US20080137217A1 - Uniformity correction system having light leak and shadow compensation - Google Patents

Uniformity correction system having light leak and shadow compensation Download PDF

Info

Publication number
US20080137217A1
US20080137217A1 US11/984,622 US98462207A US2008137217A1 US 20080137217 A1 US20080137217 A1 US 20080137217A1 US 98462207 A US98462207 A US 98462207A US 2008137217 A1 US2008137217 A1 US 2008137217A1
Authority
US
United States
Prior art keywords
correction
lithography apparatus
segments
attenuation
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/984,622
Inventor
Roberto B. Wiener
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ASML Holding NV
Original Assignee
ASML Holding NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ASML Holding NV filed Critical ASML Holding NV
Priority to US11/984,622 priority Critical patent/US20080137217A1/en
Assigned to ASML HOLDING N.V. reassignment ASML HOLDING N.V. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: WIENER, ROBERTO P.
Publication of US20080137217A1 publication Critical patent/US20080137217A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70191Optical correction elements, filters or phase plates for controlling intensity, wavelength, polarisation, phase or the like
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/003Light absorbing elements
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B27/00Photographic printing apparatus
    • G03B27/72Controlling or varying light intensity, spectral composition, or exposure time in photographic printing apparatus
    • G03B27/727Optical projection devices wherein the contrast is controlled optically (e.g. uniform exposure, two colour exposure on variable contrast sensitive material)
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70066Size and form of the illuminated area in the mask plane, e.g. reticle masking blades or blinds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70083Non-homogeneous intensity distribution in the mask plane
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70091Illumination settings, i.e. intensity distribution in the pupil plane or angular distribution in the field plane; On-axis or off-axis settings, e.g. annular, dipole or quadrupole settings; Partial coherence control, i.e. sigma or numerical aperture [NA]

Definitions

  • the present invention is generally related to uniformity correction in lithography systems.
  • lithography systems include, among other things, an illumination system to produce a uniform intensity distribution of a received laser beam. It is desirable that the resulting illumination be as uniform as possible and that any uniformity errors be kept as small as possible. Illumination uniformity influences the ability of an illumination system to produce uniform line widths across an entire exposure field. Illumination uniformity errors can significantly impact the quality of devices produced by the lithography system.
  • Techniques for correcting uniformity include correction systems that have multiple correction elements such as plates inserted from opposites of an illumination slot. These correction elements have non-zero attenuation (e.g., 90%). However, due to various constraints, a gap exists between adjacent correction elements. The gaps between adjacent correction elements generate unwanted optical effects such as gap ripples and shadows. Because each gap unwanted optical effects such as gap ripples and shadows. Because each gap has a 0% attenuation (or 100% transmission) and the correction elements have non-zero attenuation, light through the gaps generate streaks or bands of greater intensity on the substrate. The bands of greater intensity impact the width of lines in the exposure field. Furthermore, each correction element has a finite thickness. Thus, each correction elements has a plurality of edges. If light is coming in on an angle (i.e., larger sigma), part of the light reflects off the edge, casting a shadow on the substrate.
  • the present invention is directed to a system and method for uniformity correction having light leak and shadow compensation.
  • the system for uniformity correction includes a plurality of correction elements and an optical compensation plate.
  • the correction elements are moveable within an illumination slot. Adjacent correction elements are separated by a gap.
  • the optical compensation plate includes a pattern having multiple gap compensation segments. The pattern has an attenuation which is different than the attenuation of the remaining portions of the optical compensation plate.
  • Each gap compensation segment corresponds to one of the gaps between adjacent correction elements.
  • the location of each gap compensation segment on the optical compensation plate substantially corresponds to the location of the corresponding gap between adjacent correction elements in the illumination slot.
  • the width of each gap compensation segment is dependent upon the angle of the light incident on the correction system. In aspect of the invention, the width of each gap compensation segment is larger than the width of the corresponding gap.
  • a gap compensation segment can have any length. In an aspect of the invention, a gap compensation segment extends from a first edge of the optical compensation plate to a second edge of the optical compensation plate.
  • the pattern is on the top (or upper) surface of the optical compensation plate. In an alternate aspect of the invention, the pattern is on the bottom (or lower) surface of the optical compensation plate.
  • the pattern can be formed from any material having an attenuation.
  • the optical compensation plate is located above the plurality of correction elements. In an alternate aspect of the invention, the optical compensation plate is located below the plurality of correction elements.
  • FIG. 1 illustrates an exemplary lithography system having uniformity correction, according to an embodiment of the present invention.
  • FIGS. 2A-D depict high level block diagrams of exemplary uniformity correction systems, according to embodiments of the present invention.
  • FIG. 3 depicts optical effects created by the gaps between adjacent correction elements.
  • FIG. 4 further illustrates the cause of gap ripple.
  • FIG. 5A-C depict a correction system having a chevron configuration and an exemplary optical compensation plate, according to an embodiment of the present invention.
  • FIG. 6 depicts an exemplary uniformity correction system having a tilted configuration of correction elements 620 and an optical compensation plate 650 , according to an embodiment of the present invention.
  • FIG. 7 depicts an exemplary optical compensation plate, according to an embodiment of the present invention.
  • FIG. 1 is an illustration of an exemplary lithography system 100 , according to an embodiment of the invention.
  • lithography system 100 is a system using a reticle or mask.
  • system 100 is a maskless lithography system.
  • Lithography system 100 includes an illumination system 110 , a uniformity correction system 120 , a contrast device 130 , projection optics 150 , a substrate stage 160 , and a correction module 170 .
  • Illumination system 110 illuminates contrast device 130 .
  • Illumination system 110 may use any type of illumination (e.g., quadrapole, annular, etc.) as required by the lithography system.
  • illumination system 110 may support the modification of various illumination properties such as partial coherence or fill geometry. The details of illumination systems are well known to those skilled in the art and thus are not explained further herein.
  • Contrast device 130 is used to image a pattern onto a portion of a substrate 165 (e.g., wafer or glass plate) held by substrate stage 160 .
  • contrast device 135 is a static mask such as a reticle and substrate 165 is a wafer.
  • contrast device 130 is a programmable array.
  • the programmable array may include a spatial light modulator (SLM) or some other suitable micro-mirror array.
  • the SLM can comprise a reflective or transmissive liquid crystal display (LCD) or a grating light value (GLV).
  • substrate 165 may be a piece of glass, flat panel display, or similar.
  • Projection optics 150 is configured to project an image of the pattern (defined by the contrast device) on the substrate.
  • the details of projection optics 150 are dependent upon the type of lithography system used. Specific functional details of projection optics are well known to those skilled in the art and therefore are not explained further herein.
  • Substrate stage 160 is located at the image plane 180 .
  • Substrate stage 160 supports a substrate 165 .
  • the substrate is a resist coated wafer.
  • the substrate is a piece of glass, flat pane display or similar.
  • Uniformity correction system 120 is a device that controls illumination levels within specific sections of illumination fields associated with system 100 .
  • the uniformity correction system 120 is positioned between the illumination optics 110 and the contrast device stage 130 at the correction plane.
  • the correction plane is located proximate to the contrast device stage (e.g., reticle stage). In alternative embodiments, the correction plane can be located at any position between illumination optics 110 and contrast device stage 130 .
  • FIGS. 2A-D depict high level block diagrams of exemplary uniformity correction systems 220 .
  • a uniformity correction system includes multiple correction elements 220 a - n , optional multiple correction elements 222 a - n , and a optical compensation plate 250 .
  • Multiple correction elements 220 a - n and 222 a - n are inserted into the illumination slot in a defined configuration.
  • Multiple correction elements 220 , 222 can be any mechanisms that effect uniformity.
  • multiple correction elements 220 a - n and 222 a - n are plates (also referred to as fingers) constructed of a transmissive material.
  • each finger has a 10% attenuation (i.e., 90% transmission).
  • the fingers are opaque (i.e., 0% transmissibility).
  • other attenuation values could be used for the correction elements.
  • the correction elements could have variable attenuation.
  • FIG. 2A is a top down view of correction system 220 A.
  • the multiple correction elements 220 a - n and 222 a - n have a tilted configuration.
  • multiple correction elements 220 a - n are inserted from a first side (e.g., the left side) of the illumination slot at an angle ⁇ with respect to the scan direction (or Y-axis).
  • Multiple correction elements 222 a - n are inserted from the opposite side (e.g., right side) of the illumination slot at an angle ⁇ with respect to the scan direction (or Y-axis).
  • the maximum insertion of correction elements 220 a - n and 222 a - n is to a neutral point. That is, each correction element can be inserted any amount up to a point at which the tip of a correction element 220 is proximate to the tip of a correction element 222 . In this embodiment, correction elements 220 a - n do not overlap correction elements 222 a - n.
  • each correction element 220 a - n is opposed to its corresponding correction element 222 a - n (e.g., correction element 220 a is opposed to correction element 222 a , correction element 220 b is opposed to correction element 222 b , etc.).
  • each correction element 220 a - n and its corresponding correction element 222 a - n can be considered as being in the same correction slot.
  • FIG. 2A only depicts four correction elements per side, any number of fingers per side could be used in the present invention.
  • FIG. 2B is a top down view of correction system 220 B.
  • the multiple correction elements 220 a - n and 222 a - n have a chevron configuration.
  • multiple correction elements 220 a - n are inserted from a first side (e.g., the left side) of the illumination slot at an angle ⁇ with respect to the scan direction (or Y-axis).
  • Multiple correction elements 222 a - n are inserted from the opposite side (e.g., right side) of the illumination slot at the same angle, ⁇ , with respect to the scan direction (or Y-axis).
  • correction elements 220 and 222 can be inserted to a depth such that correction elements 220 overlap correction elements 222 .
  • each correction element can be inserted any amount up to a maximum insertion point.
  • FIG. 2C is a high level block diagram of a side view of portion of correction system 220 C.
  • optical compensation plate 250 is parallel to the plane containing the multiple correction elements 220 , 222 .
  • the bottom surface of the correction elements are proximate to the upper surface of the optical compensation plate.
  • the separation between the bottom surface of the correction elements and the upper surface of the optical compensation plate is less than 0.1 mm. As would be appreciated by a person of skill in the art, other separation distances could be used with the present invention.
  • FIG. 2D a high level block diagram of a side view of portion of correction system 220 D.
  • the bottom surface of the optical compensation plate is proximate to the upper surfaces of the multiple correction elements 220 , 222 .
  • the separation between the bottom surface of the correction elements and the upper surface of the optical compensation plate is less than 0.1 mm. As would be appreciated by a person of skill in the art, other separation distances could be used with the present invention.
  • optical compensation plate 250 has 0% attenuation (i.e., 100% transmission). As would be appreciated by a person of skill in the art, an optical compensation plate having other attenuation values could be used with the present invention.
  • adjacent correction elements e.g. 220 a - n , 222 a - n
  • a gap 225 a - n As can be seen in FIGS. 2A through D, adjacent correction elements (e.g. 220 a - n , 222 a - n ) are separated by a gap 225 a - n .
  • adjacent fingers can be separated by any size gap, as required by the constraints of the compensation system.
  • each gap 225 a - n are equal in size.
  • FIG. 3 depicts a portion of a correction system 330 having a plurality of adjacent correction elements 320 a - c . Adjacent correction elements 320 a - c are separated by gaps 325 a,b . Because each gap has a 0% attenuation (or 100% transmission), light through the gaps generate streaks or bands of greater intensity on the substrate. The intensity of the streaks is dependent upon the angle of the incident light. For example, when the light beams are substantially parallel as shown by light 390 in FIG. 3 (i.e., the light has a small sigma), the maximum amount of light comes through the gap.
  • Area 360 a is the area of greater intensity due to the gap when the incident light has the smallest sigma.
  • Area 360 b is the area of greater intensity due to the gap when the incident light has the largest sigma. As illustrated, area 360 a is narrower than area 360 b . However, light in area 360 a has a greater intensity than light in area 360 b.
  • each correction element has a finite thickness.
  • each correction elements has a plurality of edges 322 . If light is coming in on an angle (i.e., larger sigma), part of the light reflects off the edge 322 , casting a shadow on the substrate.
  • a shadow is cast by the edge 322 of the first finger 320 b and a second shadow is cast by the edge 322 of the second finger 320 c .
  • the shadow effect can be exacerbated by the illumination mode being used. For example, if dipole illumination is used, light is incident on the correction elements from a first direction and from a second direction opposite the first direction.
  • the edges of adjacent fingers cause four shadows to be cast on the substrate in addition to the streak of greater intensity caused by the gap.
  • FIG. 4 further illustrates the cause of gap ripple.
  • FIG. 4 depicts a portion 435 of an illumination slot having multiple adjacent correction elements 420 a - c inserted from the left side. The adjacent correction elements 420 a - c are separated by gaps 425 a, b .
  • FIG. 4 further depicts the cross-slot averaged attenuation 480 associated with the correction system.
  • scan lines 442 do not enter or cross the gap region 425 a .
  • cross slot attenuation is normal (at approximately 8% attenuation).
  • Scan lines 444 cross gap region 425 a .
  • Scan lines 446 enter gap region 425 b but do not cross a gap region 425 a or b .
  • Scan lines 448 also enter gap region 425 b but do not cross a gap region 425 a or b .
  • cross slot attenuation is variable.
  • an attenuation ripple is generated.
  • FIG. 5A depicts an exemplary optical compensation plate 550 for use with a correction system having a chevron configuration, according to an embodiment of the present invention.
  • Optical compensation plate 550 includes a pattern 552 having a plurality of gap compensation segments 554 a - j .
  • the gap compensation segments 554 a - j have a different attenuation than the remaining areas of optical compensation plate 550 .
  • the gap compensation segments 554 may have an 3% attenuation (i.e., 97% transmission) while the remaining areas of the optical compensation plate 550 have a 0% attenuation (i.e., 100% transmission).
  • Pattern 552 can be formed of any material having a non-zero attenuation.
  • pattern 552 may be a coating comprised of a series of dots.
  • pattern 552 can be coupled to optical compensation plate 550 by a variety of methods.
  • Each gap compensation segment 554 a - j corresponds to a gap between adjacent correction elements.
  • FIG. 5B depicts an exemplary chevron configuration of correction elements.
  • the angle, ⁇ , 556 of the gap compensation segment 554 a - j with respect to the bottom edge of the compensation plate is equal to the angle, ⁇ , 526 of its corresponding gap with respect to the Y-axis of the illumination slot.
  • the location of each gap compensation segment 554 on the optical compensation plate 550 corresponds to the location of its corresponding gap in the illumination slot.
  • each gap compensation segment 554 is dependent upon the angle of the incident light. For example, if the incident light has a small sigma, the gap compensation segment 554 can have a width equal to or slightly larger than the width of the gap between adjacent correction elements. If the incident light has a large sigma, the gap compensation segment has a greater width. In general, the width of each gap compensation segment 554 is greater than the width of the gap between adjacent correction elements.
  • each gap compensation segment 554 is dependent on a variety of factors including the configuration of the correction elements and the maximum depth of insertion of each element. As can be seen in FIGS. 5A and 5C , the gap compensation segments extend across the optical compensation plate 550 . As would be appreciated by persons of skill in the art, any length could be used for a gap compensation segment, as required by the lithography system.
  • FIG. 6 depicts an exemplary portion of a uniformity correction system having a tilted configuration of correction elements and an optical compensation plate 650 , according to an embodiment of the present invention.
  • Optical compensation plate 650 includes a pattern 652 . Because the correction elements are opposed in this embodiment, pattern 652 includes a plurality of parallel gap compensation segments 654 that extend across the optical compensation plate 650 .
  • FIG. 7 depicts an exemplary optical compensation plate 750 , according to an embodiment of the present invention.
  • Optical compensation plate 750 includes a pattern 752 having a plurality of gap compensation segments 754 .
  • the gap compensation segments 754 do not extend across the optical compensation plate and in fact do not extend to the center of the optical compensation plate.
  • the length of each gap compensation segment is less than width of the optical compensation plate and less than the maximum insertion depth of the correction elements.
  • FIGS. 5-7 describe the pattern on optical compensation plate with respect to the tilted and chevron configuration of correction elements
  • the present invention can be used with any configuration of correction elements having a gap between adjacent correction elements.
  • the pattern on the optical compensation plate corresponds to the gap between adjacent correction elements.
  • the location of the gap compensation segments on the plate can be associated with the location of the gaps.
  • a center axis for each gap can be defined by the intersection of a first plane coincident with the center of the gap with a second plane including the adjacent correction members which define the gap.
  • the first plane is perpendicular to the second plane.
  • the center axis of each gap compensation segment is then approximately coincident with the line defined by the intersection of the first plane and the optical compensation plate.

Abstract

A system and method for uniformity correction having light leak and shadow compensation is provided. The system includes multiple correction elements and an optical compensation plate. Adjacent correction elements are separated by a gap. The optical compensation plate includes a pattern having multiple gap compensation segments. The pattern has an attenuation which is different than the attenuation of the remaining portions of the optical compensation plate. The location of each compensation segment on the compensation plate corresponds to the location of the corresponding gap between adjacent correction elements in the illumination slot. The width of each compensation segment is dependent upon the angle of the light incident on the correction system. The pattern can be located on the top surface or on the bottom surface of the compensation plate. In addition, the compensation plate can be located above or below the plurality of correction elements.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation of U.S. application Ser. No. 11/492,067, filed Jul. 25, 2006, which is a continuation of U.S. application Ser. No. 11/022,837, filed Dec. 28, 2004, now U.S. Pat. No. 7,088,527 that issued on Aug. 8, 2006, both of which are incorporated by reference herein in their entirety.
  • FIELD OF THE INVENTION
  • The present invention is generally related to uniformity correction in lithography systems.
  • BACKGROUND OF THE INVENTION
  • Conventional lithography systems include, among other things, an illumination system to produce a uniform intensity distribution of a received laser beam. It is desirable that the resulting illumination be as uniform as possible and that any uniformity errors be kept as small as possible. Illumination uniformity influences the ability of an illumination system to produce uniform line widths across an entire exposure field. Illumination uniformity errors can significantly impact the quality of devices produced by the lithography system.
  • Techniques for correcting uniformity include correction systems that have multiple correction elements such as plates inserted from opposites of an illumination slot. These correction elements have non-zero attenuation (e.g., 90%). However, due to various constraints, a gap exists between adjacent correction elements. The gaps between adjacent correction elements generate unwanted optical effects such as gap ripples and shadows. Because each gap unwanted optical effects such as gap ripples and shadows. Because each gap has a 0% attenuation (or 100% transmission) and the correction elements have non-zero attenuation, light through the gaps generate streaks or bands of greater intensity on the substrate. The bands of greater intensity impact the width of lines in the exposure field. Furthermore, each correction element has a finite thickness. Thus, each correction elements has a plurality of edges. If light is coming in on an angle (i.e., larger sigma), part of the light reflects off the edge, casting a shadow on the substrate.
  • Therefore, what is needed is a uniformity correction system that compensates for optical effects created by gaps between adjacent correction elements, that provides increased uniformity across the slot, and that improves critical dimensions.
  • SUMMARY OF THE INVENTION
  • The present invention is directed to a system and method for uniformity correction having light leak and shadow compensation. In accordance with an aspect of the present invention, the system for uniformity correction includes a plurality of correction elements and an optical compensation plate. In an embodiment, the correction elements are moveable within an illumination slot. Adjacent correction elements are separated by a gap. The optical compensation plate includes a pattern having multiple gap compensation segments. The pattern has an attenuation which is different than the attenuation of the remaining portions of the optical compensation plate.
  • Each gap compensation segment corresponds to one of the gaps between adjacent correction elements. The location of each gap compensation segment on the optical compensation plate substantially corresponds to the location of the corresponding gap between adjacent correction elements in the illumination slot. The width of each gap compensation segment is dependent upon the angle of the light incident on the correction system. In aspect of the invention, the width of each gap compensation segment is larger than the width of the corresponding gap. A gap compensation segment can have any length. In an aspect of the invention, a gap compensation segment extends from a first edge of the optical compensation plate to a second edge of the optical compensation plate.
  • In an aspect of the invention, the pattern is on the top (or upper) surface of the optical compensation plate. In an alternate aspect of the invention, the pattern is on the bottom (or lower) surface of the optical compensation plate. The pattern can be formed from any material having an attenuation.
  • In an aspect of the invention, the optical compensation plate is located above the plurality of correction elements. In an alternate aspect of the invention, the optical compensation plate is located below the plurality of correction elements.
  • BRIEF DESCRIPTION OF THE DRAWINGS/FIGURES
  • The accompanying drawings, which are incorporated herein and form a part of the specification, illustrate the present invention and, together with the description, further serve to explain the principles of the invention and to enable a person skilled in the pertinent art to make and use the invention.
  • FIG. 1 illustrates an exemplary lithography system having uniformity correction, according to an embodiment of the present invention.
  • FIGS. 2A-D depict high level block diagrams of exemplary uniformity correction systems, according to embodiments of the present invention.
  • FIG. 3 depicts optical effects created by the gaps between adjacent correction elements.
  • FIG. 4 further illustrates the cause of gap ripple.
  • FIG. 5A-C depict a correction system having a chevron configuration and an exemplary optical compensation plate, according to an embodiment of the present invention.
  • FIG. 6 depicts an exemplary uniformity correction system having a tilted configuration of correction elements 620 and an optical compensation plate 650, according to an embodiment of the present invention.
  • FIG. 7 depicts an exemplary optical compensation plate, according to an embodiment of the present invention.
  • The present invention will now be described with reference to the accompanying drawings. In the drawings, like reference numbers can indicate identical or functionally similar elements. Additionally, the left-most digit(s) of a reference number may identify the drawing in which the reference number first appears.
  • DETAILED DESCRIPTION OF THE INVENTION
  • FIG. 1 is an illustration of an exemplary lithography system 100, according to an embodiment of the invention. In an embodiment, lithography system 100 is a system using a reticle or mask. In an alternate embodiment, system 100 is a maskless lithography system.
  • Lithography system 100 includes an illumination system 110, a uniformity correction system 120, a contrast device 130, projection optics 150, a substrate stage 160, and a correction module 170.
  • Illumination system 110 illuminates contrast device 130. Illumination system 110 may use any type of illumination (e.g., quadrapole, annular, etc.) as required by the lithography system. In addition, illumination system 110 may support the modification of various illumination properties such as partial coherence or fill geometry. The details of illumination systems are well known to those skilled in the art and thus are not explained further herein.
  • Contrast device 130 is used to image a pattern onto a portion of a substrate 165 (e.g., wafer or glass plate) held by substrate stage 160. In a first embodiment, contrast device 135 is a static mask such as a reticle and substrate 165 is a wafer. In a second maskless embodiment, contrast device 130 is a programmable array. The programmable array may include a spatial light modulator (SLM) or some other suitable micro-mirror array. Alternatively, the SLM can comprise a reflective or transmissive liquid crystal display (LCD) or a grating light value (GLV). In the second embodiment, substrate 165 may be a piece of glass, flat panel display, or similar.
  • Projection optics 150 is configured to project an image of the pattern (defined by the contrast device) on the substrate. The details of projection optics 150 are dependent upon the type of lithography system used. Specific functional details of projection optics are well known to those skilled in the art and therefore are not explained further herein.
  • Substrate stage 160 is located at the image plane 180. Substrate stage 160 supports a substrate 165. In an embodiment, the substrate is a resist coated wafer. In an alternate embodiment, the substrate is a piece of glass, flat pane display or similar.
  • Uniformity correction system 120 is a device that controls illumination levels within specific sections of illumination fields associated with system 100. The uniformity correction system 120 is positioned between the illumination optics 110 and the contrast device stage 130 at the correction plane. In an embodiment, the correction plane is located proximate to the contrast device stage (e.g., reticle stage). In alternative embodiments, the correction plane can be located at any position between illumination optics 110 and contrast device stage 130.
  • FIGS. 2A-D depict high level block diagrams of exemplary uniformity correction systems 220. As depicted in FIGS. 2A through 2D, a uniformity correction system includes multiple correction elements 220 a-n, optional multiple correction elements 222 a-n, and a optical compensation plate 250. Multiple correction elements 220 a-n and 222 a-n are inserted into the illumination slot in a defined configuration. Multiple correction elements 220, 222 can be any mechanisms that effect uniformity. In an embodiment, multiple correction elements 220 a-n and 222 a-n are plates (also referred to as fingers) constructed of a transmissive material. For example, in an embodiment, each finger has a 10% attenuation (i.e., 90% transmission). In an alternate embodiment, the fingers are opaque (i.e., 0% transmissibility). As would be appreciated by persons of skill in the art, other attenuation values could be used for the correction elements. In addition, the correction elements could have variable attenuation.
  • FIG. 2A is a top down view of correction system 220A. In correction system 220A, the multiple correction elements 220 a-n and 222 a-n have a tilted configuration. In this configuration, multiple correction elements 220 a-n are inserted from a first side (e.g., the left side) of the illumination slot at an angle α with respect to the scan direction (or Y-axis). Multiple correction elements 222 a-n are inserted from the opposite side (e.g., right side) of the illumination slot at an angle −α with respect to the scan direction (or Y-axis). In an embodiment, the maximum insertion of correction elements 220 a-n and 222 a-n is to a neutral point. That is, each correction element can be inserted any amount up to a point at which the tip of a correction element 220 is proximate to the tip of a correction element 222. In this embodiment, correction elements 220 a-n do not overlap correction elements 222 a-n.
  • As can be seen in FIG. 2A, in this configuration, each correction element 220 a-n is opposed to its corresponding correction element 222 a-n (e.g., correction element 220 a is opposed to correction element 222 a, correction element 220 b is opposed to correction element 222 b, etc.). Thus, each correction element 220 a-n and its corresponding correction element 222 a-n can be considered as being in the same correction slot. Although FIG. 2A only depicts four correction elements per side, any number of fingers per side could be used in the present invention.
  • FIG. 2B is a top down view of correction system 220B. In correction system 220B, the multiple correction elements 220 a-n and 222 a-n have a chevron configuration. In this configuration, multiple correction elements 220 a-n are inserted from a first side (e.g., the left side) of the illumination slot at an angle α with respect to the scan direction (or Y-axis). Multiple correction elements 222 a-n are inserted from the opposite side (e.g., right side) of the illumination slot at the same angle, α, with respect to the scan direction (or Y-axis). In this configuration, correction elements 220 and 222 can be inserted to a depth such that correction elements 220 overlap correction elements 222. In this embodiment, each correction element can be inserted any amount up to a maximum insertion point.
  • FIG. 2C is a high level block diagram of a side view of portion of correction system 220C. As shown in FIG. 2C, optical compensation plate 250 is parallel to the plane containing the multiple correction elements 220, 222. In an embodiment, the bottom surface of the correction elements are proximate to the upper surface of the optical compensation plate. The separation between the bottom surface of the correction elements and the upper surface of the optical compensation plate is less than 0.1 mm. As would be appreciated by a person of skill in the art, other separation distances could be used with the present invention.
  • FIG. 2D a high level block diagram of a side view of portion of correction system 220D. In this embodiment, the bottom surface of the optical compensation plate is proximate to the upper surfaces of the multiple correction elements 220, 222. The separation between the bottom surface of the correction elements and the upper surface of the optical compensation plate is less than 0.1 mm. As would be appreciated by a person of skill in the art, other separation distances could be used with the present invention.
  • In an embodiment of the invention, optical compensation plate 250 has 0% attenuation (i.e., 100% transmission). As would be appreciated by a person of skill in the art, an optical compensation plate having other attenuation values could be used with the present invention.
  • As can be seen in FIGS. 2A through D, adjacent correction elements (e.g. 220 a-n, 222 a-n) are separated by a gap 225 a-n. As would be appreciated by a person of skill in the art, adjacent fingers can be separated by any size gap, as required by the constraints of the compensation system. In an embodiment, each gap 225 a-n are equal in size.
  • The gaps between adjacent correction elements generate unwanted optical effects such as gap ripples and shadows. An example of these effects is illustrated in FIG. 3. FIG. 3 depicts a portion of a correction system 330 having a plurality of adjacent correction elements 320 a-c. Adjacent correction elements 320 a-c are separated by gaps 325 a,b. Because each gap has a 0% attenuation (or 100% transmission), light through the gaps generate streaks or bands of greater intensity on the substrate. The intensity of the streaks is dependent upon the angle of the incident light. For example, when the light beams are substantially parallel as shown by light 390 in FIG. 3 (i.e., the light has a small sigma), the maximum amount of light comes through the gap. When the light is spread through a variety of angles as shown by light 395 in FIG. 3 (i.e., light has a larger sigma), a portion of the light is reflected causing a decrease in the intensity of the streaks. As the angle increases (i.e., sigma increases), less light that gets through the gap further decreasing the intensity of the streaks. Area 360 a is the area of greater intensity due to the gap when the incident light has the smallest sigma. Area 360 b is the area of greater intensity due to the gap when the incident light has the largest sigma. As illustrated, area 360 a is narrower than area 360 b. However, light in area 360 a has a greater intensity than light in area 360 b.
  • As can be seen in FIG. 3, each correction element has a finite thickness. Thus, each correction elements has a plurality of edges 322. If light is coming in on an angle (i.e., larger sigma), part of the light reflects off the edge 322, casting a shadow on the substrate. When two correction elements 320 b, c are adjacent and light is coming in on an angle from one side, a shadow is cast by the edge 322 of the first finger 320 b and a second shadow is cast by the edge 322 of the second finger 320 c. The shadow effect can be exacerbated by the illumination mode being used. For example, if dipole illumination is used, light is incident on the correction elements from a first direction and from a second direction opposite the first direction. Thus, the edges of adjacent fingers cause four shadows to be cast on the substrate in addition to the streak of greater intensity caused by the gap.
  • FIG. 4 further illustrates the cause of gap ripple. FIG. 4 depicts a portion 435 of an illumination slot having multiple adjacent correction elements 420 a-c inserted from the left side. The adjacent correction elements 420 a-c are separated by gaps 425 a, b. FIG. 4 further depicts the cross-slot averaged attenuation 480 associated with the correction system.
  • As shown in FIG. 4, scan lines 442 do not enter or cross the gap region 425 a. As a result, cross slot attenuation is normal (at approximately 8% attenuation). Scan lines 444 cross gap region 425 a. As a result, more light comes through, increasing intensity and decreasing attenuation. Scan lines 446 enter gap region 425 b but do not cross a gap region 425 a or b. As a result, cross slot attenuation is variable. Scan lines 448 also enter gap region 425 b but do not cross a gap region 425 a or b. As a result, cross slot attenuation is variable. Thus, as can be seen in the plot of cross-slot averaged attenuation, an attenuation ripple is generated.
  • FIG. 5A depicts an exemplary optical compensation plate 550 for use with a correction system having a chevron configuration, according to an embodiment of the present invention. Optical compensation plate 550 includes a pattern 552 having a plurality of gap compensation segments 554 a-j. The gap compensation segments 554 a-j have a different attenuation than the remaining areas of optical compensation plate 550. For example, the gap compensation segments 554 may have an 3% attenuation (i.e., 97% transmission) while the remaining areas of the optical compensation plate 550 have a 0% attenuation (i.e., 100% transmission).
  • Optical compensation plate 550 has a first surface and a second surface. In an embodiment, pattern 552 is on the first surface. In an alternative embodiment, pattern 552 is on the second surface. In a further embodiment, pattern 552 is included within optical compensation plate.
  • Pattern 552 can be formed of any material having a non-zero attenuation. For example, pattern 552 may be a coating comprised of a series of dots. As would be appreciated by persons of skill in the art, pattern 552 can be coupled to optical compensation plate 550 by a variety of methods.
  • Each gap compensation segment 554 a-j corresponds to a gap between adjacent correction elements. FIG. 5B depicts an exemplary chevron configuration of correction elements. The angle, β, 556 of the gap compensation segment 554 a-j with respect to the bottom edge of the compensation plate is equal to the angle, α, 526 of its corresponding gap with respect to the Y-axis of the illumination slot. As can be seen in FIG. 5C, the location of each gap compensation segment 554 on the optical compensation plate 550 corresponds to the location of its corresponding gap in the illumination slot.
  • The width of each gap compensation segment 554 is dependent upon the angle of the incident light. For example, if the incident light has a small sigma, the gap compensation segment 554 can have a width equal to or slightly larger than the width of the gap between adjacent correction elements. If the incident light has a large sigma, the gap compensation segment has a greater width. In general, the width of each gap compensation segment 554 is greater than the width of the gap between adjacent correction elements.
  • The length of each gap compensation segment 554 is dependent on a variety of factors including the configuration of the correction elements and the maximum depth of insertion of each element. As can be seen in FIGS. 5A and 5C, the gap compensation segments extend across the optical compensation plate 550. As would be appreciated by persons of skill in the art, any length could be used for a gap compensation segment, as required by the lithography system.
  • FIG. 6 depicts an exemplary portion of a uniformity correction system having a tilted configuration of correction elements and an optical compensation plate 650, according to an embodiment of the present invention. Optical compensation plate 650 includes a pattern 652. Because the correction elements are opposed in this embodiment, pattern 652 includes a plurality of parallel gap compensation segments 654 that extend across the optical compensation plate 650.
  • FIG. 7 depicts an exemplary optical compensation plate 750, according to an embodiment of the present invention. Optical compensation plate 750 includes a pattern 752 having a plurality of gap compensation segments 754. In this embodiment, the gap compensation segments 754 do not extend across the optical compensation plate and in fact do not extend to the center of the optical compensation plate. Thus, in this embodiment, the length of each gap compensation segment is less than width of the optical compensation plate and less than the maximum insertion depth of the correction elements.
  • Although FIGS. 5-7 describe the pattern on optical compensation plate with respect to the tilted and chevron configuration of correction elements, the present invention can be used with any configuration of correction elements having a gap between adjacent correction elements. In general, the pattern on the optical compensation plate corresponds to the gap between adjacent correction elements. The location of the gap compensation segments on the plate can be associated with the location of the gaps. For example, a center axis for each gap can be defined by the intersection of a first plane coincident with the center of the gap with a second plane including the adjacent correction members which define the gap. The first plane is perpendicular to the second plane. The center axis of each gap compensation segment is then approximately coincident with the line defined by the intersection of the first plane and the optical compensation plate.
  • While various embodiments of the present invention have been described above, it should be understood that they have been presented by way of example only, and not limitation. It will be apparent to persons skilled in the relevant art that various changes in form and detail can be made therein without departing from the spirit and scope of the invention. Thus, the breadth and scope of the present invention should not be limited by any of the above-described exemplary embodiments, but should be defined only in accordance with the following claims and their equivalents.

Claims (19)

1. A lithography apparatus, comprising:
an illumination system configured to generate a beam of radiation;
a uniformity correction system configured to process the beam of radiation and including:
a plurality of correction elements, wherein adjacent one of the correction elements are spaced apart, and
a plate including a plurality of segments, each of the plurality of segments having an attenuation different than an attenuation of the plate and corresponding to a space between the adjacent correction elements;
a patterning device configured to pattern the processed beam; and
a projection system configured to project the patterned beam onto a target area of a substrate.
2. The lithography apparatus of claim 1, wherein the plate is parallel to the plurality of correction elements.
3. The lithography apparatus of claim 1, wherein at least one dimension of a segment in the plurality of segments is determined by the angle of light incident on the uniformity correction system.
4. The lithography apparatus of claim 1, wherein the plate has a first surface and a second surface and wherein the plurality of segments is on the first surface.
5. The lithography apparatus of claim 1, wherein the plate has a first surface and a second surface and wherein the plurality of segments is on the second surface.
6. The lithography apparatus of claim 1, wherein the plurality of segments are included within the body of the plate.
7. The lithography apparatus of claim 1, wherein the plurality of segments have a non-zero attenuation and the plate has a zero attenuation.
8. A lithography apparatus, comprising:
an illumination system configured to generate a beam of radiation;
a uniformity correction system configured to control an illumination level within the beam of radiation, including:
a plurality of correction elements arranged in a tilted configuration, wherein when the plurality of correction elements are inserted to a maximum depth in a correction slot, a plurality of parallel gaps extending substantially across the width of the correction slot are created, and
a compensation plate including a plurality of parallel compensation segments extending substantially across the width of the compensation plate, wherein each of the plurality of compensation segments corresponds to one of the plurality of the plurality of parallel gaps;
a patterning device configured to pattern the beam of radiation received from the uniformity correction system; and
a projection system configured to project the patterned beam onto a target area of a substrate.
9. The lithography apparatus of claim 8, wherein the plurality of parallel compensation segments has a first attenuation and the compensation plate has a second attenuation.
10. The lithography apparatus of claim 8, wherein the plate is parallel to the plurality of correction elements.
11. The lithography apparatus of claim 8, wherein at least one dimension of a segment in the plurality of parallel segments is determined by the angle of light incident on the uniformity correction system.
12. The lithography apparatus of claim 8, wherein the compensation plate has a first surface and a second surface and wherein the plurality of parallel segments is on the first surface.
13. The lithography apparatus of claim 8, wherein the compensation plate has a first surface and a second surface and wherein the plurality of parallel segments is on the second surface.
14. The lithography apparatus of claim 8, wherein the plurality of parallel segments are included within the body of the compensation plate.
15. The lithography apparatus of system of claim 9, wherein the first attenuation is non-zero attenuation and the second attenuation is zero.
16. A lithography apparatus, comprising:
an illumination system configured to generate a beam of radiation;
a uniformity correction system configured to control an illumination level within the beam of radiation, including:
a plurality of correction members, movable within an illumination slot, wherein each correction member is separated from an adjacent correction member by a gap; and
an optical compensation plate,
wherein the optical compensation plate includes a pattern having an attenuation, the pattern having a plurality of pattern segments,
wherein the arrangement of the pattern on the optical compensation plate corresponds to the arrangement of the gaps between adjacent correction members when each correction member is inserted to a maximum depth in the illumination slot;
a patterning device configured to pattern the beam of radiation received from the uniformity correction system; and
a projection system configured to project the patterned beam onto a target area of a substrate.
17. The lithography apparatus of claim 16, wherein the attenuation of the pattern is greater than an attenuation of the optical compensation plate.
18. The lithography apparatus of claim 16, wherein the optical compensation plate is placed beneath the plurality of correction members.
19. The lithography apparatus of claim 16, wherein the optical compensation plate is placed above the plurality of correction members.
US11/984,622 2004-12-28 2007-11-20 Uniformity correction system having light leak and shadow compensation Abandoned US20080137217A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/984,622 US20080137217A1 (en) 2004-12-28 2007-11-20 Uniformity correction system having light leak and shadow compensation

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US11/022,837 US7088527B2 (en) 2004-12-28 2004-12-28 Uniformity correction system having light leak and shadow compensation
US11/492,067 US7545585B2 (en) 2004-12-28 2006-07-25 Uniformity correction system having light leak and shadow compensation
US11/984,622 US20080137217A1 (en) 2004-12-28 2007-11-20 Uniformity correction system having light leak and shadow compensation

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/492,067 Continuation US7545585B2 (en) 2004-12-28 2006-07-25 Uniformity correction system having light leak and shadow compensation

Publications (1)

Publication Number Publication Date
US20080137217A1 true US20080137217A1 (en) 2008-06-12

Family

ID=35999492

Family Applications (3)

Application Number Title Priority Date Filing Date
US11/022,837 Expired - Fee Related US7088527B2 (en) 2004-12-28 2004-12-28 Uniformity correction system having light leak and shadow compensation
US11/492,067 Expired - Fee Related US7545585B2 (en) 2004-12-28 2006-07-25 Uniformity correction system having light leak and shadow compensation
US11/984,622 Abandoned US20080137217A1 (en) 2004-12-28 2007-11-20 Uniformity correction system having light leak and shadow compensation

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US11/022,837 Expired - Fee Related US7088527B2 (en) 2004-12-28 2004-12-28 Uniformity correction system having light leak and shadow compensation
US11/492,067 Expired - Fee Related US7545585B2 (en) 2004-12-28 2006-07-25 Uniformity correction system having light leak and shadow compensation

Country Status (7)

Country Link
US (3) US7088527B2 (en)
EP (1) EP1677148A3 (en)
JP (1) JP4271190B2 (en)
KR (1) KR100673504B1 (en)
CN (1) CN100524036C (en)
SG (1) SG123771A1 (en)
TW (1) TWI317055B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060139784A1 (en) * 2004-12-28 2006-06-29 Asml Holding N.V. Uniformity correction system having light leak compensation
US20090217191A1 (en) * 2008-02-05 2009-08-27 Yun Sup Shin Input unit and control method thereof

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7088527B2 (en) * 2004-12-28 2006-08-08 Asml Holding N.V. Uniformity correction system having light leak and shadow compensation
DE102006038455A1 (en) * 2006-08-16 2008-02-21 Carl Zeiss Smt Ag Optical system for semiconductor lithography, has adjusting unit positioning optical component, where contact points of adjusting unit at optical component is selected, such that no moments develop at optical component
NL1036162A1 (en) * 2007-11-28 2009-06-02 Asml Netherlands Bv Lithographic apparatus and method.
DE102008013229B4 (en) * 2007-12-11 2015-04-09 Carl Zeiss Smt Gmbh Illumination optics for microlithography
CN101221373B (en) * 2008-01-25 2010-06-02 上海微电子装备有限公司 Device for correcting illumination homogeneity
CN101221374B (en) * 2008-01-25 2010-06-09 上海微电子装备有限公司 Device for correcting illumination homogeneity
KR101258344B1 (en) * 2008-10-31 2013-04-30 칼 짜이스 에스엠티 게엠베하 Illuminating optic for euv microlithography
NL2004770A (en) * 2009-05-29 2010-11-30 Asml Holding Nv LITHOGRAPHIC APPARATUS AND METHOD FOR ILLUMINATION UNIFORMITY CORRECTION AND UNIFORMITY DRIFT COMPENSATION.
KR101952465B1 (en) 2011-03-23 2019-02-26 칼 짜이스 에스엠테 게엠베하 Euv mirror arrangement, optical system comprising euv mirror arrangement and method for operating an optical system comprising an euv mirror arrangement
DE102011077234A1 (en) 2011-06-08 2012-12-13 Carl Zeiss Smt Gmbh Extreme UV mirror arrangement for use as e.g. pupil facet mirror arranged in region of pupil plane of e.g. illumination system, has multilayer arrangement including active layer arranged between entrance surface and substrate
DE102011005940A1 (en) 2011-03-23 2012-09-27 Carl Zeiss Smt Gmbh Extreme ultraviolet mirror arrangement for optical system for extreme ultraviolet microlithography, comprises multiple mirror elements that are arranged side by side, such that mirror elements form mirror surface
CN107885038A (en) * 2016-09-30 2018-04-06 上海微电子装备(集团)股份有限公司 Device for correcting illumination homogeneity, bearing calibration and a kind of exposure projections system
DE102017203647A1 (en) 2017-03-07 2018-09-13 Carl Zeiss Smt Gmbh Mirror with a piezoelectrically active layer
CN109991815B (en) * 2017-12-29 2020-10-16 上海微电子装备(集团)股份有限公司 Flood exposure compensation plate, flood exposure device and photoetching device
JP7249207B2 (en) * 2019-05-28 2023-03-30 シャープ株式会社 Shading Correction Signal Generating Apparatus, MFP, and Shading Correction Signal Generating Method

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5508803A (en) * 1994-12-20 1996-04-16 International Business Machines Corporation Method and apparatus for monitoring lithographic exposure
US5805759A (en) * 1996-03-27 1998-09-08 Fujitsu Limited Optical equalizer having variable transmittance versus wavelength characteristics for attenuating light
US5981962A (en) * 1998-01-09 1999-11-09 International Business Machines Corporation Distributed direct write lithography system using multiple variable shaped electron beams
US6021009A (en) * 1998-06-30 2000-02-01 Intel Corporation Method and apparatus to improve across field dimensional control in a microlithography tool
US6049374A (en) * 1997-03-14 2000-04-11 Nikon Corporation Illumination apparatus, a projection exposure apparatus having the same, a method of manufacturing a device using the same, and a method of manufacturing the projection exposure apparatus
US20010018153A1 (en) * 2000-02-29 2001-08-30 Nobuyuki Irie Exposure method, method of production of density filter, and exposure apparatus
US6370441B1 (en) * 1997-04-09 2002-04-09 Sony Corporation Method and apparatus of correcting design-patterned data, method of electron beam and optical exposure, method of fabricating semiconductor and photomask devices
US6404499B1 (en) * 1998-04-21 2002-06-11 Asml Netherlands B.V. Lithography apparatus with filters for optimizing uniformity of an image
US20020177051A1 (en) * 2001-05-24 2002-11-28 Sony Corporation Phase shift mask, method of exposure, and method of producing semiconductor device
US20030025890A1 (en) * 2000-02-25 2003-02-06 Nikon Corporation Exposure apparatus and exposure method capable of controlling illumination distribution
US6741394B1 (en) * 1998-03-12 2004-05-25 Nikon Corporation Optical integrator, illumination optical apparatus, exposure apparatus and observation apparatus
US6741329B2 (en) * 2001-09-07 2004-05-25 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US20050140957A1 (en) * 2003-12-31 2005-06-30 Asml Netherlands B.V. Optical attenuator device, radiation system and lithographic apparatus therewith and device manufacturing method
US20060139784A1 (en) * 2004-12-28 2006-06-29 Asml Holding N.V. Uniformity correction system having light leak compensation
US7088527B2 (en) * 2004-12-28 2006-08-08 Asml Holding N.V. Uniformity correction system having light leak and shadow compensation

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0532311A (en) 1991-02-13 1993-02-09 Kanebo Ltd Object tumbling device
KR930006480A (en) * 1991-09-11 1993-04-21 원본미기재 Liquid crystal display panel with improved contrast
JP2000232056A (en) 1999-02-10 2000-08-22 Minolta Co Ltd Aligner
JP2001217171A (en) 2000-01-21 2001-08-10 Promos Technol Inc Method and device for eliminating difference between high-density pattern and low-density pattern
US6566016B1 (en) 2000-06-28 2003-05-20 Koninklijke Philips Electronics N.V. Apparatus and method for compensating critical dimension deviations across photomask

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5508803A (en) * 1994-12-20 1996-04-16 International Business Machines Corporation Method and apparatus for monitoring lithographic exposure
US5805759A (en) * 1996-03-27 1998-09-08 Fujitsu Limited Optical equalizer having variable transmittance versus wavelength characteristics for attenuating light
US6049374A (en) * 1997-03-14 2000-04-11 Nikon Corporation Illumination apparatus, a projection exposure apparatus having the same, a method of manufacturing a device using the same, and a method of manufacturing the projection exposure apparatus
US6370441B1 (en) * 1997-04-09 2002-04-09 Sony Corporation Method and apparatus of correcting design-patterned data, method of electron beam and optical exposure, method of fabricating semiconductor and photomask devices
US5981962A (en) * 1998-01-09 1999-11-09 International Business Machines Corporation Distributed direct write lithography system using multiple variable shaped electron beams
US6741394B1 (en) * 1998-03-12 2004-05-25 Nikon Corporation Optical integrator, illumination optical apparatus, exposure apparatus and observation apparatus
US6404499B1 (en) * 1998-04-21 2002-06-11 Asml Netherlands B.V. Lithography apparatus with filters for optimizing uniformity of an image
US6021009A (en) * 1998-06-30 2000-02-01 Intel Corporation Method and apparatus to improve across field dimensional control in a microlithography tool
US6771350B2 (en) * 2000-02-25 2004-08-03 Nikon Corporation Exposure apparatus and exposure method capable of controlling illumination distribution
US20030025890A1 (en) * 2000-02-25 2003-02-06 Nikon Corporation Exposure apparatus and exposure method capable of controlling illumination distribution
US6607863B2 (en) * 2000-02-29 2003-08-19 Nikon Corporation Exposure method of production of density filter
US20010018153A1 (en) * 2000-02-29 2001-08-30 Nobuyuki Irie Exposure method, method of production of density filter, and exposure apparatus
US20020177051A1 (en) * 2001-05-24 2002-11-28 Sony Corporation Phase shift mask, method of exposure, and method of producing semiconductor device
US6741329B2 (en) * 2001-09-07 2004-05-25 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US20050140957A1 (en) * 2003-12-31 2005-06-30 Asml Netherlands B.V. Optical attenuator device, radiation system and lithographic apparatus therewith and device manufacturing method
US7030958B2 (en) * 2003-12-31 2006-04-18 Asml Netherlands B.V. Optical attenuator device, radiation system and lithographic apparatus therewith and device manufacturing method
US20060139784A1 (en) * 2004-12-28 2006-06-29 Asml Holding N.V. Uniformity correction system having light leak compensation
US7088527B2 (en) * 2004-12-28 2006-08-08 Asml Holding N.V. Uniformity correction system having light leak and shadow compensation
US20060262426A1 (en) * 2004-12-28 2006-11-23 Asml Holding N.V. Uniformity correction system having light leak and shadow compensation
US7545585B2 (en) * 2004-12-28 2009-06-09 Asml Holding N.V. Uniformity correction system having light leak and shadow compensation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060139784A1 (en) * 2004-12-28 2006-06-29 Asml Holding N.V. Uniformity correction system having light leak compensation
US20090217191A1 (en) * 2008-02-05 2009-08-27 Yun Sup Shin Input unit and control method thereof

Also Published As

Publication number Publication date
US20060262426A1 (en) 2006-11-23
CN100524036C (en) 2009-08-05
US20060139769A1 (en) 2006-06-29
EP1677148A2 (en) 2006-07-05
SG123771A1 (en) 2006-07-26
KR20060076700A (en) 2006-07-04
EP1677148A3 (en) 2008-01-23
JP4271190B2 (en) 2009-06-03
US7088527B2 (en) 2006-08-08
TW200625029A (en) 2006-07-16
TWI317055B (en) 2009-11-11
JP2006191067A (en) 2006-07-20
CN1797218A (en) 2006-07-05
KR100673504B1 (en) 2007-01-25
US7545585B2 (en) 2009-06-09

Similar Documents

Publication Publication Date Title
US7545585B2 (en) Uniformity correction system having light leak and shadow compensation
JP3339149B2 (en) Scanning exposure apparatus and exposure method
KR101087930B1 (en) Continuous direct-write optical lithography
US5581075A (en) Multi-beam scanning projection exposure apparatus and method with beam monitoring and control for uniform exposure of large area
KR100588005B1 (en) Projection exposure apparatus and exposure method
TW445212B (en) Lithographic projection apparatus, correction device for the same, and method for manufacturing semiconductor devices
JP7337877B2 (en) Resolution-enhanced digital lithography with non-blazed DMDs
KR100818321B1 (en) Projection optical system for maskless lithography
US7843549B2 (en) Light attenuating filter for correcting field dependent ellipticity and uniformity
US5668624A (en) Scan type exposure apparatus
JP4486925B2 (en) Uniformity correction system
US7714984B2 (en) Residual pupil asymmetry compensator for a lithography scanner
US10866521B2 (en) Exposure apparatus and exposure method
JP2019028084A (en) Exposure device
KR101854521B1 (en) System for exposure using DMD
JP2012073420A (en) Method of manufacturing display device
JPH0645221A (en) Projection aligner
TW201835689A (en) Control apparatus, control method, exposure apparatus, exposure method, method of manufacturing device, data generation method and program
WO2020203111A1 (en) Exposure device, illumination optical system, and device production method
JP7399813B2 (en) photo mask
JP2007049208A (en) Exposure device, method of exposure and method of manufacturing device
KR20060122505A (en) Exposer apparatus
KR20210142602A (en) Exposure apparatus, illumination optical system, and device manufacturing method
JP2005266417A (en) Illuminance non-uniformity correction filter, method of designing the same, illumination optical device, and exposure apparatus and exposure method

Legal Events

Date Code Title Description
AS Assignment

Owner name: ASML HOLDING N.V., NETHERLANDS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:WIENER, ROBERTO P.;REEL/FRAME:020448/0406

Effective date: 20041220

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION