US20080270801A1 - Watermarking a Media Signal by Adjusting Frequency Domain Values and Adapting to the Media Signal - Google Patents

Watermarking a Media Signal by Adjusting Frequency Domain Values and Adapting to the Media Signal Download PDF

Info

Publication number
US20080270801A1
US20080270801A1 US12/050,820 US5082008A US2008270801A1 US 20080270801 A1 US20080270801 A1 US 20080270801A1 US 5082008 A US5082008 A US 5082008A US 2008270801 A1 US2008270801 A1 US 2008270801A1
Authority
US
United States
Prior art keywords
signal
code signal
media signal
frequency components
media
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/050,820
Inventor
Kenneth L. Levy
Jun Tian
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Digimarc Corp
Original Assignee
Digimarc Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Digimarc Corp filed Critical Digimarc Corp
Priority to US12/050,820 priority Critical patent/US20080270801A1/en
Assigned to DIGIMARC CORPORATION reassignment DIGIMARC CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LEVY, KENNETH L., TIAN, JUN
Publication of US20080270801A1 publication Critical patent/US20080270801A1/en
Assigned to DIGIMARC CORPORATION (FORMERLY DMRC CORPORATION) reassignment DIGIMARC CORPORATION (FORMERLY DMRC CORPORATION) CONFIRMATION OF TRANSFER OF UNITED STATES PATENT RIGHTS Assignors: L-1 SECURE CREDENTIALING, INC. (FORMERLY KNOWN AS DIGIMARC CORPORATION)
Assigned to DIGIMARC CORPORATION (AN OREGON CORPORATION) reassignment DIGIMARC CORPORATION (AN OREGON CORPORATION) MERGER (SEE DOCUMENT FOR DETAILS). Assignors: DIGIMARC CORPORATION (A DELAWARE CORPORATION)
Assigned to DMRC LLC reassignment DMRC LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DIGIMARC CORPORATION (A DELAWARE CORPORATION)
Assigned to DMRC CORPORATION reassignment DMRC CORPORATION MERGER (SEE DOCUMENT FOR DETAILS). Assignors: DMRC LLC
Assigned to DIGIMARC CORPORATION reassignment DIGIMARC CORPORATION MERGER (SEE DOCUMENT FOR DETAILS). Assignors: DMRC CORPORATION
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T1/00General purpose image data processing
    • G06T1/0021Image watermarking
    • G06T1/0085Time domain based watermarking, e.g. watermarks spread over several images
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T1/00General purpose image data processing
    • G06T1/0021Image watermarking
    • G06T1/0028Adaptive watermarking, e.g. Human Visual System [HVS]-based watermarking
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T1/00General purpose image data processing
    • G06T1/0021Image watermarking
    • G06T1/0042Fragile watermarking, e.g. so as to detect tampering
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T1/00General purpose image data processing
    • G06T1/0021Image watermarking
    • G06T1/005Robust watermarking, e.g. average attack or collusion attack resistant
    • G06T1/0071Robust watermarking, e.g. average attack or collusion attack resistant using multiple or alternating watermarks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/06Protocols specially adapted for file transfer, e.g. file transfer protocol [FTP]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/40Network security protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/32Circuits or arrangements for control or supervision between transmitter and receiver or between image input and image output device, e.g. between a still-image camera and its memory or between a still-image camera and a printer device
    • H04N1/32101Display, printing, storage or transmission of additional information, e.g. ID code, date and time or title
    • H04N1/32144Display, printing, storage or transmission of additional information, e.g. ID code, date and time or title embedded in the image data, i.e. enclosed or integrated in the image, e.g. watermark, super-imposed logo or stamp
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/32Circuits or arrangements for control or supervision between transmitter and receiver or between image input and image output device, e.g. between a still-image camera and its memory or between a still-image camera and a printer device
    • H04N1/32101Display, printing, storage or transmission of additional information, e.g. ID code, date and time or title
    • H04N1/32144Display, printing, storage or transmission of additional information, e.g. ID code, date and time or title embedded in the image data, i.e. enclosed or integrated in the image, e.g. watermark, super-imposed logo or stamp
    • H04N1/32149Methods relating to embedding, encoding, decoding, detection or retrieval operations
    • H04N1/32154Transform domain methods
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/32Circuits or arrangements for control or supervision between transmitter and receiver or between image input and image output device, e.g. between a still-image camera and its memory or between a still-image camera and a printer device
    • H04N1/32101Display, printing, storage or transmission of additional information, e.g. ID code, date and time or title
    • H04N1/32144Display, printing, storage or transmission of additional information, e.g. ID code, date and time or title embedded in the image data, i.e. enclosed or integrated in the image, e.g. watermark, super-imposed logo or stamp
    • H04N1/32149Methods relating to embedding, encoding, decoding, detection or retrieval operations
    • H04N1/32154Transform domain methods
    • H04N1/3216Transform domain methods using Fourier transforms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N17/00Diagnosis, testing or measuring for television systems or their details
    • H04N17/004Diagnosis, testing or measuring for television systems or their details for digital television systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/43Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
    • H04N21/442Monitoring of processes or resources, e.g. detecting the failure of a recording device, monitoring the downstream bandwidth, the number of times a movie has been viewed, the storage space available from the internal hard disk
    • H04N21/4425Monitoring of client processing errors or hardware failure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/80Generation or processing of content or additional data by content creator independently of the distribution process; Content per se
    • H04N21/83Generation or processing of protective or descriptive data associated with content; Content structuring
    • H04N21/835Generation of protective data, e.g. certificates
    • H04N21/8358Generation of protective data, e.g. certificates involving watermark
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2201/00General purpose image data processing
    • G06T2201/005Image watermarking
    • G06T2201/0052Embedding of the watermark in the frequency domain
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/30Definitions, standards or architectural aspects of layered protocol stacks
    • H04L69/32Architecture of open systems interconnection [OSI] 7-layer type protocol stacks, e.g. the interfaces between the data link level and the physical level
    • H04L69/322Intralayer communication protocols among peer entities or protocol data unit [PDU] definitions
    • H04L69/329Intralayer communication protocols among peer entities or protocol data unit [PDU] definitions in the application layer [OSI layer 7]

Definitions

  • the invention relates to steganography, data hiding, and watermarking of media signals, such as images and audio signals.
  • Digital watermarking is a process for modifying physical or electronic media to embed a machine-readable code into the media.
  • the media may be modified such that the embedded code is imperceptible or nearly imperceptible to the user, yet may be detected through an automated detection process.
  • digital watermarking is applied to media signals such as images, audio signals, and video signals.
  • documents e.g., through line, word or character shifting
  • software e.g., multi-dimensional graphics models, and surface textures of objects.
  • Digital watermarking systems typically have two primary components: an encoder that embeds the watermark in a host media signal, and a decoder that detects and reads the embedded watermark from a signal suspected of containing a watermark (a suspect signal).
  • the encoder embeds a watermark by altering the host media signal.
  • the reading component analyzes a suspect signal to detect whether a watermark is present. In applications where the watermark encodes information, the reader extracts this information from the detected watermark.
  • One aspect of the invention is a method of imperceptibly embedding a code signal in a media signal. This forms a code signal comprising a plurality of frequency components. The method embeds the code signal into the media signal by adjusting the frequency component relative to a neighboring component. The method changes selection of the plurality of frequency components corresponding to the codes signal for different instances of embedding the code signal in the media signal.
  • the code signal may be used to encode a combination of fixed and variable message information in audio and image signals, including video.
  • the attributes of the code signal are measured to determine broadcast signal quality.
  • the code signal robustly carries auxiliary information in distribution channels where distortion is common, such as compression, broadcast distortion, packet loss, digital to analog conversion, and ambient air transmission.
  • FIG. 1 is a flow diagram illustrating a process of embedding an authentication watermark in a media signal.
  • FIG. 2 is a flow diagram illustrating a process of detecting the authentication watermark from a potentially corrupted version of the watermarked signal.
  • FIG. 1 is a flow diagram illustrating a process of embedding a watermark in an input media signal ( 100 ), and in particular, in an image.
  • the embedder begins by dividing a grayscale image into N ⁇ N blocks of samples at a specified resolution ( 102 ), where N is a pre-defined integer. For each block, the embedder computes a frequency transform of the image samples in that block ( 104 ), namely, a fast Fourier transform. From the mid-frequency and mid-high frequency coefficients, the embedder selects M Fourier transform coefficients ( 106 ), where M is a pre-defined integer. The coefficient locations are fixed by a pre-defined pattern.
  • the locations are scattered among roughly 25 to 100 coefficient locations in the mid to mid-high frequency range of a Fourier transform domain of a block of image samples where N ranges from 64 to 512 at spatial resolutions ranging from 75 to 600 dots per inch (DPI).
  • the locations are symmetric about vertical and horizontal axes (and potentially diagonal axes) to facilitate detection as explained further below.
  • the embedder For each of the M selected coefficients, x, the embedder computes a ratio of the magnitude of a selected coefficient relative to the magnitude of its neighbors ( 108 ). In particular, it is a ratio of the magnitude of the selected coefficient to the average magnitude of the surrounding neighbors:
  • the embedder increases the magnitude of x such that:
  • the value of r is a pre-defined constant.
  • the reference may be derived dynamically from the input media signal. Also, the reference may be selected from a table of values so as to select the value of r in the table at the minimum distance from r(x). The adjustment to the host image is selected so as to be imperceptible or substantially imperceptible to a user in an output form of the watermarked signal.
  • the embedder computes the inverse fast Fourier transform on each block to obtain the watermarked grayscale image ( 112 ).
  • the watermarked image ( 114 ) may then undergo one or more transformations, such as digital to analog conversion, printing, scanning, analog to digital conversion, photocopying, etc. These transformations tend to corrupt the watermarked image in a predictable way.
  • the watermarking process of FIG. 1 may be combined with another watermarking process to embed other watermarks, either robust or fragile to transformations such as sampling distortions, geometric distortions, scaling, rotation, cropping, etc.
  • the process may be combined with an embedding process described in U.S. Pat. Nos. 5,862,260 and 6,614,914 to encode a calibration signal that enables a detector to compensate for distortions such as scaling, rotation, translation, differential scale, shear, etc.
  • the calibration signal comprises an array of impulse or delta functions scattered in a pattern in the Fourier domain of each block of image samples. To embed the pattern, the embedder perceptually adapts the calibration signal to the host image block and adds it to that block.
  • the impulse functions of the calibration signal have a pre-defined magnitude and pseudo-random phase.
  • the embedder modulates the energy of the calibration signal according to the data hiding attributes (e.g., local contrast) of the image samples to which it is added.
  • the locations of the impulse functions are scattered across a range of frequencies to make them robust to transformations like spatial scaling, rotation, scanning, printing, and lossy compression. Further, they are preferably arranged to be symmetric about vertical and horizontal axes in the Fourier domain to facilitate detection after flipping or rotating the watermarked image.
  • the frequency coefficient locations selected for the method illustrated in FIG. 1 may be mutually exclusive or overlap the coefficient locations of the calibration signal.
  • the calibration signal preferably has impulse functions at lower frequencies to survive compression, scanning, printing, etc. while the pattern of coefficients employed in FIG. 1 includes coefficients at locations that are likely to be impacted by alterations to be detected, such as printing, scanning and photocopying. In the case where they overlap, the modification of the coefficients according to FIG. 1 is implemented so as not to interfere with the calibrations signal.
  • the embedder adjusts the selected coefficients as shown in FIG. 1 after the impulse functions of the calibration signal have been introduced, or the embedder calculates the watermarked signal taking into account the changes of the coefficient values due to the calibration signal and the process of FIG. 1 .
  • Another approach is to adjust the selected frequency coefficients in the method of FIG. 1 so that those coefficients act as both a calibration signal and an authentication signal.
  • the locations of the coefficients for the method of FIG. 1 and the delta functions of the calibration signal are the same.
  • the embedder increases the magnitudes of selected mid to mid-high frequency coefficients relative to their neighbors to achieve the desired relationship with neighboring coefficients for authentication purposes. Since this modulation includes the addition of a delta function to the selected coefficients, it also inherently embeds a calibration signal comprised of delta functions at the selected locations.
  • the detector performs a Fourier Mellin transform of the suspect signal and the calibration signal into a log-polar space and then correlates the two signals. The location of the correlation peak in log polar space provides the spatial scale and rotation parameters. These parameters may then be used to compensate for rotation and scale changes before performing additional watermark decoding operations, such as the authentication operations of FIG. 2 .
  • the delta functions added to the selected coefficients may be given a known pseudorandom phase.
  • the detector correlates the phase information of the calibration signal with the suspect signal after compensating for rotation and scale. The location of the correlation peak gives the translation offset in the horizontal and vertical directions.
  • the process of FIG. 1 may be combined with a robust watermark embedding process to carry a multi-bit message payload carrying metadata or a link to metadata stored in an external database.
  • Example implementations for embedding this type of robust watermark are described in U.S. Pat. Nos. 5,862,260 and 6,614,914.
  • FIG. 2 is a flow diagram illustrating a process of detecting the authentication watermark from a potentially corrupted version of the watermarked media signal ( 120 ) from the process of FIG. 1 .
  • the first four steps ( 122 ) are the same as shown in the embedder.
  • the detector computes the average of r(x), where x is over all M selected coefficients ( 124 ),
  • the detector computes the average of R over all blocks ( 126 ),
  • the detector may indicate the result ( 130 ) to a user through some user interface (e.g., visual display, audio output such as text to speech synthesis, etc.).
  • the detector may also indicate the result ( 130 ) to another software process or device to take further action, such as communicating the event to a another device or database for logging, recording tracer data about the user or device in which the alteration is detected, linking the detecting device to a network resource such as a web site at a specified URL that informs the user about usage rules, licensing opportunities, etc.
  • the detector includes a pre-processing phase in which it correlates a calibration signal with the potentially corrupted watermarked signal as described in U.S. Pat. Nos. 5,862,260 and 6,614,914.
  • the detector maps both the calibration signal and the received signal into a log polar coordinate space and correlates the signals (e.g., using generalized matched filters) to calculate estimates of rotation and scale.
  • the detector uses the phase information of the calibration signal to compute translation, e.g., the origin or reference point for each block. Further correlation operations may be used to compute differential scale (e.g., the change in scale in the horizontal and vertical directions after watermarking).
  • differential scale e.g., the change in scale in the horizontal and vertical directions after watermarking.
  • the detector executes the process of FIG. 2 to detect alteration in the selected frequency coefficients modified according to the method shown in FIG. 1 .
  • the embedding and detecting operations may be performed on two or more color channels, including luminance, chrominance or some other color channels.
  • the embedding and detecting operations may be applied to frequency coefficients of alternative frequency transforms, such as DCT and wavelet, to name a few.
  • the embedding process shown in FIG. 1 may be performed on a portion of the host signal to create a watermark signal that is combined with the host signal.
  • the embedder pre-filters the host signal to yield a high pass filtered signal including content at the mid and high frequency ranges impacted by the watermark.
  • the embedder makes the modification to this filtered signal, and then combines the resulting modified signal with the original signal.
  • the embedding and detecting processes may also be integrated into compression and decompression operations.
  • the frequency domain transform may be executed as part of a compression process, such as JPEG, JPEG 2000 or MPEG, where blocks of the signal are transformed into a frequency domain. Once converted to the frequency domain, frequency coefficients may be adjusted as described above.
  • the embedding and detecting operations apply to other media types, including audio media signals.
  • the frequency domain coefficients may be selected and adjusted to reference values to detect other types of signal alteration, such as lossy compression, digital to analog and analog to digital conversion, downsampling and upsampling, etc.
  • a related watermarking approach is to use an array of Fourier magnitude impulse functions with random phase (a calibration signal, also referred to as a watermark synchronization or orientation signal) for semi-fragile, and copy and copy-attack resistant watermarks.
  • Semi-fragile refers to a watermark that degrades in response to some types of degradation of the watermarked signal but not others.
  • the watermark decoder can determine if the watermark has been scanned and printed or battered by normal usage, potentially while being read with a web camera.
  • the copy-attack relates to the assertion that one can use noise-reduction, i.e.
  • Wiener filters to lift a watermark and, then using threshold and masking techniques, one can re-embed it in a new image.
  • these concepts are related because they both include an additional scanning and printing cycle, assuming the copy attack works on printed, not only digital, content.
  • This type of semi-fragile watermark can be used to determine if a watermarked document has been copied, possibly using a high quality copier and low quality reader, and as such, can stop copying and can be used to measure quality of service.
  • One approach to implementing a semi-fragile watermark is to embed extra signal peaks in the Fourier magnitude domain that are of varying intensity, and have the watermark decoder determine if the watermark has been scanned and printed by the relative power of the extra and original calibration signal peaks.
  • the extra peaks refer to a set of peaks used to implement the semifragile watermark.
  • the original calibration signal peaks refer to the ones already included in the watermark to determine its orientation in a geometrically distorted version of the watermarked signal. For an example of such a calibration signal, see U.S. Pat. Nos. 5,862,260 and 6,614,914, which are incorporated by reference. Some peaks are referred to as “extra” because they are included in addition to other peaks that form the original set of peaks in a calibration signal.
  • the robust part of the watermark which includes the desired detailed information such as a unique ID
  • the fragile part which is only used to determine copying, is a few bit message.
  • the fragile watermark can be considered as a single bit (copied or not) but actually allows more information by being frequency specific, as described below.
  • the semi-fragile watermark is separate but inherently related to the robust watermark—thus they cannot be separated for successful copy attacks.
  • the extra calibration signal peaks should be located at frequencies that best discriminates between the printing and scanning process, normal scuffing and a web camera reader. These locations can be determined by analyzing the frequency response of printing, scanning, scuffing and web cameras for frequency differences.
  • a printing-scanning process may represent high-frequencies better than a camera, but not low frequencies.
  • scuffing may show low-and-high frequency losses.
  • the reader will be able to determine if the watermark has been copied, involving an additional scanning-printing process, by the relative intensities of the extra and original calibration signal peaks at low and high frequencies.
  • high-and-low frequency loss is acceptable, whereas only low frequency loss represents a copied watermark.
  • the extra calibration signal peaks could also be dependent upon the content of the host signal, thus providing additional defense against the copy attack.
  • the host image samples could be broken in 16 equal sub-blocks, and the location of the extra peaks depends upon the average intensity of each quadrant to the total average intensity. Or, if only a section of the image is visible to the reader, each 32 by 32 sample block could be used in the above calculation instead of the complete image. Any “hash” of the host image that survives a web camera reader (referred to as a perceptual hash) could be used. To this end, if the watermark is moved to another picture, after it is read, it is less likely that the extra calibration signal peak locations are correct, not to mention that the less intense calibration signal points have been removed by the additional scanning-printing process.
  • the content dependent information could be used to slightly move the location of a few original calibration signal peaks, as opposed to adding extra calibration signal peaks. This means that the image content is implicitly in the calibration signal's jitter, and the copy attack is less likely to succeed unless the read and embedded images have the same perceptual hash. On the one hand, this approach may reduce robustness of the robust message to scaling, rotation and translation. On the other hand, no extra bits containing the output of the perceptual hash need to be embedded in the robust message.
  • the methods, processes, and systems described above may be implemented in hardware, software or a combination of hardware and software.
  • the embedding processes may be implemented in a programmable computer or a special purpose digital circuit.
  • detecting processes may be implemented in software, firmware, hardware, or combinations of software, firmware and hardware.
  • the methods and processes described above may be implemented in programs executed from a system's memory (a computer readable medium, such as an electronic, optical or magnetic storage device).

Abstract

A method of imperceptibly embedding a code signal in a media signal encodes auxiliary information in frequency components of the media signal. This method forms a code signal comprising a plurality of frequency components. The method embeds the code signal into the media signal by adjusting the frequency component relative to a neighboring component. The method changes selection of the plurality of frequency components corresponding to the codes signal for different instances of embedding the code signal in the media signal. The code signal may be used to encode a combination of fixed and variable message information in audio and image signals, including video. In one application, the attributes of the code signal are measured to determine broadcast signal quality. In another, the code signal robustly carries auxiliary information in distribution channels where distortion is common, such as compression, broadcast distortion, packet loss, digital to analog conversion, and ambient air transmission.

Description

    RELATED APPLICATION DATA
  • This patent application is a continuation of U.S. patent application Ser. No. 09/731,456, filed Dec. 6, 2000 (Now U.S. Pat. No. 7,346,776), which claims the benefit of U.S. Provisional Application 60/232,163 filed Sep. 11, 2000. These applications and patents are hereby incorporated by reference.
  • TECHNICAL FIELD
  • The invention relates to steganography, data hiding, and watermarking of media signals, such as images and audio signals.
  • BACKGROUND AND SUMMARY
  • Digital watermarking is a process for modifying physical or electronic media to embed a machine-readable code into the media. The media may be modified such that the embedded code is imperceptible or nearly imperceptible to the user, yet may be detected through an automated detection process. Most commonly, digital watermarking is applied to media signals such as images, audio signals, and video signals. However, it may also be applied to other types of media objects, including documents (e.g., through line, word or character shifting), software, multi-dimensional graphics models, and surface textures of objects.
  • Digital watermarking systems typically have two primary components: an encoder that embeds the watermark in a host media signal, and a decoder that detects and reads the embedded watermark from a signal suspected of containing a watermark (a suspect signal). The encoder embeds a watermark by altering the host media signal. The reading component analyzes a suspect signal to detect whether a watermark is present. In applications where the watermark encodes information, the reader extracts this information from the detected watermark.
  • Several particular watermarking techniques have been developed. The reader is presumed to be familiar with the literature in this field. Particular techniques for embedding and detecting imperceptible watermarks in media signals are detailed in the assignee's U.S. Pat. Nos. 5,862,260 and 6,614,914, which are hereby incorporated by reference. Examples of other watermarking techniques are described in U.S. Pat. No. 7,197,156, which is hereby incorporated by reference. Additional features of watermarks relating to authentication of media signals and fragile watermarks are described in U.S. patent applications 60/198,138, and 60/232,163, and U.S. Pat. Nos. 6,574,350 and 6,636,615, which is hereby incorporated by reference.
  • One aspect of the invention is a method of imperceptibly embedding a code signal in a media signal. This forms a code signal comprising a plurality of frequency components. The method embeds the code signal into the media signal by adjusting the frequency component relative to a neighboring component. The method changes selection of the plurality of frequency components corresponding to the codes signal for different instances of embedding the code signal in the media signal.
  • The code signal may be used to encode a combination of fixed and variable message information in audio and image signals, including video. In one application, the attributes of the code signal are measured to determine broadcast signal quality. In another, the code signal robustly carries auxiliary information in distribution channels where distortion is common, such as compression, broadcast distortion, packet loss, digital to analog conversion, and ambient air transmission.
  • Further features will become apparent with reference to the following detailed description and accompanying drawings. The following description details a method for detecting whether an image has been scanned, printed or photocopied after being processed by the method. It also describes alternative implementations and applications.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a flow diagram illustrating a process of embedding an authentication watermark in a media signal.
  • FIG. 2 is a flow diagram illustrating a process of detecting the authentication watermark from a potentially corrupted version of the watermarked signal.
  • DETAILED DESCRIPTION
  • FIG. 1 is a flow diagram illustrating a process of embedding a watermark in an input media signal (100), and in particular, in an image. The embedder begins by dividing a grayscale image into N×N blocks of samples at a specified resolution (102), where N is a pre-defined integer. For each block, the embedder computes a frequency transform of the image samples in that block (104), namely, a fast Fourier transform. From the mid-frequency and mid-high frequency coefficients, the embedder selects M Fourier transform coefficients (106), where M is a pre-defined integer. The coefficient locations are fixed by a pre-defined pattern. For example, the locations are scattered among roughly 25 to 100 coefficient locations in the mid to mid-high frequency range of a Fourier transform domain of a block of image samples where N ranges from 64 to 512 at spatial resolutions ranging from 75 to 600 dots per inch (DPI). The locations are symmetric about vertical and horizontal axes (and potentially diagonal axes) to facilitate detection as explained further below.
  • For each of the M selected coefficients, x, the embedder computes a ratio of the magnitude of a selected coefficient relative to the magnitude of its neighbors (108). In particular, it is a ratio of the magnitude of the selected coefficient to the average magnitude of the surrounding neighbors:

  • r(x)=Magnitude_of x/Average_of_Magnitude_of_Eight_Neighbors_of x
  • If r(x)<r, where r is a pre-defined reference value, the embedder increases the magnitude of x such that:

  • r(x)=r.
  • In this implementation, the value of r is a pre-defined constant. The reference may be derived dynamically from the input media signal. Also, the reference may be selected from a table of values so as to select the value of r in the table at the minimum distance from r(x). The adjustment to the host image is selected so as to be imperceptible or substantially imperceptible to a user in an output form of the watermarked signal.
  • Next, the embedder computes the inverse fast Fourier transform on each block to obtain the watermarked grayscale image (112). The watermarked image (114) may then undergo one or more transformations, such as digital to analog conversion, printing, scanning, analog to digital conversion, photocopying, etc. These transformations tend to corrupt the watermarked image in a predictable way.
  • The watermarking process of FIG. 1 may be combined with another watermarking process to embed other watermarks, either robust or fragile to transformations such as sampling distortions, geometric distortions, scaling, rotation, cropping, etc. In particular, the process may be combined with an embedding process described in U.S. Pat. Nos. 5,862,260 and 6,614,914 to encode a calibration signal that enables a detector to compensate for distortions such as scaling, rotation, translation, differential scale, shear, etc. In one implementation, for example, the calibration signal comprises an array of impulse or delta functions scattered in a pattern in the Fourier domain of each block of image samples. To embed the pattern, the embedder perceptually adapts the calibration signal to the host image block and adds it to that block. The impulse functions of the calibration signal have a pre-defined magnitude and pseudo-random phase. To make the calibration signal less perceptible yet detectable, the embedder modulates the energy of the calibration signal according to the data hiding attributes (e.g., local contrast) of the image samples to which it is added. Preferably, the locations of the impulse functions are scattered across a range of frequencies to make them robust to transformations like spatial scaling, rotation, scanning, printing, and lossy compression. Further, they are preferably arranged to be symmetric about vertical and horizontal axes in the Fourier domain to facilitate detection after flipping or rotating the watermarked image.
  • The frequency coefficient locations selected for the method illustrated in FIG. 1 may be mutually exclusive or overlap the coefficient locations of the calibration signal. The calibration signal preferably has impulse functions at lower frequencies to survive compression, scanning, printing, etc. while the pattern of coefficients employed in FIG. 1 includes coefficients at locations that are likely to be impacted by alterations to be detected, such as printing, scanning and photocopying. In the case where they overlap, the modification of the coefficients according to FIG. 1 is implemented so as not to interfere with the calibrations signal. In particular, the embedder adjusts the selected coefficients as shown in FIG. 1 after the impulse functions of the calibration signal have been introduced, or the embedder calculates the watermarked signal taking into account the changes of the coefficient values due to the calibration signal and the process of FIG. 1.
  • Another approach is to adjust the selected frequency coefficients in the method of FIG. 1 so that those coefficients act as both a calibration signal and an authentication signal. The locations of the coefficients for the method of FIG. 1 and the delta functions of the calibration signal are the same. The embedder increases the magnitudes of selected mid to mid-high frequency coefficients relative to their neighbors to achieve the desired relationship with neighboring coefficients for authentication purposes. Since this modulation includes the addition of a delta function to the selected coefficients, it also inherently embeds a calibration signal comprised of delta functions at the selected locations. To compensate for rotation and scale, the detector performs a Fourier Mellin transform of the suspect signal and the calibration signal into a log-polar space and then correlates the two signals. The location of the correlation peak in log polar space provides the spatial scale and rotation parameters. These parameters may then be used to compensate for rotation and scale changes before performing additional watermark decoding operations, such as the authentication operations of FIG. 2.
  • To compute translation, the delta functions added to the selected coefficients may be given a known pseudorandom phase. In this case, the detector correlates the phase information of the calibration signal with the suspect signal after compensating for rotation and scale. The location of the correlation peak gives the translation offset in the horizontal and vertical directions.
  • In addition to being integrated with other watermark signal components, the process of FIG. 1 may be combined with a robust watermark embedding process to carry a multi-bit message payload carrying metadata or a link to metadata stored in an external database. Example implementations for embedding this type of robust watermark are described in U.S. Pat. Nos. 5,862,260 and 6,614,914.
  • FIG. 2 is a flow diagram illustrating a process of detecting the authentication watermark from a potentially corrupted version of the watermarked media signal (120) from the process of FIG. 1. The first four steps (122) are the same as shown in the embedder. For each block, the detector computes the average of r(x), where x is over all M selected coefficients (124),

  • R=Average_of r(x)
  • The detector computes the average of R over all blocks (126),

  • AR=Average_of_R
  • To detect whether the watermarked signal has undergone alterations, the detector compares the average of R with a pre-defined threshold (128). If AR>=T, where T is a pre-defined threshold, then the detector classifies it as original. If AR<T, then the detector classifies it as a copy. Depending on the application, the detector may indicate the result (130) to a user through some user interface (e.g., visual display, audio output such as text to speech synthesis, etc.). The detector may also indicate the result (130) to another software process or device to take further action, such as communicating the event to a another device or database for logging, recording tracer data about the user or device in which the alteration is detected, linking the detecting device to a network resource such as a web site at a specified URL that informs the user about usage rules, licensing opportunities, etc.
  • To make the process robust to geometric distortion, the detector includes a pre-processing phase in which it correlates a calibration signal with the potentially corrupted watermarked signal as described in U.S. Pat. Nos. 5,862,260 and 6,614,914. Using a Fourier Mellin transform, the detector maps both the calibration signal and the received signal into a log polar coordinate space and correlates the signals (e.g., using generalized matched filters) to calculate estimates of rotation and scale. After compensating for rotation and scale, the detector uses the phase information of the calibration signal to compute translation, e.g., the origin or reference point for each block. Further correlation operations may be used to compute differential scale (e.g., the change in scale in the horizontal and vertical directions after watermarking). After compensating for geometric distortion, the detector executes the process of FIG. 2 to detect alteration in the selected frequency coefficients modified according to the method shown in FIG. 1.
  • While the invention is illustrated with respect to a specific implementation, it may be implemented in a variety of alternative ways. For example, the above example specifically refers to a grayscale image. This example may be adapted to other types of images including video and still imagery, color and monochrome images, etc. For color images, the embedding and detecting operations may be performed on two or more color channels, including luminance, chrominance or some other color channels. The embedding and detecting operations may be applied to frequency coefficients of alternative frequency transforms, such as DCT and wavelet, to name a few.
  • The embedding process shown in FIG. 1 may be performed on a portion of the host signal to create a watermark signal that is combined with the host signal. For example, in one possible implementation, the embedder pre-filters the host signal to yield a high pass filtered signal including content at the mid and high frequency ranges impacted by the watermark. The embedder makes the modification to this filtered signal, and then combines the resulting modified signal with the original signal.
  • The embedding and detecting processes may also be integrated into compression and decompression operations. For example, the frequency domain transform may be executed as part of a compression process, such as JPEG, JPEG 2000 or MPEG, where blocks of the signal are transformed into a frequency domain. Once converted to the frequency domain, frequency coefficients may be adjusted as described above.
  • The embedding and detecting operations apply to other media types, including audio media signals. In addition, the frequency domain coefficients may be selected and adjusted to reference values to detect other types of signal alteration, such as lossy compression, digital to analog and analog to digital conversion, downsampling and upsampling, etc.
  • Semi-Fragile Watermarks
  • A related watermarking approach is to use an array of Fourier magnitude impulse functions with random phase (a calibration signal, also referred to as a watermark synchronization or orientation signal) for semi-fragile, and copy and copy-attack resistant watermarks. Semi-fragile refers to a watermark that degrades in response to some types of degradation of the watermarked signal but not others. In particular for document authentication applications using such a watermark, the watermark decoder can determine if the watermark has been scanned and printed or battered by normal usage, potentially while being read with a web camera. The copy-attack relates to the assertion that one can use noise-reduction, i.e. Wiener filters, to lift a watermark and, then using threshold and masking techniques, one can re-embed it in a new image. Interestingly, these concepts are related because they both include an additional scanning and printing cycle, assuming the copy attack works on printed, not only digital, content. This type of semi-fragile watermark can be used to determine if a watermarked document has been copied, possibly using a high quality copier and low quality reader, and as such, can stop copying and can be used to measure quality of service.
  • One approach to implementing a semi-fragile watermark is to embed extra signal peaks in the Fourier magnitude domain that are of varying intensity, and have the watermark decoder determine if the watermark has been scanned and printed by the relative power of the extra and original calibration signal peaks. The extra peaks refer to a set of peaks used to implement the semifragile watermark. The original calibration signal peaks refer to the ones already included in the watermark to determine its orientation in a geometrically distorted version of the watermarked signal. For an example of such a calibration signal, see U.S. Pat. Nos. 5,862,260 and 6,614,914, which are incorporated by reference. Some peaks are referred to as “extra” because they are included in addition to other peaks that form the original set of peaks in a calibration signal.
  • One advantage of including the semi-fragile watermark in the calibration signal is that the robust part of the watermark, which includes the desired detailed information such as a unique ID, is the multi-bit message, whereas the fragile part, which is only used to determine copying, is a few bit message. The fragile watermark can be considered as a single bit (copied or not) but actually allows more information by being frequency specific, as described below. Interestingly and potentially advantageously, the semi-fragile watermark is separate but inherently related to the robust watermark—thus they cannot be separated for successful copy attacks.
  • Specifically, the extra calibration signal peaks should be located at frequencies that best discriminates between the printing and scanning process, normal scuffing and a web camera reader. These locations can be determined by analyzing the frequency response of printing, scanning, scuffing and web cameras for frequency differences.
  • For example, a printing-scanning process may represent high-frequencies better than a camera, but not low frequencies. In addition, scuffing may show low-and-high frequency losses. Thus, the reader will be able to determine if the watermark has been copied, involving an additional scanning-printing process, by the relative intensities of the extra and original calibration signal peaks at low and high frequencies. In this example, high-and-low frequency loss is acceptable, whereas only low frequency loss represents a copied watermark.
  • In addition, the extra calibration signal peaks could also be dependent upon the content of the host signal, thus providing additional defense against the copy attack. For example, the host image samples could be broken in 16 equal sub-blocks, and the location of the extra peaks depends upon the average intensity of each quadrant to the total average intensity. Or, if only a section of the image is visible to the reader, each 32 by 32 sample block could be used in the above calculation instead of the complete image. Any “hash” of the host image that survives a web camera reader (referred to as a perceptual hash) could be used. To this end, if the watermark is moved to another picture, after it is read, it is less likely that the extra calibration signal peak locations are correct, not to mention that the less intense calibration signal points have been removed by the additional scanning-printing process.
  • Alternatively, in regards to the copy attack, the content dependent information could be used to slightly move the location of a few original calibration signal peaks, as opposed to adding extra calibration signal peaks. This means that the image content is implicitly in the calibration signal's jitter, and the copy attack is less likely to succeed unless the read and embedded images have the same perceptual hash. On the one hand, this approach may reduce robustness of the robust message to scaling, rotation and translation. On the other hand, no extra bits containing the output of the perceptual hash need to be embedded in the robust message.
  • CONCLUDING REMARKS
  • Having described and illustrated the principles of the technology with reference to specific implementations, it will be recognized that the technology can be implemented in many other, different, forms. To provide a comprehensive disclosure without unduly lengthening the specification, applicants incorporate by reference the patents and patent applications referenced above.
  • The methods, processes, and systems described above may be implemented in hardware, software or a combination of hardware and software. For example, the embedding processes may be implemented in a programmable computer or a special purpose digital circuit. Similarly, detecting processes may be implemented in software, firmware, hardware, or combinations of software, firmware and hardware. The methods and processes described above may be implemented in programs executed from a system's memory (a computer readable medium, such as an electronic, optical or magnetic storage device).
  • The particular combinations of elements and features in the above-detailed embodiments are exemplary only; the interchanging and substitution of these teachings with other teachings in this and the incorporated-by-reference patents/applications are also contemplated.

Claims (8)

1. A method of imperceptibly embedding a code signal in a media signal, the method comprising:
forming a code signal comprising a plurality of frequency components;
embedding the code signal into the media signal, including for each of a plurality of frequency components, adjusting the frequency component relative to a neighboring component; and
changing selection of the plurality of frequency components corresponding to the codes signal for different instances of embedding the code signal in the media signal.
2. The method of claim 1 wherein the changing is computed as a function of the media signal.
3. The method of claim 2 wherein the function of the media signal comprises a hash of the media signal.
4. The method of claim 2 wherein the changing comprises including a first set of frequency components in the code signal that are repeated in the media signal, and a second set of frequency components that change as a function of the media signal.
5. The method of claim 1 wherein the code signal includes frequency components that are measured to determine broadcast signal quality.
6. The method of claim 1 wherein adjusting includes setting a frequency component to satisfy a predetermined relationship with a neighboring component.
7. The method of claim 1 wherein adjusting includes adjusting average energy of frequency components relative to a reference value.
8. A computer readable medium on which is stored, which, when executed by a computer, performs a method of imperceptibly embedding a code signal in a media signal, the method comprising:
forming a code signal comprising a plurality of frequency components;
embedding the code signal into the media signal, including for each of a plurality of frequency components, adjusting the frequency component relative to a neighboring component; and
changing selection of the plurality of frequency components corresponding to the codes signal for different instances of embedding the code signal in the media signal.
US12/050,820 2000-09-11 2008-03-18 Watermarking a Media Signal by Adjusting Frequency Domain Values and Adapting to the Media Signal Abandoned US20080270801A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/050,820 US20080270801A1 (en) 2000-09-11 2008-03-18 Watermarking a Media Signal by Adjusting Frequency Domain Values and Adapting to the Media Signal

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US23216300P 2000-09-11 2000-09-11
US09/731,456 US7346776B2 (en) 2000-09-11 2000-12-06 Authenticating media signals by adjusting frequency characteristics to reference values
US12/050,820 US20080270801A1 (en) 2000-09-11 2008-03-18 Watermarking a Media Signal by Adjusting Frequency Domain Values and Adapting to the Media Signal

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/731,456 Continuation US7346776B2 (en) 2000-09-11 2000-12-06 Authenticating media signals by adjusting frequency characteristics to reference values

Publications (1)

Publication Number Publication Date
US20080270801A1 true US20080270801A1 (en) 2008-10-30

Family

ID=22872116

Family Applications (4)

Application Number Title Priority Date Filing Date
US09/731,456 Active 2024-12-08 US7346776B2 (en) 2000-09-11 2000-12-06 Authenticating media signals by adjusting frequency characteristics to reference values
US09/951,142 Expired - Lifetime US6961444B2 (en) 2000-09-11 2001-09-10 Time and object based masking for video watermarking
US11/265,766 Expired - Lifetime US7197164B2 (en) 2000-09-11 2005-11-01 Time-varying video watermark
US12/050,820 Abandoned US20080270801A1 (en) 2000-09-11 2008-03-18 Watermarking a Media Signal by Adjusting Frequency Domain Values and Adapting to the Media Signal

Family Applications Before (3)

Application Number Title Priority Date Filing Date
US09/731,456 Active 2024-12-08 US7346776B2 (en) 2000-09-11 2000-12-06 Authenticating media signals by adjusting frequency characteristics to reference values
US09/951,142 Expired - Lifetime US6961444B2 (en) 2000-09-11 2001-09-10 Time and object based masking for video watermarking
US11/265,766 Expired - Lifetime US7197164B2 (en) 2000-09-11 2005-11-01 Time-varying video watermark

Country Status (3)

Country Link
US (4) US7346776B2 (en)
AU (1) AU2001292659A1 (en)
WO (1) WO2002023905A1 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070177759A1 (en) * 2006-01-31 2007-08-02 Xerox Corporation System and method to automatically establish preferred area for image-wise watermark
US20080181449A1 (en) * 2000-09-14 2008-07-31 Hannigan Brett T Watermarking Employing the Time-Frequency Domain
US7756290B2 (en) 2000-01-13 2010-07-13 Digimarc Corporation Detecting embedded signals in media content using coincidence metrics
US7974495B2 (en) 2002-06-10 2011-07-05 Digimarc Corporation Identification and protection of video
US7974439B2 (en) 1993-11-18 2011-07-05 Digimarc Corporation Embedding hidden auxiliary information in media
US7987094B2 (en) 1993-11-18 2011-07-26 Digimarc Corporation Audio encoding to convey auxiliary information, and decoding of same
US8006092B2 (en) 2001-01-24 2011-08-23 Digimarc Corporation Digital watermarks for checking authenticity of printed objects
US8051295B2 (en) 2001-04-20 2011-11-01 Digimarc Corporation Benchmarks for digital watermarking
US8051294B2 (en) 1993-11-18 2011-11-01 Digimarc Corporation Methods for audio watermarking and decoding
US8073193B2 (en) 1994-10-21 2011-12-06 Digimarc Corporation Methods and systems for steganographic processing
US8126272B2 (en) 2000-05-02 2012-02-28 Digimarc Corporation Methods combining multiple frames of image data
US8131760B2 (en) 2000-07-20 2012-03-06 Digimarc Corporation Using object identifiers with content distribution
US8144924B2 (en) 1995-05-08 2012-03-27 Digimarc Corporation Content objects with computer instructions steganographically encoded therein, and associated methods
US8175329B2 (en) 2000-04-17 2012-05-08 Digimarc Corporation Authentication of physical and electronic media objects using digital watermarks
US8204222B2 (en) 1993-11-18 2012-06-19 Digimarc Corporation Steganographic encoding and decoding of auxiliary codes in media signals
US8280101B2 (en) 1995-08-09 2012-10-02 Digimarc Corporation Identification documents and authentication of such documents
US8411898B2 (en) 1995-05-08 2013-04-02 Digimarc Corporation Digital authentication with analog documents
US20130204631A1 (en) * 2010-07-01 2013-08-08 Nokia Corporation Compressed sampling audio apparatus
US8515121B2 (en) 2002-01-18 2013-08-20 Digimarc Corporation Arrangement of objects in images or graphics to convey a machine-readable signal
CN103886544A (en) * 2014-04-10 2014-06-25 海南大学 Volume data robustness multi-watermark algorithm based on three-dimensional DCT perceptual Hash and chaos
US20170148451A1 (en) * 2013-11-28 2017-05-25 Fundacio Per A La Universitat Oberta De Catalunya Method and apparatus for embedding and extracting watermark data in an audio signal

Families Citing this family (102)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020009208A1 (en) * 1995-08-09 2002-01-24 Adnan Alattar Authentication of physical and electronic media objects using digital watermarks
US7171016B1 (en) 1993-11-18 2007-01-30 Digimarc Corporation Method for monitoring internet dissemination of image, video and/or audio files
US8144368B2 (en) * 1998-01-20 2012-03-27 Digimarc Coporation Automated methods for distinguishing copies from original printed objects
US8094949B1 (en) 1994-10-21 2012-01-10 Digimarc Corporation Music methods and systems
US6560349B1 (en) 1994-10-21 2003-05-06 Digimarc Corporation Audio monitoring using steganographic information
US7224819B2 (en) 1995-05-08 2007-05-29 Digimarc Corporation Integrating digital watermarks in multimedia content
US7095871B2 (en) * 1995-07-27 2006-08-22 Digimarc Corporation Digital asset management and linking media signals with related data using watermarks
US7006661B2 (en) 1995-07-27 2006-02-28 Digimarc Corp Digital watermarking systems and methods
US6229924B1 (en) 1996-05-16 2001-05-08 Digimarc Corporation Method and apparatus for watermarking video images
US7602940B2 (en) * 1998-04-16 2009-10-13 Digimarc Corporation Steganographic data hiding using a device clock
US7055034B1 (en) * 1998-09-25 2006-05-30 Digimarc Corporation Method and apparatus for robust embedded data
US7020285B1 (en) * 1999-07-13 2006-03-28 Microsoft Corporation Stealthy audio watermarking
US7543148B1 (en) * 1999-07-13 2009-06-02 Microsoft Corporation Audio watermarking with covert channel and permutations
AU1089300A (en) * 1999-11-03 2001-05-14 Cet Technologies Pte Ltd Image processing techniques for a video based traffic monitoring system and methods therefor
US7305104B2 (en) * 2000-04-21 2007-12-04 Digimarc Corporation Authentication of identification documents using digital watermarks
US6760464B2 (en) * 2000-10-11 2004-07-06 Digimarc Corporation Halftone watermarking and related applications
WO2002023468A1 (en) * 2000-09-11 2002-03-21 Digimarc Corporation Authenticating and measuring quality of service of multimedia signals using digital watermark analyses
US7656930B2 (en) * 2001-09-10 2010-02-02 Digimarc Corporation Assessing quality of service using digital watermark information
US6512837B1 (en) 2000-10-11 2003-01-28 Digimarc Corporation Watermarks carrying content dependent signal metrics for detecting and characterizing signal alteration
JP2002238037A (en) * 2001-02-13 2002-08-23 Pioneer Electronic Corp Electronic watermark embedding method, electronic watermark embedding device and recording medium having electronic watermark
US7602936B2 (en) * 2001-03-08 2009-10-13 Sony Corporation Method to make wavelet watermarks resistant to affine transformations
US6996717B2 (en) * 2001-05-24 2006-02-07 Matsushita Electric Industrial Co., Ltd. Semi-fragile watermarking system for MPEG video authentication
US8094869B2 (en) * 2001-07-02 2012-01-10 Digimarc Corporation Fragile and emerging digital watermarks
JP3485911B2 (en) * 2001-12-17 2004-01-13 シャープ株式会社 Data usage restriction setting method, data usage restriction setting device, data usage restriction setting program, and recording medium recording the program
US7567721B2 (en) 2002-01-22 2009-07-28 Digimarc Corporation Digital watermarking of low bit rate video
US7231061B2 (en) * 2002-01-22 2007-06-12 Digimarc Corporation Adaptive prediction filtering for digital watermarking
US7054461B2 (en) * 2002-02-15 2006-05-30 Pitney Bowes Inc. Authenticating printed objects using digital watermarks associated with multidimensional quality metrics
US7424128B2 (en) * 2002-04-10 2008-09-09 Pioneer Corporation Electronic watermark embedding apparatus, electronic watermark embedding method, record medium having electronic watermark and manufacturing method of record medium
US6885757B2 (en) * 2002-04-18 2005-04-26 Sarnoff Corporation Method and apparatus for providing an asymmetric watermark carrier
JP4541632B2 (en) * 2002-05-13 2010-09-08 パナソニック株式会社 Digital watermark embedding apparatus, method and recording medium
US6782116B1 (en) * 2002-11-04 2004-08-24 Mediasec Technologies, Gmbh Apparatus and methods for improving detection of watermarks in content that has undergone a lossy transformation
US7519819B2 (en) * 2002-05-29 2009-04-14 Digimarc Corporatino Layered security in digital watermarking
US7319754B2 (en) * 2002-06-28 2008-01-15 Stmicroelectronics S.A. Insertion of binary messages in video pictures
JP2004048219A (en) * 2002-07-10 2004-02-12 Hitachi Ltd Inserting method of electronic watermark information
JP4088622B2 (en) 2002-07-29 2008-05-21 インターナショナル・ビジネス・マシーンズ・コーポレーション WM signal generation device, WM signal generation method, computer-executable program for executing WM signal generation method, computer-readable recording medium recording the program, digital watermark embedding device, and digital including the digital watermark embedding device・ TV equipment
US7577841B2 (en) * 2002-08-15 2009-08-18 Digimarc Corporation Watermark placement in watermarking of time varying media signals
US7778438B2 (en) 2002-09-30 2010-08-17 Myport Technologies, Inc. Method for multi-media recognition, data conversion, creation of metatags, storage and search retrieval
US6996251B2 (en) 2002-09-30 2006-02-07 Myport Technologies, Inc. Forensic communication apparatus and method
US10721066B2 (en) 2002-09-30 2020-07-21 Myport Ip, Inc. Method for voice assistant, location tagging, multi-media capture, transmission, speech to text conversion, photo/video image/object recognition, creation of searchable metatags/contextual tags, storage and search retrieval
EP1574093B1 (en) * 2002-12-20 2009-04-01 Nokia Corporation Method and device for organizing user provided information with meta-information
JP2004221950A (en) * 2003-01-15 2004-08-05 Ricoh Co Ltd Image processor, program, and storage medium
KR20050091094A (en) * 2003-01-20 2005-09-14 코닌클리케 필립스 일렉트로닉스 엔.브이. Watermark embedding and detection of a motion image signal
US7756288B2 (en) 2003-05-29 2010-07-13 Jeffrey Lubin Method and apparatus for analog insertion of low frequency watermarks
US8301893B2 (en) * 2003-08-13 2012-10-30 Digimarc Corporation Detecting media areas likely of hosting watermarks
TWI288873B (en) * 2004-02-17 2007-10-21 Mitsubishi Electric Corp Method for burying watermarks, method and device for inspecting watermarks
GB0411172D0 (en) * 2004-05-19 2004-06-23 Chello Broadband N V Display of enhanced content
KR100643273B1 (en) * 2004-05-27 2006-11-10 삼성전자주식회사 Video watermarking method and apparatus, video content protecting method and apparatus using video watermarking
US20070242852A1 (en) * 2004-12-03 2007-10-18 Interdigital Technology Corporation Method and apparatus for watermarking sensed data
US7809215B2 (en) 2006-10-11 2010-10-05 The Invention Science Fund I, Llc Contextual information encoded in a formed expression
US8823636B2 (en) 2005-03-18 2014-09-02 The Invention Science Fund I, Llc Including environmental information in a manual expression
JP4312246B2 (en) * 2005-03-18 2009-08-12 富士通株式会社 Moving image data editing apparatus, moving image data reproducing apparatus, moving image data editing method, and moving image data reproducing method
US7873243B2 (en) 2005-03-18 2011-01-18 The Invention Science Fund I, Llc Decoding digital information included in a hand-formed expression
WO2007032753A1 (en) * 2005-09-09 2007-03-22 Thomson Licensing Coefficient selection for video watermarking
CN101258522B (en) * 2005-09-09 2012-05-30 汤姆森许可贸易公司 Video with watermark
JP2009508391A (en) * 2005-09-09 2009-02-26 トムソン ライセンシング Video watermark detection
WO2007057813A2 (en) * 2005-11-17 2007-05-24 Koninklijke Philips Electronics N.V. Perpetual masking for secure watermark embedding
US8224018B2 (en) * 2006-01-23 2012-07-17 Digimarc Corporation Sensing data from physical objects
CN101467436B (en) * 2006-06-17 2011-07-20 汤姆逊许可证公司 System and method for analyzing and marking cinema
EP2040469A4 (en) * 2006-06-19 2009-09-30 Panasonic Corp Information burying device and detecting devie
US20070299920A1 (en) * 2006-06-27 2007-12-27 Crespo Arturo E Anonymous Email Address Management
US9747426B2 (en) 2006-08-31 2017-08-29 Invention Science Fund I, Llc Handling masquerading elements
US8327155B2 (en) 2006-08-31 2012-12-04 The Invention Science Fund I, Llc Screening for masquerading content
US8640248B2 (en) 2006-08-31 2014-01-28 The Invention Science Fund I, Llc Handling masquerading elements
US8555396B2 (en) * 2006-08-31 2013-10-08 The Invention Science Fund I, Llc Authenticatable displayed content
US7912894B2 (en) * 2007-05-15 2011-03-22 Adams Phillip M Computerized, copy-detection and discrimination apparatus and method
ES2342995B1 (en) * 2008-02-20 2011-09-30 Universidad De Vigo DOCUMENT INTEGRITY VERIFICATION PROCEDURE.
JP2009246545A (en) 2008-03-28 2009-10-22 Brother Ind Ltd Image output device
US8428299B2 (en) 2008-06-12 2013-04-23 Thomson Licensing Method of processing images to combat copying
US8948443B2 (en) 2008-08-19 2015-02-03 Thomson Licensing Luminance evaluation
US9113231B2 (en) * 2008-08-19 2015-08-18 Thomson Licensing Changeable block list
EP2321904B1 (en) * 2008-08-19 2014-05-28 Thomson Licensing Context-based adaptive binary arithmetic coding (cabac) video stream compliance
BRPI0916944B1 (en) * 2008-08-19 2020-07-21 Contentarmor METHOD AND APPLIANCE FOR INSERTING A WATERCAMP IN ENCODED VIDEO
CN102132564B (en) * 2008-08-20 2013-09-11 汤姆森特许公司 Selection of watermarks for the watermarking of compressed video
US8320606B1 (en) * 2008-08-29 2012-11-27 Adobe Systems Incorporated Video watermarking with fast detection
US8385590B1 (en) * 2008-11-05 2013-02-26 Adobe Systems Incorporated Video watermarking with temporal patterns
US20100309287A1 (en) * 2009-03-20 2010-12-09 Rodriguez Tony F 3D Data Representation, Conveyance, and Use
US8878041B2 (en) * 2009-05-27 2014-11-04 Microsoft Corporation Detecting beat information using a diverse set of correlations
US9105091B2 (en) 2010-02-09 2015-08-11 Thomson Licensing Watermark detection using a propagation map
US20110197134A1 (en) * 2010-02-11 2011-08-11 Nokia Corporation Methods, apparatuses and computer program products for setting the most played items of media data as ringtone alerts
JP4950316B2 (en) * 2010-02-26 2012-06-13 楽天株式会社 DATA GENERATION DEVICE, DATA GENERATION METHOD, AND DATA GENERATION PROGRAM
US8588461B2 (en) * 2010-03-22 2013-11-19 Brigham Young University Robust watermarking for digital media
US8532398B2 (en) * 2010-03-26 2013-09-10 General Electric Company Methods and apparatus for optical segmentation of biological samples
US8307396B2 (en) * 2010-06-28 2012-11-06 At&T Intellectual Property I, L.P. Systems and methods for producing processed media content
US9965756B2 (en) 2013-02-26 2018-05-08 Digimarc Corporation Methods and arrangements for smartphone payments
US8949958B1 (en) * 2011-08-25 2015-02-03 Amazon Technologies, Inc. Authentication using media fingerprinting
EP2829997B1 (en) * 2012-03-22 2019-04-10 Saturn Licensing LLC Reception device, reception method, program, decryption processing device, reception processing system, and information processing device
KR20130112313A (en) 2012-04-03 2013-10-14 삼성전자주식회사 The method and apparatus for embedding informaiton related to a image in the image
US9830588B2 (en) * 2013-02-26 2017-11-28 Digimarc Corporation Methods and arrangements for smartphone payments
CN104581202B (en) * 2013-10-25 2018-04-27 腾讯科技(北京)有限公司 Audio and video synchronization method and system and encoding apparatus and decoding apparatus
US9311639B2 (en) 2014-02-11 2016-04-12 Digimarc Corporation Methods, apparatus and arrangements for device to device communication
GB2528865A (en) * 2014-07-31 2016-02-10 Innovation Ulster Ltd Digital image watermarking system and method
US9716807B2 (en) 2014-10-13 2017-07-25 Digimarc Corporation Methods for estimating watermark signal strength, an embedding process using the same, and related arrangements
US11172093B2 (en) 2015-12-07 2021-11-09 Disney Enterprises, Inc. System and method for creating a temporal-based dynamic watermark
WO2018026299A1 (en) * 2016-08-04 2018-02-08 Huawei Technologies Co., Ltd. Method and apparatus for data hiding in prediction parameters
US11132758B2 (en) 2016-09-14 2021-09-28 Inscape Data, Inc. Embedding data in video without visible impairments
US11082710B2 (en) 2016-09-14 2021-08-03 Inscape Data, Inc. Embedding video watermarks without visible impairments
US10360651B1 (en) * 2016-09-14 2019-07-23 Inscape Data, Inc. Compatible adaptive video watermarking
US10887362B2 (en) 2017-04-10 2021-01-05 Box, Inc. Forensic watermarking of shared video content
US10432991B2 (en) 2017-10-19 2019-10-01 Google Llc Secure session-based video watermarking for online media streaming
US11057685B2 (en) * 2018-03-29 2021-07-06 Ncr Corporation Media content proof of play over optical medium
WO2019202539A1 (en) 2018-04-20 2019-10-24 Cmt Research (Pty) Ltd Digital watermarking system and method
US11269976B2 (en) 2019-03-20 2022-03-08 Saudi Arabian Oil Company Apparatus and method for watermarking a call signal

Citations (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US591527A (en) * 1897-10-12 Gold from ores
US4081132A (en) * 1973-10-23 1978-03-28 E M I Limited Credit cards and other security documents
US4550395A (en) * 1981-01-08 1985-10-29 Carlson John E Holographic system for the storage of audio, video and computer data
US5617119A (en) * 1994-06-08 1997-04-01 Systems Research & Applications Corporation Protection of an electronically stored image in a first color space by the alteration of a digital component in a second color space
US5636292A (en) * 1995-05-08 1997-06-03 Digimarc Corporation Steganography methods employing embedded calibration data
US5646997A (en) * 1994-12-14 1997-07-08 Barton; James M. Method and apparatus for embedding authentication information within digital data
US5721788A (en) * 1992-07-31 1998-02-24 Corbis Corporation Method and system for digital image signatures
US5745604A (en) * 1993-11-18 1998-04-28 Digimarc Corporation Identification/authentication system using robust, distributed coding
US5761686A (en) * 1996-06-27 1998-06-02 Xerox Corporation Embedding encoded information in an iconic version of a text image
US5809139A (en) * 1996-09-13 1998-09-15 Vivo Software, Inc. Watermarking method and apparatus for compressed digital video
US5825892A (en) * 1996-10-28 1998-10-20 International Business Machines Corporation Protecting images with an image watermark
US5832119A (en) * 1993-11-18 1998-11-03 Digimarc Corporation Methods for controlling systems using control signals embedded in empirical data
US5835639A (en) * 1996-12-18 1998-11-10 Eastman Kodak Company Method for detecting rotation and magnification in images
US5841886A (en) * 1993-11-18 1998-11-24 Digimarc Corporation Security system for photographic identification
US5859920A (en) * 1995-11-30 1999-01-12 Eastman Kodak Company Method for embedding digital information in an image
US5862260A (en) * 1993-11-18 1999-01-19 Digimarc Corporation Methods for surveying dissemination of proprietary empirical data
US5875249A (en) * 1997-01-08 1999-02-23 International Business Machines Corporation Invisible image watermark for image verification
US5915044A (en) * 1995-09-29 1999-06-22 Intel Corporation Encoding video images using foreground/background segmentation
US5933798A (en) * 1996-07-16 1999-08-03 U.S. Philips Corporation Detecting a watermark embedded in an information signal
US5974548A (en) * 1996-07-12 1999-10-26 Novell, Inc. Media-independent document security method and apparatus
US6026193A (en) * 1993-11-18 2000-02-15 Digimarc Corporation Video steganography
US6064764A (en) * 1998-03-30 2000-05-16 Seiko Epson Corporation Fragile watermarks for detecting tampering in images
US6065119A (en) * 1997-05-30 2000-05-16 The Regents Of The University Of California Data validation
US6122403A (en) * 1995-07-27 2000-09-19 Digimarc Corporation Computer system linked by using information in data objects
US6219634B1 (en) * 1998-10-14 2001-04-17 Liquid Audio, Inc. Efficient watermark method and apparatus for digital signals
US6240121B1 (en) * 1997-07-09 2001-05-29 Matsushita Electric Industrial Co., Ltd. Apparatus and method for watermark data insertion and apparatus and method for watermark data detection
US6246777B1 (en) * 1999-03-19 2001-06-12 International Business Machines Corporation Compression-tolerant watermarking scheme for image authentication
US6272176B1 (en) * 1998-07-16 2001-08-07 Nielsen Media Research, Inc. Broadcast encoding system and method
US6275599B1 (en) * 1998-08-28 2001-08-14 International Business Machines Corporation Compressed image authentication and verification
US6285775B1 (en) * 1998-10-01 2001-09-04 The Trustees Of The University Of Princeton Watermarking scheme for image authentication
US20010024510A1 (en) * 2000-02-29 2001-09-27 Keiichi Iwamura Digital content processing method
US20010031064A1 (en) * 2000-01-11 2001-10-18 Ioana Donescu Method and device for inserting a watermarking signal in an image
US6332030B1 (en) * 1998-01-15 2001-12-18 The Regents Of The University Of California Method for embedding and extracting digital data in images and video
US6332031B1 (en) * 1998-01-20 2001-12-18 Digimarc Corporation Multiple watermarking techniques for documents and other data
US20020009208A1 (en) * 1995-08-09 2002-01-24 Adnan Alattar Authentication of physical and electronic media objects using digital watermarks
US20020076082A1 (en) * 2000-09-01 2002-06-20 Koji Arimura Reproduction equipment, reproduction equipment specifying equipment, reproduction equipment specifying system and methods and recording media for said equipment and system
US20020095577A1 (en) * 2000-09-05 2002-07-18 International Business Machines Corporation Embedding, processing and detection of digital content, information and data
US20020114456A1 (en) * 2000-05-31 2002-08-22 Yoichiro Sako Recording medium, recording method of recording medium, recording and/or reproducing method of recording medium, and data copy control method
US6532541B1 (en) * 1999-01-22 2003-03-11 The Trustees Of Columbia University In The City Of New York Method and apparatus for image authentication
US6535251B1 (en) * 1999-10-26 2003-03-18 Sharplabs Of America, Inc. Video encoder and method for adjusting quantization step in real time
US6563935B1 (en) * 1998-12-02 2003-05-13 Hitachi, Ltd. Method of extracting digital watermark information and method of judging bit value of digital watermark information
US6625295B1 (en) * 1996-09-13 2003-09-23 Purdue Research Foundation Authentication of signals using watermarks
US6757407B2 (en) * 1998-05-12 2004-06-29 Lucent Technologies Inc. Transform domain image watermarking method and system
US6785815B1 (en) * 1999-06-08 2004-08-31 Intertrust Technologies Corp. Methods and systems for encoding and protecting data using digital signature and watermarking techniques
US6834344B1 (en) * 1999-09-17 2004-12-21 International Business Machines Corporation Semi-fragile watermarks
US6871180B1 (en) * 1999-05-25 2005-03-22 Arbitron Inc. Decoding of information in audio signals

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4969041A (en) 1988-09-23 1990-11-06 Dubner Computer Systems, Inc. Embedment of data in a video signal
US5200822A (en) 1991-04-23 1993-04-06 National Broadcasting Company, Inc. Arrangement for and method of processing data, especially for identifying and verifying airing of television broadcast programs
JPH05236424A (en) 1992-02-25 1993-09-10 Matsushita Electric Ind Co Ltd Method and device for embedding information
US6983051B1 (en) 1993-11-18 2006-01-03 Digimarc Corporation Methods for audio watermarking and decoding
US6411725B1 (en) 1995-07-27 2002-06-25 Digimarc Corporation Watermark enabled video objects
US6229924B1 (en) 1996-05-16 2001-05-08 Digimarc Corporation Method and apparatus for watermarking video images
US6226387B1 (en) * 1996-08-30 2001-05-01 Regents Of The University Of Minnesota Method and apparatus for scene-based video watermarking
US6272634B1 (en) * 1996-08-30 2001-08-07 Regents Of The University Of Minnesota Digital watermarking to resolve multiple claims of ownership
US6282299B1 (en) * 1996-08-30 2001-08-28 Regents Of The University Of Minnesota Method and apparatus for video watermarking using perceptual masks
TW312770B (en) * 1996-10-15 1997-08-11 Japen Ibm Kk The hiding and taking out method of data
US5915027A (en) 1996-11-05 1999-06-22 Nec Research Institute Digital watermarking
GB9705045D0 (en) 1997-03-12 1997-04-30 Central Research Lab Ltd Method and apparatus for coding information
US6211919B1 (en) 1997-03-28 2001-04-03 Tektronix, Inc. Transparent embedment of data in a video signal
US6334187B1 (en) * 1997-07-03 2001-12-25 Matsushita Electric Industrial Co., Ltd. Information embedding method, information extracting method, information embedding apparatus, information extracting apparatus, and recording media
US6661905B1 (en) 1998-03-23 2003-12-09 Koplar Interactive Systems International Llc Method for transmitting data on a viewable portion of a video signal
US6504941B2 (en) 1998-04-30 2003-01-07 Hewlett-Packard Company Method and apparatus for digital watermarking of images
JP2002531977A (en) 1998-11-30 2002-09-24 シグナファイ、 インコーポレイテッド Combining multiple messages with different properties for watermarking
JP2000270204A (en) 1999-03-19 2000-09-29 Nec Corp Device and method for inserting electronic watermark
JP3728136B2 (en) 1999-03-30 2005-12-21 キヤノン株式会社 Image processing apparatus, image processing method, and storage medium
JP3921923B2 (en) 2000-06-07 2007-05-30 日本電気株式会社 Digital watermark insertion apparatus and method
DE60127553T2 (en) 2000-06-23 2007-12-27 Koninklijke Philips Electronics N.V. WATER MARKET PROCESSING AND ARRANGEMENT
US6563936B2 (en) 2000-09-07 2003-05-13 Sarnoff Corporation Spatio-temporal channel for images employing a watermark and its complement
US6674876B1 (en) 2000-09-14 2004-01-06 Digimarc Corporation Watermarking in the time-frequency domain
JP3898128B2 (en) 2000-11-07 2007-03-28 コニンクリユケ フィリップス エレクトロニクス エヌ.ブイ. Method and apparatus for embedding a watermark in an information signal
JP2004513586A (en) 2000-11-07 2004-04-30 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Method and apparatus for embedding a watermark in an information signal
JP3636061B2 (en) 2000-11-08 2005-04-06 日本電気株式会社 Data insertion apparatus and method
US6792130B1 (en) 2000-12-13 2004-09-14 Eastman Kodak Company System and method for embedding a watermark signal that contains message data in a digital image
US6870931B2 (en) 2000-12-13 2005-03-22 Eastman Kodak Company Method and system for embedding message data in a digital image sequence
US6785401B2 (en) 2001-04-09 2004-08-31 Tektronix, Inc. Temporal synchronization of video watermark decoding
JP3576993B2 (en) 2001-04-24 2004-10-13 株式会社東芝 Digital watermark embedding method and apparatus
US6975743B2 (en) 2001-04-24 2005-12-13 Microsoft Corporation Robust and stealthy video watermarking into regions of successive frames
US6996248B2 (en) 2001-06-13 2006-02-07 Qualcomm, Incorporated Apparatus and method for watermarking a digital image
WO2003001813A1 (en) 2001-06-21 2003-01-03 Koninklijke Philips Electronics N.V. Embedding and detection of watermark in a motion image signal
US7298865B2 (en) 2001-07-30 2007-11-20 Sarnoff Corporation Secure robust high-fidelity watermarking

Patent Citations (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US591527A (en) * 1897-10-12 Gold from ores
US4081132A (en) * 1973-10-23 1978-03-28 E M I Limited Credit cards and other security documents
US4550395A (en) * 1981-01-08 1985-10-29 Carlson John E Holographic system for the storage of audio, video and computer data
US5721788A (en) * 1992-07-31 1998-02-24 Corbis Corporation Method and system for digital image signatures
US5930377A (en) * 1992-07-31 1999-07-27 Digimarc Corporation Method for image encoding
US5809160A (en) * 1992-07-31 1998-09-15 Digimarc Corporation Method for encoding auxiliary data within a source signal
US5832119A (en) * 1993-11-18 1998-11-03 Digimarc Corporation Methods for controlling systems using control signals embedded in empirical data
US5841886A (en) * 1993-11-18 1998-11-24 Digimarc Corporation Security system for photographic identification
US5832119C1 (en) * 1993-11-18 2002-03-05 Digimarc Corp Methods for controlling systems using control signals embedded in empirical data
US6026193A (en) * 1993-11-18 2000-02-15 Digimarc Corporation Video steganography
US5745604A (en) * 1993-11-18 1998-04-28 Digimarc Corporation Identification/authentication system using robust, distributed coding
US5862260A (en) * 1993-11-18 1999-01-19 Digimarc Corporation Methods for surveying dissemination of proprietary empirical data
US5617119A (en) * 1994-06-08 1997-04-01 Systems Research & Applications Corporation Protection of an electronically stored image in a first color space by the alteration of a digital component in a second color space
US5646997A (en) * 1994-12-14 1997-07-08 Barton; James M. Method and apparatus for embedding authentication information within digital data
US5636292A (en) * 1995-05-08 1997-06-03 Digimarc Corporation Steganography methods employing embedded calibration data
US5636292C1 (en) * 1995-05-08 2002-06-18 Digimarc Corp Steganography methods employing embedded calibration data
US6122403A (en) * 1995-07-27 2000-09-19 Digimarc Corporation Computer system linked by using information in data objects
US20020009208A1 (en) * 1995-08-09 2002-01-24 Adnan Alattar Authentication of physical and electronic media objects using digital watermarks
US5915044A (en) * 1995-09-29 1999-06-22 Intel Corporation Encoding video images using foreground/background segmentation
US5859920A (en) * 1995-11-30 1999-01-12 Eastman Kodak Company Method for embedding digital information in an image
US5761686A (en) * 1996-06-27 1998-06-02 Xerox Corporation Embedding encoded information in an iconic version of a text image
US5974548A (en) * 1996-07-12 1999-10-26 Novell, Inc. Media-independent document security method and apparatus
US5933798A (en) * 1996-07-16 1999-08-03 U.S. Philips Corporation Detecting a watermark embedded in an information signal
US6625295B1 (en) * 1996-09-13 2003-09-23 Purdue Research Foundation Authentication of signals using watermarks
US5809139A (en) * 1996-09-13 1998-09-15 Vivo Software, Inc. Watermarking method and apparatus for compressed digital video
US5825892A (en) * 1996-10-28 1998-10-20 International Business Machines Corporation Protecting images with an image watermark
US5835639A (en) * 1996-12-18 1998-11-10 Eastman Kodak Company Method for detecting rotation and magnification in images
US5875249A (en) * 1997-01-08 1999-02-23 International Business Machines Corporation Invisible image watermark for image verification
US6065119A (en) * 1997-05-30 2000-05-16 The Regents Of The University Of California Data validation
US6240121B1 (en) * 1997-07-09 2001-05-29 Matsushita Electric Industrial Co., Ltd. Apparatus and method for watermark data insertion and apparatus and method for watermark data detection
US6332030B1 (en) * 1998-01-15 2001-12-18 The Regents Of The University Of California Method for embedding and extracting digital data in images and video
US6332031B1 (en) * 1998-01-20 2001-12-18 Digimarc Corporation Multiple watermarking techniques for documents and other data
US6064764A (en) * 1998-03-30 2000-05-16 Seiko Epson Corporation Fragile watermarks for detecting tampering in images
US6757407B2 (en) * 1998-05-12 2004-06-29 Lucent Technologies Inc. Transform domain image watermarking method and system
US6272176B1 (en) * 1998-07-16 2001-08-07 Nielsen Media Research, Inc. Broadcast encoding system and method
US6275599B1 (en) * 1998-08-28 2001-08-14 International Business Machines Corporation Compressed image authentication and verification
US6285775B1 (en) * 1998-10-01 2001-09-04 The Trustees Of The University Of Princeton Watermarking scheme for image authentication
US6219634B1 (en) * 1998-10-14 2001-04-17 Liquid Audio, Inc. Efficient watermark method and apparatus for digital signals
US6563935B1 (en) * 1998-12-02 2003-05-13 Hitachi, Ltd. Method of extracting digital watermark information and method of judging bit value of digital watermark information
US6532541B1 (en) * 1999-01-22 2003-03-11 The Trustees Of Columbia University In The City Of New York Method and apparatus for image authentication
US6246777B1 (en) * 1999-03-19 2001-06-12 International Business Machines Corporation Compression-tolerant watermarking scheme for image authentication
US6871180B1 (en) * 1999-05-25 2005-03-22 Arbitron Inc. Decoding of information in audio signals
US6785815B1 (en) * 1999-06-08 2004-08-31 Intertrust Technologies Corp. Methods and systems for encoding and protecting data using digital signature and watermarking techniques
US6834344B1 (en) * 1999-09-17 2004-12-21 International Business Machines Corporation Semi-fragile watermarks
US6535251B1 (en) * 1999-10-26 2003-03-18 Sharplabs Of America, Inc. Video encoder and method for adjusting quantization step in real time
US20010031064A1 (en) * 2000-01-11 2001-10-18 Ioana Donescu Method and device for inserting a watermarking signal in an image
US20010024510A1 (en) * 2000-02-29 2001-09-27 Keiichi Iwamura Digital content processing method
US20020114456A1 (en) * 2000-05-31 2002-08-22 Yoichiro Sako Recording medium, recording method of recording medium, recording and/or reproducing method of recording medium, and data copy control method
US20020076082A1 (en) * 2000-09-01 2002-06-20 Koji Arimura Reproduction equipment, reproduction equipment specifying equipment, reproduction equipment specifying system and methods and recording media for said equipment and system
US20020095577A1 (en) * 2000-09-05 2002-07-18 International Business Machines Corporation Embedding, processing and detection of digital content, information and data

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8355514B2 (en) 1993-11-18 2013-01-15 Digimarc Corporation Audio encoding to convey auxiliary information, and media embodying same
US8204222B2 (en) 1993-11-18 2012-06-19 Digimarc Corporation Steganographic encoding and decoding of auxiliary codes in media signals
US8055012B2 (en) 1993-11-18 2011-11-08 Digimarc Corporation Hiding and detecting messages in media signals
US8051294B2 (en) 1993-11-18 2011-11-01 Digimarc Corporation Methods for audio watermarking and decoding
US7974439B2 (en) 1993-11-18 2011-07-05 Digimarc Corporation Embedding hidden auxiliary information in media
US7987094B2 (en) 1993-11-18 2011-07-26 Digimarc Corporation Audio encoding to convey auxiliary information, and decoding of same
US8073193B2 (en) 1994-10-21 2011-12-06 Digimarc Corporation Methods and systems for steganographic processing
US8411898B2 (en) 1995-05-08 2013-04-02 Digimarc Corporation Digital authentication with analog documents
US8144924B2 (en) 1995-05-08 2012-03-27 Digimarc Corporation Content objects with computer instructions steganographically encoded therein, and associated methods
US8280101B2 (en) 1995-08-09 2012-10-02 Digimarc Corporation Identification documents and authentication of such documents
US8027510B2 (en) 2000-01-13 2011-09-27 Digimarc Corporation Encoding and decoding media signals
US7756290B2 (en) 2000-01-13 2010-07-13 Digimarc Corporation Detecting embedded signals in media content using coincidence metrics
US8175329B2 (en) 2000-04-17 2012-05-08 Digimarc Corporation Authentication of physical and electronic media objects using digital watermarks
US8126272B2 (en) 2000-05-02 2012-02-28 Digimarc Corporation Methods combining multiple frames of image data
US8131760B2 (en) 2000-07-20 2012-03-06 Digimarc Corporation Using object identifiers with content distribution
US7711144B2 (en) 2000-09-14 2010-05-04 Digimarc Corporation Watermarking employing the time-frequency domain
US8077912B2 (en) 2000-09-14 2011-12-13 Digimarc Corporation Signal hiding employing feature modification
US20080181449A1 (en) * 2000-09-14 2008-07-31 Hannigan Brett T Watermarking Employing the Time-Frequency Domain
US8006092B2 (en) 2001-01-24 2011-08-23 Digimarc Corporation Digital watermarks for checking authenticity of printed objects
US8051295B2 (en) 2001-04-20 2011-11-01 Digimarc Corporation Benchmarks for digital watermarking
US8515121B2 (en) 2002-01-18 2013-08-20 Digimarc Corporation Arrangement of objects in images or graphics to convey a machine-readable signal
US7974495B2 (en) 2002-06-10 2011-07-05 Digimarc Corporation Identification and protection of video
US8090141B2 (en) * 2006-01-31 2012-01-03 Xerox Corporation System and method to automatically establish preferred area for image-wise watermark
US20070177759A1 (en) * 2006-01-31 2007-08-02 Xerox Corporation System and method to automatically establish preferred area for image-wise watermark
US20130204631A1 (en) * 2010-07-01 2013-08-08 Nokia Corporation Compressed sampling audio apparatus
US9224398B2 (en) * 2010-07-01 2015-12-29 Nokia Technologies Oy Compressed sampling audio apparatus
US20170148451A1 (en) * 2013-11-28 2017-05-25 Fundacio Per A La Universitat Oberta De Catalunya Method and apparatus for embedding and extracting watermark data in an audio signal
US9978382B2 (en) * 2013-11-28 2018-05-22 Fundacio Per A La Universitat Oberta De Catalunya Method and apparatus for embedding and extracting watermark data in an audio signal
CN103886544A (en) * 2014-04-10 2014-06-25 海南大学 Volume data robustness multi-watermark algorithm based on three-dimensional DCT perceptual Hash and chaos

Also Published As

Publication number Publication date
US7197164B2 (en) 2007-03-27
US6961444B2 (en) 2005-11-01
US7346776B2 (en) 2008-03-18
US20020076083A1 (en) 2002-06-20
US20060120559A1 (en) 2006-06-08
WO2002023905A1 (en) 2002-03-21
US20020031240A1 (en) 2002-03-14
AU2001292659A1 (en) 2002-03-26

Similar Documents

Publication Publication Date Title
US7346776B2 (en) Authenticating media signals by adjusting frequency characteristics to reference values
US7277468B2 (en) Measuring quality of service of broadcast multimedia signals using digital watermark analyses
US7656930B2 (en) Assessing quality of service using digital watermark information
US6683966B1 (en) Watermarking recursive hashes into frequency domain regions
US7181042B2 (en) Digital authentication with digital and analog documents
US8051295B2 (en) Benchmarks for digital watermarking
US6512837B1 (en) Watermarks carrying content dependent signal metrics for detecting and characterizing signal alteration
US7027614B2 (en) Hiding information to reduce or offset perceptible artifacts
US9349153B2 (en) Correcting image capture distortion
US20160350889A1 (en) Steganographic encoding and decoding
US20020176116A1 (en) Digital watermarks as a communication channel in documents for controlling document processing devices
US20100322468A1 (en) Encoding and Decoding Auxiliary Signals
US6993150B2 (en) Halftone primitive watermarking and related applications
EP1266475A1 (en) Transmarking, watermark embedding functions as rendering commands, and feature-based watermarking of multimedia signals
US20080226125A1 (en) Method of Embedding Data in an Information Signal
CA2422412A1 (en) Halftone watermarking and related applications
WO2002019269A2 (en) A method for encoding and decoding image dependent watermarks
Sheriguda et al. Data Embedding In Multimedia and Improved Digital Watermarking Techniques

Legal Events

Date Code Title Description
AS Assignment

Owner name: DIGIMARC CORPORATION, OREGON

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LEVY, KENNETH L.;TIAN, JUN;REEL/FRAME:021268/0422;SIGNING DATES FROM 20080427 TO 20080718

AS Assignment

Owner name: DIGIMARC CORPORATION (FORMERLY DMRC CORPORATION),

Free format text: CONFIRMATION OF TRANSFER OF UNITED STATES PATENT RIGHTS;ASSIGNOR:L-1 SECURE CREDENTIALING, INC. (FORMERLY KNOWN AS DIGIMARC CORPORATION);REEL/FRAME:021785/0796

Effective date: 20081024

Owner name: DIGIMARC CORPORATION (FORMERLY DMRC CORPORATION), OREGON

Free format text: CONFIRMATION OF TRANSFER OF UNITED STATES PATENT RIGHTS;ASSIGNOR:L-1 SECURE CREDENTIALING, INC. (FORMERLY KNOWN AS DIGIMARC CORPORATION);REEL/FRAME:021785/0796

Effective date: 20081024

Owner name: DIGIMARC CORPORATION (FORMERLY DMRC CORPORATION),O

Free format text: CONFIRMATION OF TRANSFER OF UNITED STATES PATENT RIGHTS;ASSIGNOR:L-1 SECURE CREDENTIALING, INC. (FORMERLY KNOWN AS DIGIMARC CORPORATION);REEL/FRAME:021785/0796

Effective date: 20081024

AS Assignment

Owner name: DIGIMARC CORPORATION (AN OREGON CORPORATION), OREGON

Free format text: MERGER;ASSIGNOR:DIGIMARC CORPORATION (A DELAWARE CORPORATION);REEL/FRAME:024369/0582

Effective date: 20100430

Owner name: DIGIMARC CORPORATION (AN OREGON CORPORATION),OREGO

Free format text: MERGER;ASSIGNOR:DIGIMARC CORPORATION (A DELAWARE CORPORATION);REEL/FRAME:024369/0582

Effective date: 20100430

Owner name: DIGIMARC CORPORATION (AN OREGON CORPORATION), OREG

Free format text: MERGER;ASSIGNOR:DIGIMARC CORPORATION (A DELAWARE CORPORATION);REEL/FRAME:024369/0582

Effective date: 20100430

AS Assignment

Owner name: DMRC LLC, OREGON

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:DIGIMARC CORPORATION (A DELAWARE CORPORATION);REEL/FRAME:025217/0508

Effective date: 20080801

AS Assignment

Owner name: DIGIMARC CORPORATION, OREGON

Free format text: MERGER;ASSIGNOR:DMRC CORPORATION;REEL/FRAME:025227/0832

Effective date: 20080903

Owner name: DMRC CORPORATION, OREGON

Free format text: MERGER;ASSIGNOR:DMRC LLC;REEL/FRAME:025227/0808

Effective date: 20080801

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION