US20080125634A1 - Method and apparatus for identifying and treating myocardial infarction - Google Patents

Method and apparatus for identifying and treating myocardial infarction Download PDF

Info

Publication number
US20080125634A1
US20080125634A1 US11/762,956 US76295607A US2008125634A1 US 20080125634 A1 US20080125634 A1 US 20080125634A1 US 76295607 A US76295607 A US 76295607A US 2008125634 A1 US2008125634 A1 US 2008125634A1
Authority
US
United States
Prior art keywords
tissue
treatment
catheter
analysis
inserter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/762,956
Inventor
S. Eric Ryan
Jing Tang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cornova Inc
Original Assignee
Cornova Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cornova Inc filed Critical Cornova Inc
Priority to US11/762,956 priority Critical patent/US20080125634A1/en
Assigned to CORNOVA, INC. reassignment CORNOVA, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: RYAN, S. ERIC, TANG, JING
Assigned to CORNOVA, INC. reassignment CORNOVA, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: RYAN, S. ERIC, TANG, JING
Publication of US20080125634A1 publication Critical patent/US20080125634A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/06Body-piercing guide needles or the like
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/01Measuring temperature of body parts ; Diagnostic temperature sensing, e.g. for malignant or inflamed tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/0105Steering means as part of the catheter or advancing means; Markers for positioning
    • A61M25/0133Tip steering devices
    • A61M25/0147Tip steering devices with movable mechanical means, e.g. pull wires
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B10/00Other methods or instruments for diagnosis, e.g. instruments for taking a cell sample, for biopsy, for vaccination diagnosis; Sex determination; Ovulation-period determination; Throat striking implements
    • A61B10/02Instruments for taking cell samples or for biopsy
    • A61B10/04Endoscopic instruments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B18/22Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor
    • A61B18/24Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor with a catheter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B10/00Other methods or instruments for diagnosis, e.g. instruments for taking a cell sample, for biopsy, for vaccination diagnosis; Sex determination; Ovulation-period determination; Throat striking implements
    • A61B10/02Instruments for taking cell samples or for biopsy
    • A61B10/04Endoscopic instruments
    • A61B2010/045Needles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • A61B2017/00022Sensing or detecting at the treatment site
    • A61B2017/00057Light
    • A61B2017/00061Light spectrum
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • A61B2017/00238Type of minimally invasive operation
    • A61B2017/00243Type of minimally invasive operation cardiac
    • A61B2017/00247Making holes in the wall of the heart, e.g. laser Myocardial revascularization
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • A61B2017/00292Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery mounted on or guided by flexible, e.g. catheter-like, means
    • A61B2017/003Steerable
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B2017/22072Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for with an instrument channel, e.g. for replacing one instrument by the other
    • A61B2017/22074Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for with an instrument channel, e.g. for replacing one instrument by the other the instrument being only slidable in a channel, e.g. advancing optical fibre through a channel
    • A61B2017/22077Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for with an instrument channel, e.g. for replacing one instrument by the other the instrument being only slidable in a channel, e.g. advancing optical fibre through a channel with a part piercing the tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00345Vascular system
    • A61B2018/00351Heart
    • A61B2018/00392Transmyocardial revascularisation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B18/22Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor
    • A61B2018/2238Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor with means for selectively laterally deflecting the tip of the fibre
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/0067Catheters; Hollow probes characterised by the distal end, e.g. tips
    • A61M25/0082Catheter tip comprising a tool
    • A61M2025/0096Catheter tip comprising a tool being laterally outward extensions or tools, e.g. hooks or fibres

Definitions

  • This invention relates to methods and apparatus for identifying, localizing, and treating diseased internal tissues including myocardial infarctions which, in particular, employ catheters having optical-probe and needle-injection assemblies.
  • Cardiovascular diseases and disorders are the leading cause of death and disability in all industrialized countries. In the United States alone, an estimated 700,000 Americans suffered a stroke in 2005—that's at least one stroke victim every 45 seconds. Stroke is the No. 3 killer and a leading cause of severe, long-term disability in the United States. In 2005, the estimated direct and indirect costs of cardiovascular diseases and stroke were $393.5 billion (as reported by the American-Heart-Association).
  • cardiovascular disease One of the primary factors that render cardiovascular disease particularly devastating is the heart's inability to repair itself following damage. Since myocardial cells are unable to divide and repopulate areas of damage, cardiac cell loss as a result of injury or disease is largely irreversible. Myocardial necrosis may generally begin near the endocardial surface. Depending on a number of factors, including the location of the affected area, this necrosis may or may not progress into a transmural infarct. Over time, adjacent regions may become infarcted as well due to retrograde propagation of the thrombus, development of micro emboli, arrhythmias, or other similar factors, leading to infarcts arising at different times within the same affected area.
  • Myocardial cells that are key to proper operation of the heart include cardiomyocyte (muscle cells) for pumping blood and endothelial cells (vessel cells) for circulating blood and nutrients.
  • cardiomyocyte muscle cells
  • endothelial cells vessel cells
  • directly injecting certain types of primitive cells e.g. stem cells, bone marrow
  • necrotic cardiomyocyte cells e.g. periinfarct areas
  • periinfarct areas can induce regeneration of the dead myocardial tissue. See Stem Cells: Scientific Progress and Future Research Directions. Department of Health and Human Services. June 2001; retrieved from the Internet: ⁇ URL:http://stemcells.nih.gov/info/scireport)>, incorporated herein in its entirety by reference.
  • Certain techniques of tissue analysis have been developed to generally identify ischemic tissue and/or a tissue's metabolic state. Some of these techniques involve the use of optical spectroscopy and catheters combined with optical fiber probes. For example, such as for purposes of revascularization or other surgery, techniques have been developed for spectroscopically measuring oxygenation in myocardial tissue, as described in Kawasugi M., et al., “Near-infrared monitoring of myocardial oxygenation during ischemic preconditioning”, Ann Thorac Surg.
  • the system and methods of the present invention provide a safe, effective apparatus and method for in vivo characterization and concurrent treatment of tissue affected by myocardial infarction.
  • the embodiments of the invention identify and locate infarcted tissue and the affected surrounding myocardial tissue for purposes of diagnosis (e.g. the state of viability) and subsequent treatment.
  • the embodiments of the invention provide an integrated treatment system that operates in tandem with an identification system.
  • the inventive apparatus includes a catheterized optical probe connected to a spectroscopic analysis system programmed to identify (in vivo) and accurately locate infarcted myocardial tissue and various types of surrounding tissue affected by the infarction.
  • the catheter further includes an integrated treatment system which, with information provided by the analysis system, can be accurately positioned to effectively treat the infarcted and affected surrounding areas such as, in an embodiment, by accurately localizing treatment delivery to affected areas surrounding necrotic tissue (e.g. periinfarct areas).
  • the treatment system comprises a needle injection apparatus for injecting various compounds and/or therapeutic agents (e.g. stem cells, gene therapy, etc.) intended for aiding in the regeneration of necrotic tissue and/or revitalization of affected surrounding tissue.
  • an apparatus for probing and treating internal body organs includes a catheter having a fiber probe arrangement with one or more treatment lumens.
  • the apparatus further includes an analysis and treatment control system connected to the catheter which is programmed to characterize and locate damaged tissue via the fiber probe arrangement and configured to treat damaged tissue through the one or more treatment lumens.
  • the apparatus further comprises a spectrometer connected to said fiber probe arrangement.
  • the apparatus further comprises a needle tip inserter.
  • the needle tip inserter incorporates the probe ends of one or more fibers of the fiber probe arrangement and a dispersal port for the one or more treatment lumens.
  • the needle tip inserter is partially retractable within said catheter so as to ease the advancement of said catheter in a patient while permitting optical analysis.
  • the analysis and treatment control system is programmed to analyze spectroscopic data, the analysis of the spectroscopic data including distinguishing the types and conditions of tissue within and surrounding a patient's heart.
  • the spectroscopic data is selected according to predetermined wavelength bands that distinguish levels of particles, gas, and/or liquid contained in the tissue.
  • distinguishing the types and conditions of tissue within and surrounding a patient's heart includes characterizing and locating tissues associated with myocardial infarct.
  • characterizing and locating tissues associated with myocardial infarct includes identifying an area for treatment of myocardial infarction by locating and targeting an affected area surrounding a region of necrotic tissue.
  • characterizing and locating the tissues associated with myocardial infarct includes detecting levels of at least one of fibrosis, calcification, or oxygen content.
  • the analysis of said spectroscopic data includes chemometric analysis of said spectroscopic data in relation to previously obtained and stored spectroscopic data.
  • the chemometric analysis involves at least one technique including Principle Component Analysis (PCA) with Mahalanobis Distance, PCA with K-nearest neighbor, PCA with Euclidean Distance, Partial Least Squares Discrimination Analysis, augmented Residuals, bootstrap error-adjusted single-sample technique, or Soft Independent Modeling of Class Analogy.
  • PCA Principle Component Analysis
  • the analysis and control system is configured to perform spectroscopic scans across wavelengths within the range of approximately 300 to 2500 nanometers.
  • the analysis of the spectroscopic data includes estimating relative distances between a distal end of the fiber probe arrangement and tissue analyzed by the spectrometer. In an embodiment of the invention, estimating the relative distances includes comparing the magnitudes of spectroscopic absorbance peaks associated with tissue or blood with magnitudes similarly obtained from previously stored spectroscopic absorbance data. In an embodiment of the invention, the relative distances includes comparing the magnitudes of the spectroscopic absorbance peaks obtained at different predetermined positions of the catheter relative to the tissue or blood. In an embodiment of the invention, estimating the relative distances includes comparing spectroscopic absorbance peaks associated with collection fibers having terminating ends separated longitudinally from each other at a predetermined distance.
  • the one or more treatment lumens includes a conduit for delivering a fluid solution to damaged tissue.
  • the one or more treatment lumens includes a conduit for delivering therapeutic laser energy.
  • the catheter further incorporates one or more sensors.
  • the one or more sensors includes at least one temperature gauge, pH meter, oxygenation meter, or water content meter.
  • the catheter further includes a biopsy sampler.
  • the distal end of the catheter includes a guidewire branching from the catheter apart from the needle tip.
  • a catheter for probing and treating myocardial infarct including a fiber probe arrangement, one or more treatment lumens, and a distal end having a needle injection inserter.
  • the inserter is integrated with one or more fiber probe ends from one or more fibers of the fiber probe arrangement and is integrated with one or more delivery ports from the one or more treatment lumens.
  • the catheter includes an angle control wire for adjusting the angle of the distal end of said catheter.
  • the catheter includes a gripping element about the proximate portion of the catheter, the gripping element having one or more control elements for controlling aspects of positioning the catheter and/or for delivering treatment.
  • a method for treating body tissue including the steps of inserting into a patient a catheter integrated with a fiber optic analysis probe and a treatment delivery conduit, characterizing and locating the body tissue to be treated with light delivered and collected through said fiber optic analysis probe, positioning the catheter to deliver treatment with information obtained through said fiber optic analysis probe, and delivering a treatment through the treatment delivery conduit.
  • the body tissue to be treated is associated with myocardial infarct.
  • locating the body tissue associated with myocardial infarct to be treated includes locating and targeting an affected area surrounding a region of necrotic tissue for delivery of a treatment through the treatment delivery conduit.
  • characterizing and locating the body tissue associated with myocardial infarct to be treated includes obtaining spectroscopic data from radiation delivered to and collected from the tissue to be treated via the fiber optic analysis probe and comparing the spectroscopic data with previously stored data characteristic of tissues within and around a patient's heart in order to identify the type of tissue being analyzed and to locate the position of the tissue being analyzed relative to the catheter.
  • characterizing the tissue to be treated involves comparing levels of gases, fluids, and/or compounds within typical normal tissues as compared to gases, fluids, and/or compounds within tissues associated with myocardial infarct.
  • the gases, fluids, and/or compounds are selected from the group including collagen, calcium, oxygen, hemoglobin, and myoglobin.
  • obtaining spectroscopic data includes at least one of the methods including diffuse-reflectance spectroscopy, fluorescence spectroscopy, Raman spectroscopy, scattering spectroscopy, optical coherence reflectometery, and optical coherence tomography.
  • characterizing the tissue to be treated involves chemometric analysis selected from the group of techniques including Principle Component Analysis (PCA) with Mahalanobis Distance, PCA with K-nearest neighbor, PCA with Euclidean Distance, Partial Least Squares Discrimination Analysis, augmented Residuals, bootstrap error-adjusted single-sample technique, and Soft Independent Modeling of Class Analogy.
  • PCA Principle Component Analysis
  • K-nearest neighbor PCA with Euclidean Distance
  • Partial Least Squares Discrimination Analysis Partial Least Squares Discrimination Analysis
  • augmented Residuals bootstrap error-adjusted single-sample technique
  • Soft Independent Modeling of Class Analogy Soft Independent Modeling of Class Analogy
  • the spectroscopic data is obtained from radiation spanning wavelengths between approximately 300 to 2500 nanometers.
  • the spectroscopic data is selectively collected in sub-ranges of radiation spanning approximately 300 to 1375 nanometers, 1550 to 1850 nanometers, and 2100 to 2500 nanometers.
  • the radiation that is delivered and collected through the fiber optic probe is restricted to selectively narrow spans of wavelengths associated with identifying said tissues.
  • radiation is delivered to tissue or blood within a narrow range including 380 nanometers and scanned across a narrow range including 320 nanometers in order to identify the presence of collagen.
  • locating tissues in relation to the catheter includes pre-operative steps of analyzing and comparing the wavelengths and magnitudes of spectroscopic absorbance peaks associated with tissues and blood surrounding the tissues.
  • the wavelengths and magnitudes of spectroscopic absorbance peaks associated with tissues and blood is compared with previously obtained and stored spectroscopic absorbance data associated with a catheter approaching similar tissues in a blood medium.
  • the distal end of said catheter includes an inserter integrated with terminating ends of the fiber optic probe and delivery conduit, the inserter suitably sharp for perforating targeted tissue.
  • the integrated inserter remains at least partially retracted in the catheter prior to perforation into tissue targeted for treatment and the fiber optic probe is functional while the inserter is at least partially retracted.
  • final positioning of the catheter for delivery of treatment includes extending the inserter out from the distal end of the catheter into the targeted tissue.
  • a wall of myocardial tissue before which the inserter is positioned is concurrently analyzed and monitored to prevent complete perforation of the inserter through the entire wall of myocardial tissue.
  • the prevention of complete perforation includes monitoring the contents of tissue for a layer of pericardial fat positioned beyond the wall of myocardial tissue.
  • delivering treatment through the treatment delivery conduit includes the injection of therapeutic agents.
  • the therapeutic agents include at least one of chemical agents, gene therapy agents, stem cell therapy agents, and/or cytotherapy agents.
  • the therapy agents are chosen and delivered based on data collected during characterizing and locating the body tissue to be treated.
  • the release of agents is monitored with the fiber optic probe and controlled using feedback from said monitoring.
  • delivering treatment through the treatment delivery conduit comprises delivering therapeutic laser energy.
  • delivering therapeutic laser energy comprises canalizing infarct tissue for purposes of revascularization.
  • the catheter is introduced into the patient in accordance with a percutaneous transluminal angioplasty.
  • the catheter is introduced into the patient in accordance with percutaneous endoventricular delivery.
  • FIG. 1 is a schematic block diagram of an apparatus illustrating the general flow of system control, including identifying, localizing, and treating diseased internal tissues, in accordance with an embodiment of the invention.
  • FIG. 2A is an illustrative schematic diagram of the end of a catheterized optical probe and needle injection system that analyze myocardial tissue, in accordance with an embodiment of the invention.
  • FIG. 2B is an illustrative schematic side-profile view of the needle tip inserter portion of the probe of FIG. 2A .
  • FIG. 3 is a side-profile view of a distal end of a catheter having a control cable, in accordance with an embodiment of the invention.
  • FIG. 4 is an illustrative view of a handle assembly, in accordance with an embodiment of the invention.
  • FIGS. 5A-5D are illustrative views showing the sequential steps of performing an optical-probe guided injection treatment procedure for infarcted myocardial tissue, in accordance with an embodiment of the invention.
  • FIGS. 6A-6F are illustrative views showing various embodiments of fiber probe tip arrangements according to embodiments of the invention.
  • FIG. 7A is an illustrative perspective view of a catheter having a guidewire sheath according to an embodiment of the invention.
  • FIG. 7B is an illustrative cross-sectional view of the distal end of the catheter of FIG. 7A .
  • FIG. 7C is a schematic diagram of the distal end of the catheter of FIGS. 7A-7B approaching a region of interest via a vessel of a heart.
  • FIG. 8 is a chart of an absorbance spectrum taken across a range of wavelengths comparing various body tissues and fluids.
  • FIG. 9 is a chart of an absorbance spectrum taken across a range of wavelengths comparing various types of myocardial tissue associated with normal and damaged tissue states.
  • FIG. 10 is a chart of absorbance spectra for two different fiber probe configurations at various positions relative to adjacent layers of myocardium and fat tissue.
  • an apparatus and method are provided for treating tissue associated with myocardial infarction by integrating an inspection system for locating tissue to be treated with a treatment delivery system.
  • the preferred embodiments of the invention employ spectroscopic analysis with any two or more single wavelengths or one or more narrow wavelength bands, or a whole wavelength range to identify and localize myocardial infarct lesions in vivo.
  • the light signal scattered or emitted from an illuminated area provides information about a change in tissue chemical components (such as water content, oxygenation, pH value, collagen, proteoglycans, calcium), tissue structures (such as cell size, types), inflammatory cellular components (such as T lymphocytes, macrophages, and other while blood cells), that help characterize states of tissue edema, tissue necrosis, tissue fibrosis, and/or tissue calcification or other conditions which typically result from myocardial infarct (“MI”).
  • tissue chemical components such as water content, oxygenation, pH value, collagen, proteoglycans, calcium
  • tissue structures such as cell size, types
  • inflammatory cellular components such as T lymphocytes, macrophages, and other while blood cells
  • the ability to identify myocardial infarcts is dependent upon the time that has elapsed since the ischemic event took place. Infarcts resulting in sudden cardiac death and are less than 12 hours old are usually not apparent upon gross examination. The infarcted tissue may become edematous and inflamed. Changes during this time period are histochemical and require adjunctive staining to identify the affected area of necrosis. After 24 hours, however, pallor is often grossly present due to stagnated blood within the lesion. Acute inflammation occurs within the first several days, followed by granulation over a couple of weeks. Eventually, the tissue becomes more fibrous and less vascularized. Some long resident infarcted tissue may become calcified.
  • FIG. 1 is a schematic block diagram of an apparatus illustrating the general flow of system control, including identifying, localizing, and treating diseased internal tissues, in accordance with an embodiment of the invention.
  • the block diagram 10 shows fiber cables 30 and a treatment delivery conduit 35 extending through a probe/treatment catheter 20 , which is inserted into a heart 15 .
  • Arrows between the boxed elements of diagram 10 indicate the general flow of system control, originating from main controller 50 , which includes a programmed processor and data storage elements (not shown) for routing commands and data to and from various other system components.
  • Main controller 50 is connected to a light source 90 which delivers radiation through optical delivery fibers 55 to illuminate target tissue 40 of the heart 15 .
  • light source 90 is preferably of the type that can selectively produce light in one or more wavelengths within the visible and/or near-infrared spectrum, including single LED varieties.
  • Main controller 50 operates a processor/analyzer 60 that is connected to a detector 65 , which is connected to collection fibers 57 that extend to the distal end 100 of catheter 20 .
  • the detector 65 converts optical signals to electrical/digital signals.
  • the detector 65 and processor/analyzer 60 are also preferably of the type for processing near infrared radiation.
  • Numerous commercially available spectrometers capable of analyzing visible radiation and also near-infrared radiation in accordance with embodiments of the invention such as, for example, an IntegraSpecTM NIR Microspectrometer from Axsun Technologies, Inc.
  • a treatment device 70 which supplies a treatment delivery conduit 35 with selected treatment agents as described in further detail below.
  • An alarm 75 is interconnected with the controller 50 and treatment device in the event the system detects a problem and treatment operations should be suspended (e.g. accidental penetration into non-myocardial tissue).
  • a monitor 80 and various input devices for example, a keyboard, mouse, etc. (not shown), can provide an operator with feedback, status information, and control.
  • the catheter 20 is introduced into a human body and approaches the affected tissue via vessels and cavities through which the catheter may slide through.
  • a guide catheter (not shown) may be operated in a manner consistent with percutaneous endoventricular delivery.
  • the guide catheter enters the body via a peripheral artery, such as femoral artery, then into the aorta, and then into the left (atrium and ventricle) heart cavity.
  • the guide catheter is inserted into the body via a peripheral vein, such as basilic or femoral vein, then into the vein cave, and then into the right heart (atrium and ventricle) cavity.
  • Other embodiments, such as those described below in reference to FIGS. 7A-7C allow for a method of approaching affected tissue via adjacent heart vessels.
  • the distal end 100 of catheter 20 is shown within a heart cavity 15 penetrating a targeted myocardial infarct region 40 in the cavity 45 wall.
  • the processor and analyzer 60 provide controller 50 with spectral absorbance feedback as the catheter 20 is positioned in the cavity 45 and into its inner walls.
  • controller 50 is pre-programmed to identify infarcted tissue and surrounding affected tissue in relation to the distal portion 100 .
  • tissue identification results e.g. magnitudes of spectroscopic absorbance peaks taken at various positions of the catheter
  • controller 50 is programmed to accurately determine the optimal position of the treatment component (shown below in FIG. 2A ) of catheter 20 and amount of treatment agent to be discharged.
  • Positioning may be performed in varying degrees of programmed interactivity with an operator (not shown). For example, data from the probe could be processed and displayed to show general indications of tissue conditions and/or position. Alternatively, a real-time spectral readout could be continuously displayed for the operator to judge independently.
  • FIG. 2A is an illustrative schematic diagram of the end of a catheterized optical probe and needle injection system that analyze myocardial tissue, in accordance with an embodiment of the invention.
  • FIG. 2B is an illustrative schematic side-profile view of the needle tip inserter portion of the probe of FIG. 2A .
  • a protective outer sheath 120 surrounds a catheter body 125 .
  • the end of catheter body 125 is integrated with an inserter 130 .
  • the body of the catheter may be a flexible tube, which may be bifurcated at the injection lumen, or treatment lumen, or just an empty pathway to allow for the inclusion of one or multiple optical fibers while maintaining the fluid path for a treatment solution or as a transfer path for a treatment device.
  • the catheter body is allowed to be partially pulled back, or retracted, inside the catheter sheath 120 while the catheter enters into the human body.
  • the catheter sheath 120 also allows the catheter body 125 to move partially forward in order to push the suitably sharp inserter 130 outside of the catheter sheath 120 and to puncture the target myocardial tissue 170 for at least one of a diagnosis and a treatment procedure.
  • Inserter 130 preferably comprises stainless steel or similar material suitable for perforating myocardial tissue by moderate forward pressure.
  • a fiber probe arrangement comprising one or more delivery fibers 150 and collection fibers 160 with, respectively, fiber ends 155 and 165 , also referred to as terminating ends, being connected at their opposite ends to corresponding sources and/or detector/analyzer(s).
  • the terminating ends 155 and 165 are fixed within inserter 130 , for example, using an epoxy adhesive or metal solder.
  • the fiber ends 155 and 165 are polished such that they have oblique angles with respect the external surface of inserter 130 .
  • Inserter 130 also includes a treatment port 140 or dispersal port for one or more treatment lumens, for delivery of treatment to the area surrounding and including a region of infarcted myocardial tissue 180 .
  • Treatment port 140 is connected through a treatment supply conduit 145 which can be connected to a treatment device as described in reference to FIG. 1 .
  • Inserter 130 is sized preferably at about 18 to 27 gauge with a length from about 3 to 30 mm depending on the particular application (i.e. the density of tissue material, the preferable depth of penetration, etc.).
  • the angle ⁇ relative to a perpendicular of the terminating end of the inserter has a range of approximately 25 to 75 degrees (see FIG. 2B ), sufficient to protect the terminating ends of optical and treatment components, for example, terminating ends 155 and 165 , while promoting easier penetration into tissue.
  • the catheter's distal portion approaches a cross-section of myocardial tissue area 170 of an inner heart cavity's wall which includes regions of myocardial infarcted tissue 180 and affected surrounding tissue 175 .
  • Source radiation paths represented by lines 190 emanate from delivery fiber end 155 into the heart cavity's interior wall edge and from there penetrate and interact with surrounding myocardial tissue. Return radiation emerges out of the wall of myocardial tissue area 170 and is collected by collection fiber ends 165 and that of fiber 110 , then delivered to a detector/analyzer (as shown in FIG. 1 ).
  • the amount of detectable signal and the depth of the path of the collected signal is generally proportional to the degree of latitudinal separation between delivery and collection fibers. While having signal power levels sufficiently low not to damage targeted tissue, a separation of less than 1.5 mm is preferable for receiving an adequate collection signal.
  • one or more additional optical fibers such as collection fiber 110
  • Fiber 110 is can be fixed to sheath 120 with a ring 135 or by other various means of attachment known to those of ordinary skill in the art.
  • an inside collection fiber end 165 can be separated from a signal fiber end 155 by approximately 1.5 mm and collection fiber end 110 can be separated from signal fiber end 150 by approximately 1.0 mm.
  • At least one collection fiber 110 can remain outside of the heart wall tissue 15 , unlike fiber ends 155 and 165 . Additional details on this embodiment are described below in reference to FIGS. 5A-5D .
  • This approach provides additional collection of optical signals relative to the heart wall surface, while fibers 150 and 160 are embedded in the heart wall tissue. With information known about the relative positions between the collection fiber ends and data collected from each end, the depth of penetration of the catheter into the targeted tissue can be reasonably calculated.
  • FIG. 3 is a side-profile view of a distal end of a catheter having a control cable, in accordance with an embodiment of the invention.
  • a distal end of the catheter 200 includes a control cable 220 for manipulating its angle as it emanates from a protective outer catheter sheath 205 .
  • a ring 210 has holes (not shown) through which cable 220 and fiber line 110 may slide through. Ring 210 is also slidable along catheter sheath 120 . Ring 135 is fixed to catheter sheath 120 and holds the ends of fiber line 110 and cable 220 in place.
  • cable 220 can then be retracted, for example, via a control knob, such as the control knob 280 shown in FIG. 4 , to bend the distal portion 200 at a desired angle, providing additional control of the catheter.
  • a control knob such as the control knob 280 shown in FIG. 4
  • Fibers 235 extend through a catheter body 125 with integrated inserter 130 as in previously described embodiments.
  • one procedure for approaching a target myocardial area applying the embodiment at FIG. 3 is in accordance with percutaneous endoventricular delivery.
  • catheter 200 is introduced into a body via a peripheral artery, such as a femoral artery, and in through a ventricle of the heart, and then toward an area of interest where inserter 130 can emerge.
  • FIG. 4 is an illustrative view of a handle assembly, in accordance with an embodiment of the invention.
  • a handle assembly 250 provides a way for an operator to manually control movement (e.g. pulling, pushing, turning) and other operations of a catheter in accordance with embodiments of the invention.
  • Catheter sheath 120 , control cable 220 and fiber line 110 enter handle assembly 250 through an upper handle segment 255 and then into lower handle segment 260 .
  • a flush port 265 allows a treatment agent to enter sheath 120 .
  • Sheath 120 can operate as a treatment delivery conduit for subsequent passage and delivery of a treatment agent to a patient (e.g. out through treatment port 140 as shown in FIGS. 2A-2B ).
  • a control knob 280 retracts and extends control cable 220 to adjust the angle of the distal end of the catheter 200 , as shown in FIG. 3 .
  • a release button 270 releases tension on control wire 220 .
  • the button 270 is spring loaded (in a non-release position) by a spring 275 .
  • a lever 285 can apply force to head 282 to actuate movement of catheter body 125 and an inserter tip (e.g., inserter 130 shown in FIGS. 2-3 ) into a target tissue area.
  • Catheter body 125 is spring loaded by spring 287 which holds inserter 130 in a normally retracted position.
  • Fibers 155 and 110 extend through lower handle segment 260 and out through a conduit 290 to corresponding sources or detectors (e.g., source 90 and detector 65 as shown in FIG. 1 ).
  • fiber 110 is a collection fiber and fibers 135 include collection and delivery fibers.
  • FIGS. 5A-5D are illustrative views showing the sequential steps of performing an optical-probe guided injection treatment procedure for infarcted myocardial tissue, in accordance with an embodiment of the invention.
  • a catheter's distal end 100 and inserter 130 is shown in various positions during an analysis and treatment procedure in accordance with embodiments of the invention.
  • inserter 130 is partially retracted within distal end 100 as it approaches the inside surface of a heart wall 170 .
  • the needle tip inserter 130 is partially retracted within said catheter so as to ease the advancement of said catheter in a patient while inserter 130 is sufficiently extracted so that the optical probe remains functional, permitting optical analysis to occur through inserter 130 .
  • the wall 170 of myocardial tissue before which the inserter 130 is positioned can be concurrently analyzed and monitored to prevent complete perforation of said inserter through the entire wall 170 of said myocardial tissue.
  • the optical analysis system operates and examines inside surface and interior of heart wall 170 during the approach, determining the catheter's distance from surface and diagnosing the condition of myocardial tissue therein.
  • the contents of tissue for a layer of pericardial fat positioned beyond the wall 170 of myocardial tissue can be monitored.
  • distal end 100 is optimally positioned for delivering treatment to the region.
  • inserter 130 is driven out through the catheter body and into the adjacent region of myocardial tissue, exposing treatment port 140 within the wall 170 of myocardial tissue. While the probe end of collection fiber 160 becomes embedded into myocardial tissue, the intensity and spectral features of the optical signal collected by fiber 110 (while not embedded) can be compared to that collected by fiber 160 to better assess the puncture position of inserter 130 . Being positioned externally to the heart tissue, collection fiber 110 will likely receive a stronger return signal from delivery fiber 150 in order to better assess proximity with and avoid a perforation of the outer heart wall surface, which could be highly damaging or fatal. A simulative set of signals in accordance with the operation of this feature is described below in reference to FIG. 10 .
  • treatment port 140 then injects treatment agent 190 into the affected areas.
  • the distal end of the catheter 100 is withdrawn from the area.
  • a tube or passageway inside of the catheter can be used as a conduit to transfer the treatment fluid such as, for example, stem cell suspension or drug solution, into the target tissue for cytotherapy, gene therapy and/or chemical therapy in a narrow local area inside the heart wall.
  • the optical probe system can monitor the spread of therapeutic agents in tissue while they are delivered.
  • a controller e.g. controller 50 of FIG. 1
  • the catheter may also provide a conduit through which other treatment tools can deliver treatment to the affected area, e.g.
  • fibers 150 or 160 of FIG. 2 or fiber 710 of FIGS. 6C-6D could be adapted and used to deliver therapeutic laser energy. These fibers could be, for example, switched between use for delivery/collection for purposes of analysis and use for delivering therapeutic laser energy.
  • FIG. 6A shows an illustrative perspective view of an alternate probe tip arrangement 600 , including a light blocking divider 605 between the terminating ends of a delivery fiber 650 and collection fiber 660 .
  • FIG. 6B shows a cross-sectional illustrative view of the probe tip arrangement of FIG. 6A .
  • Fibers 650 and 660 extend through a catheter sheath 620 and catheter body 625 , to an inserter 630 having a treatment delivery port 640 that provides an output to a treatment delivery conduit 645 .
  • a collection fiber 610 extends and terminates along sheath 620 at a position longitudinally separated from the terminating ends of fiber 650 and 660 .
  • Light-blocking divider 605 can help minimize the amount of signal directly traveling to (or leaked between) delivery fiber 650 and collection fiber 660 prior to traveling through a targeted tissue area.
  • FIG. 6C shows an illustrative perspective view of an alternate probe tip arrangement 700 , including a collection fiber 710 having a terminating end integrated in an inserter 730 .
  • FIG. 6D shows a cross-sectional illustrative view of the probe tip arrangement of FIG. 6C .
  • the probe end of collection fiber 710 is longitudinally separated from fibers 750 and 760 as in previously described embodiments, however, its probe end will remain longitudinally fixed with respect to the ends of fibers 750 and 760 when inserter 730 emanates from a sheath 720 and retracts.
  • Fixing the separation between the probe ends of fibers 750 , 760 , and 710 can thus reduce the level of analysis required during movement of inserter 730 and increases the overall proximity to and reception of signals associated with treatment agents delivered from a treatment delivery port 740 , thus providing enhanced analysis of the quantity, movement, and progress of delivered treatment agents.
  • fiber 710 can remain less exposed to external components (e.g. blood and tissue), thus reducing the likelihood of damage to external tissue and fiber 710 .
  • FIG. 6E shows an illustrative perspective view of an alternate probe tip arrangement 800 , including the three longitudinally separated fibers 850 , 860 , and 810 .
  • FIG. 6F shows a cross-sectional illustrative view of the probe tip arrangement of FIG. 6E .
  • the probe ends of fibers 850 and 860 are separated along an inserter 830 at opposing longitudinal ends of a treatment delivery port 840 that provides an output to a treatment delivery conduit 845 .
  • Longitudinally separating the probe ends of fibers 850 and 860 can reduce the level of signal leaking between the fibers and also increases the overall reception of signals associated with treatment agents delivered from a treatment delivery port 740 , thus providing enhanced analysis of the quantity, movement, and progress of delivered treatment agents.
  • the inventive catheter incorporates a biological, electric, or chemistry-based sensor or tool connected with a metal fiber, or other structural or reinforcing wire elements permitting additional diagnosis or monitoring of target tissue, e.g. tissue temperature, pH, oxygenation, water content, other chemical composition and/or even tissue biopsy via the catheter body.
  • the catheter includes one or more sensors. The sensors can be at least one of a temperature gauge, pH meter, oxygenation meter, and water content meter.
  • the catheter includes a biopsy sampler.
  • a sensor wire can travel along a similar path as that of fibers 150 or 160 shown in FIG. 2 and a sensor/transducer could be situated in, for example, needle tip inserter 130 shown in FIG. 2 .
  • a biopsy can be performed by extracting tissue or other materials through treatment port 140 and suctioning them to the proximate end of the catheter.
  • a cutting device (not shown) could be incorporated into needle tip inserter 130 and treatment port 140 in order to detach tissue for extraction.
  • FIG. 7A is an illustrative perspective view of a catheter 300 having a guidewire sheath 320 according to another embodiment of the invention.
  • FIG. 7B is an illustrative cross-sectional view of the distal end of the catheter of FIG. 7A .
  • FIG. 7C is a schematic diagram of the distal end of the catheter of FIGS. 7A-7B approaching a region of interest via a vessel of a heart.
  • Guidewire sheath 320 and a probe and treatment end 350 bifurcate from a protective catheter sheath 325 .
  • Probe and treatment end 350 includes an angled inserter 335 through which a treatment delivery conduit 345 transfers a treatment agent out to a treatment port 340 .
  • Fibers 360 also extend through the treatment delivery conduit 345 and to the probe and treatment end 350 , terminating at the end of inserter 335 .
  • Inserter 335 remains partially retracted while the catheter is fed through the patient in its approach to myocardial wall 170 , infarcted area 180 , and affected surrounding area 175 while the optical probe components can continue to function. As in previously described embodiments, inserter 335 can then extend from the probe and treatment end 350 into adjacent myocardium.
  • the angle of divergence between guide wire sheath 320 and inserter 335 is preferably between 15 and 90 degrees, sufficient to allow puncturing of adjacent myocardial tissue. This embodiment enables the catheter to approach the myocardium wall 170 substantially through blood vessels such as blood vessel 305 .
  • guide wire 340 is introduced into a body via a peripheral artery, such as femoral artery, into the aorta, then into the coronary artery system through the coronary ostium at the beginning of the aorta arch.
  • a peripheral vein such as basilic or femoral vein
  • the catheter is then finally advanced into a coronary blood vessel (artery or vein) lumen 305 to the area of interest 175 , where inserter 335 can emerge and perforate the vessel's walls in order to perform additional analysis and to apply treatment.
  • Spectroscopic analysis techniques used alone or in combination include, but are not limited to, fluorescence spectroscopy, visible spectroscopy, diffuse-reflectance spectroscopy, infrared or near-infrared spectroscopy, scattering spectroscopy, optical coherence reflectometery, optical coherence tomography, and Raman spectroscopy.
  • the source of radiation be limited and selectable in particular wavelength band ranges known to provide optimal feedback about the types of tissue being targeted (e.g. myocardial infarct and surrounding tissues and blood).
  • a variety of light sources can be used to provide radiation in this manner, such as one or multiple lasers, one or multiple LEDs, a tunable laser with one or multiple different wavelength ranges, Raman amplifier lasers, and a high-intensity arc lamps. These light sources can provide the desired optical radiation region by sequential tunable scanning or by simultaneously spanning the desired wavelength band(s). Wavelength tuning during scans should preferably occur between about a couple of microseconds to less than one second in order to avoid motion related artifacts (e.g. those associated with a pulsing heart).
  • FIG. 8 is a chart of a sample absorbance spectrum taken across a range of wavelengths comparing various types of bodily tissues and fluids including normal myocardium, fat tissue, blood, and collagen. Such spectra and the peaks associated with the various types of tissue and fluids can be used as a basis for performing the identification techniques described herein according to embodiments of the invention. Peak regions associated with collagen, for example, that are not generally present or associated with normal myocardium, blood, or fat tissue can be detected and analyzed to distinguish and characterize a fibrous region adjacent an infarct region.
  • FIG. 9 is another chart of a sample absorbance spectrum taken across a range of wavelengths comparing various types of bodily tissues and fluids including normal myocardium, calcified tissue, fibrous tissue, and necrotic tissue. Peak regions associated with necrotic tissue, for example, that are not generally present or directly associated with normal myocardium, can be detected and analyzed to distinguish, characterize, and locate an infarct region. Peak regions associated with calcified and fibrous tissue, for example, can be used to help identify and locate surrounding tissue affected by an infarct.
  • data from multiple similar spectra scans across varying wavelength ranges with known varying backgrounds in multiple living or deceased subjects can be compiled and analyzed to develop a model to be programmed in coordination with optical, processor/analyzer, and controller components of embodiments of the invention described herein (e.g. those components of FIG. 1 ).
  • a detector and processor/analyzer (such as, for example, the detector 65 and processor/analyzer 60 of FIG. 1 ) perform spectroscopic scans across wavelengths having a range of approximately 300-2500 nm.
  • the spectroscopic absorbance data is collected across sub-ranges of radiation spanning approximately 300-1375 nm., 1550-1850 nm., and 2100-2500 nm.
  • radiation is delivered to tissue or blood at a narrow range including 380 nanometers and scanned across a narrow range including 320 nanometers in order to identify the presence of collagen.
  • Additional optical elements may be integrated into the delivery and collection systems in order to improve the quality of and/or provide additional control over signals.
  • filters of various types e.g. longpass, lowpass, bandpass, polarizing, beam splitting, tunable wavelength, etc.
  • filters of various types could be placed in between the light source and delivery fibers or between the detector and collection fibers depending on application parameters.
  • a coating of appropriate polymer on the ends of fibers could serve as a filter.
  • a detection device may include one or more (individual or arrayed) detector elements at the proximal portion of collection fiber(s) in accordance with embodiments of the invention, such as InGaAs, Silicon, Ge, GaAs, and/or lead sulfide detectors for detecting optical radiation emitted from illuminated tissue.
  • the detector converts the collected optical signal into an electrical signal, which can be subsequently processed into spectral absorbance or other data using various known signal processing techniques.
  • the electrical signal is preferably converted to digital spectral data for further processing using one or more discrimination algorithms.
  • discrimination algorithms may execute morphemetry measurements, chemical analysis, or perform similar calculations and correlate the results with pre-stored model data to provide a diagnosis of targeted tissue.
  • Model data representing the relationship between spectral data and tissue characteristics is preferably developed from the analysis of large amounts of patient in vivo data or ex vivo data simulating in vivo conditions.
  • the models can be developed with chemometric techniques such as Principle Component Analysis (PCA) with Mahalanobis Distance, PCA with K-nearest neighbor, PCA with Euclidean Distance, Partial Least Squares Discrimination Analysis (PLS-DA), augmented Residuals (PCA/MDR), and others such as the bootstrap error-adjusted single-sample technique (BEST), and Soft Independent Modeling of Class Analogy (SIMCA).
  • PCA Principle Component Analysis
  • PLS-DA Partial Least Squares Discrimination Analysis
  • PCA/MDR augmented Residuals
  • BEST bootstrap error-adjusted single-sample technique
  • SIMCA Soft Independent Modeling of Class Analogy
  • absorbance peaks for distinguishing the myocardium, fat, blood, collagen and/or fibrin are discernable with use of the above described algorithmic techniques.
  • Several high-speed commercially available near infrared spectrometers are available for obtaining the desired spectral readings including the IntegraSpecTM NIR Microspectrometer from Axsun Technologies, Inc., the Antaris FT-NIR spectrometer, and a FOSS NIR System, model 6500. The models were selected for their high speed and performance in the spectral regions of interest (i.e. near infrared).
  • spectroscopic scans are performed across wavelengths having a range of approximately 300-2500 nm. While probing for particular tissue/fluid types or conditions, it may be preferable to employ such techniques as tissue fluorescence spectroscopy and/or selectively focus transmission bands to excite specific scanning ranges. For example, a radiation excitation peak for collagen at approximately 380 nm occurs when radiation of approximately 340 nm is delivered.
  • spectroscopic analysis can also distinguish the types and conditions of tissue within and surrounding a heart, including three major diseased states associated with myocardial infarct: necrotic tissue, calcified tissue, and fibrous tissue.
  • the chosen discrimination algorithm can compare collected data with pre-programmed spectra data of myocardial tissue to categorize both the condition and relative location (to the catheter tip) of a tissue area.
  • the tissue can be characterized as being normal myocardial tissue, affected tissue surrounding a myocardial infarct region (edema inflammatory zone), fibrosis, and/or necrotic or calcified myocardial infarct lesions.
  • Spectral analysis reflecting high degrees of endema content and/or inflammation indicate a region of tissue surrounding infarcted or necrotic tissue.
  • the intensity of peaks associated with various tissue types can generally be correlated with the distance the probe is from the targeted tissue and from data related to the medium in which the probe is in (e.g. blood, myocardium, fat).
  • analysis of spectroscopic absorbance data can include estimating relative distances between a distal end of a fiber probe arrangement and tissue to be analyzed.
  • experiments can be performed on various in vivo or ex vivo samples, including samples having measured thicknesses of layers of myocardium and surrounding fat tissue.
  • Fat tissue surrounding the heart is known to generate absorbance peaks, for example, at approximately 1728 and 1766 nanometers.
  • Data can be collected on the changes (e.g. intensity) in these peaks as the needle tip of an embodiment approaches fat tissue through a layer of myocardium. Collected data would correlate, for example, peak intensity with the otherwise measured distances between the needle tip and the fat layer.
  • FIG. 10 is a chart of absorbance spectra for two different fiber probe configurations at various positions relative to adjacent layers of myocardium and fat tissue. Absorbance spectra were measured through two probe configurations, one having a relatively small source-detector separation (approx. 11 ⁇ m) and another having a relatively large separation (approx. 151 ⁇ m), designated by solid and dashed lines respectively. Data was taken for four separate arrangements where the probe was positioned on a layer of myocardial tissue over a layer of fat. The thickness of the myocardial tissue layer was made approximately 10.0 mm in arrangement A, 4.0 mm in arrangement B and 1.5 mm C. The probe directly contacted the fat in arrangement D.
  • the absorbance spectra were measured across a wavelength range of 1680 to 1780 nm. Peaks at around 1728 and 1766 (representing fat tissue) are shown that vary in intensity depending on the source-detector separation and the distance between the probe and fat tissue. Pursuant to various embodiments of the invention, similar data could be collected and modeled in order to prevent a puncturing by a probe into pericardial fat tissue from within myocardial tissue (and avoid causing serious harm to a patient).
  • a probe in accordance with an embodiment of the invention could be placed in a blood medium at the appropriate temperature (i.e. 38° C.) with its position modified relative to targeted tissue (e.g. myocardium).
  • targeted tissue e.g. myocardium
  • the tissue types and their positions in relation to the probe would be known independently of data gathered from the probe to develop additional chemometric correlation models. This analysis would be useful for positioning and entry into the myocardium with the needle tip during actual operation.
  • Analysis that reflects fibrous or calcified tissue can often help identify the center of a myocardial infarct region, which can be surrounded by fibrous or calcified tissue.
  • the degree of these indicators may also reflect levels of damage and general time periods during which the myocardial infarct lesions occurred (e.g. an acute lesion occurring less than 24 hours prior, a sub-acute myocardial infarct occurring less than one month prior, or chronic infarct occurring greater than one month prior).
  • Data about tissue and blood, including oxygenation content and pH is also obtainable using known spectroscopic analysis techniques and is useful for aiding diagnosis and for locating optimal tissue regions for delivering treatment. Analysis of oxygenation can be used in part to help assess whether myocardial tissue is damaged (e.g.
  • Embodiments of the invention also provide for enhanced tracking (real-time) the position of the distal end of the catheter as analysis is performed, providing enhanced calculations of the size, shape, and/or development of an infarcted area and transitions of tissue conditions therein.
  • This information is highly useful for assessing the best area for applying treatment such as, for example, the affected areas surrounding an area of necrotic tissue.
  • the most promising areas for applying treatment are regions within an infarct-affected area bordering completely necrotic tissue and tissue with some degree of viability, which could supply blood, oxygen, and nutrients for promoting advancement of healing or regeneration.
  • Embodiments of the invention include features and materials (e.g. radiopaque materials) within the distal end of catheters detectable by, for example, a fluoroscope or MRI.
  • needle tip inserter 130 of FIGS. 2A-2B can include a highly radiopaque material such as, for example, platinum or gold detectable by a fluoroscope.
  • a controller e.g. controller 50 of FIG. 1
  • the processor/analyzer receives simultaneously collected data from the probe end of the catheter so as to track and calculate the geometry, size, and position of targeted tissue within a patient.
  • a computer-aided output such as visual representation, e.g. a graph or other output, or an audible presentation, can be provided to indicate to the operator the characterization of the myocardial tissue, including whether the myocardial area falls within one or more categories described above and/or to display the relative position of a suitable treatment area.
  • the algorithms described above can be programmed into a central system processor and/or programmed or embedded into a separate processing device, depending on speed, cost, and other practical considerations.
  • Embodiments of the invention can also be adapted for studying the development of diseased tissues and assessing the effectiveness of treatment. After treatments are applied with use of the invention, for instance, the inventive catheter can be reinserted to assess the development and progress of the targeted areas. Information about the treatments and assessed tissue conditions can be recorded within the inventive system for purposes of determining future treatments and for conducting studies to optimize treatment plans in other patients.

Abstract

A method and apparatus for analyzing and treating internal tissues and, in particular, tissues affected by myocardial infarct. The apparatus includes a catheterized device integrating an optical probe and treatment delivery system. The probe component includes fiber optic lines that can be used in conjunction with infrared spectroscopy to analyze various characteristics of tissues, including chemical, blood, and oxygen content, in order to locate those tissues associated with myocardial infarct, to determine the best location for applying treatment, and to monitor treatment and its effects. Physically integrated with the probe component is a treatment component for delivering treatments including stem cell and gene therapy, known for having beneficial effects on tissues associated with myocardial infarct. A control system coordinates operation of the catheter, including performing chemometric analysis with the use of model data, and for providing control and visual feedback to an operator.

Description

    RELATED APPLICATIONS
  • This application claims the benefit of U.S. Patent Application No. 60/804,709, filed on 14 Jun. 2006, entitled “Method and Apparatus for Identifying and Treating Myocardial Infarction,” the contents of which is incorporated herein in its entirety by reference.
  • FIELD OF THE INVENTION
  • This invention relates to methods and apparatus for identifying, localizing, and treating diseased internal tissues including myocardial infarctions which, in particular, employ catheters having optical-probe and needle-injection assemblies.
  • BACKGROUND OF THE INVENTION
  • Cardiovascular diseases and disorders are the leading cause of death and disability in all industrialized nations. In the United States alone, an estimated 700,000 Americans suffered a stroke in 2005—that's at least one stroke victim every 45 seconds. Stroke is the No. 3 killer and a leading cause of severe, long-term disability in the United States. In 2005, the estimated direct and indirect costs of cardiovascular diseases and stroke were $393.5 billion (as reported by the American-Heart-Association).
  • One of the primary factors that render cardiovascular disease particularly devastating is the heart's inability to repair itself following damage. Since myocardial cells are unable to divide and repopulate areas of damage, cardiac cell loss as a result of injury or disease is largely irreversible. Myocardial necrosis may generally begin near the endocardial surface. Depending on a number of factors, including the location of the affected area, this necrosis may or may not progress into a transmural infarct. Over time, adjacent regions may become infarcted as well due to retrograde propagation of the thrombus, development of micro emboli, arrhythmias, or other similar factors, leading to infarcts arising at different times within the same affected area.
  • Although it is not generally possible to revive necrotic (or dead) myocardial tissue, promising new advances in stem cell and gene therapy for regenerating otherwise dead tissue are being realized. Myocardial cells that are key to proper operation of the heart include cardiomyocyte (muscle cells) for pumping blood and endothelial cells (vessel cells) for circulating blood and nutrients. Research studies suggest that directly injecting certain types of primitive cells (e.g. stem cells, bone marrow) in areas surrounding necrotic cardiomyocyte cells (e.g. periinfarct areas) can induce regeneration of the dead myocardial tissue. See Stem Cells: Scientific Progress and Future Research Directions. Department of Health and Human Services. June 2001; retrieved from the Internet: <URL:http://stemcells.nih.gov/info/scireport)>, incorporated herein in its entirety by reference.
  • Because, as research suggests, the treatment of myocardial infarction is most effective with localized injections into affected surrounding tissue, a significant challenge in such treatment is to accurately characterize and localize affected surrounding tissue. General techniques for identification and localization of diseased or damaged myocardial tissue has generally involved pre-treatment invasive surgery, angiography by fluoroscopy, and/or electrocardiography. These techniques, however, are generally limited to providing an indistinct and/or equivocal diagnosis and may be expensive or have harmful side effects.
  • Certain techniques of tissue analysis have been developed to generally identify ischemic tissue and/or a tissue's metabolic state. Some of these techniques involve the use of optical spectroscopy and catheters combined with optical fiber probes. For example, such as for purposes of revascularization or other surgery, techniques have been developed for spectroscopically measuring oxygenation in myocardial tissue, as described in Kawasugi M., et al., “Near-infrared monitoring of myocardial oxygenation during ischemic preconditioning”, Ann Thorac Surg. 2000 June; 69(9): 1806-10), Nighswander-Rempel S P et al., “Regional variations in myocardial tissue oxygenation mapped by near-infrared spectroscopic imaging”, J Mol Cell Cardiol., 2002 September; 34(9): 1195-203, and Thorniley M S et al., “Application of near-infrared spectroscopy for the assessment of the oxygenation level of myoglobin and haemoglobin in cardiac muscle in-vivo”, Biochem Soc Trans. 1990 December; 18(6): 1195-6.), each incorporated herein in their entirety by reference. Other methods have been developed that are directed toward reviving merely stunned or hibernating tissue. These methods, such as those described in U.S. Pat. No. 5,865,738 by Morcos, et al., incorporated herein in its entirety by reference, generally depend on first injecting reagents into an area of interest in order to induce and subsequently detect metabolic activity.
  • None of these optical probe catheter technologies, however, have been developed toward combining the diagnosis of diseased tissue in a catheter together with its concurrent treatment, and in particular identifying and optimally localizing myocardial infarct and surrounding affected myocardial tissue in concurrence with its treatment.
  • SUMMARY OF THE INVENTION
  • The system and methods of the present invention provide a safe, effective apparatus and method for in vivo characterization and concurrent treatment of tissue affected by myocardial infarction. The embodiments of the invention identify and locate infarcted tissue and the affected surrounding myocardial tissue for purposes of diagnosis (e.g. the state of viability) and subsequent treatment. The embodiments of the invention provide an integrated treatment system that operates in tandem with an identification system.
  • The inventive apparatus includes a catheterized optical probe connected to a spectroscopic analysis system programmed to identify (in vivo) and accurately locate infarcted myocardial tissue and various types of surrounding tissue affected by the infarction. The catheter further includes an integrated treatment system which, with information provided by the analysis system, can be accurately positioned to effectively treat the infarcted and affected surrounding areas such as, in an embodiment, by accurately localizing treatment delivery to affected areas surrounding necrotic tissue (e.g. periinfarct areas). In an aspect, the treatment system comprises a needle injection apparatus for injecting various compounds and/or therapeutic agents (e.g. stem cells, gene therapy, etc.) intended for aiding in the regeneration of necrotic tissue and/or revitalization of affected surrounding tissue.
  • In an aspect of the invention, an apparatus for probing and treating internal body organs is provided that includes a catheter having a fiber probe arrangement with one or more treatment lumens. The apparatus further includes an analysis and treatment control system connected to the catheter which is programmed to characterize and locate damaged tissue via the fiber probe arrangement and configured to treat damaged tissue through the one or more treatment lumens.
  • In an embodiment of the invention, the apparatus further comprises a spectrometer connected to said fiber probe arrangement.
  • In an embodiment of the invention, the apparatus further comprises a needle tip inserter.
  • In an embodiment of the invention, the needle tip inserter incorporates the probe ends of one or more fibers of the fiber probe arrangement and a dispersal port for the one or more treatment lumens. In an embodiment of the invention, the needle tip inserter is partially retractable within said catheter so as to ease the advancement of said catheter in a patient while permitting optical analysis.
  • In an embodiment of the invention, the analysis and treatment control system is programmed to analyze spectroscopic data, the analysis of the spectroscopic data including distinguishing the types and conditions of tissue within and surrounding a patient's heart. In an embodiment of the invention, the spectroscopic data is selected according to predetermined wavelength bands that distinguish levels of particles, gas, and/or liquid contained in the tissue. In an embodiment of the invention, distinguishing the types and conditions of tissue within and surrounding a patient's heart includes characterizing and locating tissues associated with myocardial infarct. In an embodiment of the invention, characterizing and locating tissues associated with myocardial infarct includes identifying an area for treatment of myocardial infarction by locating and targeting an affected area surrounding a region of necrotic tissue. In an embodiment of the invention, characterizing and locating the tissues associated with myocardial infarct includes detecting levels of at least one of fibrosis, calcification, or oxygen content. In an embodiment of the invention, the analysis of said spectroscopic data includes chemometric analysis of said spectroscopic data in relation to previously obtained and stored spectroscopic data. In an embodiment of the invention, the chemometric analysis involves at least one technique including Principle Component Analysis (PCA) with Mahalanobis Distance, PCA with K-nearest neighbor, PCA with Euclidean Distance, Partial Least Squares Discrimination Analysis, augmented Residuals, bootstrap error-adjusted single-sample technique, or Soft Independent Modeling of Class Analogy.
  • In an embodiment of the invention, the analysis and control system is configured to perform spectroscopic scans across wavelengths within the range of approximately 300 to 2500 nanometers.
  • In an embodiment of the invention, the analysis of the spectroscopic data includes estimating relative distances between a distal end of the fiber probe arrangement and tissue analyzed by the spectrometer. In an embodiment of the invention, estimating the relative distances includes comparing the magnitudes of spectroscopic absorbance peaks associated with tissue or blood with magnitudes similarly obtained from previously stored spectroscopic absorbance data. In an embodiment of the invention, the relative distances includes comparing the magnitudes of the spectroscopic absorbance peaks obtained at different predetermined positions of the catheter relative to the tissue or blood. In an embodiment of the invention, estimating the relative distances includes comparing spectroscopic absorbance peaks associated with collection fibers having terminating ends separated longitudinally from each other at a predetermined distance.
  • In an embodiment of the invention, the one or more treatment lumens includes a conduit for delivering a fluid solution to damaged tissue.
  • In an embodiment of the invention, the one or more treatment lumens includes a conduit for delivering therapeutic laser energy.
  • In an embodiment of the invention, the catheter further incorporates one or more sensors. In an embodiment of the invention, the one or more sensors includes at least one temperature gauge, pH meter, oxygenation meter, or water content meter.
  • In an embodiment of the invention, the catheter further includes a biopsy sampler.
  • In an embodiment of the invention, the distal end of the catheter includes a guidewire branching from the catheter apart from the needle tip.
  • In an embodiment of the invention, a catheter for probing and treating myocardial infarct is provided including a fiber probe arrangement, one or more treatment lumens, and a distal end having a needle injection inserter. The inserter is integrated with one or more fiber probe ends from one or more fibers of the fiber probe arrangement and is integrated with one or more delivery ports from the one or more treatment lumens.
  • In an embodiment of the invention, the catheter includes an angle control wire for adjusting the angle of the distal end of said catheter.
  • In an embodiment of the invention, the catheter includes a gripping element about the proximate portion of the catheter, the gripping element having one or more control elements for controlling aspects of positioning the catheter and/or for delivering treatment.
  • In an aspect of the invention, a method for treating body tissue is provided including the steps of inserting into a patient a catheter integrated with a fiber optic analysis probe and a treatment delivery conduit, characterizing and locating the body tissue to be treated with light delivered and collected through said fiber optic analysis probe, positioning the catheter to deliver treatment with information obtained through said fiber optic analysis probe, and delivering a treatment through the treatment delivery conduit.
  • In an embodiment of the invention, the body tissue to be treated is associated with myocardial infarct. In an embodiment of the invention, locating the body tissue associated with myocardial infarct to be treated includes locating and targeting an affected area surrounding a region of necrotic tissue for delivery of a treatment through the treatment delivery conduit.
  • In an embodiment of the invention, characterizing and locating the body tissue associated with myocardial infarct to be treated includes obtaining spectroscopic data from radiation delivered to and collected from the tissue to be treated via the fiber optic analysis probe and comparing the spectroscopic data with previously stored data characteristic of tissues within and around a patient's heart in order to identify the type of tissue being analyzed and to locate the position of the tissue being analyzed relative to the catheter.
  • In an embodiment of the invention, characterizing the tissue to be treated involves comparing levels of gases, fluids, and/or compounds within typical normal tissues as compared to gases, fluids, and/or compounds within tissues associated with myocardial infarct. In an embodiment of the invention, the gases, fluids, and/or compounds are selected from the group including collagen, calcium, oxygen, hemoglobin, and myoglobin.
  • In an embodiment of the invention, obtaining spectroscopic data includes at least one of the methods including diffuse-reflectance spectroscopy, fluorescence spectroscopy, Raman spectroscopy, scattering spectroscopy, optical coherence reflectometery, and optical coherence tomography.
  • In an embodiment of the invention, characterizing the tissue to be treated involves chemometric analysis selected from the group of techniques including Principle Component Analysis (PCA) with Mahalanobis Distance, PCA with K-nearest neighbor, PCA with Euclidean Distance, Partial Least Squares Discrimination Analysis, augmented Residuals, bootstrap error-adjusted single-sample technique, and Soft Independent Modeling of Class Analogy.
  • In an embodiment of the invention, the spectroscopic data is obtained from radiation spanning wavelengths between approximately 300 to 2500 nanometers.
  • In an embodiment of the invention, the spectroscopic data is selectively collected in sub-ranges of radiation spanning approximately 300 to 1375 nanometers, 1550 to 1850 nanometers, and 2100 to 2500 nanometers.
  • In an embodiment of the invention, the radiation that is delivered and collected through the fiber optic probe is restricted to selectively narrow spans of wavelengths associated with identifying said tissues. In an embodiment of the invention, radiation is delivered to tissue or blood within a narrow range including 380 nanometers and scanned across a narrow range including 320 nanometers in order to identify the presence of collagen.
  • In an embodiment of the invention, locating tissues in relation to the catheter includes pre-operative steps of analyzing and comparing the wavelengths and magnitudes of spectroscopic absorbance peaks associated with tissues and blood surrounding the tissues.
  • In an embodiment of the invention, the wavelengths and magnitudes of spectroscopic absorbance peaks associated with tissues and blood is compared with previously obtained and stored spectroscopic absorbance data associated with a catheter approaching similar tissues in a blood medium.
  • In an embodiment of the invention, the distal end of said catheter includes an inserter integrated with terminating ends of the fiber optic probe and delivery conduit, the inserter suitably sharp for perforating targeted tissue.
  • In an embodiment of the invention, during the positioning of the catheter for delivery of treatment, the integrated inserter remains at least partially retracted in the catheter prior to perforation into tissue targeted for treatment and the fiber optic probe is functional while the inserter is at least partially retracted. In an embodiment of the invention, final positioning of the catheter for delivery of treatment includes extending the inserter out from the distal end of the catheter into the targeted tissue.
  • In an embodiment of the invention, prior to and during extension of the inserter, a wall of myocardial tissue before which the inserter is positioned is concurrently analyzed and monitored to prevent complete perforation of the inserter through the entire wall of myocardial tissue.
  • In an embodiment of the invention, the prevention of complete perforation includes monitoring the contents of tissue for a layer of pericardial fat positioned beyond the wall of myocardial tissue.
  • In an embodiment of the invention, delivering treatment through the treatment delivery conduit includes the injection of therapeutic agents. In an embodiment of the invention, the therapeutic agents include at least one of chemical agents, gene therapy agents, stem cell therapy agents, and/or cytotherapy agents.
  • In an embodiment of the invention, the therapy agents are chosen and delivered based on data collected during characterizing and locating the body tissue to be treated.
  • In an embodiment of the invention, the release of agents is monitored with the fiber optic probe and controlled using feedback from said monitoring.
  • In an embodiment of the invention, delivering treatment through the treatment delivery conduit comprises delivering therapeutic laser energy. In an embodiment of the invention, delivering therapeutic laser energy comprises canalizing infarct tissue for purposes of revascularization.
  • In an embodiment of the invention, the catheter is introduced into the patient in accordance with a percutaneous transluminal angioplasty.
  • In an embodiment of the invention, the catheter is introduced into the patient in accordance with percutaneous endoventricular delivery.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The structure, operation, and methodology of embodiments of the invention, together with other objects and advantages thereof, may best be understood by reading the following detailed description in connection with the drawings in which each part has an assigned numeral or label that identifies it wherever it appears in the various drawings. The drawings are not necessarily to scale, emphasis instead being placed upon illustrating the principles of the embodiments of the invention.
  • FIG. 1 is a schematic block diagram of an apparatus illustrating the general flow of system control, including identifying, localizing, and treating diseased internal tissues, in accordance with an embodiment of the invention.
  • FIG. 2A is an illustrative schematic diagram of the end of a catheterized optical probe and needle injection system that analyze myocardial tissue, in accordance with an embodiment of the invention.
  • FIG. 2B is an illustrative schematic side-profile view of the needle tip inserter portion of the probe of FIG. 2A.
  • FIG. 3 is a side-profile view of a distal end of a catheter having a control cable, in accordance with an embodiment of the invention.
  • FIG. 4 is an illustrative view of a handle assembly, in accordance with an embodiment of the invention.
  • FIGS. 5A-5D are illustrative views showing the sequential steps of performing an optical-probe guided injection treatment procedure for infarcted myocardial tissue, in accordance with an embodiment of the invention.
  • FIGS. 6A-6F are illustrative views showing various embodiments of fiber probe tip arrangements according to embodiments of the invention.
  • FIG. 7A is an illustrative perspective view of a catheter having a guidewire sheath according to an embodiment of the invention.
  • FIG. 7B is an illustrative cross-sectional view of the distal end of the catheter of FIG. 7A.
  • FIG. 7C is a schematic diagram of the distal end of the catheter of FIGS. 7A-7B approaching a region of interest via a vessel of a heart.
  • FIG. 8 is a chart of an absorbance spectrum taken across a range of wavelengths comparing various body tissues and fluids.
  • FIG. 9 is a chart of an absorbance spectrum taken across a range of wavelengths comparing various types of myocardial tissue associated with normal and damaged tissue states.
  • FIG. 10 is a chart of absorbance spectra for two different fiber probe configurations at various positions relative to adjacent layers of myocardium and fat tissue.
  • DETAILED DESCRIPTION OF EMBODIMENTS
  • In one aspect of the invention, an apparatus and method are provided for treating tissue associated with myocardial infarction by integrating an inspection system for locating tissue to be treated with a treatment delivery system.
  • The preferred embodiments of the invention employ spectroscopic analysis with any two or more single wavelengths or one or more narrow wavelength bands, or a whole wavelength range to identify and localize myocardial infarct lesions in vivo. The light signal scattered or emitted from an illuminated area provides information about a change in tissue chemical components (such as water content, oxygenation, pH value, collagen, proteoglycans, calcium), tissue structures (such as cell size, types), inflammatory cellular components (such as T lymphocytes, macrophages, and other while blood cells), that help characterize states of tissue edema, tissue necrosis, tissue fibrosis, and/or tissue calcification or other conditions which typically result from myocardial infarct (“MI”).
  • The ability to identify myocardial infarcts is dependent upon the time that has elapsed since the ischemic event took place. Infarcts resulting in sudden cardiac death and are less than 12 hours old are usually not apparent upon gross examination. The infarcted tissue may become edematous and inflamed. Changes during this time period are histochemical and require adjunctive staining to identify the affected area of necrosis. After 24 hours, however, pallor is often grossly present due to stagnated blood within the lesion. Acute inflammation occurs within the first several days, followed by granulation over a couple of weeks. Eventually, the tissue becomes more fibrous and less vascularized. Some long resident infarcted tissue may become calcified.
  • FIG. 1 is a schematic block diagram of an apparatus illustrating the general flow of system control, including identifying, localizing, and treating diseased internal tissues, in accordance with an embodiment of the invention. Referring to FIG. 1, the block diagram 10 shows fiber cables 30 and a treatment delivery conduit 35 extending through a probe/treatment catheter 20, which is inserted into a heart 15. Arrows between the boxed elements of diagram 10 indicate the general flow of system control, originating from main controller 50, which includes a programmed processor and data storage elements (not shown) for routing commands and data to and from various other system components.
  • Main controller 50 is connected to a light source 90 which delivers radiation through optical delivery fibers 55 to illuminate target tissue 40 of the heart 15. As described in further detail below, light source 90 is preferably of the type that can selectively produce light in one or more wavelengths within the visible and/or near-infrared spectrum, including single LED varieties. Main controller 50 operates a processor/analyzer 60 that is connected to a detector 65, which is connected to collection fibers 57 that extend to the distal end 100 of catheter 20. The detector 65 converts optical signals to electrical/digital signals. The detector 65 and processor/analyzer 60 are also preferably of the type for processing near infrared radiation. Numerous commercially available spectrometers capable of analyzing visible radiation and also near-infrared radiation in accordance with embodiments of the invention such as, for example, an IntegraSpec™ NIR Microspectrometer from Axsun Technologies, Inc.
  • Referring to FIG. 1, also connected to the main controller 50 is a treatment device 70 which supplies a treatment delivery conduit 35 with selected treatment agents as described in further detail below. An alarm 75 is interconnected with the controller 50 and treatment device in the event the system detects a problem and treatment operations should be suspended (e.g. accidental penetration into non-myocardial tissue). In an embodiment, a monitor 80 and various input devices, for example, a keyboard, mouse, etc. (not shown), can provide an operator with feedback, status information, and control.
  • In an embodiment of the invention, the catheter 20 is introduced into a human body and approaches the affected tissue via vessels and cavities through which the catheter may slide through. In an embodiment of the invention, a guide catheter (not shown) may be operated in a manner consistent with percutaneous endoventricular delivery. For example, the guide catheter enters the body via a peripheral artery, such as femoral artery, then into the aorta, and then into the left (atrium and ventricle) heart cavity. Alternatively, the guide catheter is inserted into the body via a peripheral vein, such as basilic or femoral vein, then into the vein cave, and then into the right heart (atrium and ventricle) cavity. Other embodiments, such as those described below in reference to FIGS. 7A-7C, allow for a method of approaching affected tissue via adjacent heart vessels.
  • Referring to FIG. 1, the distal end 100 of catheter 20 is shown within a heart cavity 15 penetrating a targeted myocardial infarct region 40 in the cavity 45 wall. The processor and analyzer 60 provide controller 50 with spectral absorbance feedback as the catheter 20 is positioned in the cavity 45 and into its inner walls. With appropriate chemometric data, controller 50 is pre-programmed to identify infarcted tissue and surrounding affected tissue in relation to the distal portion 100. With use of the tissue identification results (e.g. magnitudes of spectroscopic absorbance peaks taken at various positions of the catheter), controller 50 is programmed to accurately determine the optimal position of the treatment component (shown below in FIG. 2A) of catheter 20 and amount of treatment agent to be discharged. Positioning may be performed in varying degrees of programmed interactivity with an operator (not shown). For example, data from the probe could be processed and displayed to show general indications of tissue conditions and/or position. Alternatively, a real-time spectral readout could be continuously displayed for the operator to judge independently.
  • FIG. 2A is an illustrative schematic diagram of the end of a catheterized optical probe and needle injection system that analyze myocardial tissue, in accordance with an embodiment of the invention. FIG. 2B is an illustrative schematic side-profile view of the needle tip inserter portion of the probe of FIG. 2A. Referring to FIG. 2A, an embodiment of the distal portion 100 of a catheter is shown in accordance with embodiments of the inventive apparatus and methods. A protective outer sheath 120 surrounds a catheter body 125. The end of catheter body 125 is integrated with an inserter 130. The body of the catheter may be a flexible tube, which may be bifurcated at the injection lumen, or treatment lumen, or just an empty pathway to allow for the inclusion of one or multiple optical fibers while maintaining the fluid path for a treatment solution or as a transfer path for a treatment device. The catheter body is allowed to be partially pulled back, or retracted, inside the catheter sheath 120 while the catheter enters into the human body. The catheter sheath 120 also allows the catheter body 125 to move partially forward in order to push the suitably sharp inserter 130 outside of the catheter sheath 120 and to puncture the target myocardial tissue 170 for at least one of a diagnosis and a treatment procedure.
  • Inserter 130 preferably comprises stainless steel or similar material suitable for perforating myocardial tissue by moderate forward pressure. Housed within the inserter 130 is a fiber probe arrangement comprising one or more delivery fibers 150 and collection fibers 160 with, respectively, fiber ends 155 and 165, also referred to as terminating ends, being connected at their opposite ends to corresponding sources and/or detector/analyzer(s). The terminating ends 155 and 165 are fixed within inserter 130, for example, using an epoxy adhesive or metal solder. The fiber ends 155 and 165 are polished such that they have oblique angles with respect the external surface of inserter 130. Inserter 130 also includes a treatment port 140 or dispersal port for one or more treatment lumens, for delivery of treatment to the area surrounding and including a region of infarcted myocardial tissue 180. Treatment port 140 is connected through a treatment supply conduit 145 which can be connected to a treatment device as described in reference to FIG. 1.
  • Inserter 130 is sized preferably at about 18 to 27 gauge with a length from about 3 to 30 mm depending on the particular application (i.e. the density of tissue material, the preferable depth of penetration, etc.). In an embodiment of the invention, the angle α relative to a perpendicular of the terminating end of the inserter has a range of approximately 25 to 75 degrees (see FIG. 2B), sufficient to protect the terminating ends of optical and treatment components, for example, terminating ends 155 and 165, while promoting easier penetration into tissue.
  • In accordance with operation of embodiments of the invention, the catheter's distal portion approaches a cross-section of myocardial tissue area 170 of an inner heart cavity's wall which includes regions of myocardial infarcted tissue 180 and affected surrounding tissue 175. Source radiation paths represented by lines 190 emanate from delivery fiber end 155 into the heart cavity's interior wall edge and from there penetrate and interact with surrounding myocardial tissue. Return radiation emerges out of the wall of myocardial tissue area 170 and is collected by collection fiber ends 165 and that of fiber 110, then delivered to a detector/analyzer (as shown in FIG. 1).
  • The amount of detectable signal and the depth of the path of the collected signal is generally proportional to the degree of latitudinal separation between delivery and collection fibers. While having signal power levels sufficiently low not to damage targeted tissue, a separation of less than 1.5 mm is preferable for receiving an adequate collection signal. In another embodiment, in order to receive signals from varying depths of blood and tissue concurrently, one or more additional optical fibers, such as collection fiber 110, can be integrated with the outside area of protective outer sheath 120. Fiber 110 is can be fixed to sheath 120 with a ring 135 or by other various means of attachment known to those of ordinary skill in the art. In an embodiment, an inside collection fiber end 165 can be separated from a signal fiber end 155 by approximately 1.5 mm and collection fiber end 110 can be separated from signal fiber end 150 by approximately 1.0 mm.
  • In an embodiment, during the analysis and treatment procedures, at least one collection fiber 110 can remain outside of the heart wall tissue 15, unlike fiber ends 155 and 165. Additional details on this embodiment are described below in reference to FIGS. 5A-5D. This approach provides additional collection of optical signals relative to the heart wall surface, while fibers 150 and 160 are embedded in the heart wall tissue. With information known about the relative positions between the collection fiber ends and data collected from each end, the depth of penetration of the catheter into the targeted tissue can be reasonably calculated.
  • FIG. 3 is a side-profile view of a distal end of a catheter having a control cable, in accordance with an embodiment of the invention. Referring to FIG. 3, a distal end of the catheter 200 includes a control cable 220 for manipulating its angle as it emanates from a protective outer catheter sheath 205. A ring 210 has holes (not shown) through which cable 220 and fiber line 110 may slide through. Ring 210 is also slidable along catheter sheath 120. Ring 135 is fixed to catheter sheath 120 and holds the ends of fiber line 110 and cable 220 in place. After distal end 200 is extended through catheter sheath 205, cable 220 can then be retracted, for example, via a control knob, such as the control knob 280 shown in FIG. 4, to bend the distal portion 200 at a desired angle, providing additional control of the catheter. Various non-toxic lubricants and compounds for resisting a build-up of blood on the surfaces of the catheter may be applied prior to an operation. Fibers 235 extend through a catheter body 125 with integrated inserter 130 as in previously described embodiments.
  • In an embodiment of the invention, one procedure for approaching a target myocardial area applying the embodiment at FIG. 3 is in accordance with percutaneous endoventricular delivery. For example, catheter 200 is introduced into a body via a peripheral artery, such as a femoral artery, and in through a ventricle of the heart, and then toward an area of interest where inserter 130 can emerge.
  • FIG. 4 is an illustrative view of a handle assembly, in accordance with an embodiment of the invention. Referring to FIG. 4, a handle assembly 250 provides a way for an operator to manually control movement (e.g. pulling, pushing, turning) and other operations of a catheter in accordance with embodiments of the invention. Catheter sheath 120, control cable 220 and fiber line 110 enter handle assembly 250 through an upper handle segment 255 and then into lower handle segment 260. A flush port 265 allows a treatment agent to enter sheath 120. Sheath 120 can operate as a treatment delivery conduit for subsequent passage and delivery of a treatment agent to a patient (e.g. out through treatment port 140 as shown in FIGS. 2A-2B). A control knob 280 retracts and extends control cable 220 to adjust the angle of the distal end of the catheter 200, as shown in FIG. 3. A release button 270 releases tension on control wire 220. In an embodiment, the button 270 is spring loaded (in a non-release position) by a spring 275. A lever 285 can apply force to head 282 to actuate movement of catheter body 125 and an inserter tip (e.g., inserter 130 shown in FIGS. 2-3) into a target tissue area. Catheter body 125 is spring loaded by spring 287 which holds inserter 130 in a normally retracted position. Fibers 155 and 110 extend through lower handle segment 260 and out through a conduit 290 to corresponding sources or detectors (e.g., source 90 and detector 65 as shown in FIG. 1). In an embodiment, fiber 110 is a collection fiber and fibers 135 include collection and delivery fibers.
  • FIGS. 5A-5D are illustrative views showing the sequential steps of performing an optical-probe guided injection treatment procedure for infarcted myocardial tissue, in accordance with an embodiment of the invention. Referring to FIGS. 5A-5D, a catheter's distal end 100 and inserter 130 is shown in various positions during an analysis and treatment procedure in accordance with embodiments of the invention. Referring to FIG. 5A, inserter 130 is partially retracted within distal end 100 as it approaches the inside surface of a heart wall 170. The needle tip inserter 130 is partially retracted within said catheter so as to ease the advancement of said catheter in a patient while inserter 130 is sufficiently extracted so that the optical probe remains functional, permitting optical analysis to occur through inserter 130. Prior to and during extension of said inserter, the wall 170 of myocardial tissue before which the inserter 130 is positioned can be concurrently analyzed and monitored to prevent complete perforation of said inserter through the entire wall 170 of said myocardial tissue. The optical analysis system operates and examines inside surface and interior of heart wall 170 during the approach, determining the catheter's distance from surface and diagnosing the condition of myocardial tissue therein. In order to prevent a complete perforation of the inserter 130 through the wall of myocardial tissue, the contents of tissue for a layer of pericardial fat positioned beyond the wall 170 of myocardial tissue can be monitored. Upon diagnosing and locating myocardial infarct region 180 and affected surrounding tissue 175, distal end 100 is optimally positioned for delivering treatment to the region.
  • Referring to FIG. 5B, after distal end 100 is positioned for treatment, inserter 130 is driven out through the catheter body and into the adjacent region of myocardial tissue, exposing treatment port 140 within the wall 170 of myocardial tissue. While the probe end of collection fiber 160 becomes embedded into myocardial tissue, the intensity and spectral features of the optical signal collected by fiber 110 (while not embedded) can be compared to that collected by fiber 160 to better assess the puncture position of inserter 130. Being positioned externally to the heart tissue, collection fiber 110 will likely receive a stronger return signal from delivery fiber 150 in order to better assess proximity with and avoid a perforation of the outer heart wall surface, which could be highly damaging or fatal. A simulative set of signals in accordance with the operation of this feature is described below in reference to FIG. 10.
  • Referring to FIG. 5C, treatment port 140 then injects treatment agent 190 into the affected areas.
  • Referring to FIG. 5D, the distal end of the catheter 100 is withdrawn from the area.
  • In an embodiment, a tube or passageway inside of the catheter (e.g. the interior of catheter body 125 shown in FIGS. 2-4) can be used as a conduit to transfer the treatment fluid such as, for example, stem cell suspension or drug solution, into the target tissue for cytotherapy, gene therapy and/or chemical therapy in a narrow local area inside the heart wall. The optical probe system can monitor the spread of therapeutic agents in tissue while they are delivered. A controller (e.g. controller 50 of FIG. 1) can be programmed and configured to identify spectra associated with the particular treatment agent administered, and thus enable identification and tracking of the agent during and after dispersal. The catheter may also provide a conduit through which other treatment tools can deliver treatment to the affected area, e.g. additional treatment lumens or a treatment fiber with high power laser energy to canalize infarct tissue for revascularization as described by Lauer B., et al., “Catheter-based percutaneous myocardial laser revascularization in patients with end-stage coronary artery disease.” J Am Coll Cardiol. 1999 Nov. 15; 34(6):1663-70, incorporated herein in its entirety by reference. For example, in embodiments of the invention, one or more of fibers 150 or 160 of FIG. 2 or fiber 710 of FIGS. 6C-6D could be adapted and used to deliver therapeutic laser energy. These fibers could be, for example, switched between use for delivery/collection for purposes of analysis and use for delivering therapeutic laser energy.
  • In embodiments of the invention, alternate fiber optic probe arrangements are provided. FIG. 6A shows an illustrative perspective view of an alternate probe tip arrangement 600, including a light blocking divider 605 between the terminating ends of a delivery fiber 650 and collection fiber 660. FIG. 6B shows a cross-sectional illustrative view of the probe tip arrangement of FIG. 6A. Fibers 650 and 660 extend through a catheter sheath 620 and catheter body 625, to an inserter 630 having a treatment delivery port 640 that provides an output to a treatment delivery conduit 645. A collection fiber 610 extends and terminates along sheath 620 at a position longitudinally separated from the terminating ends of fiber 650 and 660. Light-blocking divider 605 can help minimize the amount of signal directly traveling to (or leaked between) delivery fiber 650 and collection fiber 660 prior to traveling through a targeted tissue area.
  • FIG. 6C shows an illustrative perspective view of an alternate probe tip arrangement 700, including a collection fiber 710 having a terminating end integrated in an inserter 730. FIG. 6D shows a cross-sectional illustrative view of the probe tip arrangement of FIG. 6C. The probe end of collection fiber 710 is longitudinally separated from fibers 750 and 760 as in previously described embodiments, however, its probe end will remain longitudinally fixed with respect to the ends of fibers 750 and 760 when inserter 730 emanates from a sheath 720 and retracts. Fixing the separation between the probe ends of fibers 750, 760, and 710 can thus reduce the level of analysis required during movement of inserter 730 and increases the overall proximity to and reception of signals associated with treatment agents delivered from a treatment delivery port 740, thus providing enhanced analysis of the quantity, movement, and progress of delivered treatment agents. In addition, being fixed within sheath 720, fiber 710 can remain less exposed to external components (e.g. blood and tissue), thus reducing the likelihood of damage to external tissue and fiber 710.
  • FIG. 6E shows an illustrative perspective view of an alternate probe tip arrangement 800, including the three longitudinally separated fibers 850, 860, and 810. FIG. 6F shows a cross-sectional illustrative view of the probe tip arrangement of FIG. 6E. The probe ends of fibers 850 and 860 are separated along an inserter 830 at opposing longitudinal ends of a treatment delivery port 840 that provides an output to a treatment delivery conduit 845. Longitudinally separating the probe ends of fibers 850 and 860 can reduce the level of signal leaking between the fibers and also increases the overall reception of signals associated with treatment agents delivered from a treatment delivery port 740, thus providing enhanced analysis of the quantity, movement, and progress of delivered treatment agents.
  • In other embodiments, the inventive catheter incorporates a biological, electric, or chemistry-based sensor or tool connected with a metal fiber, or other structural or reinforcing wire elements permitting additional diagnosis or monitoring of target tissue, e.g. tissue temperature, pH, oxygenation, water content, other chemical composition and/or even tissue biopsy via the catheter body. In an embodiment, the catheter includes one or more sensors. The sensors can be at least one of a temperature gauge, pH meter, oxygenation meter, and water content meter. In another embodiment, the catheter includes a biopsy sampler. In an embodiment, a sensor wire can travel along a similar path as that of fibers 150 or 160 shown in FIG. 2 and a sensor/transducer could be situated in, for example, needle tip inserter 130 shown in FIG. 2. In an embodiment, a biopsy can be performed by extracting tissue or other materials through treatment port 140 and suctioning them to the proximate end of the catheter. A cutting device (not shown) could be incorporated into needle tip inserter 130 and treatment port 140 in order to detach tissue for extraction.
  • FIG. 7A is an illustrative perspective view of a catheter 300 having a guidewire sheath 320 according to another embodiment of the invention. FIG. 7B is an illustrative cross-sectional view of the distal end of the catheter of FIG. 7A. FIG. 7C is a schematic diagram of the distal end of the catheter of FIGS. 7A-7B approaching a region of interest via a vessel of a heart. Guidewire sheath 320 and a probe and treatment end 350 bifurcate from a protective catheter sheath 325. Probe and treatment end 350 includes an angled inserter 335 through which a treatment delivery conduit 345 transfers a treatment agent out to a treatment port 340. Fibers 360 also extend through the treatment delivery conduit 345 and to the probe and treatment end 350, terminating at the end of inserter 335. Inserter 335 remains partially retracted while the catheter is fed through the patient in its approach to myocardial wall 170, infarcted area 180, and affected surrounding area 175 while the optical probe components can continue to function. As in previously described embodiments, inserter 335 can then extend from the probe and treatment end 350 into adjacent myocardium. The angle of divergence between guide wire sheath 320 and inserter 335 is preferably between 15 and 90 degrees, sufficient to allow puncturing of adjacent myocardial tissue. This embodiment enables the catheter to approach the myocardium wall 170 substantially through blood vessels such as blood vessel 305.
  • One procedure for approaching target myocardial areas applying the embodiment illustrated at FIGS. 7A-7C is similar to that of percutaneous transcoronary angioplasty (PTCA). For example, guide wire 340 is introduced into a body via a peripheral artery, such as femoral artery, into the aorta, then into the coronary artery system through the coronary ostium at the beginning of the aorta arch. Alternatively, it is introduced into body via a peripheral vein, such as basilic or femoral vein, then into the coronary vein system through an opening in the right atrium. The catheter is then finally advanced into a coronary blood vessel (artery or vein) lumen 305 to the area of interest 175, where inserter 335 can emerge and perforate the vessel's walls in order to perform additional analysis and to apply treatment.
  • Spectroscopic Tissue Analysis and Diagnosis
  • A number of techniques with the use of embodiments of the invention, including spectroscopy, can be employed for diagnosing tissue conditions, including myoacardial infarct. Spectroscopic analysis techniques used alone or in combination include, but are not limited to, fluorescence spectroscopy, visible spectroscopy, diffuse-reflectance spectroscopy, infrared or near-infrared spectroscopy, scattering spectroscopy, optical coherence reflectometery, optical coherence tomography, and Raman spectroscopy.
  • To optimize speed, it is preferable that, during operation, the source of radiation be limited and selectable in particular wavelength band ranges known to provide optimal feedback about the types of tissue being targeted (e.g. myocardial infarct and surrounding tissues and blood). A variety of light sources can be used to provide radiation in this manner, such as one or multiple lasers, one or multiple LEDs, a tunable laser with one or multiple different wavelength ranges, Raman amplifier lasers, and a high-intensity arc lamps. These light sources can provide the desired optical radiation region by sequential tunable scanning or by simultaneously spanning the desired wavelength band(s). Wavelength tuning during scans should preferably occur between about a couple of microseconds to less than one second in order to avoid motion related artifacts (e.g. those associated with a pulsing heart).
  • FIG. 8 is a chart of a sample absorbance spectrum taken across a range of wavelengths comparing various types of bodily tissues and fluids including normal myocardium, fat tissue, blood, and collagen. Such spectra and the peaks associated with the various types of tissue and fluids can be used as a basis for performing the identification techniques described herein according to embodiments of the invention. Peak regions associated with collagen, for example, that are not generally present or associated with normal myocardium, blood, or fat tissue can be detected and analyzed to distinguish and characterize a fibrous region adjacent an infarct region.
  • FIG. 9 is another chart of a sample absorbance spectrum taken across a range of wavelengths comparing various types of bodily tissues and fluids including normal myocardium, calcified tissue, fibrous tissue, and necrotic tissue. Peak regions associated with necrotic tissue, for example, that are not generally present or directly associated with normal myocardium, can be detected and analyzed to distinguish, characterize, and locate an infarct region. Peak regions associated with calcified and fibrous tissue, for example, can be used to help identify and locate surrounding tissue affected by an infarct.
  • In embodiments of the invention, data from multiple similar spectra scans across varying wavelength ranges with known varying backgrounds in multiple living or deceased subjects can be compiled and analyzed to develop a model to be programmed in coordination with optical, processor/analyzer, and controller components of embodiments of the invention described herein (e.g. those components of FIG. 1).
  • In an embodiment of the invention, a detector and processor/analyzer (such as, for example, the detector 65 and processor/analyzer 60 of FIG. 1) perform spectroscopic scans across wavelengths having a range of approximately 300-2500 nm. In an embodiment, the spectroscopic absorbance data is collected across sub-ranges of radiation spanning approximately 300-1375 nm., 1550-1850 nm., and 2100-2500 nm. In an embodiment, radiation is delivered to tissue or blood at a narrow range including 380 nanometers and scanned across a narrow range including 320 nanometers in order to identify the presence of collagen.
  • Additional optical elements may be integrated into the delivery and collection systems in order to improve the quality of and/or provide additional control over signals. For instance, filters of various types (e.g. longpass, lowpass, bandpass, polarizing, beam splitting, tunable wavelength, etc.) could be placed in between the light source and delivery fibers or between the detector and collection fibers depending on application parameters. For example, a coating of appropriate polymer on the ends of fibers could serve as a filter.
  • A number of different types of detectors may be suitable for initial collection and signal processing of radiation received through collection fibers. A detection device may include one or more (individual or arrayed) detector elements at the proximal portion of collection fiber(s) in accordance with embodiments of the invention, such as InGaAs, Silicon, Ge, GaAs, and/or lead sulfide detectors for detecting optical radiation emitted from illuminated tissue.
  • The detector converts the collected optical signal into an electrical signal, which can be subsequently processed into spectral absorbance or other data using various known signal processing techniques. The electrical signal is preferably converted to digital spectral data for further processing using one or more discrimination algorithms. Using collected spectral data, discrimination algorithms may execute morphemetry measurements, chemical analysis, or perform similar calculations and correlate the results with pre-stored model data to provide a diagnosis of targeted tissue. Model data representing the relationship between spectral data and tissue characteristics is preferably developed from the analysis of large amounts of patient in vivo data or ex vivo data simulating in vivo conditions. The models can be developed with chemometric techniques such as Principle Component Analysis (PCA) with Mahalanobis Distance, PCA with K-nearest neighbor, PCA with Euclidean Distance, Partial Least Squares Discrimination Analysis (PLS-DA), augmented Residuals (PCA/MDR), and others such as the bootstrap error-adjusted single-sample technique (BEST), and Soft Independent Modeling of Class Analogy (SIMCA).
  • For aiding in a careful approach and interrogation (e.g. preventing perforation of a myocardial wall into an outside fat layer) by the inventive probe, absorbance peaks for distinguishing the myocardium, fat, blood, collagen and/or fibrin are discernable with use of the above described algorithmic techniques. Several high-speed commercially available near infrared spectrometers are available for obtaining the desired spectral readings including the IntegraSpec™ NIR Microspectrometer from Axsun Technologies, Inc., the Antaris FT-NIR spectrometer, and a FOSS NIR System, model 6500. The models were selected for their high speed and performance in the spectral regions of interest (i.e. near infrared). A number of other comparable high-speed spectrometers would also be suitable. Limiting scanning to generally flat, narrow regions of spectroscopic bands (e.g. 1550 to 1800 nanometers) is preferable for purposes of speed while maintaining reasonable accuracy. In an embodiment, spectroscopic scans are performed across wavelengths having a range of approximately 300-2500 nm. While probing for particular tissue/fluid types or conditions, it may be preferable to employ such techniques as tissue fluorescence spectroscopy and/or selectively focus transmission bands to excite specific scanning ranges. For example, a radiation excitation peak for collagen at approximately 380 nm occurs when radiation of approximately 340 nm is delivered.
  • In order to accurately position the catheter for providing treatment, spectroscopic analysis can also distinguish the types and conditions of tissue within and surrounding a heart, including three major diseased states associated with myocardial infarct: necrotic tissue, calcified tissue, and fibrous tissue. The chosen discrimination algorithm can compare collected data with pre-programmed spectra data of myocardial tissue to categorize both the condition and relative location (to the catheter tip) of a tissue area. Based on spectral analysis, the tissue can be characterized as being normal myocardial tissue, affected tissue surrounding a myocardial infarct region (edema inflammatory zone), fibrosis, and/or necrotic or calcified myocardial infarct lesions. Spectral analysis reflecting high degrees of endema content and/or inflammation indicate a region of tissue surrounding infarcted or necrotic tissue.
  • The intensity of peaks associated with various tissue types can generally be correlated with the distance the probe is from the targeted tissue and from data related to the medium in which the probe is in (e.g. blood, myocardium, fat). Thus, analysis of spectroscopic absorbance data can include estimating relative distances between a distal end of a fiber probe arrangement and tissue to be analyzed. For instance, in preparing and programming an embodiment of the invention for operation, experiments can be performed on various in vivo or ex vivo samples, including samples having measured thicknesses of layers of myocardium and surrounding fat tissue. Fat tissue surrounding the heart is known to generate absorbance peaks, for example, at approximately 1728 and 1766 nanometers. Data can be collected on the changes (e.g. intensity) in these peaks as the needle tip of an embodiment approaches fat tissue through a layer of myocardium. Collected data would correlate, for example, peak intensity with the otherwise measured distances between the needle tip and the fat layer.
  • FIG. 10, for example, is a chart of absorbance spectra for two different fiber probe configurations at various positions relative to adjacent layers of myocardium and fat tissue. Absorbance spectra were measured through two probe configurations, one having a relatively small source-detector separation (approx. 11 μm) and another having a relatively large separation (approx. 151 μm), designated by solid and dashed lines respectively. Data was taken for four separate arrangements where the probe was positioned on a layer of myocardial tissue over a layer of fat. The thickness of the myocardial tissue layer was made approximately 10.0 mm in arrangement A, 4.0 mm in arrangement B and 1.5 mm C. The probe directly contacted the fat in arrangement D. The absorbance spectra were measured across a wavelength range of 1680 to 1780 nm. Peaks at around 1728 and 1766 (representing fat tissue) are shown that vary in intensity depending on the source-detector separation and the distance between the probe and fat tissue. Pursuant to various embodiments of the invention, similar data could be collected and modeled in order to prevent a puncturing by a probe into pericardial fat tissue from within myocardial tissue (and avoid causing serious harm to a patient).
  • In another example of pre-operational model data gathering, a probe in accordance with an embodiment of the invention could be placed in a blood medium at the appropriate temperature (i.e. 38° C.) with its position modified relative to targeted tissue (e.g. myocardium). The tissue types and their positions in relation to the probe would be known independently of data gathered from the probe to develop additional chemometric correlation models. This analysis would be useful for positioning and entry into the myocardium with the needle tip during actual operation.
  • Analysis that reflects fibrous or calcified tissue can often help identify the center of a myocardial infarct region, which can be surrounded by fibrous or calcified tissue. The degree of these indicators may also reflect levels of damage and general time periods during which the myocardial infarct lesions occurred (e.g. an acute lesion occurring less than 24 hours prior, a sub-acute myocardial infarct occurring less than one month prior, or chronic infarct occurring greater than one month prior). Data about tissue and blood, including oxygenation content and pH, is also obtainable using known spectroscopic analysis techniques and is useful for aiding diagnosis and for locating optimal tissue regions for delivering treatment. Analysis of oxygenation can be used in part to help assess whether myocardial tissue is damaged (e.g. necrotic) or normal. A study performed at the Oregon Medical Laser Center (Prahl, S., “Optical Absoroption of Hemoglobin”, Oregon Medical Laser Center (1999); retrieved from the Internet: <URL:http://omlc.ogi.edu/spectra/hemoglobin/index.html>, incorporated herein in its entirety by reference, for example, demonstrates characterizing spectra obtained from oxy and deoxy-hemoglobin. Collagen levels can also be measured to aid in the comparison of fibrous tissue associated with necrosis and normal (relatively collagen-free) tissue.
  • Embodiments of the invention also provide for enhanced tracking (real-time) the position of the distal end of the catheter as analysis is performed, providing enhanced calculations of the size, shape, and/or development of an infarcted area and transitions of tissue conditions therein. This information is highly useful for assessing the best area for applying treatment such as, for example, the affected areas surrounding an area of necrotic tissue. Based on present research, the most promising areas for applying treatment are regions within an infarct-affected area bordering completely necrotic tissue and tissue with some degree of viability, which could supply blood, oxygen, and nutrients for promoting advancement of healing or regeneration. A number of technologies are commercially available for enhanced real-time tracking of catheter movement, including, for example, fluoroscopy-based solutions, magnetic resonance imaging (MRI), image-guidance, rotary and linear translation, and precision encoders. Embodiments of the invention include features and materials (e.g. radiopaque materials) within the distal end of catheters detectable by, for example, a fluoroscope or MRI. For example, needle tip inserter 130 of FIGS. 2A-2B can include a highly radiopaque material such as, for example, platinum or gold detectable by a fluoroscope. In an embodiment of the invention, a controller (e.g. controller 50 of FIG. 1) can receive data from a tracking device (e.g. a fluoroscope) while the processor/analyzer receives simultaneously collected data from the probe end of the catheter so as to track and calculate the geometry, size, and position of targeted tissue within a patient.
  • A computer-aided output, such as visual representation, e.g. a graph or other output, or an audible presentation, can be provided to indicate to the operator the characterization of the myocardial tissue, including whether the myocardial area falls within one or more categories described above and/or to display the relative position of a suitable treatment area. The algorithms described above can be programmed into a central system processor and/or programmed or embedded into a separate processing device, depending on speed, cost, and other practical considerations.
  • Embodiments of the invention can also be adapted for studying the development of diseased tissues and assessing the effectiveness of treatment. After treatments are applied with use of the invention, for instance, the inventive catheter can be reinserted to assess the development and progress of the targeted areas. Information about the treatments and assessed tissue conditions can be recorded within the inventive system for purposes of determining future treatments and for conducting studies to optimize treatment plans in other patients.
  • It will be understood by those with knowledge in related fields that uses of alternate or varied forms or materials and modifications to the apparatus and methods disclosed are apparent. This disclosure is intended to cover these and other variations, uses, or other departures from the specific embodiments as come within the art to which the invention pertains.

Claims (56)

1. An apparatus for probing and treating internal body organs comprising:
a catheter having a fiber probe arrangement and one or more treatment lumens; and
an analysis and treatment control system connected to said catheter, said analysis and control system programmed to characterize and locate damaged tissue via said fiber probe arrangement and to treat said damaged tissue with said one or more treatment lumens.
2. The apparatus of claim 1 further comprising a spectrometer connected to said fiber probe arrangement.
3. The apparatus of claim 1 wherein the distal end of said catheter comprises a needle tip inserter.
4. The apparatus of claim 3 wherein said needle tip inserter incorporates the probe ends of one or more fibers of said fiber probe arrangement and a dispersal port for said one or more treatment lumens.
5. The apparatus of claim 3 wherein said needle tip inserter is partially retractable within said catheter so as to ease the advancement of said catheter in a patient while permitting optical analysis.
6. The apparatus of claim 1 wherein the analysis and treatment control system is programmed to analyze spectroscopic data, the analysis of the spectroscopic data including distinguishing the types and conditions of tissue within and surrounding a patient's heart.
7. The apparatus of claim 6 wherein the spectroscopic data is selected according to predetermined wavelength bands that distinguish levels of at least one of particles, gas, and liquid contained in the tissue.
8. The apparatus of claim 6 wherein distinguishing the types and conditions of tissue within and surrounding a patient's heart includes characterizing and locating tissues associated with myocardial infarct.
9. The apparatus of claim 8 wherein the characterizing and locating tissues associated with myocardial infarct comprises identifying an area for treatment of myocardial infarction by locating and targeting an affected area surrounding a region of necrotic tissue.
10. The apparatus of claim 8 wherein characterizing and locating the tissues associated with myocardial infarct includes detecting levels of at least one of fibrosis, calcification, or oxygen content.
11. The apparatus of claim 10 wherein the analysis of said spectroscopic data includes chemometric analysis of said spectroscopic data in relation to previously obtained and stored spectroscopic data.
12. The apparatus of claim 11 wherein the chemometric analysis involves at least one technique, the at least one technique including Principle Component Analysis (PCA) with Mahalanobis Distance, PCA with K-nearest neighbor, PCA with Euclidean Distance, Partial Least Squares Discrimination Analysis, augmented Residuals, bootstrap error-adjusted single-sample technique, or Soft Independent Modeling of Class Analogy.
13. The apparatus of claim 10 wherein said analysis and control system is configured to perform spectroscopic scans across wavelengths within the range of approximately 300 to 2500 nanometers.
14. The apparatus of claim 6 wherein the analysis of the spectroscopic data includes estimating relative distances between a distal end of said fiber probe arrangement and tissue analyzed by said spectrometer.
15. The apparatus of claim 14 wherein estimating said relative distances includes comparing the magnitudes of spectroscopic absorbance peaks associated with tissue or blood with magnitudes similarly obtained from previously stored spectroscopic absorbance data.
16. The apparatus of claim 15 wherein estimating said relative distances includes comparing the magnitudes of the spectroscopic absorbance peaks obtained at different predetermined positions of said catheter relative to said tissue or blood.
17. The apparatus of claim 14 wherein estimating said relative distances includes comparing spectroscopic absorbance peaks associated with collection fibers having terminating ends separated longitudinally from each other at a predetermined distance.
18. The apparatus of claim 1 wherein said one or more treatment lumens comprises a conduit for delivering a fluid solution to damaged tissue.
19. The apparatus of claim 1 wherein said one or more treatment lumens comprises a conduit for delivering therapeutic laser energy.
20. The apparatus of claim 1 wherein said catheter further incorporates one or more sensors.
21. The apparatus of claim 20 wherein said one or more sensors include at least one temperature gauge, pH meter, oxygenation meter, or water content meter.
22. The apparatus of claim 1 wherein said catheter further includes a biopsy sampler.
23. The apparatus of claim 3 wherein the distal end of said catheter further comprises a guidewire branching from said catheter apart from said needle tip.
24. A catheter for probing and treating myocardial infarct, said catheter comprising:
a fiber probe arrangement;
one or more treatment lumens; and
a distal end having a needle injection inserter, said inserter integrating one or more fiber probe ends from said fiber probe arrangement and one or more delivery ports from said one or more treatment lumens.
25. The catheter of claim 24 further comprising an angle control wire for adjusting the angle of the distal end of said catheter.
26. The apparatus of claim 24 further comprising a gripping element about the proximate portion of said catheter, said gripping element having one or more control elements for controlling aspects of positioning said catheter or for delivering treatment.
27. A method for treating body tissue, said method comprising:
inserting into a patient a catheter integrated with a fiber optic analysis probe and a treatment delivery conduit;
characterizing and locating the body tissue to be treated with radiation delivered and collected through said fiber optic analysis probe;
positioning said catheter to deliver treatment with information obtained through said fiber optic analysis probe; and
delivering a treatment through said treatment delivery conduit.
28. The method of claim 27 wherein the body tissue to be treated is associated with myocardial infarct.
29. The method of claim 28 wherein locating the body tissue associated with myocardial infarct to be treated includes locating and targeting an affected area surrounding a region of necrotic tissue for the step of delivering a treatment through the treatment delivery conduit.
30. The method of claim 28 wherein characterizing and locating the body tissue associated with myocardial infarct to be treated comprises:
obtaining spectroscopic data from radiation delivered to and collected from said tissue to be treated via said fiber optic analysis probe; and
comparing said spectroscopic data with previously stored data characteristic of tissues within and around a patient's heart in order to identify the type of tissue being analyzed and to locate the position of said tissue being analyzed relative to said catheter.
31. The method of claim 30 wherein characterizing the tissue to be treated involves comparing levels of at least one of gases, fluids, and compounds within typical normal tissues as compared to at least one of gases, fluids, and compounds within tissues associated with myocardial infarct.
32. The method of claim 30 wherein obtaining spectroscopic data comprises at least one of the methods including diffuse-reflectance spectroscopy, fluorescence spectroscopy, Raman spectroscopy, scattering spectroscopy, optical coherence reflectometery, and optical coherence tomography.
33. The method of claim 30 wherein said at least one of gases, fluids, and compounds are selected from the group including collagen, calcium, oxygen, hemoglobin, and myoglobin.
34. The method of claim 30 wherein characterizing the tissue to be treated involves chemometric analysis selected from the group of techniques consisting of Principle Component Analysis (PCA) with Mahalanobis Distance, PCA with K-nearest neighbor, PCA with Euclidean Distance, Partial Least Squares Discrimination Analysis, augmented Residuals, bootstrap error-adjusted single-sample technique, and Soft Independent Modeling of Class Analogy.
35. The method of claim 30 wherein said radiation delivered and collected through said fiber optic probe is restricted to selectively narrow spans of wavelengths associated with identifying said tissues.
36. The method of claim 35 wherein the spectroscopic data is obtained from radiation spanning wavelengths between approximately 300 to 2500 nanometers.
37. The method of claim 3 wherein the spectroscopic data is selectively collected in sub-ranges of radiation spanning approximately 300 to 1375 nanometers, 1550 to 1850 nanometers, and 2100 to 2500 nanometers.
38. The method of claim 35 wherein radiation is delivered to tissue or blood at a narrow range including 380 nanometers and scanned across a narrow range including 320 nanometers in order to identify the presence of collagen.
39. The method of claim 30 wherein locating tissues in relation to said catheter includes pre-operative steps of analyzing and comparing the wavelengths and magnitudes of spectroscopic absorbance peaks associated with tissues and blood surrounding said tissues.
40. The method of claim 39 wherein the wavelengths and magnitudes of spectroscopic absorbance peaks associated with tissues and blood is compared with previously obtained and stored spectroscopic absorbance data associated with a catheter approaching similar tissues in a blood medium.
41. The method of claim 27 wherein the distal end of said catheter includes an inserter integrated with terminating ends of said fiber optic probe and delivery conduit, said inserter suitably sharp for perforating targeted tissue.
42. The method of claim 41 wherein, during positioning of said catheter for delivery of treatment, said integrated inserter remains at least partially retracted in said catheter prior to perforation into tissue targeted for treatment and said fiber optic probe is functional while said inserter is at least partially retracted.
43. The method of claim 42 wherein final positioning of said catheter for delivery of treatment includes extending said inserter out from the distal end of said catheter into the targeted tissue.
44. The method of claim 43 wherein, prior to and during extension of said inserter, a wall of myocardial tissue before which said inserter is positioned is concurrently analyzed and monitored to prevent complete perforation of said inserter through the entire wall of said myocardial tissue.
45. The method of claim 44 wherein the prevention of complete perforation includes monitoring the contents of tissue for a layer of pericardial fat positioned beyond said wall of myocardial tissue.
46. The method of claim 27 wherein delivering treatment through said treatment delivery conduit comprises the injection of therapeutic agents.
47. The method of claim 27 wherein delivering treatment through said treatment delivery conduit comprises the injection of chemical agents.
48. The method of claim 46 wherein delivering treatment through said treatment delivery conduit comprises the delivery of gene therapy agents.
49. The method of claim 46 wherein delivering treatment through said treatment delivery conduit comprises injecting stem cell therapy agents.
50. The method of claim 46 wherein delivering treatment through said treatment delivery conduit comprises injecting cytotherapy agents.
51. The method of claim 46 wherein one or more of a selection of therapy agents are chosen and delivered based on data collected during characterizing and locating the body tissue to be treated.
52. The method of claim 46 wherein the release of agents is monitored with said fiber optic probe and controlled using feedback from said monitoring.
53. The method of claim 27 wherein delivering treatment through said treatment delivery conduit comprises delivering therapeutic laser energy.
54. The method of claim 53 wherein delivering therapeutic laser energy comprises canalizing infarct tissue for purposes of revascularization.
55. The method of claim 27 wherein said catheter is introduced into said patient in accordance with a percutaneous transluminal angioplasty.
56. The method of claim 27 wherein said catheter is introduced into said patient in accordance with percutaneous endoventricular delivery.
US11/762,956 2006-06-14 2007-06-14 Method and apparatus for identifying and treating myocardial infarction Abandoned US20080125634A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/762,956 US20080125634A1 (en) 2006-06-14 2007-06-14 Method and apparatus for identifying and treating myocardial infarction

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US80470906P 2006-06-14 2006-06-14
US11/762,956 US20080125634A1 (en) 2006-06-14 2007-06-14 Method and apparatus for identifying and treating myocardial infarction

Publications (1)

Publication Number Publication Date
US20080125634A1 true US20080125634A1 (en) 2008-05-29

Family

ID=38832858

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/762,956 Abandoned US20080125634A1 (en) 2006-06-14 2007-06-14 Method and apparatus for identifying and treating myocardial infarction

Country Status (3)

Country Link
US (1) US20080125634A1 (en)
EP (1) EP2029213A2 (en)
WO (1) WO2007147058A2 (en)

Cited By (429)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080287965A1 (en) * 2007-05-17 2008-11-20 Richard Ducharme Radiopaque band ligator
US20090062782A1 (en) * 2007-03-13 2009-03-05 Joe Denton Brown Laser Delivery Apparatus With Safety Feedback System
US20100063462A1 (en) * 2008-09-09 2010-03-11 Postel Olivier B Methods and Apparatus for Charging and Evacuating a Diffusion Dressing
WO2010028039A2 (en) * 2008-09-02 2010-03-11 Epitek, Inc. Device and method for positioning a guidewire around the myocardium
US20100069760A1 (en) * 2008-09-17 2010-03-18 Cornova, Inc. Methods and apparatus for analyzing and locally treating a body lumen
US20100196343A1 (en) * 2008-09-16 2010-08-05 O'neil Michael P Compositions, methods, devices, and systems for skin care
US20100286530A1 (en) * 2007-12-19 2010-11-11 Saurav Paul Photodynamic-based tissue sensing device and method
US20100317964A1 (en) * 2008-03-03 2010-12-16 Koninklijke Philips Electronics N.V. Biopsy guidance by electromagnetic tracking and photonic needle
US20100331782A1 (en) * 2008-03-03 2010-12-30 Koninklijke Philips Electronics N.V. Biopsy guidance by image-based x-ray guidance system and photonic needle
WO2011011424A2 (en) * 2009-07-21 2011-01-27 Lake Region Medical, Inc. Methods and devices for delivering drugs using drug-delivery or drug-coated guidewires
WO2011109797A2 (en) * 2010-03-05 2011-09-09 See Jackie R Device and methods for monitoring the administration of a stem cell transplant
US20110224502A1 (en) * 2008-06-16 2011-09-15 Ewa Herbst Method and apparatus for diagnosis and treatment
US20120296176A1 (en) * 2004-08-09 2012-11-22 Ewa Herbst Method and apparatus for diagnosis and treatment
US20130197391A1 (en) * 2009-04-15 2013-08-01 Bard Peripheral Vascular, Inc. Biopsy apparatus having integrated fluid management
US20130295192A1 (en) * 2012-03-30 2013-11-07 Russel Hirsch Method to identify tissue oxygenation state by spectrographic analysis
US20140031677A1 (en) * 2012-01-20 2014-01-30 Physical Sciences, Inc. Apparatus and Method for Aiding Needle Biopsies
US20140081252A1 (en) * 2012-09-14 2014-03-20 The Spectranetics Corporation Tissue slitting methods and systems
US8690793B2 (en) 2009-03-16 2014-04-08 C. R. Bard, Inc. Biopsy device having rotational cutting
US8721563B2 (en) 2005-08-10 2014-05-13 C. R. Bard, Inc. Single-insertion, multiple sample biopsy device with integrated markers
US8728004B2 (en) 2003-03-29 2014-05-20 C.R. Bard, Inc. Biopsy needle system having a pressure generating unit
US8771200B2 (en) 2005-08-10 2014-07-08 C.R. Bard, Inc. Single insertion, multiple sampling biopsy device with linear drive
US8808197B2 (en) 2009-10-29 2014-08-19 Bard Peripheral Vascular, Inc. Biopsy driver assembly having a control circuit for conserving battery power
US20140231302A1 (en) * 2012-06-05 2014-08-21 Mayank Goyal Systems and methods for enhancing preparation and completion of surgical and medical procedures
US20140276086A1 (en) * 2013-03-14 2014-09-18 Volcano Corporation Deflectable ivus catheter
US8858463B2 (en) 2007-12-20 2014-10-14 C. R. Bard, Inc. Biopsy device
US8926527B2 (en) 2004-07-09 2015-01-06 Bard Peripheral Vascular, Inc. Tissue sample flushing system for biopsy device
US8951208B2 (en) 2006-08-21 2015-02-10 C. R. Bard, Inc. Self-contained handheld biopsy needle
US8961430B2 (en) 2005-08-10 2015-02-24 C.R. Bard, Inc. Single-insertion, multiple sampling biopsy device usable with various transport systems and integrated markers
US9072502B2 (en) 2002-03-19 2015-07-07 C. R. Bard, Inc. Disposable biopsy unit
WO2015121866A1 (en) * 2014-02-17 2015-08-20 Asymmetric Medical Ltd. Treatment devices and realtime indications
US9173641B2 (en) 2009-08-12 2015-11-03 C. R. Bard, Inc. Biopsy apparatus having integrated thumbwheel mechanism for manual rotation of biopsy cannula
US9282949B2 (en) 2009-09-01 2016-03-15 Bard Peripheral Vascular, Inc. Charging station for battery powered biopsy apparatus
US9526426B1 (en) 2012-07-18 2016-12-27 Bernard Boon Chye Lim Apparatus and method for assessing tissue composition
US9566045B2 (en) 2006-10-06 2017-02-14 Bard Peripheral Vascular, Inc. Tissue handling system with reduced operator exposure
EP3141181A1 (en) * 2015-09-11 2017-03-15 Bernard Boon Chye Lim Ablation catheter apparatus with a basket comprising electrodes, an optical emitting element and an optical receiving element
WO2017180435A3 (en) * 2016-04-15 2018-03-15 Ethicon Llc Surgical instrument with detection sensors
US10149664B2 (en) 2006-10-24 2018-12-11 C. R. Bard, Inc. Large sample low aspect ratio biopsy needle
US10285699B2 (en) 2015-09-30 2019-05-14 Ethicon Llc Compressible adjunct
US10285695B2 (en) 2013-03-01 2019-05-14 Ethicon Llc Articulatable surgical instruments with conductive pathways
US10285673B2 (en) 2013-03-20 2019-05-14 Bard Peripheral Vascular, Inc. Biopsy device
US10293100B2 (en) 2004-07-28 2019-05-21 Ethicon Llc Surgical stapling instrument having a medical substance dispenser
US10299787B2 (en) 2007-06-04 2019-05-28 Ethicon Llc Stapling system comprising rotary inputs
US10299878B2 (en) 2015-09-25 2019-05-28 Ethicon Llc Implantable adjunct systems for determining adjunct skew
US10307170B2 (en) 2017-06-20 2019-06-04 Ethicon Llc Method for closed loop control of motor velocity of a surgical stapling and cutting instrument
US10307163B2 (en) 2008-02-14 2019-06-04 Ethicon Llc Detachable motor powered surgical instrument
US10307160B2 (en) 2015-09-30 2019-06-04 Ethicon Llc Compressible adjunct assemblies with attachment layers
US10327767B2 (en) 2017-06-20 2019-06-25 Ethicon Llc Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation
US10327764B2 (en) 2014-09-26 2019-06-25 Ethicon Llc Method for creating a flexible staple line
US10327769B2 (en) 2015-09-23 2019-06-25 Ethicon Llc Surgical stapler having motor control based on a drive system component
US10335150B2 (en) 2010-09-30 2019-07-02 Ethicon Llc Staple cartridge comprising an implantable layer
US10335145B2 (en) 2016-04-15 2019-07-02 Ethicon Llc Modular surgical instrument with configurable operating mode
US10335151B2 (en) 2011-05-27 2019-07-02 Ethicon Llc Robotically-driven surgical instrument
USD854151S1 (en) 2017-06-28 2019-07-16 Ethicon Llc Surgical instrument shaft
US10357247B2 (en) 2016-04-15 2019-07-23 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US10363031B2 (en) 2010-09-30 2019-07-30 Ethicon Llc Tissue thickness compensators for surgical staplers
US10363037B2 (en) 2016-04-18 2019-07-30 Ethicon Llc Surgical instrument system comprising a magnetic lockout
US10368865B2 (en) 2015-12-30 2019-08-06 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10368864B2 (en) 2017-06-20 2019-08-06 Ethicon Llc Systems and methods for controlling displaying motor velocity for a surgical instrument
US10376263B2 (en) 2016-04-01 2019-08-13 Ethicon Llc Anvil modification members for surgical staplers
US10383634B2 (en) 2004-07-28 2019-08-20 Ethicon Llc Stapling system incorporating a firing lockout
US10383630B2 (en) 2012-06-28 2019-08-20 Ethicon Llc Surgical stapling device with rotary driven firing member
US10398434B2 (en) 2017-06-29 2019-09-03 Ethicon Llc Closed loop velocity control of closure member for robotic surgical instrument
US10398433B2 (en) 2007-03-28 2019-09-03 Ethicon Llc Laparoscopic clamp load measuring devices
US10405859B2 (en) 2016-04-15 2019-09-10 Ethicon Llc Surgical instrument with adjustable stop/start control during a firing motion
US10413294B2 (en) 2012-06-28 2019-09-17 Ethicon Llc Shaft assembly arrangements for surgical instruments
US10413291B2 (en) 2016-02-09 2019-09-17 Ethicon Llc Surgical instrument articulation mechanism with slotted secondary constraint
US10420550B2 (en) 2009-02-06 2019-09-24 Ethicon Llc Motor driven surgical fastener device with switching system configured to prevent firing initiation until activated
US10420549B2 (en) 2008-09-23 2019-09-24 Ethicon Llc Motorized surgical instrument
US10426463B2 (en) 2006-01-31 2019-10-01 Ehticon LLC Surgical instrument having a feedback system
US10426471B2 (en) 2016-12-21 2019-10-01 Ethicon Llc Surgical instrument with multiple failure response modes
US10433844B2 (en) 2015-03-31 2019-10-08 Ethicon Llc Surgical instrument with selectively disengageable threaded drive systems
US10441281B2 (en) 2013-08-23 2019-10-15 Ethicon Llc surgical instrument including securing and aligning features
US10441285B2 (en) 2012-03-28 2019-10-15 Ethicon Llc Tissue thickness compensator comprising tissue ingrowth features
US10448950B2 (en) 2016-12-21 2019-10-22 Ethicon Llc Surgical staplers with independently actuatable closing and firing systems
US10448952B2 (en) 2006-09-29 2019-10-22 Ethicon Llc End effector for use with a surgical fastening instrument
US10456120B2 (en) 2013-11-05 2019-10-29 C. R. Bard, Inc. Biopsy device having integrated vacuum
US10456137B2 (en) 2016-04-15 2019-10-29 Ethicon Llc Staple formation detection mechanisms
US10463384B2 (en) 2006-01-31 2019-11-05 Ethicon Llc Stapling assembly
US10463372B2 (en) 2010-09-30 2019-11-05 Ethicon Llc Staple cartridge comprising multiple regions
US10463350B2 (en) 2015-05-01 2019-11-05 C. R. Bard, Inc. Biopsy device
US10463370B2 (en) 2008-02-14 2019-11-05 Ethicon Llc Motorized surgical instrument
US10485539B2 (en) 2006-01-31 2019-11-26 Ethicon Llc Surgical instrument with firing lockout
US10485543B2 (en) 2016-12-21 2019-11-26 Ethicon Llc Anvil having a knife slot width
US10492783B2 (en) 2016-04-15 2019-12-03 Ethicon, Llc Surgical instrument with improved stop/start control during a firing motion
US10492785B2 (en) 2016-12-21 2019-12-03 Ethicon Llc Shaft assembly comprising a lockout
US10499984B2 (en) 2012-07-18 2019-12-10 Bernard Boon Chye Lim Apparatus and method for assessing tissue treatment
US10499914B2 (en) 2016-12-21 2019-12-10 Ethicon Llc Staple forming pocket arrangements
USD869655S1 (en) 2017-06-28 2019-12-10 Ethicon Llc Surgical fastener cartridge
US10517596B2 (en) 2016-12-21 2019-12-31 Ethicon Llc Articulatable surgical instruments with articulation stroke amplification features
US10517682B2 (en) 2007-01-10 2019-12-31 Ethicon Llc Surgical instrument with wireless communication between control unit and remote sensor
US10517590B2 (en) 2007-01-10 2019-12-31 Ethicon Llc Powered surgical instrument having a transmission system
US10524790B2 (en) 2011-05-27 2020-01-07 Ethicon Llc Robotically-controlled surgical stapling devices that produce formed staples having different lengths
US10524787B2 (en) 2015-03-06 2020-01-07 Ethicon Llc Powered surgical instrument with parameter-based firing rate
US10531887B2 (en) 2015-03-06 2020-01-14 Ethicon Llc Powered surgical instrument including speed display
US10537325B2 (en) 2016-12-21 2020-01-21 Ethicon Llc Staple forming pocket arrangement to accommodate different types of staples
US10542974B2 (en) 2008-02-14 2020-01-28 Ethicon Llc Surgical instrument including a control system
US10548600B2 (en) 2010-09-30 2020-02-04 Ethicon Llc Multiple thickness implantable layers for surgical stapling devices
US10548504B2 (en) 2015-03-06 2020-02-04 Ethicon Llc Overlaid multi sensor radio frequency (RF) electrode system to measure tissue compression
US10561422B2 (en) 2014-04-16 2020-02-18 Ethicon Llc Fastener cartridge comprising deployable tissue engaging members
US10568625B2 (en) 2016-12-21 2020-02-25 Ethicon Llc Staple cartridges and arrangements of staples and staple cavities therein
US10568626B2 (en) 2016-12-21 2020-02-25 Ethicon Llc Surgical instruments with jaw opening features for increasing a jaw opening distance
US10575868B2 (en) 2013-03-01 2020-03-03 Ethicon Llc Surgical instrument with coupler assembly
US10588632B2 (en) 2016-12-21 2020-03-17 Ethicon Llc Surgical end effectors and firing members thereof
US10588633B2 (en) 2017-06-28 2020-03-17 Ethicon Llc Surgical instruments with open and closable jaws and axially movable firing member that is initially parked in close proximity to the jaws prior to firing
US10588623B2 (en) 2010-09-30 2020-03-17 Ethicon Llc Adhesive film laminate
US10588626B2 (en) 2014-03-26 2020-03-17 Ethicon Llc Surgical instrument displaying subsequent step of use
USD879808S1 (en) 2017-06-20 2020-03-31 Ethicon Llc Display panel with graphical user interface
USD879809S1 (en) 2017-06-20 2020-03-31 Ethicon Llc Display panel with changeable graphical user interface
US10617416B2 (en) 2013-03-14 2020-04-14 Ethicon Llc Control systems for surgical instruments
US10617417B2 (en) 2014-11-06 2020-04-14 Ethicon Llc Staple cartridge comprising a releasable adjunct material
US10617412B2 (en) 2015-03-06 2020-04-14 Ethicon Llc System for detecting the mis-insertion of a staple cartridge into a surgical stapler
US10617420B2 (en) 2011-05-27 2020-04-14 Ethicon Llc Surgical system comprising drive systems
US10617418B2 (en) 2015-08-17 2020-04-14 Ethicon Llc Implantable layers for a surgical instrument
US10617413B2 (en) 2016-04-01 2020-04-14 Ethicon Llc Closure system arrangements for surgical cutting and stapling devices with separate and distinct firing shafts
US10624633B2 (en) 2017-06-20 2020-04-21 Ethicon Llc Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument
US10624861B2 (en) 2010-09-30 2020-04-21 Ethicon Llc Tissue thickness compensator configured to redistribute compressive forces
US10631859B2 (en) 2017-06-27 2020-04-28 Ethicon Llc Articulation systems for surgical instruments
US10639115B2 (en) 2012-06-28 2020-05-05 Ethicon Llc Surgical end effectors having angled tissue-contacting surfaces
US10646220B2 (en) 2017-06-20 2020-05-12 Ethicon Llc Systems and methods for controlling displacement member velocity for a surgical instrument
US10660640B2 (en) 2008-02-14 2020-05-26 Ethicon Llc Motorized surgical cutting and fastening instrument
US10667808B2 (en) 2012-03-28 2020-06-02 Ethicon Llc Staple cartridge comprising an absorbable adjunct
US10667809B2 (en) 2016-12-21 2020-06-02 Ethicon Llc Staple cartridge and staple cartridge channel comprising windows defined therein
US10675028B2 (en) 2006-01-31 2020-06-09 Ethicon Llc Powered surgical instruments with firing system lockout arrangements
US10682134B2 (en) 2017-12-21 2020-06-16 Ethicon Llc Continuous use self-propelled stapling instrument
US10682142B2 (en) 2008-02-14 2020-06-16 Ethicon Llc Surgical stapling apparatus including an articulation system
US10687813B2 (en) 2017-12-15 2020-06-23 Ethicon Llc Adapters with firing stroke sensing arrangements for use in connection with electromechanical surgical instruments
US10687806B2 (en) 2015-03-06 2020-06-23 Ethicon Llc Adaptive tissue compression techniques to adjust closure rates for multiple tissue types
US10695058B2 (en) 2014-12-18 2020-06-30 Ethicon Llc Surgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member
US10695063B2 (en) 2012-02-13 2020-06-30 Ethicon Llc Surgical cutting and fastening instrument with apparatus for determining cartridge and firing motion status
US10695062B2 (en) 2010-10-01 2020-06-30 Ethicon Llc Surgical instrument including a retractable firing member
US10702266B2 (en) 2013-04-16 2020-07-07 Ethicon Llc Surgical instrument system
US10702267B2 (en) 2007-03-15 2020-07-07 Ethicon Llc Surgical stapling instrument having a releasable buttress material
US10716565B2 (en) 2017-12-19 2020-07-21 Ethicon Llc Surgical instruments with dual articulation drivers
USD890784S1 (en) 2017-06-20 2020-07-21 Ethicon Llc Display panel with changeable graphical user interface
US10716614B2 (en) 2017-06-28 2020-07-21 Ethicon Llc Surgical shaft assemblies with slip ring assemblies with increased contact pressure
US10722292B2 (en) 2013-05-31 2020-07-28 Covidien Lp Surgical device with an end-effector assembly and system for monitoring of tissue during a surgical procedure
US10729509B2 (en) 2017-12-19 2020-08-04 Ethicon Llc Surgical instrument comprising closure and firing locking mechanism
US10729501B2 (en) 2017-09-29 2020-08-04 Ethicon Llc Systems and methods for language selection of a surgical instrument
US10736636B2 (en) 2014-12-10 2020-08-11 Ethicon Llc Articulatable surgical instrument system
US10736630B2 (en) 2014-10-13 2020-08-11 Ethicon Llc Staple cartridge
US10736628B2 (en) 2008-09-23 2020-08-11 Ethicon Llc Motor-driven surgical cutting instrument
US10743873B2 (en) 2014-12-18 2020-08-18 Ethicon Llc Drive arrangements for articulatable surgical instruments
US10743872B2 (en) 2017-09-29 2020-08-18 Ethicon Llc System and methods for controlling a display of a surgical instrument
US10743875B2 (en) 2017-12-15 2020-08-18 Ethicon Llc Surgical end effectors with jaw stiffener arrangements configured to permit monitoring of firing member
US10743874B2 (en) 2017-12-15 2020-08-18 Ethicon Llc Sealed adapters for use with electromechanical surgical instruments
US10743851B2 (en) 2008-02-14 2020-08-18 Ethicon Llc Interchangeable tools for surgical instruments
US10743870B2 (en) 2008-02-14 2020-08-18 Ethicon Llc Surgical stapling apparatus with interlockable firing system
US10743849B2 (en) 2006-01-31 2020-08-18 Ethicon Llc Stapling system including an articulation system
US10751076B2 (en) 2009-12-24 2020-08-25 Ethicon Llc Motor-driven surgical cutting instrument with electric actuator directional control assembly
US10758230B2 (en) 2016-12-21 2020-09-01 Ethicon Llc Surgical instrument with primary and safety processors
US10758229B2 (en) 2016-12-21 2020-09-01 Ethicon Llc Surgical instrument comprising improved jaw control
US10765427B2 (en) 2017-06-28 2020-09-08 Ethicon Llc Method for articulating a surgical instrument
US10765429B2 (en) 2017-09-29 2020-09-08 Ethicon Llc Systems and methods for providing alerts according to the operational state of a surgical instrument
US10765425B2 (en) 2008-09-23 2020-09-08 Ethicon Llc Robotically-controlled motorized surgical instrument with an end effector
US10772629B2 (en) 2017-06-27 2020-09-15 Ethicon Llc Surgical anvil arrangements
US10772625B2 (en) 2015-03-06 2020-09-15 Ethicon Llc Signal and power communication system positioned on a rotatable shaft
US10779903B2 (en) 2017-10-31 2020-09-22 Ethicon Llc Positive shaft rotation lock activated by jaw closure
US10779825B2 (en) 2017-12-15 2020-09-22 Ethicon Llc Adapters with end effector position sensing and control arrangements for use in connection with electromechanical surgical instruments
US10780539B2 (en) 2011-05-27 2020-09-22 Ethicon Llc Stapling instrument for use with a robotic system
US10779826B2 (en) 2017-12-15 2020-09-22 Ethicon Llc Methods of operating surgical end effectors
US10779820B2 (en) 2017-06-20 2020-09-22 Ethicon Llc Systems and methods for controlling motor speed according to user input for a surgical instrument
US10779821B2 (en) 2018-08-20 2020-09-22 Ethicon Llc Surgical stapler anvils with tissue stop features configured to avoid tissue pinch
US10779824B2 (en) 2017-06-28 2020-09-22 Ethicon Llc Surgical instrument comprising an articulation system lockable by a closure system
US10796471B2 (en) 2017-09-29 2020-10-06 Ethicon Llc Systems and methods of displaying a knife position for a surgical instrument
US10806449B2 (en) 2005-11-09 2020-10-20 Ethicon Llc End effectors for surgical staplers
US10806448B2 (en) 2014-12-18 2020-10-20 Ethicon Llc Surgical instrument assembly comprising a flexible articulation system
US10813639B2 (en) 2017-06-20 2020-10-27 Ethicon Llc Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on system conditions
US10828033B2 (en) 2017-12-15 2020-11-10 Ethicon Llc Handheld electromechanical surgical instruments with improved motor control arrangements for positioning components of an adapter coupled thereto
US10828028B2 (en) 2016-04-15 2020-11-10 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US10835330B2 (en) 2017-12-19 2020-11-17 Ethicon Llc Method for determining the position of a rotatable jaw of a surgical instrument attachment assembly
US10835279B2 (en) 2013-03-14 2020-11-17 Spectranetics Llc Distal end supported tissue slitting apparatus
US10842491B2 (en) 2006-01-31 2020-11-24 Ethicon Llc Surgical system with an actuation console
US10842490B2 (en) 2017-10-31 2020-11-24 Ethicon Llc Cartridge body design with force reduction based on firing completion
US10842492B2 (en) 2018-08-20 2020-11-24 Ethicon Llc Powered articulatable surgical instruments with clutching and locking arrangements for linking an articulation drive system to a firing drive system
US10842488B2 (en) 2005-08-31 2020-11-24 Ethicon Llc Fastener cartridge assembly comprising a fixed anvil and different staple heights
US10856869B2 (en) 2017-06-27 2020-12-08 Ethicon Llc Surgical anvil arrangements
US10856870B2 (en) 2018-08-20 2020-12-08 Ethicon Llc Switching arrangements for motor powered articulatable surgical instruments
US10863986B2 (en) 2015-09-23 2020-12-15 Ethicon Llc Surgical stapler having downstream current-based motor control
US10869666B2 (en) 2017-12-15 2020-12-22 Ethicon Llc Adapters with control systems for controlling multiple motors of an electromechanical surgical instrument
USD906355S1 (en) 2017-06-28 2020-12-29 Ethicon Llc Display screen or portion thereof with a graphical user interface for a surgical instrument
US10881459B2 (en) 2012-07-18 2021-01-05 Bernard Boon Chye Lim Apparatus and method for assessing tissue treatment
US10881399B2 (en) 2017-06-20 2021-01-05 Ethicon Llc Techniques for adaptive control of motor velocity of a surgical stapling and cutting instrument
US10881396B2 (en) 2017-06-20 2021-01-05 Ethicon Llc Surgical instrument with variable duration trigger arrangement
USD907648S1 (en) 2017-09-29 2021-01-12 Ethicon Llc Display screen or portion thereof with animated graphical user interface
US10888321B2 (en) 2017-06-20 2021-01-12 Ethicon Llc Systems and methods for controlling velocity of a displacement member of a surgical stapling and cutting instrument
USD907647S1 (en) 2017-09-29 2021-01-12 Ethicon Llc Display screen or portion thereof with animated graphical user interface
US10893867B2 (en) 2013-03-14 2021-01-19 Ethicon Llc Drive train control arrangements for modular surgical instruments
US10898183B2 (en) 2017-06-29 2021-01-26 Ethicon Llc Robotic surgical instrument with closed loop feedback techniques for advancement of closure member during firing
US10903685B2 (en) 2017-06-28 2021-01-26 Ethicon Llc Surgical shaft assemblies with slip ring assemblies forming capacitive channels
US10905423B2 (en) 2014-09-05 2021-02-02 Ethicon Llc Smart cartridge wake up operation and data retention
US10905418B2 (en) 2014-10-16 2021-02-02 Ethicon Llc Staple cartridge comprising a tissue thickness compensator
US10912559B2 (en) 2018-08-20 2021-02-09 Ethicon Llc Reinforced deformable anvil tip for surgical stapler anvil
US20210038304A1 (en) * 2019-08-05 2021-02-11 Gyrus Acmi, Inc. D/B/A Olympus Surgical Technologies America Selective laser firing for tissue safety
US10918380B2 (en) 2006-01-31 2021-02-16 Ethicon Llc Surgical instrument system including a control system
USD910847S1 (en) 2017-12-19 2021-02-16 Ethicon Llc Surgical instrument assembly
US10932772B2 (en) 2017-06-29 2021-03-02 Ethicon Llc Methods for closed loop velocity control for robotic surgical instrument
US10932778B2 (en) 2008-10-10 2021-03-02 Ethicon Llc Powered surgical cutting and stapling apparatus with manually retractable firing system
US10945728B2 (en) 2014-12-18 2021-03-16 Ethicon Llc Locking arrangements for detachable shaft assemblies with articulatable surgical end effectors
US10945731B2 (en) 2010-09-30 2021-03-16 Ethicon Llc Tissue thickness compensator comprising controlled release and expansion
USD914878S1 (en) 2018-08-20 2021-03-30 Ethicon Llc Surgical instrument anvil
US10959725B2 (en) 2012-06-15 2021-03-30 Ethicon Llc Articulatable surgical instrument comprising a firing drive
US10966718B2 (en) 2017-12-15 2021-04-06 Ethicon Llc Dynamic clamping assemblies with improved wear characteristics for use in connection with electromechanical surgical instruments
US10980537B2 (en) 2017-06-20 2021-04-20 Ethicon Llc Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified number of shaft rotations
US10980539B2 (en) 2015-09-30 2021-04-20 Ethicon Llc Implantable adjunct comprising bonded layers
USD917500S1 (en) 2017-09-29 2021-04-27 Ethicon Llc Display screen or portion thereof with graphical user interface
US10987102B2 (en) 2010-09-30 2021-04-27 Ethicon Llc Tissue thickness compensator comprising a plurality of layers
US10993716B2 (en) 2017-06-27 2021-05-04 Ethicon Llc Surgical anvil arrangements
US11007022B2 (en) 2017-06-29 2021-05-18 Ethicon Llc Closed loop velocity control techniques based on sensed tissue parameters for robotic surgical instrument
US11006955B2 (en) 2017-12-15 2021-05-18 Ethicon Llc End effectors with positive jaw opening features for use with adapters for electromechanical surgical instruments
US11007004B2 (en) 2012-06-28 2021-05-18 Ethicon Llc Powered multi-axial articulable electrosurgical device with external dissection features
US11013511B2 (en) 2007-06-22 2021-05-25 Ethicon Llc Surgical stapling instrument with an articulatable end effector
US11020112B2 (en) 2017-12-19 2021-06-01 Ethicon Llc Surgical tools configured for interchangeable use with different controller interfaces
US11020115B2 (en) 2014-02-12 2021-06-01 Cilag Gmbh International Deliverable surgical instrument
US11026678B2 (en) 2015-09-23 2021-06-08 Cilag Gmbh International Surgical stapler having motor control based on an electrical parameter related to a motor current
US11033267B2 (en) 2017-12-15 2021-06-15 Ethicon Llc Systems and methods of controlling a clamping member firing rate of a surgical instrument
US11039836B2 (en) 2007-01-11 2021-06-22 Cilag Gmbh International Staple cartridge for use with a surgical stapling instrument
US11039834B2 (en) 2018-08-20 2021-06-22 Cilag Gmbh International Surgical stapler anvils with staple directing protrusions and tissue stability features
US11045270B2 (en) 2017-12-19 2021-06-29 Cilag Gmbh International Robotic attachment comprising exterior drive actuator
US11045192B2 (en) 2018-08-20 2021-06-29 Cilag Gmbh International Fabricating techniques for surgical stapler anvils
US11051813B2 (en) 2006-01-31 2021-07-06 Cilag Gmbh International Powered surgical instruments with firing system lockout arrangements
US11051807B2 (en) 2019-06-28 2021-07-06 Cilag Gmbh International Packaging assembly including a particulate trap
US11058422B2 (en) 2015-12-30 2021-07-13 Cilag Gmbh International Mechanisms for compensating for battery pack failure in powered surgical instruments
US11071554B2 (en) 2017-06-20 2021-07-27 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on magnitude of velocity error measurements
US11071545B2 (en) 2014-09-05 2021-07-27 Cilag Gmbh International Smart cartridge wake up operation and data retention
US11071543B2 (en) 2017-12-15 2021-07-27 Cilag Gmbh International Surgical end effectors with clamping assemblies configured to increase jaw aperture ranges
US11076853B2 (en) 2017-12-21 2021-08-03 Cilag Gmbh International Systems and methods of displaying a knife position during transection for a surgical instrument
CN113208723A (en) * 2014-11-03 2021-08-06 460医学股份有限公司 System and method for evaluation of contact quality
US11083453B2 (en) 2014-12-18 2021-08-10 Cilag Gmbh International Surgical stapling system including a flexible firing actuator and lateral buckling supports
US11083452B2 (en) 2010-09-30 2021-08-10 Cilag Gmbh International Staple cartridge including a tissue thickness compensator
US11083458B2 (en) 2018-08-20 2021-08-10 Cilag Gmbh International Powered surgical instruments with clutching arrangements to convert linear drive motions to rotary drive motions
US11090045B2 (en) 2005-08-31 2021-08-17 Cilag Gmbh International Staple cartridges for forming staples having differing formed staple heights
US11090075B2 (en) 2017-10-30 2021-08-17 Cilag Gmbh International Articulation features for surgical end effector
US11090046B2 (en) 2017-06-20 2021-08-17 Cilag Gmbh International Systems and methods for controlling displacement member motion of a surgical stapling and cutting instrument
US11109859B2 (en) 2015-03-06 2021-09-07 Cilag Gmbh International Surgical instrument comprising a lockable battery housing
US11129680B2 (en) 2017-12-21 2021-09-28 Cilag Gmbh International Surgical instrument comprising a projector
US11133106B2 (en) 2013-08-23 2021-09-28 Cilag Gmbh International Surgical instrument assembly comprising a retraction assembly
US11129615B2 (en) 2009-02-05 2021-09-28 Cilag Gmbh International Surgical stapling system
US11129613B2 (en) 2015-12-30 2021-09-28 Cilag Gmbh International Surgical instruments with separable motors and motor control circuits
US11134942B2 (en) 2016-12-21 2021-10-05 Cilag Gmbh International Surgical stapling instruments and staple-forming anvils
US11134944B2 (en) 2017-10-30 2021-10-05 Cilag Gmbh International Surgical stapler knife motion controls
US11141153B2 (en) 2014-10-29 2021-10-12 Cilag Gmbh International Staple cartridges comprising driver arrangements
US11147551B2 (en) 2019-03-25 2021-10-19 Cilag Gmbh International Firing drive arrangements for surgical systems
US11147553B2 (en) 2019-03-25 2021-10-19 Cilag Gmbh International Firing drive arrangements for surgical systems
US11154301B2 (en) 2015-02-27 2021-10-26 Cilag Gmbh International Modular stapling assembly
US11172929B2 (en) 2019-03-25 2021-11-16 Cilag Gmbh International Articulation drive arrangements for surgical systems
US11179150B2 (en) 2016-04-15 2021-11-23 Cilag Gmbh International Systems and methods for controlling a surgical stapling and cutting instrument
US11197671B2 (en) 2012-06-28 2021-12-14 Cilag Gmbh International Stapling assembly comprising a lockout
US11197670B2 (en) 2017-12-15 2021-12-14 Cilag Gmbh International Surgical end effectors with pivotal jaws configured to touch at their respective distal ends when fully closed
US11202633B2 (en) 2014-09-26 2021-12-21 Cilag Gmbh International Surgical stapling buttresses and adjunct materials
US11207065B2 (en) 2018-08-20 2021-12-28 Cilag Gmbh International Method for fabricating surgical stapler anvils
US11207064B2 (en) 2011-05-27 2021-12-28 Cilag Gmbh International Automated end effector component reloading system for use with a robotic system
US11213293B2 (en) 2016-02-09 2022-01-04 Cilag Gmbh International Articulatable surgical instruments with single articulation link arrangements
US11219455B2 (en) 2019-06-28 2022-01-11 Cilag Gmbh International Surgical instrument including a lockout key
US11224423B2 (en) 2015-03-06 2022-01-18 Cilag Gmbh International Smart sensors with local signal processing
US11224428B2 (en) 2016-12-21 2022-01-18 Cilag Gmbh International Surgical stapling systems
US11224427B2 (en) 2006-01-31 2022-01-18 Cilag Gmbh International Surgical stapling system including a console and retraction assembly
US11224497B2 (en) 2019-06-28 2022-01-18 Cilag Gmbh International Surgical systems with multiple RFID tags
US11224426B2 (en) 2016-02-12 2022-01-18 Cilag Gmbh International Mechanisms for compensating for drivetrain failure in powered surgical instruments
US11229437B2 (en) 2019-06-28 2022-01-25 Cilag Gmbh International Method for authenticating the compatibility of a staple cartridge with a surgical instrument
US11234698B2 (en) 2019-12-19 2022-02-01 Cilag Gmbh International Stapling system comprising a clamp lockout and a firing lockout
US11241230B2 (en) 2012-06-28 2022-02-08 Cilag Gmbh International Clip applier tool for use with a robotic surgical system
US11246678B2 (en) 2019-06-28 2022-02-15 Cilag Gmbh International Surgical stapling system having a frangible RFID tag
US11246590B2 (en) 2005-08-31 2022-02-15 Cilag Gmbh International Staple cartridge including staple drivers having different unfired heights
US11246592B2 (en) 2017-06-28 2022-02-15 Cilag Gmbh International Surgical instrument comprising an articulation system lockable to a frame
US11253254B2 (en) 2019-04-30 2022-02-22 Cilag Gmbh International Shaft rotation actuator on a surgical instrument
US11253256B2 (en) 2018-08-20 2022-02-22 Cilag Gmbh International Articulatable motor powered surgical instruments with dedicated articulation motor arrangements
US11259799B2 (en) 2014-03-26 2022-03-01 Cilag Gmbh International Interface systems for use with surgical instruments
US11259805B2 (en) 2017-06-28 2022-03-01 Cilag Gmbh International Surgical instrument comprising firing member supports
US11259803B2 (en) 2019-06-28 2022-03-01 Cilag Gmbh International Surgical stapling system having an information encryption protocol
US11266405B2 (en) 2017-06-27 2022-03-08 Cilag Gmbh International Surgical anvil manufacturing methods
US11266409B2 (en) 2014-04-16 2022-03-08 Cilag Gmbh International Fastener cartridge comprising a sled including longitudinally-staggered ramps
US11272938B2 (en) 2006-06-27 2022-03-15 Cilag Gmbh International Surgical instrument including dedicated firing and retraction assemblies
US11272927B2 (en) 2008-02-15 2022-03-15 Cilag Gmbh International Layer arrangements for surgical staple cartridges
US11278279B2 (en) 2006-01-31 2022-03-22 Cilag Gmbh International Surgical instrument assembly
US11284898B2 (en) 2014-09-18 2022-03-29 Cilag Gmbh International Surgical instrument including a deployable knife
US11291440B2 (en) 2018-08-20 2022-04-05 Cilag Gmbh International Method for operating a powered articulatable surgical instrument
US11291449B2 (en) 2009-12-24 2022-04-05 Cilag Gmbh International Surgical cutting instrument that analyzes tissue thickness
US11291451B2 (en) 2019-06-28 2022-04-05 Cilag Gmbh International Surgical instrument with battery compatibility verification functionality
US11291447B2 (en) 2019-12-19 2022-04-05 Cilag Gmbh International Stapling instrument comprising independent jaw closing and staple firing systems
US11291441B2 (en) 2007-01-10 2022-04-05 Cilag Gmbh International Surgical instrument with wireless communication between control unit and remote sensor
US11298125B2 (en) 2010-09-30 2022-04-12 Cilag Gmbh International Tissue stapler having a thickness compensator
US11298132B2 (en) 2019-06-28 2022-04-12 Cilag GmbH Inlernational Staple cartridge including a honeycomb extension
US11298127B2 (en) 2019-06-28 2022-04-12 Cilag GmbH Interational Surgical stapling system having a lockout mechanism for an incompatible cartridge
US11304696B2 (en) 2019-12-19 2022-04-19 Cilag Gmbh International Surgical instrument comprising a powered articulation system
US11304695B2 (en) 2017-08-03 2022-04-19 Cilag Gmbh International Surgical system shaft interconnection
US11311290B2 (en) 2017-12-21 2022-04-26 Cilag Gmbh International Surgical instrument comprising an end effector dampener
US11311294B2 (en) 2014-09-05 2022-04-26 Cilag Gmbh International Powered medical device including measurement of closure state of jaws
US11317917B2 (en) 2016-04-18 2022-05-03 Cilag Gmbh International Surgical stapling system comprising a lockable firing assembly
US11317913B2 (en) 2016-12-21 2022-05-03 Cilag Gmbh International Lockout arrangements for surgical end effectors and replaceable tool assemblies
US11324503B2 (en) 2017-06-27 2022-05-10 Cilag Gmbh International Surgical firing member arrangements
US11324501B2 (en) 2018-08-20 2022-05-10 Cilag Gmbh International Surgical stapling devices with improved closure members
US11344303B2 (en) 2016-02-12 2022-05-31 Cilag Gmbh International Mechanisms for compensating for drivetrain failure in powered surgical instruments
US11350928B2 (en) 2016-04-18 2022-06-07 Cilag Gmbh International Surgical instrument comprising a tissue thickness lockout and speed control system
US11376098B2 (en) 2019-06-28 2022-07-05 Cilag Gmbh International Surgical instrument system comprising an RFID system
US11382627B2 (en) 2014-04-16 2022-07-12 Cilag Gmbh International Surgical stapling assembly comprising a firing member including a lateral extension
US11382638B2 (en) 2017-06-20 2022-07-12 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified displacement distance
US11399829B2 (en) 2017-09-29 2022-08-02 Cilag Gmbh International Systems and methods of initiating a power shutdown mode for a surgical instrument
US11399837B2 (en) 2019-06-28 2022-08-02 Cilag Gmbh International Mechanisms for motor control adjustments of a motorized surgical instrument
US11419606B2 (en) 2016-12-21 2022-08-23 Cilag Gmbh International Shaft assembly comprising a clutch configured to adapt the output of a rotary firing member to two different systems
US11426167B2 (en) 2019-06-28 2022-08-30 Cilag Gmbh International Mechanisms for proper anvil attachment surgical stapling head assembly
US11426251B2 (en) 2019-04-30 2022-08-30 Cilag Gmbh International Articulation directional lights on a surgical instrument
US11432816B2 (en) 2019-04-30 2022-09-06 Cilag Gmbh International Articulation pin for a surgical instrument
US11439470B2 (en) 2011-05-27 2022-09-13 Cilag Gmbh International Robotically-controlled surgical instrument with selectively articulatable end effector
US11446029B2 (en) 2019-12-19 2022-09-20 Cilag Gmbh International Staple cartridge comprising projections extending from a curved deck surface
US11452528B2 (en) 2019-04-30 2022-09-27 Cilag Gmbh International Articulation actuators for a surgical instrument
US11452526B2 (en) 2020-10-29 2022-09-27 Cilag Gmbh International Surgical instrument comprising a staged voltage regulation start-up system
US11457918B2 (en) 2014-10-29 2022-10-04 Cilag Gmbh International Cartridge assemblies for surgical staplers
USD966512S1 (en) 2020-06-02 2022-10-11 Cilag Gmbh International Staple cartridge
US11464601B2 (en) 2019-06-28 2022-10-11 Cilag Gmbh International Surgical instrument comprising an RFID system for tracking a movable component
US11464512B2 (en) 2019-12-19 2022-10-11 Cilag Gmbh International Staple cartridge comprising a curved deck surface
US11464513B2 (en) 2012-06-28 2022-10-11 Cilag Gmbh International Surgical instrument system including replaceable end effectors
USD967421S1 (en) 2020-06-02 2022-10-18 Cilag Gmbh International Staple cartridge
US11471157B2 (en) 2019-04-30 2022-10-18 Cilag Gmbh International Articulation control mapping for a surgical instrument
US11471155B2 (en) 2017-08-03 2022-10-18 Cilag Gmbh International Surgical system bailout
US11478151B2 (en) 2011-12-14 2022-10-25 The Trustees Of The University Of Pennsylvania Fiber optic flow and oxygenation monitoring using diffuse correlation and reflectance
US11478241B2 (en) 2019-06-28 2022-10-25 Cilag Gmbh International Staple cartridge including projections
US11478247B2 (en) 2010-07-30 2022-10-25 Cilag Gmbh International Tissue acquisition arrangements and methods for surgical stapling devices
US11484311B2 (en) 2005-08-31 2022-11-01 Cilag Gmbh International Staple cartridge comprising a staple driver arrangement
US11484312B2 (en) 2005-08-31 2022-11-01 Cilag Gmbh International Staple cartridge comprising a staple driver arrangement
US11497488B2 (en) 2014-03-26 2022-11-15 Cilag Gmbh International Systems and methods for controlling a segmented circuit
US11497492B2 (en) 2019-06-28 2022-11-15 Cilag Gmbh International Surgical instrument including an articulation lock
US11504116B2 (en) 2011-04-29 2022-11-22 Cilag Gmbh International Layer of material for a surgical end effector
US11504122B2 (en) 2019-12-19 2022-11-22 Cilag Gmbh International Surgical instrument comprising a nested firing member
US11517325B2 (en) 2017-06-20 2022-12-06 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured displacement distance traveled over a specified time interval
US11517390B2 (en) 2020-10-29 2022-12-06 Cilag Gmbh International Surgical instrument comprising a limited travel switch
US11523821B2 (en) 2014-09-26 2022-12-13 Cilag Gmbh International Method for creating a flexible staple line
US11523822B2 (en) 2019-06-28 2022-12-13 Cilag Gmbh International Battery pack including a circuit interrupter
US11523823B2 (en) 2016-02-09 2022-12-13 Cilag Gmbh International Surgical instruments with non-symmetrical articulation arrangements
US11529139B2 (en) 2019-12-19 2022-12-20 Cilag Gmbh International Motor driven surgical instrument
US11529137B2 (en) 2019-12-19 2022-12-20 Cilag Gmbh International Staple cartridge comprising driver retention members
US11534259B2 (en) 2020-10-29 2022-12-27 Cilag Gmbh International Surgical instrument comprising an articulation indicator
USD974560S1 (en) 2020-06-02 2023-01-03 Cilag Gmbh International Staple cartridge
USD975278S1 (en) 2020-06-02 2023-01-10 Cilag Gmbh International Staple cartridge
USD975851S1 (en) 2020-06-02 2023-01-17 Cilag Gmbh International Staple cartridge
US11553971B2 (en) 2019-06-28 2023-01-17 Cilag Gmbh International Surgical RFID assemblies for display and communication
USD975850S1 (en) 2020-06-02 2023-01-17 Cilag Gmbh International Staple cartridge
US11559304B2 (en) 2019-12-19 2023-01-24 Cilag Gmbh International Surgical instrument comprising a rapid closure mechanism
USD976401S1 (en) 2020-06-02 2023-01-24 Cilag Gmbh International Staple cartridge
US11564682B2 (en) 2007-06-04 2023-01-31 Cilag Gmbh International Surgical stapler device
US11564686B2 (en) 2017-06-28 2023-01-31 Cilag Gmbh International Surgical shaft assemblies with flexible interfaces
US11571215B2 (en) 2010-09-30 2023-02-07 Cilag Gmbh International Layer of material for a surgical end effector
US11571231B2 (en) 2006-09-29 2023-02-07 Cilag Gmbh International Staple cartridge having a driver for driving multiple staples
US11576672B2 (en) 2019-12-19 2023-02-14 Cilag Gmbh International Surgical instrument comprising a closure system including a closure member and an opening member driven by a drive screw
USD980425S1 (en) 2020-10-29 2023-03-07 Cilag Gmbh International Surgical instrument assembly
US11607239B2 (en) 2016-04-15 2023-03-21 Cilag Gmbh International Systems and methods for controlling a surgical stapling and cutting instrument
US11607219B2 (en) 2019-12-19 2023-03-21 Cilag Gmbh International Staple cartridge comprising a detachable tissue cutting knife
US11617577B2 (en) 2020-10-29 2023-04-04 Cilag Gmbh International Surgical instrument comprising a sensor configured to sense whether an articulation drive of the surgical instrument is actuatable
US11622763B2 (en) 2013-04-16 2023-04-11 Cilag Gmbh International Stapling assembly comprising a shiftable drive
US11622766B2 (en) 2012-06-28 2023-04-11 Cilag Gmbh International Empty clip cartridge lockout
US11627959B2 (en) 2019-06-28 2023-04-18 Cilag Gmbh International Surgical instruments including manual and powered system lockouts
US11627960B2 (en) 2020-12-02 2023-04-18 Cilag Gmbh International Powered surgical instruments with smart reload with separately attachable exteriorly mounted wiring connections
US11638587B2 (en) 2019-06-28 2023-05-02 Cilag Gmbh International RFID identification systems for surgical instruments
US11638582B2 (en) 2020-07-28 2023-05-02 Cilag Gmbh International Surgical instruments with torsion spine drive arrangements
US11648009B2 (en) 2019-04-30 2023-05-16 Cilag Gmbh International Rotatable jaw tip for a surgical instrument
US11648005B2 (en) 2008-09-23 2023-05-16 Cilag Gmbh International Robotically-controlled motorized surgical instrument with an end effector
US11653915B2 (en) 2020-12-02 2023-05-23 Cilag Gmbh International Surgical instruments with sled location detection and adjustment features
US11653920B2 (en) 2020-12-02 2023-05-23 Cilag Gmbh International Powered surgical instruments with communication interfaces through sterile barrier
US11653914B2 (en) 2017-06-20 2023-05-23 Cilag Gmbh International Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument according to articulation angle of end effector
US11660163B2 (en) 2019-06-28 2023-05-30 Cilag Gmbh International Surgical system with RFID tags for updating motor assembly parameters
US11678882B2 (en) 2020-12-02 2023-06-20 Cilag Gmbh International Surgical instruments with interactive features to remedy incidental sled movements
US11678877B2 (en) 2014-12-18 2023-06-20 Cilag Gmbh International Surgical instrument including a flexible support configured to support a flexible firing member
US11684434B2 (en) 2019-06-28 2023-06-27 Cilag Gmbh International Surgical RFID assemblies for instrument operational setting control
US11696757B2 (en) 2021-02-26 2023-07-11 Cilag Gmbh International Monitoring of internal systems to detect and track cartridge motion status
US11696761B2 (en) 2019-03-25 2023-07-11 Cilag Gmbh International Firing drive arrangements for surgical systems
US11701113B2 (en) 2021-02-26 2023-07-18 Cilag Gmbh International Stapling instrument comprising a separate power antenna and a data transfer antenna
US11701111B2 (en) 2019-12-19 2023-07-18 Cilag Gmbh International Method for operating a surgical stapling instrument
US11717291B2 (en) 2021-03-22 2023-08-08 Cilag Gmbh International Staple cartridge comprising staples configured to apply different tissue compression
US11717294B2 (en) 2014-04-16 2023-08-08 Cilag Gmbh International End effector arrangements comprising indicators
US11717289B2 (en) 2020-10-29 2023-08-08 Cilag Gmbh International Surgical instrument comprising an indicator which indicates that an articulation drive is actuatable
US11723662B2 (en) 2021-05-28 2023-08-15 Cilag Gmbh International Stapling instrument comprising an articulation control display
US11723658B2 (en) 2021-03-22 2023-08-15 Cilag Gmbh International Staple cartridge comprising a firing lockout
US11723657B2 (en) 2021-02-26 2023-08-15 Cilag Gmbh International Adjustable communication based on available bandwidth and power capacity
US11730473B2 (en) 2021-02-26 2023-08-22 Cilag Gmbh International Monitoring of manufacturing life-cycle
US11737749B2 (en) 2021-03-22 2023-08-29 Cilag Gmbh International Surgical stapling instrument comprising a retraction system
US11737751B2 (en) 2020-12-02 2023-08-29 Cilag Gmbh International Devices and methods of managing energy dissipated within sterile barriers of surgical instrument housings
US11744581B2 (en) 2020-12-02 2023-09-05 Cilag Gmbh International Powered surgical instruments with multi-phase tissue treatment
US11744583B2 (en) 2021-02-26 2023-09-05 Cilag Gmbh International Distal communication array to tune frequency of RF systems
US11744603B2 (en) 2021-03-24 2023-09-05 Cilag Gmbh International Multi-axis pivot joints for surgical instruments and methods for manufacturing same
US11749877B2 (en) 2021-02-26 2023-09-05 Cilag Gmbh International Stapling instrument comprising a signal antenna
US11751869B2 (en) 2021-02-26 2023-09-12 Cilag Gmbh International Monitoring of multiple sensors over time to detect moving characteristics of tissue
US11759202B2 (en) 2021-03-22 2023-09-19 Cilag Gmbh International Staple cartridge comprising an implantable layer
US11766259B2 (en) 2016-12-21 2023-09-26 Cilag Gmbh International Method of deforming staples from two different types of staple cartridges with the same surgical stapling instrument
US11766260B2 (en) 2016-12-21 2023-09-26 Cilag Gmbh International Methods of stapling tissue
US11771419B2 (en) 2019-06-28 2023-10-03 Cilag Gmbh International Packaging for a replaceable component of a surgical stapling system
US11779330B2 (en) 2020-10-29 2023-10-10 Cilag Gmbh International Surgical instrument comprising a jaw alignment system
US11786243B2 (en) 2021-03-24 2023-10-17 Cilag Gmbh International Firing members having flexible portions for adapting to a load during a surgical firing stroke
US11786239B2 (en) 2021-03-24 2023-10-17 Cilag Gmbh International Surgical instrument articulation joint arrangements comprising multiple moving linkage features
US11793522B2 (en) 2015-09-30 2023-10-24 Cilag Gmbh International Staple cartridge assembly including a compressible adjunct
US11793516B2 (en) 2021-03-24 2023-10-24 Cilag Gmbh International Surgical staple cartridge comprising longitudinal support beam
US11793514B2 (en) 2021-02-26 2023-10-24 Cilag Gmbh International Staple cartridge comprising sensor array which may be embedded in cartridge body
US11793518B2 (en) 2006-01-31 2023-10-24 Cilag Gmbh International Powered surgical instruments with firing system lockout arrangements
US11806011B2 (en) 2021-03-22 2023-11-07 Cilag Gmbh International Stapling instrument comprising tissue compression systems
US11812964B2 (en) 2021-02-26 2023-11-14 Cilag Gmbh International Staple cartridge comprising a power management circuit
US11826042B2 (en) 2021-03-22 2023-11-28 Cilag Gmbh International Surgical instrument comprising a firing drive including a selectable leverage mechanism
US11826048B2 (en) 2017-06-28 2023-11-28 Cilag Gmbh International Surgical instrument comprising selectively actuatable rotatable couplers
US11826132B2 (en) 2015-03-06 2023-11-28 Cilag Gmbh International Time dependent evaluation of sensor data to determine stability, creep, and viscoelastic elements of measures
US11826012B2 (en) 2021-03-22 2023-11-28 Cilag Gmbh International Stapling instrument comprising a pulsed motor-driven firing rack
US11832816B2 (en) 2021-03-24 2023-12-05 Cilag Gmbh International Surgical stapling assembly comprising nonplanar staples and planar staples
US11839352B2 (en) 2007-01-11 2023-12-12 Cilag Gmbh International Surgical stapling device with an end effector
US11844518B2 (en) 2020-10-29 2023-12-19 Cilag Gmbh International Method for operating a surgical instrument
US11844520B2 (en) 2019-12-19 2023-12-19 Cilag Gmbh International Staple cartridge comprising driver retention members
US11849943B2 (en) 2020-12-02 2023-12-26 Cilag Gmbh International Surgical instrument with cartridge release mechanisms
US11849941B2 (en) 2007-06-29 2023-12-26 Cilag Gmbh International Staple cartridge having staple cavities extending at a transverse angle relative to a longitudinal cartridge axis
US11849952B2 (en) 2010-09-30 2023-12-26 Cilag Gmbh International Staple cartridge comprising staples positioned within a compressible portion thereof
US11849944B2 (en) 2021-03-24 2023-12-26 Cilag Gmbh International Drivers for fastener cartridge assemblies having rotary drive screws
US11849945B2 (en) 2021-03-24 2023-12-26 Cilag Gmbh International Rotary-driven surgical stapling assembly comprising eccentrically driven firing member
US11857183B2 (en) 2021-03-24 2024-01-02 Cilag Gmbh International Stapling assembly components having metal substrates and plastic bodies
US11877745B2 (en) 2021-10-18 2024-01-23 Cilag Gmbh International Surgical stapling assembly having longitudinally-repeating staple leg clusters
US11883026B2 (en) 2014-04-16 2024-01-30 Cilag Gmbh International Fastener cartridge assemblies and staple retainer cover arrangements
USD1013170S1 (en) 2020-10-29 2024-01-30 Cilag Gmbh International Surgical instrument assembly
US11890012B2 (en) 2004-07-28 2024-02-06 Cilag Gmbh International Staple cartridge comprising cartridge body and attached support
US11890010B2 (en) 2020-12-02 2024-02-06 Cllag GmbH International Dual-sided reinforced reload for surgical instruments
US11896217B2 (en) 2020-10-29 2024-02-13 Cilag Gmbh International Surgical instrument comprising an articulation lock
US11896219B2 (en) 2021-03-24 2024-02-13 Cilag Gmbh International Mating features between drivers and underside of a cartridge deck
US11896218B2 (en) 2021-03-24 2024-02-13 Cilag Gmbh International Method of using a powered stapling device
US11903581B2 (en) 2019-04-30 2024-02-20 Cilag Gmbh International Methods for stapling tissue using a surgical instrument
US11903582B2 (en) 2021-03-24 2024-02-20 Cilag Gmbh International Leveraging surfaces for cartridge installation
US11911032B2 (en) 2019-12-19 2024-02-27 Cilag Gmbh International Staple cartridge comprising a seating cam
US11925349B2 (en) 2021-02-26 2024-03-12 Cilag Gmbh International Adjustment to transfer parameters to improve available power
US11931033B2 (en) 2019-12-19 2024-03-19 Cilag Gmbh International Staple cartridge comprising a latch lockout
US11931025B2 (en) 2020-10-29 2024-03-19 Cilag Gmbh International Surgical instrument comprising a releasable closure drive lock
US11937816B2 (en) 2021-10-28 2024-03-26 Cilag Gmbh International Electrical lead arrangements for surgical instruments
US11944300B2 (en) 2017-08-03 2024-04-02 Cilag Gmbh International Method for operating a surgical system bailout
US11944338B2 (en) 2015-03-06 2024-04-02 Cilag Gmbh International Multiple level thresholds to modify operation of powered surgical instruments
US11944336B2 (en) 2021-03-24 2024-04-02 Cilag Gmbh International Joint arrangements for multi-planar alignment and support of operational drive shafts in articulatable surgical instruments
US11944296B2 (en) 2020-12-02 2024-04-02 Cilag Gmbh International Powered surgical instruments with external connectors
US11950779B2 (en) 2021-02-26 2024-04-09 Cilag Gmbh International Method of powering and communicating with a staple cartridge
US11950777B2 (en) 2021-02-26 2024-04-09 Cilag Gmbh International Staple cartridge comprising an information access control system
US11957345B2 (en) 2022-12-19 2024-04-16 Cilag Gmbh International Articulatable surgical instruments with conductive pathways for signal communication

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8369932B2 (en) 2010-01-29 2013-02-05 Medtronic Ablation Frontiers Llc Optical methods of identifying the location of a medical device within a patient's body in order to locate the fossa ovalis for trans-septal procedures
EP2600785B8 (en) * 2010-08-06 2015-04-08 Lascor GmbH Laser safety device
US10850108B2 (en) * 2017-03-08 2020-12-01 Pacesetter, Inc. Coronary sinus-anchored sheath for delivery of his bundle pacing lead

Citations (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4878492A (en) * 1987-10-08 1989-11-07 C. R. Bard, Inc. Laser balloon catheter
US4961738A (en) * 1987-01-28 1990-10-09 Mackin Robert A Angioplasty catheter with illumination and visualization within angioplasty balloon
US5112305A (en) * 1989-06-20 1992-05-12 Cedars-Sinai Medical Center Catheter device for intramural delivery of therapeutic agents
US5127408A (en) * 1990-09-14 1992-07-07 Duke University Apparatus for intravascularly measuring oxidative metabolism in body organs and tissues
US5261889A (en) * 1992-11-24 1993-11-16 Boston Scientific Corporation Injection therapy catheter
US5280788A (en) * 1991-02-26 1994-01-25 Massachusetts Institute Of Technology Devices and methods for optical diagnosis of tissue
US5419777A (en) * 1994-03-10 1995-05-30 Bavaria Medizin Technologie Gmbh Catheter for injecting a fluid or medicine
US5497770A (en) * 1994-01-14 1996-03-12 The Regents Of The University Of California Tissue viability monitor
US5681281A (en) * 1995-07-10 1997-10-28 Interventional Technologies, Inc. Catheter with fluid medication injectors
US5773835A (en) * 1996-06-07 1998-06-30 Rare Earth Medical, Inc. Fiber optic spectroscopy
US5860951A (en) * 1992-01-07 1999-01-19 Arthrocare Corporation Systems and methods for electrosurgical myocardial revascularization
US5865738A (en) * 1993-12-10 1999-02-02 Regents Of The University Of California Tissue viability monitor
US6045565A (en) * 1997-11-04 2000-04-04 Scimed Life Systems, Inc. Percutaneous myocardial revascularization growth factor mediums and method
US6102904A (en) * 1995-07-10 2000-08-15 Interventional Technologies, Inc. Device for injecting fluid into a wall of a blood vessel
US6210392B1 (en) * 1999-01-15 2001-04-03 Interventional Technologies, Inc. Method for treating a wall of a blood vessel
US6283951B1 (en) * 1996-10-11 2001-09-04 Transvascular, Inc. Systems and methods for delivering drugs to selected locations within the body
US6286514B1 (en) * 1996-11-05 2001-09-11 Jerome Lemelson System and method for treating select tissue in a living being
US6296608B1 (en) * 1996-07-08 2001-10-02 Boston Scientific Corporation Diagnosing and performing interventional procedures on tissue in vivo
US6343227B1 (en) * 1996-11-21 2002-01-29 Boston Scientific Corporation Miniature spectrometer
US20020026127A1 (en) * 2000-03-23 2002-02-28 Balbierz Daniel J. Tissue biopsy and treatment apparatus and method
US6461296B1 (en) * 1998-06-26 2002-10-08 2000 Injectx, Inc. Method and apparatus for delivery of genes, enzymes and biological agents to tissue cells
US20020168317A1 (en) * 2000-03-03 2002-11-14 Intramedical Imaging, Llc Methods and devices to expand applications of intraoperative radiation probes
US6485413B1 (en) * 1991-04-29 2002-11-26 The General Hospital Corporation Methods and apparatus for forward-directed optical scanning instruments
US6564088B1 (en) * 2000-01-21 2003-05-13 University Of Massachusetts Probe for localized tissue spectroscopy
US20040024298A1 (en) * 2002-08-05 2004-02-05 Infraredx, Inc. Spectroscopic unwanted signal filters for discrimination of vulnerable plaque and method therefor
US6893421B1 (en) * 2000-08-08 2005-05-17 Scimed Life Systems, Inc. Catheter shaft assembly
US6922583B1 (en) * 1997-10-10 2005-07-26 Massachusetts Institute Of Technology Method for measuring tissue morphology
US6953466B2 (en) * 1997-11-04 2005-10-11 Boston Scientific Scimed, Inc. Methods for delivering a therapeutic implant to tissue
US6975898B2 (en) * 2000-06-19 2005-12-13 University Of Washington Medical imaging, diagnosis, and therapy using a scanning single optical fiber system
US20050277816A1 (en) * 2004-05-05 2005-12-15 Chemlmage Corporation Cytological analysis by raman spectroscopic imaging
US20060184048A1 (en) * 2005-02-02 2006-08-17 Vahid Saadat Tissue visualization and manipulation system
US20080009751A1 (en) * 2006-07-10 2008-01-10 Berndt Malka S Optical spectroscopic injection needle

Patent Citations (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4961738A (en) * 1987-01-28 1990-10-09 Mackin Robert A Angioplasty catheter with illumination and visualization within angioplasty balloon
US4878492A (en) * 1987-10-08 1989-11-07 C. R. Bard, Inc. Laser balloon catheter
US5112305A (en) * 1989-06-20 1992-05-12 Cedars-Sinai Medical Center Catheter device for intramural delivery of therapeutic agents
US5127408A (en) * 1990-09-14 1992-07-07 Duke University Apparatus for intravascularly measuring oxidative metabolism in body organs and tissues
US5280788A (en) * 1991-02-26 1994-01-25 Massachusetts Institute Of Technology Devices and methods for optical diagnosis of tissue
US6485413B1 (en) * 1991-04-29 2002-11-26 The General Hospital Corporation Methods and apparatus for forward-directed optical scanning instruments
US5860951A (en) * 1992-01-07 1999-01-19 Arthrocare Corporation Systems and methods for electrosurgical myocardial revascularization
US5261889A (en) * 1992-11-24 1993-11-16 Boston Scientific Corporation Injection therapy catheter
US5865738A (en) * 1993-12-10 1999-02-02 Regents Of The University Of California Tissue viability monitor
US5497770A (en) * 1994-01-14 1996-03-12 The Regents Of The University Of California Tissue viability monitor
US5419777A (en) * 1994-03-10 1995-05-30 Bavaria Medizin Technologie Gmbh Catheter for injecting a fluid or medicine
US5681281A (en) * 1995-07-10 1997-10-28 Interventional Technologies, Inc. Catheter with fluid medication injectors
US6102904A (en) * 1995-07-10 2000-08-15 Interventional Technologies, Inc. Device for injecting fluid into a wall of a blood vessel
US5773835A (en) * 1996-06-07 1998-06-30 Rare Earth Medical, Inc. Fiber optic spectroscopy
US6296608B1 (en) * 1996-07-08 2001-10-02 Boston Scientific Corporation Diagnosing and performing interventional procedures on tissue in vivo
US6283951B1 (en) * 1996-10-11 2001-09-04 Transvascular, Inc. Systems and methods for delivering drugs to selected locations within the body
US6286514B1 (en) * 1996-11-05 2001-09-11 Jerome Lemelson System and method for treating select tissue in a living being
US6343227B1 (en) * 1996-11-21 2002-01-29 Boston Scientific Corporation Miniature spectrometer
US6922583B1 (en) * 1997-10-10 2005-07-26 Massachusetts Institute Of Technology Method for measuring tissue morphology
US6045565A (en) * 1997-11-04 2000-04-04 Scimed Life Systems, Inc. Percutaneous myocardial revascularization growth factor mediums and method
US6953466B2 (en) * 1997-11-04 2005-10-11 Boston Scientific Scimed, Inc. Methods for delivering a therapeutic implant to tissue
US6461296B1 (en) * 1998-06-26 2002-10-08 2000 Injectx, Inc. Method and apparatus for delivery of genes, enzymes and biological agents to tissue cells
US6210392B1 (en) * 1999-01-15 2001-04-03 Interventional Technologies, Inc. Method for treating a wall of a blood vessel
US6564088B1 (en) * 2000-01-21 2003-05-13 University Of Massachusetts Probe for localized tissue spectroscopy
US20020168317A1 (en) * 2000-03-03 2002-11-14 Intramedical Imaging, Llc Methods and devices to expand applications of intraoperative radiation probes
US20020026127A1 (en) * 2000-03-23 2002-02-28 Balbierz Daniel J. Tissue biopsy and treatment apparatus and method
US6975898B2 (en) * 2000-06-19 2005-12-13 University Of Washington Medical imaging, diagnosis, and therapy using a scanning single optical fiber system
US6893421B1 (en) * 2000-08-08 2005-05-17 Scimed Life Systems, Inc. Catheter shaft assembly
US20040024298A1 (en) * 2002-08-05 2004-02-05 Infraredx, Inc. Spectroscopic unwanted signal filters for discrimination of vulnerable plaque and method therefor
US20050277816A1 (en) * 2004-05-05 2005-12-15 Chemlmage Corporation Cytological analysis by raman spectroscopic imaging
US20060184048A1 (en) * 2005-02-02 2006-08-17 Vahid Saadat Tissue visualization and manipulation system
US20080009751A1 (en) * 2006-07-10 2008-01-10 Berndt Malka S Optical spectroscopic injection needle

Cited By (891)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10271827B2 (en) 2002-03-19 2019-04-30 C. R. Bard, Inc. Disposable biopsy unit
US9072502B2 (en) 2002-03-19 2015-07-07 C. R. Bard, Inc. Disposable biopsy unit
US11382608B2 (en) 2002-03-19 2022-07-12 C. R. Bard, Inc. Disposable biopsy unit
US9421002B2 (en) 2002-03-19 2016-08-23 C. R. Bard, Inc. Disposable biopsy unit
US8728004B2 (en) 2003-03-29 2014-05-20 C.R. Bard, Inc. Biopsy needle system having a pressure generating unit
US9456809B2 (en) 2004-07-09 2016-10-04 Bard Peripheral Vascular, Inc. Tissue sample flushing system for biopsy device
US10499888B2 (en) 2004-07-09 2019-12-10 Bard Peripheral Vascular, Inc. Tissue sample flushing system for biopsy device
US10166011B2 (en) 2004-07-09 2019-01-01 Bard Peripheral Vascular, Inc. Transport system for biopsy device
US8926527B2 (en) 2004-07-09 2015-01-06 Bard Peripheral Vascular, Inc. Tissue sample flushing system for biopsy device
US9345458B2 (en) 2004-07-09 2016-05-24 Bard Peripheral Vascular, Inc. Transport system for biopsy device
US10293100B2 (en) 2004-07-28 2019-05-21 Ethicon Llc Surgical stapling instrument having a medical substance dispenser
US10799240B2 (en) 2004-07-28 2020-10-13 Ethicon Llc Surgical instrument comprising a staple firing lockout
US11116502B2 (en) 2004-07-28 2021-09-14 Cilag Gmbh International Surgical stapling instrument incorporating a two-piece firing mechanism
US11135352B2 (en) 2004-07-28 2021-10-05 Cilag Gmbh International End effector including a gradually releasable medical adjunct
US10485547B2 (en) 2004-07-28 2019-11-26 Ethicon Llc Surgical staple cartridges
US11083456B2 (en) 2004-07-28 2021-08-10 Cilag Gmbh International Articulating surgical instrument incorporating a two-piece firing mechanism
US10687817B2 (en) 2004-07-28 2020-06-23 Ethicon Llc Stapling device comprising a firing member lockout
US11890012B2 (en) 2004-07-28 2024-02-06 Cilag Gmbh International Staple cartridge comprising cartridge body and attached support
US11812960B2 (en) 2004-07-28 2023-11-14 Cilag Gmbh International Method of segmenting the operation of a surgical stapling instrument
US11882987B2 (en) 2004-07-28 2024-01-30 Cilag Gmbh International Articulating surgical stapling instrument incorporating a two-piece E-beam firing mechanism
US11684365B2 (en) 2004-07-28 2023-06-27 Cilag Gmbh International Replaceable staple cartridges for surgical instruments
US10716563B2 (en) 2004-07-28 2020-07-21 Ethicon Llc Stapling system comprising an instrument assembly including a lockout
US10568629B2 (en) 2004-07-28 2020-02-25 Ethicon Llc Articulating surgical stapling instrument
US10383634B2 (en) 2004-07-28 2019-08-20 Ethicon Llc Stapling system incorporating a firing lockout
US11896225B2 (en) 2004-07-28 2024-02-13 Cilag Gmbh International Staple cartridge comprising a pan
US20160157775A1 (en) * 2004-08-09 2016-06-09 Ewa Herbst Method and apparatus for diagnosis and treatment
US11020597B2 (en) * 2004-08-09 2021-06-01 Innovations Holdings, L.L.C. Method and apparatus for diagnosis and treatment
US9199076B2 (en) * 2004-08-09 2015-12-01 Innovations Holdings, L.L.C. Method and apparatus for diagnosis and treatment
US20120296176A1 (en) * 2004-08-09 2012-11-22 Ewa Herbst Method and apparatus for diagnosis and treatment
US8728003B2 (en) 2005-08-10 2014-05-20 C.R. Bard Inc. Single insertion, multiple sample biopsy device with integrated markers
US8961430B2 (en) 2005-08-10 2015-02-24 C.R. Bard, Inc. Single-insertion, multiple sampling biopsy device usable with various transport systems and integrated markers
US10010307B2 (en) 2005-08-10 2018-07-03 C. R. Bard, Inc. Single-insertion, multiple sampling biopsy device with linear drive
US8721563B2 (en) 2005-08-10 2014-05-13 C. R. Bard, Inc. Single-insertion, multiple sample biopsy device with integrated markers
US11849928B2 (en) 2005-08-10 2023-12-26 C. R. Bard, Inc. Single-insertion, multiple sampling biopsy device usable with various transport systems and integrated markers
US8771200B2 (en) 2005-08-10 2014-07-08 C.R. Bard, Inc. Single insertion, multiple sampling biopsy device with linear drive
US10368849B2 (en) 2005-08-10 2019-08-06 C. R. Bard, Inc. Single-insertion, multiple sampling biopsy device usable with various transport systems and integrated markers
US11272928B2 (en) 2005-08-31 2022-03-15 Cilag GmbH Intemational Staple cartridges for forming staples having differing formed staple heights
US11730474B2 (en) 2005-08-31 2023-08-22 Cilag Gmbh International Fastener cartridge assembly comprising a movable cartridge and a staple driver arrangement
US11771425B2 (en) 2005-08-31 2023-10-03 Cilag Gmbh International Stapling assembly for forming staples to different formed heights
US11484311B2 (en) 2005-08-31 2022-11-01 Cilag Gmbh International Staple cartridge comprising a staple driver arrangement
US11793512B2 (en) 2005-08-31 2023-10-24 Cilag Gmbh International Staple cartridges for forming staples having differing formed staple heights
US10842488B2 (en) 2005-08-31 2020-11-24 Ethicon Llc Fastener cartridge assembly comprising a fixed anvil and different staple heights
US11484312B2 (en) 2005-08-31 2022-11-01 Cilag Gmbh International Staple cartridge comprising a staple driver arrangement
US11246590B2 (en) 2005-08-31 2022-02-15 Cilag Gmbh International Staple cartridge including staple drivers having different unfired heights
US11839375B2 (en) 2005-08-31 2023-12-12 Cilag Gmbh International Fastener cartridge assembly comprising an anvil and different staple heights
US11179153B2 (en) 2005-08-31 2021-11-23 Cilag Gmbh International Staple cartridges for forming staples having differing formed staple heights
US11172927B2 (en) 2005-08-31 2021-11-16 Cilag Gmbh International Staple cartridges for forming staples having differing formed staple heights
US11134947B2 (en) 2005-08-31 2021-10-05 Cilag Gmbh International Fastener cartridge assembly comprising a camming sled with variable cam arrangements
US11576673B2 (en) 2005-08-31 2023-02-14 Cilag Gmbh International Stapling assembly for forming staples to different heights
US11399828B2 (en) 2005-08-31 2022-08-02 Cilag Gmbh International Fastener cartridge assembly comprising a fixed anvil and different staple heights
US11090045B2 (en) 2005-08-31 2021-08-17 Cilag Gmbh International Staple cartridges for forming staples having differing formed staple heights
US10842489B2 (en) 2005-08-31 2020-11-24 Ethicon Llc Fastener cartridge assembly comprising a cam and driver arrangement
US10932774B2 (en) 2005-08-31 2021-03-02 Ethicon Llc Surgical end effector for forming staples to different heights
US10993713B2 (en) 2005-11-09 2021-05-04 Ethicon Llc Surgical instruments
US10806449B2 (en) 2005-11-09 2020-10-20 Ethicon Llc End effectors for surgical staplers
US11793511B2 (en) 2005-11-09 2023-10-24 Cilag Gmbh International Surgical instruments
US11103269B2 (en) 2006-01-31 2021-08-31 Cilag Gmbh International Motor-driven surgical cutting and fastening instrument with tactile position feedback
US10893853B2 (en) 2006-01-31 2021-01-19 Ethicon Llc Stapling assembly including motor drive systems
US10806479B2 (en) 2006-01-31 2020-10-20 Ethicon Llc Motor-driven surgical cutting and fastening instrument with tactile position feedback
US11883020B2 (en) 2006-01-31 2024-01-30 Cilag Gmbh International Surgical instrument having a feedback system
US10485539B2 (en) 2006-01-31 2019-11-26 Ethicon Llc Surgical instrument with firing lockout
US10959722B2 (en) 2006-01-31 2021-03-30 Ethicon Llc Surgical instrument for deploying fasteners by way of rotational motion
US10653435B2 (en) 2006-01-31 2020-05-19 Ethicon Llc Motor-driven surgical cutting and fastening instrument with tactile position feedback
US10952728B2 (en) 2006-01-31 2021-03-23 Ethicon Llc Powered surgical instruments with firing system lockout arrangements
US10842491B2 (en) 2006-01-31 2020-11-24 Ethicon Llc Surgical system with an actuation console
US10463384B2 (en) 2006-01-31 2019-11-05 Ethicon Llc Stapling assembly
US11051811B2 (en) 2006-01-31 2021-07-06 Ethicon Llc End effector for use with a surgical instrument
US11612393B2 (en) 2006-01-31 2023-03-28 Cilag Gmbh International Robotically-controlled end effector
US11890008B2 (en) 2006-01-31 2024-02-06 Cilag Gmbh International Surgical instrument with firing lockout
US11051813B2 (en) 2006-01-31 2021-07-06 Cilag Gmbh International Powered surgical instruments with firing system lockout arrangements
US11166717B2 (en) 2006-01-31 2021-11-09 Cilag Gmbh International Surgical instrument with firing lockout
US11890029B2 (en) 2006-01-31 2024-02-06 Cilag Gmbh International Motor-driven surgical cutting and fastening instrument
US11224427B2 (en) 2006-01-31 2022-01-18 Cilag Gmbh International Surgical stapling system including a console and retraction assembly
US11020113B2 (en) 2006-01-31 2021-06-01 Cilag Gmbh International Surgical instrument having force feedback capabilities
US11058420B2 (en) 2006-01-31 2021-07-13 Cilag Gmbh International Surgical stapling apparatus comprising a lockout system
US11224454B2 (en) 2006-01-31 2022-01-18 Cilag Gmbh International Motor-driven surgical cutting and fastening instrument with tactile position feedback
US11246616B2 (en) 2006-01-31 2022-02-15 Cilag Gmbh International Motor-driven surgical cutting and fastening instrument with tactile position feedback
US10993717B2 (en) 2006-01-31 2021-05-04 Ethicon Llc Surgical stapling system comprising a control system
US10743849B2 (en) 2006-01-31 2020-08-18 Ethicon Llc Stapling system including an articulation system
US11793518B2 (en) 2006-01-31 2023-10-24 Cilag Gmbh International Powered surgical instruments with firing system lockout arrangements
US11944299B2 (en) 2006-01-31 2024-04-02 Cilag Gmbh International Surgical instrument having force feedback capabilities
US11648024B2 (en) 2006-01-31 2023-05-16 Cilag Gmbh International Motor-driven surgical cutting and fastening instrument with position feedback
US11278279B2 (en) 2006-01-31 2022-03-22 Cilag Gmbh International Surgical instrument assembly
US10675028B2 (en) 2006-01-31 2020-06-09 Ethicon Llc Powered surgical instruments with firing system lockout arrangements
US10709468B2 (en) 2006-01-31 2020-07-14 Ethicon Llc Motor-driven surgical cutting and fastening instrument
US11648008B2 (en) 2006-01-31 2023-05-16 Cilag Gmbh International Surgical instrument having force feedback capabilities
US11660110B2 (en) 2006-01-31 2023-05-30 Cilag Gmbh International Motor-driven surgical cutting and fastening instrument with tactile position feedback
US10426463B2 (en) 2006-01-31 2019-10-01 Ehticon LLC Surgical instrument having a feedback system
US10918380B2 (en) 2006-01-31 2021-02-16 Ethicon Llc Surgical instrument system including a control system
US11801051B2 (en) 2006-01-31 2023-10-31 Cilag Gmbh International Accessing data stored in a memory of a surgical instrument
US11364046B2 (en) 2006-01-31 2022-06-21 Cilag Gmbh International Motor-driven surgical cutting and fastening instrument with tactile position feedback
US11000275B2 (en) 2006-01-31 2021-05-11 Ethicon Llc Surgical instrument
US11350916B2 (en) 2006-01-31 2022-06-07 Cilag Gmbh International Endoscopic surgical instrument with a handle that can articulate with respect to the shaft
US11272938B2 (en) 2006-06-27 2022-03-15 Cilag Gmbh International Surgical instrument including dedicated firing and retraction assemblies
US8951208B2 (en) 2006-08-21 2015-02-10 C. R. Bard, Inc. Self-contained handheld biopsy needle
US9439632B2 (en) 2006-08-21 2016-09-13 C. R. Bard, Inc. Self-contained handheld biopsy needle
US10617399B2 (en) 2006-08-21 2020-04-14 C.R. Bard, Inc. Self-contained handheld biopsy needle
US10595862B2 (en) 2006-09-29 2020-03-24 Ethicon Llc Staple cartridge including a compressible member
US11622785B2 (en) 2006-09-29 2023-04-11 Cilag Gmbh International Surgical staples having attached drivers and stapling instruments for deploying the same
US10448952B2 (en) 2006-09-29 2019-10-22 Ethicon Llc End effector for use with a surgical fastening instrument
US11571231B2 (en) 2006-09-29 2023-02-07 Cilag Gmbh International Staple cartridge having a driver for driving multiple staples
US11382626B2 (en) 2006-10-03 2022-07-12 Cilag Gmbh International Surgical system including a knife bar supported for rotational and axial travel
US11877748B2 (en) 2006-10-03 2024-01-23 Cilag Gmbh International Robotically-driven surgical instrument with E-beam driver
US11559289B2 (en) 2006-10-06 2023-01-24 Bard Peripheral Vascular, Inc. Tissue handling system with reduced operator exposure
US9566045B2 (en) 2006-10-06 2017-02-14 Bard Peripheral Vascular, Inc. Tissue handling system with reduced operator exposure
US10172594B2 (en) 2006-10-06 2019-01-08 Bard Peripheral Vascular, Inc. Tissue handling system with reduced operator exposure
US11583261B2 (en) 2006-10-24 2023-02-21 C. R. Bard, Inc. Large sample low aspect ratio biopsy needle
US10149664B2 (en) 2006-10-24 2018-12-11 C. R. Bard, Inc. Large sample low aspect ratio biopsy needle
US10517590B2 (en) 2007-01-10 2019-12-31 Ethicon Llc Powered surgical instrument having a transmission system
US11000277B2 (en) 2007-01-10 2021-05-11 Ethicon Llc Surgical instrument with wireless communication between control unit and remote sensor
US11937814B2 (en) 2007-01-10 2024-03-26 Cilag Gmbh International Surgical instrument for use with a robotic system
US11918211B2 (en) 2007-01-10 2024-03-05 Cilag Gmbh International Surgical stapling instrument for use with a robotic system
US11350929B2 (en) 2007-01-10 2022-06-07 Cilag Gmbh International Surgical instrument with wireless communication between control unit and sensor transponders
US11812961B2 (en) 2007-01-10 2023-11-14 Cilag Gmbh International Surgical instrument including a motor control system
US10918386B2 (en) 2007-01-10 2021-02-16 Ethicon Llc Interlock and surgical instrument including same
US11666332B2 (en) 2007-01-10 2023-06-06 Cilag Gmbh International Surgical instrument comprising a control circuit configured to adjust the operation of a motor
US11134943B2 (en) 2007-01-10 2021-10-05 Cilag Gmbh International Powered surgical instrument including a control unit and sensor
US11291441B2 (en) 2007-01-10 2022-04-05 Cilag Gmbh International Surgical instrument with wireless communication between control unit and remote sensor
US11771426B2 (en) 2007-01-10 2023-10-03 Cilag Gmbh International Surgical instrument with wireless communication
US11931032B2 (en) 2007-01-10 2024-03-19 Cilag Gmbh International Surgical instrument with wireless communication between a control unit of a robotic system and remote sensor
US10517682B2 (en) 2007-01-10 2019-12-31 Ethicon Llc Surgical instrument with wireless communication between control unit and remote sensor
US11064998B2 (en) 2007-01-10 2021-07-20 Cilag Gmbh International Surgical instrument with wireless communication between a control unit of a robotic system and remote sensor
US11844521B2 (en) 2007-01-10 2023-12-19 Cilag Gmbh International Surgical instrument for use with a robotic system
US11849947B2 (en) 2007-01-10 2023-12-26 Cilag Gmbh International Surgical system including a control circuit and a passively-powered transponder
US10945729B2 (en) 2007-01-10 2021-03-16 Ethicon Llc Interlock and surgical instrument including same
US10952727B2 (en) 2007-01-10 2021-03-23 Ethicon Llc Surgical instrument for assessing the state of a staple cartridge
US11006951B2 (en) 2007-01-10 2021-05-18 Ethicon Llc Surgical instrument with wireless communication between control unit and sensor transponders
US11166720B2 (en) 2007-01-10 2021-11-09 Cilag Gmbh International Surgical instrument including a control module for assessing an end effector
US11839352B2 (en) 2007-01-11 2023-12-12 Cilag Gmbh International Surgical stapling device with an end effector
US11039836B2 (en) 2007-01-11 2021-06-22 Cilag Gmbh International Staple cartridge for use with a surgical stapling instrument
US20090062782A1 (en) * 2007-03-13 2009-03-05 Joe Denton Brown Laser Delivery Apparatus With Safety Feedback System
US10702267B2 (en) 2007-03-15 2020-07-07 Ethicon Llc Surgical stapling instrument having a releasable buttress material
US11337693B2 (en) 2007-03-15 2022-05-24 Cilag Gmbh International Surgical stapling instrument having a releasable buttress material
US10398433B2 (en) 2007-03-28 2019-09-03 Ethicon Llc Laparoscopic clamp load measuring devices
US20080287965A1 (en) * 2007-05-17 2008-11-20 Richard Ducharme Radiopaque band ligator
US10363033B2 (en) 2007-06-04 2019-07-30 Ethicon Llc Robotically-controlled surgical instruments
US11559302B2 (en) 2007-06-04 2023-01-24 Cilag Gmbh International Surgical instrument including a firing member movable at different speeds
US11672531B2 (en) 2007-06-04 2023-06-13 Cilag Gmbh International Rotary drive systems for surgical instruments
US11134938B2 (en) 2007-06-04 2021-10-05 Cilag Gmbh International Robotically-controlled shaft based rotary drive systems for surgical instruments
US11147549B2 (en) 2007-06-04 2021-10-19 Cilag Gmbh International Stapling instrument including a firing system and a closure system
US11154298B2 (en) 2007-06-04 2021-10-26 Cilag Gmbh International Stapling system for use with a robotic surgical system
US11857181B2 (en) 2007-06-04 2024-01-02 Cilag Gmbh International Robotically-controlled shaft based rotary drive systems for surgical instruments
US10368863B2 (en) 2007-06-04 2019-08-06 Ethicon Llc Robotically-controlled shaft based rotary drive systems for surgical instruments
US11564682B2 (en) 2007-06-04 2023-01-31 Cilag Gmbh International Surgical stapler device
US10327765B2 (en) 2007-06-04 2019-06-25 Ethicon Llc Drive systems for surgical instruments
US11911028B2 (en) 2007-06-04 2024-02-27 Cilag Gmbh International Surgical instruments for use with a robotic surgical system
US10299787B2 (en) 2007-06-04 2019-05-28 Ethicon Llc Stapling system comprising rotary inputs
US11648006B2 (en) 2007-06-04 2023-05-16 Cilag Gmbh International Robotically-controlled shaft based rotary drive systems for surgical instruments
US11013511B2 (en) 2007-06-22 2021-05-25 Ethicon Llc Surgical stapling instrument with an articulatable end effector
US11849941B2 (en) 2007-06-29 2023-12-26 Cilag Gmbh International Staple cartridge having staple cavities extending at a transverse angle relative to a longitudinal cartridge axis
US11925346B2 (en) 2007-06-29 2024-03-12 Cilag Gmbh International Surgical staple cartridge including tissue supporting surfaces
US20100286530A1 (en) * 2007-12-19 2010-11-11 Saurav Paul Photodynamic-based tissue sensing device and method
US8858463B2 (en) 2007-12-20 2014-10-14 C. R. Bard, Inc. Biopsy device
US9775588B2 (en) 2007-12-20 2017-10-03 C. R. Bard, Inc. Biopsy device
US10687791B2 (en) 2007-12-20 2020-06-23 C. R. Bard, Inc. Biopsy device
US10905426B2 (en) 2008-02-14 2021-02-02 Ethicon Llc Detachable motor powered surgical instrument
US10888329B2 (en) 2008-02-14 2021-01-12 Ethicon Llc Detachable motor powered surgical instrument
US10542974B2 (en) 2008-02-14 2020-01-28 Ethicon Llc Surgical instrument including a control system
US10463370B2 (en) 2008-02-14 2019-11-05 Ethicon Llc Motorized surgical instrument
US10905427B2 (en) 2008-02-14 2021-02-02 Ethicon Llc Surgical System
US11464514B2 (en) 2008-02-14 2022-10-11 Cilag Gmbh International Motorized surgical stapling system including a sensing array
US11446034B2 (en) 2008-02-14 2022-09-20 Cilag Gmbh International Surgical stapling assembly comprising first and second actuation systems configured to perform different functions
US10716568B2 (en) 2008-02-14 2020-07-21 Ethicon Llc Surgical stapling apparatus with control features operable with one hand
US11717285B2 (en) 2008-02-14 2023-08-08 Cilag Gmbh International Surgical cutting and fastening instrument having RF electrodes
US10806450B2 (en) 2008-02-14 2020-10-20 Ethicon Llc Surgical cutting and fastening instrument having a control system
US10898195B2 (en) 2008-02-14 2021-01-26 Ethicon Llc Detachable motor powered surgical instrument
US10722232B2 (en) 2008-02-14 2020-07-28 Ethicon Llc Surgical instrument for use with different cartridges
US10743870B2 (en) 2008-02-14 2020-08-18 Ethicon Llc Surgical stapling apparatus with interlockable firing system
US10743851B2 (en) 2008-02-14 2020-08-18 Ethicon Llc Interchangeable tools for surgical instruments
US10765432B2 (en) 2008-02-14 2020-09-08 Ethicon Llc Surgical device including a control system
US10898194B2 (en) 2008-02-14 2021-01-26 Ethicon Llc Detachable motor powered surgical instrument
US11612395B2 (en) 2008-02-14 2023-03-28 Cilag Gmbh International Surgical system including a control system having an RFID tag reader
US10639036B2 (en) 2008-02-14 2020-05-05 Ethicon Llc Robotically-controlled motorized surgical cutting and fastening instrument
US10682141B2 (en) 2008-02-14 2020-06-16 Ethicon Llc Surgical device including a control system
US11801047B2 (en) 2008-02-14 2023-10-31 Cilag Gmbh International Surgical stapling system comprising a control circuit configured to selectively monitor tissue impedance and adjust control of a motor
US10888330B2 (en) 2008-02-14 2021-01-12 Ethicon Llc Surgical system
US10682142B2 (en) 2008-02-14 2020-06-16 Ethicon Llc Surgical stapling apparatus including an articulation system
US10779822B2 (en) 2008-02-14 2020-09-22 Ethicon Llc System including a surgical cutting and fastening instrument
US11484307B2 (en) 2008-02-14 2022-11-01 Cilag Gmbh International Loading unit coupleable to a surgical stapling system
US10925605B2 (en) 2008-02-14 2021-02-23 Ethicon Llc Surgical stapling system
US10874396B2 (en) 2008-02-14 2020-12-29 Ethicon Llc Stapling instrument for use with a surgical robot
US10660640B2 (en) 2008-02-14 2020-05-26 Ethicon Llc Motorized surgical cutting and fastening instrument
US11571212B2 (en) 2008-02-14 2023-02-07 Cilag Gmbh International Surgical stapling system including an impedance sensor
US10307163B2 (en) 2008-02-14 2019-06-04 Ethicon Llc Detachable motor powered surgical instrument
US11638583B2 (en) 2008-02-14 2023-05-02 Cilag Gmbh International Motorized surgical system having a plurality of power sources
US10856866B2 (en) 2008-02-15 2020-12-08 Ethicon Llc Surgical end effector having buttress retention features
US11272927B2 (en) 2008-02-15 2022-03-15 Cilag Gmbh International Layer arrangements for surgical staple cartridges
US11154297B2 (en) 2008-02-15 2021-10-26 Cilag Gmbh International Layer arrangements for surgical staple cartridges
US11412985B2 (en) 2008-03-03 2022-08-16 Koninklijke Philips N.V. Biopsy guidance by image-based X-ray system and photonic needle
US20100317964A1 (en) * 2008-03-03 2010-12-16 Koninklijke Philips Electronics N.V. Biopsy guidance by electromagnetic tracking and photonic needle
US20100331782A1 (en) * 2008-03-03 2010-12-30 Koninklijke Philips Electronics N.V. Biopsy guidance by image-based x-ray guidance system and photonic needle
US9179985B2 (en) * 2008-03-03 2015-11-10 Koninklijke Philips N.V. Biopsy guidance by electromagnetic tracking and photonic needle
US20110224502A1 (en) * 2008-06-16 2011-09-15 Ewa Herbst Method and apparatus for diagnosis and treatment
WO2010028039A2 (en) * 2008-09-02 2010-03-11 Epitek, Inc. Device and method for positioning a guidewire around the myocardium
WO2010028039A3 (en) * 2008-09-02 2010-05-14 Epitek, Inc. Device and method for positioning a guidewire around the myocardium
WO2010030603A3 (en) * 2008-09-09 2010-06-10 Oxyband Technologies, Inc. Methods and apparatus for charging and evacuating diffusion dressing
US20100063462A1 (en) * 2008-09-09 2010-03-11 Postel Olivier B Methods and Apparatus for Charging and Evacuating a Diffusion Dressing
US10383985B2 (en) 2008-09-09 2019-08-20 Oxyband Technologies, Inc. Methods and apparatus for charging and evacuating a diffusion dressing
US20100196343A1 (en) * 2008-09-16 2010-08-05 O'neil Michael P Compositions, methods, devices, and systems for skin care
US20100069760A1 (en) * 2008-09-17 2010-03-18 Cornova, Inc. Methods and apparatus for analyzing and locally treating a body lumen
US10420549B2 (en) 2008-09-23 2019-09-24 Ethicon Llc Motorized surgical instrument
US11406380B2 (en) 2008-09-23 2022-08-09 Cilag Gmbh International Motorized surgical instrument
US11871923B2 (en) 2008-09-23 2024-01-16 Cilag Gmbh International Motorized surgical instrument
US11812954B2 (en) 2008-09-23 2023-11-14 Cilag Gmbh International Robotically-controlled motorized surgical instrument with an end effector
US10765425B2 (en) 2008-09-23 2020-09-08 Ethicon Llc Robotically-controlled motorized surgical instrument with an end effector
US10898184B2 (en) 2008-09-23 2021-01-26 Ethicon Llc Motor-driven surgical cutting instrument
US11684361B2 (en) 2008-09-23 2023-06-27 Cilag Gmbh International Motor-driven surgical cutting instrument
US11103241B2 (en) 2008-09-23 2021-08-31 Cilag Gmbh International Motor-driven surgical cutting instrument
US11648005B2 (en) 2008-09-23 2023-05-16 Cilag Gmbh International Robotically-controlled motorized surgical instrument with an end effector
US11617576B2 (en) 2008-09-23 2023-04-04 Cilag Gmbh International Motor-driven surgical cutting instrument
US11617575B2 (en) 2008-09-23 2023-04-04 Cilag Gmbh International Motor-driven surgical cutting instrument
US10736628B2 (en) 2008-09-23 2020-08-11 Ethicon Llc Motor-driven surgical cutting instrument
US10980535B2 (en) 2008-09-23 2021-04-20 Ethicon Llc Motorized surgical instrument with an end effector
US10485537B2 (en) 2008-09-23 2019-11-26 Ethicon Llc Motorized surgical instrument
US11517304B2 (en) 2008-09-23 2022-12-06 Cilag Gmbh International Motor-driven surgical cutting instrument
US11045189B2 (en) 2008-09-23 2021-06-29 Cilag Gmbh International Robotically-controlled motorized surgical instrument with an end effector
US11583279B2 (en) 2008-10-10 2023-02-21 Cilag Gmbh International Powered surgical cutting and stapling apparatus with manually retractable firing system
US11730477B2 (en) 2008-10-10 2023-08-22 Cilag Gmbh International Powered surgical system with manually retractable firing system
US10932778B2 (en) 2008-10-10 2021-03-02 Ethicon Llc Powered surgical cutting and stapling apparatus with manually retractable firing system
US11793521B2 (en) 2008-10-10 2023-10-24 Cilag Gmbh International Powered surgical cutting and stapling apparatus with manually retractable firing system
US11129615B2 (en) 2009-02-05 2021-09-28 Cilag Gmbh International Surgical stapling system
US10420550B2 (en) 2009-02-06 2019-09-24 Ethicon Llc Motor driven surgical fastener device with switching system configured to prevent firing initiation until activated
US8690793B2 (en) 2009-03-16 2014-04-08 C. R. Bard, Inc. Biopsy device having rotational cutting
US8708928B2 (en) 2009-04-15 2014-04-29 Bard Peripheral Vascular, Inc. Biopsy apparatus having integrated fluid management
US8708929B2 (en) 2009-04-15 2014-04-29 Bard Peripheral Vascular, Inc. Biopsy apparatus having integrated fluid management
US8708930B2 (en) * 2009-04-15 2014-04-29 Bard Peripheral Vascular, Inc. Biopsy apparatus having integrated fluid management
US20130197391A1 (en) * 2009-04-15 2013-08-01 Bard Peripheral Vascular, Inc. Biopsy apparatus having integrated fluid management
US20110022026A1 (en) * 2009-07-21 2011-01-27 Lake Region Manufacturing, Inc. d/b/a Lake Region Medical. Inc. Methods and Devices for Delivering Drugs Using Drug-Delivery or Drug-Coated Guidewires
WO2011011424A2 (en) * 2009-07-21 2011-01-27 Lake Region Medical, Inc. Methods and devices for delivering drugs using drug-delivery or drug-coated guidewires
US10933224B2 (en) 2009-07-21 2021-03-02 Lake Region Manufacturing, Inc. Methods and devices for delivering drugs using drug-delivery or drug-coated guidewires
WO2011011424A3 (en) * 2009-07-21 2011-04-28 Lake Region Manufacturing, Inc. d/b/a Lake Region Medical Methods and devices for delivering drugs using drug-delivery or drug-coated guidewires
US9173641B2 (en) 2009-08-12 2015-11-03 C. R. Bard, Inc. Biopsy apparatus having integrated thumbwheel mechanism for manual rotation of biopsy cannula
US10575833B2 (en) 2009-08-12 2020-03-03 C. R. Bard, Inc. Biopsy apparatus having integrated thumbwheel mechanism for manual rotation of biopsy cannula
US9655599B2 (en) 2009-08-12 2017-05-23 C. R. Bard, Inc. Biopsy apparatus having integrated thumbwheel mechanism for manual rotation of biopsy cannula
US9949726B2 (en) 2009-09-01 2018-04-24 Bard Peripheral Vscular, Inc. Biopsy driver assembly having a control circuit for conserving battery power
US9282949B2 (en) 2009-09-01 2016-03-15 Bard Peripheral Vascular, Inc. Charging station for battery powered biopsy apparatus
US8808197B2 (en) 2009-10-29 2014-08-19 Bard Peripheral Vascular, Inc. Biopsy driver assembly having a control circuit for conserving battery power
US11291449B2 (en) 2009-12-24 2022-04-05 Cilag Gmbh International Surgical cutting instrument that analyzes tissue thickness
US10751076B2 (en) 2009-12-24 2020-08-25 Ethicon Llc Motor-driven surgical cutting instrument with electric actuator directional control assembly
WO2011109797A2 (en) * 2010-03-05 2011-09-09 See Jackie R Device and methods for monitoring the administration of a stem cell transplant
WO2011109797A3 (en) * 2010-03-05 2012-02-23 See Jackie R Device and methods for monitoring the administration of a stem cell transplant
US11478247B2 (en) 2010-07-30 2022-10-25 Cilag Gmbh International Tissue acquisition arrangements and methods for surgical stapling devices
US11154296B2 (en) 2010-09-30 2021-10-26 Cilag Gmbh International Anvil layer attached to a proximal end of an end effector
US10987102B2 (en) 2010-09-30 2021-04-27 Ethicon Llc Tissue thickness compensator comprising a plurality of layers
US10945731B2 (en) 2010-09-30 2021-03-16 Ethicon Llc Tissue thickness compensator comprising controlled release and expansion
US10463372B2 (en) 2010-09-30 2019-11-05 Ethicon Llc Staple cartridge comprising multiple regions
US10743877B2 (en) 2010-09-30 2020-08-18 Ethicon Llc Surgical stapler with floating anvil
US10588623B2 (en) 2010-09-30 2020-03-17 Ethicon Llc Adhesive film laminate
US11883025B2 (en) 2010-09-30 2024-01-30 Cilag Gmbh International Tissue thickness compensator comprising a plurality of layers
US11571215B2 (en) 2010-09-30 2023-02-07 Cilag Gmbh International Layer of material for a surgical end effector
US11672536B2 (en) 2010-09-30 2023-06-13 Cilag Gmbh International Layer of material for a surgical end effector
US11602340B2 (en) 2010-09-30 2023-03-14 Cilag Gmbh International Adhesive film laminate
US11540824B2 (en) 2010-09-30 2023-01-03 Cilag Gmbh International Tissue thickness compensator
US10548600B2 (en) 2010-09-30 2020-02-04 Ethicon Llc Multiple thickness implantable layers for surgical stapling devices
US11684360B2 (en) 2010-09-30 2023-06-27 Cilag Gmbh International Staple cartridge comprising a variable thickness compressible portion
US11083452B2 (en) 2010-09-30 2021-08-10 Cilag Gmbh International Staple cartridge including a tissue thickness compensator
US11925354B2 (en) 2010-09-30 2024-03-12 Cilag Gmbh International Staple cartridge comprising staples positioned within a compressible portion thereof
US11406377B2 (en) 2010-09-30 2022-08-09 Cilag Gmbh International Adhesive film laminate
US11944292B2 (en) 2010-09-30 2024-04-02 Cilag Gmbh International Anvil layer attached to a proximal end of an end effector
US10898193B2 (en) 2010-09-30 2021-01-26 Ethicon Llc End effector for use with a surgical instrument
US11737754B2 (en) 2010-09-30 2023-08-29 Cilag Gmbh International Surgical stapler with floating anvil
US11857187B2 (en) 2010-09-30 2024-01-02 Cilag Gmbh International Tissue thickness compensator comprising controlled release and expansion
US10624861B2 (en) 2010-09-30 2020-04-21 Ethicon Llc Tissue thickness compensator configured to redistribute compressive forces
US11395651B2 (en) 2010-09-30 2022-07-26 Cilag Gmbh International Adhesive film laminate
US10363031B2 (en) 2010-09-30 2019-07-30 Ethicon Llc Tissue thickness compensators for surgical staplers
US11559496B2 (en) 2010-09-30 2023-01-24 Cilag Gmbh International Tissue thickness compensator configured to redistribute compressive forces
US10335150B2 (en) 2010-09-30 2019-07-02 Ethicon Llc Staple cartridge comprising an implantable layer
US11911027B2 (en) 2010-09-30 2024-02-27 Cilag Gmbh International Adhesive film laminate
US10888328B2 (en) 2010-09-30 2021-01-12 Ethicon Llc Surgical end effector
US11812965B2 (en) 2010-09-30 2023-11-14 Cilag Gmbh International Layer of material for a surgical end effector
US10869669B2 (en) 2010-09-30 2020-12-22 Ethicon Llc Surgical instrument assembly
US11298125B2 (en) 2010-09-30 2022-04-12 Cilag Gmbh International Tissue stapler having a thickness compensator
US11850310B2 (en) 2010-09-30 2023-12-26 Cilag Gmbh International Staple cartridge including an adjunct
US11849952B2 (en) 2010-09-30 2023-12-26 Cilag Gmbh International Staple cartridge comprising staples positioned within a compressible portion thereof
US11583277B2 (en) 2010-09-30 2023-02-21 Cilag Gmbh International Layer of material for a surgical end effector
US10835251B2 (en) 2010-09-30 2020-11-17 Ethicon Llc Surgical instrument assembly including an end effector configurable in different positions
US11529142B2 (en) 2010-10-01 2022-12-20 Cilag Gmbh International Surgical instrument having a power control circuit
US10695062B2 (en) 2010-10-01 2020-06-30 Ethicon Llc Surgical instrument including a retractable firing member
US11504116B2 (en) 2011-04-29 2022-11-22 Cilag Gmbh International Layer of material for a surgical end effector
US11583278B2 (en) 2011-05-27 2023-02-21 Cilag Gmbh International Surgical stapling system having multi-direction articulation
US10383633B2 (en) 2011-05-27 2019-08-20 Ethicon Llc Robotically-driven surgical assembly
US10617420B2 (en) 2011-05-27 2020-04-14 Ethicon Llc Surgical system comprising drive systems
US10780539B2 (en) 2011-05-27 2020-09-22 Ethicon Llc Stapling instrument for use with a robotic system
US10813641B2 (en) 2011-05-27 2020-10-27 Ethicon Llc Robotically-driven surgical instrument
US11266410B2 (en) 2011-05-27 2022-03-08 Cilag Gmbh International Surgical device for use with a robotic system
US11207064B2 (en) 2011-05-27 2021-12-28 Cilag Gmbh International Automated end effector component reloading system for use with a robotic system
US10420561B2 (en) 2011-05-27 2019-09-24 Ethicon Llc Robotically-driven surgical instrument
US10980534B2 (en) 2011-05-27 2021-04-20 Ethicon Llc Robotically-controlled motorized surgical instrument with an end effector
US11612394B2 (en) 2011-05-27 2023-03-28 Cilag Gmbh International Automated end effector component reloading system for use with a robotic system
US10524790B2 (en) 2011-05-27 2020-01-07 Ethicon Llc Robotically-controlled surgical stapling devices that produce formed staples having different lengths
US11129616B2 (en) 2011-05-27 2021-09-28 Cilag Gmbh International Surgical stapling system
US10736634B2 (en) 2011-05-27 2020-08-11 Ethicon Llc Robotically-driven surgical instrument including a drive system
US11439470B2 (en) 2011-05-27 2022-09-13 Cilag Gmbh International Robotically-controlled surgical instrument with selectively articulatable end effector
US10485546B2 (en) 2011-05-27 2019-11-26 Ethicon Llc Robotically-driven surgical assembly
US10335151B2 (en) 2011-05-27 2019-07-02 Ethicon Llc Robotically-driven surgical instrument
US11918208B2 (en) 2011-05-27 2024-03-05 Cilag Gmbh International Robotically-controlled shaft based rotary drive systems for surgical instruments
US11478151B2 (en) 2011-12-14 2022-10-25 The Trustees Of The University Of Pennsylvania Fiber optic flow and oxygenation monitoring using diffuse correlation and reflectance
US20140031677A1 (en) * 2012-01-20 2014-01-30 Physical Sciences, Inc. Apparatus and Method for Aiding Needle Biopsies
US10695063B2 (en) 2012-02-13 2020-06-30 Ethicon Llc Surgical cutting and fastening instrument with apparatus for determining cartridge and firing motion status
US10667808B2 (en) 2012-03-28 2020-06-02 Ethicon Llc Staple cartridge comprising an absorbable adjunct
US11918220B2 (en) 2012-03-28 2024-03-05 Cilag Gmbh International Tissue thickness compensator comprising tissue ingrowth features
US10441285B2 (en) 2012-03-28 2019-10-15 Ethicon Llc Tissue thickness compensator comprising tissue ingrowth features
US11793509B2 (en) 2012-03-28 2023-10-24 Cilag Gmbh International Staple cartridge including an implantable layer
US11406378B2 (en) 2012-03-28 2022-08-09 Cilag Gmbh International Staple cartridge comprising a compressible tissue thickness compensator
US9468380B2 (en) * 2012-03-30 2016-10-18 Children's Hospital Medical Center Method to identify tissue oxygenation state by spectrographic analysis
US20130295192A1 (en) * 2012-03-30 2013-11-07 Russel Hirsch Method to identify tissue oxygenation state by spectrographic analysis
US10182878B2 (en) * 2012-06-05 2019-01-22 Mg Stroke Analytics Inc. Systems and methods for enhancing preparation and completion of surgical and medical procedures
US9717562B2 (en) * 2012-06-05 2017-08-01 Mayank Goyal Systems and methods for enhancing preparation and completion of surgical and medical procedures
US20140231302A1 (en) * 2012-06-05 2014-08-21 Mayank Goyal Systems and methods for enhancing preparation and completion of surgical and medical procedures
US20170290636A1 (en) * 2012-06-05 2017-10-12 Mayank Goyal Systems and methods for enhancing preparation and completion of surgical and medical procedures
US9186217B2 (en) * 2012-06-05 2015-11-17 Mayank Goyal Systems and methods for enhancing preparation and completion of surgical and medical procedures
US20160015454A1 (en) * 2012-06-05 2016-01-21 Mayank Goyal Systems and methods for enhancing preparation and completion of surgical and medical procedures
US10959725B2 (en) 2012-06-15 2021-03-30 Ethicon Llc Articulatable surgical instrument comprising a firing drive
US11707273B2 (en) 2012-06-15 2023-07-25 Cilag Gmbh International Articulatable surgical instrument comprising a firing drive
US11039837B2 (en) 2012-06-28 2021-06-22 Cilag Gmbh International Firing system lockout arrangements for surgical instruments
US10420555B2 (en) 2012-06-28 2019-09-24 Ethicon Llc Hand held rotary powered surgical instruments with end effectors that are articulatable about multiple axes
US11806013B2 (en) 2012-06-28 2023-11-07 Cilag Gmbh International Firing system arrangements for surgical instruments
US10874391B2 (en) 2012-06-28 2020-12-29 Ethicon Llc Surgical instrument system including replaceable end effectors
US11197671B2 (en) 2012-06-28 2021-12-14 Cilag Gmbh International Stapling assembly comprising a lockout
US11109860B2 (en) 2012-06-28 2021-09-07 Cilag Gmbh International Surgical end effectors for use with hand-held and robotically-controlled rotary powered surgical systems
US11464513B2 (en) 2012-06-28 2022-10-11 Cilag Gmbh International Surgical instrument system including replaceable end effectors
US11007004B2 (en) 2012-06-28 2021-05-18 Ethicon Llc Powered multi-axial articulable electrosurgical device with external dissection features
US11540829B2 (en) 2012-06-28 2023-01-03 Cilag Gmbh International Surgical instrument system including replaceable end effectors
US11241230B2 (en) 2012-06-28 2022-02-08 Cilag Gmbh International Clip applier tool for use with a robotic surgical system
US11857189B2 (en) 2012-06-28 2024-01-02 Cilag Gmbh International Surgical instrument including first and second articulation joints
US10413294B2 (en) 2012-06-28 2019-09-17 Ethicon Llc Shaft assembly arrangements for surgical instruments
US11534162B2 (en) 2012-06-28 2022-12-27 Cilag GmbH Inlernational Robotically powered surgical device with manually-actuatable reversing system
US11202631B2 (en) 2012-06-28 2021-12-21 Cilag Gmbh International Stapling assembly comprising a firing lockout
US11602346B2 (en) 2012-06-28 2023-03-14 Cilag Gmbh International Robotically powered surgical device with manually-actuatable reversing system
US10687812B2 (en) 2012-06-28 2020-06-23 Ethicon Llc Surgical instrument system including replaceable end effectors
US10383630B2 (en) 2012-06-28 2019-08-20 Ethicon Llc Surgical stapling device with rotary driven firing member
US11083457B2 (en) 2012-06-28 2021-08-10 Cilag Gmbh International Surgical instrument system including replaceable end effectors
US10639115B2 (en) 2012-06-28 2020-05-05 Ethicon Llc Surgical end effectors having angled tissue-contacting surfaces
US11918213B2 (en) 2012-06-28 2024-03-05 Cilag Gmbh International Surgical stapler including couplers for attaching a shaft to an end effector
US11278284B2 (en) 2012-06-28 2022-03-22 Cilag Gmbh International Rotary drive arrangements for surgical instruments
US11154299B2 (en) 2012-06-28 2021-10-26 Cilag Gmbh International Stapling assembly comprising a firing lockout
US11141156B2 (en) 2012-06-28 2021-10-12 Cilag Gmbh International Surgical stapling assembly comprising flexible output shaft
US11622766B2 (en) 2012-06-28 2023-04-11 Cilag Gmbh International Empty clip cartridge lockout
US10932775B2 (en) 2012-06-28 2021-03-02 Ethicon Llc Firing system lockout arrangements for surgical instruments
US11141155B2 (en) 2012-06-28 2021-10-12 Cilag Gmbh International Drive system for surgical tool
US11510671B2 (en) 2012-06-28 2022-11-29 Cilag Gmbh International Firing system lockout arrangements for surgical instruments
US11779420B2 (en) 2012-06-28 2023-10-10 Cilag Gmbh International Robotic surgical attachments having manually-actuated retraction assemblies
US11058423B2 (en) 2012-06-28 2021-07-13 Cilag Gmbh International Stapling system including first and second closure systems for use with a surgical robot
US10485541B2 (en) 2012-06-28 2019-11-26 Ethicon Llc Robotically powered surgical device with manually-actuatable reversing system
US10881459B2 (en) 2012-07-18 2021-01-05 Bernard Boon Chye Lim Apparatus and method for assessing tissue treatment
US9526426B1 (en) 2012-07-18 2016-12-27 Bernard Boon Chye Lim Apparatus and method for assessing tissue composition
US10499984B2 (en) 2012-07-18 2019-12-10 Bernard Boon Chye Lim Apparatus and method for assessing tissue treatment
US11373755B2 (en) 2012-08-23 2022-06-28 Cilag Gmbh International Surgical device drive system including a ratchet mechanism
US10368900B2 (en) 2012-09-14 2019-08-06 The Spectranetics Corporation Tissue slitting methods and systems
US9949753B2 (en) 2012-09-14 2018-04-24 The Spectranetics Corporation Tissue slitting methods and systems
US9413896B2 (en) 2012-09-14 2016-08-09 The Spectranetics Corporation Tissue slitting methods and systems
US9724122B2 (en) 2012-09-14 2017-08-08 The Spectranetics Corporation Expandable lead jacket
US9763692B2 (en) 2012-09-14 2017-09-19 The Spectranetics Corporation Tissue slitting methods and systems
US10531891B2 (en) * 2012-09-14 2020-01-14 The Spectranetics Corporation Tissue slitting methods and systems
US20140081252A1 (en) * 2012-09-14 2014-03-20 The Spectranetics Corporation Tissue slitting methods and systems
US11596435B2 (en) 2012-09-14 2023-03-07 Specrtranetics Llc Tissue slitting methods and systems
US10285695B2 (en) 2013-03-01 2019-05-14 Ethicon Llc Articulatable surgical instruments with conductive pathways
US11529138B2 (en) 2013-03-01 2022-12-20 Cilag Gmbh International Powered surgical instrument including a rotary drive screw
US11246618B2 (en) 2013-03-01 2022-02-15 Cilag Gmbh International Surgical instrument soft stop
US10575868B2 (en) 2013-03-01 2020-03-03 Ethicon Llc Surgical instrument with coupler assembly
US11266406B2 (en) 2013-03-14 2022-03-08 Cilag Gmbh International Control systems for surgical instruments
US10893867B2 (en) 2013-03-14 2021-01-19 Ethicon Llc Drive train control arrangements for modular surgical instruments
US20140276086A1 (en) * 2013-03-14 2014-09-18 Volcano Corporation Deflectable ivus catheter
US11925380B2 (en) 2013-03-14 2024-03-12 Spectranetics Llc Distal end supported tissue slitting apparatus
US10835279B2 (en) 2013-03-14 2020-11-17 Spectranetics Llc Distal end supported tissue slitting apparatus
US10617416B2 (en) 2013-03-14 2020-04-14 Ethicon Llc Control systems for surgical instruments
US10285673B2 (en) 2013-03-20 2019-05-14 Bard Peripheral Vascular, Inc. Biopsy device
US11779316B2 (en) 2013-03-20 2023-10-10 Bard Peripheral Vascular, Inc. Biopsy device
US11638581B2 (en) 2013-04-16 2023-05-02 Cilag Gmbh International Powered surgical stapler
US11564679B2 (en) 2013-04-16 2023-01-31 Cilag Gmbh International Powered surgical stapler
US11395652B2 (en) 2013-04-16 2022-07-26 Cilag Gmbh International Powered surgical stapler
US10888318B2 (en) 2013-04-16 2021-01-12 Ethicon Llc Powered surgical stapler
US11633183B2 (en) 2013-04-16 2023-04-25 Cilag International GmbH Stapling assembly comprising a retraction drive
US11406381B2 (en) 2013-04-16 2022-08-09 Cilag Gmbh International Powered surgical stapler
US11622763B2 (en) 2013-04-16 2023-04-11 Cilag Gmbh International Stapling assembly comprising a shiftable drive
US10702266B2 (en) 2013-04-16 2020-07-07 Ethicon Llc Surgical instrument system
US11690615B2 (en) 2013-04-16 2023-07-04 Cilag Gmbh International Surgical system including an electric motor and a surgical instrument
US10722292B2 (en) 2013-05-31 2020-07-28 Covidien Lp Surgical device with an end-effector assembly and system for monitoring of tissue during a surgical procedure
US11166760B2 (en) 2013-05-31 2021-11-09 Covidien Lp Surgical device with an end-effector assembly and system for monitoring of tissue during a surgical procedure
US11133106B2 (en) 2013-08-23 2021-09-28 Cilag Gmbh International Surgical instrument assembly comprising a retraction assembly
US11026680B2 (en) 2013-08-23 2021-06-08 Cilag Gmbh International Surgical instrument configured to operate in different states
US11701110B2 (en) 2013-08-23 2023-07-18 Cilag Gmbh International Surgical instrument including a drive assembly movable in a non-motorized mode of operation
US10869665B2 (en) 2013-08-23 2020-12-22 Ethicon Llc Surgical instrument system including a control system
US10441281B2 (en) 2013-08-23 2019-10-15 Ethicon Llc surgical instrument including securing and aligning features
US10828032B2 (en) 2013-08-23 2020-11-10 Ethicon Llc End effector detection systems for surgical instruments
US11000274B2 (en) 2013-08-23 2021-05-11 Ethicon Llc Powered surgical instrument
US11109858B2 (en) 2013-08-23 2021-09-07 Cilag Gmbh International Surgical instrument including a display which displays the position of a firing element
US11504119B2 (en) 2013-08-23 2022-11-22 Cilag Gmbh International Surgical instrument including an electronic firing lockout
US11134940B2 (en) 2013-08-23 2021-10-05 Cilag Gmbh International Surgical instrument including a variable speed firing member
US11389160B2 (en) 2013-08-23 2022-07-19 Cilag Gmbh International Surgical system comprising a display
US10898190B2 (en) 2013-08-23 2021-01-26 Ethicon Llc Secondary battery arrangements for powered surgical instruments
US11376001B2 (en) 2013-08-23 2022-07-05 Cilag Gmbh International Surgical stapling device with rotary multi-turn retraction mechanism
US11918209B2 (en) 2013-08-23 2024-03-05 Cilag Gmbh International Torque optimization for surgical instruments
US11534148B2 (en) 2013-11-05 2022-12-27 C. R. Bard, Inc. Biopsy device having integrated vacuum
US10456120B2 (en) 2013-11-05 2019-10-29 C. R. Bard, Inc. Biopsy device having integrated vacuum
US11020115B2 (en) 2014-02-12 2021-06-01 Cilag Gmbh International Deliverable surgical instrument
CN106232046A (en) * 2014-02-17 2016-12-14 阿西梅特里克医疗有限公司 Therapeutic equipment and in real time instruction
WO2015121866A1 (en) * 2014-02-17 2015-08-20 Asymmetric Medical Ltd. Treatment devices and realtime indications
US10588626B2 (en) 2014-03-26 2020-03-17 Ethicon Llc Surgical instrument displaying subsequent step of use
US10898185B2 (en) 2014-03-26 2021-01-26 Ethicon Llc Surgical instrument power management through sleep and wake up control
US11497488B2 (en) 2014-03-26 2022-11-15 Cilag Gmbh International Systems and methods for controlling a segmented circuit
US10863981B2 (en) 2014-03-26 2020-12-15 Ethicon Llc Interface systems for use with surgical instruments
US11259799B2 (en) 2014-03-26 2022-03-01 Cilag Gmbh International Interface systems for use with surgical instruments
US10561422B2 (en) 2014-04-16 2020-02-18 Ethicon Llc Fastener cartridge comprising deployable tissue engaging members
US11382627B2 (en) 2014-04-16 2022-07-12 Cilag Gmbh International Surgical stapling assembly comprising a firing member including a lateral extension
US11266409B2 (en) 2014-04-16 2022-03-08 Cilag Gmbh International Fastener cartridge comprising a sled including longitudinally-staggered ramps
US11918222B2 (en) 2014-04-16 2024-03-05 Cilag Gmbh International Stapling assembly having firing member viewing windows
US11883026B2 (en) 2014-04-16 2024-01-30 Cilag Gmbh International Fastener cartridge assemblies and staple retainer cover arrangements
US11596406B2 (en) 2014-04-16 2023-03-07 Cilag Gmbh International Fastener cartridges including extensions having different configurations
US11298134B2 (en) 2014-04-16 2022-04-12 Cilag Gmbh International Fastener cartridge comprising non-uniform fasteners
US11517315B2 (en) 2014-04-16 2022-12-06 Cilag Gmbh International Fastener cartridges including extensions having different configurations
US11944307B2 (en) 2014-04-16 2024-04-02 Cilag Gmbh International Surgical stapling system including jaw windows
US11717294B2 (en) 2014-04-16 2023-08-08 Cilag Gmbh International End effector arrangements comprising indicators
US11382625B2 (en) 2014-04-16 2022-07-12 Cilag Gmbh International Fastener cartridge comprising non-uniform fasteners
US11925353B2 (en) 2014-04-16 2024-03-12 Cilag Gmbh International Surgical stapling instrument comprising internal passage between stapling cartridge and elongate channel
US11389162B2 (en) 2014-09-05 2022-07-19 Cilag Gmbh International Smart cartridge wake up operation and data retention
US11717297B2 (en) 2014-09-05 2023-08-08 Cilag Gmbh International Smart cartridge wake up operation and data retention
US11076854B2 (en) 2014-09-05 2021-08-03 Cilag Gmbh International Smart cartridge wake up operation and data retention
US11653918B2 (en) 2014-09-05 2023-05-23 Cilag Gmbh International Local display of tissue parameter stabilization
US11311294B2 (en) 2014-09-05 2022-04-26 Cilag Gmbh International Powered medical device including measurement of closure state of jaws
US11071545B2 (en) 2014-09-05 2021-07-27 Cilag Gmbh International Smart cartridge wake up operation and data retention
US11406386B2 (en) 2014-09-05 2022-08-09 Cilag Gmbh International End effector including magnetic and impedance sensors
US10905423B2 (en) 2014-09-05 2021-02-02 Ethicon Llc Smart cartridge wake up operation and data retention
US11284898B2 (en) 2014-09-18 2022-03-29 Cilag Gmbh International Surgical instrument including a deployable knife
US11523821B2 (en) 2014-09-26 2022-12-13 Cilag Gmbh International Method for creating a flexible staple line
US10327764B2 (en) 2014-09-26 2019-06-25 Ethicon Llc Method for creating a flexible staple line
US10426477B2 (en) 2014-09-26 2019-10-01 Ethicon Llc Staple cartridge assembly including a ramp
US11202633B2 (en) 2014-09-26 2021-12-21 Cilag Gmbh International Surgical stapling buttresses and adjunct materials
US10751053B2 (en) 2014-09-26 2020-08-25 Ethicon Llc Fastener cartridges for applying expandable fastener lines
US10736630B2 (en) 2014-10-13 2020-08-11 Ethicon Llc Staple cartridge
US11701114B2 (en) 2014-10-16 2023-07-18 Cilag Gmbh International Staple cartridge
US11918210B2 (en) 2014-10-16 2024-03-05 Cilag Gmbh International Staple cartridge comprising a cartridge body including a plurality of wells
US11931031B2 (en) 2014-10-16 2024-03-19 Cilag Gmbh International Staple cartridge comprising a deck including an upper surface and a lower surface
US10905418B2 (en) 2014-10-16 2021-02-02 Ethicon Llc Staple cartridge comprising a tissue thickness compensator
US11185325B2 (en) 2014-10-16 2021-11-30 Cilag Gmbh International End effector including different tissue gaps
US11241229B2 (en) 2014-10-29 2022-02-08 Cilag Gmbh International Staple cartridges comprising driver arrangements
US11457918B2 (en) 2014-10-29 2022-10-04 Cilag Gmbh International Cartridge assemblies for surgical staplers
US11864760B2 (en) 2014-10-29 2024-01-09 Cilag Gmbh International Staple cartridges comprising driver arrangements
US11141153B2 (en) 2014-10-29 2021-10-12 Cilag Gmbh International Staple cartridges comprising driver arrangements
US11931038B2 (en) 2014-10-29 2024-03-19 Cilag Gmbh International Cartridge assemblies for surgical staplers
CN113208723A (en) * 2014-11-03 2021-08-06 460医学股份有限公司 System and method for evaluation of contact quality
US11337698B2 (en) 2014-11-06 2022-05-24 Cilag Gmbh International Staple cartridge comprising a releasable adjunct material
US10617417B2 (en) 2014-11-06 2020-04-14 Ethicon Llc Staple cartridge comprising a releasable adjunct material
US10736636B2 (en) 2014-12-10 2020-08-11 Ethicon Llc Articulatable surgical instrument system
US11382628B2 (en) 2014-12-10 2022-07-12 Cilag Gmbh International Articulatable surgical instrument system
US10695058B2 (en) 2014-12-18 2020-06-30 Ethicon Llc Surgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member
US11547403B2 (en) 2014-12-18 2023-01-10 Cilag Gmbh International Surgical instrument having a laminate firing actuator and lateral buckling supports
US10945728B2 (en) 2014-12-18 2021-03-16 Ethicon Llc Locking arrangements for detachable shaft assemblies with articulatable surgical end effectors
US10743873B2 (en) 2014-12-18 2020-08-18 Ethicon Llc Drive arrangements for articulatable surgical instruments
US11571207B2 (en) 2014-12-18 2023-02-07 Cilag Gmbh International Surgical system including lateral supports for a flexible drive member
US11083453B2 (en) 2014-12-18 2021-08-10 Cilag Gmbh International Surgical stapling system including a flexible firing actuator and lateral buckling supports
US11547404B2 (en) 2014-12-18 2023-01-10 Cilag Gmbh International Surgical instrument assembly comprising a flexible articulation system
US11812958B2 (en) 2014-12-18 2023-11-14 Cilag Gmbh International Locking arrangements for detachable shaft assemblies with articulatable surgical end effectors
US11553911B2 (en) 2014-12-18 2023-01-17 Cilag Gmbh International Surgical instrument assembly comprising a flexible articulation system
US11678877B2 (en) 2014-12-18 2023-06-20 Cilag Gmbh International Surgical instrument including a flexible support configured to support a flexible firing member
US11517311B2 (en) 2014-12-18 2022-12-06 Cilag Gmbh International Surgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member
US11399831B2 (en) 2014-12-18 2022-08-02 Cilag Gmbh International Drive arrangements for articulatable surgical instruments
US10806448B2 (en) 2014-12-18 2020-10-20 Ethicon Llc Surgical instrument assembly comprising a flexible articulation system
US11324506B2 (en) 2015-02-27 2022-05-10 Cilag Gmbh International Modular stapling assembly
US11154301B2 (en) 2015-02-27 2021-10-26 Cilag Gmbh International Modular stapling assembly
US11744588B2 (en) 2015-02-27 2023-09-05 Cilag Gmbh International Surgical stapling instrument including a removably attachable battery pack
US11109859B2 (en) 2015-03-06 2021-09-07 Cilag Gmbh International Surgical instrument comprising a lockable battery housing
US10524787B2 (en) 2015-03-06 2020-01-07 Ethicon Llc Powered surgical instrument with parameter-based firing rate
US10772625B2 (en) 2015-03-06 2020-09-15 Ethicon Llc Signal and power communication system positioned on a rotatable shaft
US10548504B2 (en) 2015-03-06 2020-02-04 Ethicon Llc Overlaid multi sensor radio frequency (RF) electrode system to measure tissue compression
US10687806B2 (en) 2015-03-06 2020-06-23 Ethicon Llc Adaptive tissue compression techniques to adjust closure rates for multiple tissue types
US10531887B2 (en) 2015-03-06 2020-01-14 Ethicon Llc Powered surgical instrument including speed display
US11944338B2 (en) 2015-03-06 2024-04-02 Cilag Gmbh International Multiple level thresholds to modify operation of powered surgical instruments
US11224423B2 (en) 2015-03-06 2022-01-18 Cilag Gmbh International Smart sensors with local signal processing
US10617412B2 (en) 2015-03-06 2020-04-14 Ethicon Llc System for detecting the mis-insertion of a staple cartridge into a surgical stapler
US11826132B2 (en) 2015-03-06 2023-11-28 Cilag Gmbh International Time dependent evaluation of sensor data to determine stability, creep, and viscoelastic elements of measures
US11426160B2 (en) 2015-03-06 2022-08-30 Cilag Gmbh International Smart sensors with local signal processing
US10966627B2 (en) 2015-03-06 2021-04-06 Ethicon Llc Time dependent evaluation of sensor data to determine stability, creep, and viscoelastic elements of measures
US11350843B2 (en) 2015-03-06 2022-06-07 Cilag Gmbh International Time dependent evaluation of sensor data to determine stability, creep, and viscoelastic elements of measures
US10433844B2 (en) 2015-03-31 2019-10-08 Ethicon Llc Surgical instrument with selectively disengageable threaded drive systems
US11918212B2 (en) 2015-03-31 2024-03-05 Cilag Gmbh International Surgical instrument with selectively disengageable drive systems
US11179142B2 (en) 2015-05-01 2021-11-23 C.R. Bard, Inc. Biopsy device
US10463350B2 (en) 2015-05-01 2019-11-05 C. R. Bard, Inc. Biopsy device
US11058425B2 (en) 2015-08-17 2021-07-13 Ethicon Llc Implantable layers for a surgical instrument
US10835249B2 (en) 2015-08-17 2020-11-17 Ethicon Llc Implantable layers for a surgical instrument
US10617418B2 (en) 2015-08-17 2020-04-14 Ethicon Llc Implantable layers for a surgical instrument
EP3141181A1 (en) * 2015-09-11 2017-03-15 Bernard Boon Chye Lim Ablation catheter apparatus with a basket comprising electrodes, an optical emitting element and an optical receiving element
EP3150115A1 (en) * 2015-09-11 2017-04-05 Bernard Boon Chye Lim Catheter apparatus with a diagnostic assembly including an optical emitting element and an optical receiving element
US10327769B2 (en) 2015-09-23 2019-06-25 Ethicon Llc Surgical stapler having motor control based on a drive system component
US11344299B2 (en) 2015-09-23 2022-05-31 Cilag Gmbh International Surgical stapler having downstream current-based motor control
US11026678B2 (en) 2015-09-23 2021-06-08 Cilag Gmbh International Surgical stapler having motor control based on an electrical parameter related to a motor current
US11849946B2 (en) 2015-09-23 2023-12-26 Cilag Gmbh International Surgical stapler having downstream current-based motor control
US10863986B2 (en) 2015-09-23 2020-12-15 Ethicon Llc Surgical stapler having downstream current-based motor control
US11490889B2 (en) 2015-09-23 2022-11-08 Cilag Gmbh International Surgical stapler having motor control based on an electrical parameter related to a motor current
US11076929B2 (en) 2015-09-25 2021-08-03 Cilag Gmbh International Implantable adjunct systems for determining adjunct skew
US10299878B2 (en) 2015-09-25 2019-05-28 Ethicon Llc Implantable adjunct systems for determining adjunct skew
US11553916B2 (en) 2015-09-30 2023-01-17 Cilag Gmbh International Compressible adjunct with crossing spacer fibers
US10478188B2 (en) 2015-09-30 2019-11-19 Ethicon Llc Implantable layer comprising a constricted configuration
US10932779B2 (en) 2015-09-30 2021-03-02 Ethicon Llc Compressible adjunct with crossing spacer fibers
US10433846B2 (en) 2015-09-30 2019-10-08 Ethicon Llc Compressible adjunct with crossing spacer fibers
US11944308B2 (en) 2015-09-30 2024-04-02 Cilag Gmbh International Compressible adjunct with crossing spacer fibers
US11712244B2 (en) 2015-09-30 2023-08-01 Cilag Gmbh International Implantable layer with spacer fibers
US10285699B2 (en) 2015-09-30 2019-05-14 Ethicon Llc Compressible adjunct
US11793522B2 (en) 2015-09-30 2023-10-24 Cilag Gmbh International Staple cartridge assembly including a compressible adjunct
US11890015B2 (en) 2015-09-30 2024-02-06 Cilag Gmbh International Compressible adjunct with crossing spacer fibers
US10561420B2 (en) 2015-09-30 2020-02-18 Ethicon Llc Tubular absorbable constructs
US11690623B2 (en) 2015-09-30 2023-07-04 Cilag Gmbh International Method for applying an implantable layer to a fastener cartridge
US10980539B2 (en) 2015-09-30 2021-04-20 Ethicon Llc Implantable adjunct comprising bonded layers
US10524788B2 (en) 2015-09-30 2020-01-07 Ethicon Llc Compressible adjunct with attachment regions
US10307160B2 (en) 2015-09-30 2019-06-04 Ethicon Llc Compressible adjunct assemblies with attachment layers
US10603039B2 (en) 2015-09-30 2020-03-31 Ethicon Llc Progressively releasable implantable adjunct for use with a surgical stapling instrument
US10736633B2 (en) 2015-09-30 2020-08-11 Ethicon Llc Compressible adjunct with looping members
US11903586B2 (en) 2015-09-30 2024-02-20 Cilag Gmbh International Compressible adjunct with crossing spacer fibers
US11058422B2 (en) 2015-12-30 2021-07-13 Cilag Gmbh International Mechanisms for compensating for battery pack failure in powered surgical instruments
US11759208B2 (en) 2015-12-30 2023-09-19 Cilag Gmbh International Mechanisms for compensating for battery pack failure in powered surgical instruments
US11129613B2 (en) 2015-12-30 2021-09-28 Cilag Gmbh International Surgical instruments with separable motors and motor control circuits
US10368865B2 (en) 2015-12-30 2019-08-06 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US11484309B2 (en) 2015-12-30 2022-11-01 Cilag Gmbh International Surgical stapling system comprising a controller configured to cause a motor to reset a firing sequence
US11083454B2 (en) 2015-12-30 2021-08-10 Cilag Gmbh International Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10413291B2 (en) 2016-02-09 2019-09-17 Ethicon Llc Surgical instrument articulation mechanism with slotted secondary constraint
US10653413B2 (en) 2016-02-09 2020-05-19 Ethicon Llc Surgical instruments with an end effector that is highly articulatable relative to an elongate shaft assembly
US10588625B2 (en) 2016-02-09 2020-03-17 Ethicon Llc Articulatable surgical instruments with off-axis firing beam arrangements
US11523823B2 (en) 2016-02-09 2022-12-13 Cilag Gmbh International Surgical instruments with non-symmetrical articulation arrangements
US11213293B2 (en) 2016-02-09 2022-01-04 Cilag Gmbh International Articulatable surgical instruments with single articulation link arrangements
US11730471B2 (en) 2016-02-09 2023-08-22 Cilag Gmbh International Articulatable surgical instruments with single articulation link arrangements
US10433837B2 (en) 2016-02-09 2019-10-08 Ethicon Llc Surgical instruments with multiple link articulation arrangements
US11224426B2 (en) 2016-02-12 2022-01-18 Cilag Gmbh International Mechanisms for compensating for drivetrain failure in powered surgical instruments
US11826045B2 (en) 2016-02-12 2023-11-28 Cilag Gmbh International Mechanisms for compensating for drivetrain failure in powered surgical instruments
US11344303B2 (en) 2016-02-12 2022-05-31 Cilag Gmbh International Mechanisms for compensating for drivetrain failure in powered surgical instruments
US11779336B2 (en) 2016-02-12 2023-10-10 Cilag Gmbh International Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10617413B2 (en) 2016-04-01 2020-04-14 Ethicon Llc Closure system arrangements for surgical cutting and stapling devices with separate and distinct firing shafts
US10376263B2 (en) 2016-04-01 2019-08-13 Ethicon Llc Anvil modification members for surgical staplers
US11179150B2 (en) 2016-04-15 2021-11-23 Cilag Gmbh International Systems and methods for controlling a surgical stapling and cutting instrument
US10828028B2 (en) 2016-04-15 2020-11-10 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US11517306B2 (en) 2016-04-15 2022-12-06 Cilag Gmbh International Surgical instrument with detection sensors
WO2017180435A3 (en) * 2016-04-15 2018-03-15 Ethicon Llc Surgical instrument with detection sensors
US11311292B2 (en) 2016-04-15 2022-04-26 Cilag Gmbh International Surgical instrument with detection sensors
US10405859B2 (en) 2016-04-15 2019-09-10 Ethicon Llc Surgical instrument with adjustable stop/start control during a firing motion
US11317910B2 (en) 2016-04-15 2022-05-03 Cilag Gmbh International Surgical instrument with detection sensors
US10335145B2 (en) 2016-04-15 2019-07-02 Ethicon Llc Modular surgical instrument with configurable operating mode
US11771454B2 (en) 2016-04-15 2023-10-03 Cilag Gmbh International Stapling assembly including a controller for monitoring a clamping laod
US10357247B2 (en) 2016-04-15 2019-07-23 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US11051810B2 (en) 2016-04-15 2021-07-06 Cilag Gmbh International Modular surgical instrument with configurable operating mode
US11642125B2 (en) 2016-04-15 2023-05-09 Cilag Gmbh International Robotic surgical system including a user interface and a control circuit
US11026684B2 (en) 2016-04-15 2021-06-08 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US10426467B2 (en) 2016-04-15 2019-10-01 Ethicon Llc Surgical instrument with detection sensors
US11931028B2 (en) 2016-04-15 2024-03-19 Cilag Gmbh International Surgical instrument with multiple program responses during a firing motion
US11191545B2 (en) 2016-04-15 2021-12-07 Cilag Gmbh International Staple formation detection mechanisms
US10456137B2 (en) 2016-04-15 2019-10-29 Ethicon Llc Staple formation detection mechanisms
US11607239B2 (en) 2016-04-15 2023-03-21 Cilag Gmbh International Systems and methods for controlling a surgical stapling and cutting instrument
US10492783B2 (en) 2016-04-15 2019-12-03 Ethicon, Llc Surgical instrument with improved stop/start control during a firing motion
US11284891B2 (en) 2016-04-15 2022-03-29 Cilag Gmbh International Surgical instrument with multiple program responses during a firing motion
US11350932B2 (en) 2016-04-15 2022-06-07 Cilag Gmbh International Surgical instrument with improved stop/start control during a firing motion
US10368867B2 (en) 2016-04-18 2019-08-06 Ethicon Llc Surgical instrument comprising a lockout
US11147554B2 (en) 2016-04-18 2021-10-19 Cilag Gmbh International Surgical instrument system comprising a magnetic lockout
US11350928B2 (en) 2016-04-18 2022-06-07 Cilag Gmbh International Surgical instrument comprising a tissue thickness lockout and speed control system
US11811253B2 (en) 2016-04-18 2023-11-07 Cilag Gmbh International Surgical robotic system with fault state detection configurations based on motor current draw
US10363037B2 (en) 2016-04-18 2019-07-30 Ethicon Llc Surgical instrument system comprising a magnetic lockout
US11559303B2 (en) 2016-04-18 2023-01-24 Cilag Gmbh International Cartridge lockout arrangements for rotary powered surgical cutting and stapling instruments
US10478181B2 (en) 2016-04-18 2019-11-19 Ethicon Llc Cartridge lockout arrangements for rotary powered surgical cutting and stapling instruments
US10426469B2 (en) 2016-04-18 2019-10-01 Ethicon Llc Surgical instrument comprising a primary firing lockout and a secondary firing lockout
US11317917B2 (en) 2016-04-18 2022-05-03 Cilag Gmbh International Surgical stapling system comprising a lockable firing assembly
US10433840B2 (en) 2016-04-18 2019-10-08 Ethicon Llc Surgical instrument comprising a replaceable cartridge jaw
US11419606B2 (en) 2016-12-21 2022-08-23 Cilag Gmbh International Shaft assembly comprising a clutch configured to adapt the output of a rotary firing member to two different systems
US11090048B2 (en) 2016-12-21 2021-08-17 Cilag Gmbh International Method for resetting a fuse of a surgical instrument shaft
US11369376B2 (en) 2016-12-21 2022-06-28 Cilag Gmbh International Surgical stapling systems
US10835245B2 (en) 2016-12-21 2020-11-17 Ethicon Llc Method for attaching a shaft assembly to a surgical instrument and, alternatively, to a surgical robot
US10588632B2 (en) 2016-12-21 2020-03-17 Ethicon Llc Surgical end effectors and firing members thereof
US11564688B2 (en) 2016-12-21 2023-01-31 Cilag Gmbh International Robotic surgical tool having a retraction mechanism
US11350934B2 (en) 2016-12-21 2022-06-07 Cilag Gmbh International Staple forming pocket arrangement to accommodate different types of staples
US10582928B2 (en) 2016-12-21 2020-03-10 Ethicon Llc Articulation lock arrangements for locking an end effector in an articulated position in response to actuation of a jaw closure system
US10856868B2 (en) 2016-12-21 2020-12-08 Ethicon Llc Firing member pin configurations
US10499914B2 (en) 2016-12-21 2019-12-10 Ethicon Llc Staple forming pocket arrangements
US11160553B2 (en) 2016-12-21 2021-11-02 Cilag Gmbh International Surgical stapling systems
US11160551B2 (en) 2016-12-21 2021-11-02 Cilag Gmbh International Articulatable surgical stapling instruments
US10624635B2 (en) 2016-12-21 2020-04-21 Ethicon Llc Firing members with non-parallel jaw engagement features for surgical end effectors
US11701115B2 (en) 2016-12-21 2023-07-18 Cilag Gmbh International Methods of stapling tissue
US11571210B2 (en) 2016-12-21 2023-02-07 Cilag Gmbh International Firing assembly comprising a multiple failed-state fuse
US10568626B2 (en) 2016-12-21 2020-02-25 Ethicon Llc Surgical instruments with jaw opening features for increasing a jaw opening distance
US10639034B2 (en) 2016-12-21 2020-05-05 Ethicon Llc Surgical instruments with lockout arrangements for preventing firing system actuation unless an unspent staple cartridge is present
US10610224B2 (en) 2016-12-21 2020-04-07 Ethicon Llc Lockout arrangements for surgical end effectors and replaceable tool assemblies
US10568624B2 (en) 2016-12-21 2020-02-25 Ethicon Llc Surgical instruments with jaws that are pivotable about a fixed axis and include separate and distinct closure and firing systems
US10588630B2 (en) 2016-12-21 2020-03-17 Ethicon Llc Surgical tool assemblies with closure stroke reduction features
US10881401B2 (en) 2016-12-21 2021-01-05 Ethicon Llc Staple firing member comprising a missing cartridge and/or spent cartridge lockout
US10568625B2 (en) 2016-12-21 2020-02-25 Ethicon Llc Staple cartridges and arrangements of staples and staple cavities therein
US10639035B2 (en) 2016-12-21 2020-05-05 Ethicon Llc Surgical stapling instruments and replaceable tool assemblies thereof
US10980536B2 (en) 2016-12-21 2021-04-20 Ethicon Llc No-cartridge and spent cartridge lockout arrangements for surgical staplers
US11179155B2 (en) 2016-12-21 2021-11-23 Cilag Gmbh International Anvil arrangements for surgical staplers
US11191539B2 (en) 2016-12-21 2021-12-07 Cilag Gmbh International Shaft assembly comprising a manually-operable retraction system for use with a motorized surgical instrument system
US10517596B2 (en) 2016-12-21 2019-12-31 Ethicon Llc Articulatable surgical instruments with articulation stroke amplification features
US11350935B2 (en) 2016-12-21 2022-06-07 Cilag Gmbh International Surgical tool assemblies with closure stroke reduction features
US11191543B2 (en) 2016-12-21 2021-12-07 Cilag Gmbh International Assembly comprising a lock
US11134942B2 (en) 2016-12-21 2021-10-05 Cilag Gmbh International Surgical stapling instruments and staple-forming anvils
US11191540B2 (en) 2016-12-21 2021-12-07 Cilag Gmbh International Protective cover arrangements for a joint interface between a movable jaw and actuator shaft of a surgical instrument
US10667811B2 (en) 2016-12-21 2020-06-02 Ethicon Llc Surgical stapling instruments and staple-forming anvils
US10517595B2 (en) 2016-12-21 2019-12-31 Ethicon Llc Jaw actuated lock arrangements for preventing advancement of a firing member in a surgical end effector unless an unfired cartridge is installed in the end effector
US10667810B2 (en) 2016-12-21 2020-06-02 Ethicon Llc Closure members with cam surface arrangements for surgical instruments with separate and distinct closure and firing systems
US10667809B2 (en) 2016-12-21 2020-06-02 Ethicon Llc Staple cartridge and staple cartridge channel comprising windows defined therein
US11096689B2 (en) 2016-12-21 2021-08-24 Cilag Gmbh International Shaft assembly comprising a lockout
US11918215B2 (en) 2016-12-21 2024-03-05 Cilag Gmbh International Staple cartridge with array of staple pockets
US10448950B2 (en) 2016-12-21 2019-10-22 Ethicon Llc Surgical staplers with independently actuatable closing and firing systems
US10492785B2 (en) 2016-12-21 2019-12-03 Ethicon Llc Shaft assembly comprising a lockout
US10603036B2 (en) 2016-12-21 2020-03-31 Ethicon Llc Articulatable surgical instrument with independent pivotable linkage distal of an articulation lock
US10485543B2 (en) 2016-12-21 2019-11-26 Ethicon Llc Anvil having a knife slot width
US10426471B2 (en) 2016-12-21 2019-10-01 Ethicon Llc Surgical instrument with multiple failure response modes
US10835247B2 (en) 2016-12-21 2020-11-17 Ethicon Llc Lockout arrangements for surgical end effectors
US10675025B2 (en) 2016-12-21 2020-06-09 Ethicon Llc Shaft assembly comprising separately actuatable and retractable systems
US10779823B2 (en) 2016-12-21 2020-09-22 Ethicon Llc Firing member pin angle
US10973516B2 (en) 2016-12-21 2021-04-13 Ethicon Llc Surgical end effectors and adaptable firing members therefor
US10542982B2 (en) 2016-12-21 2020-01-28 Ethicon Llc Shaft assembly comprising first and second articulation lockouts
US10537325B2 (en) 2016-12-21 2020-01-21 Ethicon Llc Staple forming pocket arrangement to accommodate different types of staples
US10736629B2 (en) 2016-12-21 2020-08-11 Ethicon Llc Surgical tool assemblies with clutching arrangements for shifting between closure systems with closure stroke reduction features and articulation and firing systems
US10813638B2 (en) 2016-12-21 2020-10-27 Ethicon Llc Surgical end effectors with expandable tissue stop arrangements
US11317913B2 (en) 2016-12-21 2022-05-03 Cilag Gmbh International Lockout arrangements for surgical end effectors and replaceable tool assemblies
US10888322B2 (en) 2016-12-21 2021-01-12 Ethicon Llc Surgical instrument comprising a cutting member
US10675026B2 (en) 2016-12-21 2020-06-09 Ethicon Llc Methods of stapling tissue
US11497499B2 (en) 2016-12-21 2022-11-15 Cilag Gmbh International Articulatable surgical stapling instruments
US11653917B2 (en) 2016-12-21 2023-05-23 Cilag Gmbh International Surgical stapling systems
US10893864B2 (en) 2016-12-21 2021-01-19 Ethicon Staple cartridges and arrangements of staples and staple cavities therein
US10524789B2 (en) 2016-12-21 2020-01-07 Ethicon Llc Laterally actuatable articulation lock arrangements for locking an end effector of a surgical instrument in an articulated configuration
US10959727B2 (en) 2016-12-21 2021-03-30 Ethicon Llc Articulatable surgical end effector with asymmetric shaft arrangement
US10695055B2 (en) 2016-12-21 2020-06-30 Ethicon Llc Firing assembly comprising a lockout
US11766260B2 (en) 2016-12-21 2023-09-26 Cilag Gmbh International Methods of stapling tissue
US11766259B2 (en) 2016-12-21 2023-09-26 Cilag Gmbh International Method of deforming staples from two different types of staple cartridges with the same surgical stapling instrument
US10682138B2 (en) 2016-12-21 2020-06-16 Ethicon Llc Bilaterally asymmetric staple forming pocket pairs
US10918385B2 (en) 2016-12-21 2021-02-16 Ethicon Llc Surgical system comprising a firing member rotatable into an articulation state to articulate an end effector of the surgical system
US11224428B2 (en) 2016-12-21 2022-01-18 Cilag Gmbh International Surgical stapling systems
US10588631B2 (en) 2016-12-21 2020-03-17 Ethicon Llc Surgical instruments with positive jaw opening features
US11849948B2 (en) 2016-12-21 2023-12-26 Cilag Gmbh International Method for resetting a fuse of a surgical instrument shaft
US10617414B2 (en) 2016-12-21 2020-04-14 Ethicon Llc Closure member arrangements for surgical instruments
US10898186B2 (en) 2016-12-21 2021-01-26 Ethicon Llc Staple forming pocket arrangements comprising primary sidewalls and pocket sidewalls
US11931034B2 (en) 2016-12-21 2024-03-19 Cilag Gmbh International Surgical stapling instruments with smart staple cartridges
US10687809B2 (en) 2016-12-21 2020-06-23 Ethicon Llc Surgical staple cartridge with movable camming member configured to disengage firing member lockout features
US10758229B2 (en) 2016-12-21 2020-09-01 Ethicon Llc Surgical instrument comprising improved jaw control
US10758230B2 (en) 2016-12-21 2020-09-01 Ethicon Llc Surgical instrument with primary and safety processors
US10905422B2 (en) 2016-12-21 2021-02-02 Ethicon Llc Surgical instrument for use with a robotic surgical system
US10881396B2 (en) 2017-06-20 2021-01-05 Ethicon Llc Surgical instrument with variable duration trigger arrangement
US10595882B2 (en) 2017-06-20 2020-03-24 Ethicon Llc Methods for closed loop control of motor velocity of a surgical stapling and cutting instrument
USD879808S1 (en) 2017-06-20 2020-03-31 Ethicon Llc Display panel with graphical user interface
US10813639B2 (en) 2017-06-20 2020-10-27 Ethicon Llc Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on system conditions
US11517325B2 (en) 2017-06-20 2022-12-06 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured displacement distance traveled over a specified time interval
US11071554B2 (en) 2017-06-20 2021-07-27 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on magnitude of velocity error measurements
US11793513B2 (en) 2017-06-20 2023-10-24 Cilag Gmbh International Systems and methods for controlling motor speed according to user input for a surgical instrument
USD879809S1 (en) 2017-06-20 2020-03-31 Ethicon Llc Display panel with changeable graphical user interface
US11213302B2 (en) 2017-06-20 2022-01-04 Cilag Gmbh International Method for closed loop control of motor velocity of a surgical stapling and cutting instrument
US10368864B2 (en) 2017-06-20 2019-08-06 Ethicon Llc Systems and methods for controlling displaying motor velocity for a surgical instrument
US11653914B2 (en) 2017-06-20 2023-05-23 Cilag Gmbh International Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument according to articulation angle of end effector
USD890784S1 (en) 2017-06-20 2020-07-21 Ethicon Llc Display panel with changeable graphical user interface
US10307170B2 (en) 2017-06-20 2019-06-04 Ethicon Llc Method for closed loop control of motor velocity of a surgical stapling and cutting instrument
US10888321B2 (en) 2017-06-20 2021-01-12 Ethicon Llc Systems and methods for controlling velocity of a displacement member of a surgical stapling and cutting instrument
US11090046B2 (en) 2017-06-20 2021-08-17 Cilag Gmbh International Systems and methods for controlling displacement member motion of a surgical stapling and cutting instrument
US11672532B2 (en) 2017-06-20 2023-06-13 Cilag Gmbh International Techniques for adaptive control of motor velocity of a surgical stapling and cutting instrument
US10327767B2 (en) 2017-06-20 2019-06-25 Ethicon Llc Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation
US10646220B2 (en) 2017-06-20 2020-05-12 Ethicon Llc Systems and methods for controlling displacement member velocity for a surgical instrument
US10881399B2 (en) 2017-06-20 2021-01-05 Ethicon Llc Techniques for adaptive control of motor velocity of a surgical stapling and cutting instrument
US11871939B2 (en) 2017-06-20 2024-01-16 Cilag Gmbh International Method for closed loop control of motor velocity of a surgical stapling and cutting instrument
US10779820B2 (en) 2017-06-20 2020-09-22 Ethicon Llc Systems and methods for controlling motor speed according to user input for a surgical instrument
US10980537B2 (en) 2017-06-20 2021-04-20 Ethicon Llc Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified number of shaft rotations
US10624633B2 (en) 2017-06-20 2020-04-21 Ethicon Llc Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument
US11382638B2 (en) 2017-06-20 2022-07-12 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified displacement distance
US10631859B2 (en) 2017-06-27 2020-04-28 Ethicon Llc Articulation systems for surgical instruments
US11766258B2 (en) 2017-06-27 2023-09-26 Cilag Gmbh International Surgical anvil arrangements
US11324503B2 (en) 2017-06-27 2022-05-10 Cilag Gmbh International Surgical firing member arrangements
US10856869B2 (en) 2017-06-27 2020-12-08 Ethicon Llc Surgical anvil arrangements
US10772629B2 (en) 2017-06-27 2020-09-15 Ethicon Llc Surgical anvil arrangements
US11090049B2 (en) 2017-06-27 2021-08-17 Cilag Gmbh International Staple forming pocket arrangements
US11266405B2 (en) 2017-06-27 2022-03-08 Cilag Gmbh International Surgical anvil manufacturing methods
US11141154B2 (en) 2017-06-27 2021-10-12 Cilag Gmbh International Surgical end effectors and anvils
US10993716B2 (en) 2017-06-27 2021-05-04 Ethicon Llc Surgical anvil arrangements
US11696759B2 (en) 2017-06-28 2023-07-11 Cilag Gmbh International Surgical stapling instruments comprising shortened staple cartridge noses
US11020114B2 (en) 2017-06-28 2021-06-01 Cilag Gmbh International Surgical instruments with articulatable end effector with axially shortened articulation joint configurations
US10786253B2 (en) 2017-06-28 2020-09-29 Ethicon Llc Surgical end effectors with improved jaw aperture arrangements
US11083455B2 (en) 2017-06-28 2021-08-10 Cilag Gmbh International Surgical instrument comprising an articulation system ratio
US11000279B2 (en) 2017-06-28 2021-05-11 Ethicon Llc Surgical instrument comprising an articulation system ratio
USD869655S1 (en) 2017-06-28 2019-12-10 Ethicon Llc Surgical fastener cartridge
US11246592B2 (en) 2017-06-28 2022-02-15 Cilag Gmbh International Surgical instrument comprising an articulation system lockable to a frame
US11826048B2 (en) 2017-06-28 2023-11-28 Cilag Gmbh International Surgical instrument comprising selectively actuatable rotatable couplers
USD906355S1 (en) 2017-06-28 2020-12-29 Ethicon Llc Display screen or portion thereof with a graphical user interface for a surgical instrument
US11484310B2 (en) 2017-06-28 2022-11-01 Cilag Gmbh International Surgical instrument comprising a shaft including a closure tube profile
USD854151S1 (en) 2017-06-28 2019-07-16 Ethicon Llc Surgical instrument shaft
US10588633B2 (en) 2017-06-28 2020-03-17 Ethicon Llc Surgical instruments with open and closable jaws and axially movable firing member that is initially parked in close proximity to the jaws prior to firing
US11259805B2 (en) 2017-06-28 2022-03-01 Cilag Gmbh International Surgical instrument comprising firing member supports
US11642128B2 (en) 2017-06-28 2023-05-09 Cilag Gmbh International Method for articulating a surgical instrument
US10639037B2 (en) 2017-06-28 2020-05-05 Ethicon Llc Surgical instrument with axially movable closure member
US10695057B2 (en) 2017-06-28 2020-06-30 Ethicon Llc Surgical instrument lockout arrangement
US10779824B2 (en) 2017-06-28 2020-09-22 Ethicon Llc Surgical instrument comprising an articulation system lockable by a closure system
US11389161B2 (en) 2017-06-28 2022-07-19 Cilag Gmbh International Surgical instrument comprising selectively actuatable rotatable couplers
US11564686B2 (en) 2017-06-28 2023-01-31 Cilag Gmbh International Surgical shaft assemblies with flexible interfaces
USD1018577S1 (en) 2017-06-28 2024-03-19 Cilag Gmbh International Display screen or portion thereof with a graphical user interface for a surgical instrument
US11529140B2 (en) 2017-06-28 2022-12-20 Cilag Gmbh International Surgical instrument lockout arrangement
US11678880B2 (en) 2017-06-28 2023-06-20 Cilag Gmbh International Surgical instrument comprising a shaft including a housing arrangement
US11478242B2 (en) 2017-06-28 2022-10-25 Cilag Gmbh International Jaw retainer arrangement for retaining a pivotable surgical instrument jaw in pivotable retaining engagement with a second surgical instrument jaw
US10765427B2 (en) 2017-06-28 2020-09-08 Ethicon Llc Method for articulating a surgical instrument
US10903685B2 (en) 2017-06-28 2021-01-26 Ethicon Llc Surgical shaft assemblies with slip ring assemblies forming capacitive channels
US10716614B2 (en) 2017-06-28 2020-07-21 Ethicon Llc Surgical shaft assemblies with slip ring assemblies with increased contact pressure
US10758232B2 (en) 2017-06-28 2020-09-01 Ethicon Llc Surgical instrument with positive jaw opening features
US11058424B2 (en) 2017-06-28 2021-07-13 Cilag Gmbh International Surgical instrument comprising an offset articulation joint
US10932772B2 (en) 2017-06-29 2021-03-02 Ethicon Llc Methods for closed loop velocity control for robotic surgical instrument
US10898183B2 (en) 2017-06-29 2021-01-26 Ethicon Llc Robotic surgical instrument with closed loop feedback techniques for advancement of closure member during firing
US11890005B2 (en) 2017-06-29 2024-02-06 Cilag Gmbh International Methods for closed loop velocity control for robotic surgical instrument
US10398434B2 (en) 2017-06-29 2019-09-03 Ethicon Llc Closed loop velocity control of closure member for robotic surgical instrument
US11007022B2 (en) 2017-06-29 2021-05-18 Ethicon Llc Closed loop velocity control techniques based on sensed tissue parameters for robotic surgical instrument
US11471155B2 (en) 2017-08-03 2022-10-18 Cilag Gmbh International Surgical system bailout
US11304695B2 (en) 2017-08-03 2022-04-19 Cilag Gmbh International Surgical system shaft interconnection
US11944300B2 (en) 2017-08-03 2024-04-02 Cilag Gmbh International Method for operating a surgical system bailout
USD907648S1 (en) 2017-09-29 2021-01-12 Ethicon Llc Display screen or portion thereof with animated graphical user interface
USD917500S1 (en) 2017-09-29 2021-04-27 Ethicon Llc Display screen or portion thereof with graphical user interface
US10765429B2 (en) 2017-09-29 2020-09-08 Ethicon Llc Systems and methods for providing alerts according to the operational state of a surgical instrument
US11399829B2 (en) 2017-09-29 2022-08-02 Cilag Gmbh International Systems and methods of initiating a power shutdown mode for a surgical instrument
USD907647S1 (en) 2017-09-29 2021-01-12 Ethicon Llc Display screen or portion thereof with animated graphical user interface
US10729501B2 (en) 2017-09-29 2020-08-04 Ethicon Llc Systems and methods for language selection of a surgical instrument
US10796471B2 (en) 2017-09-29 2020-10-06 Ethicon Llc Systems and methods of displaying a knife position for a surgical instrument
US10743872B2 (en) 2017-09-29 2020-08-18 Ethicon Llc System and methods for controlling a display of a surgical instrument
US11134944B2 (en) 2017-10-30 2021-10-05 Cilag Gmbh International Surgical stapler knife motion controls
US11090075B2 (en) 2017-10-30 2021-08-17 Cilag Gmbh International Articulation features for surgical end effector
US10842490B2 (en) 2017-10-31 2020-11-24 Ethicon Llc Cartridge body design with force reduction based on firing completion
US10779903B2 (en) 2017-10-31 2020-09-22 Ethicon Llc Positive shaft rotation lock activated by jaw closure
US11478244B2 (en) 2017-10-31 2022-10-25 Cilag Gmbh International Cartridge body design with force reduction based on firing completion
US10779826B2 (en) 2017-12-15 2020-09-22 Ethicon Llc Methods of operating surgical end effectors
US11197670B2 (en) 2017-12-15 2021-12-14 Cilag Gmbh International Surgical end effectors with pivotal jaws configured to touch at their respective distal ends when fully closed
US10779825B2 (en) 2017-12-15 2020-09-22 Ethicon Llc Adapters with end effector position sensing and control arrangements for use in connection with electromechanical surgical instruments
US11071543B2 (en) 2017-12-15 2021-07-27 Cilag Gmbh International Surgical end effectors with clamping assemblies configured to increase jaw aperture ranges
US11896222B2 (en) 2017-12-15 2024-02-13 Cilag Gmbh International Methods of operating surgical end effectors
US10743874B2 (en) 2017-12-15 2020-08-18 Ethicon Llc Sealed adapters for use with electromechanical surgical instruments
US10687813B2 (en) 2017-12-15 2020-06-23 Ethicon Llc Adapters with firing stroke sensing arrangements for use in connection with electromechanical surgical instruments
US10743875B2 (en) 2017-12-15 2020-08-18 Ethicon Llc Surgical end effectors with jaw stiffener arrangements configured to permit monitoring of firing member
US11006955B2 (en) 2017-12-15 2021-05-18 Ethicon Llc End effectors with positive jaw opening features for use with adapters for electromechanical surgical instruments
US11033267B2 (en) 2017-12-15 2021-06-15 Ethicon Llc Systems and methods of controlling a clamping member firing rate of a surgical instrument
US10869666B2 (en) 2017-12-15 2020-12-22 Ethicon Llc Adapters with control systems for controlling multiple motors of an electromechanical surgical instrument
US10966718B2 (en) 2017-12-15 2021-04-06 Ethicon Llc Dynamic clamping assemblies with improved wear characteristics for use in connection with electromechanical surgical instruments
US10828033B2 (en) 2017-12-15 2020-11-10 Ethicon Llc Handheld electromechanical surgical instruments with improved motor control arrangements for positioning components of an adapter coupled thereto
US10716565B2 (en) 2017-12-19 2020-07-21 Ethicon Llc Surgical instruments with dual articulation drivers
US11284953B2 (en) 2017-12-19 2022-03-29 Cilag Gmbh International Method for determining the position of a rotatable jaw of a surgical instrument attachment assembly
US11020112B2 (en) 2017-12-19 2021-06-01 Ethicon Llc Surgical tools configured for interchangeable use with different controller interfaces
USD910847S1 (en) 2017-12-19 2021-02-16 Ethicon Llc Surgical instrument assembly
US10729509B2 (en) 2017-12-19 2020-08-04 Ethicon Llc Surgical instrument comprising closure and firing locking mechanism
US10835330B2 (en) 2017-12-19 2020-11-17 Ethicon Llc Method for determining the position of a rotatable jaw of a surgical instrument attachment assembly
US11045270B2 (en) 2017-12-19 2021-06-29 Cilag Gmbh International Robotic attachment comprising exterior drive actuator
US10743868B2 (en) 2017-12-21 2020-08-18 Ethicon Llc Surgical instrument comprising a pivotable distal head
US11751867B2 (en) 2017-12-21 2023-09-12 Cilag Gmbh International Surgical instrument comprising sequenced systems
US11576668B2 (en) 2017-12-21 2023-02-14 Cilag Gmbh International Staple instrument comprising a firing path display
US11179151B2 (en) 2017-12-21 2021-11-23 Cilag Gmbh International Surgical instrument comprising a display
US11883019B2 (en) 2017-12-21 2024-01-30 Cilag Gmbh International Stapling instrument comprising a staple feeding system
US11179152B2 (en) 2017-12-21 2021-11-23 Cilag Gmbh International Surgical instrument comprising a tissue grasping system
US11583274B2 (en) 2017-12-21 2023-02-21 Cilag Gmbh International Self-guiding stapling instrument
US11849939B2 (en) 2017-12-21 2023-12-26 Cilag Gmbh International Continuous use self-propelled stapling instrument
US11311290B2 (en) 2017-12-21 2022-04-26 Cilag Gmbh International Surgical instrument comprising an end effector dampener
US11369368B2 (en) 2017-12-21 2022-06-28 Cilag Gmbh International Surgical instrument comprising synchronized drive systems
US11364027B2 (en) 2017-12-21 2022-06-21 Cilag Gmbh International Surgical instrument comprising speed control
US11076853B2 (en) 2017-12-21 2021-08-03 Cilag Gmbh International Systems and methods of displaying a knife position during transection for a surgical instrument
US11337691B2 (en) 2017-12-21 2022-05-24 Cilag Gmbh International Surgical instrument configured to determine firing path
US11129680B2 (en) 2017-12-21 2021-09-28 Cilag Gmbh International Surgical instrument comprising a projector
US10682134B2 (en) 2017-12-21 2020-06-16 Ethicon Llc Continuous use self-propelled stapling instrument
US10912559B2 (en) 2018-08-20 2021-02-09 Ethicon Llc Reinforced deformable anvil tip for surgical stapler anvil
US11291440B2 (en) 2018-08-20 2022-04-05 Cilag Gmbh International Method for operating a powered articulatable surgical instrument
US11324501B2 (en) 2018-08-20 2022-05-10 Cilag Gmbh International Surgical stapling devices with improved closure members
US10842492B2 (en) 2018-08-20 2020-11-24 Ethicon Llc Powered articulatable surgical instruments with clutching and locking arrangements for linking an articulation drive system to a firing drive system
US11083458B2 (en) 2018-08-20 2021-08-10 Cilag Gmbh International Powered surgical instruments with clutching arrangements to convert linear drive motions to rotary drive motions
US11253256B2 (en) 2018-08-20 2022-02-22 Cilag Gmbh International Articulatable motor powered surgical instruments with dedicated articulation motor arrangements
US11207065B2 (en) 2018-08-20 2021-12-28 Cilag Gmbh International Method for fabricating surgical stapler anvils
US10779821B2 (en) 2018-08-20 2020-09-22 Ethicon Llc Surgical stapler anvils with tissue stop features configured to avoid tissue pinch
US11045192B2 (en) 2018-08-20 2021-06-29 Cilag Gmbh International Fabricating techniques for surgical stapler anvils
US11039834B2 (en) 2018-08-20 2021-06-22 Cilag Gmbh International Surgical stapler anvils with staple directing protrusions and tissue stability features
US10856870B2 (en) 2018-08-20 2020-12-08 Ethicon Llc Switching arrangements for motor powered articulatable surgical instruments
USD914878S1 (en) 2018-08-20 2021-03-30 Ethicon Llc Surgical instrument anvil
US11172929B2 (en) 2019-03-25 2021-11-16 Cilag Gmbh International Articulation drive arrangements for surgical systems
US11696761B2 (en) 2019-03-25 2023-07-11 Cilag Gmbh International Firing drive arrangements for surgical systems
US11147553B2 (en) 2019-03-25 2021-10-19 Cilag Gmbh International Firing drive arrangements for surgical systems
US11147551B2 (en) 2019-03-25 2021-10-19 Cilag Gmbh International Firing drive arrangements for surgical systems
US11426251B2 (en) 2019-04-30 2022-08-30 Cilag Gmbh International Articulation directional lights on a surgical instrument
US11648009B2 (en) 2019-04-30 2023-05-16 Cilag Gmbh International Rotatable jaw tip for a surgical instrument
US11253254B2 (en) 2019-04-30 2022-02-22 Cilag Gmbh International Shaft rotation actuator on a surgical instrument
US11432816B2 (en) 2019-04-30 2022-09-06 Cilag Gmbh International Articulation pin for a surgical instrument
US11452528B2 (en) 2019-04-30 2022-09-27 Cilag Gmbh International Articulation actuators for a surgical instrument
US11471157B2 (en) 2019-04-30 2022-10-18 Cilag Gmbh International Articulation control mapping for a surgical instrument
US11903581B2 (en) 2019-04-30 2024-02-20 Cilag Gmbh International Methods for stapling tissue using a surgical instrument
US11426167B2 (en) 2019-06-28 2022-08-30 Cilag Gmbh International Mechanisms for proper anvil attachment surgical stapling head assembly
US11399837B2 (en) 2019-06-28 2022-08-02 Cilag Gmbh International Mechanisms for motor control adjustments of a motorized surgical instrument
US11744593B2 (en) 2019-06-28 2023-09-05 Cilag Gmbh International Method for authenticating the compatibility of a staple cartridge with a surgical instrument
US11553971B2 (en) 2019-06-28 2023-01-17 Cilag Gmbh International Surgical RFID assemblies for display and communication
US11553919B2 (en) 2019-06-28 2023-01-17 Cilag Gmbh International Method for authenticating the compatibility of a staple cartridge with a surgical instrument
US11051807B2 (en) 2019-06-28 2021-07-06 Cilag Gmbh International Packaging assembly including a particulate trap
US11219455B2 (en) 2019-06-28 2022-01-11 Cilag Gmbh International Surgical instrument including a lockout key
US11224497B2 (en) 2019-06-28 2022-01-18 Cilag Gmbh International Surgical systems with multiple RFID tags
US11229437B2 (en) 2019-06-28 2022-01-25 Cilag Gmbh International Method for authenticating the compatibility of a staple cartridge with a surgical instrument
US11627959B2 (en) 2019-06-28 2023-04-18 Cilag Gmbh International Surgical instruments including manual and powered system lockouts
US11241235B2 (en) 2019-06-28 2022-02-08 Cilag Gmbh International Method of using multiple RFID chips with a surgical assembly
US11246678B2 (en) 2019-06-28 2022-02-15 Cilag Gmbh International Surgical stapling system having a frangible RFID tag
US11523822B2 (en) 2019-06-28 2022-12-13 Cilag Gmbh International Battery pack including a circuit interrupter
US11259803B2 (en) 2019-06-28 2022-03-01 Cilag Gmbh International Surgical stapling system having an information encryption protocol
US11291451B2 (en) 2019-06-28 2022-04-05 Cilag Gmbh International Surgical instrument with battery compatibility verification functionality
US11638587B2 (en) 2019-06-28 2023-05-02 Cilag Gmbh International RFID identification systems for surgical instruments
US11298132B2 (en) 2019-06-28 2022-04-12 Cilag GmbH Inlernational Staple cartridge including a honeycomb extension
US11298127B2 (en) 2019-06-28 2022-04-12 Cilag GmbH Interational Surgical stapling system having a lockout mechanism for an incompatible cartridge
US11497492B2 (en) 2019-06-28 2022-11-15 Cilag Gmbh International Surgical instrument including an articulation lock
US11478241B2 (en) 2019-06-28 2022-10-25 Cilag Gmbh International Staple cartridge including projections
US11660163B2 (en) 2019-06-28 2023-05-30 Cilag Gmbh International Surgical system with RFID tags for updating motor assembly parameters
US11350938B2 (en) 2019-06-28 2022-06-07 Cilag Gmbh International Surgical instrument comprising an aligned rfid sensor
US11684434B2 (en) 2019-06-28 2023-06-27 Cilag Gmbh International Surgical RFID assemblies for instrument operational setting control
US11376098B2 (en) 2019-06-28 2022-07-05 Cilag Gmbh International Surgical instrument system comprising an RFID system
US11684369B2 (en) 2019-06-28 2023-06-27 Cilag Gmbh International Method of using multiple RFID chips with a surgical assembly
US11464601B2 (en) 2019-06-28 2022-10-11 Cilag Gmbh International Surgical instrument comprising an RFID system for tracking a movable component
US11771419B2 (en) 2019-06-28 2023-10-03 Cilag Gmbh International Packaging for a replaceable component of a surgical stapling system
CN114502091A (en) * 2019-08-05 2022-05-13 捷锐士阿希迈公司(以奥林巴斯美国外科技术名义) Selective laser emission for tissue safety
US20210038304A1 (en) * 2019-08-05 2021-02-11 Gyrus Acmi, Inc. D/B/A Olympus Surgical Technologies America Selective laser firing for tissue safety
US11931033B2 (en) 2019-12-19 2024-03-19 Cilag Gmbh International Staple cartridge comprising a latch lockout
US11844520B2 (en) 2019-12-19 2023-12-19 Cilag Gmbh International Staple cartridge comprising driver retention members
US11529139B2 (en) 2019-12-19 2022-12-20 Cilag Gmbh International Motor driven surgical instrument
US11559304B2 (en) 2019-12-19 2023-01-24 Cilag Gmbh International Surgical instrument comprising a rapid closure mechanism
US11911032B2 (en) 2019-12-19 2024-02-27 Cilag Gmbh International Staple cartridge comprising a seating cam
US11446029B2 (en) 2019-12-19 2022-09-20 Cilag Gmbh International Staple cartridge comprising projections extending from a curved deck surface
US11304696B2 (en) 2019-12-19 2022-04-19 Cilag Gmbh International Surgical instrument comprising a powered articulation system
US11701111B2 (en) 2019-12-19 2023-07-18 Cilag Gmbh International Method for operating a surgical stapling instrument
US11576672B2 (en) 2019-12-19 2023-02-14 Cilag Gmbh International Surgical instrument comprising a closure system including a closure member and an opening member driven by a drive screw
US11291447B2 (en) 2019-12-19 2022-04-05 Cilag Gmbh International Stapling instrument comprising independent jaw closing and staple firing systems
US11607219B2 (en) 2019-12-19 2023-03-21 Cilag Gmbh International Staple cartridge comprising a detachable tissue cutting knife
US11464512B2 (en) 2019-12-19 2022-10-11 Cilag Gmbh International Staple cartridge comprising a curved deck surface
US11504122B2 (en) 2019-12-19 2022-11-22 Cilag Gmbh International Surgical instrument comprising a nested firing member
US11234698B2 (en) 2019-12-19 2022-02-01 Cilag Gmbh International Stapling system comprising a clamp lockout and a firing lockout
US11529137B2 (en) 2019-12-19 2022-12-20 Cilag Gmbh International Staple cartridge comprising driver retention members
USD975850S1 (en) 2020-06-02 2023-01-17 Cilag Gmbh International Staple cartridge
USD975851S1 (en) 2020-06-02 2023-01-17 Cilag Gmbh International Staple cartridge
USD966512S1 (en) 2020-06-02 2022-10-11 Cilag Gmbh International Staple cartridge
USD975278S1 (en) 2020-06-02 2023-01-10 Cilag Gmbh International Staple cartridge
USD974560S1 (en) 2020-06-02 2023-01-03 Cilag Gmbh International Staple cartridge
USD976401S1 (en) 2020-06-02 2023-01-24 Cilag Gmbh International Staple cartridge
USD967421S1 (en) 2020-06-02 2022-10-18 Cilag Gmbh International Staple cartridge
US11660090B2 (en) 2020-07-28 2023-05-30 Cllag GmbH International Surgical instruments with segmented flexible drive arrangements
US11883024B2 (en) 2020-07-28 2024-01-30 Cilag Gmbh International Method of operating a surgical instrument
US11864756B2 (en) 2020-07-28 2024-01-09 Cilag Gmbh International Surgical instruments with flexible ball chain drive arrangements
US11737748B2 (en) 2020-07-28 2023-08-29 Cilag Gmbh International Surgical instruments with double spherical articulation joints with pivotable links
US11826013B2 (en) 2020-07-28 2023-11-28 Cilag Gmbh International Surgical instruments with firing member closure features
US11857182B2 (en) 2020-07-28 2024-01-02 Cilag Gmbh International Surgical instruments with combination function articulation joint arrangements
US11871925B2 (en) 2020-07-28 2024-01-16 Cilag Gmbh International Surgical instruments with dual spherical articulation joint arrangements
US11638582B2 (en) 2020-07-28 2023-05-02 Cilag Gmbh International Surgical instruments with torsion spine drive arrangements
US11779330B2 (en) 2020-10-29 2023-10-10 Cilag Gmbh International Surgical instrument comprising a jaw alignment system
US11931025B2 (en) 2020-10-29 2024-03-19 Cilag Gmbh International Surgical instrument comprising a releasable closure drive lock
US11617577B2 (en) 2020-10-29 2023-04-04 Cilag Gmbh International Surgical instrument comprising a sensor configured to sense whether an articulation drive of the surgical instrument is actuatable
US11534259B2 (en) 2020-10-29 2022-12-27 Cilag Gmbh International Surgical instrument comprising an articulation indicator
US11717289B2 (en) 2020-10-29 2023-08-08 Cilag Gmbh International Surgical instrument comprising an indicator which indicates that an articulation drive is actuatable
USD980425S1 (en) 2020-10-29 2023-03-07 Cilag Gmbh International Surgical instrument assembly
US11452526B2 (en) 2020-10-29 2022-09-27 Cilag Gmbh International Surgical instrument comprising a staged voltage regulation start-up system
USD1013170S1 (en) 2020-10-29 2024-01-30 Cilag Gmbh International Surgical instrument assembly
US11517390B2 (en) 2020-10-29 2022-12-06 Cilag Gmbh International Surgical instrument comprising a limited travel switch
US11844518B2 (en) 2020-10-29 2023-12-19 Cilag Gmbh International Method for operating a surgical instrument
US11896217B2 (en) 2020-10-29 2024-02-13 Cilag Gmbh International Surgical instrument comprising an articulation lock
US11890010B2 (en) 2020-12-02 2024-02-06 Cllag GmbH International Dual-sided reinforced reload for surgical instruments
US11678882B2 (en) 2020-12-02 2023-06-20 Cilag Gmbh International Surgical instruments with interactive features to remedy incidental sled movements
US11944296B2 (en) 2020-12-02 2024-04-02 Cilag Gmbh International Powered surgical instruments with external connectors
US11653915B2 (en) 2020-12-02 2023-05-23 Cilag Gmbh International Surgical instruments with sled location detection and adjustment features
US11627960B2 (en) 2020-12-02 2023-04-18 Cilag Gmbh International Powered surgical instruments with smart reload with separately attachable exteriorly mounted wiring connections
US11744581B2 (en) 2020-12-02 2023-09-05 Cilag Gmbh International Powered surgical instruments with multi-phase tissue treatment
US11737751B2 (en) 2020-12-02 2023-08-29 Cilag Gmbh International Devices and methods of managing energy dissipated within sterile barriers of surgical instrument housings
US11653920B2 (en) 2020-12-02 2023-05-23 Cilag Gmbh International Powered surgical instruments with communication interfaces through sterile barrier
US11849943B2 (en) 2020-12-02 2023-12-26 Cilag Gmbh International Surgical instrument with cartridge release mechanisms
US11744583B2 (en) 2021-02-26 2023-09-05 Cilag Gmbh International Distal communication array to tune frequency of RF systems
US11730473B2 (en) 2021-02-26 2023-08-22 Cilag Gmbh International Monitoring of manufacturing life-cycle
US11723657B2 (en) 2021-02-26 2023-08-15 Cilag Gmbh International Adjustable communication based on available bandwidth and power capacity
US11793514B2 (en) 2021-02-26 2023-10-24 Cilag Gmbh International Staple cartridge comprising sensor array which may be embedded in cartridge body
US11749877B2 (en) 2021-02-26 2023-09-05 Cilag Gmbh International Stapling instrument comprising a signal antenna
US11751869B2 (en) 2021-02-26 2023-09-12 Cilag Gmbh International Monitoring of multiple sensors over time to detect moving characteristics of tissue
US11950779B2 (en) 2021-02-26 2024-04-09 Cilag Gmbh International Method of powering and communicating with a staple cartridge
US11812964B2 (en) 2021-02-26 2023-11-14 Cilag Gmbh International Staple cartridge comprising a power management circuit
US11950777B2 (en) 2021-02-26 2024-04-09 Cilag Gmbh International Staple cartridge comprising an information access control system
US11696757B2 (en) 2021-02-26 2023-07-11 Cilag Gmbh International Monitoring of internal systems to detect and track cartridge motion status
US11925349B2 (en) 2021-02-26 2024-03-12 Cilag Gmbh International Adjustment to transfer parameters to improve available power
US11701113B2 (en) 2021-02-26 2023-07-18 Cilag Gmbh International Stapling instrument comprising a separate power antenna and a data transfer antenna
US11737749B2 (en) 2021-03-22 2023-08-29 Cilag Gmbh International Surgical stapling instrument comprising a retraction system
US11806011B2 (en) 2021-03-22 2023-11-07 Cilag Gmbh International Stapling instrument comprising tissue compression systems
US11717291B2 (en) 2021-03-22 2023-08-08 Cilag Gmbh International Staple cartridge comprising staples configured to apply different tissue compression
US11826042B2 (en) 2021-03-22 2023-11-28 Cilag Gmbh International Surgical instrument comprising a firing drive including a selectable leverage mechanism
US11826012B2 (en) 2021-03-22 2023-11-28 Cilag Gmbh International Stapling instrument comprising a pulsed motor-driven firing rack
US11723658B2 (en) 2021-03-22 2023-08-15 Cilag Gmbh International Staple cartridge comprising a firing lockout
US11759202B2 (en) 2021-03-22 2023-09-19 Cilag Gmbh International Staple cartridge comprising an implantable layer
US11786243B2 (en) 2021-03-24 2023-10-17 Cilag Gmbh International Firing members having flexible portions for adapting to a load during a surgical firing stroke
US11849944B2 (en) 2021-03-24 2023-12-26 Cilag Gmbh International Drivers for fastener cartridge assemblies having rotary drive screws
US11849945B2 (en) 2021-03-24 2023-12-26 Cilag Gmbh International Rotary-driven surgical stapling assembly comprising eccentrically driven firing member
US11832816B2 (en) 2021-03-24 2023-12-05 Cilag Gmbh International Surgical stapling assembly comprising nonplanar staples and planar staples
US11744603B2 (en) 2021-03-24 2023-09-05 Cilag Gmbh International Multi-axis pivot joints for surgical instruments and methods for manufacturing same
US11857183B2 (en) 2021-03-24 2024-01-02 Cilag Gmbh International Stapling assembly components having metal substrates and plastic bodies
US11896219B2 (en) 2021-03-24 2024-02-13 Cilag Gmbh International Mating features between drivers and underside of a cartridge deck
US11793516B2 (en) 2021-03-24 2023-10-24 Cilag Gmbh International Surgical staple cartridge comprising longitudinal support beam
US11896218B2 (en) 2021-03-24 2024-02-13 Cilag Gmbh International Method of using a powered stapling device
US11944336B2 (en) 2021-03-24 2024-04-02 Cilag Gmbh International Joint arrangements for multi-planar alignment and support of operational drive shafts in articulatable surgical instruments
US11903582B2 (en) 2021-03-24 2024-02-20 Cilag Gmbh International Leveraging surfaces for cartridge installation
US11786239B2 (en) 2021-03-24 2023-10-17 Cilag Gmbh International Surgical instrument articulation joint arrangements comprising multiple moving linkage features
US11826047B2 (en) 2021-05-28 2023-11-28 Cilag Gmbh International Stapling instrument comprising jaw mounts
US11918217B2 (en) 2021-05-28 2024-03-05 Cilag Gmbh International Stapling instrument comprising a staple cartridge insertion stop
US11723662B2 (en) 2021-05-28 2023-08-15 Cilag Gmbh International Stapling instrument comprising an articulation control display
US11957344B2 (en) 2021-09-27 2024-04-16 Cilag Gmbh International Surgical stapler having rows of obliquely oriented staples
US11877745B2 (en) 2021-10-18 2024-01-23 Cilag Gmbh International Surgical stapling assembly having longitudinally-repeating staple leg clusters
US11957337B2 (en) 2021-10-18 2024-04-16 Cilag Gmbh International Surgical stapling assembly with offset ramped drive surfaces
US11937816B2 (en) 2021-10-28 2024-03-26 Cilag Gmbh International Electrical lead arrangements for surgical instruments
US11957339B2 (en) 2021-11-09 2024-04-16 Cilag Gmbh International Method for fabricating surgical stapler anvils
US11957795B2 (en) 2021-12-13 2024-04-16 Cilag Gmbh International Tissue thickness compensator configured to redistribute compressive forces
US11957345B2 (en) 2022-12-19 2024-04-16 Cilag Gmbh International Articulatable surgical instruments with conductive pathways for signal communication

Also Published As

Publication number Publication date
WO2007147058A2 (en) 2007-12-21
WO2007147058A3 (en) 2008-11-06
EP2029213A2 (en) 2009-03-04

Similar Documents

Publication Publication Date Title
US20080125634A1 (en) Method and apparatus for identifying and treating myocardial infarction
EP2249737B1 (en) Biopsy guidance by electromagnetic tracking and photonic needle
EP1146930B1 (en) System for controlling tissue ablation
US6594518B1 (en) Device and method for classification of tissue
EP2015672B1 (en) Fiber optic evaluation of tissue modification
JP4340392B2 (en) Method and apparatus for detecting, locating and targeting an in-vivo interior field using an optical contrast factor
JP6584769B2 (en) Needle catheter using optical spectroscopy for tumor identification and ablation
CA2643915C (en) Catheter with omni-directional optical tip having isolated optical paths
EP3150115A1 (en) Catheter apparatus with a diagnostic assembly including an optical emitting element and an optical receiving element
JP6537822B2 (en) Catheter using optical spectroscopy to measure tissue contact site
US10499984B2 (en) Apparatus and method for assessing tissue treatment
EP1922991A1 (en) Improved catheter with omni-directional optical tip having isolated optical paths
US20210093380A1 (en) Apparatus and method for assessing tissue treatment
US20100069760A1 (en) Methods and apparatus for analyzing and locally treating a body lumen
MX2008000111A (en) Real-time optoacoustic monitoring with electophysiologic catheters.
JP2012529332A (en) Algorithm for photonic needle terminal
JP7317624B2 (en) Cerebral clot characterization and corresponding stent selection using optical signal analysis
US11957462B2 (en) System and method for brain clot characterization using optical fibers having diffusive elements and brain clot removal
KR20210024427A (en) Brain clot characterization using optical fibers having diffusive elements
IL290669A (en) Detection of balloon catheter tissue contact using optical measurement
JPH05115465A (en) Metabolic information measuring instrument

Legal Events

Date Code Title Description
AS Assignment

Owner name: CORNOVA, INC., MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:RYAN, S. ERIC;TANG, JING;REEL/FRAME:019430/0337

Effective date: 20070613

AS Assignment

Owner name: CORNOVA, INC., MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:RYAN, S. ERIC;TANG, JING;REEL/FRAME:019577/0464

Effective date: 20070613

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION