US20080154335A1 - Portable assemblies, systems and methods for providing functional or therapeutic neuromuscular stimulation - Google Patents

Portable assemblies, systems and methods for providing functional or therapeutic neuromuscular stimulation Download PDF

Info

Publication number
US20080154335A1
US20080154335A1 US12/074,810 US7481008A US2008154335A1 US 20080154335 A1 US20080154335 A1 US 20080154335A1 US 7481008 A US7481008 A US 7481008A US 2008154335 A1 US2008154335 A1 US 2008154335A1
Authority
US
United States
Prior art keywords
carrier
circuitry
electrode
battery
prescribed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/074,810
Inventor
Geoffrey B. Thrope
Robert B. Strother
Joseph J. Mrva
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NDI Medical LLC
Original Assignee
NDI Medical LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/777,771 external-priority patent/US7120499B2/en
Application filed by NDI Medical LLC filed Critical NDI Medical LLC
Priority to US12/074,810 priority Critical patent/US20080154335A1/en
Assigned to NDI MEDICAL, LLC reassignment NDI MEDICAL, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: NDI MEDICAL, INC.
Publication of US20080154335A1 publication Critical patent/US20080154335A1/en
Assigned to NDI MEDICAL, LLC - CHARTER NO. 1766209 reassignment NDI MEDICAL, LLC - CHARTER NO. 1766209 ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: NDI MEDICAL LLC - CHARTER NO. 1296496
Assigned to NATIONAL INSTITUTES OF HEALTH (NIH), U.S. DEPT. OF HEALTH AND HUMAN SERVICES (DHHS), U.S. GOVERNMENT reassignment NATIONAL INSTITUTES OF HEALTH (NIH), U.S. DEPT. OF HEALTH AND HUMAN SERVICES (DHHS), U.S. GOVERNMENT CONFIRMATORY LICENSE (SEE DOCUMENT FOR DETAILS). Assignors: NDI MEDICAL, LLC
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/36014External stimulators, e.g. with patch electrodes
    • A61N1/36017External stimulators, e.g. with patch electrodes with leads or electrodes penetrating the skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/05Electrodes for implantation or insertion into the body, e.g. heart electrode
    • A61N1/0551Spinal or peripheral nerve electrodes
    • A61N1/0558Anchoring or fixation means therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/36003Applying electric currents by contact electrodes alternating or intermittent currents for stimulation of motor muscles, e.g. for walking assistance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/372Arrangements in connection with the implantation of stimulators
    • A61N1/37211Means for communicating with stimulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/36014External stimulators, e.g. with patch electrodes
    • A61N1/36021External stimulators, e.g. with patch electrodes for treatment of pain

Definitions

  • This invention relates to systems and methods for providing neuromuscular stimulation.
  • Neuromuscular stimulation can perform functional and/or therapeutic outcomes. While existing systems and methods can provide remarkable benefits to individuals requiring neuromuscular stimulation, many quality of life issues still remain. For example, existing systems perform a single, dedicated stimulation function. Furthermore, these controllers are, by today's standards, relatively large and awkward to manipulate and transport.
  • the invention provides improved assemblies, systems, and methods for providing prosthetic or therapeutic neuromuscular stimulation.
  • the assembly comprises a carrier sized and configured to be worn by a user.
  • the carrier includes a tissue facing surface, at least one percutaneous electrode extending from the carrier, circuitry carried on-board the carrier configured to generate a stimulation pulse to the electrode, and the carrier tissue facing surface including an adhesive region, the adhesive region being in contact with the external skin surface.
  • a method may include
  • a neuromuscular stimulation assembly comprising a carrier sized and configured to be worn by a user, the carrier including a tissue facing surface and a power input bay, the power input bay being sized and configured to hold a disposable battery for the circuitry that can be released and replaced for powering the circuitry, at least one percutaneous electrode extending from the carrier, circuitry carried on-board the carrier configured to generate a stimulation pulse to the electrode, and the carrier tissue facing surface including an adhesive region, the adhesive region being in contact with the external skin surface,
  • the prescribed battery replacement regime comprising the replacement of the disposable battery on a prescribed repeated basis similar to administering a pill under a prescribed pill-based medication regime
  • each battery comprising a dose of power for the circuitry for administration according to the prescribed battery replacement regime.
  • An additional aspect of the invention provides portable, percutaneous or surface mounted neuromuscular stimulation assemblies, systems and methods that provide electrical connections between muscles or nerves inside the body and stimulus generators or recording instruments temporarily mounted on the surface of the skin outside the body.
  • the assemblies, systems, and methods may, in use, be coupled by percutaneous leads to electrodes, which are implanted below the skin surface, or, alternatively, may be coupled to conventional surface mounted electrodes, and positioned at a targeted tissue region or regions.
  • the neuromuscular stimulation assemblies, systems, and methods apply highly selective patterns of neuromuscular stimulation only to the targeted region or regions, to achieve one or more highly selective therapeutic and/or diagnostic outcomes. The patterns can vary according to desired therapeutic and/or diagnostic objectives.
  • the indications can include, e.g., the highly selective treatment of pain or muscle dysfunction, and/or the highly selective promotion of healing of tissue or bone, and/or the highly selective diagnosis of the effectiveness of a prospective functional electrical stimulation treatment by a future, permanently implanted device.
  • the controller interface from the user to the neuromuscular stimulation assemblies, systems, and methods may be wireless.
  • the neuromuscular stimulation assemblies, systems, and methods comprise a skin-worn patch or carrier.
  • the carrier can be readily carried, e.g., by use of a pressure-sensitive adhesive, without discomfort and without affecting body image on an arm, a leg, or torso of an individual.
  • the carrier carries an electronics pod, which generates the desired electrical current patterns.
  • the pod houses microprocessor-based, programmable circuitry that generates stimulus currents, time or sequence stimulation pulses, and logs and monitors usage.
  • the electronics pod may be configured, if desired, to accept wireless RF based commands for both wireless programming and wireless patient control.
  • the electronics pod also includes an electrode connection region, to physically and electrically couple percutaneous electrode leads to the circuitry of the electronics pod or to the surface mounted electrodes.
  • the carrier further includes a power input bay, to receive a small, lightweight, primary cell battery, which can be released and replaced as prescribed.
  • the battery provides power to the electronics pod.
  • an individual in a typical regime prescribed using the neuromuscular stimulation assemblies, systems, and methods, an individual will be instructed to regularly remove and discard the battery (e.g., about once a day or once a week), replacing it with a fresh battery.
  • This arrangement simplifies meeting the power demands of the electronics pod.
  • the use of the neuromuscular stimulation assemblies, systems, and methods thereby parallels a normal, accustomed medication regime, with the battery being replaced at a prescribed frequency similar to an individual administering a medication regime in pill form.
  • the power input bay can also serve as a communication interface.
  • the communication interface may be plugged into a mating communications interface on an external device, or may have a wireless interface to an external device. Through this link, a caregiver or clinician can individually program the operation of a given electronics pod. If need be, the caregiver or clinician can modulate various stimulus parameters in real time.
  • the assemblies, systems, and methods make possible many different outcomes, e.g., (i) acute pain relief through treatment of pain or muscle dysfunction via the application of electrical stimulation to muscles (or their enervating nerves) with compromised volitional control due to injury to the peripheral or central nervous system (e.g., limb trauma, stroke, central nervous system diseases, etc.); and/or (ii) maintenance of muscle function and prevention of disuse atrophy through temporary stimulation to maintain muscle strength, mass, peripheral blood flow, etc., following a temporary disruption of function by disease or injury; and/or (iii) enhanced tissue and bone regeneration through the provision of small DC currents (or very low frequency AC currents) in bone or tissue to aid or speed healing of bone unions, tissue re-growth, etc; and/or (iv) treatment of pain or other conditions through the application of nerve stimulation to provide a neuro-modulation or inhibitory effect; and/or (v) post-surgical reconditioning to enhance muscle function and promote recovery of strength post-operatively; and/or (vi) anti-thro
  • Another aspect of the invention provides systems and methods for implanting a percutaneous electrode.
  • the systems and methods provide a percutaneous electrode with an anchoring element to resist movement of the percutaneous electrode within tissue.
  • the systems and methods insert the percutaneous electrode through skin and tissue housed within an introducer, which shields the anchoring element from contact with tissue.
  • the systems and methods implant the percutaneous electrode while inserted within the introducer, to place the percutaneous electrode in a desired location within tissue, but without placing the anchoring element in contact with tissue.
  • the systems and methods withdraw the introducer to place the anchoring element in contact with tissue, thereby resisting movement of the percutaneous electrode from the desired position.
  • Another aspect of the invention provides systems and methods for implanting a percutaneous electrode.
  • the systems and methods provide an introducer that defines an interior lumen.
  • the interior lumen is sized and configured to shield a percutaneous electrode from contact with tissue during advancement to a desired position within tissue.
  • a distal tissue penetrating region on the introducer includes a material that can be selectively deflected to steer the body along a chosen path toward the desired position.
  • a mechanism is coupled to the distal region for altering the deflection the distal region in response to manipulation of a remote actuator.
  • FIG. 1 is a perspective view of a neuromuscular stimulation assembly that provides electrical connections between muscles or nerves inside the body and stimulus generators temporarily mounted on the surface of the skin outside the body.
  • FIG. 2 is a view of the neuromuscular stimulation assembly shown in FIG. 1 worn on a temporary basis on an external skin surface of an arm.
  • FIG. 3 is an exploded side view of the neuromuscular stimulation assembly shown in FIG. 1 , showing its coupling to percutaneous leads to electrodes, which are implanted below the skin surface in a targeted tissue region or regions.
  • FIGS. 4A and 4B are perspective views of an electronics pod that is associated with the neuromuscular stimulation assembly shown in FIG. 1 , which is capable of being docked within an electronics bay in the neuromuscular stimulation assembly for use, with FIG. 4A showing the pod in a closed condition for docking with neuromuscular stimulation assembly, and FIG. 4B showing the pod in an opened condition for receiving electrode leads prior to docking with the neuromuscular stimulation assembly.
  • FIG. 5 is a perspective view of an electronics pod as shown in FIG. 4A docked within an electronics bay in a neuromuscular stimulation assembly for use, showing the power input bay opened and empty to enable visual inspection of underling skin.
  • FIG. 6 is a perspective view of the electronics pod shown in FIG. 4B in an opened condition on a skin surface preliminary to placement of percutaneous electrodes.
  • FIGS. 7 and 8 show the implantation of a first percutaneous electrode ( FIG. 7 ) and the routing of its percutaneous electrode lead into an electrode connection region on pod ( FIG. 8 ).
  • FIG. 9 shows the presence of second, third, and fourth percutaneous electrodes that have been sequentially implanted and the routing of their percutaneous electrode leads into the electrode connection regions on the pod, while the pod remains in the opened condition.
  • FIG. 10 shows the pod shown in FIG. 9 , after having been placed in a closed condition, ready for use.
  • FIG. 11 shows the pod shown in FIG. 10 , after having been docked within an electronics bay in the neuromuscular stimulation assembly for use.
  • FIGS. 12A and 12B are perspective views of an alternative embodiment of a neuromuscular stimulation assembly, which includes an integrated electronics pod, with FIG. 12A showing the neuromuscular stimulation assembly in a closed condition for use, and FIG. 12B showing the neuromuscular stimulation assembly in an opened condition for receiving electrode leads prior to use.
  • FIG. 13A is a perspective view of a neuromuscular stimulation assembly of the type shown in FIG. 1 coupled to an external programming instrument.
  • FIG. 13B is a perspective view of a neuromuscular stimulation assembly of the type shown in FIG. 1 in association with an external programming and control instrument that relies upon a wireless communication link.
  • FIGS. 14 to 16 show the use of an electrode introducer to percutaneously implant an electrode in the manner shown in FIGS. 6 and 7 for connection to a neuromuscular stimulation assembly as shown in FIG. 11 .
  • FIGS. 17A , 17 B, and 17 C show an electrode introducer having a remotely deflectable, distal needle region to percutaneously steer an electrode into a desired implant location prior to connection to a neuromuscular stimulation assembly as shown in FIG. 11 .
  • FIG. 18 is a perspective view of a neuromuscular stimulation system comprising a neuromuscular stimulation assembly of the type shown in FIG. 1 in association with a prescribed supply of replacement batteries and instructions for using the a neuromuscular stimulation assembly, including the recharging of the neuromuscular stimulation therapy by inserting a fresh battery, just as an individual on a medication regime “recharges” their medication therapy by taking a pill.
  • FIG. 19 is a perspective view of a neuromuscular stimulation system assembly of the type shown in FIG. 1 , showing a secondary return electrode connected to the stimulation system.
  • FIG. 20 is a bottom view of a neuromuscular stimulation system assembly of the type shown in FIG. 1 , showing the adhesive region including both an active electrode portion and a return electrode portion.
  • FIG. 1 shows a neuromuscular stimulation assembly 10 .
  • the neuromuscular stimulation assembly 10 is sized and configured so that, in use, it can be conveniently worn on a temporary basis on an external skin surface.
  • temporary it is meant that the presence of the neuromuscular stimulation assembly 10 can be well tolerated without discomfort for a period of time from several hours to a month or two, after which the neuromuscular stimulation assembly 10 can be removed and discarded.
  • the neuromuscular stimulation assembly 10 is, in use, releasably coupled by percutaneous leads 12 to electrodes 14 , which are implanted below the skin surface in a targeted tissue region or regions.
  • the tissue region or regions are targeted prior to implantation of the electrodes 14 due to their muscular and/or neural morphologies in light of desired therapeutic and/or functional and/or diagnostic objectives.
  • the neuromuscular stimulation assembly 10 In use, the neuromuscular stimulation assembly 10 generates and distributes electrical current patterns through the percutaneous leads 12 to the electrodes 14 . In this way, the neuromuscular stimulation assembly 10 applies highly selective patterns of neuromuscular stimulation only to the targeted region or regions, to achieve one or more highly selective therapeutic and/or diagnostic outcomes.
  • the inputs/stimulation parameters can vary according to desired therapeutic and/or diagnostic objectives.
  • the outcomes can comprise the highly selective treatment of pain or muscle dysfunction, and/or the highly selective promotion of healing of tissue or bone, and/or the highly selective diagnosis of the effectiveness of a prospective functional electrical stimulation treatment.
  • the neuromuscular stimulation assembly 10 comprises a patch or carrier 16 .
  • the carrier 16 desirably is sized and configured as a compact, lightweight housing made, e.g., of an inert, formed or machined plastic or metal material.
  • the carrier 16 approximates the geometry of the face of a wrist watch, measuring, e.g., about 1 inch in diameter, weighing, e.g., about 5 g. At this size, the carrier 16 can be readily worn without discomfort and in a cosmetically acceptable way (as FIG. 2 shows).
  • the carrier 16 physically overlays and protects the site where the percutaneous electrode leads 12 pass through the skin.
  • the carrier 16 includes several functional components, which will now be described.
  • At least a portion of the undersurface of the carrier 16 includes an adhesive region 18 .
  • the function of the adhesive region 18 is to temporarily secure the carrier 16 to an external skin surface during use.
  • an inert, conventional pressure sensitive adhesive can be used.
  • the adhesive region contains a bacteriostatic sealant that prevents skin irritation or superficial infection, which could lead to premature removal.
  • the adhesive region 18 can also include an electrically conductive material.
  • the adhesive region 18 can serve as a return electrode, so that monopolar electrodes 14 can be implanted, if desired.
  • the adhesive region 18 can also serve as an active electrode when it is used as a surface mounted stimulation system. In this configuration, a secondary return electrode 19 would be tethered to the stimulation system (see FIG. 19 ), or self contained within a concentric ring (see FIG. 20 ).
  • the carrier 16 further carries an electronics pod 20 , which generates the desired electrical current patterns and can communicate wirelessly with an external programming system or controller 46 .
  • the electronics pod 20 can comprise a component that can be inserted into and removed from an electronics bay 22 in the carrier 16 . Having an electronics pod 20 that can be separated from the carrier 16 may be desired when the need to replace a carrier 16 during a course of treatment is necessary. For example, replacement of a carrier 16 without replacement of the electronics pod 20 may be desired if the anticipated length of use of the neuromuscular stimulation assembly 10 is going to be long enough to expect a degradation of adhesive properties of the adhesive region 18 , or when the adhesive region 18 serves as a return electrode and may undergo, with use, degradation of adhesive properties and/or electrical conductivity.
  • the electronics pod 20 can comprise an integral, non-removable part of the carrier 16 .
  • the pod 20 houses microprocessor-based circuitry 24 that generates stimulus currents, time or sequence stimulation pulses, logs and monitors usage, and can communicate wirelessly through an RF link to an external programmer or controller.
  • the circuitry 24 desirably includes a flash memory device or an EEPROM memory chip to carry embedded, programmable code 26 .
  • the code 26 expresses the pre-programmed rules or algorithms under which the stimulation timing and command signals are generated.
  • the circuitry 24 can be carried in a single location or at various locations on the pod 20 .
  • the electronics pod 20 also includes an electrode connection region 28 .
  • the function of the electrode connection region 28 is to physically and electrically couple the terminus of the percutaneous electrode leads 12 to the circuitry 24 of the electronics pod 20 (as FIG. 10 shows).
  • the electrode connection region 28 distributes the electrical current patterns in channels—each electrode 14 comprising a channel—so that highly selective stimulation patterns can be applied through the electrodes 14 .
  • Four channels are shown in FIGS. 4 A/ 4 B and 12 A/ 12 B.
  • the electrode connection region 28 can be constructed in various ways. In the illustrated embodiments FIGS. 4 A/ 4 B and FIGS. 12 A/ 12 B), the electrode connection region 28 comprises troughs 30 formed in the electronics pod 20 . Four troughs 30 are shown in FIGS. 4 A/ 4 B and FIGS. 12 A/ 12 B, each trough 30 being sized and configured to slidably receive the lead 12 of one electrode 12 in an interference fit (see FIG. 10 ). Each trough 30 is labeled with a number or other indicia to record the channel of the electronics circuitry 24 that is coupled to each trough 30 .
  • Each trough 30 routes the terminus of an electrode lead 12 to a given channel (see FIG. 7 ), allowing the lead 12 to be stretched taut to become frictionally lodged within the trough 30 .
  • the trough 30 includes at its end a mechanism 60 to displace or pierce the insulation of the lead and make electrical contact with the conductive wire of the lead 12 . This mechanically secures the lead 12 while electrically coupling the associated electrode 14 with the circuitry 24 of the electronics pod 20 .
  • the electronics pod 20 shown in FIGS. 4A and 4B comprises mating left and right pod sections 32 and 34 joined in a sliding fashion by rails 36 .
  • the pod sections 32 and 34 can be separated by sliding apart along the rails 36 to an opened condition, as shown in FIG. 4B .
  • the pod sections 32 and 34 can brought together by sliding along the rails 36 to a closed condition, as shown in FIG. 4A .
  • the electronics circuitry 24 is carried within one or both of the pod sections 32 and 34 .
  • the separated pod sections 32 and 34 When in the opened position (see FIG. 6 ), the separated pod sections 32 and 34 expose a region 38 of underlying skin through which the electrodes 14 can be percutaneously implanted. The implantation of the electrodes 14 in this skin region 38 will be described in greater detail later. Opening of the pod sections 32 and 34 also makes the troughs 30 readily accessible for receipt and routing of the electrode leads 12 (see FIG. 8 ), which pass upward through the exposed skin region 38 .
  • Closing of the pod sections 32 and 34 captures the electrode leads 12 within the mechanisms 60 in electrical connection with the circuitry 24 of the electronics pod 20 .
  • the pod sections 32 and 34 mate but still allow visual inspection of the underlying skin region 38 through which the electrode leads 12 pass.
  • FIG. 5 shows, visual inspection of the underlying skin region 28 through the pod 20 is still accommodated even after the carrier 16 is docked to the pod 20 (by viewing through an empty power input bay 40 of the carrier 16 ).
  • closing of the pod sections 32 and 34 also cuts off excess lead wire at the end. Otherwise, the excess lead can be cut manually.
  • a carrier 16 can be placed over the electronics pod 20 , by snap-fitting the electronics pod 20 into an electronics bay 22 of the carrier 16 .
  • An electrical connection region or contact 62 on the pod 20 electrically couples to a mating connection region or contact on the carrier 16 , to couple the circuitry 24 on the pod 20 to a power source 42 carried by the carrier 16 .
  • the carrier 16 itself can comprise the separable sections 32 and 34 .
  • one carrier section 34 can include an adhesive region 18 , which will adhere the carrier 16 to the skin in an opened condition to allow routing of the electrode leads 12 .
  • a pull-away strip 60 on the other carrier section 32 can be removed to expose another adhesive region to entirely secure the carrier 16 to the skin.
  • a locking motion, coupling the electrode leads 12 to the electronics pod 20 can be accomplished by a button, or a lever arm, or an allen drive that is pushed, or slid, or pulled, or twisted.
  • the carrier 16 further includes a power input bay 40 .
  • One function of the power input bay 40 is to releasably receive an interchangeable, and (desirably) disposable battery 42 , e.g., an alkaline or lithium battery.
  • the battery 42 provides power to the electronics pod 20 .
  • the power input bay 40 can include a hinged cover 44 .
  • FIG. 12B also shows the presence of a battery-receiving power input bay 40 .
  • the battery 42 might form the cover without a hinge using a snap-fit mechanism to secure the battery into the power input bay 40 .
  • an individual in a typical regime prescribed using the neuromuscular stimulation assembly 10 , an individual will be instructed to remove and discard the battery 42 about once a day, replacing it with a fresh battery 42 .
  • This arrangement simplifies meeting the power demands of the electronics pod 20 .
  • the use of the neuromuscular stimulation assembly 10 will thereby parallel a normal, accustomed medication regime, with the battery 42 being replaced in the same frequency an individual administers medication in pill form.
  • the battery 42 may be provided in an over-molded housing to ease attachment and removal.
  • the power input bay 40 can also serve as a communication interface. As FIG. 13A shows, when free of a battery 42 , the bay 40 can be used to plug in a cable 58 to an external programming device 46 or computer. This will also be described later. This makes possible linking of the electronics pod 20 to an external programming device 46 or computer. Through this link, information and programming input can be exchanged and data can be downloaded from the electronics pod 20 .
  • the neuromuscular stimulation assembly 10 makes it possible for a care giver or clinician to individually program the operation of a given electronics pod 20 to the extent permitted by the embedded, programmable code 26 .
  • a wireless link 59 e.g., RF magnetically coupled, infrared, or RF
  • an external programming device 46 or computer see FIG. 13B .
  • FIG. 5 also shows, with the battery 42 removed and the cover (if any) opened, the underlying skin region 38 , through which the percutaneous electrode leads pass, can be readily viewed through the power input bay 40 .
  • the configuration of the electrodes 14 and the manner in which they are implanted can vary. A representative embodiment will be described, with reference to FIGS. 14 to 16 .
  • each electrode 14 and lead 12 comprises a thin, flexible component made of a metal and/or polymer material.
  • the electrode 14 should not be greater than about 0.5 mm (0.020 inch) in diameter.
  • the electrode 14 and lead 12 can comprise, e.g., one or more coiled metal wires with in an open or flexible elastomer core.
  • the wire can be insulated, e.g., with a biocompatible polymer film, such as polyfluorocarbon, polyimide, or parylene.
  • the electrode 14 and lead 12 are desirably coated with a textured, bacteriostatic material, which helps to stabilize the electrode in a way that still permits easy removal at a later date and increases tolerance.
  • the electrode 14 and lead 12 are electrically insulated everywhere except at one (monopolar), or two (bipolar), or three (tripolar) conduction locations near its distal tip. Each of the conduction locations is connected to a conductor that runs the length of the electrode and lead, proving electrical continuity from the conduction location to the electronics pod 20 .
  • the conduction location may comprise a de-insulated area of an otherwise insulated conductor that runs the length of an entirely insulated electrode.
  • the de-insulated conduction region of the conductor can be formed differently, e.g., it can be wound with a different pitch, or wound with a larger or smaller diameter, or molded to a different dimension.
  • the conduction location of the electrode may comprise a separate material (metal or conductive polymer) exposed to the body tissue to which the conductor of the wire is bonded.
  • the electrode 14 and lead 12 desirably possess mechanical properties in terms of flexibility and fatigue life that provide an operating life free of mechanical and/or electrical failure, taking into account the dynamics of the surrounding tissue (i.e., stretching, bending, pushing, pulling, crushing, etc.).
  • the material of the electrode desirably discourages the in-growth of connective tissue along its length, so as not to inhibit its withdrawal at the end of its use. However, it may be desirable to encourage the in-growth of connective tissue at the distal tip of the electrode, to enhance its anchoring in tissue.
  • the desired electrode 14 will include, at its distal tip, an anchoring element 48 (see FIGS. 15 and 16 ).
  • the anchoring element 48 takes the form of a simple barb.
  • the anchoring element 48 is sized and configured so that, when in contact with tissue, it takes purchase in tissue, to resist dislodgement or migration of the electrode out of the correct location in the surrounding tissue.
  • the anchoring element 48 is prevented from fully engaging body tissue until after the electrode has been deployed. The electrode is not deployed until after it has been correctly located during the implantation (installation) process, as will be described in greater detail later.
  • the electrode 14 and lead 12 can include a metal stylet within its core. Movement of the stylet with respect to the body of the electrode and/or an associated introducer (if used) is used to deploy the electrode by exposing the anchoring element 48 to body tissue. In this arrangement, the stylet is removed once the electrode 14 is located in the desired region.
  • each electrode 14 is percutaneously implanted housed within electrode introducer 50 .
  • the electrode introducer 50 comprises a shaft having sharpened needle-like distal tip, which penetrates skin and tissue leading to the targeted tissue region.
  • the electrode 14 and lead 12 are loaded within a lumen in the introducer 50 , with the anchoring element 48 shielded from full tissue contact within the shaft of the introducer 50 (see FIG. 14 ).
  • the introducer can be freely manipulated in tissue in search of a desired final electrode implantation site (see FIG. 14 ) before deploying the electrode (see FIG. 15 ) and withdrawing the introducer 50 (see FIG. 16 ).
  • the electrode introducer 50 is insulated along the length of the shaft, except for those areas that correspond with the exposed conduction surfaces of the electrode 14 housed inside the introducer 50 . These surfaces on the outside of the introducer 50 are electrically isolated from each other and from the shaft of the introducer 50 . These surfaces are electrically connected to a connector 64 at the end of the introducer body (see FIGS. 14 and 15 ). This allows connection to a stimulating circuit 66 (see FIG. 14 ) during the implantation process. Applying stimulating current through the outside surfaces of the introducer 50 provides a close approximation to the response that the electrode 14 will provide when it is deployed at the current location of the introducer 50 .
  • the electrode introducer 50 is sized and configured to be bent by hand prior to its insertion through the skin. This will allow the physician to place an electrode 14 in a location that is not in an unobstructed straight line with the insertion site.
  • the construction and materials of the electrode introducer 50 allow bending without interfering with the deployment of the electrode 14 and withdrawal of the electrode introducer 50 , leaving the electrode 14 in the tissue.
  • the electrode introducer 50 includes a distal needle region 70 that can be deflected or steered by operation of a remote steering actuator 72 .
  • Remote bending of the needle region 70 is another way to facilitate guidance of the electrode 14 to a location that is not in an unobstructed straight line with the insertion site.
  • the needle region 70 comprises a semi-flexible, electrically conductive, needle extension 74 .
  • the needle extension 74 is telescopically fitted within the distal end of the introducer 50 , meaning that the extension 74 is capable of sliding within the introducer 50 .
  • the semi-flexible needle extension 74 includes an interior lumen 78 , which communicates with the interior lumen of the introducer 50 , through which the electrode 14 passes. Thus, the electrode 14 can be passed through the lumen 78 of the needle extension 74 for deployment.
  • Small linear motors 76 L and 76 R couple the proximal ends of the needle extension 74 to the introducer 50 .
  • the motors 76 L and 76 are desirably attached in a spaced apart relationship, which in the illustrated embodiment, is about 180-degrees.
  • the steering actuator 72 can comprise, e.g., a conventional joystick device.
  • the joystick device 72 By manipulating the joystick device 72 , as FIGS. 17B and 17C show, variable drive rates/directions can be applied to the motors 76 L and 76 R, to deflect or steer the needle extension 74 in the desired direction.
  • the path that introducer 50 takes through tissue can thereby be directed.
  • stimulating current can be applied through the outside surfaces of the needle extension 74 until the location having the desired stimulation response is found.
  • the electrode 14 can be deployed through the needle extension 74 , fully engaging the electrode anchoring element 48 in body tissue, in the manner previously described, followed by a withdrawal of the introducer 50 .
  • a clinician Prior to installation, a clinician identifies a particular muscle and/or neural region to which a prescribed therapy using a neuromuscular stimulation assembly 10 will be applied. The particular types of therapy that are possible using the neuromuscular stimulation assembly 10 will be described later.
  • an electronics pod 20 or a carrier 16 with integrated electronics pod 20
  • the adhesive region desirably contains a bacteriostatic sealant that prevents skin irritation or superficial infection, which could lead to premature removal.
  • the electronics pod 20 (or carrier 16 with integrated electronics pod 20 ) is placed on the skin in an opened condition, to expose the skin region 38 between the pod (or carrier 16 ) sections 32 and 34 .
  • the clinician proceeds to percutaneously implant the electrodes 14 and lead 12 , one by one, through the desired skin region 38 . While each electrode 14 is sequentially implanted, the electrode introducer 50 applies a stimulation signal until a desired response is achieved, at which time the electrode 14 is deployed and the introducer 50 is withdrawn.
  • each electrode Upon implanting each electrode (see FIG. 7 ), the clinician routes each electrode lead 12 to a given trough 30 . The clinician notes which electrode 14 is coupled to which channel.
  • the clinician closes the electronics pod 20 (or carrier 16 with integrated electronics pod 20 ) (see FIG. 10 ).
  • the clinician snap-fits the carrier 16 over the electronics pod 20 , as FIG. 11 shows.
  • the adhesive region 18 on the carrier 16 secures the carrier 16 to the skin.
  • a battery 42 is placed into the power input bay 40 .
  • the neuromuscular stimulation assembly 10 is ready for use.
  • a container 52 holding a prescribed number of replacement batteries 42 will be provided with the neuromuscular stimulation assembly 10 , forming a neuromuscular stimulation system 54 .
  • Instructions for use 56 may accompany the neuromuscular stimulation system 54 .
  • the instructions 56 prescribe-use of the neuromuscular stimulation assembly 10 , including the periodic removal and replacement of a battery 42 with a fresh battery 42 .
  • the instructions 56 prescribe a neuromuscular stimulation regime that includes a periodic recharging, via battery replacement, of the neuromuscular stimulation assembly 10 in the same fashion that pill-based medication regime directs periodic “recharging” of the medication by taking of a pill.
  • a battery 42 becomes the therapeutic equivalent of a pill (i.e., it is part of a user action taken to extend treatment).
  • external desktop or handheld (desirably also battery powered) preprogrammed instruments 46 can be used to program stimulus regimes and parameters into the neuromuscular stimulation assembly 10 , or to download recorded data from the neuromuscular stimulation assembly 10 for display and further processing.
  • the instruments 46 can communicate with the neuromuscular stimulation assembly 10 , e.g., by a cable connection 58 , by radio frequency magnetic field coupling, by infrared, or by RF wireless 59 .
  • the power input bay 40 can additionally comprise a communications interface, that is coupled to a communications cable 58 connected to the instrument 46 .
  • the communications cable 58 provides power to the neuromuscular stimulation assembly 10 during programming, as well as communications with the circuitry 24 of the neuromuscular stimulation assembly 10 .
  • the external programming instrument 46 can also be a general purpose personal computer or personal digital device fitted with a suitable custom program and a suitable cable or interface box for connection to the communications cable 58 .
  • the programming instruments 46 allow a clinician to customize the programmable code 26 residing in an individual neuromuscular stimulation assembly 10 according the specific needs of the user and the treatment goals of the clinician.
  • the neuromuscular stimulation assembly 10 can, once customized, be disconnected from the programming system, allowing portable, skin-worn operation, as already described.
  • the neuromuscular stimulation assembly 10 and/or neuromuscular stimulation system 54 make possible the providing of short-term therapy or diagnostic testing by providing electrical connections between muscles or nerves inside the body and stimulus generators or recording instruments mounted on the surface of the skin outside the body.
  • the programmable code 26 of the neuromuscular stimulation assembly 10 and/or neuromuscular stimulation system 54 can be programmed to perform a host of neuromuscular stimulation functions, representative examples of which will be described for the purpose of illustration.
  • CAM using the neuromuscular stimulation assembly 10 and/or neuromuscular stimulation system 54 provides the stimulus necessary to improve cardiovascular endurance, muscular strength, and neurologic coordination.
  • this active-assisted exercise is a technique used to assist the active, voluntary movement of the target limb, thereby decreasing the amount of strength needed to move the joints.
  • This technique has been proven effective in increasing the strength of individuals beginning at very low levels.
  • Therapeutic benefits include reduced inflammation of the affected joint, improved range of motion, pain relief, and enhanced functional mobility.
  • CAM is differentiated from continuous passive motion (CPM), which is the movement of a joint or extremity through a range of motion without voluntary movement of the limb.
  • CPM continuous passive motion
  • Post Surgical scarring (e.g. posterior approaches to the spine), is the bane of most Orthopedic or Neurosurgical procedures.
  • Scarring or adhesion that is a fibrous band of scar tissue that binds together normally separate anatomical structures during the healing process, can be one of the single greatest reasons for patient's surgical “failure”.
  • a terrific and well executed operation by a gifted surgeon can be wasted in a short time due to the body's tendency to scar during post surgical healing.
  • the neuromuscular stimulation assembly 10 and/or neuromuscular stimulation system 54 By applying the neuromuscular stimulation assembly 10 and/or neuromuscular stimulation system 54 to the muscles or nerves in the specific surgical wound area, relatively small motions may prevent scarring, while the tissue is healing.
  • the neuromuscular stimulation assembly 10 and/or neuromuscular stimulation system 54 can be applied to provide the physician and their patient with some assurance that through the temporary stimulation of the end organ, the treatment is viable. This would allow the physician to screen patients that may not be candidates for the permanent treatment, or otherwise, may not find the effect of the treatment to worth the effort of the surgical implantation of a permanent system.
  • a specific permanent implanted neuromodulation or neurostimulation system e.g. urinary incontinence, vagal nerve stimulation for epilepsy treatment, spinal cord stimulators for pain reduction
  • the neuromuscular stimulation assembly 10 and/or neuromuscular stimulation system 54 can be applied to provide the physician and their patient with some assurance that through the temporary stimulation of the end organ, the treatment is viable. This would allow the physician to screen patients that may not be candidates for the permanent treatment, or otherwise, may not find the effect of the treatment to worth the effort of the surgical implantation of a permanent system.
  • C5-6 tetraplegics are unable to extend their elbow. Without elbow extension, they are limited to accessing only the area directly in front of their body, requiring assistance in many of their activities of daily living. They rely on the use of their biceps muscle to perform most of their upper extremity tasks. With limited or no hand function they rely on adaptive equipment to accomplish many self care activities such as grooming and hygiene as well as feeding.
  • a pulse generator can be implanted in a minimal invasive way in association with a lead/electrode in electrical conductive contact with peripheral motor nerves that innervate the triceps muscle.
  • the pulse generator can be programmed to provide single channel electrical stimulation to peripheral motor nerves that innervate the triceps muscle to produce elbow extension.
  • Adding the ability to extend the elbow can significantly increase reach and work space thus allowing greater independence.
  • With elbow extension the ability to reach overhead or extend the arm outward to the side greatly increases this work space thereby allowing much more freedom to complete tasks otherwise out of their reach. This ability to extent also provides better control of objects as it provides co-contraction of the elbow flexors and extensors simultaneously.
  • a first phase of treatment or evaluation period is desirably conducted to identify whether a person has an innervated triceps muscle which responds to electrical stimulation. If the muscle is innervated and functioning, the physician will identify if stimulation to this muscle can provide adequate elbow extension both in a horizontal plane such as reaching out and in a vertical plane for reaching up. The individual must also be able to overcome the force of this triceps stimulation with their biceps muscle by demonstrating that they can still flex their elbow during stimulation of the triceps. Usually this can be tested by asking the person to bring their hand to their mouth.
  • the evaluation process can be accomplished with a percutaneous or surface neuromuscular stimulation device of the type described herein.
  • the stimulation device carries the on-board electronics pod, which generates the desired electrical current patterns to cause electrical stimulation of radial nerve innervation to the triceps.
  • the pod houses microprocessor-based, programmable circuitry that generates stimulus currents, time or sequence stimulation pulses, and logs and monitors usage.
  • a wireless user interface/programmer may be used.
  • the circuitry of the electronics pod is physically and electrically coupled to the percutaneous leads of the electrodes.
  • the stimulator settings can be programmed, either by direct coupling or a wireless link to a programmer. Stimulation will be applied using 0-200 ⁇ sec pulses at 20 Hz.
  • the force of triceps activation can be determined by the strength of their biceps muscle.
  • the subject must maintain the ability to comfortably flex their elbow during triceps stimulation. A stronger biceps will allow for stronger stimulation to the triceps.
  • the subject may require a conditioning phase of one to two weeks to build up the endurance of the triceps muscle following the initial set up. The subject must demonstrate the ability to flex the elbow while stimulation to the triceps is provided. Thus relaxation of biceps will allow elbow extension.
  • the individual will be scheduled for a second phase of treatment if electrical stimulation of the radial nerve innervation to the triceps using the surface or percutaneous stimulation program provides active elbow extension expanding the individual's previous work space.
  • the second phase of treatment includes the replacement of the first phase stimulation devices with the implantation of an implantable pulse generator and associated lead/electrode.
  • Neurodethelial dysfunction Individuals with neurological deficits, such as stroke survivors or those with multiple sclerosis may lose control of certain bodily functions.
  • the brain may, through a process called “neuroplasticity,” recover functionally, by reorganizing the cortical maps or spinal cord-root interfaces and increasing auxiliary blood supply, which contributes to neurological recovery.
  • neuroplasticity By applying the neuromuscular stimulation assembly 10 and/or neuromuscular stimulation system 54 to affected areas of the body and providing excitation and input to the brain, a neuroplastic effect may occur, enabling the brain to re-learn and regain control of the lost function.
  • Botox temporary neurotoxins
  • Botox can also be used to treat eye conditions that cause the eye to cross or eyelid to blink continuously. It is also purported to eliminate wrinkles by limiting the ageing process.
  • the neuromuscular stimulation assembly 10 and/or neuromuscular stimulation system 54 may be used as an alternative means of reducing the spasticity without having to temporarily paralyze the nerves and muscles.
  • the neuromuscular stimulation assembly 10 and/or neuromuscular stimulation system 54 also may be useful in treating TMJ (temporomandibular joint) disorders, which are manifested by pain in the area of the jaw and associated muscles spasms and limitations in the ability to make the normal movements of speech, facial expression, eating, chewing, and swallowing.
  • TMJ temporary joint
  • Localized pain in any area of the body can be treated with the neuromuscular stimulation assembly 10 and/or neuromuscular stimulation system 54 by applying it directly to the effected area.
  • the neuromuscular stimulation assembly 10 and/or neuromuscular stimulation system 54 works by interfering with or blocking pain signals from reaching the brain.
  • the neuromuscular stimulation assembly 10 and/or neuromuscular stimulation system 54 can be prescribed post-operatively and installed in association with the appropriate muscles regions to provide a temporary regime of muscle stimulation, alone or in conjunction with a program of active movements, to aid an individual in recovering muscle tone, function, and conditioning following surgery.
  • the neuromuscular stimulation assembly 10 and/or neuromuscular stimulation system 54 can provide anti-thrombosis therapy by stimulating the leg muscles which increases venous return and prevent blood clots associated with pooling of blood in the lower extremities.
  • Routine post-operative therapy is currently the use of pneumatic compression cuffs that the patients wear on their calves while in bed. The cuffs cycle and mechanically compress the calf muscles, thereby stimulating venous flow. Patients hate this, but every surgical bed in the hospital now has this unit attached to it. This same effect could be duplicated by installing a neuromuscular stimulation assembly 10 .
  • Prophyllaxis is most effective if begun during surgery, as many, if not most clots, form during surgery. Thus, it is desirable to install a neuromuscular stimulation assembly 10 and begin use of the neuromuscular stimulation system 54 at the beginning of an operation.
  • Cyclic muscle contraction loads bone sufficiently to prevent (and possibly) reverse osteoporosis.
  • the effectiveness of such treatment is known to be frequency dependent.
  • the neuromuscular stimulation assembly 10 and/or neuromuscular stimulation system 54 can be programmed to stimulate muscles at the appropriate frequency to prevent/reverse osteoporosis.
  • the neuromuscular stimulation assembly 10 and/or neuromuscular stimulation system 54 can be wirelessly controlled in realtime through an external control source, such as a heel switch monitoring gait. This external control source would trigger the neuromuscular stimulation system to become active for a pre-set period of time, enabling a functional movement in the lower or upper extremity of a person, thereby restoring the previously non-functioning paralyzed limb.
  • an external control source such as a heel switch monitoring gait.
  • Muscular proportions of the human anatomy can be enhanced and their overall muscle definition may be modified by neuromuscular stimulation of a specific group of muscles.
  • An example is stimulation of the abdominal region, increasing strength and improving muscle tone and definition.
  • the neuromuscular stimulation assembly 10 and/or neuromuscular stimulation system 54 can be programmed to stimulate muscles at the appropriate frequency to change body physique and supplement the impact of active exercise.

Abstract

Neuromuscular stimulation assemblies, systems, and methods make possible the providing of short-term therapy or diagnostic testing by providing electrical connections between muscles or nerves inside the body and stimulus generators or recording instruments mounted on the surface of the skin outside the body. Neuromuscular stimulation assemblies, systems, and methods may include a steerable introducer that defines an interior lumen sized and configured to shield a percutaneous electrode from contact with tissue during advancement to a desired position within tissue.

Description

    RELATED APPLICATIONS
  • This application is a divisional application of U.S. patent application Ser. No. 11/056,591, filed 11 Feb. 2005, and entitled “Portable Assemblies, Systems and Methods for Providing Functional or Therapeutic Neuromuscular Stimulation,” which claims the benefit of U.S. Provisional Patent Application Ser. No. 60/551,945, filed Mar. 10, 2004, and entitled “Steerable Introducer for a Percutaneous Electrode Usable in Association with Portable Percutaneous Assemblies, Systems and Methods for Providing Highly Selective Functional or Therapeutic Neuromuscular Stimulation,” and also claims the benefit of U.S. Provisional Patent Application Ser. No. 60/599,193, filed Aug. 5, 2004, and entitled “Implantable Pulse Generator for Providing Functional and/or Therapeutic Stimulation of Muscles and/or Nerves” which are incorporated herein by reference.
  • Further, U.S. patent application Ser. No. 11/056,591 is also a continuation-in-part of U.S. patent application Ser. No. 10/777,771, now U.S. Pat. No. 7,120,499, filed Feb. 12, 2004, and entitled “Portable Percutaneous Assemblies, Systems and Methods for Providing Highly Selective Functional or Therapeutic Neurostimulation,” which is incorporated herein by reference.
  • FIELD OF INVENTION
  • This invention relates to systems and methods for providing neuromuscular stimulation.
  • BACKGROUND OF THE INVENTION
  • Neuromuscular stimulation can perform functional and/or therapeutic outcomes. While existing systems and methods can provide remarkable benefits to individuals requiring neuromuscular stimulation, many quality of life issues still remain. For example, existing systems perform a single, dedicated stimulation function. Furthermore, these controllers are, by today's standards, relatively large and awkward to manipulate and transport.
  • It is time that systems and methods for providing neuromuscular stimulation address not only specific prosthetic or therapeutic objections, but also address the quality of life of the individual requiring neuromuscular stimulation, including the ability to enable the end-user to operate the system through a wireless interface.
  • SUMMARY OF THE INVENTION
  • The invention provides improved assemblies, systems, and methods for providing prosthetic or therapeutic neuromuscular stimulation.
  • On aspect of the invention provides systems and methods for a neuromuscular stimulation assembly. The assembly comprises a carrier sized and configured to be worn by a user. The carrier includes a tissue facing surface, at least one percutaneous electrode extending from the carrier, circuitry carried on-board the carrier configured to generate a stimulation pulse to the electrode, and the carrier tissue facing surface including an adhesive region, the adhesive region being in contact with the external skin surface.
  • Another aspect of the invention provides systems and methods for providing a neuromuscular stimulation function. A method may include
  • a) providing a neuromuscular stimulation assembly comprising a carrier sized and configured to be worn by a user, the carrier including a tissue facing surface and a power input bay, the power input bay being sized and configured to hold a disposable battery for the circuitry that can be released and replaced for powering the circuitry, at least one percutaneous electrode extending from the carrier, circuitry carried on-board the carrier configured to generate a stimulation pulse to the electrode, and the carrier tissue facing surface including an adhesive region, the adhesive region being in contact with the external skin surface,
  • b) providing instructions furnished by a clinician or caregiver or physician prescribing the release and replacement of the disposable battery according to a prescribed battery replacement regime, the prescribed battery replacement regime comprising the replacement of the disposable battery on a prescribed repeated basis similar to administering a pill under a prescribed pill-based medication regime, and
  • c) providing a supply of disposable batteries, each battery comprising a dose of power for the circuitry for administration according to the prescribed battery replacement regime.
  • An additional aspect of the invention provides portable, percutaneous or surface mounted neuromuscular stimulation assemblies, systems and methods that provide electrical connections between muscles or nerves inside the body and stimulus generators or recording instruments temporarily mounted on the surface of the skin outside the body. The assemblies, systems, and methods may, in use, be coupled by percutaneous leads to electrodes, which are implanted below the skin surface, or, alternatively, may be coupled to conventional surface mounted electrodes, and positioned at a targeted tissue region or regions. The neuromuscular stimulation assemblies, systems, and methods apply highly selective patterns of neuromuscular stimulation only to the targeted region or regions, to achieve one or more highly selective therapeutic and/or diagnostic outcomes. The patterns can vary according to desired therapeutic and/or diagnostic objectives. The indications can include, e.g., the highly selective treatment of pain or muscle dysfunction, and/or the highly selective promotion of healing of tissue or bone, and/or the highly selective diagnosis of the effectiveness of a prospective functional electrical stimulation treatment by a future, permanently implanted device. In addition, the controller interface from the user to the neuromuscular stimulation assemblies, systems, and methods may be wireless.
  • The neuromuscular stimulation assemblies, systems, and methods comprise a skin-worn patch or carrier. The carrier can be readily carried, e.g., by use of a pressure-sensitive adhesive, without discomfort and without affecting body image on an arm, a leg, or torso of an individual.
  • The carrier carries an electronics pod, which generates the desired electrical current patterns. The pod houses microprocessor-based, programmable circuitry that generates stimulus currents, time or sequence stimulation pulses, and logs and monitors usage. The electronics pod may be configured, if desired, to accept wireless RF based commands for both wireless programming and wireless patient control.
  • The electronics pod also includes an electrode connection region, to physically and electrically couple percutaneous electrode leads to the circuitry of the electronics pod or to the surface mounted electrodes.
  • The carrier further includes a power input bay, to receive a small, lightweight, primary cell battery, which can be released and replaced as prescribed. The battery provides power to the electronics pod.
  • It is contemplated that, in a typical regime prescribed using the neuromuscular stimulation assemblies, systems, and methods, an individual will be instructed to regularly remove and discard the battery (e.g., about once a day or once a week), replacing it with a fresh battery. This arrangement simplifies meeting the power demands of the electronics pod. The use of the neuromuscular stimulation assemblies, systems, and methods thereby parallels a normal, accustomed medication regime, with the battery being replaced at a prescribed frequency similar to an individual administering a medication regime in pill form.
  • The power input bay can also serve as a communication interface. The communication interface may be plugged into a mating communications interface on an external device, or may have a wireless interface to an external device. Through this link, a caregiver or clinician can individually program the operation of a given electronics pod. If need be, the caregiver or clinician can modulate various stimulus parameters in real time.
  • The assemblies, systems, and methods make possible many different outcomes, e.g., (i) acute pain relief through treatment of pain or muscle dysfunction via the application of electrical stimulation to muscles (or their enervating nerves) with compromised volitional control due to injury to the peripheral or central nervous system (e.g., limb trauma, stroke, central nervous system diseases, etc.); and/or (ii) maintenance of muscle function and prevention of disuse atrophy through temporary stimulation to maintain muscle strength, mass, peripheral blood flow, etc., following a temporary disruption of function by disease or injury; and/or (iii) enhanced tissue and bone regeneration through the provision of small DC currents (or very low frequency AC currents) in bone or tissue to aid or speed healing of bone unions, tissue re-growth, etc; and/or (iv) treatment of pain or other conditions through the application of nerve stimulation to provide a neuro-modulation or inhibitory effect; and/or (v) post-surgical reconditioning to enhance muscle function and promote recovery of strength post-operatively; and/or (vi) anti-thrombosis therapy, e.g., by the stimulation of leg muscles to increase venous return of blood; and/or (vii) the treatment of osteoporosis by cyclic stimulation of muscles; and/or (viii) the short-term provision of electrical stimulation to evaluate the effectiveness of such treatment in advance of the implantation of a more permanent implant, for example, to evaluate whether a person having C5-6 tetraplegia has an innervated triceps muscle which could respond to treatment by electrical stimulation; and/or (ix) the short-term recording of biopotential signals generated in the body to aid in the diagnosis of medical conditions or in the assessment of the effectiveness of treatment methods; and/or (x) for functional benefits such as in the restoration of impaired or lost gait or upper extremity function.
  • Another aspect of the invention provides systems and methods for implanting a percutaneous electrode. The systems and methods provide a percutaneous electrode with an anchoring element to resist movement of the percutaneous electrode within tissue. The systems and methods insert the percutaneous electrode through skin and tissue housed within an introducer, which shields the anchoring element from contact with tissue. The systems and methods implant the percutaneous electrode while inserted within the introducer, to place the percutaneous electrode in a desired location within tissue, but without placing the anchoring element in contact with tissue. The systems and methods withdraw the introducer to place the anchoring element in contact with tissue, thereby resisting movement of the percutaneous electrode from the desired position.
  • Another aspect of the invention provides systems and methods for implanting a percutaneous electrode. The systems and methods provide an introducer that defines an interior lumen. The interior lumen is sized and configured to shield a percutaneous electrode from contact with tissue during advancement to a desired position within tissue. A distal tissue penetrating region on the introducer includes a material that can be selectively deflected to steer the body along a chosen path toward the desired position. A mechanism is coupled to the distal region for altering the deflection the distal region in response to manipulation of a remote actuator.
  • Other features and advantages of the inventions are set forth in the following specification and attached drawings.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a perspective view of a neuromuscular stimulation assembly that provides electrical connections between muscles or nerves inside the body and stimulus generators temporarily mounted on the surface of the skin outside the body.
  • FIG. 2 is a view of the neuromuscular stimulation assembly shown in FIG. 1 worn on a temporary basis on an external skin surface of an arm.
  • FIG. 3 is an exploded side view of the neuromuscular stimulation assembly shown in FIG. 1, showing its coupling to percutaneous leads to electrodes, which are implanted below the skin surface in a targeted tissue region or regions.
  • FIGS. 4A and 4B are perspective views of an electronics pod that is associated with the neuromuscular stimulation assembly shown in FIG. 1, which is capable of being docked within an electronics bay in the neuromuscular stimulation assembly for use, with FIG. 4A showing the pod in a closed condition for docking with neuromuscular stimulation assembly, and FIG. 4B showing the pod in an opened condition for receiving electrode leads prior to docking with the neuromuscular stimulation assembly.
  • FIG. 5 is a perspective view of an electronics pod as shown in FIG. 4A docked within an electronics bay in a neuromuscular stimulation assembly for use, showing the power input bay opened and empty to enable visual inspection of underling skin.
  • FIG. 6 is a perspective view of the electronics pod shown in FIG. 4B in an opened condition on a skin surface preliminary to placement of percutaneous electrodes.
  • FIGS. 7 and 8 show the implantation of a first percutaneous electrode (FIG. 7) and the routing of its percutaneous electrode lead into an electrode connection region on pod (FIG. 8).
  • FIG. 9 shows the presence of second, third, and fourth percutaneous electrodes that have been sequentially implanted and the routing of their percutaneous electrode leads into the electrode connection regions on the pod, while the pod remains in the opened condition.
  • FIG. 10 shows the pod shown in FIG. 9, after having been placed in a closed condition, ready for use.
  • FIG. 11 shows the pod shown in FIG. 10, after having been docked within an electronics bay in the neuromuscular stimulation assembly for use.
  • FIGS. 12A and 12B are perspective views of an alternative embodiment of a neuromuscular stimulation assembly, which includes an integrated electronics pod, with FIG. 12A showing the neuromuscular stimulation assembly in a closed condition for use, and FIG. 12B showing the neuromuscular stimulation assembly in an opened condition for receiving electrode leads prior to use.
  • FIG. 13A is a perspective view of a neuromuscular stimulation assembly of the type shown in FIG. 1 coupled to an external programming instrument.
  • FIG. 13B is a perspective view of a neuromuscular stimulation assembly of the type shown in FIG. 1 in association with an external programming and control instrument that relies upon a wireless communication link.
  • FIGS. 14 to 16 show the use of an electrode introducer to percutaneously implant an electrode in the manner shown in FIGS. 6 and 7 for connection to a neuromuscular stimulation assembly as shown in FIG. 11.
  • FIGS. 17A, 17B, and 17C show an electrode introducer having a remotely deflectable, distal needle region to percutaneously steer an electrode into a desired implant location prior to connection to a neuromuscular stimulation assembly as shown in FIG. 11.
  • FIG. 18 is a perspective view of a neuromuscular stimulation system comprising a neuromuscular stimulation assembly of the type shown in FIG. 1 in association with a prescribed supply of replacement batteries and instructions for using the a neuromuscular stimulation assembly, including the recharging of the neuromuscular stimulation therapy by inserting a fresh battery, just as an individual on a medication regime “recharges” their medication therapy by taking a pill.
  • FIG. 19 is a perspective view of a neuromuscular stimulation system assembly of the type shown in FIG. 1, showing a secondary return electrode connected to the stimulation system.
  • FIG. 20 is a bottom view of a neuromuscular stimulation system assembly of the type shown in FIG. 1, showing the adhesive region including both an active electrode portion and a return electrode portion.
  • The invention may be embodied in several forms without departing from its spirit or essential characteristics. The scope of the invention is defined in the appended claims, rather than in the specific description preceding them. All embodiments that fall within the meaning and range of equivalency of the claims are therefore intended to be embraced by the claims.
  • DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • The various aspects of the invention will be described in connection with providing functional neuromuscular stimulation for prosthetic or therapeutic purposes. That is because the features and advantages that arise due to the invention are well suited to this purpose. Still, it should be appreciated that the various aspects of the invention can be applied to achieve other objectives as well.
  • I. Neuromuscular Stimulation assembly 10
  • A. Overview
  • FIG. 1 shows a neuromuscular stimulation assembly 10. As FIG. 2 shows, the neuromuscular stimulation assembly 10 is sized and configured so that, in use, it can be conveniently worn on a temporary basis on an external skin surface. By “temporary,” it is meant that the presence of the neuromuscular stimulation assembly 10 can be well tolerated without discomfort for a period of time from several hours to a month or two, after which the neuromuscular stimulation assembly 10 can be removed and discarded.
  • As FIG. 3 shows, the neuromuscular stimulation assembly 10 is, in use, releasably coupled by percutaneous leads 12 to electrodes 14, which are implanted below the skin surface in a targeted tissue region or regions. The tissue region or regions are targeted prior to implantation of the electrodes 14 due to their muscular and/or neural morphologies in light of desired therapeutic and/or functional and/or diagnostic objectives.
  • In use, the neuromuscular stimulation assembly 10 generates and distributes electrical current patterns through the percutaneous leads 12 to the electrodes 14. In this way, the neuromuscular stimulation assembly 10 applies highly selective patterns of neuromuscular stimulation only to the targeted region or regions, to achieve one or more highly selective therapeutic and/or diagnostic outcomes. As will be described in greater detail later, the inputs/stimulation parameters can vary according to desired therapeutic and/or diagnostic objectives. For example, the outcomes can comprise the highly selective treatment of pain or muscle dysfunction, and/or the highly selective promotion of healing of tissue or bone, and/or the highly selective diagnosis of the effectiveness of a prospective functional electrical stimulation treatment.
  • B. The Carrier
  • In its most basic form (see FIGS. 1 and 3), the neuromuscular stimulation assembly 10 comprises a patch or carrier 16. The carrier 16 desirably is sized and configured as a compact, lightweight housing made, e.g., of an inert, formed or machined plastic or metal material.
  • In a desired implementation, the carrier 16 approximates the geometry of the face of a wrist watch, measuring, e.g., about 1 inch in diameter, weighing, e.g., about 5 g. At this size, the carrier 16 can be readily worn without discomfort and in a cosmetically acceptable way (as FIG. 2 shows). The carrier 16 physically overlays and protects the site where the percutaneous electrode leads 12 pass through the skin.
  • Within its compact configuration, the carrier 16 includes several functional components, which will now be described.
  • C. The Adhesive Region
  • At least a portion of the undersurface of the carrier 16 (see FIGS. 1 and 3) includes an adhesive region 18. The function of the adhesive region 18 is to temporarily secure the carrier 16 to an external skin surface during use. For example, an inert, conventional pressure sensitive adhesive can be used. Desirably, the adhesive region contains a bacteriostatic sealant that prevents skin irritation or superficial infection, which could lead to premature removal.
  • The adhesive region 18 can also include an electrically conductive material. In this arrangement, the adhesive region 18 can serve as a return electrode, so that monopolar electrodes 14 can be implanted, if desired. The adhesive region 18 can also serve as an active electrode when it is used as a surface mounted stimulation system. In this configuration, a secondary return electrode 19 would be tethered to the stimulation system (see FIG. 19), or self contained within a concentric ring (see FIG. 20).
  • D. The Electronics Pod
  • The carrier 16 further carries an electronics pod 20, which generates the desired electrical current patterns and can communicate wirelessly with an external programming system or controller 46.
  • As FIG. 3 shows, the electronics pod 20 can comprise a component that can be inserted into and removed from an electronics bay 22 in the carrier 16. Having an electronics pod 20 that can be separated from the carrier 16 may be desired when the need to replace a carrier 16 during a course of treatment is necessary. For example, replacement of a carrier 16 without replacement of the electronics pod 20 may be desired if the anticipated length of use of the neuromuscular stimulation assembly 10 is going to be long enough to expect a degradation of adhesive properties of the adhesive region 18, or when the adhesive region 18 serves as a return electrode and may undergo, with use, degradation of adhesive properties and/or electrical conductivity.
  • Alternatively, as FIGS. 12A and 12B show, the electronics pod 20 can comprise an integral, non-removable part of the carrier 16.
  • Regardless of whether the electronics pod 20 is removable from the carrier 16 (FIGS. 4A and 4B) or not (FIGS. 12A and 12B), the pod 20 houses microprocessor-based circuitry 24 that generates stimulus currents, time or sequence stimulation pulses, logs and monitors usage, and can communicate wirelessly through an RF link to an external programmer or controller. The circuitry 24 desirably includes a flash memory device or an EEPROM memory chip to carry embedded, programmable code 26. The code 26 expresses the pre-programmed rules or algorithms under which the stimulation timing and command signals are generated. The circuitry 24 can be carried in a single location or at various locations on the pod 20.
  • E. The Electrode Connection Region
  • As FIGS. 4A/4B and FIGS. 12A/12B show, the electronics pod 20 also includes an electrode connection region 28. The function of the electrode connection region 28 is to physically and electrically couple the terminus of the percutaneous electrode leads 12 to the circuitry 24 of the electronics pod 20 (as FIG. 10 shows). The electrode connection region 28 distributes the electrical current patterns in channels—each electrode 14 comprising a channel—so that highly selective stimulation patterns can be applied through the electrodes 14. Four channels (numbered 1 to 4 on the pod 20) are shown in FIGS. 4A/4B and 12A/12B.
  • The electrode connection region 28 can be constructed in various ways. In the illustrated embodiments FIGS. 4A/4B and FIGS. 12A/12B), the electrode connection region 28 comprises troughs 30 formed in the electronics pod 20. Four troughs 30 are shown in FIGS. 4A/4B and FIGS. 12A/12B, each trough 30 being sized and configured to slidably receive the lead 12 of one electrode 12 in an interference fit (see FIG. 10). Each trough 30 is labeled with a number or other indicia to record the channel of the electronics circuitry 24 that is coupled to each trough 30.
  • Each trough 30 routes the terminus of an electrode lead 12 to a given channel (see FIG. 7), allowing the lead 12 to be stretched taut to become frictionally lodged within the trough 30. In FIGS. 4A/4B, the trough 30 includes at its end a mechanism 60 to displace or pierce the insulation of the lead and make electrical contact with the conductive wire of the lead 12. This mechanically secures the lead 12 while electrically coupling the associated electrode 14 with the circuitry 24 of the electronics pod 20.
  • In the illustrated embodiment, for ease of installation, the electronics pod 20 shown in FIGS. 4A and 4B comprises mating left and right pod sections 32 and 34 joined in a sliding fashion by rails 36. The pod sections 32 and 34 can be separated by sliding apart along the rails 36 to an opened condition, as shown in FIG. 4B. The pod sections 32 and 34 can brought together by sliding along the rails 36 to a closed condition, as shown in FIG. 4A. The electronics circuitry 24 is carried within one or both of the pod sections 32 and 34.
  • When in the opened position (see FIG. 6), the separated pod sections 32 and 34 expose a region 38 of underlying skin through which the electrodes 14 can be percutaneously implanted. The implantation of the electrodes 14 in this skin region 38 will be described in greater detail later. Opening of the pod sections 32 and 34 also makes the troughs 30 readily accessible for receipt and routing of the electrode leads 12 (see FIG. 8), which pass upward through the exposed skin region 38.
  • Closing of the pod sections 32 and 34 (see FIG. 10), captures the electrode leads 12 within the mechanisms 60 in electrical connection with the circuitry 24 of the electronics pod 20. When in the closed condition (as FIG. 10 shows), the pod sections 32 and 34 mate but still allow visual inspection of the underlying skin region 38 through which the electrode leads 12 pass. As FIG. 5 shows, visual inspection of the underlying skin region 28 through the pod 20 is still accommodated even after the carrier 16 is docked to the pod 20 (by viewing through an empty power input bay 40 of the carrier 16).
  • Desirably, closing of the pod sections 32 and 34 also cuts off excess lead wire at the end. Otherwise, the excess lead can be cut manually. At this time (see FIG. 11), a carrier 16 can be placed over the electronics pod 20, by snap-fitting the electronics pod 20 into an electronics bay 22 of the carrier 16. An electrical connection region or contact 62 on the pod 20 electrically couples to a mating connection region or contact on the carrier 16, to couple the circuitry 24 on the pod 20 to a power source 42 carried by the carrier 16.
  • It should be appreciated that, in an arrangement where the electronics pod 20 is an integrated part of the carrier 16 (as shown in FIGS. 12A and 12B), the carrier 16 itself can comprise the separable sections 32 and 34. In this arrangement, one carrier section 34 can include an adhesive region 18, which will adhere the carrier 16 to the skin in an opened condition to allow routing of the electrode leads 12. Upon closing the carrier sections 32 and 34, a pull-away strip 60 on the other carrier section 32 can be removed to expose another adhesive region to entirely secure the carrier 16 to the skin.
  • Alternative embodiments are possible. For example, a locking motion, coupling the electrode leads 12 to the electronics pod 20, can be accomplished by a button, or a lever arm, or an allen drive that is pushed, or slid, or pulled, or twisted.
  • F. The Power Input/Communication Bay
  • Referring back to FIG. 3, the carrier 16 further includes a power input bay 40. One function of the power input bay 40 is to releasably receive an interchangeable, and (desirably) disposable battery 42, e.g., an alkaline or lithium battery. The battery 42 provides power to the electronics pod 20. If desired (see FIG. 3), the power input bay 40 can include a hinged cover 44. FIG. 12B also shows the presence of a battery-receiving power input bay 40. Alternatively, the battery 42 might form the cover without a hinge using a snap-fit mechanism to secure the battery into the power input bay 40.
  • It is contemplated that, in a typical regime prescribed using the neuromuscular stimulation assembly 10, an individual will be instructed to remove and discard the battery 42 about once a day, replacing it with a fresh battery 42. This arrangement simplifies meeting the power demands of the electronics pod 20. The use of the neuromuscular stimulation assembly 10 will thereby parallel a normal, accustomed medication regime, with the battery 42 being replaced in the same frequency an individual administers medication in pill form. The battery 42 may be provided in an over-molded housing to ease attachment and removal.
  • The power input bay 40 can also serve as a communication interface. As FIG. 13A shows, when free of a battery 42, the bay 40 can be used to plug in a cable 58 to an external programming device 46 or computer. This will also be described later. This makes possible linking of the electronics pod 20 to an external programming device 46 or computer. Through this link, information and programming input can be exchanged and data can be downloaded from the electronics pod 20.
  • In this way, the neuromuscular stimulation assembly 10 makes it possible for a care giver or clinician to individually program the operation of a given electronics pod 20 to the extent permitted by the embedded, programmable code 26. It should be appreciated, of course, that instead of using a cable interface, as shown, a wireless link 59 (e.g., RF magnetically coupled, infrared, or RF) could be used to place the electronics pod 20 in communication with an external programming device 46 or computer (see FIG. 13B).
  • As FIG. 5 also shows, with the battery 42 removed and the cover (if any) opened, the underlying skin region 38, through which the percutaneous electrode leads pass, can be readily viewed through the power input bay 40.
  • G. The Electrodes and Their Implantation
  • The configuration of the electrodes 14 and the manner in which they are implanted can vary. A representative embodiment will be described, with reference to FIGS. 14 to 16.
  • In the illustrated embodiment, each electrode 14 and lead 12 comprises a thin, flexible component made of a metal and/or polymer material. By “thin,” it is contemplated that the electrode 14 should not be greater than about 0.5 mm (0.020 inch) in diameter.
  • The electrode 14 and lead 12 can comprise, e.g., one or more coiled metal wires with in an open or flexible elastomer core. The wire can be insulated, e.g., with a biocompatible polymer film, such as polyfluorocarbon, polyimide, or parylene. The electrode 14 and lead 12 are desirably coated with a textured, bacteriostatic material, which helps to stabilize the electrode in a way that still permits easy removal at a later date and increases tolerance.
  • The electrode 14 and lead 12 are electrically insulated everywhere except at one (monopolar), or two (bipolar), or three (tripolar) conduction locations near its distal tip. Each of the conduction locations is connected to a conductor that runs the length of the electrode and lead, proving electrical continuity from the conduction location to the electronics pod 20. The conduction location may comprise a de-insulated area of an otherwise insulated conductor that runs the length of an entirely insulated electrode. The de-insulated conduction region of the conductor can be formed differently, e.g., it can be wound with a different pitch, or wound with a larger or smaller diameter, or molded to a different dimension. The conduction location of the electrode may comprise a separate material (metal or conductive polymer) exposed to the body tissue to which the conductor of the wire is bonded.
  • The electrode 14 and lead 12 desirably possess mechanical properties in terms of flexibility and fatigue life that provide an operating life free of mechanical and/or electrical failure, taking into account the dynamics of the surrounding tissue (i.e., stretching, bending, pushing, pulling, crushing, etc.). The material of the electrode desirably discourages the in-growth of connective tissue along its length, so as not to inhibit its withdrawal at the end of its use. However, it may be desirable to encourage the in-growth of connective tissue at the distal tip of the electrode, to enhance its anchoring in tissue.
  • Furthermore, the desired electrode 14 will include, at its distal tip, an anchoring element 48 (see FIGS. 15 and 16). In the illustrated embodiment, the anchoring element 48 takes the form of a simple barb. The anchoring element 48 is sized and configured so that, when in contact with tissue, it takes purchase in tissue, to resist dislodgement or migration of the electrode out of the correct location in the surrounding tissue. Desirably, the anchoring element 48 is prevented from fully engaging body tissue until after the electrode has been deployed. The electrode is not deployed until after it has been correctly located during the implantation (installation) process, as will be described in greater detail later.
  • In one embodiment, the electrode 14 and lead 12 can include a metal stylet within its core. Movement of the stylet with respect to the body of the electrode and/or an associated introducer (if used) is used to deploy the electrode by exposing the anchoring element 48 to body tissue. In this arrangement, the stylet is removed once the electrode 14 is located in the desired region.
  • In the illustrated embodiment (see FIGS. 14 and 15), each electrode 14 is percutaneously implanted housed within electrode introducer 50. The electrode introducer 50 comprises a shaft having sharpened needle-like distal tip, which penetrates skin and tissue leading to the targeted tissue region. The electrode 14 and lead 12 are loaded within a lumen in the introducer 50, with the anchoring element 48 shielded from full tissue contact within the shaft of the introducer 50 (see FIG. 14). In this way, the introducer can be freely manipulated in tissue in search of a desired final electrode implantation site (see FIG. 14) before deploying the electrode (see FIG. 15) and withdrawing the introducer 50 (see FIG. 16).
  • The electrode introducer 50 is insulated along the length of the shaft, except for those areas that correspond with the exposed conduction surfaces of the electrode 14 housed inside the introducer 50. These surfaces on the outside of the introducer 50 are electrically isolated from each other and from the shaft of the introducer 50. These surfaces are electrically connected to a connector 64 at the end of the introducer body (see FIGS. 14 and 15). This allows connection to a stimulating circuit 66 (see FIG. 14) during the implantation process. Applying stimulating current through the outside surfaces of the introducer 50 provides a close approximation to the response that the electrode 14 will provide when it is deployed at the current location of the introducer 50.
  • The electrode introducer 50 is sized and configured to be bent by hand prior to its insertion through the skin. This will allow the physician to place an electrode 14 in a location that is not in an unobstructed straight line with the insertion site. The construction and materials of the electrode introducer 50 allow bending without interfering with the deployment of the electrode 14 and withdrawal of the electrode introducer 50, leaving the electrode 14 in the tissue.
  • In an alternative embodiment (see FIGS. 17A, 17B, and 17C), the electrode introducer 50 includes a distal needle region 70 that can be deflected or steered by operation of a remote steering actuator 72. Remote bending of the needle region 70 is another way to facilitate guidance of the electrode 14 to a location that is not in an unobstructed straight line with the insertion site.
  • The creation of the bendable needle region 70 that can be remotely deflected can accomplished in various ways. In the illustrated embodiment, the needle region 70 comprises a semi-flexible, electrically conductive, needle extension 74. The needle extension 74 is telescopically fitted within the distal end of the introducer 50, meaning that the extension 74 is capable of sliding within the introducer 50. The semi-flexible needle extension 74 includes an interior lumen 78, which communicates with the interior lumen of the introducer 50, through which the electrode 14 passes. Thus, the electrode 14 can be passed through the lumen 78 of the needle extension 74 for deployment.
  • Small linear motors 76L and 76R, e.g., employing conventional micro-electromechanical system (MEMS) technology, couple the proximal ends of the needle extension 74 to the introducer 50. The motors 76L and 76 are desirably attached in a spaced apart relationship, which in the illustrated embodiment, is about 180-degrees.
  • Driving the motors 76L and 76R at the same rate, forward or reverse, respectively extends or retracts the flexible extension 74 from the introducer 50 in a linear path. Driving the motors 76L and 76R at different rates, or in different directions, or both, imparts a bending torque on the needle extension 74, causing it to deflect. For example, driving the left side motor 76L at a faster forward rate than the right side motor 76R (or driving the left side motor 76L forward while driving the right side motor 76R in reverse) deflects the needle extension 74 to the right, as FIG. 17C shows. Conversely, driving the left side motor 76L at a slower rate than the right side motor 76R (or driving the right side motor 76R forward while driving the left side motor 76L in reverse) deflects the needle extension 74 to the left, as FIG. 17B shows.
  • In this arrangement, the steering actuator 72 can comprise, e.g., a conventional joystick device. By manipulating the joystick device 72, as FIGS. 17B and 17C show, variable drive rates/directions can be applied to the motors 76L and 76R, to deflect or steer the needle extension 74 in the desired direction. The path that introducer 50 takes through tissue can thereby be directed. While guiding the introducer 50 in this fashion, stimulating current can be applied through the outside surfaces of the needle extension 74 until the location having the desired stimulation response is found. The electrode 14 can be deployed through the needle extension 74, fully engaging the electrode anchoring element 48 in body tissue, in the manner previously described, followed by a withdrawal of the introducer 50.
  • Instead of MEMS linear motors 76L and 76R, conventional push-pull steering wires could be passed through lumens in the introducer 50 and coupled to the needle extension 74. Manipulation of the actuator 72 pushes or pulls on the wires to affect bending of the extension 74 in the manner just described.
  • II. Installation of the Neuromuscular Stimulation Assembly
  • Prior to installation, a clinician identifies a particular muscle and/or neural region to which a prescribed therapy using a neuromuscular stimulation assembly 10 will be applied. The particular types of therapy that are possible using the neuromuscular stimulation assembly 10 will be described later. Once the particular muscle and/or tissue region is identified, an electronics pod 20 (or a carrier 16 with integrated electronics pod 20) is placed on the skin overlying the region (see FIG. 6) and secured in place with pressure sensitive adhesive on the bottom of one-half of the pod/carrier. As previously stated, the adhesive region desirably contains a bacteriostatic sealant that prevents skin irritation or superficial infection, which could lead to premature removal.
  • As FIG. 6 shows, the electronics pod 20 (or carrier 16 with integrated electronics pod 20) is placed on the skin in an opened condition, to expose the skin region 38 between the pod (or carrier 16) sections 32 and 34.
  • As FIGS. 7 to 10 show, the clinician proceeds to percutaneously implant the electrodes 14 and lead 12, one by one, through the desired skin region 38. While each electrode 14 is sequentially implanted, the electrode introducer 50 applies a stimulation signal until a desired response is achieved, at which time the electrode 14 is deployed and the introducer 50 is withdrawn.
  • Upon implanting each electrode (see FIG. 7), the clinician routes each electrode lead 12 to a given trough 30. The clinician notes which electrode 14 is coupled to which channel.
  • After implanting all the electrode 14 and routing each lead 12 (see FIG. 9), the clinician closes the electronics pod 20 (or carrier 16 with integrated electronics pod 20) (see FIG. 10). In the former situation, the clinician snap-fits the carrier 16 over the electronics pod 20, as FIG. 11 shows. The adhesive region 18 on the carrier 16 secures the carrier 16 to the skin. A battery 42 is placed into the power input bay 40. The neuromuscular stimulation assembly 10 is ready for use.
  • Typically, as shown in FIG. 18, a container 52 holding a prescribed number of replacement batteries 42 will be provided with the neuromuscular stimulation assembly 10, forming a neuromuscular stimulation system 54. Instructions for use 56 may accompany the neuromuscular stimulation system 54. The instructions 56 prescribe-use of the neuromuscular stimulation assembly 10, including the periodic removal and replacement of a battery 42 with a fresh battery 42. Thus, the instructions 56 prescribe a neuromuscular stimulation regime that includes a periodic recharging, via battery replacement, of the neuromuscular stimulation assembly 10 in the same fashion that pill-based medication regime directs periodic “recharging” of the medication by taking of a pill. In the context of the neuromuscular stimulation system 54, a battery 42 becomes the therapeutic equivalent of a pill (i.e., it is part of a user action taken to extend treatment).
  • As FIGS. 13A and 13B show, external desktop or handheld (desirably also battery powered) preprogrammed instruments 46 can be used to program stimulus regimes and parameters into the neuromuscular stimulation assembly 10, or to download recorded data from the neuromuscular stimulation assembly 10 for display and further processing. The instruments 46 can communicate with the neuromuscular stimulation assembly 10, e.g., by a cable connection 58, by radio frequency magnetic field coupling, by infrared, or by RF wireless 59. As before described, the power input bay 40 can additionally comprise a communications interface, that is coupled to a communications cable 58 connected to the instrument 46. The communications cable 58 provides power to the neuromuscular stimulation assembly 10 during programming, as well as communications with the circuitry 24 of the neuromuscular stimulation assembly 10. The external programming instrument 46 can also be a general purpose personal computer or personal digital device fitted with a suitable custom program and a suitable cable or interface box for connection to the communications cable 58.
  • The programming instruments 46 allow a clinician to customize the programmable code 26 residing in an individual neuromuscular stimulation assembly 10 according the specific needs of the user and the treatment goals of the clinician. The neuromuscular stimulation assembly 10 can, once customized, be disconnected from the programming system, allowing portable, skin-worn operation, as already described.
  • III. Representative Use of the Neuromuscular Stimulation Assembly/System
  • A. Overview
  • The neuromuscular stimulation assembly 10 and/or neuromuscular stimulation system 54, as described, make possible the providing of short-term therapy or diagnostic testing by providing electrical connections between muscles or nerves inside the body and stimulus generators or recording instruments mounted on the surface of the skin outside the body. The programmable code 26 of the neuromuscular stimulation assembly 10 and/or neuromuscular stimulation system 54 can be programmed to perform a host of neuromuscular stimulation functions, representative examples of which will be described for the purpose of illustration.
  • B. Continuous Active Motion (CAM)
  • CAM using the neuromuscular stimulation assembly 10 and/or neuromuscular stimulation system 54 provides the stimulus necessary to improve cardiovascular endurance, muscular strength, and neurologic coordination. Through the CAM, this active-assisted exercise is a technique used to assist the active, voluntary movement of the target limb, thereby decreasing the amount of strength needed to move the joints. This technique has been proven effective in increasing the strength of individuals beginning at very low levels. Therapeutic benefits include reduced inflammation of the affected joint, improved range of motion, pain relief, and enhanced functional mobility. CAM is differentiated from continuous passive motion (CPM), which is the movement of a joint or extremity through a range of motion without voluntary movement of the limb.
  • C. Post Trauma Anti-Scarring Treatment
  • Post Surgical scarring, (e.g. posterior approaches to the spine), is the bane of most Orthopedic or Neurosurgical procedures. Scarring or adhesion, that is a fibrous band of scar tissue that binds together normally separate anatomical structures during the healing process, can be one of the single greatest reasons for patient's surgical “failure”. A terrific and well executed operation by a gifted surgeon can be wasted in a short time due to the body's tendency to scar during post surgical healing. By applying the neuromuscular stimulation assembly 10 and/or neuromuscular stimulation system 54 to the muscles or nerves in the specific surgical wound area, relatively small motions may prevent scarring, while the tissue is healing.
  • D. Temporary, Non-Surgical Diagnostic Assessment
  • Prior to the administering of a specific permanent implanted neuromodulation or neurostimulation system, (e.g. urinary incontinence, vagal nerve stimulation for epilepsy treatment, spinal cord stimulators for pain reduction), the neuromuscular stimulation assembly 10 and/or neuromuscular stimulation system 54 can be applied to provide the physician and their patient with some assurance that through the temporary stimulation of the end organ, the treatment is viable. This would allow the physician to screen patients that may not be candidates for the permanent treatment, or otherwise, may not find the effect of the treatment to worth the effort of the surgical implantation of a permanent system.
  • A specific example involves the treatment of C5-6 tetraplegics. C5-6 tetraplegics are unable to extend their elbow. Without elbow extension, they are limited to accessing only the area directly in front of their body, requiring assistance in many of their activities of daily living. They rely on the use of their biceps muscle to perform most of their upper extremity tasks. With limited or no hand function they rely on adaptive equipment to accomplish many self care activities such as grooming and hygiene as well as feeding.
  • An existing surgical procedure to restore elbow extension is to transfer a portion of the deltoid muscle into the triceps. This non-reversible surgical process requires extensive surgical intervention, prolonged post-operative immobilization and extended rehabilitation. Additionally, the timeframe to achieve a useful result post-operatively once the person recuperates from the surgery is no less than three months and may take up to a year to achieve full elbow extension.
  • As an alternative to the Deltoid to Triceps transfer, a pulse generator can be implanted in a minimal invasive way in association with a lead/electrode in electrical conductive contact with peripheral motor nerves that innervate the triceps muscle. The pulse generator can be programmed to provide single channel electrical stimulation to peripheral motor nerves that innervate the triceps muscle to produce elbow extension. Adding the ability to extend the elbow can significantly increase reach and work space thus allowing greater independence. With elbow extension, the ability to reach overhead or extend the arm outward to the side greatly increases this work space thereby allowing much more freedom to complete tasks otherwise out of their reach. This ability to extent also provides better control of objects as it provides co-contraction of the elbow flexors and extensors simultaneously.
  • A first phase of treatment or evaluation period is desirably conducted to identify whether a person has an innervated triceps muscle which responds to electrical stimulation. If the muscle is innervated and functioning, the physician will identify if stimulation to this muscle can provide adequate elbow extension both in a horizontal plane such as reaching out and in a vertical plane for reaching up. The individual must also be able to overcome the force of this triceps stimulation with their biceps muscle by demonstrating that they can still flex their elbow during stimulation of the triceps. Usually this can be tested by asking the person to bring their hand to their mouth.
  • The evaluation process can be accomplished with a percutaneous or surface neuromuscular stimulation device of the type described herein. The stimulation device carries the on-board electronics pod, which generates the desired electrical current patterns to cause electrical stimulation of radial nerve innervation to the triceps. The pod houses microprocessor-based, programmable circuitry that generates stimulus currents, time or sequence stimulation pulses, and logs and monitors usage. As before described, a wireless user interface/programmer may be used.
  • If percutaneous electrodes are used, the circuitry of the electronics pod is physically and electrically coupled to the percutaneous leads of the electrodes. One week after placement of the percutaneous leads, the stimulator settings can be programmed, either by direct coupling or a wireless link to a programmer. Stimulation will be applied using 0-200 μsec pulses at 20 Hz. The force of triceps activation can be determined by the strength of their biceps muscle. The subject must maintain the ability to comfortably flex their elbow during triceps stimulation. A stronger biceps will allow for stronger stimulation to the triceps. The subject may require a conditioning phase of one to two weeks to build up the endurance of the triceps muscle following the initial set up. The subject must demonstrate the ability to flex the elbow while stimulation to the triceps is provided. Thus relaxation of biceps will allow elbow extension.
  • The individual will be scheduled for a second phase of treatment if electrical stimulation of the radial nerve innervation to the triceps using the surface or percutaneous stimulation program provides active elbow extension expanding the individual's previous work space.
  • The second phase of treatment includes the replacement of the first phase stimulation devices with the implantation of an implantable pulse generator and associated lead/electrode.
  • E. Neuroplasticity Therapy
  • Individuals with neurological deficits, such as stroke survivors or those with multiple sclerosis may lose control of certain bodily functions. The brain, may, through a process called “neuroplasticity,” recover functionally, by reorganizing the cortical maps or spinal cord-root interfaces and increasing auxiliary blood supply, which contributes to neurological recovery. By applying the neuromuscular stimulation assembly 10 and/or neuromuscular stimulation system 54 to affected areas of the body and providing excitation and input to the brain, a neuroplastic effect may occur, enabling the brain to re-learn and regain control of the lost function.
  • F. Anti-Spasm Therapy
  • The use of temporary neurotoxins (e.g. botox) has become widespread in treating severe muscles spasms from cerebral palsy, head injury, multiple sclerosis, and spinal cord injury to help improve walking, positioning and daily activities. Botox can also be used to treat eye conditions that cause the eye to cross or eyelid to blink continuously. It is also purported to eliminate wrinkles by limiting the ageing process. The neuromuscular stimulation assembly 10 and/or neuromuscular stimulation system 54 may be used as an alternative means of reducing the spasticity without having to temporarily paralyze the nerves and muscles. The neuromuscular stimulation assembly 10 and/or neuromuscular stimulation system 54 also may be useful in treating TMJ (temporomandibular joint) disorders, which are manifested by pain in the area of the jaw and associated muscles spasms and limitations in the ability to make the normal movements of speech, facial expression, eating, chewing, and swallowing.
  • G. Chronic or Temporary Pain Therapy
  • Localized pain in any area of the body can be treated with the neuromuscular stimulation assembly 10 and/or neuromuscular stimulation system 54 by applying it directly to the effected area. The neuromuscular stimulation assembly 10 and/or neuromuscular stimulation system 54 works by interfering with or blocking pain signals from reaching the brain.
  • H. Post-Surgical Reconditioning
  • Recovery of strength and muscle function following surgery can be promoted using the neuromuscular stimulation assembly 10 and/or neuromuscular stimulation system 54. The assembly 10 and/or system 54 can be prescribed post-operatively and installed in association with the appropriate muscles regions to provide a temporary regime of muscle stimulation, alone or in conjunction with a program of active movements, to aid an individual in recovering muscle tone, function, and conditioning following surgery.
  • I. Thromboembolism Prophyllaxis
  • The neuromuscular stimulation assembly 10 and/or neuromuscular stimulation system 54 can provide anti-thrombosis therapy by stimulating the leg muscles which increases venous return and prevent blood clots associated with pooling of blood in the lower extremities. Routine post-operative therapy is currently the use of pneumatic compression cuffs that the patients wear on their calves while in bed. The cuffs cycle and mechanically compress the calf muscles, thereby stimulating venous flow. Patients hate this, but every surgical bed in the hospital now has this unit attached to it. This same effect could be duplicated by installing a neuromuscular stimulation assembly 10. Prophyllaxis is most effective if begun during surgery, as many, if not most clots, form during surgery. Thus, it is desirable to install a neuromuscular stimulation assembly 10 and begin use of the neuromuscular stimulation system 54 at the beginning of an operation.
  • J. Treatment of Osteoporosis
  • Cyclic muscle contraction loads bone sufficiently to prevent (and possibly) reverse osteoporosis. The effectiveness of such treatment is known to be frequency dependent. The neuromuscular stimulation assembly 10 and/or neuromuscular stimulation system 54 can be programmed to stimulate muscles at the appropriate frequency to prevent/reverse osteoporosis.
  • K. Neuroprosthesis
  • Restoration of lost motor due to a paralytic disease or injury can be achieved. The neuromuscular stimulation assembly 10 and/or neuromuscular stimulation system 54 can be wirelessly controlled in realtime through an external control source, such as a heel switch monitoring gait. This external control source would trigger the neuromuscular stimulation system to become active for a pre-set period of time, enabling a functional movement in the lower or upper extremity of a person, thereby restoring the previously non-functioning paralyzed limb.
  • L. Body Sculpting
  • Muscular proportions of the human anatomy can be enhanced and their overall muscle definition may be modified by neuromuscular stimulation of a specific group of muscles. An example is stimulation of the abdominal region, increasing strength and improving muscle tone and definition. The neuromuscular stimulation assembly 10 and/or neuromuscular stimulation system 54 can be programmed to stimulate muscles at the appropriate frequency to change body physique and supplement the impact of active exercise.
  • Various features of the invention are set forth in the following claims.

Claims (15)

1. A neuromuscular stimulation assembly comprising
a carrier sized and configured to be worn by a user, the carrier including a tissue facing surface,
at least one percutaneous electrode extending from the carrier,
circuitry carried on-board the carrier configured to generate a stimulation pulse to the electrode, and
the carrier tissue facing surface including an adhesive region, the adhesive region being in contact with the external skin surface.
2. A method of evaluating whether a person has an innervated muscle which responds to electrical stimulation comprising
providing a neuromuscular stimulation assembly comprising a carrier sized and configured to be worn by a user, the carrier including a tissue facing surface, at least one percutaneous electrode extending from the carrier, circuitry carried on-board the carrier configured to generate a stimulation pulse to the electrode, and the carrier tissue facing surface including an adhesive region, the adhesive region being in contact with the external skin surface,
placing the percutaneous electrode in association peripheral motor nerves that innervate the muscle,
placing the carrier on an external skin surface so the adhesive region is in contact with the external skin surface,
coupling the percutaneous electrode to the carrier, and
operating the circuitry to determine whether the person has an innervated muscle which responds to electrical stimulation.
3. A neuromuscular stimulation assembly comprising
at least one percutanous electrode sized and configured for stimulation of a targeted neural or muscular tissue region,
a carrier sized and configured to be worn on the external skin surface, the carrier including a tissue facing surface,
programmable circuitry carried on-board the carrier configured to generate a stimulation pulse,
the carrier tissue facing surface including an adhesive region, the adhesive region being in contact with the external skin surface,
a power input bay carried on-board the carrier that is electrically coupled to the circuitry, and
an electrode connection element carried on-board the carrier that is electrically coupled to the circuitry, the electrode connection element being sized and configured to electrically couple the at least one electrode to the circuitry to apply the stimulation pulse to the tissue region.
4. An assembly according to claim 3
wherein the carrier tissue facing surface includes a return electrode, the return electrode being coupled to the circuitry and in contact with the external skin surface.
5. An assembly according to claim 3
further including a communication bay carried on-board the carrier that is electrically coupled to the programmable circuitry, the communication bay being sized and configured to establish a wireless communication link between the circuitry and an external device.
6. An assembly according to claim 1
wherein the circuitry is removable from the carrier and replaceable.
7. An assembly according to claim 1
wherein the return electrode is a transcutaneous electrode.
8. An assembly according to claim 3
wherein the programmable circuitry is removable from the carrier and replaceable.
9. An assembly according to claim 1
the carrier further including a power input bay sized and configured to hold a disposable battery for the circuitry that can be released and replaced for powering the circuitry,
instructions furnished by a clinician or caregiver or physician prescribing the release and replacement of the disposable battery according to a prescribed battery replacement regime, the prescribed battery replacement regime comprising the replacement of the disposable battery on a prescribed repeated basis similar to administering a pill under a prescribed pill-based medication regime, and
a supply of disposable batteries, each battery comprising a dose of power for the circuitry for administration according to the prescribed battery replacement regime.
10. An assembly according to claim 3
wherein the power input bay is sized and configured to hold a disposable battery for the circuitry that can be released and replaced for powering the circuitry,
the assembly further including instructions furnished by a clinician or caregiver or physician prescribing the release and replacement of the disposable battery according to a prescribed battery replacement regime, the prescribed battery replacement regime comprising the replacement of the disposable battery on a prescribed repeated basis similar to administering a pill under a prescribed pill-based medication regime, and
a supply of disposable batteries, each battery comprising a dose of power for the circuitry for administration according to the prescribed battery replacement regime.
11. An assembly according to claim 9 or 10
wherein the prescribed battery replacement regime comprises the replacement of the disposable battery repeated at least on about a daily basis.
12. An assembly according to claim 9 or 10
wherein the prescribed battery replacement regime comprises the replacement of the disposable battery repeated at least on about a weekly basis.
13. A method for providing a neuromuscular stimulation function comprising
providing a neuromuscular stimulation assembly comprising a carrier sized and configured to be worn by a user, the carrier including a tissue facing surface and a power input bay, the power input bay being sized and configured to hold a disposable battery for the circuitry that can be released and replaced for powering the circuitry, at least one percutaneous electrode extending from the carrier, circuitry carried on-board the carrier configured to generate a stimulation pulse to the electrode, and the carrier tissue facing surface including an adhesive region, the adhesive region being in contact with the external skin surface,
providing instructions furnished by a clinician or caregiver or physician prescribing the release and replacement of the disposable battery according to a prescribed battery replacement regime, the prescribed battery replacement regime comprising the replacement of the disposable battery on a prescribed repeated basis similar to administering a pill under a prescribed pill-based medication regime, and
providing a supply of disposable batteries, each battery comprising a dose of power for the circuitry for administration according to the prescribed battery replacement regime.
14. A method according to claim 13
wherein the prescribed battery replacement regime comprises the replacement of the disposable battery repeated at least on about a daily basis.
15. A method according to claim 13
wherein the prescribed battery replacement regime comprises the replacement of the disposable battery repeated at least on about a weekly basis.
US12/074,810 2004-02-12 2008-03-06 Portable assemblies, systems and methods for providing functional or therapeutic neuromuscular stimulation Abandoned US20080154335A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/074,810 US20080154335A1 (en) 2004-02-12 2008-03-06 Portable assemblies, systems and methods for providing functional or therapeutic neuromuscular stimulation

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US10/777,771 US7120499B2 (en) 2004-02-12 2004-02-12 Portable percutaneous assemblies, systems and methods for providing highly selective functional or therapeutic neuromuscular stimulation
US55194504P 2004-03-10 2004-03-10
US59919304P 2004-08-05 2004-08-05
US11/056,591 US7376467B2 (en) 2004-02-12 2005-02-11 Portable assemblies, systems and methods for providing functional or therapeutic neuromuscular stimulation
US12/074,810 US20080154335A1 (en) 2004-02-12 2008-03-06 Portable assemblies, systems and methods for providing functional or therapeutic neuromuscular stimulation

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/056,591 Division US7376467B2 (en) 2004-02-12 2005-02-11 Portable assemblies, systems and methods for providing functional or therapeutic neuromuscular stimulation

Publications (1)

Publication Number Publication Date
US20080154335A1 true US20080154335A1 (en) 2008-06-26

Family

ID=34841744

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/056,591 Expired - Lifetime US7376467B2 (en) 2004-02-12 2005-02-11 Portable assemblies, systems and methods for providing functional or therapeutic neuromuscular stimulation
US12/074,810 Abandoned US20080154335A1 (en) 2004-02-12 2008-03-06 Portable assemblies, systems and methods for providing functional or therapeutic neuromuscular stimulation

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US11/056,591 Expired - Lifetime US7376467B2 (en) 2004-02-12 2005-02-11 Portable assemblies, systems and methods for providing functional or therapeutic neuromuscular stimulation

Country Status (9)

Country Link
US (2) US7376467B2 (en)
EP (1) EP1720606B1 (en)
JP (2) JP2007531562A (en)
AT (1) ATE520440T1 (en)
AU (1) AU2005214041B2 (en)
CA (1) CA2554676C (en)
ES (1) ES2395128T3 (en)
HK (1) HK1098715A1 (en)
WO (1) WO2005079295A2 (en)

Cited By (435)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070112394A1 (en) * 2005-11-16 2007-05-17 N.E.S.S. Neuromuscular Electrical Stimulation Systems Ltd. Orthosis for a gait modulation system
US20080065182A1 (en) * 2004-02-12 2008-03-13 Ndi Medical, Llc. Portable assemblies, systems, and methods for providing functional or therapeutic neurostimulation
US20100036445A1 (en) * 2008-08-01 2010-02-11 Ndi Medical Llc. Portable assemblies, systems, and methods for providing functional or therapeutic neurostimulation
US20110114699A1 (en) * 2009-11-19 2011-05-19 Ethicon Endo-Surgery, Inc. Circular stapler introducer with radially-openable distal end portion
US8209022B2 (en) 2005-11-16 2012-06-26 Bioness Neuromodulation Ltd. Gait modulation system and method
US20140148872A1 (en) * 2012-11-26 2014-05-29 Isy Goldwasser Wearable transdermal electrical stimulation devices and methods of using them
US8868217B2 (en) 2011-06-27 2014-10-21 Bioness Neuromodulation Ltd. Electrode for muscle stimulation
US8972017B2 (en) 2005-11-16 2015-03-03 Bioness Neuromodulation Ltd. Gait modulation system and method
WO2015199327A1 (en) * 2014-06-25 2015-12-30 M.I.Tech Co., Ltd. Transcutaneous electrical nerve stimulation (tens) apparatus
US9867985B2 (en) 2014-03-24 2018-01-16 Bioness Inc. Systems and apparatus for gait modulation and methods of use
US10016600B2 (en) 2013-05-30 2018-07-10 Neurostim Solutions, Llc Topical neurological stimulation
US10149682B2 (en) 2010-09-30 2018-12-11 Ethicon Llc Stapling system including an actuation system
US10149680B2 (en) 2013-04-16 2018-12-11 Ethicon Llc Surgical instrument comprising a gap setting system
US10159483B2 (en) 2015-02-27 2018-12-25 Ethicon Llc Surgical apparatus configured to track an end-of-life parameter
US10172616B2 (en) 2006-09-29 2019-01-08 Ethicon Llc Surgical staple cartridge
US10172620B2 (en) 2015-09-30 2019-01-08 Ethicon Llc Compressible adjuncts with bonding nodes
US10180463B2 (en) 2015-02-27 2019-01-15 Ethicon Llc Surgical apparatus configured to assess whether a performance parameter of the surgical apparatus is within an acceptable performance band
US10188385B2 (en) 2014-12-18 2019-01-29 Ethicon Llc Surgical instrument system comprising lockable systems
US10201364B2 (en) 2014-03-26 2019-02-12 Ethicon Llc Surgical instrument comprising a rotatable shaft
US10201349B2 (en) 2013-08-23 2019-02-12 Ethicon Llc End effector detection and firing rate modulation systems for surgical instruments
US10201363B2 (en) 2006-01-31 2019-02-12 Ethicon Llc Motor-driven surgical instrument
US10206677B2 (en) 2014-09-26 2019-02-19 Ethicon Llc Surgical staple and driver arrangements for staple cartridges
US10206605B2 (en) 2015-03-06 2019-02-19 Ethicon Llc Time dependent evaluation of sensor data to determine stability, creep, and viscoelastic elements of measures
US10206678B2 (en) 2006-10-03 2019-02-19 Ethicon Llc Surgical stapling instrument with lockout features to prevent advancement of a firing assembly unless an unfired surgical staple cartridge is operably mounted in an end effector portion of the instrument
US10206676B2 (en) 2008-02-14 2019-02-19 Ethicon Llc Surgical cutting and fastening instrument
US10211586B2 (en) 2017-06-28 2019-02-19 Ethicon Llc Surgical shaft assemblies with watertight housings
US10213201B2 (en) 2015-03-31 2019-02-26 Ethicon Llc Stapling end effector configured to compensate for an uneven gap between a first jaw and a second jaw
US10213262B2 (en) 2006-03-23 2019-02-26 Ethicon Llc Manipulatable surgical systems with selectively articulatable fastening device
US10226249B2 (en) 2013-03-01 2019-03-12 Ethicon Llc Articulatable surgical instruments with conductive pathways for signal communication
US10231794B2 (en) 2011-05-27 2019-03-19 Ethicon Llc Surgical stapling instruments with rotatable staple deployment arrangements
US10238386B2 (en) 2015-09-23 2019-03-26 Ethicon Llc Surgical stapler having motor control based on an electrical parameter related to a motor current
US10238391B2 (en) 2013-03-14 2019-03-26 Ethicon Llc Drive train control arrangements for modular surgical instruments
US10245033B2 (en) 2015-03-06 2019-04-02 Ethicon Llc Surgical instrument comprising a lockable battery housing
US10245030B2 (en) 2016-02-09 2019-04-02 Ethicon Llc Surgical instruments with tensioning arrangements for cable driven articulation systems
US10245032B2 (en) 2005-08-31 2019-04-02 Ethicon Llc Staple cartridges for forming staples having differing formed staple heights
US10245035B2 (en) 2005-08-31 2019-04-02 Ethicon Llc Stapling assembly configured to produce different formed staple heights
US10245027B2 (en) 2014-12-18 2019-04-02 Ethicon Llc Surgical instrument with an anvil that is selectively movable about a discrete non-movable axis relative to a staple cartridge
US10258332B2 (en) 2010-09-30 2019-04-16 Ethicon Llc Stapling system comprising an adjunct and a flowable adhesive
US10258331B2 (en) 2016-02-12 2019-04-16 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10258333B2 (en) 2012-06-28 2019-04-16 Ethicon Llc Surgical fastening apparatus with a rotary end effector drive shaft for selective engagement with a motorized drive system
US10258418B2 (en) 2017-06-29 2019-04-16 Ethicon Llc System for controlling articulation forces
US10265068B2 (en) 2015-12-30 2019-04-23 Ethicon Llc Surgical instruments with separable motors and motor control circuits
US10265074B2 (en) 2010-09-30 2019-04-23 Ethicon Llc Implantable layers for surgical stapling devices
US10271851B2 (en) 2016-04-01 2019-04-30 Ethicon Llc Modular surgical stapling system comprising a display
US10271846B2 (en) 2005-08-31 2019-04-30 Ethicon Llc Staple cartridge for use with a surgical stapler
US10271849B2 (en) 2015-09-30 2019-04-30 Ethicon Llc Woven constructs with interlocked standing fibers
US10278702B2 (en) 2004-07-28 2019-05-07 Ethicon Llc Stapling system comprising a firing bar and a lockout
US10278780B2 (en) 2007-01-10 2019-05-07 Ethicon Llc Surgical instrument for use with robotic system
US10285705B2 (en) 2016-04-01 2019-05-14 Ethicon Llc Surgical stapling system comprising a grooved forming pocket
US10292704B2 (en) 2015-12-30 2019-05-21 Ethicon Llc Mechanisms for compensating for battery pack failure in powered surgical instruments
US10293100B2 (en) 2004-07-28 2019-05-21 Ethicon Llc Surgical stapling instrument having a medical substance dispenser
US10299792B2 (en) 2014-04-16 2019-05-28 Ethicon Llc Fastener cartridge comprising non-uniform fasteners
US10299878B2 (en) 2015-09-25 2019-05-28 Ethicon Llc Implantable adjunct systems for determining adjunct skew
US10299787B2 (en) 2007-06-04 2019-05-28 Ethicon Llc Stapling system comprising rotary inputs
US10307170B2 (en) 2017-06-20 2019-06-04 Ethicon Llc Method for closed loop control of motor velocity of a surgical stapling and cutting instrument
US10307159B2 (en) 2016-04-01 2019-06-04 Ethicon Llc Surgical instrument handle assembly with reconfigurable grip portion
US10307163B2 (en) 2008-02-14 2019-06-04 Ethicon Llc Detachable motor powered surgical instrument
US10314589B2 (en) 2006-06-27 2019-06-11 Ethicon Llc Surgical instrument including a shifting assembly
USD851762S1 (en) 2017-06-28 2019-06-18 Ethicon Llc Anvil
US10327767B2 (en) 2017-06-20 2019-06-25 Ethicon Llc Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation
US10327769B2 (en) 2015-09-23 2019-06-25 Ethicon Llc Surgical stapler having motor control based on a drive system component
US10335148B2 (en) 2010-09-30 2019-07-02 Ethicon Llc Staple cartridge including a tissue thickness compensator for a surgical stapler
US10335145B2 (en) 2016-04-15 2019-07-02 Ethicon Llc Modular surgical instrument with configurable operating mode
USD854151S1 (en) 2017-06-28 2019-07-16 Ethicon Llc Surgical instrument shaft
US10357247B2 (en) 2016-04-15 2019-07-23 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US10363031B2 (en) 2010-09-30 2019-07-30 Ethicon Llc Tissue thickness compensators for surgical staplers
US10363036B2 (en) 2015-09-23 2019-07-30 Ethicon Llc Surgical stapler having force-based motor control
US10363037B2 (en) 2016-04-18 2019-07-30 Ethicon Llc Surgical instrument system comprising a magnetic lockout
US10368864B2 (en) 2017-06-20 2019-08-06 Ethicon Llc Systems and methods for controlling displaying motor velocity for a surgical instrument
US10368865B2 (en) 2015-12-30 2019-08-06 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10390841B2 (en) 2017-06-20 2019-08-27 Ethicon Llc Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation
US10398434B2 (en) 2017-06-29 2019-09-03 Ethicon Llc Closed loop velocity control of closure member for robotic surgical instrument
US10398433B2 (en) 2007-03-28 2019-09-03 Ethicon Llc Laparoscopic clamp load measuring devices
US10405859B2 (en) 2016-04-15 2019-09-10 Ethicon Llc Surgical instrument with adjustable stop/start control during a firing motion
US10413294B2 (en) 2012-06-28 2019-09-17 Ethicon Llc Shaft assembly arrangements for surgical instruments
US10420550B2 (en) 2009-02-06 2019-09-24 Ethicon Llc Motor driven surgical fastener device with switching system configured to prevent firing initiation until activated
US10420549B2 (en) 2008-09-23 2019-09-24 Ethicon Llc Motorized surgical instrument
US10426471B2 (en) 2016-12-21 2019-10-01 Ethicon Llc Surgical instrument with multiple failure response modes
US10426481B2 (en) 2014-02-24 2019-10-01 Ethicon Llc Implantable layer assemblies
US10426467B2 (en) 2016-04-15 2019-10-01 Ethicon Llc Surgical instrument with detection sensors
US10426463B2 (en) 2006-01-31 2019-10-01 Ehticon LLC Surgical instrument having a feedback system
US10441285B2 (en) 2012-03-28 2019-10-15 Ethicon Llc Tissue thickness compensator comprising tissue ingrowth features
US10441279B2 (en) 2015-03-06 2019-10-15 Ethicon Llc Multiple level thresholds to modify operation of powered surgical instruments
US10448950B2 (en) 2016-12-21 2019-10-22 Ethicon Llc Surgical staplers with independently actuatable closing and firing systems
US10448948B2 (en) 2016-02-12 2019-10-22 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10456137B2 (en) 2016-04-15 2019-10-29 Ethicon Llc Staple formation detection mechanisms
US10463370B2 (en) 2008-02-14 2019-11-05 Ethicon Llc Motorized surgical instrument
US10485536B2 (en) 2010-09-30 2019-11-26 Ethicon Llc Tissue stapler having an anti-microbial agent
US10485539B2 (en) 2006-01-31 2019-11-26 Ethicon Llc Surgical instrument with firing lockout
US10485543B2 (en) 2016-12-21 2019-11-26 Ethicon Llc Anvil having a knife slot width
US10492783B2 (en) 2016-04-15 2019-12-03 Ethicon, Llc Surgical instrument with improved stop/start control during a firing motion
US10492785B2 (en) 2016-12-21 2019-12-03 Ethicon Llc Shaft assembly comprising a lockout
US10499914B2 (en) 2016-12-21 2019-12-10 Ethicon Llc Staple forming pocket arrangements
USD869655S1 (en) 2017-06-28 2019-12-10 Ethicon Llc Surgical fastener cartridge
US10517596B2 (en) 2016-12-21 2019-12-31 Ethicon Llc Articulatable surgical instruments with articulation stroke amplification features
US10517590B2 (en) 2007-01-10 2019-12-31 Ethicon Llc Powered surgical instrument having a transmission system
US10517594B2 (en) 2014-10-29 2019-12-31 Ethicon Llc Cartridge assemblies for surgical staplers
US10524790B2 (en) 2011-05-27 2020-01-07 Ethicon Llc Robotically-controlled surgical stapling devices that produce formed staples having different lengths
US10524787B2 (en) 2015-03-06 2020-01-07 Ethicon Llc Powered surgical instrument with parameter-based firing rate
US10531887B2 (en) 2015-03-06 2020-01-14 Ethicon Llc Powered surgical instrument including speed display
US10537325B2 (en) 2016-12-21 2020-01-21 Ethicon Llc Staple forming pocket arrangement to accommodate different types of staples
US10568652B2 (en) 2006-09-29 2020-02-25 Ethicon Llc Surgical staples having attached drivers of different heights and stapling instruments for deploying the same
US10568626B2 (en) 2016-12-21 2020-02-25 Ethicon Llc Surgical instruments with jaw opening features for increasing a jaw opening distance
US10568625B2 (en) 2016-12-21 2020-02-25 Ethicon Llc Staple cartridges and arrangements of staples and staple cavities therein
US10575868B2 (en) 2013-03-01 2020-03-03 Ethicon Llc Surgical instrument with coupler assembly
US10588623B2 (en) 2010-09-30 2020-03-17 Ethicon Llc Adhesive film laminate
US10589089B2 (en) 2017-10-25 2020-03-17 Epineuron Technologies Inc. Systems and methods for delivering neuroregenerative therapy
US10588626B2 (en) 2014-03-26 2020-03-17 Ethicon Llc Surgical instrument displaying subsequent step of use
US10588612B2 (en) 2011-03-14 2020-03-17 Ethicon Llc Collapsible anvil plate assemblies for circular surgical stapling devices
US10588632B2 (en) 2016-12-21 2020-03-17 Ethicon Llc Surgical end effectors and firing members thereof
US10588633B2 (en) 2017-06-28 2020-03-17 Ethicon Llc Surgical instruments with open and closable jaws and axially movable firing member that is initially parked in close proximity to the jaws prior to firing
USD879809S1 (en) 2017-06-20 2020-03-31 Ethicon Llc Display panel with changeable graphical user interface
USD879808S1 (en) 2017-06-20 2020-03-31 Ethicon Llc Display panel with graphical user interface
US10617413B2 (en) 2016-04-01 2020-04-14 Ethicon Llc Closure system arrangements for surgical cutting and stapling devices with separate and distinct firing shafts
US10617412B2 (en) 2015-03-06 2020-04-14 Ethicon Llc System for detecting the mis-insertion of a staple cartridge into a surgical stapler
US10617417B2 (en) 2014-11-06 2020-04-14 Ethicon Llc Staple cartridge comprising a releasable adjunct material
US10617418B2 (en) 2015-08-17 2020-04-14 Ethicon Llc Implantable layers for a surgical instrument
US10617416B2 (en) 2013-03-14 2020-04-14 Ethicon Llc Control systems for surgical instruments
US10624633B2 (en) 2017-06-20 2020-04-21 Ethicon Llc Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument
US10624861B2 (en) 2010-09-30 2020-04-21 Ethicon Llc Tissue thickness compensator configured to redistribute compressive forces
US10631859B2 (en) 2017-06-27 2020-04-28 Ethicon Llc Articulation systems for surgical instruments
US10639115B2 (en) 2012-06-28 2020-05-05 Ethicon Llc Surgical end effectors having angled tissue-contacting surfaces
US10646220B2 (en) 2017-06-20 2020-05-12 Ethicon Llc Systems and methods for controlling displacement member velocity for a surgical instrument
US10660640B2 (en) 2008-02-14 2020-05-26 Ethicon Llc Motorized surgical cutting and fastening instrument
US10667808B2 (en) 2012-03-28 2020-06-02 Ethicon Llc Staple cartridge comprising an absorbable adjunct
US10667809B2 (en) 2016-12-21 2020-06-02 Ethicon Llc Staple cartridge and staple cartridge channel comprising windows defined therein
US10675028B2 (en) 2006-01-31 2020-06-09 Ethicon Llc Powered surgical instruments with firing system lockout arrangements
US10675035B2 (en) 2010-09-09 2020-06-09 Ethicon Llc Surgical stapling head assembly with firing lockout for a surgical stapler
US10682142B2 (en) 2008-02-14 2020-06-16 Ethicon Llc Surgical stapling apparatus including an articulation system
US10682134B2 (en) 2017-12-21 2020-06-16 Ethicon Llc Continuous use self-propelled stapling instrument
US10687813B2 (en) 2017-12-15 2020-06-23 Ethicon Llc Adapters with firing stroke sensing arrangements for use in connection with electromechanical surgical instruments
US10687806B2 (en) 2015-03-06 2020-06-23 Ethicon Llc Adaptive tissue compression techniques to adjust closure rates for multiple tissue types
US10695058B2 (en) 2014-12-18 2020-06-30 Ethicon Llc Surgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member
US10695063B2 (en) 2012-02-13 2020-06-30 Ethicon Llc Surgical cutting and fastening instrument with apparatus for determining cartridge and firing motion status
US10695062B2 (en) 2010-10-01 2020-06-30 Ethicon Llc Surgical instrument including a retractable firing member
US10702267B2 (en) 2007-03-15 2020-07-07 Ethicon Llc Surgical stapling instrument having a releasable buttress material
US10716614B2 (en) 2017-06-28 2020-07-21 Ethicon Llc Surgical shaft assemblies with slip ring assemblies with increased contact pressure
US10716565B2 (en) 2017-12-19 2020-07-21 Ethicon Llc Surgical instruments with dual articulation drivers
USD890784S1 (en) 2017-06-20 2020-07-21 Ethicon Llc Display panel with changeable graphical user interface
US10729509B2 (en) 2017-12-19 2020-08-04 Ethicon Llc Surgical instrument comprising closure and firing locking mechanism
US10729501B2 (en) 2017-09-29 2020-08-04 Ethicon Llc Systems and methods for language selection of a surgical instrument
US10736636B2 (en) 2014-12-10 2020-08-11 Ethicon Llc Articulatable surgical instrument system
US10736628B2 (en) 2008-09-23 2020-08-11 Ethicon Llc Motor-driven surgical cutting instrument
US10736630B2 (en) 2014-10-13 2020-08-11 Ethicon Llc Staple cartridge
US10743875B2 (en) 2017-12-15 2020-08-18 Ethicon Llc Surgical end effectors with jaw stiffener arrangements configured to permit monitoring of firing member
US10743870B2 (en) 2008-02-14 2020-08-18 Ethicon Llc Surgical stapling apparatus with interlockable firing system
US10743849B2 (en) 2006-01-31 2020-08-18 Ethicon Llc Stapling system including an articulation system
US10743873B2 (en) 2014-12-18 2020-08-18 Ethicon Llc Drive arrangements for articulatable surgical instruments
US10743872B2 (en) 2017-09-29 2020-08-18 Ethicon Llc System and methods for controlling a display of a surgical instrument
US10743874B2 (en) 2017-12-15 2020-08-18 Ethicon Llc Sealed adapters for use with electromechanical surgical instruments
US10743851B2 (en) 2008-02-14 2020-08-18 Ethicon Llc Interchangeable tools for surgical instruments
US10751076B2 (en) 2009-12-24 2020-08-25 Ethicon Llc Motor-driven surgical cutting instrument with electric actuator directional control assembly
US10758230B2 (en) 2016-12-21 2020-09-01 Ethicon Llc Surgical instrument with primary and safety processors
US10758229B2 (en) 2016-12-21 2020-09-01 Ethicon Llc Surgical instrument comprising improved jaw control
US10765429B2 (en) 2017-09-29 2020-09-08 Ethicon Llc Systems and methods for providing alerts according to the operational state of a surgical instrument
US10765427B2 (en) 2017-06-28 2020-09-08 Ethicon Llc Method for articulating a surgical instrument
US10765425B2 (en) 2008-09-23 2020-09-08 Ethicon Llc Robotically-controlled motorized surgical instrument with an end effector
US10772625B2 (en) 2015-03-06 2020-09-15 Ethicon Llc Signal and power communication system positioned on a rotatable shaft
US10772629B2 (en) 2017-06-27 2020-09-15 Ethicon Llc Surgical anvil arrangements
US10779821B2 (en) 2018-08-20 2020-09-22 Ethicon Llc Surgical stapler anvils with tissue stop features configured to avoid tissue pinch
US10779903B2 (en) 2017-10-31 2020-09-22 Ethicon Llc Positive shaft rotation lock activated by jaw closure
US10780539B2 (en) 2011-05-27 2020-09-22 Ethicon Llc Stapling instrument for use with a robotic system
US10779824B2 (en) 2017-06-28 2020-09-22 Ethicon Llc Surgical instrument comprising an articulation system lockable by a closure system
US10779820B2 (en) 2017-06-20 2020-09-22 Ethicon Llc Systems and methods for controlling motor speed according to user input for a surgical instrument
US10779825B2 (en) 2017-12-15 2020-09-22 Ethicon Llc Adapters with end effector position sensing and control arrangements for use in connection with electromechanical surgical instruments
US10779826B2 (en) 2017-12-15 2020-09-22 Ethicon Llc Methods of operating surgical end effectors
US10796471B2 (en) 2017-09-29 2020-10-06 Ethicon Llc Systems and methods of displaying a knife position for a surgical instrument
US10806449B2 (en) 2005-11-09 2020-10-20 Ethicon Llc End effectors for surgical staplers
US10806448B2 (en) 2014-12-18 2020-10-20 Ethicon Llc Surgical instrument assembly comprising a flexible articulation system
US10813639B2 (en) 2017-06-20 2020-10-27 Ethicon Llc Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on system conditions
US10828028B2 (en) 2016-04-15 2020-11-10 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US10828033B2 (en) 2017-12-15 2020-11-10 Ethicon Llc Handheld electromechanical surgical instruments with improved motor control arrangements for positioning components of an adapter coupled thereto
US10835330B2 (en) 2017-12-19 2020-11-17 Ethicon Llc Method for determining the position of a rotatable jaw of a surgical instrument attachment assembly
US10842490B2 (en) 2017-10-31 2020-11-24 Ethicon Llc Cartridge body design with force reduction based on firing completion
US10842491B2 (en) 2006-01-31 2020-11-24 Ethicon Llc Surgical system with an actuation console
US10842492B2 (en) 2018-08-20 2020-11-24 Ethicon Llc Powered articulatable surgical instruments with clutching and locking arrangements for linking an articulation drive system to a firing drive system
US10850104B2 (en) 2015-07-10 2020-12-01 Axonics Modulation Technologies, Inc. Implantable nerve stimulator having internal electronics without ASIC and methods of use
US10856869B2 (en) 2017-06-27 2020-12-08 Ethicon Llc Surgical anvil arrangements
US10856870B2 (en) 2018-08-20 2020-12-08 Ethicon Llc Switching arrangements for motor powered articulatable surgical instruments
US10863986B2 (en) 2015-09-23 2020-12-15 Ethicon Llc Surgical stapler having downstream current-based motor control
US10869666B2 (en) 2017-12-15 2020-12-22 Ethicon Llc Adapters with control systems for controlling multiple motors of an electromechanical surgical instrument
USD906355S1 (en) 2017-06-28 2020-12-29 Ethicon Llc Display screen or portion thereof with a graphical user interface for a surgical instrument
US10881399B2 (en) 2017-06-20 2021-01-05 Ethicon Llc Techniques for adaptive control of motor velocity of a surgical stapling and cutting instrument
US10881396B2 (en) 2017-06-20 2021-01-05 Ethicon Llc Surgical instrument with variable duration trigger arrangement
USD907648S1 (en) 2017-09-29 2021-01-12 Ethicon Llc Display screen or portion thereof with animated graphical user interface
US10888321B2 (en) 2017-06-20 2021-01-12 Ethicon Llc Systems and methods for controlling velocity of a displacement member of a surgical stapling and cutting instrument
USD907647S1 (en) 2017-09-29 2021-01-12 Ethicon Llc Display screen or portion thereof with animated graphical user interface
US10903685B2 (en) 2017-06-28 2021-01-26 Ethicon Llc Surgical shaft assemblies with slip ring assemblies forming capacitive channels
US10898183B2 (en) 2017-06-29 2021-01-26 Ethicon Llc Robotic surgical instrument with closed loop feedback techniques for advancement of closure member during firing
US10905423B2 (en) 2014-09-05 2021-02-02 Ethicon Llc Smart cartridge wake up operation and data retention
US10905418B2 (en) 2014-10-16 2021-02-02 Ethicon Llc Staple cartridge comprising a tissue thickness compensator
US10912575B2 (en) 2007-01-11 2021-02-09 Ethicon Llc Surgical stapling device having supports for a flexible drive mechanism
US10912559B2 (en) 2018-08-20 2021-02-09 Ethicon Llc Reinforced deformable anvil tip for surgical stapler anvil
US10918380B2 (en) 2006-01-31 2021-02-16 Ethicon Llc Surgical instrument system including a control system
USD910847S1 (en) 2017-12-19 2021-02-16 Ethicon Llc Surgical instrument assembly
US10932772B2 (en) 2017-06-29 2021-03-02 Ethicon Llc Methods for closed loop velocity control for robotic surgical instrument
US10932778B2 (en) 2008-10-10 2021-03-02 Ethicon Llc Powered surgical cutting and stapling apparatus with manually retractable firing system
US10945728B2 (en) 2014-12-18 2021-03-16 Ethicon Llc Locking arrangements for detachable shaft assemblies with articulatable surgical end effectors
US10945731B2 (en) 2010-09-30 2021-03-16 Ethicon Llc Tissue thickness compensator comprising controlled release and expansion
US10953225B2 (en) 2017-11-07 2021-03-23 Neurostim Oab, Inc. Non-invasive nerve activator with adaptive circuit
USD914878S1 (en) 2018-08-20 2021-03-30 Ethicon Llc Surgical instrument anvil
US10959725B2 (en) 2012-06-15 2021-03-30 Ethicon Llc Articulatable surgical instrument comprising a firing drive
US10971950B2 (en) 2013-07-29 2021-04-06 The Alfred E. Mann Foundation For Scientific Research Microprocessor controlled class E driver
US10966718B2 (en) 2017-12-15 2021-04-06 Ethicon Llc Dynamic clamping assemblies with improved wear characteristics for use in connection with electromechanical surgical instruments
US10980539B2 (en) 2015-09-30 2021-04-20 Ethicon Llc Implantable adjunct comprising bonded layers
US10980537B2 (en) 2017-06-20 2021-04-20 Ethicon Llc Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified number of shaft rotations
US10987102B2 (en) 2010-09-30 2021-04-27 Ethicon Llc Tissue thickness compensator comprising a plurality of layers
USD917500S1 (en) 2017-09-29 2021-04-27 Ethicon Llc Display screen or portion thereof with graphical user interface
US10993716B2 (en) 2017-06-27 2021-05-04 Ethicon Llc Surgical anvil arrangements
US11007004B2 (en) 2012-06-28 2021-05-18 Ethicon Llc Powered multi-axial articulable electrosurgical device with external dissection features
US11007022B2 (en) 2017-06-29 2021-05-18 Ethicon Llc Closed loop velocity control techniques based on sensed tissue parameters for robotic surgical instrument
US11006955B2 (en) 2017-12-15 2021-05-18 Ethicon Llc End effectors with positive jaw opening features for use with adapters for electromechanical surgical instruments
US11013511B2 (en) 2007-06-22 2021-05-25 Ethicon Llc Surgical stapling instrument with an articulatable end effector
US11020115B2 (en) 2014-02-12 2021-06-01 Cilag Gmbh International Deliverable surgical instrument
US11020112B2 (en) 2017-12-19 2021-06-01 Ethicon Llc Surgical tools configured for interchangeable use with different controller interfaces
US11033267B2 (en) 2017-12-15 2021-06-15 Ethicon Llc Systems and methods of controlling a clamping member firing rate of a surgical instrument
US11039836B2 (en) 2007-01-11 2021-06-22 Cilag Gmbh International Staple cartridge for use with a surgical stapling instrument
US11039834B2 (en) 2018-08-20 2021-06-22 Cilag Gmbh International Surgical stapler anvils with staple directing protrusions and tissue stability features
US11045192B2 (en) 2018-08-20 2021-06-29 Cilag Gmbh International Fabricating techniques for surgical stapler anvils
US11045270B2 (en) 2017-12-19 2021-06-29 Cilag Gmbh International Robotic attachment comprising exterior drive actuator
US11051807B2 (en) 2019-06-28 2021-07-06 Cilag Gmbh International Packaging assembly including a particulate trap
US11051813B2 (en) 2006-01-31 2021-07-06 Cilag Gmbh International Powered surgical instruments with firing system lockout arrangements
US11071554B2 (en) 2017-06-20 2021-07-27 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on magnitude of velocity error measurements
US11071543B2 (en) 2017-12-15 2021-07-27 Cilag Gmbh International Surgical end effectors with clamping assemblies configured to increase jaw aperture ranges
US11071545B2 (en) 2014-09-05 2021-07-27 Cilag Gmbh International Smart cartridge wake up operation and data retention
US11077300B2 (en) 2016-01-11 2021-08-03 Bioness Inc. Systems and apparatus for gait modulation and methods of use
US11077301B2 (en) 2015-02-21 2021-08-03 NeurostimOAB, Inc. Topical nerve stimulator and sensor for bladder control
US11076853B2 (en) 2017-12-21 2021-08-03 Cilag Gmbh International Systems and methods of displaying a knife position during transection for a surgical instrument
US11083903B2 (en) 2016-01-29 2021-08-10 Axonics, Inc. Methods and systems for frequency adjustment to optimize charging of implantable neurostimulator
US11083458B2 (en) 2018-08-20 2021-08-10 Cilag Gmbh International Powered surgical instruments with clutching arrangements to convert linear drive motions to rotary drive motions
US11090075B2 (en) 2017-10-30 2021-08-17 Cilag Gmbh International Articulation features for surgical end effector
US11090046B2 (en) 2017-06-20 2021-08-17 Cilag Gmbh International Systems and methods for controlling displacement member motion of a surgical stapling and cutting instrument
US11110283B2 (en) 2018-02-22 2021-09-07 Axonics, Inc. Neurostimulation leads for trial nerve stimulation and methods of use
US11116985B2 (en) 2014-08-15 2021-09-14 Axonics, Inc. Clinician programmer for use with an implantable neurostimulation lead
US11123569B2 (en) 2015-01-09 2021-09-21 Axonics, Inc. Patient remote and associated methods of use with a nerve stimulation system
US11133106B2 (en) 2013-08-23 2021-09-28 Cilag Gmbh International Surgical instrument assembly comprising a retraction assembly
US11129615B2 (en) 2009-02-05 2021-09-28 Cilag Gmbh International Surgical stapling system
US11129680B2 (en) 2017-12-21 2021-09-28 Cilag Gmbh International Surgical instrument comprising a projector
US11134942B2 (en) 2016-12-21 2021-10-05 Cilag Gmbh International Surgical stapling instruments and staple-forming anvils
US11134944B2 (en) 2017-10-30 2021-10-05 Cilag Gmbh International Surgical stapler knife motion controls
US11141153B2 (en) 2014-10-29 2021-10-12 Cilag Gmbh International Staple cartridges comprising driver arrangements
US11147553B2 (en) 2019-03-25 2021-10-19 Cilag Gmbh International Firing drive arrangements for surgical systems
US11147551B2 (en) 2019-03-25 2021-10-19 Cilag Gmbh International Firing drive arrangements for surgical systems
US11154301B2 (en) 2015-02-27 2021-10-26 Cilag Gmbh International Modular stapling assembly
US11172929B2 (en) 2019-03-25 2021-11-16 Cilag Gmbh International Articulation drive arrangements for surgical systems
US11179150B2 (en) 2016-04-15 2021-11-23 Cilag Gmbh International Systems and methods for controlling a surgical stapling and cutting instrument
US11197671B2 (en) 2012-06-28 2021-12-14 Cilag Gmbh International Stapling assembly comprising a lockout
US11197670B2 (en) 2017-12-15 2021-12-14 Cilag Gmbh International Surgical end effectors with pivotal jaws configured to touch at their respective distal ends when fully closed
US11202633B2 (en) 2014-09-26 2021-12-21 Cilag Gmbh International Surgical stapling buttresses and adjunct materials
US11207064B2 (en) 2011-05-27 2021-12-28 Cilag Gmbh International Automated end effector component reloading system for use with a robotic system
US11207065B2 (en) 2018-08-20 2021-12-28 Cilag Gmbh International Method for fabricating surgical stapler anvils
US11213675B2 (en) 2014-08-15 2022-01-04 Axonics, Inc. Implantable lead affixation structure for nerve stimulation to alleviate bladder dysfunction and other indication
US11213293B2 (en) 2016-02-09 2022-01-04 Cilag Gmbh International Articulatable surgical instruments with single articulation link arrangements
US11219455B2 (en) 2019-06-28 2022-01-11 Cilag Gmbh International Surgical instrument including a lockout key
US11224497B2 (en) 2019-06-28 2022-01-18 Cilag Gmbh International Surgical systems with multiple RFID tags
US11224427B2 (en) 2006-01-31 2022-01-18 Cilag Gmbh International Surgical stapling system including a console and retraction assembly
US11224428B2 (en) 2016-12-21 2022-01-18 Cilag Gmbh International Surgical stapling systems
US11224426B2 (en) 2016-02-12 2022-01-18 Cilag Gmbh International Mechanisms for compensating for drivetrain failure in powered surgical instruments
US11224423B2 (en) 2015-03-06 2022-01-18 Cilag Gmbh International Smart sensors with local signal processing
US11229437B2 (en) 2019-06-28 2022-01-25 Cilag Gmbh International Method for authenticating the compatibility of a staple cartridge with a surgical instrument
US11229789B2 (en) 2013-05-30 2022-01-25 Neurostim Oab, Inc. Neuro activator with controller
US11234698B2 (en) 2019-12-19 2022-02-01 Cilag Gmbh International Stapling system comprising a clamp lockout and a firing lockout
US11241230B2 (en) 2012-06-28 2022-02-08 Cilag Gmbh International Clip applier tool for use with a robotic surgical system
US11246592B2 (en) 2017-06-28 2022-02-15 Cilag Gmbh International Surgical instrument comprising an articulation system lockable to a frame
US11247045B2 (en) 2017-10-25 2022-02-15 Epineuron Technologies Inc. Systems and methods for delivering neuroregenerative therapy
US11246678B2 (en) 2019-06-28 2022-02-15 Cilag Gmbh International Surgical stapling system having a frangible RFID tag
US11246590B2 (en) 2005-08-31 2022-02-15 Cilag Gmbh International Staple cartridge including staple drivers having different unfired heights
US11247043B2 (en) 2019-10-01 2022-02-15 Epineuron Technologies Inc. Electrode interface devices for delivery of neuroregenerative therapy
US11253256B2 (en) 2018-08-20 2022-02-22 Cilag Gmbh International Articulatable motor powered surgical instruments with dedicated articulation motor arrangements
US11253254B2 (en) 2019-04-30 2022-02-22 Cilag Gmbh International Shaft rotation actuator on a surgical instrument
US11259799B2 (en) 2014-03-26 2022-03-01 Cilag Gmbh International Interface systems for use with surgical instruments
US11259803B2 (en) 2019-06-28 2022-03-01 Cilag Gmbh International Surgical stapling system having an information encryption protocol
US11259805B2 (en) 2017-06-28 2022-03-01 Cilag Gmbh International Surgical instrument comprising firing member supports
US11260236B2 (en) 2016-02-12 2022-03-01 Axonics, Inc. External pulse generator device and affixation device for trial nerve stimulation and methods of use
US11266409B2 (en) 2014-04-16 2022-03-08 Cilag Gmbh International Fastener cartridge comprising a sled including longitudinally-staggered ramps
US11266405B2 (en) 2017-06-27 2022-03-08 Cilag Gmbh International Surgical anvil manufacturing methods
US11272927B2 (en) 2008-02-15 2022-03-15 Cilag Gmbh International Layer arrangements for surgical staple cartridges
US11278279B2 (en) 2006-01-31 2022-03-22 Cilag Gmbh International Surgical instrument assembly
US11284898B2 (en) 2014-09-18 2022-03-29 Cilag Gmbh International Surgical instrument including a deployable knife
US11284890B2 (en) 2016-04-01 2022-03-29 Cilag Gmbh International Circular stapling system comprising an incisable tissue support
US11291447B2 (en) 2019-12-19 2022-04-05 Cilag Gmbh International Stapling instrument comprising independent jaw closing and staple firing systems
US11291441B2 (en) 2007-01-10 2022-04-05 Cilag Gmbh International Surgical instrument with wireless communication between control unit and remote sensor
US11291440B2 (en) 2018-08-20 2022-04-05 Cilag Gmbh International Method for operating a powered articulatable surgical instrument
US11291451B2 (en) 2019-06-28 2022-04-05 Cilag Gmbh International Surgical instrument with battery compatibility verification functionality
US11291449B2 (en) 2009-12-24 2022-04-05 Cilag Gmbh International Surgical cutting instrument that analyzes tissue thickness
US11298127B2 (en) 2019-06-28 2022-04-12 Cilag GmbH Interational Surgical stapling system having a lockout mechanism for an incompatible cartridge
US11298125B2 (en) 2010-09-30 2022-04-12 Cilag Gmbh International Tissue stapler having a thickness compensator
US11298132B2 (en) 2019-06-28 2022-04-12 Cilag GmbH Inlernational Staple cartridge including a honeycomb extension
US11304695B2 (en) 2017-08-03 2022-04-19 Cilag Gmbh International Surgical system shaft interconnection
US11304696B2 (en) 2019-12-19 2022-04-19 Cilag Gmbh International Surgical instrument comprising a powered articulation system
US11311290B2 (en) 2017-12-21 2022-04-26 Cilag Gmbh International Surgical instrument comprising an end effector dampener
US11311294B2 (en) 2014-09-05 2022-04-26 Cilag Gmbh International Powered medical device including measurement of closure state of jaws
US11317917B2 (en) 2016-04-18 2022-05-03 Cilag Gmbh International Surgical stapling system comprising a lockable firing assembly
US11317913B2 (en) 2016-12-21 2022-05-03 Cilag Gmbh International Lockout arrangements for surgical end effectors and replaceable tool assemblies
US11324503B2 (en) 2017-06-27 2022-05-10 Cilag Gmbh International Surgical firing member arrangements
US11324501B2 (en) 2018-08-20 2022-05-10 Cilag Gmbh International Surgical stapling devices with improved closure members
US11338144B2 (en) 2013-03-15 2022-05-24 Alfred E. Mann Foundation For Scientific Research Current sensing multiple output current stimulators
US11350928B2 (en) 2016-04-18 2022-06-07 Cilag Gmbh International Surgical instrument comprising a tissue thickness lockout and speed control system
US11376098B2 (en) 2019-06-28 2022-07-05 Cilag Gmbh International Surgical instrument system comprising an RFID system
US11382627B2 (en) 2014-04-16 2022-07-12 Cilag Gmbh International Surgical stapling assembly comprising a firing member including a lateral extension
US11382638B2 (en) 2017-06-20 2022-07-12 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified displacement distance
US11389659B2 (en) 2014-08-15 2022-07-19 Axonics, Inc. External pulse generator device and associated methods for trial nerve stimulation
US11399837B2 (en) 2019-06-28 2022-08-02 Cilag Gmbh International Mechanisms for motor control adjustments of a motorized surgical instrument
US11399829B2 (en) 2017-09-29 2022-08-02 Cilag Gmbh International Systems and methods of initiating a power shutdown mode for a surgical instrument
US11419606B2 (en) 2016-12-21 2022-08-23 Cilag Gmbh International Shaft assembly comprising a clutch configured to adapt the output of a rotary firing member to two different systems
US11426251B2 (en) 2019-04-30 2022-08-30 Cilag Gmbh International Articulation directional lights on a surgical instrument
US11426167B2 (en) 2019-06-28 2022-08-30 Cilag Gmbh International Mechanisms for proper anvil attachment surgical stapling head assembly
US11432816B2 (en) 2019-04-30 2022-09-06 Cilag Gmbh International Articulation pin for a surgical instrument
US11439829B2 (en) 2019-05-24 2022-09-13 Axonics, Inc. Clinician programmer methods and systems for maintaining target operating temperatures
US11446029B2 (en) 2019-12-19 2022-09-20 Cilag Gmbh International Staple cartridge comprising projections extending from a curved deck surface
US11452526B2 (en) 2020-10-29 2022-09-27 Cilag Gmbh International Surgical instrument comprising a staged voltage regulation start-up system
US11452528B2 (en) 2019-04-30 2022-09-27 Cilag Gmbh International Articulation actuators for a surgical instrument
US11458311B2 (en) 2019-06-26 2022-10-04 Neurostim Technologies Llc Non-invasive nerve activator patch with adaptive circuit
US11464601B2 (en) 2019-06-28 2022-10-11 Cilag Gmbh International Surgical instrument comprising an RFID system for tracking a movable component
US11464512B2 (en) 2019-12-19 2022-10-11 Cilag Gmbh International Staple cartridge comprising a curved deck surface
USD966512S1 (en) 2020-06-02 2022-10-11 Cilag Gmbh International Staple cartridge
US11464513B2 (en) 2012-06-28 2022-10-11 Cilag Gmbh International Surgical instrument system including replaceable end effectors
US11471155B2 (en) 2017-08-03 2022-10-18 Cilag Gmbh International Surgical system bailout
USD967421S1 (en) 2020-06-02 2022-10-18 Cilag Gmbh International Staple cartridge
US11471157B2 (en) 2019-04-30 2022-10-18 Cilag Gmbh International Articulation control mapping for a surgical instrument
US11478241B2 (en) 2019-06-28 2022-10-25 Cilag Gmbh International Staple cartridge including projections
US11478247B2 (en) 2010-07-30 2022-10-25 Cilag Gmbh International Tissue acquisition arrangements and methods for surgical stapling devices
US11478648B2 (en) 2015-01-09 2022-10-25 Axonics, Inc. Antenna and methods of use for an implantable nerve stimulator
US11484312B2 (en) 2005-08-31 2022-11-01 Cilag Gmbh International Staple cartridge comprising a staple driver arrangement
US11484723B2 (en) 2015-01-09 2022-11-01 Axonics, Inc. Attachment devices and associated methods of use with a nerve stimulation charging device
US11497492B2 (en) 2019-06-28 2022-11-15 Cilag Gmbh International Surgical instrument including an articulation lock
US11497916B2 (en) 2014-08-15 2022-11-15 Axonics, Inc. Electromyographic lead positioning and stimulation titration in a nerve stimulation system for treatment of overactive bladder
US11497488B2 (en) 2014-03-26 2022-11-15 Cilag Gmbh International Systems and methods for controlling a segmented circuit
US11504116B2 (en) 2011-04-29 2022-11-22 Cilag Gmbh International Layer of material for a surgical end effector
US11504122B2 (en) 2019-12-19 2022-11-22 Cilag Gmbh International Surgical instrument comprising a nested firing member
US11517325B2 (en) 2017-06-20 2022-12-06 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured displacement distance traveled over a specified time interval
US11517390B2 (en) 2020-10-29 2022-12-06 Cilag Gmbh International Surgical instrument comprising a limited travel switch
US11523823B2 (en) 2016-02-09 2022-12-13 Cilag Gmbh International Surgical instruments with non-symmetrical articulation arrangements
US11523822B2 (en) 2019-06-28 2022-12-13 Cilag Gmbh International Battery pack including a circuit interrupter
US11523821B2 (en) 2014-09-26 2022-12-13 Cilag Gmbh International Method for creating a flexible staple line
US11529137B2 (en) 2019-12-19 2022-12-20 Cilag Gmbh International Staple cartridge comprising driver retention members
US11529139B2 (en) 2019-12-19 2022-12-20 Cilag Gmbh International Motor driven surgical instrument
US11534259B2 (en) 2020-10-29 2022-12-27 Cilag Gmbh International Surgical instrument comprising an articulation indicator
USD974560S1 (en) 2020-06-02 2023-01-03 Cilag Gmbh International Staple cartridge
USD975278S1 (en) 2020-06-02 2023-01-10 Cilag Gmbh International Staple cartridge
US11553971B2 (en) 2019-06-28 2023-01-17 Cilag Gmbh International Surgical RFID assemblies for display and communication
USD975851S1 (en) 2020-06-02 2023-01-17 Cilag Gmbh International Staple cartridge
USD975850S1 (en) 2020-06-02 2023-01-17 Cilag Gmbh International Staple cartridge
USD976401S1 (en) 2020-06-02 2023-01-24 Cilag Gmbh International Staple cartridge
US11559304B2 (en) 2019-12-19 2023-01-24 Cilag Gmbh International Surgical instrument comprising a rapid closure mechanism
US11564682B2 (en) 2007-06-04 2023-01-31 Cilag Gmbh International Surgical stapler device
US11564686B2 (en) 2017-06-28 2023-01-31 Cilag Gmbh International Surgical shaft assemblies with flexible interfaces
US11571215B2 (en) 2010-09-30 2023-02-07 Cilag Gmbh International Layer of material for a surgical end effector
US11576672B2 (en) 2019-12-19 2023-02-14 Cilag Gmbh International Surgical instrument comprising a closure system including a closure member and an opening member driven by a drive screw
USD980425S1 (en) 2020-10-29 2023-03-07 Cilag Gmbh International Surgical instrument assembly
US11607219B2 (en) 2019-12-19 2023-03-21 Cilag Gmbh International Staple cartridge comprising a detachable tissue cutting knife
US11607239B2 (en) 2016-04-15 2023-03-21 Cilag Gmbh International Systems and methods for controlling a surgical stapling and cutting instrument
US11617577B2 (en) 2020-10-29 2023-04-04 Cilag Gmbh International Surgical instrument comprising a sensor configured to sense whether an articulation drive of the surgical instrument is actuatable
US11622763B2 (en) 2013-04-16 2023-04-11 Cilag Gmbh International Stapling assembly comprising a shiftable drive
US11622766B2 (en) 2012-06-28 2023-04-11 Cilag Gmbh International Empty clip cartridge lockout
US11627959B2 (en) 2019-06-28 2023-04-18 Cilag Gmbh International Surgical instruments including manual and powered system lockouts
US11627960B2 (en) 2020-12-02 2023-04-18 Cilag Gmbh International Powered surgical instruments with smart reload with separately attachable exteriorly mounted wiring connections
US11638587B2 (en) 2019-06-28 2023-05-02 Cilag Gmbh International RFID identification systems for surgical instruments
US11638582B2 (en) 2020-07-28 2023-05-02 Cilag Gmbh International Surgical instruments with torsion spine drive arrangements
US11642537B2 (en) 2019-03-11 2023-05-09 Axonics, Inc. Charging device with off-center coil
US11648009B2 (en) 2019-04-30 2023-05-16 Cilag Gmbh International Rotatable jaw tip for a surgical instrument
US11648005B2 (en) 2008-09-23 2023-05-16 Cilag Gmbh International Robotically-controlled motorized surgical instrument with an end effector
US11653915B2 (en) 2020-12-02 2023-05-23 Cilag Gmbh International Surgical instruments with sled location detection and adjustment features
US11653920B2 (en) 2020-12-02 2023-05-23 Cilag Gmbh International Powered surgical instruments with communication interfaces through sterile barrier
US11653914B2 (en) 2017-06-20 2023-05-23 Cilag Gmbh International Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument according to articulation angle of end effector
US11660163B2 (en) 2019-06-28 2023-05-30 Cilag Gmbh International Surgical system with RFID tags for updating motor assembly parameters
US11678877B2 (en) 2014-12-18 2023-06-20 Cilag Gmbh International Surgical instrument including a flexible support configured to support a flexible firing member
US11678882B2 (en) 2020-12-02 2023-06-20 Cilag Gmbh International Surgical instruments with interactive features to remedy incidental sled movements
US11684434B2 (en) 2019-06-28 2023-06-27 Cilag Gmbh International Surgical RFID assemblies for instrument operational setting control
US11696761B2 (en) 2019-03-25 2023-07-11 Cilag Gmbh International Firing drive arrangements for surgical systems
US11696757B2 (en) 2021-02-26 2023-07-11 Cilag Gmbh International Monitoring of internal systems to detect and track cartridge motion status
US11701113B2 (en) 2021-02-26 2023-07-18 Cilag Gmbh International Stapling instrument comprising a separate power antenna and a data transfer antenna
US11701111B2 (en) 2019-12-19 2023-07-18 Cilag Gmbh International Method for operating a surgical stapling instrument
US11717291B2 (en) 2021-03-22 2023-08-08 Cilag Gmbh International Staple cartridge comprising staples configured to apply different tissue compression
US11717294B2 (en) 2014-04-16 2023-08-08 Cilag Gmbh International End effector arrangements comprising indicators
US11717289B2 (en) 2020-10-29 2023-08-08 Cilag Gmbh International Surgical instrument comprising an indicator which indicates that an articulation drive is actuatable
US11723658B2 (en) 2021-03-22 2023-08-15 Cilag Gmbh International Staple cartridge comprising a firing lockout
US11723662B2 (en) 2021-05-28 2023-08-15 Cilag Gmbh International Stapling instrument comprising an articulation control display
US11723657B2 (en) 2021-02-26 2023-08-15 Cilag Gmbh International Adjustable communication based on available bandwidth and power capacity
US11730473B2 (en) 2021-02-26 2023-08-22 Cilag Gmbh International Monitoring of manufacturing life-cycle
US11730958B2 (en) 2019-12-16 2023-08-22 Neurostim Solutions, Llc Non-invasive nerve activator with boosted charge delivery
US11730411B2 (en) 2014-08-15 2023-08-22 Axonics, Inc. Methods for determining neurostimulation electrode configurations based on neural localization
US11737751B2 (en) 2020-12-02 2023-08-29 Cilag Gmbh International Devices and methods of managing energy dissipated within sterile barriers of surgical instrument housings
US11737749B2 (en) 2021-03-22 2023-08-29 Cilag Gmbh International Surgical stapling instrument comprising a retraction system
US11744581B2 (en) 2020-12-02 2023-09-05 Cilag Gmbh International Powered surgical instruments with multi-phase tissue treatment
US11744603B2 (en) 2021-03-24 2023-09-05 Cilag Gmbh International Multi-axis pivot joints for surgical instruments and methods for manufacturing same
US11749877B2 (en) 2021-02-26 2023-09-05 Cilag Gmbh International Stapling instrument comprising a signal antenna
US11744583B2 (en) 2021-02-26 2023-09-05 Cilag Gmbh International Distal communication array to tune frequency of RF systems
US11751869B2 (en) 2021-02-26 2023-09-12 Cilag Gmbh International Monitoring of multiple sensors over time to detect moving characteristics of tissue
US11759202B2 (en) 2021-03-22 2023-09-19 Cilag Gmbh International Staple cartridge comprising an implantable layer
US11766259B2 (en) 2016-12-21 2023-09-26 Cilag Gmbh International Method of deforming staples from two different types of staple cartridges with the same surgical stapling instrument
US11766260B2 (en) 2016-12-21 2023-09-26 Cilag Gmbh International Methods of stapling tissue
US11771419B2 (en) 2019-06-28 2023-10-03 Cilag Gmbh International Packaging for a replaceable component of a surgical stapling system
US11779330B2 (en) 2020-10-29 2023-10-10 Cilag Gmbh International Surgical instrument comprising a jaw alignment system
US11786243B2 (en) 2021-03-24 2023-10-17 Cilag Gmbh International Firing members having flexible portions for adapting to a load during a surgical firing stroke
US11786239B2 (en) 2021-03-24 2023-10-17 Cilag Gmbh International Surgical instrument articulation joint arrangements comprising multiple moving linkage features
US11793514B2 (en) 2021-02-26 2023-10-24 Cilag Gmbh International Staple cartridge comprising sensor array which may be embedded in cartridge body
US11793518B2 (en) 2006-01-31 2023-10-24 Cilag Gmbh International Powered surgical instruments with firing system lockout arrangements
US11793522B2 (en) 2015-09-30 2023-10-24 Cilag Gmbh International Staple cartridge assembly including a compressible adjunct
US11793516B2 (en) 2021-03-24 2023-10-24 Cilag Gmbh International Surgical staple cartridge comprising longitudinal support beam
US11806011B2 (en) 2021-03-22 2023-11-07 Cilag Gmbh International Stapling instrument comprising tissue compression systems
US11812964B2 (en) 2021-02-26 2023-11-14 Cilag Gmbh International Staple cartridge comprising a power management circuit
US11826132B2 (en) 2015-03-06 2023-11-28 Cilag Gmbh International Time dependent evaluation of sensor data to determine stability, creep, and viscoelastic elements of measures
US11826042B2 (en) 2021-03-22 2023-11-28 Cilag Gmbh International Surgical instrument comprising a firing drive including a selectable leverage mechanism
US11826048B2 (en) 2017-06-28 2023-11-28 Cilag Gmbh International Surgical instrument comprising selectively actuatable rotatable couplers
US11826012B2 (en) 2021-03-22 2023-11-28 Cilag Gmbh International Stapling instrument comprising a pulsed motor-driven firing rack
US11832816B2 (en) 2021-03-24 2023-12-05 Cilag Gmbh International Surgical stapling assembly comprising nonplanar staples and planar staples
US11848090B2 (en) 2019-05-24 2023-12-19 Axonics, Inc. Trainer for a neurostimulator programmer and associated methods of use with a neurostimulation system
US11844520B2 (en) 2019-12-19 2023-12-19 Cilag Gmbh International Staple cartridge comprising driver retention members
US11844518B2 (en) 2020-10-29 2023-12-19 Cilag Gmbh International Method for operating a surgical instrument
US11849943B2 (en) 2020-12-02 2023-12-26 Cilag Gmbh International Surgical instrument with cartridge release mechanisms
US11849941B2 (en) 2007-06-29 2023-12-26 Cilag Gmbh International Staple cartridge having staple cavities extending at a transverse angle relative to a longitudinal cartridge axis
US11849944B2 (en) 2021-03-24 2023-12-26 Cilag Gmbh International Drivers for fastener cartridge assemblies having rotary drive screws
US11849952B2 (en) 2010-09-30 2023-12-26 Cilag Gmbh International Staple cartridge comprising staples positioned within a compressible portion thereof
US11849945B2 (en) 2021-03-24 2023-12-26 Cilag Gmbh International Rotary-driven surgical stapling assembly comprising eccentrically driven firing member
US11857183B2 (en) 2021-03-24 2024-01-02 Cilag Gmbh International Stapling assembly components having metal substrates and plastic bodies
US11877745B2 (en) 2021-10-18 2024-01-23 Cilag Gmbh International Surgical stapling assembly having longitudinally-repeating staple leg clusters
USD1013170S1 (en) 2020-10-29 2024-01-30 Cilag Gmbh International Surgical instrument assembly
US11883026B2 (en) 2014-04-16 2024-01-30 Cilag Gmbh International Fastener cartridge assemblies and staple retainer cover arrangements
US11890012B2 (en) 2004-07-28 2024-02-06 Cilag Gmbh International Staple cartridge comprising cartridge body and attached support
US11890010B2 (en) 2020-12-02 2024-02-06 Cllag GmbH International Dual-sided reinforced reload for surgical instruments
US11896218B2 (en) 2021-03-24 2024-02-13 Cilag Gmbh International Method of using a powered stapling device
US11896219B2 (en) 2021-03-24 2024-02-13 Cilag Gmbh International Mating features between drivers and underside of a cartridge deck
US11896217B2 (en) 2020-10-29 2024-02-13 Cilag Gmbh International Surgical instrument comprising an articulation lock
US11903582B2 (en) 2021-03-24 2024-02-20 Cilag Gmbh International Leveraging surfaces for cartridge installation
US11903581B2 (en) 2019-04-30 2024-02-20 Cilag Gmbh International Methods for stapling tissue using a surgical instrument
US11911032B2 (en) 2019-12-19 2024-02-27 Cilag Gmbh International Staple cartridge comprising a seating cam
US11925349B2 (en) 2021-02-26 2024-03-12 Cilag Gmbh International Adjustment to transfer parameters to improve available power
US11931033B2 (en) 2019-12-19 2024-03-19 Cilag Gmbh International Staple cartridge comprising a latch lockout
US11931025B2 (en) 2020-10-29 2024-03-19 Cilag Gmbh International Surgical instrument comprising a releasable closure drive lock
US11937816B2 (en) 2021-10-28 2024-03-26 Cilag Gmbh International Electrical lead arrangements for surgical instruments
US11944336B2 (en) 2021-03-24 2024-04-02 Cilag Gmbh International Joint arrangements for multi-planar alignment and support of operational drive shafts in articulatable surgical instruments
US11944300B2 (en) 2017-08-03 2024-04-02 Cilag Gmbh International Method for operating a surgical system bailout
US11944296B2 (en) 2020-12-02 2024-04-02 Cilag Gmbh International Powered surgical instruments with external connectors
US11950779B2 (en) 2021-02-26 2024-04-09 Cilag Gmbh International Method of powering and communicating with a staple cartridge

Families Citing this family (87)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7813809B2 (en) 2004-06-10 2010-10-12 Medtronic, Inc. Implantable pulse generator for providing functional and/or therapeutic stimulation of muscles and/or nerves and/or central nervous system tissue
US8467875B2 (en) 2004-02-12 2013-06-18 Medtronic, Inc. Stimulation of dorsal genital nerves to treat urologic dysfunctions
US8195304B2 (en) 2004-06-10 2012-06-05 Medtronic Urinary Solutions, Inc. Implantable systems and methods for acquisition and processing of electrical signals
US8165692B2 (en) 2004-06-10 2012-04-24 Medtronic Urinary Solutions, Inc. Implantable pulse generator power management
US7761167B2 (en) 2004-06-10 2010-07-20 Medtronic Urinary Solutions, Inc. Systems and methods for clinician control of stimulation systems
US9308382B2 (en) 2004-06-10 2016-04-12 Medtronic Urinary Solutions, Inc. Implantable pulse generator systems and methods for providing functional and/or therapeutic stimulation of muscles and/or nerves and/or central nervous system tissue
US9205255B2 (en) 2004-06-10 2015-12-08 Medtronic Urinary Solutions, Inc. Implantable pulse generator systems and methods for providing functional and/or therapeutic stimulation of muscles and/or nerves and/or central nervous system tissue
US8417352B2 (en) * 2004-10-19 2013-04-09 Meagan Medical, Inc. System and method for stimulating sensory nerves
WO2006086513A2 (en) 2005-02-08 2006-08-17 Carewave, Inc. Apparatus and method for using a portable thermal device to reduce accommodation of nerve receptors
GB0504844D0 (en) * 2005-03-10 2005-04-13 Zarlink Semiconductor Ab Radiolink maintenance lock
US20060276870A1 (en) * 2005-06-03 2006-12-07 Mcginnis William J Osseus stimulating electrodes
US8195296B2 (en) 2006-03-03 2012-06-05 Ams Research Corporation Apparatus for treating stress and urge incontinence
US20070265675A1 (en) * 2006-05-09 2007-11-15 Ams Research Corporation Testing Efficacy of Therapeutic Mechanical or Electrical Nerve or Muscle Stimulation
US9480846B2 (en) 2006-05-17 2016-11-01 Medtronic Urinary Solutions, Inc. Systems and methods for patient control of stimulation systems
CA2652565A1 (en) * 2006-05-18 2007-11-29 Ndi Medical, Llc Portable assemblies, systems, and methods for providing functional or therapeutic neurostimulation
US8160710B2 (en) 2006-07-10 2012-04-17 Ams Research Corporation Systems and methods for implanting tissue stimulation electrodes in the pelvic region
US20090012592A1 (en) * 2006-07-10 2009-01-08 Ams Research Corporation Tissue anchor
US8483820B2 (en) * 2006-10-05 2013-07-09 Bioness Inc. System and method for percutaneous delivery of electrical stimulation to a target body tissue
US7797041B2 (en) * 2006-10-11 2010-09-14 Cardiac Pacemakers, Inc. Transcutaneous neurostimulator for modulating cardiovascular function
US7797046B2 (en) * 2006-10-11 2010-09-14 Cardiac Pacemakers, Inc. Percutaneous neurostimulator for modulating cardiovascular function
US7647113B2 (en) * 2006-12-21 2010-01-12 Ams Research Corporation Electrode implantation in male external urinary sphincter
US20080171304A1 (en) * 2007-01-11 2008-07-17 Mcginnis William J Dental implant kit and method of using same
US20080172107A1 (en) * 2007-01-11 2008-07-17 Mcginnis William J Stand alone osteogenic stimulus device and method of using
US20080172106A1 (en) * 2007-01-11 2008-07-17 Mcginnis William J Osteogenic stimulus device, kit and method of using thereof
US20100049289A1 (en) 2007-07-10 2010-02-25 Ams Research Corporation Tissue anchor
US9427573B2 (en) 2007-07-10 2016-08-30 Astora Women's Health, Llc Deployable electrode lead anchor
US8498716B2 (en) * 2007-11-05 2013-07-30 Boston Scientific Neuromodulation Corporation External controller for an implantable medical device system with coupleable external charging coil assembly
US8579953B1 (en) 2007-12-07 2013-11-12 Peter J. Dunbar Devices and methods for therapeutic heat treatment
US8608664B2 (en) * 2008-06-20 2013-12-17 University Of Miyazaki Electrode
JP5269532B2 (en) * 2008-09-22 2013-08-21 オリンパスメディカルシステムズ株式会社 Capsule medical device
JP5575789B2 (en) 2008-11-19 2014-08-20 インスパイア・メディカル・システムズ・インコーポレイテッド How to treat sleep-disordered breathing
US8011328B2 (en) * 2008-11-20 2011-09-06 Mark Anderson Lick deterrent with battery pack
US20100217340A1 (en) * 2009-02-23 2010-08-26 Ams Research Corporation Implantable Medical Device Connector System
US9539433B1 (en) 2009-03-18 2017-01-10 Astora Women's Health, Llc Electrode implantation in a pelvic floor muscular structure
JP2012521864A (en) 2009-03-31 2012-09-20 インスパイア・メディカル・システムズ・インコーポレイテッド Percutaneous access method in a system for treating sleep-related abnormal breathing
US8380312B2 (en) 2009-12-31 2013-02-19 Ams Research Corporation Multi-zone stimulation implant system and method
CN102946939A (en) * 2010-04-27 2013-02-27 Ndi医药有限公司 Systems and methods for percutaneous electrical stimulation
US11813454B2 (en) 2010-11-11 2023-11-14 IINN, Inc. Methods of bypassing neurological damage through motor nerve root stimulation
CA2860977C (en) * 2011-01-21 2022-01-11 Charles Chabal Modular stimulus applicator system and method
US9220887B2 (en) 2011-06-09 2015-12-29 Astora Women's Health LLC Electrode lead including a deployable tissue anchor
WO2013023218A1 (en) 2011-08-11 2013-02-14 Inspire Medical Systems, Inc. System for selecting a stimulation protocol based on sensed respiratory effort
US9731112B2 (en) 2011-09-08 2017-08-15 Paul J. Gindele Implantable electrode assembly
US8641210B2 (en) 2011-11-30 2014-02-04 Izi Medical Products Retro-reflective marker including colored mounting portion
ZA201300252B (en) * 2012-01-10 2016-07-27 Leupold & Stevens Inc Hinged lid for battery compartment in a manually rotatable adjustment knob
US20150018728A1 (en) 2012-01-26 2015-01-15 Bluewind Medical Ltd. Wireless neurostimulators
US8661573B2 (en) 2012-02-29 2014-03-04 Izi Medical Products Protective cover for medical device having adhesive mechanism
DE102012010262B4 (en) * 2012-05-25 2014-07-03 Albrecht Molsberger Therapeutically applicable DC delivery device
US10485972B2 (en) 2015-02-27 2019-11-26 Thync Global, Inc. Apparatuses and methods for neuromodulation
US10814131B2 (en) 2012-11-26 2020-10-27 Thync Global, Inc. Apparatuses and methods for neuromodulation
US11033731B2 (en) 2015-05-29 2021-06-15 Thync Global, Inc. Methods and apparatuses for transdermal electrical stimulation
US10537703B2 (en) 2012-11-26 2020-01-21 Thync Global, Inc. Systems and methods for transdermal electrical stimulation to improve sleep
US9440070B2 (en) 2012-11-26 2016-09-13 Thyne Global, Inc. Wearable transdermal electrical stimulation devices and methods of using them
WO2014091476A1 (en) * 2012-12-11 2014-06-19 Innoventions Ltd Medical sling
CN105934261B (en) 2013-06-29 2019-03-08 赛威医疗公司 For changing or induction cognitive state transcutaneous electrostimulation device and method
US10293161B2 (en) 2013-06-29 2019-05-21 Thync Global, Inc. Apparatuses and methods for transdermal electrical stimulation of nerves to modify or induce a cognitive state
CN106573138A (en) 2014-02-27 2017-04-19 赛威医疗公司 Methods and apparatuses for user control of neurostimulation
EP3148639A4 (en) 2014-05-17 2018-04-18 Cerevast Medical Inc. Methods and apparatuses for the application of ensemble waveforms using transdermal neurostimulation
US9333334B2 (en) 2014-05-25 2016-05-10 Thync, Inc. Methods for attaching and wearing a neurostimulator
US9393401B2 (en) 2014-05-25 2016-07-19 Thync Global, Inc. Wearable transdermal neurostimulator having cantilevered attachment
USD759257S1 (en) * 2014-07-10 2016-06-14 Eric Ye Chen Receiver for TENS / EMS
FR3027232A1 (en) * 2014-10-20 2016-04-22 Melissa Estelle Berthelot DEVICE FOR PALLIATION DYNAMIC TO COGNITIVE DEFICITS
WO2016086219A1 (en) 2014-11-26 2016-06-02 Ndi Medical, Llc Electrical stimulator for peripheral stimulation
US11534608B2 (en) 2015-01-04 2022-12-27 Ist, Llc Methods and apparatuses for transdermal stimulation of the outer ear
WO2016109851A1 (en) 2015-01-04 2016-07-07 Thync, Inc. Methods and apparatuses for transdermal stimulation of the outer ear
DK3244965T3 (en) 2015-01-13 2023-07-10 Theranica Bio Electronics Ltd TREATMENT OF HEADACHE WITH ELECTRICAL STIMULATION
US10864367B2 (en) 2015-02-24 2020-12-15 Elira, Inc. Methods for using an electrical dermal patch in a manner that reduces adverse patient reactions
US10335302B2 (en) 2015-02-24 2019-07-02 Elira, Inc. Systems and methods for using transcutaneous electrical stimulation to enable dietary interventions
US10376145B2 (en) 2015-02-24 2019-08-13 Elira, Inc. Systems and methods for enabling a patient to achieve a weight loss objective using an electrical dermal patch
US9956393B2 (en) 2015-02-24 2018-05-01 Elira, Inc. Systems for increasing a delay in the gastric emptying time for a patient using a transcutaneous electro-dermal patch
WO2016138176A1 (en) 2015-02-24 2016-09-01 Elira Therapeutics Llc Systems and methods for enabling appetite modulation and/or improving dietary compliance using an electro-dermal patch
US10765863B2 (en) 2015-02-24 2020-09-08 Elira, Inc. Systems and methods for using a transcutaneous electrical stimulation device to deliver titrated therapy
CN107864617B (en) 2015-03-19 2021-08-20 启迪医疗仪器公司 Stimulation for treating sleep disordered breathing
WO2016196797A1 (en) * 2015-06-02 2016-12-08 Battelle Memorial Institute Systems for neural bridging of the nervous system
US9782589B2 (en) 2015-06-10 2017-10-10 Bluewind Medical Ltd. Implantable electrostimulator for improving blood flow
US9713707B2 (en) 2015-11-12 2017-07-25 Bluewind Medical Ltd. Inhibition of implant migration
WO2017106411A1 (en) 2015-12-15 2017-06-22 Cerevast Medical, Inc. Electrodes having surface exclusions
US9956405B2 (en) 2015-12-18 2018-05-01 Thyne Global, Inc. Transdermal electrical stimulation at the neck to induce neuromodulation
WO2017106878A1 (en) 2015-12-18 2017-06-22 Thync Global, Inc. Apparatuses and methods for transdermal electrical stimulation of nerves to modify or induce a cognitive state
US10646708B2 (en) 2016-05-20 2020-05-12 Thync Global, Inc. Transdermal electrical stimulation at the neck
US11357980B2 (en) 2016-09-29 2022-06-14 Theranica Bio-Electronics Ltd. Apparatus for applying an electrical signal to a subject
US10124178B2 (en) 2016-11-23 2018-11-13 Bluewind Medical Ltd. Implant and delivery tool therefor
US20180185631A1 (en) * 2016-12-30 2018-07-05 Bluewind Medical Ltd. Extracorporeal patch
EP3630271B1 (en) 2017-05-21 2023-11-01 Theranica Bio-Electronics Ltd. Apparatus for providing pain relief therapy
US20180353764A1 (en) 2017-06-13 2018-12-13 Bluewind Medical Ltd. Antenna configuration
US11278724B2 (en) 2018-04-24 2022-03-22 Thync Global, Inc. Streamlined and pre-set neuromodulators
EP3903402A4 (en) * 2018-12-27 2023-02-22 Soovu Labs, Inc. Electrical isolation during battery charging of wearable devices
US11400299B1 (en) 2021-09-14 2022-08-02 Rainbow Medical Ltd. Flexible antenna for stimulator

Citations (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3939841A (en) * 1974-03-06 1976-02-24 Dohring Albert A Acupuncture needle guide and restraint
US3943932A (en) * 1975-01-17 1976-03-16 Yen Kong Woo Acupuncture needles and holder
US4398545A (en) * 1979-10-10 1983-08-16 Cyclotechnical Medical Industries, Inc. Pain-blocking bandage
US4512351A (en) * 1982-11-19 1985-04-23 Cordis Corporation Percutaneous lead introducing system and method
US5397338A (en) * 1993-03-29 1995-03-14 Maven Labs, Inc. Electrotherapy device
US5449378A (en) * 1992-05-08 1995-09-12 Schouenborg; Jens Method and apparatus for the electric stimulation of skin receptors
US5549655A (en) * 1994-09-21 1996-08-27 Medtronic, Inc. Method and apparatus for synchronized treatment of obstructive sleep apnea
US5861016A (en) * 1997-05-28 1999-01-19 Swing; Fred P. Method of wound healing using electrical stimulation and acupuncture needles
US5861015A (en) * 1997-05-05 1999-01-19 Benja-Athon; Anuthep Modulation of the nervous system for treatment of pain and related disorders
US5948006A (en) * 1998-10-14 1999-09-07 Advanced Bionics Corporation Transcutaneous transmission patch
US6016451A (en) * 1998-06-24 2000-01-18 Sanchez-Rodarte; Salvador Neurological stabilizer device
US6026328A (en) * 1986-03-24 2000-02-15 Case Western Reserve University Functional neuromuscular stimulation system with shielded percutaneous interface
US6200265B1 (en) * 1999-04-16 2001-03-13 Medtronic, Inc. Peripheral memory patch and access method for use with an implantable medical device
US6275737B1 (en) * 1998-10-14 2001-08-14 Advanced Bionics Corporation Transcutaneous transmission pouch
US20020019652A1 (en) * 1999-07-08 2002-02-14 Cyclotec Advanced Medical Technologies Two part tens bandage
US20020077572A1 (en) * 1998-06-03 2002-06-20 Neurocontrol Corporation Percutaneous intramuscular stimulation system
US6445955B1 (en) * 1999-07-08 2002-09-03 Stephen A. Michelson Miniature wireless transcutaneous electrical neuro or muscular-stimulation unit
US20030014088A1 (en) * 1998-06-03 2003-01-16 Neurocontrol Corporation Treatment of shoulder dysfunction using a percutaneous intramuscular stimulation system
US6516227B1 (en) * 1999-07-27 2003-02-04 Advanced Bionics Corporation Rechargeable spinal cord stimulator system
US20030028170A1 (en) * 1998-08-31 2003-02-06 Birch Point Medical, Inc. Controlled dosage drug delivery
US20030032859A1 (en) * 2000-04-03 2003-02-13 Amir Belson Endoscope with single step guiding apparatus
US20030065368A1 (en) * 2001-08-17 2003-04-03 Martin Van Der Hoeven Muscle stimulator apparatus
US20030074030A1 (en) * 2001-09-28 2003-04-17 Vertis Neuroscience, Inc. Method and apparatus for controlling percutaneous electrical signals
US20030078633A1 (en) * 2001-09-28 2003-04-24 Firlik Andrew D. Methods and implantable apparatus for electrical therapy
US20030120259A1 (en) * 2000-10-24 2003-06-26 Scimed Life Systems, Inc. Deflectable tip guide in guide system
US6607500B2 (en) * 1999-07-08 2003-08-19 Cyclotec Advanced Medical Technologies, Inc. Integrated cast and muscle stimulation system
US6622037B2 (en) * 2000-04-05 2003-09-16 Polytronics, Ltd. Transdermal administrating device
US20030195599A1 (en) * 1999-12-01 2003-10-16 Bishay Jon M. Method and apparatus for deploying a percutaneous probe
US6687538B1 (en) * 2000-06-19 2004-02-03 Medtronic, Inc. Trial neuro stimulator with lead diagnostics

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5607461A (en) * 1995-10-20 1997-03-04 Nexmed, Inc. Apparatus and method for delivering electrical stimulus to tissue
US5857968A (en) * 1997-11-24 1999-01-12 Benja-Athon; Anuthep Coupling device in electroacupuncture
FR2775592B1 (en) * 1998-03-06 2000-06-16 Patrick Cazaux PORTABLE ACUPUNCTURE APPARATUS
ES2245113T3 (en) 1998-08-03 2005-12-16 Amei Technologies Inc. PEMF TREATMENT FOR OSTEOPOROSIS AND STIMULATION OF TISSUE GROWTH.
JP2001190696A (en) 2000-01-07 2001-07-17 Seiko Instruments Inc Portable type information processor, information processing method and computer readable recording medium having program recorded to make computer execute the method
US6338347B1 (en) * 2000-04-04 2002-01-15 Yun-Yin Chung Blood circulation stimulator

Patent Citations (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3939841A (en) * 1974-03-06 1976-02-24 Dohring Albert A Acupuncture needle guide and restraint
US3943932A (en) * 1975-01-17 1976-03-16 Yen Kong Woo Acupuncture needles and holder
US4398545A (en) * 1979-10-10 1983-08-16 Cyclotechnical Medical Industries, Inc. Pain-blocking bandage
US4512351A (en) * 1982-11-19 1985-04-23 Cordis Corporation Percutaneous lead introducing system and method
US6026328A (en) * 1986-03-24 2000-02-15 Case Western Reserve University Functional neuromuscular stimulation system with shielded percutaneous interface
US5449378A (en) * 1992-05-08 1995-09-12 Schouenborg; Jens Method and apparatus for the electric stimulation of skin receptors
US5397338A (en) * 1993-03-29 1995-03-14 Maven Labs, Inc. Electrotherapy device
US5549655A (en) * 1994-09-21 1996-08-27 Medtronic, Inc. Method and apparatus for synchronized treatment of obstructive sleep apnea
US5861015A (en) * 1997-05-05 1999-01-19 Benja-Athon; Anuthep Modulation of the nervous system for treatment of pain and related disorders
US5861016A (en) * 1997-05-28 1999-01-19 Swing; Fred P. Method of wound healing using electrical stimulation and acupuncture needles
US20020077572A1 (en) * 1998-06-03 2002-06-20 Neurocontrol Corporation Percutaneous intramuscular stimulation system
US20030014088A1 (en) * 1998-06-03 2003-01-16 Neurocontrol Corporation Treatment of shoulder dysfunction using a percutaneous intramuscular stimulation system
US6845271B2 (en) * 1998-06-03 2005-01-18 Neurocontrol Corporation Treatment of shoulder dysfunction using a percutaneous intramuscular stimulation system
US6016451A (en) * 1998-06-24 2000-01-18 Sanchez-Rodarte; Salvador Neurological stabilizer device
US20030028170A1 (en) * 1998-08-31 2003-02-06 Birch Point Medical, Inc. Controlled dosage drug delivery
US7031768B2 (en) * 1998-08-31 2006-04-18 Birch Point Medical, Inc. Controlled dosage drug delivery
US5948006A (en) * 1998-10-14 1999-09-07 Advanced Bionics Corporation Transcutaneous transmission patch
US6275737B1 (en) * 1998-10-14 2001-08-14 Advanced Bionics Corporation Transcutaneous transmission pouch
US6200265B1 (en) * 1999-04-16 2001-03-13 Medtronic, Inc. Peripheral memory patch and access method for use with an implantable medical device
US6445955B1 (en) * 1999-07-08 2002-09-03 Stephen A. Michelson Miniature wireless transcutaneous electrical neuro or muscular-stimulation unit
US6607500B2 (en) * 1999-07-08 2003-08-19 Cyclotec Advanced Medical Technologies, Inc. Integrated cast and muscle stimulation system
US20020019652A1 (en) * 1999-07-08 2002-02-14 Cyclotec Advanced Medical Technologies Two part tens bandage
US6516227B1 (en) * 1999-07-27 2003-02-04 Advanced Bionics Corporation Rechargeable spinal cord stimulator system
US20030195599A1 (en) * 1999-12-01 2003-10-16 Bishay Jon M. Method and apparatus for deploying a percutaneous probe
US6904324B2 (en) * 1999-12-01 2005-06-07 Meagan Medical, Inc. Method and apparatus for deploying a percutaneous probe
US20030032859A1 (en) * 2000-04-03 2003-02-13 Amir Belson Endoscope with single step guiding apparatus
US6622037B2 (en) * 2000-04-05 2003-09-16 Polytronics, Ltd. Transdermal administrating device
US6687538B1 (en) * 2000-06-19 2004-02-03 Medtronic, Inc. Trial neuro stimulator with lead diagnostics
US20030120259A1 (en) * 2000-10-24 2003-06-26 Scimed Life Systems, Inc. Deflectable tip guide in guide system
US20030065368A1 (en) * 2001-08-17 2003-04-03 Martin Van Der Hoeven Muscle stimulator apparatus
US20030074030A1 (en) * 2001-09-28 2003-04-17 Vertis Neuroscience, Inc. Method and apparatus for controlling percutaneous electrical signals
US20030078633A1 (en) * 2001-09-28 2003-04-24 Firlik Andrew D. Methods and implantable apparatus for electrical therapy

Cited By (978)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080065182A1 (en) * 2004-02-12 2008-03-13 Ndi Medical, Llc. Portable assemblies, systems, and methods for providing functional or therapeutic neurostimulation
US11116502B2 (en) 2004-07-28 2021-09-14 Cilag Gmbh International Surgical stapling instrument incorporating a two-piece firing mechanism
US10383634B2 (en) 2004-07-28 2019-08-20 Ethicon Llc Stapling system incorporating a firing lockout
US10278702B2 (en) 2004-07-28 2019-05-07 Ethicon Llc Stapling system comprising a firing bar and a lockout
US11812960B2 (en) 2004-07-28 2023-11-14 Cilag Gmbh International Method of segmenting the operation of a surgical stapling instrument
US11083456B2 (en) 2004-07-28 2021-08-10 Cilag Gmbh International Articulating surgical instrument incorporating a two-piece firing mechanism
US10293100B2 (en) 2004-07-28 2019-05-21 Ethicon Llc Surgical stapling instrument having a medical substance dispenser
US10292707B2 (en) 2004-07-28 2019-05-21 Ethicon Llc Articulating surgical stapling instrument incorporating a firing mechanism
US10799240B2 (en) 2004-07-28 2020-10-13 Ethicon Llc Surgical instrument comprising a staple firing lockout
US11882987B2 (en) 2004-07-28 2024-01-30 Cilag Gmbh International Articulating surgical stapling instrument incorporating a two-piece E-beam firing mechanism
US11135352B2 (en) 2004-07-28 2021-10-05 Cilag Gmbh International End effector including a gradually releasable medical adjunct
US10314590B2 (en) 2004-07-28 2019-06-11 Ethicon Llc Articulating surgical stapling instrument incorporating a two-piece e-beam firing mechanism
US11890012B2 (en) 2004-07-28 2024-02-06 Cilag Gmbh International Staple cartridge comprising cartridge body and attached support
US10568629B2 (en) 2004-07-28 2020-02-25 Ethicon Llc Articulating surgical stapling instrument
US11896225B2 (en) 2004-07-28 2024-02-13 Cilag Gmbh International Staple cartridge comprising a pan
US10716563B2 (en) 2004-07-28 2020-07-21 Ethicon Llc Stapling system comprising an instrument assembly including a lockout
US11684365B2 (en) 2004-07-28 2023-06-27 Cilag Gmbh International Replaceable staple cartridges for surgical instruments
US10687817B2 (en) 2004-07-28 2020-06-23 Ethicon Llc Stapling device comprising a firing member lockout
US10485547B2 (en) 2004-07-28 2019-11-26 Ethicon Llc Surgical staple cartridges
US11793512B2 (en) 2005-08-31 2023-10-24 Cilag Gmbh International Staple cartridges for forming staples having differing formed staple heights
US11090045B2 (en) 2005-08-31 2021-08-17 Cilag Gmbh International Staple cartridges for forming staples having differing formed staple heights
US11399828B2 (en) 2005-08-31 2022-08-02 Cilag Gmbh International Fastener cartridge assembly comprising a fixed anvil and different staple heights
US10271846B2 (en) 2005-08-31 2019-04-30 Ethicon Llc Staple cartridge for use with a surgical stapler
US10271845B2 (en) 2005-08-31 2019-04-30 Ethicon Llc Fastener cartridge assembly comprising a cam and driver arrangement
US11272928B2 (en) 2005-08-31 2022-03-15 Cilag GmbH Intemational Staple cartridges for forming staples having differing formed staple heights
US10932774B2 (en) 2005-08-31 2021-03-02 Ethicon Llc Surgical end effector for forming staples to different heights
US11246590B2 (en) 2005-08-31 2022-02-15 Cilag Gmbh International Staple cartridge including staple drivers having different unfired heights
US11179153B2 (en) 2005-08-31 2021-11-23 Cilag Gmbh International Staple cartridges for forming staples having differing formed staple heights
US10869664B2 (en) 2005-08-31 2020-12-22 Ethicon Llc End effector for use with a surgical stapling instrument
US10278697B2 (en) 2005-08-31 2019-05-07 Ethicon Llc Staple cartridge comprising a staple driver arrangement
US10245035B2 (en) 2005-08-31 2019-04-02 Ethicon Llc Stapling assembly configured to produce different formed staple heights
US10842488B2 (en) 2005-08-31 2020-11-24 Ethicon Llc Fastener cartridge assembly comprising a fixed anvil and different staple heights
US10842489B2 (en) 2005-08-31 2020-11-24 Ethicon Llc Fastener cartridge assembly comprising a cam and driver arrangement
US11730474B2 (en) 2005-08-31 2023-08-22 Cilag Gmbh International Fastener cartridge assembly comprising a movable cartridge and a staple driver arrangement
US10463369B2 (en) 2005-08-31 2019-11-05 Ethicon Llc Disposable end effector for use with a surgical instrument
US10245032B2 (en) 2005-08-31 2019-04-02 Ethicon Llc Staple cartridges for forming staples having differing formed staple heights
US10321909B2 (en) 2005-08-31 2019-06-18 Ethicon Llc Staple cartridge comprising a staple including deformable members
US11484311B2 (en) 2005-08-31 2022-11-01 Cilag Gmbh International Staple cartridge comprising a staple driver arrangement
US11134947B2 (en) 2005-08-31 2021-10-05 Cilag Gmbh International Fastener cartridge assembly comprising a camming sled with variable cam arrangements
US11576673B2 (en) 2005-08-31 2023-02-14 Cilag Gmbh International Stapling assembly for forming staples to different heights
US11771425B2 (en) 2005-08-31 2023-10-03 Cilag Gmbh International Stapling assembly for forming staples to different formed heights
US11484312B2 (en) 2005-08-31 2022-11-01 Cilag Gmbh International Staple cartridge comprising a staple driver arrangement
US11839375B2 (en) 2005-08-31 2023-12-12 Cilag Gmbh International Fastener cartridge assembly comprising an anvil and different staple heights
US11172927B2 (en) 2005-08-31 2021-11-16 Cilag Gmbh International Staple cartridges for forming staples having differing formed staple heights
US10420553B2 (en) 2005-08-31 2019-09-24 Ethicon Llc Staple cartridge comprising a staple driver arrangement
US10729436B2 (en) 2005-08-31 2020-08-04 Ethicon Llc Robotically-controlled surgical stapling devices that produce formed staples having different lengths
US10993713B2 (en) 2005-11-09 2021-05-04 Ethicon Llc Surgical instruments
US10806449B2 (en) 2005-11-09 2020-10-20 Ethicon Llc End effectors for surgical staplers
US11793511B2 (en) 2005-11-09 2023-10-24 Cilag Gmbh International Surgical instruments
US8694110B2 (en) 2005-11-16 2014-04-08 Bioness Neuromodulation Ltd. Orthosis for gait modulation
US20070112394A1 (en) * 2005-11-16 2007-05-17 N.E.S.S. Neuromuscular Electrical Stimulation Systems Ltd. Orthosis for a gait modulation system
US8209022B2 (en) 2005-11-16 2012-06-26 Bioness Neuromodulation Ltd. Gait modulation system and method
US8209036B2 (en) 2005-11-16 2012-06-26 Bioness Neuromodulation Ltd. Orthosis for a gait modulation system
US20110152968A1 (en) * 2005-11-16 2011-06-23 Bioness Neuromodulation Ltd. Orthosis for a gait modulation system
US7899556B2 (en) 2005-11-16 2011-03-01 Bioness Neuromodulation Ltd. Orthosis for a gait modulation system
US8972017B2 (en) 2005-11-16 2015-03-03 Bioness Neuromodulation Ltd. Gait modulation system and method
US10080885B2 (en) 2005-11-16 2018-09-25 Bioness Neuromodulation Ltd. Orthosis for a gait modulation system
US10076656B2 (en) 2005-11-16 2018-09-18 Bioness Neuromodulation Ltd. Gait modulation system and method
US11058867B2 (en) 2005-11-16 2021-07-13 Bioness Neuromodulation Ltd. Orthosis for a gait modulation system
US11890008B2 (en) 2006-01-31 2024-02-06 Cilag Gmbh International Surgical instrument with firing lockout
US10918380B2 (en) 2006-01-31 2021-02-16 Ethicon Llc Surgical instrument system including a control system
US11020113B2 (en) 2006-01-31 2021-06-01 Cilag Gmbh International Surgical instrument having force feedback capabilities
US11051811B2 (en) 2006-01-31 2021-07-06 Ethicon Llc End effector for use with a surgical instrument
US11058420B2 (en) 2006-01-31 2021-07-13 Cilag Gmbh International Surgical stapling apparatus comprising a lockout system
US10806479B2 (en) 2006-01-31 2020-10-20 Ethicon Llc Motor-driven surgical cutting and fastening instrument with tactile position feedback
US10842491B2 (en) 2006-01-31 2020-11-24 Ethicon Llc Surgical system with an actuation console
US10743849B2 (en) 2006-01-31 2020-08-18 Ethicon Llc Stapling system including an articulation system
US11944299B2 (en) 2006-01-31 2024-04-02 Cilag Gmbh International Surgical instrument having force feedback capabilities
US10463383B2 (en) 2006-01-31 2019-11-05 Ethicon Llc Stapling instrument including a sensing system
US11612393B2 (en) 2006-01-31 2023-03-28 Cilag Gmbh International Robotically-controlled end effector
US10463384B2 (en) 2006-01-31 2019-11-05 Ethicon Llc Stapling assembly
US11000275B2 (en) 2006-01-31 2021-05-11 Ethicon Llc Surgical instrument
US11364046B2 (en) 2006-01-31 2022-06-21 Cilag Gmbh International Motor-driven surgical cutting and fastening instrument with tactile position feedback
US10278722B2 (en) 2006-01-31 2019-05-07 Ethicon Llc Motor-driven surgical cutting and fastening instrument
US10993717B2 (en) 2006-01-31 2021-05-04 Ethicon Llc Surgical stapling system comprising a control system
US10653435B2 (en) 2006-01-31 2020-05-19 Ethicon Llc Motor-driven surgical cutting and fastening instrument with tactile position feedback
US11801051B2 (en) 2006-01-31 2023-10-31 Cilag Gmbh International Accessing data stored in a memory of a surgical instrument
US10653417B2 (en) 2006-01-31 2020-05-19 Ethicon Llc Surgical instrument
US10959722B2 (en) 2006-01-31 2021-03-30 Ethicon Llc Surgical instrument for deploying fasteners by way of rotational motion
US10485539B2 (en) 2006-01-31 2019-11-26 Ethicon Llc Surgical instrument with firing lockout
US11793518B2 (en) 2006-01-31 2023-10-24 Cilag Gmbh International Powered surgical instruments with firing system lockout arrangements
US10299817B2 (en) 2006-01-31 2019-05-28 Ethicon Llc Motor-driven fastening assembly
US10952728B2 (en) 2006-01-31 2021-03-23 Ethicon Llc Powered surgical instruments with firing system lockout arrangements
US11103269B2 (en) 2006-01-31 2021-08-31 Cilag Gmbh International Motor-driven surgical cutting and fastening instrument with tactile position feedback
US11350916B2 (en) 2006-01-31 2022-06-07 Cilag Gmbh International Endoscopic surgical instrument with a handle that can articulate with respect to the shaft
US10893853B2 (en) 2006-01-31 2021-01-19 Ethicon Llc Stapling assembly including motor drive systems
US10675028B2 (en) 2006-01-31 2020-06-09 Ethicon Llc Powered surgical instruments with firing system lockout arrangements
US11278279B2 (en) 2006-01-31 2022-03-22 Cilag Gmbh International Surgical instrument assembly
US11648008B2 (en) 2006-01-31 2023-05-16 Cilag Gmbh International Surgical instrument having force feedback capabilities
US11648024B2 (en) 2006-01-31 2023-05-16 Cilag Gmbh International Motor-driven surgical cutting and fastening instrument with position feedback
US11883020B2 (en) 2006-01-31 2024-01-30 Cilag Gmbh International Surgical instrument having a feedback system
US11660110B2 (en) 2006-01-31 2023-05-30 Cilag Gmbh International Motor-driven surgical cutting and fastening instrument with tactile position feedback
US10201363B2 (en) 2006-01-31 2019-02-12 Ethicon Llc Motor-driven surgical instrument
US10709468B2 (en) 2006-01-31 2020-07-14 Ethicon Llc Motor-driven surgical cutting and fastening instrument
US11890029B2 (en) 2006-01-31 2024-02-06 Cilag Gmbh International Motor-driven surgical cutting and fastening instrument
US10426463B2 (en) 2006-01-31 2019-10-01 Ehticon LLC Surgical instrument having a feedback system
US11246616B2 (en) 2006-01-31 2022-02-15 Cilag Gmbh International Motor-driven surgical cutting and fastening instrument with tactile position feedback
US11224454B2 (en) 2006-01-31 2022-01-18 Cilag Gmbh International Motor-driven surgical cutting and fastening instrument with tactile position feedback
US11166717B2 (en) 2006-01-31 2021-11-09 Cilag Gmbh International Surgical instrument with firing lockout
US11051813B2 (en) 2006-01-31 2021-07-06 Cilag Gmbh International Powered surgical instruments with firing system lockout arrangements
US11224427B2 (en) 2006-01-31 2022-01-18 Cilag Gmbh International Surgical stapling system including a console and retraction assembly
US10213262B2 (en) 2006-03-23 2019-02-26 Ethicon Llc Manipulatable surgical systems with selectively articulatable fastening device
US10420560B2 (en) 2006-06-27 2019-09-24 Ethicon Llc Manually driven surgical cutting and fastening instrument
US11272938B2 (en) 2006-06-27 2022-03-15 Cilag Gmbh International Surgical instrument including dedicated firing and retraction assemblies
US10314589B2 (en) 2006-06-27 2019-06-11 Ethicon Llc Surgical instrument including a shifting assembly
US11571231B2 (en) 2006-09-29 2023-02-07 Cilag Gmbh International Staple cartridge having a driver for driving multiple staples
US10172616B2 (en) 2006-09-29 2019-01-08 Ethicon Llc Surgical staple cartridge
US11622785B2 (en) 2006-09-29 2023-04-11 Cilag Gmbh International Surgical staples having attached drivers and stapling instruments for deploying the same
US10568652B2 (en) 2006-09-29 2020-02-25 Ethicon Llc Surgical staples having attached drivers of different heights and stapling instruments for deploying the same
US10595862B2 (en) 2006-09-29 2020-03-24 Ethicon Llc Staple cartridge including a compressible member
US10448952B2 (en) 2006-09-29 2019-10-22 Ethicon Llc End effector for use with a surgical fastening instrument
US10342541B2 (en) 2006-10-03 2019-07-09 Ethicon Llc Surgical instruments with E-beam driver and rotary drive arrangements
US11382626B2 (en) 2006-10-03 2022-07-12 Cilag Gmbh International Surgical system including a knife bar supported for rotational and axial travel
US11877748B2 (en) 2006-10-03 2024-01-23 Cilag Gmbh International Robotically-driven surgical instrument with E-beam driver
US10206678B2 (en) 2006-10-03 2019-02-19 Ethicon Llc Surgical stapling instrument with lockout features to prevent advancement of a firing assembly unless an unfired surgical staple cartridge is operably mounted in an end effector portion of the instrument
US10517682B2 (en) 2007-01-10 2019-12-31 Ethicon Llc Surgical instrument with wireless communication between control unit and remote sensor
US11849947B2 (en) 2007-01-10 2023-12-26 Cilag Gmbh International Surgical system including a control circuit and a passively-powered transponder
US11771426B2 (en) 2007-01-10 2023-10-03 Cilag Gmbh International Surgical instrument with wireless communication
US11918211B2 (en) 2007-01-10 2024-03-05 Cilag Gmbh International Surgical stapling instrument for use with a robotic system
US10517590B2 (en) 2007-01-10 2019-12-31 Ethicon Llc Powered surgical instrument having a transmission system
US11931032B2 (en) 2007-01-10 2024-03-19 Cilag Gmbh International Surgical instrument with wireless communication between a control unit of a robotic system and remote sensor
US11350929B2 (en) 2007-01-10 2022-06-07 Cilag Gmbh International Surgical instrument with wireless communication between control unit and sensor transponders
US10952727B2 (en) 2007-01-10 2021-03-23 Ethicon Llc Surgical instrument for assessing the state of a staple cartridge
US10278780B2 (en) 2007-01-10 2019-05-07 Ethicon Llc Surgical instrument for use with robotic system
US10918386B2 (en) 2007-01-10 2021-02-16 Ethicon Llc Interlock and surgical instrument including same
US11937814B2 (en) 2007-01-10 2024-03-26 Cilag Gmbh International Surgical instrument for use with a robotic system
US11291441B2 (en) 2007-01-10 2022-04-05 Cilag Gmbh International Surgical instrument with wireless communication between control unit and remote sensor
US11812961B2 (en) 2007-01-10 2023-11-14 Cilag Gmbh International Surgical instrument including a motor control system
US11000277B2 (en) 2007-01-10 2021-05-11 Ethicon Llc Surgical instrument with wireless communication between control unit and remote sensor
US11006951B2 (en) 2007-01-10 2021-05-18 Ethicon Llc Surgical instrument with wireless communication between control unit and sensor transponders
US10945729B2 (en) 2007-01-10 2021-03-16 Ethicon Llc Interlock and surgical instrument including same
US11666332B2 (en) 2007-01-10 2023-06-06 Cilag Gmbh International Surgical instrument comprising a control circuit configured to adjust the operation of a motor
US11134943B2 (en) 2007-01-10 2021-10-05 Cilag Gmbh International Powered surgical instrument including a control unit and sensor
US11064998B2 (en) 2007-01-10 2021-07-20 Cilag Gmbh International Surgical instrument with wireless communication between a control unit of a robotic system and remote sensor
US10751138B2 (en) 2007-01-10 2020-08-25 Ethicon Llc Surgical instrument for use with a robotic system
US11844521B2 (en) 2007-01-10 2023-12-19 Cilag Gmbh International Surgical instrument for use with a robotic system
US10433918B2 (en) 2007-01-10 2019-10-08 Ethicon Llc Surgical instrument system configured to evaluate the load applied to a firing member at the initiation of a firing stroke
US11166720B2 (en) 2007-01-10 2021-11-09 Cilag Gmbh International Surgical instrument including a control module for assessing an end effector
US11039836B2 (en) 2007-01-11 2021-06-22 Cilag Gmbh International Staple cartridge for use with a surgical stapling instrument
US11839352B2 (en) 2007-01-11 2023-12-12 Cilag Gmbh International Surgical stapling device with an end effector
US10912575B2 (en) 2007-01-11 2021-02-09 Ethicon Llc Surgical stapling device having supports for a flexible drive mechanism
US10702267B2 (en) 2007-03-15 2020-07-07 Ethicon Llc Surgical stapling instrument having a releasable buttress material
US11337693B2 (en) 2007-03-15 2022-05-24 Cilag Gmbh International Surgical stapling instrument having a releasable buttress material
US10398433B2 (en) 2007-03-28 2019-09-03 Ethicon Llc Laparoscopic clamp load measuring devices
US11134938B2 (en) 2007-06-04 2021-10-05 Cilag Gmbh International Robotically-controlled shaft based rotary drive systems for surgical instruments
US11911028B2 (en) 2007-06-04 2024-02-27 Cilag Gmbh International Surgical instruments for use with a robotic surgical system
US11559302B2 (en) 2007-06-04 2023-01-24 Cilag Gmbh International Surgical instrument including a firing member movable at different speeds
US11147549B2 (en) 2007-06-04 2021-10-19 Cilag Gmbh International Stapling instrument including a firing system and a closure system
US10327765B2 (en) 2007-06-04 2019-06-25 Ethicon Llc Drive systems for surgical instruments
US11564682B2 (en) 2007-06-04 2023-01-31 Cilag Gmbh International Surgical stapler device
US11154298B2 (en) 2007-06-04 2021-10-26 Cilag Gmbh International Stapling system for use with a robotic surgical system
US10299787B2 (en) 2007-06-04 2019-05-28 Ethicon Llc Stapling system comprising rotary inputs
US10368863B2 (en) 2007-06-04 2019-08-06 Ethicon Llc Robotically-controlled shaft based rotary drive systems for surgical instruments
US11672531B2 (en) 2007-06-04 2023-06-13 Cilag Gmbh International Rotary drive systems for surgical instruments
US11857181B2 (en) 2007-06-04 2024-01-02 Cilag Gmbh International Robotically-controlled shaft based rotary drive systems for surgical instruments
US10363033B2 (en) 2007-06-04 2019-07-30 Ethicon Llc Robotically-controlled surgical instruments
US11648006B2 (en) 2007-06-04 2023-05-16 Cilag Gmbh International Robotically-controlled shaft based rotary drive systems for surgical instruments
US11013511B2 (en) 2007-06-22 2021-05-25 Ethicon Llc Surgical stapling instrument with an articulatable end effector
US11849941B2 (en) 2007-06-29 2023-12-26 Cilag Gmbh International Staple cartridge having staple cavities extending at a transverse angle relative to a longitudinal cartridge axis
US11925346B2 (en) 2007-06-29 2024-03-12 Cilag Gmbh International Surgical staple cartridge including tissue supporting surfaces
US11717285B2 (en) 2008-02-14 2023-08-08 Cilag Gmbh International Surgical cutting and fastening instrument having RF electrodes
US10307163B2 (en) 2008-02-14 2019-06-04 Ethicon Llc Detachable motor powered surgical instrument
US10743870B2 (en) 2008-02-14 2020-08-18 Ethicon Llc Surgical stapling apparatus with interlockable firing system
US10765432B2 (en) 2008-02-14 2020-09-08 Ethicon Llc Surgical device including a control system
US10779822B2 (en) 2008-02-14 2020-09-22 Ethicon Llc System including a surgical cutting and fastening instrument
US10265067B2 (en) 2008-02-14 2019-04-23 Ethicon Llc Surgical instrument including a regulator and a control system
US10463370B2 (en) 2008-02-14 2019-11-05 Ethicon Llc Motorized surgical instrument
US10470763B2 (en) 2008-02-14 2019-11-12 Ethicon Llc Surgical cutting and fastening instrument including a sensing system
US10874396B2 (en) 2008-02-14 2020-12-29 Ethicon Llc Stapling instrument for use with a surgical robot
US11571212B2 (en) 2008-02-14 2023-02-07 Cilag Gmbh International Surgical stapling system including an impedance sensor
US10888330B2 (en) 2008-02-14 2021-01-12 Ethicon Llc Surgical system
US10639036B2 (en) 2008-02-14 2020-05-05 Ethicon Llc Robotically-controlled motorized surgical cutting and fastening instrument
US11446034B2 (en) 2008-02-14 2022-09-20 Cilag Gmbh International Surgical stapling assembly comprising first and second actuation systems configured to perform different functions
US11612395B2 (en) 2008-02-14 2023-03-28 Cilag Gmbh International Surgical system including a control system having an RFID tag reader
US10722232B2 (en) 2008-02-14 2020-07-28 Ethicon Llc Surgical instrument for use with different cartridges
US10888329B2 (en) 2008-02-14 2021-01-12 Ethicon Llc Detachable motor powered surgical instrument
US10716568B2 (en) 2008-02-14 2020-07-21 Ethicon Llc Surgical stapling apparatus with control features operable with one hand
US11801047B2 (en) 2008-02-14 2023-10-31 Cilag Gmbh International Surgical stapling system comprising a control circuit configured to selectively monitor tissue impedance and adjust control of a motor
US10238387B2 (en) 2008-02-14 2019-03-26 Ethicon Llc Surgical instrument comprising a control system
US10238385B2 (en) 2008-02-14 2019-03-26 Ethicon Llc Surgical instrument system for evaluating tissue impedance
US10660640B2 (en) 2008-02-14 2020-05-26 Ethicon Llc Motorized surgical cutting and fastening instrument
US10898195B2 (en) 2008-02-14 2021-01-26 Ethicon Llc Detachable motor powered surgical instrument
US10806450B2 (en) 2008-02-14 2020-10-20 Ethicon Llc Surgical cutting and fastening instrument having a control system
US10898194B2 (en) 2008-02-14 2021-01-26 Ethicon Llc Detachable motor powered surgical instrument
US10206676B2 (en) 2008-02-14 2019-02-19 Ethicon Llc Surgical cutting and fastening instrument
US11638583B2 (en) 2008-02-14 2023-05-02 Cilag Gmbh International Motorized surgical system having a plurality of power sources
US11464514B2 (en) 2008-02-14 2022-10-11 Cilag Gmbh International Motorized surgical stapling system including a sensing array
US10682141B2 (en) 2008-02-14 2020-06-16 Ethicon Llc Surgical device including a control system
US10542974B2 (en) 2008-02-14 2020-01-28 Ethicon Llc Surgical instrument including a control system
US10682142B2 (en) 2008-02-14 2020-06-16 Ethicon Llc Surgical stapling apparatus including an articulation system
US10743851B2 (en) 2008-02-14 2020-08-18 Ethicon Llc Interchangeable tools for surgical instruments
US10925605B2 (en) 2008-02-14 2021-02-23 Ethicon Llc Surgical stapling system
US11484307B2 (en) 2008-02-14 2022-11-01 Cilag Gmbh International Loading unit coupleable to a surgical stapling system
US10905427B2 (en) 2008-02-14 2021-02-02 Ethicon Llc Surgical System
US10905426B2 (en) 2008-02-14 2021-02-02 Ethicon Llc Detachable motor powered surgical instrument
US10856866B2 (en) 2008-02-15 2020-12-08 Ethicon Llc Surgical end effector having buttress retention features
US11058418B2 (en) 2008-02-15 2021-07-13 Cilag Gmbh International Surgical end effector having buttress retention features
US11272927B2 (en) 2008-02-15 2022-03-15 Cilag Gmbh International Layer arrangements for surgical staple cartridges
US10390823B2 (en) 2008-02-15 2019-08-27 Ethicon Llc End effector comprising an adjunct
US11154297B2 (en) 2008-02-15 2021-10-26 Cilag Gmbh International Layer arrangements for surgical staple cartridges
US8463383B2 (en) 2008-08-01 2013-06-11 Ndi Medical, Inc. Portable assemblies, systems, and methods for providing functional or therapeutic neurostimulation
US20100036445A1 (en) * 2008-08-01 2010-02-11 Ndi Medical Llc. Portable assemblies, systems, and methods for providing functional or therapeutic neurostimulation
US10980535B2 (en) 2008-09-23 2021-04-20 Ethicon Llc Motorized surgical instrument with an end effector
US11871923B2 (en) 2008-09-23 2024-01-16 Cilag Gmbh International Motorized surgical instrument
US10736628B2 (en) 2008-09-23 2020-08-11 Ethicon Llc Motor-driven surgical cutting instrument
US11045189B2 (en) 2008-09-23 2021-06-29 Cilag Gmbh International Robotically-controlled motorized surgical instrument with an end effector
US10765425B2 (en) 2008-09-23 2020-09-08 Ethicon Llc Robotically-controlled motorized surgical instrument with an end effector
US11812954B2 (en) 2008-09-23 2023-11-14 Cilag Gmbh International Robotically-controlled motorized surgical instrument with an end effector
US11648005B2 (en) 2008-09-23 2023-05-16 Cilag Gmbh International Robotically-controlled motorized surgical instrument with an end effector
US11517304B2 (en) 2008-09-23 2022-12-06 Cilag Gmbh International Motor-driven surgical cutting instrument
US11684361B2 (en) 2008-09-23 2023-06-27 Cilag Gmbh International Motor-driven surgical cutting instrument
US10898184B2 (en) 2008-09-23 2021-01-26 Ethicon Llc Motor-driven surgical cutting instrument
US10420549B2 (en) 2008-09-23 2019-09-24 Ethicon Llc Motorized surgical instrument
US11406380B2 (en) 2008-09-23 2022-08-09 Cilag Gmbh International Motorized surgical instrument
US11617576B2 (en) 2008-09-23 2023-04-04 Cilag Gmbh International Motor-driven surgical cutting instrument
US10456133B2 (en) 2008-09-23 2019-10-29 Ethicon Llc Motorized surgical instrument
US11103241B2 (en) 2008-09-23 2021-08-31 Cilag Gmbh International Motor-driven surgical cutting instrument
US11617575B2 (en) 2008-09-23 2023-04-04 Cilag Gmbh International Motor-driven surgical cutting instrument
US10485537B2 (en) 2008-09-23 2019-11-26 Ethicon Llc Motorized surgical instrument
US11793521B2 (en) 2008-10-10 2023-10-24 Cilag Gmbh International Powered surgical cutting and stapling apparatus with manually retractable firing system
US11730477B2 (en) 2008-10-10 2023-08-22 Cilag Gmbh International Powered surgical system with manually retractable firing system
US11583279B2 (en) 2008-10-10 2023-02-21 Cilag Gmbh International Powered surgical cutting and stapling apparatus with manually retractable firing system
US10932778B2 (en) 2008-10-10 2021-03-02 Ethicon Llc Powered surgical cutting and stapling apparatus with manually retractable firing system
US11129615B2 (en) 2009-02-05 2021-09-28 Cilag Gmbh International Surgical stapling system
US10420550B2 (en) 2009-02-06 2019-09-24 Ethicon Llc Motor driven surgical fastener device with switching system configured to prevent firing initiation until activated
US8353438B2 (en) * 2009-11-19 2013-01-15 Ethicon Endo-Surgery, Inc. Circular stapler introducer with rigid cap assembly configured for easy removal
US8353439B2 (en) * 2009-11-19 2013-01-15 Ethicon Endo-Surgery, Inc. Circular stapler introducer with radially-openable distal end portion
US8622275B2 (en) 2009-11-19 2014-01-07 Ethicon Endo-Surgery, Inc. Circular stapler introducer with rigid distal end portion
US8899466B2 (en) 2009-11-19 2014-12-02 Ethicon Endo-Surgery, Inc. Devices and methods for introducing a surgical circular stapling instrument into a patient
US20110114699A1 (en) * 2009-11-19 2011-05-19 Ethicon Endo-Surgery, Inc. Circular stapler introducer with radially-openable distal end portion
US10751076B2 (en) 2009-12-24 2020-08-25 Ethicon Llc Motor-driven surgical cutting instrument with electric actuator directional control assembly
US11291449B2 (en) 2009-12-24 2022-04-05 Cilag Gmbh International Surgical cutting instrument that analyzes tissue thickness
US11478247B2 (en) 2010-07-30 2022-10-25 Cilag Gmbh International Tissue acquisition arrangements and methods for surgical stapling devices
US10675035B2 (en) 2010-09-09 2020-06-09 Ethicon Llc Surgical stapling head assembly with firing lockout for a surgical stapler
US11083452B2 (en) 2010-09-30 2021-08-10 Cilag Gmbh International Staple cartridge including a tissue thickness compensator
US10869669B2 (en) 2010-09-30 2020-12-22 Ethicon Llc Surgical instrument assembly
US11571215B2 (en) 2010-09-30 2023-02-07 Cilag Gmbh International Layer of material for a surgical end effector
US10258332B2 (en) 2010-09-30 2019-04-16 Ethicon Llc Stapling system comprising an adjunct and a flowable adhesive
US10265072B2 (en) 2010-09-30 2019-04-23 Ethicon Llc Surgical stapling system comprising an end effector including an implantable layer
US11849952B2 (en) 2010-09-30 2023-12-26 Cilag Gmbh International Staple cartridge comprising staples positioned within a compressible portion thereof
US10624861B2 (en) 2010-09-30 2020-04-21 Ethicon Llc Tissue thickness compensator configured to redistribute compressive forces
US11850310B2 (en) 2010-09-30 2023-12-26 Cilag Gmbh International Staple cartridge including an adjunct
US10265074B2 (en) 2010-09-30 2019-04-23 Ethicon Llc Implantable layers for surgical stapling devices
US11857187B2 (en) 2010-09-30 2024-01-02 Cilag Gmbh International Tissue thickness compensator comprising controlled release and expansion
US11812965B2 (en) 2010-09-30 2023-11-14 Cilag Gmbh International Layer of material for a surgical end effector
US11559496B2 (en) 2010-09-30 2023-01-24 Cilag Gmbh International Tissue thickness compensator configured to redistribute compressive forces
US10987102B2 (en) 2010-09-30 2021-04-27 Ethicon Llc Tissue thickness compensator comprising a plurality of layers
US11540824B2 (en) 2010-09-30 2023-01-03 Cilag Gmbh International Tissue thickness compensator
US10743877B2 (en) 2010-09-30 2020-08-18 Ethicon Llc Surgical stapler with floating anvil
US10835251B2 (en) 2010-09-30 2020-11-17 Ethicon Llc Surgical instrument assembly including an end effector configurable in different positions
US10463372B2 (en) 2010-09-30 2019-11-05 Ethicon Llc Staple cartridge comprising multiple regions
US10588623B2 (en) 2010-09-30 2020-03-17 Ethicon Llc Adhesive film laminate
US11944292B2 (en) 2010-09-30 2024-04-02 Cilag Gmbh International Anvil layer attached to a proximal end of an end effector
US11583277B2 (en) 2010-09-30 2023-02-21 Cilag Gmbh International Layer of material for a surgical end effector
US11602340B2 (en) 2010-09-30 2023-03-14 Cilag Gmbh International Adhesive film laminate
US11298125B2 (en) 2010-09-30 2022-04-12 Cilag Gmbh International Tissue stapler having a thickness compensator
US11737754B2 (en) 2010-09-30 2023-08-29 Cilag Gmbh International Surgical stapler with floating anvil
US11154296B2 (en) 2010-09-30 2021-10-26 Cilag Gmbh International Anvil layer attached to a proximal end of an end effector
US10945731B2 (en) 2010-09-30 2021-03-16 Ethicon Llc Tissue thickness compensator comprising controlled release and expansion
US11883025B2 (en) 2010-09-30 2024-01-30 Cilag Gmbh International Tissue thickness compensator comprising a plurality of layers
US11406377B2 (en) 2010-09-30 2022-08-09 Cilag Gmbh International Adhesive film laminate
US11684360B2 (en) 2010-09-30 2023-06-27 Cilag Gmbh International Staple cartridge comprising a variable thickness compressible portion
US10182819B2 (en) 2010-09-30 2019-01-22 Ethicon Llc Implantable layer assemblies
US10548600B2 (en) 2010-09-30 2020-02-04 Ethicon Llc Multiple thickness implantable layers for surgical stapling devices
US10888328B2 (en) 2010-09-30 2021-01-12 Ethicon Llc Surgical end effector
US11395651B2 (en) 2010-09-30 2022-07-26 Cilag Gmbh International Adhesive film laminate
US10335150B2 (en) 2010-09-30 2019-07-02 Ethicon Llc Staple cartridge comprising an implantable layer
US11911027B2 (en) 2010-09-30 2024-02-27 Cilag Gmbh International Adhesive film laminate
US10485536B2 (en) 2010-09-30 2019-11-26 Ethicon Llc Tissue stapler having an anti-microbial agent
US10335148B2 (en) 2010-09-30 2019-07-02 Ethicon Llc Staple cartridge including a tissue thickness compensator for a surgical stapler
US11672536B2 (en) 2010-09-30 2023-06-13 Cilag Gmbh International Layer of material for a surgical end effector
US11925354B2 (en) 2010-09-30 2024-03-12 Cilag Gmbh International Staple cartridge comprising staples positioned within a compressible portion thereof
US10398436B2 (en) 2010-09-30 2019-09-03 Ethicon Llc Staple cartridge comprising staples positioned within a compressible portion thereof
US10258330B2 (en) 2010-09-30 2019-04-16 Ethicon Llc End effector including an implantable arrangement
US10898193B2 (en) 2010-09-30 2021-01-26 Ethicon Llc End effector for use with a surgical instrument
US10149682B2 (en) 2010-09-30 2018-12-11 Ethicon Llc Stapling system including an actuation system
US10363031B2 (en) 2010-09-30 2019-07-30 Ethicon Llc Tissue thickness compensators for surgical staplers
US10695062B2 (en) 2010-10-01 2020-06-30 Ethicon Llc Surgical instrument including a retractable firing member
US11529142B2 (en) 2010-10-01 2022-12-20 Cilag Gmbh International Surgical instrument having a power control circuit
US10898177B2 (en) 2011-03-14 2021-01-26 Ethicon Llc Collapsible anvil plate assemblies for circular surgical stapling devices
US10751040B2 (en) 2011-03-14 2020-08-25 Ethicon Llc Anvil assemblies with collapsible frames for circular staplers
US11478238B2 (en) 2011-03-14 2022-10-25 Cilag Gmbh International Anvil assemblies with collapsible frames for circular staplers
US11864747B2 (en) 2011-03-14 2024-01-09 Cilag Gmbh International Anvil assemblies for circular staplers
US10588612B2 (en) 2011-03-14 2020-03-17 Ethicon Llc Collapsible anvil plate assemblies for circular surgical stapling devices
US10987094B2 (en) 2011-03-14 2021-04-27 Ethicon Llc Surgical bowel retractor devices
US11504116B2 (en) 2011-04-29 2022-11-22 Cilag Gmbh International Layer of material for a surgical end effector
US10383633B2 (en) 2011-05-27 2019-08-20 Ethicon Llc Robotically-driven surgical assembly
US11918208B2 (en) 2011-05-27 2024-03-05 Cilag Gmbh International Robotically-controlled shaft based rotary drive systems for surgical instruments
US10335151B2 (en) 2011-05-27 2019-07-02 Ethicon Llc Robotically-driven surgical instrument
US10426478B2 (en) 2011-05-27 2019-10-01 Ethicon Llc Surgical stapling systems
US10736634B2 (en) 2011-05-27 2020-08-11 Ethicon Llc Robotically-driven surgical instrument including a drive system
US10420561B2 (en) 2011-05-27 2019-09-24 Ethicon Llc Robotically-driven surgical instrument
US11266410B2 (en) 2011-05-27 2022-03-08 Cilag Gmbh International Surgical device for use with a robotic system
US10617420B2 (en) 2011-05-27 2020-04-14 Ethicon Llc Surgical system comprising drive systems
US11207064B2 (en) 2011-05-27 2021-12-28 Cilag Gmbh International Automated end effector component reloading system for use with a robotic system
US10780539B2 (en) 2011-05-27 2020-09-22 Ethicon Llc Stapling instrument for use with a robotic system
US10485546B2 (en) 2011-05-27 2019-11-26 Ethicon Llc Robotically-driven surgical assembly
US11129616B2 (en) 2011-05-27 2021-09-28 Cilag Gmbh International Surgical stapling system
US11439470B2 (en) 2011-05-27 2022-09-13 Cilag Gmbh International Robotically-controlled surgical instrument with selectively articulatable end effector
US11583278B2 (en) 2011-05-27 2023-02-21 Cilag Gmbh International Surgical stapling system having multi-direction articulation
US10524790B2 (en) 2011-05-27 2020-01-07 Ethicon Llc Robotically-controlled surgical stapling devices that produce formed staples having different lengths
US10980534B2 (en) 2011-05-27 2021-04-20 Ethicon Llc Robotically-controlled motorized surgical instrument with an end effector
US10813641B2 (en) 2011-05-27 2020-10-27 Ethicon Llc Robotically-driven surgical instrument
US11612394B2 (en) 2011-05-27 2023-03-28 Cilag Gmbh International Automated end effector component reloading system for use with a robotic system
US10231794B2 (en) 2011-05-27 2019-03-19 Ethicon Llc Surgical stapling instruments with rotatable staple deployment arrangements
US8868217B2 (en) 2011-06-27 2014-10-21 Bioness Neuromodulation Ltd. Electrode for muscle stimulation
US10695063B2 (en) 2012-02-13 2020-06-30 Ethicon Llc Surgical cutting and fastening instrument with apparatus for determining cartridge and firing motion status
US10441285B2 (en) 2012-03-28 2019-10-15 Ethicon Llc Tissue thickness compensator comprising tissue ingrowth features
US10667808B2 (en) 2012-03-28 2020-06-02 Ethicon Llc Staple cartridge comprising an absorbable adjunct
US11793509B2 (en) 2012-03-28 2023-10-24 Cilag Gmbh International Staple cartridge including an implantable layer
US11406378B2 (en) 2012-03-28 2022-08-09 Cilag Gmbh International Staple cartridge comprising a compressible tissue thickness compensator
US11918220B2 (en) 2012-03-28 2024-03-05 Cilag Gmbh International Tissue thickness compensator comprising tissue ingrowth features
US10959725B2 (en) 2012-06-15 2021-03-30 Ethicon Llc Articulatable surgical instrument comprising a firing drive
US11707273B2 (en) 2012-06-15 2023-07-25 Cilag Gmbh International Articulatable surgical instrument comprising a firing drive
US10639115B2 (en) 2012-06-28 2020-05-05 Ethicon Llc Surgical end effectors having angled tissue-contacting surfaces
US11622766B2 (en) 2012-06-28 2023-04-11 Cilag Gmbh International Empty clip cartridge lockout
US11202631B2 (en) 2012-06-28 2021-12-21 Cilag Gmbh International Stapling assembly comprising a firing lockout
US11241230B2 (en) 2012-06-28 2022-02-08 Cilag Gmbh International Clip applier tool for use with a robotic surgical system
US10874391B2 (en) 2012-06-28 2020-12-29 Ethicon Llc Surgical instrument system including replaceable end effectors
US11857189B2 (en) 2012-06-28 2024-01-02 Cilag Gmbh International Surgical instrument including first and second articulation joints
US10258333B2 (en) 2012-06-28 2019-04-16 Ethicon Llc Surgical fastening apparatus with a rotary end effector drive shaft for selective engagement with a motorized drive system
US11806013B2 (en) 2012-06-28 2023-11-07 Cilag Gmbh International Firing system arrangements for surgical instruments
US11154299B2 (en) 2012-06-28 2021-10-26 Cilag Gmbh International Stapling assembly comprising a firing lockout
US11278284B2 (en) 2012-06-28 2022-03-22 Cilag Gmbh International Rotary drive arrangements for surgical instruments
US11141155B2 (en) 2012-06-28 2021-10-12 Cilag Gmbh International Drive system for surgical tool
US11141156B2 (en) 2012-06-28 2021-10-12 Cilag Gmbh International Surgical stapling assembly comprising flexible output shaft
US11779420B2 (en) 2012-06-28 2023-10-10 Cilag Gmbh International Robotic surgical attachments having manually-actuated retraction assemblies
US10687812B2 (en) 2012-06-28 2020-06-23 Ethicon Llc Surgical instrument system including replaceable end effectors
US10485541B2 (en) 2012-06-28 2019-11-26 Ethicon Llc Robotically powered surgical device with manually-actuatable reversing system
US10932775B2 (en) 2012-06-28 2021-03-02 Ethicon Llc Firing system lockout arrangements for surgical instruments
US11109860B2 (en) 2012-06-28 2021-09-07 Cilag Gmbh International Surgical end effectors for use with hand-held and robotically-controlled rotary powered surgical systems
US11083457B2 (en) 2012-06-28 2021-08-10 Cilag Gmbh International Surgical instrument system including replaceable end effectors
US11197671B2 (en) 2012-06-28 2021-12-14 Cilag Gmbh International Stapling assembly comprising a lockout
US10383630B2 (en) 2012-06-28 2019-08-20 Ethicon Llc Surgical stapling device with rotary driven firing member
US11464513B2 (en) 2012-06-28 2022-10-11 Cilag Gmbh International Surgical instrument system including replaceable end effectors
US11058423B2 (en) 2012-06-28 2021-07-13 Cilag Gmbh International Stapling system including first and second closure systems for use with a surgical robot
US11918213B2 (en) 2012-06-28 2024-03-05 Cilag Gmbh International Surgical stapler including couplers for attaching a shaft to an end effector
US11510671B2 (en) 2012-06-28 2022-11-29 Cilag Gmbh International Firing system lockout arrangements for surgical instruments
US11602346B2 (en) 2012-06-28 2023-03-14 Cilag Gmbh International Robotically powered surgical device with manually-actuatable reversing system
US11534162B2 (en) 2012-06-28 2022-12-27 Cilag GmbH Inlernational Robotically powered surgical device with manually-actuatable reversing system
US11039837B2 (en) 2012-06-28 2021-06-22 Cilag Gmbh International Firing system lockout arrangements for surgical instruments
US11540829B2 (en) 2012-06-28 2023-01-03 Cilag Gmbh International Surgical instrument system including replaceable end effectors
US10413294B2 (en) 2012-06-28 2019-09-17 Ethicon Llc Shaft assembly arrangements for surgical instruments
US11007004B2 (en) 2012-06-28 2021-05-18 Ethicon Llc Powered multi-axial articulable electrosurgical device with external dissection features
US10420555B2 (en) 2012-06-28 2019-09-24 Ethicon Llc Hand held rotary powered surgical instruments with end effectors that are articulatable about multiple axes
US11373755B2 (en) 2012-08-23 2022-06-28 Cilag Gmbh International Surgical device drive system including a ratchet mechanism
US20140148872A1 (en) * 2012-11-26 2014-05-29 Isy Goldwasser Wearable transdermal electrical stimulation devices and methods of using them
US8903494B2 (en) * 2012-11-26 2014-12-02 Thync, Inc. Wearable transdermal electrical stimulation devices and methods of using them
US10575868B2 (en) 2013-03-01 2020-03-03 Ethicon Llc Surgical instrument with coupler assembly
US10226249B2 (en) 2013-03-01 2019-03-12 Ethicon Llc Articulatable surgical instruments with conductive pathways for signal communication
US10285695B2 (en) 2013-03-01 2019-05-14 Ethicon Llc Articulatable surgical instruments with conductive pathways
US11246618B2 (en) 2013-03-01 2022-02-15 Cilag Gmbh International Surgical instrument soft stop
US11529138B2 (en) 2013-03-01 2022-12-20 Cilag Gmbh International Powered surgical instrument including a rotary drive screw
US10617416B2 (en) 2013-03-14 2020-04-14 Ethicon Llc Control systems for surgical instruments
US10470762B2 (en) 2013-03-14 2019-11-12 Ethicon Llc Multi-function motor for a surgical instrument
US10893867B2 (en) 2013-03-14 2021-01-19 Ethicon Llc Drive train control arrangements for modular surgical instruments
US11266406B2 (en) 2013-03-14 2022-03-08 Cilag Gmbh International Control systems for surgical instruments
US10238391B2 (en) 2013-03-14 2019-03-26 Ethicon Llc Drive train control arrangements for modular surgical instruments
US11338144B2 (en) 2013-03-15 2022-05-24 Alfred E. Mann Foundation For Scientific Research Current sensing multiple output current stimulators
US11395652B2 (en) 2013-04-16 2022-07-26 Cilag Gmbh International Powered surgical stapler
US11638581B2 (en) 2013-04-16 2023-05-02 Cilag Gmbh International Powered surgical stapler
US11406381B2 (en) 2013-04-16 2022-08-09 Cilag Gmbh International Powered surgical stapler
US10405857B2 (en) 2013-04-16 2019-09-10 Ethicon Llc Powered linear surgical stapler
US10149680B2 (en) 2013-04-16 2018-12-11 Ethicon Llc Surgical instrument comprising a gap setting system
US10702266B2 (en) 2013-04-16 2020-07-07 Ethicon Llc Surgical instrument system
US10888318B2 (en) 2013-04-16 2021-01-12 Ethicon Llc Powered surgical stapler
US11622763B2 (en) 2013-04-16 2023-04-11 Cilag Gmbh International Stapling assembly comprising a shiftable drive
US11690615B2 (en) 2013-04-16 2023-07-04 Cilag Gmbh International Surgical system including an electric motor and a surgical instrument
US11564679B2 (en) 2013-04-16 2023-01-31 Cilag Gmbh International Powered surgical stapler
US11633183B2 (en) 2013-04-16 2023-04-25 Cilag International GmbH Stapling assembly comprising a retraction drive
US10016600B2 (en) 2013-05-30 2018-07-10 Neurostim Solutions, Llc Topical neurological stimulation
US11229789B2 (en) 2013-05-30 2022-01-25 Neurostim Oab, Inc. Neuro activator with controller
US10918853B2 (en) 2013-05-30 2021-02-16 Neurostim Solutions, Llc Topical neurological stimulation
US10307591B2 (en) 2013-05-30 2019-06-04 Neurostim Solutions, Llc Topical neurological stimulation
US10946185B2 (en) 2013-05-30 2021-03-16 Neurostim Solutions, Llc Topical neurological stimulation
US11291828B2 (en) 2013-05-30 2022-04-05 Neurostim Solutions LLC Topical neurological stimulation
US10971950B2 (en) 2013-07-29 2021-04-06 The Alfred E. Mann Foundation For Scientific Research Microprocessor controlled class E driver
US11722007B2 (en) 2013-07-29 2023-08-08 The Alfred E. Mann Foundation For Scientific Rsrch Microprocessor controlled class E driver
US10828032B2 (en) 2013-08-23 2020-11-10 Ethicon Llc End effector detection systems for surgical instruments
US11504119B2 (en) 2013-08-23 2022-11-22 Cilag Gmbh International Surgical instrument including an electronic firing lockout
US10869665B2 (en) 2013-08-23 2020-12-22 Ethicon Llc Surgical instrument system including a control system
US10201349B2 (en) 2013-08-23 2019-02-12 Ethicon Llc End effector detection and firing rate modulation systems for surgical instruments
US10624634B2 (en) 2013-08-23 2020-04-21 Ethicon Llc Firing trigger lockout arrangements for surgical instruments
US11000274B2 (en) 2013-08-23 2021-05-11 Ethicon Llc Powered surgical instrument
US10441281B2 (en) 2013-08-23 2019-10-15 Ethicon Llc surgical instrument including securing and aligning features
US11109858B2 (en) 2013-08-23 2021-09-07 Cilag Gmbh International Surgical instrument including a display which displays the position of a firing element
US11134940B2 (en) 2013-08-23 2021-10-05 Cilag Gmbh International Surgical instrument including a variable speed firing member
US10898190B2 (en) 2013-08-23 2021-01-26 Ethicon Llc Secondary battery arrangements for powered surgical instruments
US11376001B2 (en) 2013-08-23 2022-07-05 Cilag Gmbh International Surgical stapling device with rotary multi-turn retraction mechanism
US11389160B2 (en) 2013-08-23 2022-07-19 Cilag Gmbh International Surgical system comprising a display
US11133106B2 (en) 2013-08-23 2021-09-28 Cilag Gmbh International Surgical instrument assembly comprising a retraction assembly
US11918209B2 (en) 2013-08-23 2024-03-05 Cilag Gmbh International Torque optimization for surgical instruments
US11701110B2 (en) 2013-08-23 2023-07-18 Cilag Gmbh International Surgical instrument including a drive assembly movable in a non-motorized mode of operation
US11026680B2 (en) 2013-08-23 2021-06-08 Cilag Gmbh International Surgical instrument configured to operate in different states
US11020115B2 (en) 2014-02-12 2021-06-01 Cilag Gmbh International Deliverable surgical instrument
US10426481B2 (en) 2014-02-24 2019-10-01 Ethicon Llc Implantable layer assemblies
US10850098B2 (en) 2014-03-24 2020-12-01 Bioness Inc. Systems and apparatus for gait modulation and methods of use
US11691009B2 (en) 2014-03-24 2023-07-04 Bioness Inc. Systems and apparatus for gait modulation and methods of use
US10086196B2 (en) 2014-03-24 2018-10-02 Bioness Inc. Systems and apparatus for gait modulation and methods of use
US9867985B2 (en) 2014-03-24 2018-01-16 Bioness Inc. Systems and apparatus for gait modulation and methods of use
US10201364B2 (en) 2014-03-26 2019-02-12 Ethicon Llc Surgical instrument comprising a rotatable shaft
US10588626B2 (en) 2014-03-26 2020-03-17 Ethicon Llc Surgical instrument displaying subsequent step of use
US11497488B2 (en) 2014-03-26 2022-11-15 Cilag Gmbh International Systems and methods for controlling a segmented circuit
US10898185B2 (en) 2014-03-26 2021-01-26 Ethicon Llc Surgical instrument power management through sleep and wake up control
US10863981B2 (en) 2014-03-26 2020-12-15 Ethicon Llc Interface systems for use with surgical instruments
US11259799B2 (en) 2014-03-26 2022-03-01 Cilag Gmbh International Interface systems for use with surgical instruments
US11382625B2 (en) 2014-04-16 2022-07-12 Cilag Gmbh International Fastener cartridge comprising non-uniform fasteners
US11382627B2 (en) 2014-04-16 2022-07-12 Cilag Gmbh International Surgical stapling assembly comprising a firing member including a lateral extension
US10470768B2 (en) 2014-04-16 2019-11-12 Ethicon Llc Fastener cartridge including a layer attached thereto
US11185330B2 (en) 2014-04-16 2021-11-30 Cilag Gmbh International Fastener cartridge assemblies and staple retainer cover arrangements
US10542988B2 (en) 2014-04-16 2020-01-28 Ethicon Llc End effector comprising an anvil including projections extending therefrom
US11717294B2 (en) 2014-04-16 2023-08-08 Cilag Gmbh International End effector arrangements comprising indicators
US11298134B2 (en) 2014-04-16 2022-04-12 Cilag Gmbh International Fastener cartridge comprising non-uniform fasteners
US10327776B2 (en) 2014-04-16 2019-06-25 Ethicon Llc Surgical stapling buttresses and adjunct materials
US11517315B2 (en) 2014-04-16 2022-12-06 Cilag Gmbh International Fastener cartridges including extensions having different configurations
US11596406B2 (en) 2014-04-16 2023-03-07 Cilag Gmbh International Fastener cartridges including extensions having different configurations
US11918222B2 (en) 2014-04-16 2024-03-05 Cilag Gmbh International Stapling assembly having firing member viewing windows
US11883026B2 (en) 2014-04-16 2024-01-30 Cilag Gmbh International Fastener cartridge assemblies and staple retainer cover arrangements
US11944307B2 (en) 2014-04-16 2024-04-02 Cilag Gmbh International Surgical stapling system including jaw windows
US10561422B2 (en) 2014-04-16 2020-02-18 Ethicon Llc Fastener cartridge comprising deployable tissue engaging members
US10299792B2 (en) 2014-04-16 2019-05-28 Ethicon Llc Fastener cartridge comprising non-uniform fasteners
US11266409B2 (en) 2014-04-16 2022-03-08 Cilag Gmbh International Fastener cartridge comprising a sled including longitudinally-staggered ramps
US11925353B2 (en) 2014-04-16 2024-03-12 Cilag Gmbh International Surgical stapling instrument comprising internal passage between stapling cartridge and elongate channel
WO2015199327A1 (en) * 2014-06-25 2015-12-30 M.I.Tech Co., Ltd. Transcutaneous electrical nerve stimulation (tens) apparatus
KR101669181B1 (en) * 2014-06-25 2016-10-25 주식회사 엠아이텍 Transcutaneous Electrical Nerve Stimulation(TENS) apparatus
US11213675B2 (en) 2014-08-15 2022-01-04 Axonics, Inc. Implantable lead affixation structure for nerve stimulation to alleviate bladder dysfunction and other indication
US11116985B2 (en) 2014-08-15 2021-09-14 Axonics, Inc. Clinician programmer for use with an implantable neurostimulation lead
US11730411B2 (en) 2014-08-15 2023-08-22 Axonics, Inc. Methods for determining neurostimulation electrode configurations based on neural localization
US11389659B2 (en) 2014-08-15 2022-07-19 Axonics, Inc. External pulse generator device and associated methods for trial nerve stimulation
US11497916B2 (en) 2014-08-15 2022-11-15 Axonics, Inc. Electromyographic lead positioning and stimulation titration in a nerve stimulation system for treatment of overactive bladder
US11071545B2 (en) 2014-09-05 2021-07-27 Cilag Gmbh International Smart cartridge wake up operation and data retention
US11389162B2 (en) 2014-09-05 2022-07-19 Cilag Gmbh International Smart cartridge wake up operation and data retention
US10905423B2 (en) 2014-09-05 2021-02-02 Ethicon Llc Smart cartridge wake up operation and data retention
US11653918B2 (en) 2014-09-05 2023-05-23 Cilag Gmbh International Local display of tissue parameter stabilization
US11311294B2 (en) 2014-09-05 2022-04-26 Cilag Gmbh International Powered medical device including measurement of closure state of jaws
US11406386B2 (en) 2014-09-05 2022-08-09 Cilag Gmbh International End effector including magnetic and impedance sensors
US11076854B2 (en) 2014-09-05 2021-08-03 Cilag Gmbh International Smart cartridge wake up operation and data retention
US11717297B2 (en) 2014-09-05 2023-08-08 Cilag Gmbh International Smart cartridge wake up operation and data retention
US11284898B2 (en) 2014-09-18 2022-03-29 Cilag Gmbh International Surgical instrument including a deployable knife
US10327764B2 (en) 2014-09-26 2019-06-25 Ethicon Llc Method for creating a flexible staple line
US10206677B2 (en) 2014-09-26 2019-02-19 Ethicon Llc Surgical staple and driver arrangements for staple cartridges
US10426476B2 (en) 2014-09-26 2019-10-01 Ethicon Llc Circular fastener cartridges for applying radially expandable fastener lines
US10426477B2 (en) 2014-09-26 2019-10-01 Ethicon Llc Staple cartridge assembly including a ramp
US10751053B2 (en) 2014-09-26 2020-08-25 Ethicon Llc Fastener cartridges for applying expandable fastener lines
US11202633B2 (en) 2014-09-26 2021-12-21 Cilag Gmbh International Surgical stapling buttresses and adjunct materials
US11523821B2 (en) 2014-09-26 2022-12-13 Cilag Gmbh International Method for creating a flexible staple line
US10736630B2 (en) 2014-10-13 2020-08-11 Ethicon Llc Staple cartridge
US11701114B2 (en) 2014-10-16 2023-07-18 Cilag Gmbh International Staple cartridge
US11931031B2 (en) 2014-10-16 2024-03-19 Cilag Gmbh International Staple cartridge comprising a deck including an upper surface and a lower surface
US10905418B2 (en) 2014-10-16 2021-02-02 Ethicon Llc Staple cartridge comprising a tissue thickness compensator
US11918210B2 (en) 2014-10-16 2024-03-05 Cilag Gmbh International Staple cartridge comprising a cartridge body including a plurality of wells
US11185325B2 (en) 2014-10-16 2021-11-30 Cilag Gmbh International End effector including different tissue gaps
US11141153B2 (en) 2014-10-29 2021-10-12 Cilag Gmbh International Staple cartridges comprising driver arrangements
US10517594B2 (en) 2014-10-29 2019-12-31 Ethicon Llc Cartridge assemblies for surgical staplers
US11241229B2 (en) 2014-10-29 2022-02-08 Cilag Gmbh International Staple cartridges comprising driver arrangements
US11931038B2 (en) 2014-10-29 2024-03-19 Cilag Gmbh International Cartridge assemblies for surgical staplers
US11457918B2 (en) 2014-10-29 2022-10-04 Cilag Gmbh International Cartridge assemblies for surgical staplers
US11864760B2 (en) 2014-10-29 2024-01-09 Cilag Gmbh International Staple cartridges comprising driver arrangements
US11337698B2 (en) 2014-11-06 2022-05-24 Cilag Gmbh International Staple cartridge comprising a releasable adjunct material
US10617417B2 (en) 2014-11-06 2020-04-14 Ethicon Llc Staple cartridge comprising a releasable adjunct material
US11382628B2 (en) 2014-12-10 2022-07-12 Cilag Gmbh International Articulatable surgical instrument system
US10736636B2 (en) 2014-12-10 2020-08-11 Ethicon Llc Articulatable surgical instrument system
US11571207B2 (en) 2014-12-18 2023-02-07 Cilag Gmbh International Surgical system including lateral supports for a flexible drive member
US11083453B2 (en) 2014-12-18 2021-08-10 Cilag Gmbh International Surgical stapling system including a flexible firing actuator and lateral buckling supports
US11547404B2 (en) 2014-12-18 2023-01-10 Cilag Gmbh International Surgical instrument assembly comprising a flexible articulation system
US10806448B2 (en) 2014-12-18 2020-10-20 Ethicon Llc Surgical instrument assembly comprising a flexible articulation system
US10188385B2 (en) 2014-12-18 2019-01-29 Ethicon Llc Surgical instrument system comprising lockable systems
US11517311B2 (en) 2014-12-18 2022-12-06 Cilag Gmbh International Surgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member
US10695058B2 (en) 2014-12-18 2020-06-30 Ethicon Llc Surgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member
US11812958B2 (en) 2014-12-18 2023-11-14 Cilag Gmbh International Locking arrangements for detachable shaft assemblies with articulatable surgical end effectors
US11678877B2 (en) 2014-12-18 2023-06-20 Cilag Gmbh International Surgical instrument including a flexible support configured to support a flexible firing member
US10945728B2 (en) 2014-12-18 2021-03-16 Ethicon Llc Locking arrangements for detachable shaft assemblies with articulatable surgical end effectors
US11399831B2 (en) 2014-12-18 2022-08-02 Cilag Gmbh International Drive arrangements for articulatable surgical instruments
US11547403B2 (en) 2014-12-18 2023-01-10 Cilag Gmbh International Surgical instrument having a laminate firing actuator and lateral buckling supports
US10743873B2 (en) 2014-12-18 2020-08-18 Ethicon Llc Drive arrangements for articulatable surgical instruments
US11553911B2 (en) 2014-12-18 2023-01-17 Cilag Gmbh International Surgical instrument assembly comprising a flexible articulation system
US10245027B2 (en) 2014-12-18 2019-04-02 Ethicon Llc Surgical instrument with an anvil that is selectively movable about a discrete non-movable axis relative to a staple cartridge
US11123569B2 (en) 2015-01-09 2021-09-21 Axonics, Inc. Patient remote and associated methods of use with a nerve stimulation system
US11478648B2 (en) 2015-01-09 2022-10-25 Axonics, Inc. Antenna and methods of use for an implantable nerve stimulator
US11484723B2 (en) 2015-01-09 2022-11-01 Axonics, Inc. Attachment devices and associated methods of use with a nerve stimulation charging device
US11077301B2 (en) 2015-02-21 2021-08-03 NeurostimOAB, Inc. Topical nerve stimulator and sensor for bladder control
US10180463B2 (en) 2015-02-27 2019-01-15 Ethicon Llc Surgical apparatus configured to assess whether a performance parameter of the surgical apparatus is within an acceptable performance band
US10182816B2 (en) 2015-02-27 2019-01-22 Ethicon Llc Charging system that enables emergency resolutions for charging a battery
US11744588B2 (en) 2015-02-27 2023-09-05 Cilag Gmbh International Surgical stapling instrument including a removably attachable battery pack
US10245028B2 (en) 2015-02-27 2019-04-02 Ethicon Llc Power adapter for a surgical instrument
US10159483B2 (en) 2015-02-27 2018-12-25 Ethicon Llc Surgical apparatus configured to track an end-of-life parameter
US11324506B2 (en) 2015-02-27 2022-05-10 Cilag Gmbh International Modular stapling assembly
US11154301B2 (en) 2015-02-27 2021-10-26 Cilag Gmbh International Modular stapling assembly
US10245033B2 (en) 2015-03-06 2019-04-02 Ethicon Llc Surgical instrument comprising a lockable battery housing
US10524787B2 (en) 2015-03-06 2020-01-07 Ethicon Llc Powered surgical instrument with parameter-based firing rate
US10772625B2 (en) 2015-03-06 2020-09-15 Ethicon Llc Signal and power communication system positioned on a rotatable shaft
US10617412B2 (en) 2015-03-06 2020-04-14 Ethicon Llc System for detecting the mis-insertion of a staple cartridge into a surgical stapler
US11426160B2 (en) 2015-03-06 2022-08-30 Cilag Gmbh International Smart sensors with local signal processing
US10729432B2 (en) 2015-03-06 2020-08-04 Ethicon Llc Methods for operating a powered surgical instrument
US11944338B2 (en) 2015-03-06 2024-04-02 Cilag Gmbh International Multiple level thresholds to modify operation of powered surgical instruments
US10548504B2 (en) 2015-03-06 2020-02-04 Ethicon Llc Overlaid multi sensor radio frequency (RF) electrode system to measure tissue compression
US10687806B2 (en) 2015-03-06 2020-06-23 Ethicon Llc Adaptive tissue compression techniques to adjust closure rates for multiple tissue types
US10206605B2 (en) 2015-03-06 2019-02-19 Ethicon Llc Time dependent evaluation of sensor data to determine stability, creep, and viscoelastic elements of measures
US11109859B2 (en) 2015-03-06 2021-09-07 Cilag Gmbh International Surgical instrument comprising a lockable battery housing
US10441279B2 (en) 2015-03-06 2019-10-15 Ethicon Llc Multiple level thresholds to modify operation of powered surgical instruments
US11224423B2 (en) 2015-03-06 2022-01-18 Cilag Gmbh International Smart sensors with local signal processing
US11826132B2 (en) 2015-03-06 2023-11-28 Cilag Gmbh International Time dependent evaluation of sensor data to determine stability, creep, and viscoelastic elements of measures
US10966627B2 (en) 2015-03-06 2021-04-06 Ethicon Llc Time dependent evaluation of sensor data to determine stability, creep, and viscoelastic elements of measures
US10531887B2 (en) 2015-03-06 2020-01-14 Ethicon Llc Powered surgical instrument including speed display
US11350843B2 (en) 2015-03-06 2022-06-07 Cilag Gmbh International Time dependent evaluation of sensor data to determine stability, creep, and viscoelastic elements of measures
US10433844B2 (en) 2015-03-31 2019-10-08 Ethicon Llc Surgical instrument with selectively disengageable threaded drive systems
US11918212B2 (en) 2015-03-31 2024-03-05 Cilag Gmbh International Surgical instrument with selectively disengageable drive systems
US10213201B2 (en) 2015-03-31 2019-02-26 Ethicon Llc Stapling end effector configured to compensate for an uneven gap between a first jaw and a second jaw
US11766568B2 (en) 2015-07-10 2023-09-26 Axonics, Inc. Implantable nerve stimulator having internal electronics without ASIC and methods of use
US10850104B2 (en) 2015-07-10 2020-12-01 Axonics Modulation Technologies, Inc. Implantable nerve stimulator having internal electronics without ASIC and methods of use
US11058425B2 (en) 2015-08-17 2021-07-13 Ethicon Llc Implantable layers for a surgical instrument
US10835249B2 (en) 2015-08-17 2020-11-17 Ethicon Llc Implantable layers for a surgical instrument
US10617418B2 (en) 2015-08-17 2020-04-14 Ethicon Llc Implantable layers for a surgical instrument
US10238386B2 (en) 2015-09-23 2019-03-26 Ethicon Llc Surgical stapler having motor control based on an electrical parameter related to a motor current
US11849946B2 (en) 2015-09-23 2023-12-26 Cilag Gmbh International Surgical stapler having downstream current-based motor control
US10327769B2 (en) 2015-09-23 2019-06-25 Ethicon Llc Surgical stapler having motor control based on a drive system component
US11344299B2 (en) 2015-09-23 2022-05-31 Cilag Gmbh International Surgical stapler having downstream current-based motor control
US10363036B2 (en) 2015-09-23 2019-07-30 Ethicon Llc Surgical stapler having force-based motor control
US10863986B2 (en) 2015-09-23 2020-12-15 Ethicon Llc Surgical stapler having downstream current-based motor control
US11490889B2 (en) 2015-09-23 2022-11-08 Cilag Gmbh International Surgical stapler having motor control based on an electrical parameter related to a motor current
US11026678B2 (en) 2015-09-23 2021-06-08 Cilag Gmbh International Surgical stapler having motor control based on an electrical parameter related to a motor current
US11076929B2 (en) 2015-09-25 2021-08-03 Cilag Gmbh International Implantable adjunct systems for determining adjunct skew
US10299878B2 (en) 2015-09-25 2019-05-28 Ethicon Llc Implantable adjunct systems for determining adjunct skew
US10932779B2 (en) 2015-09-30 2021-03-02 Ethicon Llc Compressible adjunct with crossing spacer fibers
US10285699B2 (en) 2015-09-30 2019-05-14 Ethicon Llc Compressible adjunct
US11944308B2 (en) 2015-09-30 2024-04-02 Cilag Gmbh International Compressible adjunct with crossing spacer fibers
US10271849B2 (en) 2015-09-30 2019-04-30 Ethicon Llc Woven constructs with interlocked standing fibers
US10561420B2 (en) 2015-09-30 2020-02-18 Ethicon Llc Tubular absorbable constructs
US11793522B2 (en) 2015-09-30 2023-10-24 Cilag Gmbh International Staple cartridge assembly including a compressible adjunct
US10524788B2 (en) 2015-09-30 2020-01-07 Ethicon Llc Compressible adjunct with attachment regions
US10307160B2 (en) 2015-09-30 2019-06-04 Ethicon Llc Compressible adjunct assemblies with attachment layers
US10736633B2 (en) 2015-09-30 2020-08-11 Ethicon Llc Compressible adjunct with looping members
US11712244B2 (en) 2015-09-30 2023-08-01 Cilag Gmbh International Implantable layer with spacer fibers
US10603039B2 (en) 2015-09-30 2020-03-31 Ethicon Llc Progressively releasable implantable adjunct for use with a surgical stapling instrument
US11690623B2 (en) 2015-09-30 2023-07-04 Cilag Gmbh International Method for applying an implantable layer to a fastener cartridge
US10327777B2 (en) 2015-09-30 2019-06-25 Ethicon Llc Implantable layer comprising plastically deformed fibers
US10980539B2 (en) 2015-09-30 2021-04-20 Ethicon Llc Implantable adjunct comprising bonded layers
US11890015B2 (en) 2015-09-30 2024-02-06 Cilag Gmbh International Compressible adjunct with crossing spacer fibers
US11903586B2 (en) 2015-09-30 2024-02-20 Cilag Gmbh International Compressible adjunct with crossing spacer fibers
US11553916B2 (en) 2015-09-30 2023-01-17 Cilag Gmbh International Compressible adjunct with crossing spacer fibers
US10172620B2 (en) 2015-09-30 2019-01-08 Ethicon Llc Compressible adjuncts with bonding nodes
US10478188B2 (en) 2015-09-30 2019-11-19 Ethicon Llc Implantable layer comprising a constricted configuration
US10433846B2 (en) 2015-09-30 2019-10-08 Ethicon Llc Compressible adjunct with crossing spacer fibers
US11083454B2 (en) 2015-12-30 2021-08-10 Cilag Gmbh International Mechanisms for compensating for drivetrain failure in powered surgical instruments
US11129613B2 (en) 2015-12-30 2021-09-28 Cilag Gmbh International Surgical instruments with separable motors and motor control circuits
US11759208B2 (en) 2015-12-30 2023-09-19 Cilag Gmbh International Mechanisms for compensating for battery pack failure in powered surgical instruments
US11484309B2 (en) 2015-12-30 2022-11-01 Cilag Gmbh International Surgical stapling system comprising a controller configured to cause a motor to reset a firing sequence
US10265068B2 (en) 2015-12-30 2019-04-23 Ethicon Llc Surgical instruments with separable motors and motor control circuits
US11058422B2 (en) 2015-12-30 2021-07-13 Cilag Gmbh International Mechanisms for compensating for battery pack failure in powered surgical instruments
US10368865B2 (en) 2015-12-30 2019-08-06 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10292704B2 (en) 2015-12-30 2019-05-21 Ethicon Llc Mechanisms for compensating for battery pack failure in powered surgical instruments
US11724106B2 (en) 2016-01-11 2023-08-15 Bioness Inc. Systems and apparatus for gait modulation and methods of use
US11077300B2 (en) 2016-01-11 2021-08-03 Bioness Inc. Systems and apparatus for gait modulation and methods of use
US11083903B2 (en) 2016-01-29 2021-08-10 Axonics, Inc. Methods and systems for frequency adjustment to optimize charging of implantable neurostimulator
US11602638B2 (en) 2016-01-29 2023-03-14 Axonics, Inc. Methods and systems for frequency adjustment to optimize charging of implantable neurostimulator
US10413291B2 (en) 2016-02-09 2019-09-17 Ethicon Llc Surgical instrument articulation mechanism with slotted secondary constraint
US11730471B2 (en) 2016-02-09 2023-08-22 Cilag Gmbh International Articulatable surgical instruments with single articulation link arrangements
US11213293B2 (en) 2016-02-09 2022-01-04 Cilag Gmbh International Articulatable surgical instruments with single articulation link arrangements
US10245030B2 (en) 2016-02-09 2019-04-02 Ethicon Llc Surgical instruments with tensioning arrangements for cable driven articulation systems
US10470764B2 (en) 2016-02-09 2019-11-12 Ethicon Llc Surgical instruments with closure stroke reduction arrangements
US10433837B2 (en) 2016-02-09 2019-10-08 Ethicon Llc Surgical instruments with multiple link articulation arrangements
US10588625B2 (en) 2016-02-09 2020-03-17 Ethicon Llc Articulatable surgical instruments with off-axis firing beam arrangements
US11523823B2 (en) 2016-02-09 2022-12-13 Cilag Gmbh International Surgical instruments with non-symmetrical articulation arrangements
US10245029B2 (en) 2016-02-09 2019-04-02 Ethicon Llc Surgical instrument with articulating and axially translatable end effector
US10653413B2 (en) 2016-02-09 2020-05-19 Ethicon Llc Surgical instruments with an end effector that is highly articulatable relative to an elongate shaft assembly
US11779336B2 (en) 2016-02-12 2023-10-10 Cilag Gmbh International Mechanisms for compensating for drivetrain failure in powered surgical instruments
US11826045B2 (en) 2016-02-12 2023-11-28 Cilag Gmbh International Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10258331B2 (en) 2016-02-12 2019-04-16 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US11344303B2 (en) 2016-02-12 2022-05-31 Cilag Gmbh International Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10448948B2 (en) 2016-02-12 2019-10-22 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US11260236B2 (en) 2016-02-12 2022-03-01 Axonics, Inc. External pulse generator device and affixation device for trial nerve stimulation and methods of use
US11224426B2 (en) 2016-02-12 2022-01-18 Cilag Gmbh International Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10420552B2 (en) 2016-04-01 2019-09-24 Ethicon Llc Surgical stapling system configured to provide selective cutting of tissue
US10271851B2 (en) 2016-04-01 2019-04-30 Ethicon Llc Modular surgical stapling system comprising a display
US11337694B2 (en) 2016-04-01 2022-05-24 Cilag Gmbh International Surgical cutting and stapling end effector with anvil concentric drive member
US10376263B2 (en) 2016-04-01 2019-08-13 Ethicon Llc Anvil modification members for surgical staplers
US10413293B2 (en) 2016-04-01 2019-09-17 Ethicon Llc Interchangeable surgical tool assembly with a surgical end effector that is selectively rotatable about a shaft axis
US10856867B2 (en) 2016-04-01 2020-12-08 Ethicon Llc Surgical stapling system comprising a tissue compression lockout
US10531874B2 (en) 2016-04-01 2020-01-14 Ethicon Llc Surgical cutting and stapling end effector with anvil concentric drive member
US10413297B2 (en) 2016-04-01 2019-09-17 Ethicon Llc Surgical stapling system configured to apply annular rows of staples having different heights
US11064997B2 (en) 2016-04-01 2021-07-20 Cilag Gmbh International Surgical stapling instrument
US10617413B2 (en) 2016-04-01 2020-04-14 Ethicon Llc Closure system arrangements for surgical cutting and stapling devices with separate and distinct firing shafts
US10314582B2 (en) 2016-04-01 2019-06-11 Ethicon Llc Surgical instrument comprising a shifting mechanism
US10433849B2 (en) 2016-04-01 2019-10-08 Ethicon Llc Surgical stapling system comprising a display including a re-orientable display field
US10456140B2 (en) 2016-04-01 2019-10-29 Ethicon Llc Surgical stapling system comprising an unclamping lockout
US10478190B2 (en) 2016-04-01 2019-11-19 Ethicon Llc Surgical stapling system comprising a spent cartridge lockout
US11766257B2 (en) 2016-04-01 2023-09-26 Cilag Gmbh International Surgical instrument comprising a display
US10485542B2 (en) 2016-04-01 2019-11-26 Ethicon Llc Surgical stapling instrument comprising multiple lockouts
US10568632B2 (en) 2016-04-01 2020-02-25 Ethicon Llc Surgical stapling system comprising a jaw closure lockout
US10542991B2 (en) 2016-04-01 2020-01-28 Ethicon Llc Surgical stapling system comprising a jaw attachment lockout
US10682136B2 (en) 2016-04-01 2020-06-16 Ethicon Llc Circular stapling system comprising load control
US10285705B2 (en) 2016-04-01 2019-05-14 Ethicon Llc Surgical stapling system comprising a grooved forming pocket
US11284890B2 (en) 2016-04-01 2022-03-29 Cilag Gmbh International Circular stapling system comprising an incisable tissue support
US11058421B2 (en) 2016-04-01 2021-07-13 Cilag Gmbh International Modular surgical stapling system comprising a display
US11045191B2 (en) 2016-04-01 2021-06-29 Cilag Gmbh International Method for operating a surgical stapling system
US10675021B2 (en) 2016-04-01 2020-06-09 Ethicon Llc Circular stapling system comprising rotary firing system
US10709446B2 (en) 2016-04-01 2020-07-14 Ethicon Llc Staple cartridges with atraumatic features
US10307159B2 (en) 2016-04-01 2019-06-04 Ethicon Llc Surgical instrument handle assembly with reconfigurable grip portion
US10342543B2 (en) 2016-04-01 2019-07-09 Ethicon Llc Surgical stapling system comprising a shiftable transmission
US10357246B2 (en) 2016-04-01 2019-07-23 Ethicon Llc Rotary powered surgical instrument with manually actuatable bailout system
US11931028B2 (en) 2016-04-15 2024-03-19 Cilag Gmbh International Surgical instrument with multiple program responses during a firing motion
US11051810B2 (en) 2016-04-15 2021-07-06 Cilag Gmbh International Modular surgical instrument with configurable operating mode
US11771454B2 (en) 2016-04-15 2023-10-03 Cilag Gmbh International Stapling assembly including a controller for monitoring a clamping laod
US10357247B2 (en) 2016-04-15 2019-07-23 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US10335145B2 (en) 2016-04-15 2019-07-02 Ethicon Llc Modular surgical instrument with configurable operating mode
US11607239B2 (en) 2016-04-15 2023-03-21 Cilag Gmbh International Systems and methods for controlling a surgical stapling and cutting instrument
US11311292B2 (en) 2016-04-15 2022-04-26 Cilag Gmbh International Surgical instrument with detection sensors
US11284891B2 (en) 2016-04-15 2022-03-29 Cilag Gmbh International Surgical instrument with multiple program responses during a firing motion
US10426467B2 (en) 2016-04-15 2019-10-01 Ethicon Llc Surgical instrument with detection sensors
US11191545B2 (en) 2016-04-15 2021-12-07 Cilag Gmbh International Staple formation detection mechanisms
US11317910B2 (en) 2016-04-15 2022-05-03 Cilag Gmbh International Surgical instrument with detection sensors
US11642125B2 (en) 2016-04-15 2023-05-09 Cilag Gmbh International Robotic surgical system including a user interface and a control circuit
US11350932B2 (en) 2016-04-15 2022-06-07 Cilag Gmbh International Surgical instrument with improved stop/start control during a firing motion
US11026684B2 (en) 2016-04-15 2021-06-08 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US11179150B2 (en) 2016-04-15 2021-11-23 Cilag Gmbh International Systems and methods for controlling a surgical stapling and cutting instrument
US10828028B2 (en) 2016-04-15 2020-11-10 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US11517306B2 (en) 2016-04-15 2022-12-06 Cilag Gmbh International Surgical instrument with detection sensors
US10456137B2 (en) 2016-04-15 2019-10-29 Ethicon Llc Staple formation detection mechanisms
US10492783B2 (en) 2016-04-15 2019-12-03 Ethicon, Llc Surgical instrument with improved stop/start control during a firing motion
US10405859B2 (en) 2016-04-15 2019-09-10 Ethicon Llc Surgical instrument with adjustable stop/start control during a firing motion
US11147554B2 (en) 2016-04-18 2021-10-19 Cilag Gmbh International Surgical instrument system comprising a magnetic lockout
US10478181B2 (en) 2016-04-18 2019-11-19 Ethicon Llc Cartridge lockout arrangements for rotary powered surgical cutting and stapling instruments
US11559303B2 (en) 2016-04-18 2023-01-24 Cilag Gmbh International Cartridge lockout arrangements for rotary powered surgical cutting and stapling instruments
US10433840B2 (en) 2016-04-18 2019-10-08 Ethicon Llc Surgical instrument comprising a replaceable cartridge jaw
US10426469B2 (en) 2016-04-18 2019-10-01 Ethicon Llc Surgical instrument comprising a primary firing lockout and a secondary firing lockout
US10368867B2 (en) 2016-04-18 2019-08-06 Ethicon Llc Surgical instrument comprising a lockout
US10363037B2 (en) 2016-04-18 2019-07-30 Ethicon Llc Surgical instrument system comprising a magnetic lockout
US11811253B2 (en) 2016-04-18 2023-11-07 Cilag Gmbh International Surgical robotic system with fault state detection configurations based on motor current draw
US11350928B2 (en) 2016-04-18 2022-06-07 Cilag Gmbh International Surgical instrument comprising a tissue thickness lockout and speed control system
US11317917B2 (en) 2016-04-18 2022-05-03 Cilag Gmbh International Surgical stapling system comprising a lockable firing assembly
US10893864B2 (en) 2016-12-21 2021-01-19 Ethicon Staple cartridges and arrangements of staples and staple cavities therein
US10617414B2 (en) 2016-12-21 2020-04-14 Ethicon Llc Closure member arrangements for surgical instruments
US10682138B2 (en) 2016-12-21 2020-06-16 Ethicon Llc Bilaterally asymmetric staple forming pocket pairs
US10687809B2 (en) 2016-12-21 2020-06-23 Ethicon Llc Surgical staple cartridge with movable camming member configured to disengage firing member lockout features
US11369376B2 (en) 2016-12-21 2022-06-28 Cilag Gmbh International Surgical stapling systems
US10568624B2 (en) 2016-12-21 2020-02-25 Ethicon Llc Surgical instruments with jaws that are pivotable about a fixed axis and include separate and distinct closure and firing systems
US10588632B2 (en) 2016-12-21 2020-03-17 Ethicon Llc Surgical end effectors and firing members thereof
US10675025B2 (en) 2016-12-21 2020-06-09 Ethicon Llc Shaft assembly comprising separately actuatable and retractable systems
US10588631B2 (en) 2016-12-21 2020-03-17 Ethicon Llc Surgical instruments with positive jaw opening features
US11096689B2 (en) 2016-12-21 2021-08-24 Cilag Gmbh International Shaft assembly comprising a lockout
US10675026B2 (en) 2016-12-21 2020-06-09 Ethicon Llc Methods of stapling tissue
US11766260B2 (en) 2016-12-21 2023-09-26 Cilag Gmbh International Methods of stapling tissue
US10667809B2 (en) 2016-12-21 2020-06-02 Ethicon Llc Staple cartridge and staple cartridge channel comprising windows defined therein
US10667810B2 (en) 2016-12-21 2020-06-02 Ethicon Llc Closure members with cam surface arrangements for surgical instruments with separate and distinct closure and firing systems
US10905422B2 (en) 2016-12-21 2021-02-02 Ethicon Llc Surgical instrument for use with a robotic surgical system
US10959727B2 (en) 2016-12-21 2021-03-30 Ethicon Llc Articulatable surgical end effector with asymmetric shaft arrangement
US11090048B2 (en) 2016-12-21 2021-08-17 Cilag Gmbh International Method for resetting a fuse of a surgical instrument shaft
US10492785B2 (en) 2016-12-21 2019-12-03 Ethicon Llc Shaft assembly comprising a lockout
US10695055B2 (en) 2016-12-21 2020-06-30 Ethicon Llc Firing assembly comprising a lockout
US10499914B2 (en) 2016-12-21 2019-12-10 Ethicon Llc Staple forming pocket arrangements
US10898186B2 (en) 2016-12-21 2021-01-26 Ethicon Llc Staple forming pocket arrangements comprising primary sidewalls and pocket sidewalls
US10582928B2 (en) 2016-12-21 2020-03-10 Ethicon Llc Articulation lock arrangements for locking an end effector in an articulated position in response to actuation of a jaw closure system
US11653917B2 (en) 2016-12-21 2023-05-23 Cilag Gmbh International Surgical stapling systems
US10568625B2 (en) 2016-12-21 2020-02-25 Ethicon Llc Staple cartridges and arrangements of staples and staple cavities therein
US11317913B2 (en) 2016-12-21 2022-05-03 Cilag Gmbh International Lockout arrangements for surgical end effectors and replaceable tool assemblies
US10667811B2 (en) 2016-12-21 2020-06-02 Ethicon Llc Surgical stapling instruments and staple-forming anvils
US11766259B2 (en) 2016-12-21 2023-09-26 Cilag Gmbh International Method of deforming staples from two different types of staple cartridges with the same surgical stapling instrument
US10918385B2 (en) 2016-12-21 2021-02-16 Ethicon Llc Surgical system comprising a firing member rotatable into an articulation state to articulate an end effector of the surgical system
US11419606B2 (en) 2016-12-21 2022-08-23 Cilag Gmbh International Shaft assembly comprising a clutch configured to adapt the output of a rotary firing member to two different systems
US10517596B2 (en) 2016-12-21 2019-12-31 Ethicon Llc Articulatable surgical instruments with articulation stroke amplification features
US10517595B2 (en) 2016-12-21 2019-12-31 Ethicon Llc Jaw actuated lock arrangements for preventing advancement of a firing member in a surgical end effector unless an unfired cartridge is installed in the end effector
US11134942B2 (en) 2016-12-21 2021-10-05 Cilag Gmbh International Surgical stapling instruments and staple-forming anvils
US10973516B2 (en) 2016-12-21 2021-04-13 Ethicon Llc Surgical end effectors and adaptable firing members therefor
US10980536B2 (en) 2016-12-21 2021-04-20 Ethicon Llc No-cartridge and spent cartridge lockout arrangements for surgical staplers
US10524789B2 (en) 2016-12-21 2020-01-07 Ethicon Llc Laterally actuatable articulation lock arrangements for locking an end effector of a surgical instrument in an articulated configuration
US10568626B2 (en) 2016-12-21 2020-02-25 Ethicon Llc Surgical instruments with jaw opening features for increasing a jaw opening distance
US11701115B2 (en) 2016-12-21 2023-07-18 Cilag Gmbh International Methods of stapling tissue
US10588630B2 (en) 2016-12-21 2020-03-17 Ethicon Llc Surgical tool assemblies with closure stroke reduction features
US11160553B2 (en) 2016-12-21 2021-11-02 Cilag Gmbh International Surgical stapling systems
US11160551B2 (en) 2016-12-21 2021-11-02 Cilag Gmbh International Articulatable surgical stapling instruments
US10888322B2 (en) 2016-12-21 2021-01-12 Ethicon Llc Surgical instrument comprising a cutting member
US11191539B2 (en) 2016-12-21 2021-12-07 Cilag Gmbh International Shaft assembly comprising a manually-operable retraction system for use with a motorized surgical instrument system
US10881401B2 (en) 2016-12-21 2021-01-05 Ethicon Llc Staple firing member comprising a missing cartridge and/or spent cartridge lockout
US10736629B2 (en) 2016-12-21 2020-08-11 Ethicon Llc Surgical tool assemblies with clutching arrangements for shifting between closure systems with closure stroke reduction features and articulation and firing systems
US10639034B2 (en) 2016-12-21 2020-05-05 Ethicon Llc Surgical instruments with lockout arrangements for preventing firing system actuation unless an unspent staple cartridge is present
US10542982B2 (en) 2016-12-21 2020-01-28 Ethicon Llc Shaft assembly comprising first and second articulation lockouts
US10856868B2 (en) 2016-12-21 2020-12-08 Ethicon Llc Firing member pin configurations
US10835247B2 (en) 2016-12-21 2020-11-17 Ethicon Llc Lockout arrangements for surgical end effectors
US10639035B2 (en) 2016-12-21 2020-05-05 Ethicon Llc Surgical stapling instruments and replaceable tool assemblies thereof
US11571210B2 (en) 2016-12-21 2023-02-07 Cilag Gmbh International Firing assembly comprising a multiple failed-state fuse
US10448950B2 (en) 2016-12-21 2019-10-22 Ethicon Llc Surgical staplers with independently actuatable closing and firing systems
US11350934B2 (en) 2016-12-21 2022-06-07 Cilag Gmbh International Staple forming pocket arrangement to accommodate different types of staples
US10624635B2 (en) 2016-12-21 2020-04-21 Ethicon Llc Firing members with non-parallel jaw engagement features for surgical end effectors
US11564688B2 (en) 2016-12-21 2023-01-31 Cilag Gmbh International Robotic surgical tool having a retraction mechanism
US10835245B2 (en) 2016-12-21 2020-11-17 Ethicon Llc Method for attaching a shaft assembly to a surgical instrument and, alternatively, to a surgical robot
US10426471B2 (en) 2016-12-21 2019-10-01 Ethicon Llc Surgical instrument with multiple failure response modes
US10813638B2 (en) 2016-12-21 2020-10-27 Ethicon Llc Surgical end effectors with expandable tissue stop arrangements
US10485543B2 (en) 2016-12-21 2019-11-26 Ethicon Llc Anvil having a knife slot width
US11179155B2 (en) 2016-12-21 2021-11-23 Cilag Gmbh International Anvil arrangements for surgical staplers
US10603036B2 (en) 2016-12-21 2020-03-31 Ethicon Llc Articulatable surgical instrument with independent pivotable linkage distal of an articulation lock
US11350935B2 (en) 2016-12-21 2022-06-07 Cilag Gmbh International Surgical tool assemblies with closure stroke reduction features
US11224428B2 (en) 2016-12-21 2022-01-18 Cilag Gmbh International Surgical stapling systems
US10537325B2 (en) 2016-12-21 2020-01-21 Ethicon Llc Staple forming pocket arrangement to accommodate different types of staples
US11497499B2 (en) 2016-12-21 2022-11-15 Cilag Gmbh International Articulatable surgical stapling instruments
US10610224B2 (en) 2016-12-21 2020-04-07 Ethicon Llc Lockout arrangements for surgical end effectors and replaceable tool assemblies
US10758230B2 (en) 2016-12-21 2020-09-01 Ethicon Llc Surgical instrument with primary and safety processors
US11918215B2 (en) 2016-12-21 2024-03-05 Cilag Gmbh International Staple cartridge with array of staple pockets
US11931034B2 (en) 2016-12-21 2024-03-19 Cilag Gmbh International Surgical stapling instruments with smart staple cartridges
US10779823B2 (en) 2016-12-21 2020-09-22 Ethicon Llc Firing member pin angle
US11849948B2 (en) 2016-12-21 2023-12-26 Cilag Gmbh International Method for resetting a fuse of a surgical instrument shaft
US11191543B2 (en) 2016-12-21 2021-12-07 Cilag Gmbh International Assembly comprising a lock
US10758229B2 (en) 2016-12-21 2020-09-01 Ethicon Llc Surgical instrument comprising improved jaw control
US11191540B2 (en) 2016-12-21 2021-12-07 Cilag Gmbh International Protective cover arrangements for a joint interface between a movable jaw and actuator shaft of a surgical instrument
US10980537B2 (en) 2017-06-20 2021-04-20 Ethicon Llc Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified number of shaft rotations
US10646220B2 (en) 2017-06-20 2020-05-12 Ethicon Llc Systems and methods for controlling displacement member velocity for a surgical instrument
US10624633B2 (en) 2017-06-20 2020-04-21 Ethicon Llc Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument
US11517325B2 (en) 2017-06-20 2022-12-06 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured displacement distance traveled over a specified time interval
USD879808S1 (en) 2017-06-20 2020-03-31 Ethicon Llc Display panel with graphical user interface
US11071554B2 (en) 2017-06-20 2021-07-27 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on magnitude of velocity error measurements
US10327767B2 (en) 2017-06-20 2019-06-25 Ethicon Llc Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation
US10307170B2 (en) 2017-06-20 2019-06-04 Ethicon Llc Method for closed loop control of motor velocity of a surgical stapling and cutting instrument
US11793513B2 (en) 2017-06-20 2023-10-24 Cilag Gmbh International Systems and methods for controlling motor speed according to user input for a surgical instrument
US10813639B2 (en) 2017-06-20 2020-10-27 Ethicon Llc Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on system conditions
US11090046B2 (en) 2017-06-20 2021-08-17 Cilag Gmbh International Systems and methods for controlling displacement member motion of a surgical stapling and cutting instrument
US11382638B2 (en) 2017-06-20 2022-07-12 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified displacement distance
US10390841B2 (en) 2017-06-20 2019-08-27 Ethicon Llc Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation
US11213302B2 (en) 2017-06-20 2022-01-04 Cilag Gmbh International Method for closed loop control of motor velocity of a surgical stapling and cutting instrument
US11672532B2 (en) 2017-06-20 2023-06-13 Cilag Gmbh International Techniques for adaptive control of motor velocity of a surgical stapling and cutting instrument
US10779820B2 (en) 2017-06-20 2020-09-22 Ethicon Llc Systems and methods for controlling motor speed according to user input for a surgical instrument
USD879809S1 (en) 2017-06-20 2020-03-31 Ethicon Llc Display panel with changeable graphical user interface
US10888321B2 (en) 2017-06-20 2021-01-12 Ethicon Llc Systems and methods for controlling velocity of a displacement member of a surgical stapling and cutting instrument
US11653914B2 (en) 2017-06-20 2023-05-23 Cilag Gmbh International Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument according to articulation angle of end effector
US10595882B2 (en) 2017-06-20 2020-03-24 Ethicon Llc Methods for closed loop control of motor velocity of a surgical stapling and cutting instrument
USD890784S1 (en) 2017-06-20 2020-07-21 Ethicon Llc Display panel with changeable graphical user interface
US10368864B2 (en) 2017-06-20 2019-08-06 Ethicon Llc Systems and methods for controlling displaying motor velocity for a surgical instrument
US10881396B2 (en) 2017-06-20 2021-01-05 Ethicon Llc Surgical instrument with variable duration trigger arrangement
US10881399B2 (en) 2017-06-20 2021-01-05 Ethicon Llc Techniques for adaptive control of motor velocity of a surgical stapling and cutting instrument
US11871939B2 (en) 2017-06-20 2024-01-16 Cilag Gmbh International Method for closed loop control of motor velocity of a surgical stapling and cutting instrument
US11266405B2 (en) 2017-06-27 2022-03-08 Cilag Gmbh International Surgical anvil manufacturing methods
US11141154B2 (en) 2017-06-27 2021-10-12 Cilag Gmbh International Surgical end effectors and anvils
US11090049B2 (en) 2017-06-27 2021-08-17 Cilag Gmbh International Staple forming pocket arrangements
US10856869B2 (en) 2017-06-27 2020-12-08 Ethicon Llc Surgical anvil arrangements
US11766258B2 (en) 2017-06-27 2023-09-26 Cilag Gmbh International Surgical anvil arrangements
US11324503B2 (en) 2017-06-27 2022-05-10 Cilag Gmbh International Surgical firing member arrangements
US10993716B2 (en) 2017-06-27 2021-05-04 Ethicon Llc Surgical anvil arrangements
US10631859B2 (en) 2017-06-27 2020-04-28 Ethicon Llc Articulation systems for surgical instruments
US10772629B2 (en) 2017-06-27 2020-09-15 Ethicon Llc Surgical anvil arrangements
USD906355S1 (en) 2017-06-28 2020-12-29 Ethicon Llc Display screen or portion thereof with a graphical user interface for a surgical instrument
US10758232B2 (en) 2017-06-28 2020-09-01 Ethicon Llc Surgical instrument with positive jaw opening features
US11000279B2 (en) 2017-06-28 2021-05-11 Ethicon Llc Surgical instrument comprising an articulation system ratio
USD851762S1 (en) 2017-06-28 2019-06-18 Ethicon Llc Anvil
US11478242B2 (en) 2017-06-28 2022-10-25 Cilag Gmbh International Jaw retainer arrangement for retaining a pivotable surgical instrument jaw in pivotable retaining engagement with a second surgical instrument jaw
US10779824B2 (en) 2017-06-28 2020-09-22 Ethicon Llc Surgical instrument comprising an articulation system lockable by a closure system
US10695057B2 (en) 2017-06-28 2020-06-30 Ethicon Llc Surgical instrument lockout arrangement
US11564686B2 (en) 2017-06-28 2023-01-31 Cilag Gmbh International Surgical shaft assemblies with flexible interfaces
USD869655S1 (en) 2017-06-28 2019-12-10 Ethicon Llc Surgical fastener cartridge
US10716614B2 (en) 2017-06-28 2020-07-21 Ethicon Llc Surgical shaft assemblies with slip ring assemblies with increased contact pressure
US11696759B2 (en) 2017-06-28 2023-07-11 Cilag Gmbh International Surgical stapling instruments comprising shortened staple cartridge noses
USD1018577S1 (en) 2017-06-28 2024-03-19 Cilag Gmbh International Display screen or portion thereof with a graphical user interface for a surgical instrument
US11484310B2 (en) 2017-06-28 2022-11-01 Cilag Gmbh International Surgical instrument comprising a shaft including a closure tube profile
US11529140B2 (en) 2017-06-28 2022-12-20 Cilag Gmbh International Surgical instrument lockout arrangement
US10588633B2 (en) 2017-06-28 2020-03-17 Ethicon Llc Surgical instruments with open and closable jaws and axially movable firing member that is initially parked in close proximity to the jaws prior to firing
US10903685B2 (en) 2017-06-28 2021-01-26 Ethicon Llc Surgical shaft assemblies with slip ring assemblies forming capacitive channels
US11389161B2 (en) 2017-06-28 2022-07-19 Cilag Gmbh International Surgical instrument comprising selectively actuatable rotatable couplers
US11678880B2 (en) 2017-06-28 2023-06-20 Cilag Gmbh International Surgical instrument comprising a shaft including a housing arrangement
US11083455B2 (en) 2017-06-28 2021-08-10 Cilag Gmbh International Surgical instrument comprising an articulation system ratio
USD854151S1 (en) 2017-06-28 2019-07-16 Ethicon Llc Surgical instrument shaft
US10639037B2 (en) 2017-06-28 2020-05-05 Ethicon Llc Surgical instrument with axially movable closure member
US11058424B2 (en) 2017-06-28 2021-07-13 Cilag Gmbh International Surgical instrument comprising an offset articulation joint
US11826048B2 (en) 2017-06-28 2023-11-28 Cilag Gmbh International Surgical instrument comprising selectively actuatable rotatable couplers
US11259805B2 (en) 2017-06-28 2022-03-01 Cilag Gmbh International Surgical instrument comprising firing member supports
US11246592B2 (en) 2017-06-28 2022-02-15 Cilag Gmbh International Surgical instrument comprising an articulation system lockable to a frame
US10211586B2 (en) 2017-06-28 2019-02-19 Ethicon Llc Surgical shaft assemblies with watertight housings
US10786253B2 (en) 2017-06-28 2020-09-29 Ethicon Llc Surgical end effectors with improved jaw aperture arrangements
US10765427B2 (en) 2017-06-28 2020-09-08 Ethicon Llc Method for articulating a surgical instrument
US11020114B2 (en) 2017-06-28 2021-06-01 Cilag Gmbh International Surgical instruments with articulatable end effector with axially shortened articulation joint configurations
US11642128B2 (en) 2017-06-28 2023-05-09 Cilag Gmbh International Method for articulating a surgical instrument
US10898183B2 (en) 2017-06-29 2021-01-26 Ethicon Llc Robotic surgical instrument with closed loop feedback techniques for advancement of closure member during firing
US11007022B2 (en) 2017-06-29 2021-05-18 Ethicon Llc Closed loop velocity control techniques based on sensed tissue parameters for robotic surgical instrument
US10398434B2 (en) 2017-06-29 2019-09-03 Ethicon Llc Closed loop velocity control of closure member for robotic surgical instrument
US10932772B2 (en) 2017-06-29 2021-03-02 Ethicon Llc Methods for closed loop velocity control for robotic surgical instrument
US10258418B2 (en) 2017-06-29 2019-04-16 Ethicon Llc System for controlling articulation forces
US11890005B2 (en) 2017-06-29 2024-02-06 Cilag Gmbh International Methods for closed loop velocity control for robotic surgical instrument
US11944300B2 (en) 2017-08-03 2024-04-02 Cilag Gmbh International Method for operating a surgical system bailout
US11471155B2 (en) 2017-08-03 2022-10-18 Cilag Gmbh International Surgical system bailout
US11304695B2 (en) 2017-08-03 2022-04-19 Cilag Gmbh International Surgical system shaft interconnection
US11399829B2 (en) 2017-09-29 2022-08-02 Cilag Gmbh International Systems and methods of initiating a power shutdown mode for a surgical instrument
US10743872B2 (en) 2017-09-29 2020-08-18 Ethicon Llc System and methods for controlling a display of a surgical instrument
USD917500S1 (en) 2017-09-29 2021-04-27 Ethicon Llc Display screen or portion thereof with graphical user interface
US10765429B2 (en) 2017-09-29 2020-09-08 Ethicon Llc Systems and methods for providing alerts according to the operational state of a surgical instrument
US10729501B2 (en) 2017-09-29 2020-08-04 Ethicon Llc Systems and methods for language selection of a surgical instrument
USD907648S1 (en) 2017-09-29 2021-01-12 Ethicon Llc Display screen or portion thereof with animated graphical user interface
US10796471B2 (en) 2017-09-29 2020-10-06 Ethicon Llc Systems and methods of displaying a knife position for a surgical instrument
USD907647S1 (en) 2017-09-29 2021-01-12 Ethicon Llc Display screen or portion thereof with animated graphical user interface
US11247044B2 (en) 2017-10-25 2022-02-15 Epineuron Technologies Inc. Devices for delivering neuroregenerative therapy
US10589089B2 (en) 2017-10-25 2020-03-17 Epineuron Technologies Inc. Systems and methods for delivering neuroregenerative therapy
US11247045B2 (en) 2017-10-25 2022-02-15 Epineuron Technologies Inc. Systems and methods for delivering neuroregenerative therapy
US11134944B2 (en) 2017-10-30 2021-10-05 Cilag Gmbh International Surgical stapler knife motion controls
US11090075B2 (en) 2017-10-30 2021-08-17 Cilag Gmbh International Articulation features for surgical end effector
US10779903B2 (en) 2017-10-31 2020-09-22 Ethicon Llc Positive shaft rotation lock activated by jaw closure
US10842490B2 (en) 2017-10-31 2020-11-24 Ethicon Llc Cartridge body design with force reduction based on firing completion
US11478244B2 (en) 2017-10-31 2022-10-25 Cilag Gmbh International Cartridge body design with force reduction based on firing completion
US10953225B2 (en) 2017-11-07 2021-03-23 Neurostim Oab, Inc. Non-invasive nerve activator with adaptive circuit
US10743874B2 (en) 2017-12-15 2020-08-18 Ethicon Llc Sealed adapters for use with electromechanical surgical instruments
US10779826B2 (en) 2017-12-15 2020-09-22 Ethicon Llc Methods of operating surgical end effectors
US11896222B2 (en) 2017-12-15 2024-02-13 Cilag Gmbh International Methods of operating surgical end effectors
US10743875B2 (en) 2017-12-15 2020-08-18 Ethicon Llc Surgical end effectors with jaw stiffener arrangements configured to permit monitoring of firing member
US11197670B2 (en) 2017-12-15 2021-12-14 Cilag Gmbh International Surgical end effectors with pivotal jaws configured to touch at their respective distal ends when fully closed
US10779825B2 (en) 2017-12-15 2020-09-22 Ethicon Llc Adapters with end effector position sensing and control arrangements for use in connection with electromechanical surgical instruments
US10966718B2 (en) 2017-12-15 2021-04-06 Ethicon Llc Dynamic clamping assemblies with improved wear characteristics for use in connection with electromechanical surgical instruments
US11006955B2 (en) 2017-12-15 2021-05-18 Ethicon Llc End effectors with positive jaw opening features for use with adapters for electromechanical surgical instruments
US11071543B2 (en) 2017-12-15 2021-07-27 Cilag Gmbh International Surgical end effectors with clamping assemblies configured to increase jaw aperture ranges
US10828033B2 (en) 2017-12-15 2020-11-10 Ethicon Llc Handheld electromechanical surgical instruments with improved motor control arrangements for positioning components of an adapter coupled thereto
US11033267B2 (en) 2017-12-15 2021-06-15 Ethicon Llc Systems and methods of controlling a clamping member firing rate of a surgical instrument
US10869666B2 (en) 2017-12-15 2020-12-22 Ethicon Llc Adapters with control systems for controlling multiple motors of an electromechanical surgical instrument
US10687813B2 (en) 2017-12-15 2020-06-23 Ethicon Llc Adapters with firing stroke sensing arrangements for use in connection with electromechanical surgical instruments
US10716565B2 (en) 2017-12-19 2020-07-21 Ethicon Llc Surgical instruments with dual articulation drivers
US11284953B2 (en) 2017-12-19 2022-03-29 Cilag Gmbh International Method for determining the position of a rotatable jaw of a surgical instrument attachment assembly
US11045270B2 (en) 2017-12-19 2021-06-29 Cilag Gmbh International Robotic attachment comprising exterior drive actuator
US10729509B2 (en) 2017-12-19 2020-08-04 Ethicon Llc Surgical instrument comprising closure and firing locking mechanism
US10835330B2 (en) 2017-12-19 2020-11-17 Ethicon Llc Method for determining the position of a rotatable jaw of a surgical instrument attachment assembly
US11020112B2 (en) 2017-12-19 2021-06-01 Ethicon Llc Surgical tools configured for interchangeable use with different controller interfaces
USD910847S1 (en) 2017-12-19 2021-02-16 Ethicon Llc Surgical instrument assembly
US10682134B2 (en) 2017-12-21 2020-06-16 Ethicon Llc Continuous use self-propelled stapling instrument
US11076853B2 (en) 2017-12-21 2021-08-03 Cilag Gmbh International Systems and methods of displaying a knife position during transection for a surgical instrument
US11337691B2 (en) 2017-12-21 2022-05-24 Cilag Gmbh International Surgical instrument configured to determine firing path
US11179152B2 (en) 2017-12-21 2021-11-23 Cilag Gmbh International Surgical instrument comprising a tissue grasping system
US11576668B2 (en) 2017-12-21 2023-02-14 Cilag Gmbh International Staple instrument comprising a firing path display
US11369368B2 (en) 2017-12-21 2022-06-28 Cilag Gmbh International Surgical instrument comprising synchronized drive systems
US11883019B2 (en) 2017-12-21 2024-01-30 Cilag Gmbh International Stapling instrument comprising a staple feeding system
US11129680B2 (en) 2017-12-21 2021-09-28 Cilag Gmbh International Surgical instrument comprising a projector
US11311290B2 (en) 2017-12-21 2022-04-26 Cilag Gmbh International Surgical instrument comprising an end effector dampener
US11364027B2 (en) 2017-12-21 2022-06-21 Cilag Gmbh International Surgical instrument comprising speed control
US11849939B2 (en) 2017-12-21 2023-12-26 Cilag Gmbh International Continuous use self-propelled stapling instrument
US11583274B2 (en) 2017-12-21 2023-02-21 Cilag Gmbh International Self-guiding stapling instrument
US11751867B2 (en) 2017-12-21 2023-09-12 Cilag Gmbh International Surgical instrument comprising sequenced systems
US11179151B2 (en) 2017-12-21 2021-11-23 Cilag Gmbh International Surgical instrument comprising a display
US10743868B2 (en) 2017-12-21 2020-08-18 Ethicon Llc Surgical instrument comprising a pivotable distal head
US11511122B2 (en) 2018-02-22 2022-11-29 Axonics, Inc. Neurostimulation leads for trial nerve stimulation and methods of use
US11110283B2 (en) 2018-02-22 2021-09-07 Axonics, Inc. Neurostimulation leads for trial nerve stimulation and methods of use
US10912559B2 (en) 2018-08-20 2021-02-09 Ethicon Llc Reinforced deformable anvil tip for surgical stapler anvil
US11324501B2 (en) 2018-08-20 2022-05-10 Cilag Gmbh International Surgical stapling devices with improved closure members
US10779821B2 (en) 2018-08-20 2020-09-22 Ethicon Llc Surgical stapler anvils with tissue stop features configured to avoid tissue pinch
US11045192B2 (en) 2018-08-20 2021-06-29 Cilag Gmbh International Fabricating techniques for surgical stapler anvils
US11207065B2 (en) 2018-08-20 2021-12-28 Cilag Gmbh International Method for fabricating surgical stapler anvils
US11039834B2 (en) 2018-08-20 2021-06-22 Cilag Gmbh International Surgical stapler anvils with staple directing protrusions and tissue stability features
US11253256B2 (en) 2018-08-20 2022-02-22 Cilag Gmbh International Articulatable motor powered surgical instruments with dedicated articulation motor arrangements
US11291440B2 (en) 2018-08-20 2022-04-05 Cilag Gmbh International Method for operating a powered articulatable surgical instrument
US10842492B2 (en) 2018-08-20 2020-11-24 Ethicon Llc Powered articulatable surgical instruments with clutching and locking arrangements for linking an articulation drive system to a firing drive system
US11083458B2 (en) 2018-08-20 2021-08-10 Cilag Gmbh International Powered surgical instruments with clutching arrangements to convert linear drive motions to rotary drive motions
USD914878S1 (en) 2018-08-20 2021-03-30 Ethicon Llc Surgical instrument anvil
US10856870B2 (en) 2018-08-20 2020-12-08 Ethicon Llc Switching arrangements for motor powered articulatable surgical instruments
US11642537B2 (en) 2019-03-11 2023-05-09 Axonics, Inc. Charging device with off-center coil
US11147553B2 (en) 2019-03-25 2021-10-19 Cilag Gmbh International Firing drive arrangements for surgical systems
US11147551B2 (en) 2019-03-25 2021-10-19 Cilag Gmbh International Firing drive arrangements for surgical systems
US11172929B2 (en) 2019-03-25 2021-11-16 Cilag Gmbh International Articulation drive arrangements for surgical systems
US11696761B2 (en) 2019-03-25 2023-07-11 Cilag Gmbh International Firing drive arrangements for surgical systems
US11903581B2 (en) 2019-04-30 2024-02-20 Cilag Gmbh International Methods for stapling tissue using a surgical instrument
US11253254B2 (en) 2019-04-30 2022-02-22 Cilag Gmbh International Shaft rotation actuator on a surgical instrument
US11426251B2 (en) 2019-04-30 2022-08-30 Cilag Gmbh International Articulation directional lights on a surgical instrument
US11648009B2 (en) 2019-04-30 2023-05-16 Cilag Gmbh International Rotatable jaw tip for a surgical instrument
US11432816B2 (en) 2019-04-30 2022-09-06 Cilag Gmbh International Articulation pin for a surgical instrument
US11452528B2 (en) 2019-04-30 2022-09-27 Cilag Gmbh International Articulation actuators for a surgical instrument
US11471157B2 (en) 2019-04-30 2022-10-18 Cilag Gmbh International Articulation control mapping for a surgical instrument
US11848090B2 (en) 2019-05-24 2023-12-19 Axonics, Inc. Trainer for a neurostimulator programmer and associated methods of use with a neurostimulation system
US11439829B2 (en) 2019-05-24 2022-09-13 Axonics, Inc. Clinician programmer methods and systems for maintaining target operating temperatures
US11458311B2 (en) 2019-06-26 2022-10-04 Neurostim Technologies Llc Non-invasive nerve activator patch with adaptive circuit
US11478241B2 (en) 2019-06-28 2022-10-25 Cilag Gmbh International Staple cartridge including projections
US11553919B2 (en) 2019-06-28 2023-01-17 Cilag Gmbh International Method for authenticating the compatibility of a staple cartridge with a surgical instrument
US11051807B2 (en) 2019-06-28 2021-07-06 Cilag Gmbh International Packaging assembly including a particulate trap
US11376098B2 (en) 2019-06-28 2022-07-05 Cilag Gmbh International Surgical instrument system comprising an RFID system
US11523822B2 (en) 2019-06-28 2022-12-13 Cilag Gmbh International Battery pack including a circuit interrupter
US11744593B2 (en) 2019-06-28 2023-09-05 Cilag Gmbh International Method for authenticating the compatibility of a staple cartridge with a surgical instrument
US11497492B2 (en) 2019-06-28 2022-11-15 Cilag Gmbh International Surgical instrument including an articulation lock
US11553971B2 (en) 2019-06-28 2023-01-17 Cilag Gmbh International Surgical RFID assemblies for display and communication
US11219455B2 (en) 2019-06-28 2022-01-11 Cilag Gmbh International Surgical instrument including a lockout key
US11224497B2 (en) 2019-06-28 2022-01-18 Cilag Gmbh International Surgical systems with multiple RFID tags
US11229437B2 (en) 2019-06-28 2022-01-25 Cilag Gmbh International Method for authenticating the compatibility of a staple cartridge with a surgical instrument
US11684434B2 (en) 2019-06-28 2023-06-27 Cilag Gmbh International Surgical RFID assemblies for instrument operational setting control
US11241235B2 (en) 2019-06-28 2022-02-08 Cilag Gmbh International Method of using multiple RFID chips with a surgical assembly
US11684369B2 (en) 2019-06-28 2023-06-27 Cilag Gmbh International Method of using multiple RFID chips with a surgical assembly
US11464601B2 (en) 2019-06-28 2022-10-11 Cilag Gmbh International Surgical instrument comprising an RFID system for tracking a movable component
US11627959B2 (en) 2019-06-28 2023-04-18 Cilag Gmbh International Surgical instruments including manual and powered system lockouts
US11291451B2 (en) 2019-06-28 2022-04-05 Cilag Gmbh International Surgical instrument with battery compatibility verification functionality
US11298127B2 (en) 2019-06-28 2022-04-12 Cilag GmbH Interational Surgical stapling system having a lockout mechanism for an incompatible cartridge
US11350938B2 (en) 2019-06-28 2022-06-07 Cilag Gmbh International Surgical instrument comprising an aligned rfid sensor
US11638587B2 (en) 2019-06-28 2023-05-02 Cilag Gmbh International RFID identification systems for surgical instruments
US11660163B2 (en) 2019-06-28 2023-05-30 Cilag Gmbh International Surgical system with RFID tags for updating motor assembly parameters
US11399837B2 (en) 2019-06-28 2022-08-02 Cilag Gmbh International Mechanisms for motor control adjustments of a motorized surgical instrument
US11246678B2 (en) 2019-06-28 2022-02-15 Cilag Gmbh International Surgical stapling system having a frangible RFID tag
US11426167B2 (en) 2019-06-28 2022-08-30 Cilag Gmbh International Mechanisms for proper anvil attachment surgical stapling head assembly
US11259803B2 (en) 2019-06-28 2022-03-01 Cilag Gmbh International Surgical stapling system having an information encryption protocol
US11771419B2 (en) 2019-06-28 2023-10-03 Cilag Gmbh International Packaging for a replaceable component of a surgical stapling system
US11298132B2 (en) 2019-06-28 2022-04-12 Cilag GmbH Inlernational Staple cartridge including a honeycomb extension
US11364381B2 (en) 2019-10-01 2022-06-21 Epineuron Technologies Inc. Methods for delivering neuroregenerative therapy and reducing post-operative and chronic pain
US11247043B2 (en) 2019-10-01 2022-02-15 Epineuron Technologies Inc. Electrode interface devices for delivery of neuroregenerative therapy
US11730958B2 (en) 2019-12-16 2023-08-22 Neurostim Solutions, Llc Non-invasive nerve activator with boosted charge delivery
US11931033B2 (en) 2019-12-19 2024-03-19 Cilag Gmbh International Staple cartridge comprising a latch lockout
US11304696B2 (en) 2019-12-19 2022-04-19 Cilag Gmbh International Surgical instrument comprising a powered articulation system
US11234698B2 (en) 2019-12-19 2022-02-01 Cilag Gmbh International Stapling system comprising a clamp lockout and a firing lockout
US11844520B2 (en) 2019-12-19 2023-12-19 Cilag Gmbh International Staple cartridge comprising driver retention members
US11504122B2 (en) 2019-12-19 2022-11-22 Cilag Gmbh International Surgical instrument comprising a nested firing member
US11607219B2 (en) 2019-12-19 2023-03-21 Cilag Gmbh International Staple cartridge comprising a detachable tissue cutting knife
US11911032B2 (en) 2019-12-19 2024-02-27 Cilag Gmbh International Staple cartridge comprising a seating cam
US11529139B2 (en) 2019-12-19 2022-12-20 Cilag Gmbh International Motor driven surgical instrument
US11576672B2 (en) 2019-12-19 2023-02-14 Cilag Gmbh International Surgical instrument comprising a closure system including a closure member and an opening member driven by a drive screw
US11559304B2 (en) 2019-12-19 2023-01-24 Cilag Gmbh International Surgical instrument comprising a rapid closure mechanism
US11529137B2 (en) 2019-12-19 2022-12-20 Cilag Gmbh International Staple cartridge comprising driver retention members
US11291447B2 (en) 2019-12-19 2022-04-05 Cilag Gmbh International Stapling instrument comprising independent jaw closing and staple firing systems
US11446029B2 (en) 2019-12-19 2022-09-20 Cilag Gmbh International Staple cartridge comprising projections extending from a curved deck surface
US11464512B2 (en) 2019-12-19 2022-10-11 Cilag Gmbh International Staple cartridge comprising a curved deck surface
US11701111B2 (en) 2019-12-19 2023-07-18 Cilag Gmbh International Method for operating a surgical stapling instrument
USD974560S1 (en) 2020-06-02 2023-01-03 Cilag Gmbh International Staple cartridge
USD966512S1 (en) 2020-06-02 2022-10-11 Cilag Gmbh International Staple cartridge
USD975850S1 (en) 2020-06-02 2023-01-17 Cilag Gmbh International Staple cartridge
USD975851S1 (en) 2020-06-02 2023-01-17 Cilag Gmbh International Staple cartridge
USD975278S1 (en) 2020-06-02 2023-01-10 Cilag Gmbh International Staple cartridge
USD967421S1 (en) 2020-06-02 2022-10-18 Cilag Gmbh International Staple cartridge
USD976401S1 (en) 2020-06-02 2023-01-24 Cilag Gmbh International Staple cartridge
US11660090B2 (en) 2020-07-28 2023-05-30 Cllag GmbH International Surgical instruments with segmented flexible drive arrangements
US11864756B2 (en) 2020-07-28 2024-01-09 Cilag Gmbh International Surgical instruments with flexible ball chain drive arrangements
US11871925B2 (en) 2020-07-28 2024-01-16 Cilag Gmbh International Surgical instruments with dual spherical articulation joint arrangements
US11638582B2 (en) 2020-07-28 2023-05-02 Cilag Gmbh International Surgical instruments with torsion spine drive arrangements
US11857182B2 (en) 2020-07-28 2024-01-02 Cilag Gmbh International Surgical instruments with combination function articulation joint arrangements
US11737748B2 (en) 2020-07-28 2023-08-29 Cilag Gmbh International Surgical instruments with double spherical articulation joints with pivotable links
US11883024B2 (en) 2020-07-28 2024-01-30 Cilag Gmbh International Method of operating a surgical instrument
US11826013B2 (en) 2020-07-28 2023-11-28 Cilag Gmbh International Surgical instruments with firing member closure features
US11896217B2 (en) 2020-10-29 2024-02-13 Cilag Gmbh International Surgical instrument comprising an articulation lock
US11517390B2 (en) 2020-10-29 2022-12-06 Cilag Gmbh International Surgical instrument comprising a limited travel switch
US11534259B2 (en) 2020-10-29 2022-12-27 Cilag Gmbh International Surgical instrument comprising an articulation indicator
US11931025B2 (en) 2020-10-29 2024-03-19 Cilag Gmbh International Surgical instrument comprising a releasable closure drive lock
USD1013170S1 (en) 2020-10-29 2024-01-30 Cilag Gmbh International Surgical instrument assembly
US11617577B2 (en) 2020-10-29 2023-04-04 Cilag Gmbh International Surgical instrument comprising a sensor configured to sense whether an articulation drive of the surgical instrument is actuatable
US11779330B2 (en) 2020-10-29 2023-10-10 Cilag Gmbh International Surgical instrument comprising a jaw alignment system
US11844518B2 (en) 2020-10-29 2023-12-19 Cilag Gmbh International Method for operating a surgical instrument
US11717289B2 (en) 2020-10-29 2023-08-08 Cilag Gmbh International Surgical instrument comprising an indicator which indicates that an articulation drive is actuatable
US11452526B2 (en) 2020-10-29 2022-09-27 Cilag Gmbh International Surgical instrument comprising a staged voltage regulation start-up system
USD980425S1 (en) 2020-10-29 2023-03-07 Cilag Gmbh International Surgical instrument assembly
US11653920B2 (en) 2020-12-02 2023-05-23 Cilag Gmbh International Powered surgical instruments with communication interfaces through sterile barrier
US11944296B2 (en) 2020-12-02 2024-04-02 Cilag Gmbh International Powered surgical instruments with external connectors
US11890010B2 (en) 2020-12-02 2024-02-06 Cllag GmbH International Dual-sided reinforced reload for surgical instruments
US11849943B2 (en) 2020-12-02 2023-12-26 Cilag Gmbh International Surgical instrument with cartridge release mechanisms
US11678882B2 (en) 2020-12-02 2023-06-20 Cilag Gmbh International Surgical instruments with interactive features to remedy incidental sled movements
US11653915B2 (en) 2020-12-02 2023-05-23 Cilag Gmbh International Surgical instruments with sled location detection and adjustment features
US11744581B2 (en) 2020-12-02 2023-09-05 Cilag Gmbh International Powered surgical instruments with multi-phase tissue treatment
US11737751B2 (en) 2020-12-02 2023-08-29 Cilag Gmbh International Devices and methods of managing energy dissipated within sterile barriers of surgical instrument housings
US11627960B2 (en) 2020-12-02 2023-04-18 Cilag Gmbh International Powered surgical instruments with smart reload with separately attachable exteriorly mounted wiring connections
US11925349B2 (en) 2021-02-26 2024-03-12 Cilag Gmbh International Adjustment to transfer parameters to improve available power
US11812964B2 (en) 2021-02-26 2023-11-14 Cilag Gmbh International Staple cartridge comprising a power management circuit
US11950779B2 (en) 2021-02-26 2024-04-09 Cilag Gmbh International Method of powering and communicating with a staple cartridge
US11749877B2 (en) 2021-02-26 2023-09-05 Cilag Gmbh International Stapling instrument comprising a signal antenna
US11730473B2 (en) 2021-02-26 2023-08-22 Cilag Gmbh International Monitoring of manufacturing life-cycle
US11744583B2 (en) 2021-02-26 2023-09-05 Cilag Gmbh International Distal communication array to tune frequency of RF systems
US11723657B2 (en) 2021-02-26 2023-08-15 Cilag Gmbh International Adjustable communication based on available bandwidth and power capacity
US11751869B2 (en) 2021-02-26 2023-09-12 Cilag Gmbh International Monitoring of multiple sensors over time to detect moving characteristics of tissue
US11701113B2 (en) 2021-02-26 2023-07-18 Cilag Gmbh International Stapling instrument comprising a separate power antenna and a data transfer antenna
US11793514B2 (en) 2021-02-26 2023-10-24 Cilag Gmbh International Staple cartridge comprising sensor array which may be embedded in cartridge body
US11950777B2 (en) 2021-02-26 2024-04-09 Cilag Gmbh International Staple cartridge comprising an information access control system
US11696757B2 (en) 2021-02-26 2023-07-11 Cilag Gmbh International Monitoring of internal systems to detect and track cartridge motion status
US11806011B2 (en) 2021-03-22 2023-11-07 Cilag Gmbh International Stapling instrument comprising tissue compression systems
US11826042B2 (en) 2021-03-22 2023-11-28 Cilag Gmbh International Surgical instrument comprising a firing drive including a selectable leverage mechanism
US11717291B2 (en) 2021-03-22 2023-08-08 Cilag Gmbh International Staple cartridge comprising staples configured to apply different tissue compression
US11759202B2 (en) 2021-03-22 2023-09-19 Cilag Gmbh International Staple cartridge comprising an implantable layer
US11723658B2 (en) 2021-03-22 2023-08-15 Cilag Gmbh International Staple cartridge comprising a firing lockout
US11826012B2 (en) 2021-03-22 2023-11-28 Cilag Gmbh International Stapling instrument comprising a pulsed motor-driven firing rack
US11737749B2 (en) 2021-03-22 2023-08-29 Cilag Gmbh International Surgical stapling instrument comprising a retraction system
US11903582B2 (en) 2021-03-24 2024-02-20 Cilag Gmbh International Leveraging surfaces for cartridge installation
US11849944B2 (en) 2021-03-24 2023-12-26 Cilag Gmbh International Drivers for fastener cartridge assemblies having rotary drive screws
US11786243B2 (en) 2021-03-24 2023-10-17 Cilag Gmbh International Firing members having flexible portions for adapting to a load during a surgical firing stroke
US11857183B2 (en) 2021-03-24 2024-01-02 Cilag Gmbh International Stapling assembly components having metal substrates and plastic bodies
US11849945B2 (en) 2021-03-24 2023-12-26 Cilag Gmbh International Rotary-driven surgical stapling assembly comprising eccentrically driven firing member
US11896218B2 (en) 2021-03-24 2024-02-13 Cilag Gmbh International Method of using a powered stapling device
US11896219B2 (en) 2021-03-24 2024-02-13 Cilag Gmbh International Mating features between drivers and underside of a cartridge deck
US11744603B2 (en) 2021-03-24 2023-09-05 Cilag Gmbh International Multi-axis pivot joints for surgical instruments and methods for manufacturing same
US11786239B2 (en) 2021-03-24 2023-10-17 Cilag Gmbh International Surgical instrument articulation joint arrangements comprising multiple moving linkage features
US11793516B2 (en) 2021-03-24 2023-10-24 Cilag Gmbh International Surgical staple cartridge comprising longitudinal support beam
US11944336B2 (en) 2021-03-24 2024-04-02 Cilag Gmbh International Joint arrangements for multi-planar alignment and support of operational drive shafts in articulatable surgical instruments
US11832816B2 (en) 2021-03-24 2023-12-05 Cilag Gmbh International Surgical stapling assembly comprising nonplanar staples and planar staples
US11723662B2 (en) 2021-05-28 2023-08-15 Cilag Gmbh International Stapling instrument comprising an articulation control display
US11918217B2 (en) 2021-05-28 2024-03-05 Cilag Gmbh International Stapling instrument comprising a staple cartridge insertion stop
US11826047B2 (en) 2021-05-28 2023-11-28 Cilag Gmbh International Stapling instrument comprising jaw mounts
US11957344B2 (en) 2021-09-27 2024-04-16 Cilag Gmbh International Surgical stapler having rows of obliquely oriented staples
US11877745B2 (en) 2021-10-18 2024-01-23 Cilag Gmbh International Surgical stapling assembly having longitudinally-repeating staple leg clusters
US11957337B2 (en) 2021-10-18 2024-04-16 Cilag Gmbh International Surgical stapling assembly with offset ramped drive surfaces
US11937816B2 (en) 2021-10-28 2024-03-26 Cilag Gmbh International Electrical lead arrangements for surgical instruments
US11957339B2 (en) 2021-11-09 2024-04-16 Cilag Gmbh International Method for fabricating surgical stapler anvils
US11957795B2 (en) 2021-12-13 2024-04-16 Cilag Gmbh International Tissue thickness compensator configured to redistribute compressive forces
US11957345B2 (en) 2022-12-19 2024-04-16 Cilag Gmbh International Articulatable surgical instruments with conductive pathways for signal communication

Also Published As

Publication number Publication date
AU2005214041B2 (en) 2011-08-25
WO2005079295A2 (en) 2005-09-01
HK1098715A1 (en) 2007-07-27
AU2005214041A1 (en) 2005-09-01
JP4125357B2 (en) 2008-07-30
US7376467B2 (en) 2008-05-20
EP1720606B1 (en) 2011-08-17
EP1720606A4 (en) 2009-12-30
EP1720606A2 (en) 2006-11-15
JP2007531562A (en) 2007-11-08
US20050182457A1 (en) 2005-08-18
JP2007268293A (en) 2007-10-18
ATE520440T1 (en) 2011-09-15
CA2554676A1 (en) 2005-09-01
WO2005079295A3 (en) 2006-04-27
ES2395128T3 (en) 2013-02-08
CA2554676C (en) 2015-06-02

Similar Documents

Publication Publication Date Title
US7376467B2 (en) Portable assemblies, systems and methods for providing functional or therapeutic neuromuscular stimulation
US7571002B2 (en) Portable percutaneous assemblies, systems and methods for providing highly selective functional or therapeutic neuromuscular stimulation
US8086318B2 (en) Portable assemblies, systems, and methods for providing functional or therapeutic neurostimulation
AU2007254204A1 (en) Portable assemblies, systems, and methods for providing functional or therapeutic neurostimulation
US9561371B2 (en) Systems and methods for treating essential tremor or restless leg syndrome using spinal cord stimulation
US9616234B2 (en) System and method for neuro-stimulation
EP1981589B1 (en) System for routing electrical current to bodily tissues via implanted passive conductors
EP3180071B1 (en) External pulse generator device and associated system for trial nerve stimulation
CN103079633A (en) Modular stimulator for treatment of back pain, implantable RF ablation system and methods of use
KR100958655B1 (en) Implantable electrical bladder stimulator
JP4125339B2 (en) Portable assembly, system and method for providing functional or therapeutic neuromuscular stimulation
Hatzis et al. The current range of neuromodulatory devices and related technologies
EP3972682B1 (en) System for electrical nerve stimulation
JP2008100105A (en) Portable assembly, system and method for providing functional or therapeutic neuromuscular stimulation
Nashold Jr Electroneuroprostheses: Usefulness in rehabilitation
Li Activities of cortical motor neurons trigger electrical stimulation of lower motor neurons in the spinal cord

Legal Events

Date Code Title Description
AS Assignment

Owner name: NDI MEDICAL, LLC, OHIO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NDI MEDICAL, INC.;REEL/FRAME:020886/0049

Effective date: 20080415

AS Assignment

Owner name: NDI MEDICAL, LLC - CHARTER NO. 1766209, OHIO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NDI MEDICAL LLC - CHARTER NO. 1296496;REEL/FRAME:022277/0619

Effective date: 20081203

AS Assignment

Owner name: NATIONAL INSTITUTES OF HEALTH (NIH), U.S. DEPT. OF

Free format text: CONFIRMATORY LICENSE;ASSIGNOR:NDI MEDICAL, LLC;REEL/FRAME:025882/0659

Effective date: 20110228

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION