US20080187278A1 - Method and apparatus for cleaning optical connector - Google Patents

Method and apparatus for cleaning optical connector Download PDF

Info

Publication number
US20080187278A1
US20080187278A1 US12/055,002 US5500208A US2008187278A1 US 20080187278 A1 US20080187278 A1 US 20080187278A1 US 5500208 A US5500208 A US 5500208A US 2008187278 A1 US2008187278 A1 US 2008187278A1
Authority
US
United States
Prior art keywords
optical connector
cleaning
hollow guide
cleaning tool
connector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/055,002
Inventor
Marvin R. Young
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pivotal Decisions LLC
Dowling Consulting Inc
Original Assignee
Pivotal Decisions LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pivotal Decisions LLC filed Critical Pivotal Decisions LLC
Priority to US12/055,002 priority Critical patent/US20080187278A1/en
Assigned to PIVOTAL DECISIONS LLC reassignment PIVOTAL DECISIONS LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DOWLING CONSULTING, INC.
Assigned to CELION NETWORKS, INC. reassignment CELION NETWORKS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: YOUNG, MARVIN R.
Assigned to DOWLING CONSULTING, INC. reassignment DOWLING CONSULTING, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CELION NETWORKS, INC.
Publication of US20080187278A1 publication Critical patent/US20080187278A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/381Dismountable connectors, i.e. comprising plugs of the ferrule type, e.g. fibre ends embedded in ferrules, connecting a pair of fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B1/00Cleaning by methods involving the use of tools, brushes, or analogous members
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/3897Connectors fixed to housings, casing, frames or circuit boards
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/43Arrangements comprising a plurality of opto-electronic elements and associated optical interconnections
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B2240/00Type of materials or objects being cleaned
    • B08B2240/02Optical fibers or optical fiber connectors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/3833Details of mounting fibres in ferrules; Assembly methods; Manufacture
    • G02B6/3866Devices, tools or methods for cleaning connectors

Definitions

  • This invention relates to cleaning optical connectors and more particularly to cleaning optical connectors that exist on a backplane.
  • optical fiber is a strand of glass about the same diameter as a human hair. Light travels down the core of the fiber reflecting off a mirror-like interface where the glass core and a protective sleeve or cladding meet.
  • Fiber optic connector systems are designed to align two fiber ends so that the light signal will pass between them.
  • a variety of connector types have evolved such as FC/PC, FC/APC, ST and SC, each with a distinct area of application and all known in the art.
  • FC/PC and FC/APC connectors are most commonly found in high-end single mode fiber telecommunications systems.
  • the term “FC” is a fiber connector designated by NTT.
  • PC and “APC” describe the kind of polish applied to the connector end face.
  • PC stands for physical contact.
  • a PC connector has a polished convex end face.
  • SPC and UPC are “super” polished and “ultra” polished with better back reflection specification than PC.
  • APC stands for an angled physical contact.
  • An APC connector has a polished end face angled at 8°.
  • ST and SC connectors are used in commercial wiring and are frequently used in multimode fiber applications in building and campus LAN cabling systems.
  • ST or “standard termination” connectors use a twist on-twist off type of housing.
  • SC or “standard connection” connectors use a push to snap on, and a push to snap off type of housing.
  • a precision alignment sleeve aligns the two ferrules and thus the two fibers.
  • the fiber ends are flush with the ferrule ends and are polished to reduce loss of light. All modern connector designs involve physical contact between the two fiber ends. Loss of light at a connection is called insertion loss or attenuation and is measured in 0.35 dB. Typically, attenuation for a mated pair of high quality connectors is 0.35 dB or less.
  • the optical return loss which describes the amount of light reflected from the connection is less than ⁇ 45 dB for PC, less than ⁇ 55 dB for UPC, and less than ⁇ 65 dB for APC.
  • Dust, dirt and other contaminants are a problem in such optical connections because they interfere with the passage of light from one fiber to another.
  • Fiber optic connectors must be kept clean to ensure long life and to minimize transmission loss and optical return loss at the connection point. A single dust particle caught between two connectors will cause significant signal loss. Dust particles as small as 1 ⁇ m diameter on the optical fiber end can significantly degrade performance. Particles 8 ⁇ m in diameter or larger on the end of the core can cause a complete failure of the optical system.
  • connector cleaning In order to avoid problems and to keep fiber ends in peak condition, connector cleaning must be undertaken frequently. Inspection of the fiber end quality also needs to be undertaken to determine if cleaning is required or if the connector is seriously damaged.
  • wet cleaning utilizes a solvent such as Isopropyl Alcohol and fiber optic swabs.
  • the swabs have a head made of a soft nonabrasive material that has low particle and fiber generation.
  • Dry cleaning takes a number of forms, but the most common approach involves a special alcohol-free cloth or textile cleaning tape or film on a reel inside a cartridge. The cartridge stores the tape reel and provides a window onto a short portion of the cloth tape for cleaning the fiber ends of connectors. Also, a fiber optical swab with a sticky or tacky head may be used. Dynamic cleaning devices are also available which “spin” a cleaning cloth across the end of the fiber.
  • Optical connectors are normally removed and cleaned individually by hand.
  • multiple optical connectors composed of fiber arrays which attach to a backplane examples are the “MPX” from TYCO or the “HBMT” from MOLEX.
  • a backplane is an electronic circuit board containing circuitry and sockets into which additional electronic devices on other circuit boards or cards can be plugged.
  • Optical connectors on a backplane are difficult to clean for several reasons.
  • One reason is because the equipment housing the backplane and optical connectors is generally placed against a wall making access to the rear of the optical connectors difficult.
  • the optical connectors are small and difficult to handle when removed for cleaning so it is advantageous to be able to leave them in the system and clean the optical connectors via front access to the shelf.
  • Another reason is that cleaning the optical connectors via front creates the possibility of contact with other system components causing catastrophic failure of the system.
  • Another reason is that once the cleaning process is complete, all the fiber ends in the bundle must be clean.
  • the present invention provides a method and apparatus for delivering a cleaning device to an appropriate position on a backplane optical connector.
  • the purpose of the invention is to provide a simple and reliable solution to the cleaning of optical connectors inside a shelf where they are not directly accessible and provide a simple means of inspecting the connectors after the cleaning process is done.
  • Prior art systems suffer from the limitation that optical connectors are typically removed and cleaned individually by hand. If the optical connectors are not removed from the system, then cleaning and inspection is done by using swabs and a scope in an unconstrained free space. Using swabs and scopes in an unconstrained free space is risky because the swabs or scope can easily come into contact with other components in the system and possibly damage them.
  • the present invention is an improvement over the prior art because it provides a method and apparatus for alternatively delivering a cleaning and inspection device to an optical connector on a backplane.
  • a set of tubes corresponding to the number of optical connectors is attached to the rear of a connector assembly.
  • the diameter of the hollow tubes is large enough to accommodate the insertion of cleaning and inspection devices including optical cleaning swabs and scopes.
  • FIG. 1 is an optical connector cleaning card according to the present invention
  • FIG. 2 is an isometric view of an optical connector housing according to the present invention.
  • FIG. 3 is a front view of an optical connector assembly according to the present invention.
  • FIGS. are not necessarily drawn to scale and certain FIGS. may be shown in exaggerated or generalized form in the interest of clarity and conciseness.
  • FIG. 1 shows an optical connector cleaning card 100 .
  • Cleaning card 100 comprises system board 106 , optical connector end 108 , and cleaning tool insertion end 110 .
  • Attached to system board 106 is optical connector assembly 102 having connecting end 112 and tube attachment end 114 .
  • At least one hollow tube 104 is attached to tube attachment end 114 of optical connector assembly 102 .
  • optical connector housing 116 connected to a set of four single mode optical fibers 118 or arrays of fibers.
  • cleaning card 100 can be used with either single mode or multimode fibers and the number of fibers is an array is arbitrary.
  • the cleaning card 100 is adapted to be inserted into the backplane 107 like a typical system card.
  • system board 106 is constructed of a rigid material such as fiber board, PC board, or laminated plastic.
  • the dimension of system board 106 is the same as the dimensions of standard system card. Other sizes can be used as is convenient.
  • ridge 109 on system board 106 is used to locate and stabilize tubes 104 .
  • system board 106 is not required as optical connector assembly 102 is supported only by tubes 104 .
  • hollow tubes 104 are made of plastic or vinyl due to the inertness of these materials and their tendency not to generate extraneous fibers or contaminant particles. Also, an electrically insulating material is required for the typical environment. Hollow tubes 104 are typically attached to the connector assembly 102 by adhesive or other rigid mechanical attachment means. The attachment means should provide for an air tight seal between the connector and the tubes to prevent entry of contaminants such as fibers or dust particles.
  • Hollow tubes 104 may be attached to system board 106 by adhesive or other similar rigid mechanical attachment means.
  • hollow tubes 104 extend from the connector assembly 102 across system board 106 to tool insertion end 110 .
  • the diameter of hollow tubes in a preferred embodiment is approximately 0.4 mm but should be large enough to accommodate the insertion of different types of scopes as well as different types of cleaning devices.
  • FIG. 3 is an isometric view of optical connector cleaning card 100 .
  • Optical connector end 108 is adapted to fit into receiving slots (not shown) on backplane 107 . Openings 103 are adapted to fit over and engage with extensions on connector 116 to form a rigid mechanical connection.
  • Optical cleaning end 108 is adapted to fit into backplane 107 to form a secure mechanical connection and is further adapted to prevent damage to electrical connectors on the backplane.
  • Optical connector assembly 102 is located on optical connector end 108 of system board 106 .
  • Connector assembly 102 is typically attached to system board 106 by adhesive or other similar rigid mechanical attachment.
  • connector assembly 102 contains one or more multi fiber connectors.
  • the number of tubes 104 can be expanded to allow for multiple multi-fiber connectors on the system board 106 as is required by the backplane.
  • Connector 102 is a typical connector assembly known in the art such as the MOLEX HBMT series or MOLEX MPMX series connectors.
  • FIG. 2 is an isometric view of optical connector housing 116 as connected to backplane 107 .
  • FIG. 2 shows receiving slot 111 on backplane 107 , which accommodates optical connector end 108 when cleaning card 100 is inserted.
  • Fibers 118 terminate at the end of optical connector housing 116 exposing the end of each fiber to be cleaned.
  • connector 116 fits into connector assembly 102 to form a rigid mechanical connection which excludes foreign contaminates while fibers or fiber arrays 118 are being cleaned.
  • cleaning card 100 is inserted into backplane 107 inserting the connector assembly 102 in optical connector housing 116 .
  • the connectors align tubes 104 with the fibers so that the fiber ends are approximately in the center of each tube.
  • each optical connector is accessed through the hollow tubes 104 .
  • a cleaning device such as a cleaning swab is inserted into the open end of the hollow tube 104 . Then a cleaning swab is extended down the hollow tube 104 until the head of the cleaning swab comes into contact with the optical connector, cleaning may then take place. When finished, the cleaning swab is withdrawn from the hollow tube 104 .
  • a scope is then inserted in the end of the hollow tube 104 to determine if foreign particles or contaminants are present on the optical connector or if it is damaged. Hollow tube 104 supports the scope such that a steady image can be obtained. During cleaning, active components of the system are protected because the cleaning device is restrained by each hollow tube 104 .

Abstract

The present invention provides a method and apparatus for delivering a cleaning and inspection device to an appropriate position on a backplane having an optical connector. A set of tubes corresponding to the number of optical connectors is attached to the rear of a connector assembly or some other similar device capable of being coupled to a connector housing containing the optical connector. The diameter of the hollow tube large enough to accommodate the insertion of several types of cleaning and inspection devices including optical cleaning swabs and scopes. After the connector assembly is mated with the connector housing, the tubes can provide direct access to each optical connector for cleaning and inspection.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application is a division of U.S. patent application Ser. No. 10/454,005, filed Jun. 3, 2003 and entitled METHOD AND APPARATUS FOR CLEANING OPTICAL CONNECTOR,” which claims priority to U.S. Provisional Application No. 60/386,102, filed Jun. 4, 2002 and entitled “OPTICAL CONNECTOR CLEANING METHOD.”
  • FIELD OF THE INVENTION
  • This invention relates to cleaning optical connectors and more particularly to cleaning optical connectors that exist on a backplane.
  • BACKGROUND OF THE INVENTION
  • The transmission, routing and dissemination of information has occurred over computer networks for many years via standard electronic communication lines. These communication lines are effective, but place limits on the amount of information being transmitted and the speed of the transmission. With the advent of light-wave technology, a large amount of information is capable of being transmitted, routed and disseminated across great distances at a high rate over communication lines made of optical fiber. An optical fiber is a strand of glass about the same diameter as a human hair. Light travels down the core of the fiber reflecting off a mirror-like interface where the glass core and a protective sleeve or cladding meet.
  • In most fiber systems, dust and other contaminants are not a major problem as long as the “light,” that is the optical signal, remains within the optical fiber. However, problems arise when the optical signal must pass from one fiber to another or where the optical signal must leave the fiber and enter a receiver or piece of test equipment, such as an optical power meter.
  • The most common mechanical arrangement to allow light to travel from one fiber to another is an optical connector. Fiber optic connector systems are designed to align two fiber ends so that the light signal will pass between them. A variety of connector types have evolved such as FC/PC, FC/APC, ST and SC, each with a distinct area of application and all known in the art.
  • FC/PC and FC/APC connectors are most commonly found in high-end single mode fiber telecommunications systems. The term “FC” is a fiber connector designated by NTT. “PC” and “APC” describe the kind of polish applied to the connector end face. PC stands for physical contact. A PC connector has a polished convex end face. SPC and UPC are “super” polished and “ultra” polished with better back reflection specification than PC. APC stands for an angled physical contact. An APC connector has a polished end face angled at 8°.
  • ST and SC connectors are used in commercial wiring and are frequently used in multimode fiber applications in building and campus LAN cabling systems. ST or “standard termination” connectors use a twist on-twist off type of housing. SC or “standard connection” connectors use a push to snap on, and a push to snap off type of housing.
  • Most connector systems restrain the two fibers to be coupled within precision ferrules, which in turn are held in place by a housing. Within the housing, a precision alignment sleeve aligns the two ferrules and thus the two fibers. The fiber ends are flush with the ferrule ends and are polished to reduce loss of light. All modern connector designs involve physical contact between the two fiber ends. Loss of light at a connection is called insertion loss or attenuation and is measured in 0.35 dB. Typically, attenuation for a mated pair of high quality connectors is 0.35 dB or less.
  • The optical return loss, which describes the amount of light reflected from the connection is less than −45 dB for PC, less than −55 dB for UPC, and less than −65 dB for APC.
  • Dust, dirt and other contaminants are a problem in such optical connections because they interfere with the passage of light from one fiber to another. Fiber optic connectors must be kept clean to ensure long life and to minimize transmission loss and optical return loss at the connection point. A single dust particle caught between two connectors will cause significant signal loss. Dust particles as small as 1 μm diameter on the optical fiber end can significantly degrade performance. Particles 8 μm in diameter or larger on the end of the core can cause a complete failure of the optical system.
  • Even worse, dust particles can scratch the polished fiber end, resulting in permanent damage. Because the fiber end areas make physical contact, if a connector is mated while contaminated, especially with hard or abrasive contaminant particles, fiber end damage may occur, or the contaminant may get firmly bonded to the fiber end. This can lead to permanent physical damage to the fiber ends, which will necessitate replacement of the connector.
  • In order to avoid problems and to keep fiber ends in peak condition, connector cleaning must be undertaken frequently. Inspection of the fiber end quality also needs to be undertaken to determine if cleaning is required or if the connector is seriously damaged.
  • The two basic approaches to cleaning are wet and dry cleaning. Wet cleaning utilizes a solvent such as Isopropyl Alcohol and fiber optic swabs. The swabs have a head made of a soft nonabrasive material that has low particle and fiber generation. Dry cleaning takes a number of forms, but the most common approach involves a special alcohol-free cloth or textile cleaning tape or film on a reel inside a cartridge. The cartridge stores the tape reel and provides a window onto a short portion of the cloth tape for cleaning the fiber ends of connectors. Also, a fiber optical swab with a sticky or tacky head may be used. Dynamic cleaning devices are also available which “spin” a cleaning cloth across the end of the fiber.
  • Microscopic inspection must be conducted to confirm that cleaning is successful. On some occasions, even after repeated cleaning, inspection will show that the fiber end is damaged beyond recovery and the connector must be replaced. A variety of fiber connector inspection microscopes are available such as Hi-Tech Electronics Series 124000 borescopes, fiberscopes, and videoscopes. The general term “scope” will be used to refer to borescope, fiberscope and videoscope.
  • Optical connectors are normally removed and cleaned individually by hand. However, in recent years, it has become common to utilize multiple optical connectors composed of fiber arrays which attach to a backplane examples are the “MPX” from TYCO or the “HBMT” from MOLEX. A backplane is an electronic circuit board containing circuitry and sockets into which additional electronic devices on other circuit boards or cards can be plugged.
  • Optical connectors on a backplane are difficult to clean for several reasons. One reason is because the equipment housing the backplane and optical connectors is generally placed against a wall making access to the rear of the optical connectors difficult. Also, the optical connectors are small and difficult to handle when removed for cleaning so it is advantageous to be able to leave them in the system and clean the optical connectors via front access to the shelf. Another reason is that cleaning the optical connectors via front creates the possibility of contact with other system components causing catastrophic failure of the system. Another reason is that once the cleaning process is complete, all the fiber ends in the bundle must be clean.
  • Furthermore, due to the small scale of the optical connector, finding the correct position for the cleaning swab or inspection scope while viewing the backplane from the front is very difficult.
  • What is needed is a simple and reliable apparatus and method for cleaning and inspecting optical connectors inside a shelf where the connectors are not easily accessible. What is also needed is a simple and inexpensive mechanical system to position a cleaning device or inspection scope close to a connector on the backplane, while shielding other system components.
  • SUMMARY OF THE INVENTION
  • The present invention provides a method and apparatus for delivering a cleaning device to an appropriate position on a backplane optical connector. The purpose of the invention is to provide a simple and reliable solution to the cleaning of optical connectors inside a shelf where they are not directly accessible and provide a simple means of inspecting the connectors after the cleaning process is done.
  • Prior art systems suffer from the limitation that optical connectors are typically removed and cleaned individually by hand. If the optical connectors are not removed from the system, then cleaning and inspection is done by using swabs and a scope in an unconstrained free space. Using swabs and scopes in an unconstrained free space is risky because the swabs or scope can easily come into contact with other components in the system and possibly damage them.
  • The present invention is an improvement over the prior art because it provides a method and apparatus for alternatively delivering a cleaning and inspection device to an optical connector on a backplane. A set of tubes corresponding to the number of optical connectors is attached to the rear of a connector assembly. The diameter of the hollow tubes is large enough to accommodate the insertion of cleaning and inspection devices including optical cleaning swabs and scopes. After the connector assembly is mated with the connector housing, the tubes can provide direct access to each optical connector for cleaning and inspection.
  • The invention will be better understood from the following more detailed description taken in conjunction with the accompanying drawings.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • A better understanding of the invention can be obtained from the following detailed description of one exemplary embodiment as considered in conjunction with the following drawings in which:
  • FIG. 1 is an optical connector cleaning card according to the present invention;
  • FIG. 2 is an isometric view of an optical connector housing according to the present invention; and
  • FIG. 3 is a front view of an optical connector assembly according to the present invention.
  • DETAILED DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS
  • In the descriptions that follow, like parts are marked throughout the specification and drawings with the same numerals, respectively. The drawing FIGS. are not necessarily drawn to scale and certain FIGS. may be shown in exaggerated or generalized form in the interest of clarity and conciseness.
  • FIG. 1 shows an optical connector cleaning card 100. Cleaning card 100 comprises system board 106, optical connector end 108, and cleaning tool insertion end 110. Attached to system board 106 is optical connector assembly 102 having connecting end 112 and tube attachment end 114. At least one hollow tube 104 is attached to tube attachment end 114 of optical connector assembly 102.
  • Also shown in FIG. 1 is optical connector housing 116 connected to a set of four single mode optical fibers 118 or arrays of fibers. Of course, cleaning card 100 can be used with either single mode or multimode fibers and the number of fibers is an array is arbitrary. The cleaning card 100 is adapted to be inserted into the backplane 107 like a typical system card.
  • In the preferred embodiment, system board 106 is constructed of a rigid material such as fiber board, PC board, or laminated plastic. The dimension of system board 106 is the same as the dimensions of standard system card. Other sizes can be used as is convenient. In one embodiment, ridge 109 on system board 106 is used to locate and stabilize tubes 104. In another embodiment, system board 106 is not required as optical connector assembly 102 is supported only by tubes 104.
  • In the preferred embodiment, hollow tubes 104 are made of plastic or vinyl due to the inertness of these materials and their tendency not to generate extraneous fibers or contaminant particles. Also, an electrically insulating material is required for the typical environment. Hollow tubes 104 are typically attached to the connector assembly 102 by adhesive or other rigid mechanical attachment means. The attachment means should provide for an air tight seal between the connector and the tubes to prevent entry of contaminants such as fibers or dust particles.
  • Hollow tubes 104 may be attached to system board 106 by adhesive or other similar rigid mechanical attachment means. In a preferred embodiment hollow tubes 104 extend from the connector assembly 102 across system board 106 to tool insertion end 110. The diameter of hollow tubes in a preferred embodiment is approximately 0.4 mm but should be large enough to accommodate the insertion of different types of scopes as well as different types of cleaning devices.
  • FIG. 3 is an isometric view of optical connector cleaning card 100. Optical connector end 108 is adapted to fit into receiving slots (not shown) on backplane 107. Openings 103 are adapted to fit over and engage with extensions on connector 116 to form a rigid mechanical connection. Optical cleaning end 108 is adapted to fit into backplane 107 to form a secure mechanical connection and is further adapted to prevent damage to electrical connectors on the backplane.
  • Optical connector assembly 102 is located on optical connector end 108 of system board 106. Connector assembly 102 is typically attached to system board 106 by adhesive or other similar rigid mechanical attachment. In the preferred embodiment, connector assembly 102 contains one or more multi fiber connectors. The number of tubes 104 can be expanded to allow for multiple multi-fiber connectors on the system board 106 as is required by the backplane.
  • Connector 102 is a typical connector assembly known in the art such as the MOLEX HBMT series or MOLEX MPMX series connectors.
  • FIG. 2 is an isometric view of optical connector housing 116 as connected to backplane 107. FIG. 2 shows receiving slot 111 on backplane 107, which accommodates optical connector end 108 when cleaning card 100 is inserted. Fibers 118 terminate at the end of optical connector housing 116 exposing the end of each fiber to be cleaned. When connected, connector 116 fits into connector assembly 102 to form a rigid mechanical connection which excludes foreign contaminates while fibers or fiber arrays 118 are being cleaned.
  • In use, cleaning card 100 is inserted into backplane 107 inserting the connector assembly 102 in optical connector housing 116. The connectors align tubes 104 with the fibers so that the fiber ends are approximately in the center of each tube.
  • Once the connector assembly 102 is attached to optical connector housing 116, each optical connector is accessed through the hollow tubes 104. In one method of cleaning an optical connector, a cleaning device such as a cleaning swab is inserted into the open end of the hollow tube 104. Then a cleaning swab is extended down the hollow tube 104 until the head of the cleaning swab comes into contact with the optical connector, cleaning may then take place. When finished, the cleaning swab is withdrawn from the hollow tube 104. A scope is then inserted in the end of the hollow tube 104 to determine if foreign particles or contaminants are present on the optical connector or if it is damaged. Hollow tube 104 supports the scope such that a steady image can be obtained. During cleaning, active components of the system are protected because the cleaning device is restrained by each hollow tube 104.
  • Although the invention has been described with reference to one or more preferred embodiments, this description is not to be construed in a limiting sense. There is modification of the disclosed embodiments, as well as alternative embodiments of this invention, which will be apparent to persons of ordinary skill in the art, and the invention shall be viewed as limited only by reference to the following claims.

Claims (28)

1. An optical connector cleaning tool comprising:
a hollow guide including a first end and a second end opposite the first end; and
a mating connector attached to the first end of the hollow guide, wherein the mating connector is configured to connect to an optical connector, and
wherein the hollow guide is configured to receive a cleaning implement at the second end and to guide the cleaning implement to the optical connector at the first end.
2. The optical connector cleaning tool of claim 1, wherein the hollow guide is tubular.
3. The optical connector cleaning tool of claim 1, wherein the optical connector is attached to a backplane.
4. The optical connector cleaning tool of claim 1, wherein the hollow guide comprises a plurality of tubes attached to the mating connector.
5. The optical connector cleaning tool of claim 1, wherein the hollow guide comprises an electrically insulating material.
6. The optical connector cleaning tool of claim 1, wherein the mating connector is attached to the first end of the hollow guide to provide an air-tight seal between the mating connector and the hollow guide.
7. The optical connector cleaning tool of claim 1, wherein the mating connector is a multi-fiber type.
8. The optical connector cleaning tool of claim 1, wherein the hollow guide is rigidly attached to an insertion card.
9. The optical connector cleaning tool of claim 1, wherein the hollow guide is rigid.
10. The optical connector cleaning tool of claim 1, wherein the hollow guide comprises a plastic material.
11. The optical connector cleaning tool of claim 1, wherein the hollow guide comprises an inert material.
12. The optical connector cleaning tool of claim 1, wherein the cleaning implement comprises a cleaning swab.
13. The optical connector cleaning tool of claim 1, wherein the hollow guide is further configured to receive a scope at the second end and to guide the scope to the optical connector at the first end.
14. The optical connector cleaning tool of claim 1, wherein the cleaning implement comprises a dynamic cleaning device.
15. The optical connector cleaning tool of claim 1, wherein the hollow guide defines a diameter of approximately 0.4 mm.
16. The optical connector cleaning tool of claim 1, wherein the hollow guide is further configured to restrain the cleaning implement to prevent the cleaning implement from inadvertently coming into contact with a system component.
17. The optical connector cleaning tool of claim 1, wherein the mating connector is configured to align the hollow guide with the optical connector such that a fiber end of the optical connector is approximately centered with respect to the hollow guide.
18-40. (canceled)
41. The optical connector cleaning tool of claim 1 further comprising an insertion card attached to the hollow guide.
42. The optical connector cleaning tool of claim 41, wherein the insertion card is configured to be attached to a backplane.
43. An apparatus for cleaning an optical connector, the apparatus comprising:
a connecting means having means for connecting to an optical connector; and
a guiding means having means for attaching to the connecting means at a first end, the guiding means further having means for receiving a cleaning implement at a second end opposite the first end and means for guiding the cleaning implement to the optical connector at the first end.
44. The apparatus of claim 43 further comprising a card means having means for attaching to a backplane and means for attaching to the guiding means.
45. The apparatus of claim 43, wherein the guiding means further includes means for attaching to the connecting means to provide an air-tight seal between the guiding means and the connecting means.
46. The apparatus of claim 43, wherein the cleaning implement comprises a cleaning swab.
47. The apparatus of claim 43, wherein the cleaning implement comprises a dynamic cleaning device.
48. The apparatus of claim 43, wherein the guiding means further includes means for receiving a scope at the second end and means for guiding the scope to the optical connector at the first end.
49. The apparatus of claim 43, wherein the guiding means further includes means for restraining the cleaning implement to prevent the cleaning implement from inadvertently coming into contact with a system component.
50. The apparatus of claim 43, wherein the connecting means further includes means for aligning the guiding means with the optical connector such that a fiber end of the optical connector is approximately centered with respect to the guiding means.
US12/055,002 2002-06-04 2008-03-25 Method and apparatus for cleaning optical connector Abandoned US20080187278A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/055,002 US20080187278A1 (en) 2002-06-04 2008-03-25 Method and apparatus for cleaning optical connector

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US38610202P 2002-06-04 2002-06-04
US10/454,005 US7377981B2 (en) 2002-06-04 2003-06-03 Method and apparatus for cleaning optical connector
US12/055,002 US20080187278A1 (en) 2002-06-04 2008-03-25 Method and apparatus for cleaning optical connector

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/454,005 Division US7377981B2 (en) 2002-06-04 2003-06-03 Method and apparatus for cleaning optical connector

Publications (1)

Publication Number Publication Date
US20080187278A1 true US20080187278A1 (en) 2008-08-07

Family

ID=29587196

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/454,005 Expired - Lifetime US7377981B2 (en) 2002-06-04 2003-06-03 Method and apparatus for cleaning optical connector
US12/055,002 Abandoned US20080187278A1 (en) 2002-06-04 2008-03-25 Method and apparatus for cleaning optical connector

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/454,005 Expired - Lifetime US7377981B2 (en) 2002-06-04 2003-06-03 Method and apparatus for cleaning optical connector

Country Status (1)

Country Link
US (2) US7377981B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9103994B2 (en) 2012-01-31 2015-08-11 Corning Cable Systems Llc Optical fiber guide apparatuses for splice connector installation tools, and related assemblies and methods
US9482594B2 (en) 2012-03-08 2016-11-01 Hewlett Packard Enterprise Development Lp Diagnostic module

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7147386B2 (en) * 2005-02-02 2006-12-12 Rainbow Communications, Inc MEMS based handheld fiber optic connector cleaner
US20100199477A1 (en) * 2009-02-09 2010-08-12 Taseon Inc. Tool for dust cap removal/replacement and optical cleaner extender
US20100199447A1 (en) * 2009-02-09 2010-08-12 Taseon Inc. Cleaner guide for cleaning backplane optical connectors
NL2002752C2 (en) * 2009-04-15 2010-10-18 Attema Kunststoffenind Optical connector cleaning device and method.
US9207454B1 (en) * 2013-03-15 2015-12-08 Cadence Design Systems, Inc. System and method for dust contamination prevention and removal in fiber-optic panel-mount assemblies
JP5947325B2 (en) * 2014-03-10 2016-07-06 エヌ・ティ・ティ・アドバンステクノロジ株式会社 Optical connector cleaning tool and optical connector surface observation system
CN106848705B (en) * 2015-12-04 2019-12-27 富士康(昆山)电脑接插件有限公司 Connector assembly
US11415757B2 (en) * 2017-03-10 2022-08-16 Corning Optical Communications LLC Cleaning nozzle and nozzle assembly for multi-fiber connectors
US20210370359A1 (en) * 2020-05-27 2021-12-02 Viavi Solutions Inc. Monitoring air pressure and flow in a fiber cleaning device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6047716A (en) * 1997-02-14 2000-04-11 The Furukawa Electric Co., Ltd. Cleaning tool for optical connectors
US20020166190A1 (en) * 2001-04-11 2002-11-14 Taisei Miyake Cleaning tool for optical connector
US6769150B1 (en) * 2001-11-07 2004-08-03 Alcatel, Societe Anonyme Method and device for cleaning optical connectors
US6839935B2 (en) * 2002-05-29 2005-01-11 Teradyne, Inc. Methods and apparatus for cleaning optical connectors

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6047716A (en) * 1997-02-14 2000-04-11 The Furukawa Electric Co., Ltd. Cleaning tool for optical connectors
US20020166190A1 (en) * 2001-04-11 2002-11-14 Taisei Miyake Cleaning tool for optical connector
US6769150B1 (en) * 2001-11-07 2004-08-03 Alcatel, Societe Anonyme Method and device for cleaning optical connectors
US6839935B2 (en) * 2002-05-29 2005-01-11 Teradyne, Inc. Methods and apparatus for cleaning optical connectors

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9103994B2 (en) 2012-01-31 2015-08-11 Corning Cable Systems Llc Optical fiber guide apparatuses for splice connector installation tools, and related assemblies and methods
US9482594B2 (en) 2012-03-08 2016-11-01 Hewlett Packard Enterprise Development Lp Diagnostic module

Also Published As

Publication number Publication date
US20030221710A1 (en) 2003-12-04
US7377981B2 (en) 2008-05-27

Similar Documents

Publication Publication Date Title
US20080187278A1 (en) Method and apparatus for cleaning optical connector
US7156561B2 (en) Optical connector
US7031567B2 (en) Expanded beam connector system
US9535221B2 (en) UltraHigh-density fiber distribution components
US4118100A (en) Optical couplers for light emitting diodes and detectors
US6695486B1 (en) Angled fiber optic connector
US7137742B2 (en) Fiber optic receptacle and plug assemblies with alignment and keying features
US9645323B2 (en) Micro hybrid LC duplex adapter
US20130044978A1 (en) Method And System For A Multi-Core Fiber Connector
CN105324693A (en) Circuit board(s) employing optical interfaces optically connected to surface-accessible, planar-shaped, inter-board optical fiber traces, and related connectors, assemblies, and methods
US20170192180A1 (en) Ferrule for multi-fiber optical connector
US9528910B2 (en) Testing performance of optical fibers in the field
US20200218015A1 (en) Fiber optic adapter with dust shutter assembly for removing debris from a ferrule endface
US20100199477A1 (en) Tool for dust cap removal/replacement and optical cleaner extender
CN111258002A (en) Adapter for receiving fiber optic connector with dust shield assembly
US20220342166A1 (en) External Laser Source Physical Contact Verification Of A Fiber Optic Ferrule
US20100199447A1 (en) Cleaner guide for cleaning backplane optical connectors
JPH04130304A (en) Optical connector
Childers et al. High density, low cost, no-polish optical ferrule
US8672558B2 (en) APC adapter
JP6086045B2 (en) Optical connector
Hogari et al. Optical connector technologies for optical access networks
US11640032B1 (en) Splice-on fiber optic connector holder
US20230288642A1 (en) MPO Adapter for APC Connector Inspection
CN214895926U (en) Optical module of integrated optical cable

Legal Events

Date Code Title Description
AS Assignment

Owner name: PIVOTAL DECISIONS LLC, NEVADA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:DOWLING CONSULTING, INC.;REEL/FRAME:020755/0579

Effective date: 20050629

Owner name: DOWLING CONSULTING, INC., FLORIDA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CELION NETWORKS, INC.;REEL/FRAME:020755/0556

Effective date: 20050629

Owner name: CELION NETWORKS, INC., TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:YOUNG, MARVIN R.;REEL/FRAME:020755/0499

Effective date: 20030603

STCB Information on status: application discontinuation

Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION