
US7318073B2 (en) 2002-05-31 2008-01-08 Microsoft Corporation System and method for downloading information to a mobile device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6006035A (en) * 1997-12-31 1999-12-21 Network Associates Method and system for custom computer software installation
US6167567A (en) * 1998-05-05 2000-12-26 3Com Corporation Technique for automatically updating software stored on a client computer in a networked client-server environment
US6973478B1 (en) * 1999-10-26 2005-12-06 Top Moxie, Inc. Autonomous local assistant for managing business processes
US7240336B1 (en) * 2000-07-25 2007-07-03 Sci Systems, Inc. Interpretive simulation of software download process
US20030135851A1 (en) * 2002-01-17 2003-07-17 Laura Dickey Method and system for concentration of applications during installation in target devices
US20040002943A1 (en) * 2002-06-28 2004-01-01 Merrill John Wickens Lamb Systems and methods for application delivery and configuration management of mobile devices

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090327063A1 (en) * 2008-06-27 2009-12-31 Microsoft Corporation Online Services Offer Management
US8209220B2 (en) * 2008-06-27 2012-06-26 Microsoft Corporation Online services offer management
US20110208857A1 (en) * 2010-02-03 2011-08-25 Odyssey Software, Inc. Method, system, and computer readable medium for gathering usage statistics
US20110213821A1 (en) * 2010-02-03 2011-09-01 Odyssey Software, Inc. Method, system, and computer readable medium for remote assistance, support, and troubleshooting
US20110214121A1 (en) * 2010-02-03 2011-09-01 Odyssey Software, Inc. Method, system, and computer readable medium for provisioning and remote distribution
US20110213831A1 (en) * 2010-02-03 2011-09-01 Odyssey Software, Inc. Method, system, and computer readable medium for remote device management
US8650277B2 (en) 2010-02-03 2014-02-11 Symantec Corporation Method, system, and computer readable medium for gathering usage statistics
US8924461B2 (en) 2010-02-03 2014-12-30 Symantec Corporation Method, system, and computer readable medium for remote assistance, support, and troubleshooting
US8997092B2 (en) 2010-02-03 2015-03-31 Symantec Corporation Method, system, and computer readable medium for provisioning and remote distribution
US9369357B2 (en) 2010-02-03 2016-06-14 Symantec Corporation Method, system, and computer readable medium for remote device management
US9342381B2 (en) 2011-02-03 2016-05-17 Symantec Corporation Method and system for establishing a DLP-compliant environment
CN104601672A (en) * 2014-12-26 2015-05-06 北京奇虎科技有限公司 Method and device for sharing network resources based on different application clients

Also Published As

Publication number Publication date
AU2003259905A1 (en) 2004-03-11
WO2004019208A3 (en) 2004-04-01
US7086051B2 (en) 2006-08-01
WO2004019208A2 (en) 2004-03-04
US20040040022A1 (en) 2004-02-26

Similar Documents

Publication Publication Date Title
US20080046883A1 (en) Method and apparatus for just-in-time provisioning application-related information at a communication device
US7240104B2 (en) Method and apparatus for managing resources stored on a communication device
US7139559B2 (en) System and method for handshaking between wireless devices and servers
US8949469B2 (en) Method for software program synchronization
RU2456768C2 (en) Device to control content distribution, terminal, software and system of content distribution
US8261059B2 (en) Secure file transfer and secure file transfer protocol
US8117297B2 (en) System and method of device-to-server registration
US8705447B2 (en) Remote control method and system, and remote control method of a mobile device
US9094370B2 (en) Remote access to information on a mobile terminal from a web browser extension
EP1548584A2 (en) Application data management method for mobile terminal and mobile terminal used therein
KR20050102636A (en) Mobile telephony application platform
TW200407733A (en) Application catalog on an application server for wireless devices
EP2110752A1 (en) Content distribution management device, communication terminal, program, and content distribution system
EP1548582A1 (en) Method for managing use of storage region by application
JP2004126735A (en) Communication system, relay device and communication control method
US20050227677A1 (en) Downloadable profiles for mobile terminals
JP2007511923A (en) Method for making wireless information device accessible to customer support service
US20050114470A1 (en) Communications system
JP2010273045A (en) Server apparatus
JP2006191384A (en) Mobile and content transmission method
EP1494423B1 (en) Dynamic Java push controlling apparatus and method
JP4541028B2 (en) Remote operation control program using Web server
JP4592694B2 (en) Database synchronization
JP4305146B2 (en) Communication control device, application server, and program
KR100608150B1 (en) Wireless contents download system and method thereof for wireless internet service system

Legal Events

Date Code Title Description
AS Assignment

Owner name: DEFYWIRE, INC., VIRGINIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GAUTNEY, CHARLES W.;REEL/FRAME:018028/0411

Effective date: 20020820

AS Assignment

Owner name: RALVIN REMOTE GMBH, L.L.C., DELAWARE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:DEFYWIRE, INC.;REEL/FRAME:021243/0064

Effective date: 20080402

Owner name: RALVIN REMOTE GMBH, L.L.C.,DELAWARE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:DEFYWIRE, INC.;REEL/FRAME:021243/0064

Effective date: 20080402

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: INTELLECTUAL VENTURES ASSETS 191 LLC, DELAWARE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:RATEZE REMOTE MGMT. L.L.C.;REEL/FRAME:062666/0696

Effective date: 20221222

AS Assignment

Owner name: INTELLECTUAL VENTURES ASSETS 186 LLC, DELAWARE

Free format text: SECURITY INTEREST;ASSIGNOR:MIND FUSION, LLC;REEL/FRAME:063295/0001

Effective date: 20230214

Owner name: INTELLECTUAL VENTURES ASSETS 191 LLC, DELAWARE

Free format text: SECURITY INTEREST;ASSIGNOR:MIND FUSION, LLC;REEL/FRAME:063295/0001

Effective date: 20230214